Old Dominion University

ODU Digital Commons

Mathematics & Statistics Faculty Publications Mathematics & Statistics

1997

The Effect of Three-Dimensional Freestream
Disturbances on the Supersonic Flow Past a Wedge

Peter W. Duck

D. Glenn Lasseigne
Old Dominion University, dlasseig@odu.edu

M. Y. Hussaini

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat fac pubs

b Part of the Applied Mathematics Commons, Fluid Dynamics Commons, and the Plasma and
Beam Physics Commons

Repository Citation
Duck, Peter W.; Lasseigne, D. Glenn; and Hussaini, M. Y., "The Effect of Three-Dimensional Freestream Disturbances on the

Supersonic Flow Past a Wedge" (1997). Mathematics & Statistics Faculty Publications. 32.
https://digitalcommons.odu.edu/mathstat_fac_pubs/32

Original Publication Citation

Duck, P. W,, Lasseigne, D. G., & Hussaini, M. Y. (1997). The effect of three-dimensional freestream disturbances on the supersonic
flow past a wedge. Physics of Fluids, 9(2), 456-467. doi:10.1063/1.869140

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in
Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact

digitalcommons@odu.edu.


https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_fac_pubs/32?utm_source=digitalcommons.odu.edu%2Fmathstat_fac_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

The effect of three-dimensional freestream disturbances on the supersonic flow past a
wedge

Peter W. Duck, D. Glenn Lasseigne, and M. Y. Hussaini

Citation: Physics of Fluids 9, 456 (1997); doi: 10.1063/1.869140
View online: http://dx.doi.org/10.1063/1.869140

View Table of Contents: http://aip.scitation.org/toc/phf/9/2
Published by the American Institute of Physics

Articles you may be interested in

Interaction of Linear Waves with Oblique Shock Waves
The Physics of Fluids 11, 2350 (2003); 10.1063/1.1691825

| [ T PHYSICS
| AV EEEE TODAY

| 5 oo o

D Physics Today Buyer's Guide

| Search with a purpose.


http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/522021942/x01/AIP-PT/PoF_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Duck%2C+Peter+W
http://aip.scitation.org/author/Lasseigne%2C+D+Glenn
http://aip.scitation.org/author/Hussaini%2C+M+Y
/loi/phf
http://dx.doi.org/10.1063/1.869140
http://aip.scitation.org/toc/phf/9/2
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.1691825
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The interaction between a shock waattached to a wedg@nd small amplitude, three-dimensional
disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the
two-dimensional study of Duckt al. [P W. Duck, D. G. Lasseigne, and M. Y. Hussaini, “On the
interaction between the shock wave attached to a wedge and freestream disturbances,” Theor.
Comput. Fluid Dyn.7, 119 (1995 (also ICASE Report No. 93-61 through the use of vector
potentials, which render the problem tractable by the same techniques as in the two-dimensional
case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately
chosen coordinates. Results are presented for specific classes of freestream disturbances, and the
study shows conclusively that the shock is stable to all classes of disturb@ecesme periodic
perturbations to the shock do not grow downstrggmovided the flow downstream of the shock is
supersonidloosely corresponding to the weak shock soluiidrhis is shown from our numerical
results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the
shock. © 1997 American Institute of Physids$§1070-663(97)02701-3

I. INTRODUCTION then the shock is stable, with disturbances not growing in
amplitude downstream.

The interaction of freestream disturbances with shock  This aspect was considered in some detail by Duck
waves is an important practical problem, with particular re-et al,'! again for the case of supersonic flow past wedges,
gard to the operation of high-speed flight vehicles. Of parsubject to two-dimensional disturbances. This latter paper
ticular interest are the consequences of these disturbances @where there is also a more detailed summary of previous
boundary-layer receptivity, and this paper may be regardediork in this areashowed that two-dimensional disturbances,
as a step in this process. impinging upon the weak shock solution, do not grow down-

In the case of an isolated shock, Modr&ibnef and  stream, but rather produce constant amplitude or weakly de-
McKenzie and Westphalshowed that a single wavelength caying oscillatory waves downstream. The conditions which
entropy, acoustic or vorticity wave, upstream of the shockdistinguish between the two types of behaviours were deter-
produces a disturbance comprising a mixture of all threamined and a decomposition of the far-field, suggested by the
classes downstream of the shock. When the shock is asso@nalytic solution, was made. The result was that there is a
ated with the flow past a rigid body, the situation is muchshadow region dependent on the incoming disturbance. If the
more complicated, due to the reflection and refraction of disdirection of propagation of the plane-wave acoustic distur-
turbances between the body surface and the shock itself, thence generated at the shock by the plane-wave incoming
latter distorting as a result, a process which further complidisturbance intersects the wedge surface, then there is a non-
cates the flow structure. This process was considered bgecaying oscillatory pressure disturbance on the wedge sur-
Carrief and Van Dyke with particular regard to the problem face. In any case, there are two weakly decaying single-
of supersonic flow past a wedge performing small amplitudevavelength oscillatory disturbances on the wedge surface
oscillations, the shock remaining attached to the wedge tipthat are due to the requirement that the shock remain at-
These problems raise questions regarding the stability of theached. One is traveling at the mean-flow speed plus the
shock, and this aspect has been considered in the twapeed of sound, and the other travels at the mean-flow speed
dimensional contextassociated with wedge flows, the shock minus the speed of sound. Thus these are clearly regular
remaining attached to the wedge tip at all timdsy acoustic waves which emanate from a point souftte
Levinson® Carrier! Henderson and AtkinsdhRusanov and wedge apekof fixed temporal frequency as prescribed by
Sharakshanndand Salas and Morgdfi.The overall conclu-  the incoming disturbance. In addition to these more obvious
sion is that if the flow downstream of the shock is subsoniceffects, there is also a local field effect which is broad based
(loosely classified as the strong shock solutiotihen the in wavelength. While the first three modes of pressure dis-
shock is unstable, in so far as disturbances grow downturbances at the wedge surface can indeed interact with the
stream. If, on the other hand, the flow behind the shock idboundary layer, it is the last disturbance with the inclusion of
supersonic(loosely classified as the weak shock solutjon short wavelength disturbances that should have the most ef-
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fect on the growing boundary layer. In this latter paper, thevelocity, density and temperature, but change in entropy
side issue of shock stability to two-dimensional disturbancesr vorticity, toO(e). Disturbances of this class take the form
was also addressed. The aim of the present paper is to extend

the ideas of Duclet al! to three-dimensional disturbances; p=1+E+0(s?), @
indeed, little three-dimensional work of this type appears to alsé
have been undertaken in the past. u=1l—-—>———+0(e?), 3)

YMi(a;+ o)

ayeE O(s2 4
Il. FORMULATION v= PR +0(&9), (4)
Throughout this paper, we use subscript 1 to denote o

quantities upstream of the shock, and subscript 2 to denote |, — _ &Jro(sz) (5)
downstream quantities. The wedge is taken to make an angle YM3i(a;+ ) ’
6 with respect to the oncoming flow, witx{,y*,z*) coor- -
dinates parallel and perpendicular to the upstream flow, with p=1+ f +0(g2?) (6)
z* being the “crossflow” direction. The upstream basic flow Y ’
velocity has magnitude} , with Mach numbeM ; and den- and
sity p7 , and temperatur&; . The ratio of specific heatg is .
assumed to be constant, and throughout this paper all our e(y—1E )
numerical results takg=1.4. The velocity vector is written =1- T +0(e7), @)

asU7 (u,v,w), with respect to X*,y*,z*) coordinates, and A o
the density is then writterp* p, pressure ap*R*Tip  WhereE is the normal mode exponential, i.e.,
* H ~
(Tvl/fjrereR denotes the gas constamind the temperature is E= expliagx,+iazy, +iasz+ioth, ®
1! .
The Rankine-Hugoniot relations provide a link betweenwith
conditions upstream and downstream of the shock. For the 1
basic (steady flow, when the downstream flow is uniform w=—a*—[ai+ a5+ a3]*? 9)
and parallel to the wedge surface, the following classical M2
result is obtained (see, for example, Liepmann and being the frequency for the given wave numbers. In the
Roshkd?): above,x; andy, are parallel and perpendicular to the up-
@ng—0 U, py (y—l)Mi SirPB+2 s?ream _flow,_ res_pec'_uvelgbo_th perpend_lcular ta); the non-
- et — , (1)  dimensionalization is carried out using one of the wave-
tan g u, P2 (y+1)M7 sir’ lengths of the disturbances as the typical length scale, e.g.,
rpy setting a; to unity. The modes with the positive sign
above in(9) are usually referred to as the slow modes, whilst
velocity components perpendicular to the shock. those with the negative sign are usually referred to as the fast
The relationshig1) yields two possible values fc8, for ~ modes. , _
a given value ofg (for 0<6,.(M,) with the so-called (i) \(ortlcny waves: these are chapactenzed by having
“weak shock” solution generally being characterized by su-"0 density, temperature or pressure disturbance8 (),
personic flow downstream of the shock, whilst the otherand thus the upstream flow takes the form
“strong shock” solution is generally characterized by down-

whereg is the angle between the shock and the wedge ce
terline (i.e., y* =0) andu,; andu, are the non-dimensional

2% ~
stream subsonic flow. Note, however, that there does exist a U=1+SszE+O(82), (10
small, weak shock regime, close &= 0, Where the down- 1T
stream flow is subsonic, i.e., the downstream sonic line does a; az |- )
not quite coincide With . v=e —Qza%Jrag —Q, PR E+0O(&9), (12)

We shall be concerned with the effect of small amplitude
disturbances, which are introduced into the flow ahead of the a; - )
shock. The corresponding two-dimensional results, as stud- W=stmE+O(s ), (12)
ied by McKenzie and Westphalfor example, may be ex- 23
tended into the three-dimensional context, in quite a straightand
forv_varq manner, when the* variation _is _taken to be p,T,p=1+0(¢?), (13)
periodic(although other, more generi variations could be
accomplished using Fourier transform@/e takes(<1) to ~ with
be a measure of the amplitude of the freestream disturbance, _

) X w=—aj. (14
and it then turns out that the upstream disturbance may be R
classified into three distinct classes, just as in the twoThe exponential terrik is unaltered fromi8), and the param-
dimensional case. eters(), and ), must be specified. In comparison with the

(i) Acoustic waves: these are characterized by having avo-dimensional case, the three-dimensional case allows for
pressure perturbation, with corresponding perturbations imn extra vorticity mode.
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(iii) Entropy waves: these have no disturbance pressurand
or velocity components t@(e), and may therefore be writ- -

ten in the form P=p2T+Top. (30)

— = 2 Much of the success of the approach used by Catrier,
p=1+eE+O(e7), @9 van Dyke and indeed by Duckt al!* was due to the ability
T=1-eE+0(&?), (16)  of being able to split the solution into two components, the

) one including a velocity potentialwhich represented the
u,p=1+0(&9), (17 acoustic wave component of the flpvand the other a stream
and function (which represented the vorticity wave component of

) the flow). It is clearly not possible to use the latter in the
v,W=0(e%), (18 context of three-dimensional flows, however, an alternative
with  defined by(14) andE by (8), again. is the introduction of a vector potential. This concept, origi-
In the following section of the paper we consider thenally due to Poincar®® has been used in a number of fluid
effects that these waves have on a shock wave attached tgrechanics investigations over the years, although the appro-
wedge. The complication introduced by the presence of theriate boundary conditions have been the subject of discus-
wedge is that a single mode of the above type, upstream &fion, as detailed by Aziz and Hellurs.
the shock, will trigger modes of all three types, of all wave _ Specifically we write the perturbation velocity vector
numbers behind the shock; the only quantities preserved=(U,v,w) in the form
across the shoc{provi.deds<1) are the frequency param- U=V ¢+VAE, (31)
eterw and the spanwise wave numbes.
where ¢ is the velocity potential, an# the vector potential.
Ill. THE DOWNSTREAM SOLUTION The above constitutes a non-unique representation, fand
) _as such an additional relationship may (aebitrarily) speci-
The flow downstream of the shock comprises the unifieq. The most popular choice, and the one that we pursue

form flow solution plus a small amplitudéX(s)) perturba-  pere is that the vector potential can be required to be sole-
tion, triggered by the freestream disturbances described iRgigal, i.e.,

the previous section. We take non-dimensional coordinates

parallel and perpendicular to the wedgerpendicular to the V-E=0. (32
z direction in both casgsasx, andy,, respectively, with  Thjs |eads to the vorticity vector then being merely the quan-
corresponding velocity componentsy(uv ). _tity — V2E. Substitution of(31) into (26)—(28) leads to the
We now write the solution downstream of the shock N equations
the form
Up=U,+€li+0(&2), (19 V2 gt Unds, + % ~0, (33
1MP2
v,=ev+0(£?), (20 and
— 2
w=ew+0(s%), @D VZ{E+U,E, }=0. (34)
=p,+ep+0(&?), 22 _
PP sf (%) 22 It then follows thatp satisfies
p=p,+ep+0(&?), (23 -
~ 2
and p=— 2 [éct Uz, ], (35
—_ S
T=T,+eT+0(&?). (24

and elimination of the dependent variab}'eand? gives the
Substitution of these expansions into the govertingiscid) equation for¢
equations of motion, continuity and energy equations and

: 1
equations of state then leads to V2p= 52[¢H+ 2U 5 b+ U§</>x2x2], (36)
it U2’5x2+ PZUx2+ PZ’JyZ"'pZ\Tvz: 0, (29 °
where
pofli+ Ugll )+ — B, =0 6 T
X X ’
2 yM1™2 as=M—. (37)
1
1
po{0+ U0, }+ ——=Pp,.=0, (27  If we write E=(EM,E®) E®), then on account of our
2 yMg Y2 . i,
1 comments above, we impose the condition
- - 1 _ 1) 224 23—
pz{Wt-F U2Wx2}+ ’y—Mz p,=0, (28 E)(2 + Ey2 + EZ 0. (39
1
urther quantity must also be introduced, namely
A furth i I be introduced I
=~ = r-1_ ~ . ¥’ (¥2,2,t), which describes the displacement of the shock
p2{Tit UaTy} y {PeU2py,} =0, (29 wave from its undisturbed state.
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This type of formulation then allows us to follow closely . Ui-a2
the two-dimensional approach adopted by Detlal!! It is BP=———, (44)

now possible to write the general solution fry’, and the =
E(M in the following form, assuming boundedness at the 2
apex of the wedge: K2_jey 28 (45)
e 2’
_ ) IwU2X2 "
d= ex |a)t——Ug a§ i gz \= cotl B—6), (46)
* . F—N2_n2
xS {a, cost(r8,)+b, sinh(v6,)}J,(ker), (39) E=VA A Sy
v=0 ~
r?=xi-B%;, (48)
] iwx2 iw)\yza
EM= eX[{th— +ia z) and
U,  UyUz—aj) s i
tanh 8,= By, /X5. (49
(M7 (k2
x ,,ZO €, Ju(kety2), (40 If we impose impermeability on the wedge surface, we
immediately require
and
" b,=0Vv, (50
L . why,U; n -
W' = exp(nut— -l +i a32> 20 d,J,(Kegyo), whilst if the shock remains attached at the tip, tigr= 0. As

(41  noted by Ducket al* (for examplg, it is also reasonable to
set thev=0 coefficients of the other terms in the series to

where we have written zero, which correspond to transient-type modes, and so we

o write
o= (42)
s ag=cy’=cy’=cy=0. (51)
k= i (43) The key results for the velocity components and pressure
B? are then

—_ iU2(1)X2 k 2|(1)U2 ~
u=—exp int 02 > +iasz 2 ma yta,_1(1+ 8,10 —a,1|coshvdyrd,(Ker)
1 s v= e S
iwX,  iwhy,a® k 2iN0a - ~ -
texp|lot— U, _UZ(UE_ 52)+|a3z) A ?e “rU ﬁsc(a) & =¥ (1+8,210) | —i18¢'? I ,(Key),
S r= eY?2
(52)
_ iU,wX % ~
o= exp iot— ———s +iasz| > L'B(ay_1+a,,+1)sinr(v02)JV(ker)
Ul_as =0 2
. Il wX; low\yag ) 1 @5 (i
+ - - + +
ex;{lwt U, UyUl-ad |a3z); iBct 0, c J,(Ketys), (53)
iUsox, oo~ A . . i WXy iw)\yzai
w= exp iwt— +iagz iBa,d, (ker)coshvb,— expiot+iazz— -
'{ U%_g 3 )VEO IB ( € 2 p 3 U2 UZ(Ug_ag)
iwa k 2iAwa A a
X U;d”ﬁ(—ﬁ e+l — el (14 6,-10) ]Jxkegyz), (54)
v= e 2
and
—_ '}’pz&e ) iU2(1)X2 ) g 2'&) U U
p= oa ex th—m'f'lag,z A k—/}zaﬁ a a,_1(1+3,-10— A, COS“VHZ)JV(k r, (55
s 2 s v= e s
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wherea_;=c=d_,=0, and where’,  is the Kronecker =y +(U;—Uy) ., (59)
delta.

Although the solutions above satisfy the impermeability
and apex conditions, as yet these solutions do not satisfy tH&"
unsteady Rankine-Hugoniot conditionéMcKenzie and
Westphal) on the shock; followingand extendingthe re- WH=W] + (Uy— Up) i, (60)
sults of Ducket al,!! these take the form

1 1 i
u2+u2p2 (1—— R’ +—(u,p1+u1) (56) with
p2 P2
us+ = —— —=ujt U ———, 5
27 2" 2pa 29Uy p, 12 1P1 2yMZu; 7
In equations(56)—(61), o denotes the unperturbed distance
az 7, aZ P along the shock, (’,v’,w’) denote the velocity perturba-
_ = l)u_zg ( —1)u_25 tions perpendicular_ to the undi;turb_ed shock, parallel to the
shock and perpendicular to tkalirection, and parallel to the
U, U, D D z direction, respectively, andi(v,0) denote the correspond-
;U u P1 P1 ‘ ) e
1_— R'+—=u;— ( —1)M2_+( Mm%, ing base flow velocity components. Eliminatipg from the
U2 U2 Y 2y 1tz above equations, and then utilizifgR)—(55), yields the fol-
(58) lowing four equations for each of the=0:
|
8- a)[ o| 219 +a, 1(1+8, 10— hv@,+ ke Zima” e —c® (145, 10)
co ) Ta a,-1 y—1,0 78,41 |COSNVOyT | — —=—=—C, Cy17 G0 v—1,0
keﬁ ag 2 keU8°
~ Ko/ ~ ioa _ ke[ 2iU,an
—iBc? |t +sin(B—6) Lﬁ(ay,l+ay+1)sinr(v00)+chE,l) 2@ (U= Up)sin(B— 0) —{ — ———d,
2 U2 2 keBZaS
+%(dy+1—dv_1<1+5v_1,o>>}=R<£>, (62)
A sin(B—6)| — = ﬂa +a, 1(1+68,_10—a,:+1|coshvéy+ ke —Mc 9153, —c® (1468, 10)
B keﬁ a, v—1 v—1, v+1 0 2 ke ) 2y v+1 v—1 v—1,0
~ Kef i Ayl [ ke[ 2iaU,
—iBc? | |—cogB—0) 'B(aV 1+a,,1)sinh(vég) +ipct c<V3) +{ 2 osin(B— 0) = —% U
U2 BZ 2 e aS
+&dypq—d, (146 fiod, )] 22 ko 210 220 1+s e 0o) | = R
g( v+1 V*l( V*l,O)) lwd, 83 ? @av a_SaV7l( V*l,O) a_sav+1 COSH\V 0) - RE}3) y
(63)
|
and . ~
_to ), Ke[ _ 2B (5 - @ 2
¥ c,’+ > c,/+é&ccyi—ci2y)
~ 2 keUZ,B
) k 2iAwa N
iaz cosl{vg)a,— —c'?— —| — —acP+ gy
@3 costlr6)a, Uz " 21 kUpB2 " v X(1+6, 10 | +iasc¥=0. (65)
_C(Vljl)(l+ 5V1'0)) _ia?’(u_l_U_Z)dV:R(f)' 64) Terms used in the above are
These equations must also be augmented with the condition tanh o= 5 tan( 5= 0), (66
arising from the solenoidal condition on the vector potential,
namely, A1=3, (67)
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1 1 r
Ar=3(1——/, (68)
P2 1”\ s N
\ 1
as 2r "‘l N nll‘ !
A3: — (69) I\\ ! i |. - ]
2U2 Y X l. [ [
| \ | \ it !
1| "
o (70 S R A R
Bl: 1+ ——mM 7 \ i - ) \ I o R I
— 1 1y Il i | i
(7_ 1)U 2 /l ll g ! : .l [ ,! ll v[ |1 A‘
0k it [‘ v '1 ' vt " - o '
o N ! W i [ I | o |
82: _ aS _ ﬂ 1_ i (71) %ﬁ l| !I l l' lI : l| : “ : l‘ 4‘ 1| I’
(7_ 1)U2 u2 p2 , Cj“’ ly " ’ " j 1l : \‘ : \ ; : I‘
RENIRLH R N
ya ! Wt V! \v! |
. (72 EERTIERAY "
(y=1uy 2| § b Y Y
. . \/
The R{" as in Ducket al,'* are to be determined from the b
freestream conditions. In particular in order to write the ex- 3 , Vo [ , .
ponential terms, arising from the upstream solution, in terms 0 10 20 30 40 50
of Bessel functions the following is particularly useful: (@) o
exdi(a; cot B+ ay)(cosf+ N\ sin 0)y,] 06 ¢
7y
U
U w\ Rty ° i
=eXF< Zy gl sin fkedyz (73 04 | X R N a .
UZ I \n o ; \ n 1 ! '/\\
U Y o ivz_i_(_l)ve—iv’é I’ " I‘ Il - ) '. ! \‘ | \\
TR ! J \
=exp —i 02 - N LI A ' !
% Ug_zy ZO 1+ 51/'0 ) : 'I ] |l : \ ‘I |. “ 1‘ : \
/ \‘ oy : '1 1 '] i : | X
X 3,(Ketya), (74 oL/
“ ! | | | i \ i | | |
where kg AR T R R R
3 o ol L l, i ]! [
. U,w) o0 Vo oo Vo o o o
(aq cot B+ ay)(COSO+N SN )+ ——— 0o R | | oo )
e ain-1 Uz—as R I P ' ;
f=sin R . ¥ ! ! i | i
keé 04 v \ /’ \\ // ) Il : L
04 - vy \ L
. . . (75) . ) / \ l:
. 4
Other details are routine, and omitted for reasons of brevity !
1 -0.6 1 L 1 1
Thg combined systet(r62)—(-6.5) then repre(sn?nts a closed 0 0 o - e =
(recursive-typge system determining the, ;. (,c}7;,d, 1. (b) r

FIG. 1. (a) Wall pressure perturbation®; =5, #=25° (weak-shock solu-

V. SOME NUMERICAL RESULTS tion), slow acoustic modey,;=1, a,=0, a3=1. (b) Shock location pertur-
bations, M;=5, 6=25° (weak-shock solution slow acoustic mode,

The first set of data we present is for the particular case;=1, a,=0, a5=1.
M,=5, 6= 25° (weak shock solution for the particular case
of a slow acoustic mode with; =1, a,=0, anda;=1. Fig.
1(a) shows results for the perturbation pressure on the waltesponse to this particular slow mode, the pressure response
(y»=0). Here, and in all cases the solidus denotes the realt the surface for the two-dimensional disturbance decays
part of a function, the dashed line the imaginary part. Thisalgebraically while the shock position shows a characteristic
figure presents a picture reminiscent of results found in a&ingle wavelength response in the far-field limit. On the
number of corresponding two-dimensional cases by Duclother hand, the surface pressure response to the three-
et al,'! namely, that of an oscillatory-type nature down- dimensional slow-mode disturbance does not decay and
stream. Fig. (b) shows the corresponding perturbation shockshows a multi-wavelength pattern as is to be expected if a
location; this too takes on a similarly oscillatory nature. Figs.decomposition of the far field behaviour applies to the three-
2(a) and 2b) show the corresponding results for the fastdimensional case as it does for the two-dimensional case.
mode casgother data remaining the same as for Fig. 1 The shock position shows a two-wavelength structure as
These figures are to be compared with Fig. 2 and Fig. 3 ofvould be expected by the primary acoustic disturbance re-
Duck et al!! where the same conditions apply except thatflecting off the wedge surface and interacting with the shock
a3=0 in those graphs. The difference between the twofrom behind. There is very little difference between the re-
dimensional results and the three-dimensional results desponses to a two-dimensional fast-mode disturbance and a
pends on whether or not the disturbance produces an acoustliree-dimensional fast-mode disturbance. A search in param-
wave behind the shock that intersects with the surface. Ieter space would lead to the same conclusion as in the two-
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20 - main attached to the apex of the wedge is the source for the
algebraically decaying portion of the response — the apex is
- in effect a point source for additional acoustic waves. The
2l " b " i N interaction of these algebraically decaying acoustic waves
. ) p ‘ | i\ ' with the shock in turn produces an algebraically decaying
portion in both the entropy and vorticity modes. Another
o reason that it is important to determine that the pressure has
' only a decaying or sustained oscillatory behaviour down-
stream is that, as mentioned in the analysis of the response to
the two-dimensional disturbances, the potential functions
have components of exponential growth in them. The calcu-
lation of the physical quantities of pressure, velocity and
vorticity are therefore dependent on some fortuitous cancel-
! ) lations, or they themselves would be exponentially growing.
/ In the following section we investigate the downstream be-
haviour of the three-dimensional perturbation solution in
-20 . ) ) s w some detail.

03 V. THE FAR DOWNSTREAM BEHAVIOUR/STABILITY
" . PROBLEM

h The results of the previous section show that a general
growth in physical quantities, as increases does not occur
even though the potential functions have an exponentially

l growing component in them. This is similar to the two-

2 dimensional results as considered by Detlal,'! in which

' it was shown by examining the recurrence relations that only

Y decaying or sustained physical solution oscillations were

. ' possible. The same type of analysis is possible for the three-

e \ dimensional case, but indeed has its own peculiarities as will

i be seen.

f ! In order to analyze the&,— behaviour, we consider

X Y the homogeneous solution of the systé8)—(65), and con-

! sider the limit asyv—oo. In particular, we write

| !
02 L 11 i !
!

0.1 |

-02

: g cV~C{'K", d,~DoK", anda,~AK'e "%,  (76)

-0.3 Y L 1 M 1 ) v
(b) . where K is an eigenvalue whose precise val(iecluding
location in complex spageserves to determine the ultimate

FIG. 2. (a) Wall pressure perturbation}, =5, 6=25° (weak-shock solu- downstream behaviour of the disturbance.|Kf|>1, then

tion), fast acoustic modey; =1, @,=0, a3=1. Shock location perturba- using the generating function for Bessel functions, we have
tions, M;=5, #=25° (weak-shock solution fast acoustic modeg;=1, (for example)
a,=0, az=1.

> d,d,(2)= X DK, (2)

dimensional case: either the surface pressure has a non- »=1 y=—
decaying component and an algebraically decaying 1(|<— 1)
component or it has only an algebraically decaying compo- ~Dyez| gz as |z| —c0. (77

nent. This is significant in that the solution in the absence of

a wedge indicates that the choices are between only a nofhus  exponential growth occurs as|z|—« if
decaying response and an exponentially decaying respon8&{z(K— 1/K)}>0. If we substitute(76) into (62)—(65), al-
(see Hussainiet al,’® Jackson et al,'® Lasseigne and low v—, and discard the inhomogeneous terms, then we
Hussaint’). This issue was pursued in detail in Duekall*  obtain the following five linear homogeneous equations for
where it is determined that the condition that the shock rethe coefficientsA,, Cg‘) andDy:

i\ @ag N 1%
keUpB2 2

1~ iw

3180~ -CE —ke CY—i B(U;—Uz)Dg=0, (78)

(L
K
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iw . iNdag 1 1 -
— —CH+k — =+ € K- —| [CP+ipCP =0, 79
U2 0 € keUZIBZ 25 K 0 B 0 (
ke| 2iU, efo | ineas 1. 1 ~
cos(,B—G)[—— et —e WK Ayt ke — s+ =& K— — | |CP—ipC?
4 keIBZas K © keUZIB2 2 K
kep[e ~ iw _ [ iuLen & 1
ing_pl 22 a6 ey @l T U sin B— B et Y -
+sin(B 0)[ 2 | K +e” 0K | Ap+iBCy +UZC0 (ug—uy)sin(B— ke keBZas+2 K Dy=0,
(80)
Ay ke[ 2i0U, e [ ineay 1. 1 ~
Si —0)| —— T—l———e*HOK Atk — ———+ = K—— C(s)_i C(Z)
[Bl]{ n(B ) (keﬂzas K 0 e keUZBZ 2§ K 0 18 0
kB (efo —~ iw Al | idULN & 1\
—cogB—0) % < Te K AO+|ﬁcgl>+U—cg3>+ B. [ | V1 SIN(B=00) ke ~ T Ta| Ko | Fie|Do
2 2 eB as
A3 ke 2|&) U2 eﬁo Uz
+ | ==+ ————e %K |A,} =0. 81
Bs 2(ke:82 as K ag 0 (81)

This equation is nonlinear i but can be converted to a a3 increases from zero. The eigensolutions associated with
tenth-order linear, generalized eigenvalue problem, whiclihese eigenvalues do not contribute to any growth in any of
may be solved using th@Z algorithm by using the addi- the quantities calculated. Most interesting, however, is the
tional variables variation of these four eigenvalues as the wedge angle is

A - - - increased. All four eigenvalues approa€hk-i at the maxi-

Ag=KA;, CIM=KC, Dy=KD,. ® oo Wegge angle. e S app
It was shown by Duclet al! that in the two-dimensional The (imaginary part of theeigenvalues described I
case, for situations in which the downstream flow was superare shown in Fig. &), whilst the real and imaginary parts of
sonic, there were four imaginary eigenvaluéasl with  the eigenvalues described i) and(iii) are shown in Figs.

|[K|<1), and two complex eigenvalues given by 3(b) and 3c), respectively. Here, we have just shown the
% eigenvalues with the positive value &f; (the other eigen-
K=_—{iag*[U2-a2]"3. (83  Value, corresponding te K+ iK; may obviously be simply
Uz deducefl We next consider the effect of varyirg for the

However, although these complex eigenvalues are such thBgrametersl; =5, a;=1, a,=0, andaz=1. The variation
|K|>1, in both case®,=0, and due to some “fortuitous” of K; of family (i) is shown in Fig. 4a), and the variation of
cancellations, all physical quantities remain bounded a&he real and imaginary parts of eigenvalues describediby
X,— even though it is determined that the potential func-and(iii) is shown in Figs. &) and 4c), respectively. Again,
tions themselves grow exponentially. just the positive values df, are shown. It is seen that the

In the three-dimensional case, we may expect, ten eigerflouble eigenvalues described @) are the only ones with
values instead of the six in the two-dimensional case. HowtK|>1 and therefore lead to potential exponential growth. It
ever, it turns out generally that there are just eight distincfurns out that an analytic description of the eigenvalues de-
eigenvaluegtwo of the eigenvalues being double eigenval-Scribed by(ii) is possible. The result is

ues. Generally we find(i) four imaginary eigenvaluesii) e% ilzas agﬁz 12
one complex conjugate pair of double eigenvalues of the K=U— ~— * g— ~ . (84
form =K, +iK;, and (iii) one complex conjugate pair of 2 ke Ke

eigenvalues also of the form K, +iK;. It is also possible to obtain analytic results for one set of
For #=25°, M;=5, ;=1 anda,=0, the four imagi- eigen-coefficients corresponding to these eigenvalues,
nary eigenvalues have magnitude less than unity even asamely

iAOU2 as&eb — e(’o &e% 1 )\il’(\as 2
0 ‘T[‘T Ke e 2 1K k),
CO - 2 . 2 y (85)
2y ® U iNkag Kkoé 1
@Yty YTy, T2 10K
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(c) o

FIG. 3. (a) Variation of K; of the eigenvalue familyi) with a5, for §=25°, M;=5 (weak-shock solution a;=1, a,=0. (b) Variation of K; of the
eigenvalue family(ii) and (i) with a5, for §=25°, M,;=5 (weak-shock solution a; =1, a,=0. (c) Variation ofK, of the eigenvalue familyii) and iii)
with «a,, for 6=25°, M;=5 (weak-shock solution a;=1, a,=0.

iU, 1 inkay ke[ 1 seeking a solution to the system wit=Do=C{¥=0. Af-
cP=— = E- asAg+CLY 0. 2 \K=x]J|[: tersome algebra, we find the followirifpur) eigenvalues:
2
86 ‘ 9

(86) Mka, [[ Aikas o P )M

B K:kfé—ui _kéu iuké -1 , (89)
iU, [k efo o&t2 >z T2l
53)_72[ %’8< Ke %+ — A0+|a3CE,l)], (87) .
together with
Do=0. (88) cW— _ %C(Z) K— 1 ZMFE%S . (90)
The above solution readily reduces to the two-dimensional ~° 20 7° Ko Ugked

solution in the limitaz—0. Some understanding of the ori-

gin of this other family of coefficients for this eigenvalue, Two of the above values fdk correspond tq83), and this
and also of the additional complex eigenvaliie) may be partly explains the origin of the double eigenvalues. &As
made by considering the two-dimensional limit;—0 and increases from zero, it is expected that, D, andcgf) will
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FIG. 4. (a) Variation ofK; of the eigenvalue familyi) with 6, for M; =5 (weak-shock solution =1, a,=0, a3=1. (b) Variation ofK, of the eigenvalue
family (i) and (i) with 6, for M;=5 (weak-shock solution a;=1, a,=0, az=1. (c) Variation of K; of the eigenvalue familyii) and (i) with 6, for
M,=5 (weak-shock solution a;=1, a,=0, a3=1.

no longer be zero for this branch. The other pair of eigenval-  iexy  iehypal
ues correspond to the eigenvalues describediby EM=c{Vel*t” Ty - Up0Z—ad) Hlagz

Again it is important to note is that with the exception of
the eigenvaluedii), all eigenvalues ofK correspond to A
|K|<1, and thus are of limited physical significance. Inter- Xy;x K¥J,(Kety2), (9D
estingly at the maximum value of (corresponding to the
maximum wedge angle for attached flow at a particular U %,
freestream Mach_numb)erall eigenvalues take on the same d’ Aoelwt T 2 +iagz E {Ke"z’ﬁo}”\]y(ﬁer), (92)
value,K=i. Turning now to the effects of the eigenvalues y=—o
described by(ii), again, as in the two-dimensional case, it
turns out that although seemingly these eigensolutions corrgvhere K is  defined by (83) and we _write
spond to unstablégrowing downstream solutions, in fact E=(E®,E@ E®). It would be expected th& and ¢ de-
the evaluation of physical quantities leads to solutions downtermine the far-downstream behaviour of the flow which
stream which remain bounded. This is best illustrated bygrows downstream. However, inspection of the solution
defining the following set of functions: above, in the cases considered, leads to the conclusion that

o
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Vé=—VAE. (93  value of@. If ¢ is real, then the wave number of the imposed
disturbances lies within the excluded range, and the pressure
This then leads to all velocity componertmnd hence all @long any ray 6,=constant decays algebraically For
physical quantities remaining bounded downstream. Nu- 2= o the solution does not decay leading to the appropriate
merically, it is determined that all physical quantities re-O0scillatory behaviour necessary to match conditions at the
mained bounded no matter what the parameters selected f8Rhock. If 6 is complex, then the condition

the calculation, thus the above must hold for all eigensolu- A
tions with |K|>1. (ay cot B+ ay)(cosf+\ sin 6) + %

In summary, therefore, we see that provided the flow _ Ua—as >1
downstream is supersonic then disturbances will not grow ko€ ’
downstream. This boundary of downstream behaviours is in- (94)

dependent of the crossflow wave numhey, and occurs g satisfied. We also note that for equati@®) to be satisfied

along the “line” where =0 (wherek and k. simulta-  then sing must remain real, which requires that
neously become singular, and also change from being real to

imaginary quantities The result is that all of the Bessel 6==ml2—i0;, (99
functions in the serie€89)—(40) will grow downstream if the

downstream flow is subsoni@lthough we note the com- where
ments of Salas and Morg#hstating that strong shock solu- (@ cot B+ ay)(Cosf+\ sin 6)+ 22 >
tions could perhaps be stable under a different set of boundg: coshrt] = _ 2~
ary conditions. ' - ke&
We now address the nature of the downstream response (96)

to sust_a_lned excitatiofi.e., acou_stl_c waves, entropy waves, Ei is related to the angle between the direction of the shock

or vorticity wave$. Arguments similar to those employed by N R

Duck et al! are again appropriate. The frequency of theand _the_direction gf.the acoustic disturbangg through

disturbance downstream of the shock is determined by th@nh&,zman O 1T 6 IS greater t.hamo, then the generated

frequency of the disturbance upstream of the shock and both" transmitted acoustic waves |r1tersect thg wedge su-rface.

wave numbers of the disturbance tangential to the shock afe0r 0<6i< 6o, there are two regions: a region of sustained

also fixed by the deflection of the shock produced by thePscillatory behaviour of the pressure field near the shock

upstream disturbance. There is a finite range of tangentiathené,>6;, and a region of algebraic decay of the pressure

wave numbers that exclude the existence of plane acoustfigld near the wedge surface whép<<6; .

waves which propagate downstream. If the tangential wave These features are common to those found in the two-

numbers lie outside of this range, then a plane wave propaimensional case by Duckt al** Additionally, we can ex-

gates at an angle, to the shock. In the case of the tangential Pect that the downstreariorced behaviour will take the

wave numbers being within the excluded range, an acoustigame form as in the two-dimensional case. Taking the wall

field is generated that decays algebraically rather than expd@ressure, for example, we may write the decomposition

nentially as would be the case in the absence of the wedge. If ~ _ iwU,x, - _

the tangential wave number is outside of the excluded range ™ '“t"'A?p=P,, ex% — ——— tike cosi 6;— 0o)x2)

then the solution in the presence of the wedge exhibits two Uz—as

types of behaviour, dependent upon the angle of propagation i ;{ ( iwX, 7.,)
+PiX;, " exg —

of an acoustic disturbance in the absence of the wedge. If the U,—a 4
S

angle of propagatiow, is greater than the angle between the

shock and the wedgg— 6, then the pressure disturbances 1 iwX,

generated at the shock intersect with and reflect from the +P2X; EXF{— U.ta 17 +Q(x2),
wedge surface, leading to a non-decaying pressure field ev- 20

erywhere between the shock and the wedge surface, with a 97

superimposed algebraically decaying pressure field owing tpe., a solution with an oscillatory component, two decaying

the requirement of an attached shock and zero velocity nofzcoustic waves, and @ste) decaying componen€(x.).
mal to the wedge surface. If the angle of propagatigris

less than the angle between the shock and the wedge surface,

then thg pressure field is divided into two regions by_a Y /| CONCLUSIONS

emanating from the apex and parallel to the direction of

propagation of the pressure disturbance in the absence of the The interaction between a shock wave and three-

wedge. Between the shock and this ray there is a nondimensional freestream disturbances has been considered, in

decaying pressure field, with the aforementioned superimparticular the nature of the flow far downstream. The some-

posed algebraically decaying component. Between the rayhat fortuitous cancelations that were found to occur in the

and the wedge surface the pressure field is algebraically denalogous two-dimensional woruck et alll), again in-

caying and there is no component with sustained oscillationgriguingly occur, yielding a non-growing physical solution

This was referred to as the shadow region by Datlal!! downstream, thus confirming the stability of shocks with
The various downstream limits are determined by thedownstream supersonic flow, in line with the widely held
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na"y we note that the location of the boundary between ftateosupersonic flow,” Part I. Linear Analysis. J. Fluid Me@h, 751
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growing and non-growing downstream waves is unaffected, V. V. Rusanov and A. A. Sharakshange, “On the non-uniqueness of the
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