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M. Y. Hussaini
Program in Computational Science and Engineering, Florida State University, Tallahassee, Florida 32306

~Received 10 May 1996; accepted 30 September 1996!

The interaction between a shock wave~attached to a wedge! and small amplitude, three-dimensional
disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the
two-dimensional study of Ducket al. @P W. Duck, D. G. Lasseigne, and M. Y. Hussaini, ‘‘On the
interaction between the shock wave attached to a wedge and freestream disturbances,’’ Theor.
Comput. Fluid Dyn.7, 119 ~1995! ~also ICASE Report No. 93-61!# through the use of vector
potentials, which render the problem tractable by the same techniques as in the two-dimensional
case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately
chosen coordinates. Results are presented for specific classes of freestream disturbances, and the
study shows conclusively that the shock is stable to all classes of disturbances~i.e., time periodic
perturbations to the shock do not grow downstream!, provided the flow downstream of the shock is
supersonic~loosely corresponding to the weak shock solution!. This is shown from our numerical
results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the
shock. © 1997 American Institute of Physics.@S1070-6631~97!02701-3#

I. INTRODUCTION

The interaction of freestream disturbances with shock
waves is an important practical problem, with particular re-
gard to the operation of high-speed flight vehicles. Of par-
ticular interest are the consequences of these disturbances on
boundary-layer receptivity, and this paper may be regarded
as a step in this process.

In the case of an isolated shock, Moore,1 Ribner2 and
McKenzie and Westphal3 showed that a single wavelength
entropy, acoustic or vorticity wave, upstream of the shock,
produces a disturbance comprising a mixture of all three
classes downstream of the shock. When the shock is associ-
ated with the flow past a rigid body, the situation is much
more complicated, due to the reflection and refraction of dis-
turbances between the body surface and the shock itself, the
latter distorting as a result, a process which further compli-
cates the flow structure. This process was considered by
Carrier4 and Van Dyke5 with particular regard to the problem
of supersonic flow past a wedge performing small amplitude
oscillations, the shock remaining attached to the wedge tip.
These problems raise questions regarding the stability of the
shock, and this aspect has been considered in the two-
dimensional context~associated with wedge flows, the shock
remaining attached to the wedge tip at all times! by
Levinson,6 Carrier,7 Henderson and Atkinson,8 Rusanov and
Sharakshannae9 and Salas and Morgan.10 The overall conclu-
sion is that if the flow downstream of the shock is subsonic
~loosely classified as the strong shock solution!, then the
shock is unstable, in so far as disturbances grow down-
stream. If, on the other hand, the flow behind the shock is
supersonic~loosely classified as the weak shock solution!,

then the shock is stable, with disturbances not growing in
amplitude downstream.

This aspect was considered in some detail by Duck
et al.,11 again for the case of supersonic flow past wedges,
subject to two-dimensional disturbances. This latter paper
~where there is also a more detailed summary of previous
work in this area! showed that two-dimensional disturbances,
impinging upon the weak shock solution, do not grow down-
stream, but rather produce constant amplitude or weakly de-
caying oscillatory waves downstream. The conditions which
distinguish between the two types of behaviours were deter-
mined and a decomposition of the far-field, suggested by the
analytic solution, was made. The result was that there is a
shadow region dependent on the incoming disturbance. If the
direction of propagation of the plane-wave acoustic distur-
bance generated at the shock by the plane-wave incoming
disturbance intersects the wedge surface, then there is a non-
decaying oscillatory pressure disturbance on the wedge sur-
face. In any case, there are two weakly decaying single-
wavelength oscillatory disturbances on the wedge surface
that are due to the requirement that the shock remain at-
tached. One is traveling at the mean-flow speed plus the
speed of sound, and the other travels at the mean-flow speed
minus the speed of sound. Thus these are clearly regular
acoustic waves which emanate from a point source~the
wedge apex! of fixed temporal frequency as prescribed by
the incoming disturbance. In addition to these more obvious
effects, there is also a local field effect which is broad based
in wavelength. While the first three modes of pressure dis-
turbances at the wedge surface can indeed interact with the
boundary layer, it is the last disturbance with the inclusion of
short wavelength disturbances that should have the most ef-
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fect on the growing boundary layer. In this latter paper, the
side issue of shock stability to two-dimensional disturbances
was also addressed. The aim of the present paper is to extend
the ideas of Ducket al.11 to three-dimensional disturbances;
indeed, little three-dimensional work of this type appears to
have been undertaken in the past.

II. FORMULATION

Throughout this paper, we use subscript 1 to denote
quantities upstream of the shock, and subscript 2 to denote
downstream quantities. The wedge is taken to make an angle
u with respect to the oncoming flow, with (x* ,y* ,z* ) coor-
dinates parallel and perpendicular to the upstream flow, with
z* being the ‘‘crossflow’’ direction. The upstream basic flow
velocity has magnitudeU1* , with Mach numberM1 and den-
sity r1* , and temperatureT1* . The ratio of specific heatsg is
assumed to be constant, and throughout this paper all our
numerical results takeg51.4. The velocity vector is written
asU1* (u,v,w), with respect to (x* ,y* ,z* ) coordinates, and
the density is then writtenr1* r, pressure asr1*R*T1* p
~whereR* denotes the gas constant! and the temperature is
T1*T.

The Rankine-Hugoniot relations provide a link between
conditions upstream and downstream of the shock. For the
basic ~steady! flow, when the downstream flow is uniform
and parallel to the wedge surface, the following classical
result is obtained ~see, for example, Liepmann and
Roshko12!:

tan~b2u!

tanb
5
ū2

ū1
5

r1
r2

5
~g21!M1

2 sin2b12

~g11!M1
2 sin2b

, ~1!

whereb is the angle between the shock and the wedge cen-
terline ~i.e., y*50) andū1 and ū2 are the non-dimensional
velocity components perpendicular to the shock.

The relationship~1! yields two possible values forb, for
a given value ofu ~for u,umax(M1)) with the so-called
‘‘weak shock’’ solution generally being characterized by su-
personic flow downstream of the shock, whilst the other
‘‘strong shock’’ solution is generally characterized by down-
stream subsonic flow. Note, however, that there does exist a
small, weak shock regime, close tou5umaxwhere the down-
stream flow is subsonic, i.e., the downstream sonic line does
not quite coincide withumax.

We shall be concerned with the effect of small amplitude
disturbances, which are introduced into the flow ahead of the
shock. The corresponding two-dimensional results, as stud-
ied by McKenzie and Westphal,3 for example, may be ex-
tended into the three-dimensional context, in quite a straight-
forward manner, when thez* variation is taken to be
periodic~although other, more generalz* variations could be
accomplished using Fourier transforms!. We take«(!1) to
be a measure of the amplitude of the freestream disturbance,
and it then turns out that the upstream disturbance may be
classified into three distinct classes, just as in the two-
dimensional case.

~i! Acoustic waves: these are characterized by having a
pressure perturbation, with corresponding perturbations in

velocity, density and temperature, butno change in entropy
or vorticity, toO(«). Disturbances of this class take the form

p511Ê1O~«2!, ~2!

u512
a1«Ê

gM1
2~a11v!

1O~«2!, ~3!

v52
a2«Ê

gM1
2~a11v!

1O~«2!, ~4!

w52
a3«Ê

gM1
2~a11v!

1O~«2!, ~5!

r511
«Ê

g
1O~«2!, ~6!

and

T512
«~g21!Ê

g
1O~«2!, ~7!

whereÊ is the normal mode exponential, i.e.,

Ê5 exp$ ia1x11 ia2y11 ia3z1 ivt%, ~8!

with

v52a16
1

M1
@a1

21a2
21a3

2#1/2 ~9!

being the frequency for the given wave numbers. In the
above,x1 and y1 are parallel and perpendicular to the up-
stream flow, respectively~both perpendicular toz); the non-
dimensionalization is carried out using one of the wave-
lengths of the disturbances as the typical length scale, e.g.,
by settinga1 to unity. The modes with the positive sign
above in~9! are usually referred to as the slow modes, whilst
those with the negative sign are usually referred to as the fast
modes.

~ii ! Vorticity waves: these are characterized by having
no density, temperature or pressure disturbances toO(«),
and thus the upstream flow takes the form

u511«Vz

a2

a1
21a2

2 Ê1O~«2!, ~10!

v5«F2Vz

a1

a1
21a2

2 2Vx

a3

a2
21a3

2G Ê1O~«2!, ~11!

w5«Vx

a2

a2
21a3

2 Ê1O~«2!, ~12!

and

p,T,r511O~«2!, ~13!

with

v52a1 . ~14!

The exponential termÊ is unaltered from~8!, and the param-
etersVz andVx must be specified. In comparison with the
two-dimensional case, the three-dimensional case allows for
an extra vorticity mode.
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~iii ! Entropy waves: these have no disturbance pressure
or velocity components toO(«), and may therefore be writ-
ten in the form

r511«Ê1O~«2!, ~15!

T512«Ê1O~«2!, ~16!

u,p511O~«2!, ~17!

and

v,w5O~«2!, ~18!

with v defined by~14! and Ê by ~8!, again.
In the following section of the paper we consider the

effects that these waves have on a shock wave attached to a
wedge. The complication introduced by the presence of the
wedge is that a single mode of the above type, upstream of
the shock, will trigger modes of all three types, of all wave
numbers behind the shock; the only quantities preserved
across the shock~provided«!1) are the frequency param-
eterv and the spanwise wave numbera3 .

III. THE DOWNSTREAM SOLUTION

The flow downstream of the shock comprises the uni-
form flow solution plus a small amplitude (O(«)) perturba-
tion, triggered by the freestream disturbances described in
the previous section. We take non-dimensional coordinates
parallel and perpendicular to the wedge~perpendicular to the
z direction in both cases! as x2 and y2 , respectively, with
corresponding velocity components (u2 ,v2).

We now write the solution downstream of the shock in
the form

u25U21«ũ1O~«2!, ~19!

v25« ṽ1O~«2!, ~20!

w5«w̃1O~«2!, ~21!

r5r21«r̃1O~«2!, ~22!

p5p21« p̃1O~«2!, ~23!

and

T5T21«T̃1O~«2!. ~24!

Substitution of these expansions into the governing~inviscid!
equations of motion, continuity and energy equations and
equations of state then leads to

r̃ t1U2r̃x2
1r2ũx21r2ṽy21r2w̃z50, ~25!

r2$ũt1U2ũx2%1
1

gM1
2 p̃x250, ~26!

r2$ṽ t1U2ṽx2%1
1

gM1
2 p̃y250, ~27!

r2$w̃t1U2w̃x2
%1

1

gM1
2 p̃z50, ~28!

r2$T̃t1U2T̃x2%2
g21

g
$ p̃t1U2p̃x2%50, ~29!

and

p̃5r2T̃1T2r̃. ~30!

Much of the success of the approach used by Carrier,4

Van Dyke5 and indeed by Ducket al.11 was due to the ability
of being able to split the solution into two components, the
one including a velocity potential~which represented the
acoustic wave component of the flow!, and the other a stream
function~which represented the vorticity wave component of
the flow!. It is clearly not possible to use the latter in the
context of three-dimensional flows, however, an alternative
is the introduction of a vector potential. This concept, origi-
nally due to Poincare´,13 has been used in a number of fluid
mechanics investigations over the years, although the appro-
priate boundary conditions have been the subject of discus-
sion, as detailed by Aziz and Hellums.14

Specifically we write the perturbation velocity vector
ũ5(ũ,ṽ,w̃) in the form

ũ5“f1“`E, ~31!

wheref is the velocity potential, andE the vector potential.
The above constitutes a non-unique representation forũ, and
as such an additional relationship may be~arbitrarily! speci-
fied. The most popular choice, and the one that we pursue
here, is that the vector potential can be required to be sole-
noidal, i.e.,

“–E50. ~32!

This leads to the vorticity vector then being merely the quan-
tity 2¹2E. Substitution of~31! into ~26!–~28! leads to the
equations

¹2H f t1U2fx2
1

p

gM1
2r2

J 50, ~33!

and

¹2$Et1U2Ex2
%50. ~34!

It then follows thatp̃ satisfies

p̃52
gp2
as
2 @f t1U2fx2

#, ~35!

and elimination of the dependent variablesr̃ andT̃ gives the
equation forf

¹2f5
1

as
2 @f tt12U2fxt1U2

2fx2x2
#, ~36!

where

as5
T2
1/2

M1
. ~37!

If we write E5(E(1),E(2),E(3)), then on account of our
comments above, we impose the condition

Ex2
~1!1Ey2

~2!1Ez
~3!50. ~38!

A further quantity must also be introduced, namely
c8(y2 ,z,t), which describes the displacement of the shock
wave from its undisturbed state.
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This type of formulation then allows us to follow closely
the two-dimensional approach adopted by Ducket al.11 It is
now possible to write the general solution forf,c8, and the
E(n) in the following form, assuming boundedness at the
apex of the wedge:

f5 expS ivt2 ivU2x2
U2
22as

2 1 ia3zD
3 (

n50

`

$an cosh~nu2!1bn sinh~nu2!%Jn~ k̂er !, ~39!

E~n!5 expS ivt2 ivx2
U2

2
ivly2as

2

U2~U2
22as

2!
1 ia3zD

3 (
n50

`

cn
~n!Jn~ k̂eĵy2!, ~40!

and

c85 expS ivt2 ivly2U2

U2
22as

2 1 ia3zD (
n50

`

dnJn~ k̂eĵy2!,

~41!

where we have written

v̂5
v

as
, ~42!

k̂5
v̂

b̂2
, ~43!

b̂25
U2
22as

2

as
2 , ~44!

k̂e
25 k̂21

a3
2

b̂2
, ~45!

l5 cot~b2u!, ~46!

ĵ5Al22b̂2, ~47!

r 25x1
22b̂2y2

2 , ~48!

and

tanhu25b̂y2 /x2 . ~49!

If we impose impermeability on the wedge surface, we
immediately require

bn50;n, ~50!

whilst if the shock remains attached at the tip, thend050. As
noted by Ducket al.11 ~for example!, it is also reasonable to
set then50 coefficients of the other terms in the series to
zero, which correspond to transient-type modes, and so we
write

a05c0
~1!5c0

~2!5c0
~3!50. ~51!

The key results for the velocity components and pressure
are then

ũ52expS ivt2 iU 2vx2
U1
22as

2 1 ia3zD (
n50

`
k̂e
2 F2i v̂U2

k̂eb̂
2as

an1an21~11dn21,0!2an11Gcoshnu2Jn~ k̂er !

1exp S ivt2 ivx2
U2

2
ivly2as

2

U2~U2
22as

2!
1 ia3zD (

n50

` F k̂e2 S 2
2ilv̂as

k̂eU2b̂
2
cn

~3!1 ĵ~cn11
~3! 2cn21

~3! ~11dn21,0!!D 2 i b̃cn
~2!GJn~ k̂eĵy2!,

~52!

ṽ5 expS ivt2 iU 2vx2
U1
22as

2 1 ia3zD (
n50

`
k̂eb̂

2
~an211an11!sinh~nu2!Jn~ k̂er !

1expS ivt2 ivx2
U2

2
ivlyas

2

U2~U2
22as

2!
1 ia3zD (

z50

` F i b̃cn
~1!1

iv

U2
cn

~3!GJn~ k̂eĵy2!, ~53!

w̃5 expS ivt2 iU 2vx2
U2
22as

2 1 ia3zD (
n50

`

i b̃anJn~ k̂er !coshnu22 exp ivt1 ia3z2
ivx2
U2

2
ivly2as

2

U2~U2
22as

2!
)

3 (
n50

` F i v̂asU2
cn

~2!1
k̂e
2 S 2

2ilv̂as

k̂eU2b̂
2
cn

~1!1 ĵ~cn11
~1! 2cn21

~1! ~11dn21,0!!D GJn~ k̂eĵy2!, ~54!

and

p̃5
gp2k̂e
2as

expS ivt2 iU 2vx2
U2
22as

2 1 ia3zD (
n50

n5` F 2i v̂
k̂eb̂

2
an1

U2

as
an21~11dn21,0!2

U2

as
an11Gcosh~nu2!Jn~ k̂er !, ~55!
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wherea215c21
(n)5d2150, and wheredn,m is the Kronecker

delta.
Although the solutions above satisfy the impermeability

and apex conditions, as yet these solutions do not satisfy the
unsteady Rankine-Hugoniot conditions~McKenzie and
Westphal3! on the shock; following~and extending! the re-
sults of Ducket al.,11 these take the form

u281ū2
r̃2

r2
5S 12

1

r2
DR81

1

r2
~ ū

8
r̃11u18!, ~56!

u281
1

2
ū2

r̃2

r2
1

as
2

2gū2

p̃2
p2

5u181
1

2
ū1r̃11

p̃1

2gM1
2ū1

, ~57!

u282
as
2

~g21!ū2

r̃2

r2
1

as
2

~g21!ū2

p̃2
p2

5S 12
ū1

ū2
DR81

ū1

ū2
u182

r̃1

~g21!M1
2ū2

1
p̃1

~g21!M1
2ū2

,

~58!

v285v181~ ū12ū2!cs8 , ~59!

and

w285w181~ ū12ū2!cz8 , ~60!

with

R85c t81 v̄1cs8 . ~61!

In equations~56!–~61!, s denotes the unperturbed distance
along the shock, (u8,v8,w8) denote the velocity perturba-
tions perpendicular to the undisturbed shock, parallel to the
shock and perpendicular to thez direction, and parallel to the
z direction, respectively, and (ū,v̄,0) denote the correspond-
ing base flow velocity components. Eliminatingr̃2 from the
above equations, and then utilizing~52!–~55!, yields the fol-
lowing four equations for each of then>0:

cos~b2u!H 2
k̂e
2 F2i v̂U2

k̂eb̂
2as

an1an21~11dn21,0!2an11Gcoshnu01F k̂e2 2
2ilv̂as

k̂eU2b̂
2
cn

~3!1 ĵ~cn11
~3! 2cn21

~3! ~11dn21,0!!

2 i b̃cn
~2!G J 1sin~b2u!H k̂eb̂2 ~an211an11!sinh~nu0!1 i b̃cn

~1!1
i v̂as
U2

cn
~3!J 2~ ū12ū2!sin~b2u!

k̂e
2 H 2

2iU 2v̂l

k̂eb̂
2as

dn

1 ĵ~dn112dn21~11dn21,0!!J 5Rn
~1! , ~62!

H A1

B1
J H sin~b2u!F2

k̂e
2 F2i v̂U2

k̂eb̂
2as

an1an21~11dn21,0!2an11Gcoshnu01F k̂e2 S 2
2ilv̂as

k̂eU2b̂
2
cn

~3!1 ĵ~cn11
~3! 2cn21

~3! ~11dn21,0!!D
2 i b̃cn

~2!G G2cos~b2u!F k̂eb̂2 ~an211an11!sinh~nu0!1 i b̃cn
~1!1

iv

U2
cn

~3!G J 1H A2

B2
J H v̄1sin~b2u!

k̂e
2 F2

2i v̂U2l

k̂eb̂
2as

dnu

1 ĵ~dn112dn21~11dn21,0!!G1 ivdnJ 1H A3

B3
J H k̂e2 H 2i v̂

k̂eb̂
2
an1

U2

as
an21~11dn21,0!2

U2

as
an11J cosh~nu0!J 5HRn

~2!

Rn
~3!J ,

~63!

and

ia3 cosh~nu0!an2
iv

U2
cn

~2!2
k̂e
2 S 2

2ilv̂as

k̂eU2b̂
2
cn

~1!1 ĵ~cn11
~1!

2cn21
~1! !~11dn21,0!D 2 ia3~ ū12ū2!dn5Rn

~4! . ~64!

These equations must also be augmented with the condition
arising from the solenoidal condition on the vector potential,
namely,

2
iv

U2
cn

~1!1
k̂e
2 S 2

2ilv̂as

keU2b̂
2
cn

~2!1 ĵ~cn11
~2! 2cn21

~2! !

3~11dn21,0!D 1 ia3cn
~3!50. ~65!

Terms used in the above are

tanhu05b̂ tan~b2u!, ~66!

A15
1
2 , ~67!
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A25
1
2 S 12

1

r2
D , ~68!

A35
as

2ū2
, ~69!

B1511
as
2

~g21!ū 2
2
, ~70!

B252F as
2

~g21!ū 2
2

2
ū1

ū2
G S 12

1

r2
D , ~71!

B35
gas

~g21!ū2
. ~72!

TheRn
(n) as in Ducket al.,11 are to be determined from the

freestream conditions. In particular in order to write the ex-
ponential terms, arising from the upstream solution, in terms
of Bessel functions the following is particularly useful:

exp@ i ~a1 cot b1a2!~cosu1l sin u!y2#

5expS 2 i
U2vl

U2
22as

2 y2Dei sin ũ k̂eĵy2 ~73!

5expS 2 i
U2vl

U2
22as

2 y2D (
n50

`
ein ũ1~21!ne2 in ũ

11dn,0

3Jn~ k̂eĵy2!, ~74!

where

ũ5sin21H ~a1 cot b1a2!~cosu1l sin u!1
U2vl

U2
22as

2

k̂eĵ
J .

~75!

Other details are routine, and omitted for reasons of brevity.
The combined system~62!–~65! then represents a closed

~recursive-type! system determining thean11 ,cn11
(n) ,dn11 .

IV. SOME NUMERICAL RESULTS

The first set of data we present is for the particular case
M155, u525° ~weak shock solution!, for the particular case
of a slow acoustic mode witha151, a250, anda351. Fig.
1~a! shows results for the perturbation pressure on the wall
(y250). Here, and in all cases the solidus denotes the real
part of a function, the dashed line the imaginary part. This
figure presents a picture reminiscent of results found in a
number of corresponding two-dimensional cases by Duck
et al.,11 namely, that of an oscillatory-type nature down-
stream. Fig. 1~b! shows the corresponding perturbation shock
location; this too takes on a similarly oscillatory nature. Figs.
2~a! and 2~b! show the corresponding results for the fast
mode case~other data remaining the same as for Fig. 1!.
These figures are to be compared with Fig. 2 and Fig. 3 of
Duck et al.11 where the same conditions apply except that
a350 in those graphs. The difference between the two-
dimensional results and the three-dimensional results de-
pends on whether or not the disturbance produces an acoustic
wave behind the shock that intersects with the surface. In

response to this particular slow mode, the pressure response
at the surface for the two-dimensional disturbance decays
algebraically while the shock position shows a characteristic
single wavelength response in the far-field limit. On the
other hand, the surface pressure response to the three-
dimensional slow-mode disturbance does not decay and
shows a multi-wavelength pattern as is to be expected if a
decomposition of the far field behaviour applies to the three-
dimensional case as it does for the two-dimensional case.
The shock position shows a two-wavelength structure as
would be expected by the primary acoustic disturbance re-
flecting off the wedge surface and interacting with the shock
from behind. There is very little difference between the re-
sponses to a two-dimensional fast-mode disturbance and a
three-dimensional fast-mode disturbance. A search in param-
eter space would lead to the same conclusion as in the two-

FIG. 1. ~a! Wall pressure perturbations,M 155, u525° ~weak-shock solu-
tion!, slow acoustic mode,a151, a250, a351. ~b! Shock location pertur-
bations, M155, u525° ~weak-shock solution!, slow acoustic mode,
a151, a250, a351.
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dimensional case: either the surface pressure has a non-
decaying component and an algebraically decaying
component or it has only an algebraically decaying compo-
nent. This is significant in that the solution in the absence of
a wedge indicates that the choices are between only a non-
decaying response and an exponentially decaying response
~see Hussainiet al.,15 Jackson et al.,16 Lasseigne and
Hussaini17!. This issue was pursued in detail in Ducket al.11

where it is determined that the condition that the shock re-

main attached to the apex of the wedge is the source for the
algebraically decaying portion of the response — the apex is
in effect a point source for additional acoustic waves. The
interaction of these algebraically decaying acoustic waves
with the shock in turn produces an algebraically decaying
portion in both the entropy and vorticity modes. Another
reason that it is important to determine that the pressure has
only a decaying or sustained oscillatory behaviour down-
stream is that, as mentioned in the analysis of the response to
the two-dimensional disturbances, the potential functions
have components of exponential growth in them. The calcu-
lation of the physical quantities of pressure, velocity and
vorticity are therefore dependent on some fortuitous cancel-
lations, or they themselves would be exponentially growing.
In the following section we investigate the downstream be-
haviour of the three-dimensional perturbation solution in
some detail.

V. THE FAR DOWNSTREAM BEHAVIOUR/STABILITY
PROBLEM

The results of the previous section show that a general
growth in physical quantities, asx2 increases does not occur
even though the potential functions have an exponentially
growing component in them. This is similar to the two-
dimensional results as considered by Ducket al.,11 in which
it was shown by examining the recurrence relations that only
decaying or sustained physical solution oscillations were
possible. The same type of analysis is possible for the three-
dimensional case, but indeed has its own peculiarities as will
be seen.

In order to analyze thex2→` behaviour, we consider
the homogeneous solution of the system~62!–~65!, and con-
sider the limit asn→`. In particular, we write

cn
~n!'C0

~n!Kn, dn'D0K
n, and an'A0K

ne2nu0, ~76!

whereK is an eigenvalue whose precise value~including
location in complex space! serves to determine the ultimate
downstream behaviour of the disturbance. IfuKu.1, then
using the generating function for Bessel functions, we have
~for example!

(
n51

`

dnJn~z!' (
n52`

`

D0K
nJn~z!

'D0e
1
2 SK2

1
K Dz as uzu→`. ~77!

Thus exponential growth occurs asuzu→` if
R$z(K2 1/K)%.0. If we substitute~76! into ~62!–~65!, al-
low n→`, and discard the inhomogeneous terms, then we
obtain the following five linear homogeneous equations for
the coefficientsA0 , C0

(n) andD0 :

1

2
i b̃A02

iv

U2
C0

~2!2 k̂eF2
ilv̂as

k̂eU2b̂
2

1
1

2
ĵS K2

1

K D GC0
~1!2 i b̃~ ū12ū2!D050, ~78!

FIG. 2. ~a! Wall pressure perturbations,M 155, u525° ~weak-shock solu-
tion!, fast acoustic mode,a151, a250, a351. Shock location perturba-
tions, M155, u525° ~weak-shock solution!, fast acoustic mode,a151,
a250, a351.
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~3!50, ~79!
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k̂e
4 S 2i v̂U2
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2as

1
eu0
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2e2u0K DA01 k̂eF2

ilv̂as

k̂eU2b̂
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1

2
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~3!2 i b̃C0
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2cos~b2u!F k̂eb̂2 S eu0
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1e2u0K DA01 i b̃C0
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U2
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B2
J H v̄1 sin~b2u0!F k̂eS 2

i v̂U2l

k̂eb̂
2as

1
ĵ

2 S K2
1

K D D 1 ivGD0J
1H A3

B3
J H k̂e2 S 2i v̂

k̂eb̂
2

1
U2

as

eu0

K
2
U2

as
e2u0K DA0J 50. ~81!

This equation is nonlinear inK but can be converted to a
tenth-order linear, generalized eigenvalue problem, which
may be solved using theQZ algorithm by using the addi-
tional variables

Â05KA0 , Ĉ0
~n!5KĈ0

~n! , D̂05KD0 . ~82!

It was shown by Ducket al.11 that in the two-dimensional
case, for situations in which the downstream flow was super-
sonic, there were four imaginary eigenvalues~all with
uKu,1), and two complex eigenvalues given by

K5
eu0

U2
$ ias6@U2

22as
2#1/2%. ~83!

However, although these complex eigenvalues are such that
uKu.1, in both casesD050, and due to some ‘‘fortuitous’’
cancellations, all physical quantities remain bounded as
x2→` even though it is determined that the potential func-
tions themselves grow exponentially.

In the three-dimensional case, we may expect, ten eigen-
values instead of the six in the two-dimensional case. How-
ever, it turns out generally that there are just eight distinct
eigenvalues~two of the eigenvalues being double eigenval-
ues!. Generally we find~i! four imaginary eigenvalues,~ii !
one complex conjugate pair of double eigenvalues of the
form 6Kr1 iK i , and ~iii ! one complex conjugate pair of
eigenvalues also of the form6Kr1 iK i .

For u525°, M155, a151 anda250, the four imagi-
nary eigenvalues have magnitude less than unity even as

a3 increases from zero. The eigensolutions associated with
these eigenvalues do not contribute to any growth in any of
the quantities calculated. Most interesting, however, is the
variation of these four eigenvalues as the wedge angle is
increased. All four eigenvalues approachK5 i at the maxi-
mum wedge angle.

The ~imaginary part of the! eigenvalues described by~i!
are shown in Fig. 3~a!, whilst the real and imaginary parts of
the eigenvalues described by~ii ! and~iii ! are shown in Figs.
3~b! and 3~c!, respectively. Here, we have just shown the
eigenvalues with the positive value ofKr ~the other eigen-
value, corresponding to2Kr1 iK i may obviously be simply
deduced!. We next consider the effect of varyingu, for the
parametersM155, a151, a250, anda351. The variation
of Ki of family ~i! is shown in Fig. 4~a!, and the variation of
the real and imaginary parts of eigenvalues described by~ii !
and~iii ! is shown in Figs. 4~b! and 4~c!, respectively. Again,
just the positive values ofKr are shown. It is seen that the
double eigenvalues described by~ii ! are the only ones with
uKu.1 and therefore lead to potential exponential growth. It
turns out that an analytic description of the eigenvalues de-
scribed by~ii ! is possible. The result is

K5
eu0

U2
H i k̂as

k̂e
6FU2

22
as
2k̂2

k̂e
2 G 1/2J . ~84!

It is also possible to obtain analytic results for one set of
eigen-coefficients corresponding to these eigenvalues,
namely

C0
~1!5

2
iA0U2

2 H 2
a3k̂eb̂

2 SKe2u01
eu0

K D 1a3F k̂eĵ2 SK2
1

K D 2
l i k̂as
U2

G2J
a3
2U21

v2

U2
2U2F il k̂asU2

2
k̂eĵ

2 SK2
1

K D G2 , ~85!
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C0
~2!52

iU 2

v H 12 ia3A01C0
~1!F il k̂asU2

2
k̂eĵ

2 SK2
1

K D G J ,
~86!

C0
~3!5

iU 2

v H k̂eb̂4 SKe2u01
eu0

K DA01 ia3C0
~1!J , ~87!

D050. ~88!

The above solution readily reduces to the two-dimensional
solution in the limita3→0. Some understanding of the ori-
gin of this other family of coefficients for this eigenvalue,
and also of the additional complex eigenvalue~iii ! may be
made by considering the two-dimensional limit,a3→0 and

seeking a solution to the system withA05D05C0
(3)50. Af-

ter some algebra, we find the following~four! eigenvalues:

K5
l i k̂as

k̂eĵU2

6H F2
l i k̂as

k̂eĵU2

6
v

U2k̂eĵ
G 221J 1/2

, ~89!

together with

C0
~1!52

U2k̂eĵ i

2v
C0

~2!H K2
1

K
2
2l i k̂as

U2k̂eĵ
J . ~90!

Two of the above values forK correspond to~83!, and this
partly explains the origin of the double eigenvalues. Asa3

increases from zero, it is expected thatA0 , D0 , andC0
(3) will

FIG. 3. ~a! Variation of Ki of the eigenvalue family~i! with a2 , for u525°, M155 ~weak-shock solution!, a151, a250. ~b! Variation of Ki of the
eigenvalue family~ii ! and~iii ! with a2 , for u525°, M155 ~weak-shock solution!, a151, a250. ~c! Variation ofKr of the eigenvalue family~ii ! and~iii !
with a2 , for u525°, M 155 ~weak-shock solution!, a151, a250.
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no longer be zero for this branch. The other pair of eigenval-
ues correspond to the eigenvalues described by~iii !.

Again it is important to note is that with the exception of
the eigenvalues~ii !, all eigenvalues ofK correspond to
uKu,1, and thus are of limited physical significance. Inter-
estingly at the maximum value ofu ~corresponding to the
maximum wedge angle for attached flow at a particular
freestream Mach number!, all eigenvalues take on the same
value,K5 i . Turning now to the effects of the eigenvalues
described by~ii !, again, as in the two-dimensional case, it
turns out that although seemingly these eigensolutions corre-
spond to unstable~growing! downstream solutions, in fact
the evaluation of physical quantities leads to solutions down-
stream which remain bounded. This is best illustrated by
defining the following set of functions:

Ẽ~n!5C0
~n!eivt2

ivx2
U2

2
ivly2as

2

U2~U2
2
2as

2
!

1 ia3z

3 (
n52`

`

KnJn~ k̂eĵy2!, ~91!

f̃5A0e
ivt2

ivU2x2

U2
2
2as

2 1 ia3z (
n52`

`

$Keu22u0%nJn~ k̂er !, ~92!

where K is defined by ~83! and we write
Ẽ5(Ẽ(1),Ẽ(2),Ẽ(3)). It would be expected thatẼ andf̃ de-
termine the far-downstream behaviour of the flow which
grows downstream. However, inspection of the solution
above, in the cases considered, leads to the conclusion that

FIG. 4. ~a! Variation ofKi of the eigenvalue family~i! with u, for M 155 ~weak-shock solution!, a151, a250, a351. ~b! Variation ofKr of the eigenvalue
family ~ii ! and ~iii ! with u, for M 155 ~weak-shock solution!, a151, a250, a351. ~c! Variation of Ki of the eigenvalue family~ii ! and ~iii ! with u, for
M155 ~weak-shock solution!, a151, a250, a351.
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“f̃52“`Ẽ. ~93!

This then leads to all velocity components~and hence all
physical quantities! remaining bounded downstream. Nu-
merically, it is determined that all physical quantities re-
mained bounded no matter what the parameters selected for
the calculation, thus the above must hold for all eigensolu-
tions with uKu.1.

In summary, therefore, we see that provided the flow
downstream is supersonic then disturbances will not grow
downstream. This boundary of downstream behaviours is in-
dependent of the crossflow wave numbera3 , and occurs
along the ‘‘line’’ where b̂50 ~where k̂ and k̂e simulta-
neously become singular, and also change from being real to
imaginary quantities!. The result is that all of the Bessel
functions in the series~39!–~40! will grow downstream if the
downstream flow is subsonic~although we note the com-
ments of Salas and Morgan10 stating that strong shock solu-
tions could perhaps be stable under a different set of bound-
ary conditions!.

We now address the nature of the downstream response
to sustained excitation~i.e., acoustic waves, entropy waves,
or vorticity waves!. Arguments similar to those employed by
Duck et al.11 are again appropriate. The frequency of the
disturbance downstream of the shock is determined by the
frequency of the disturbance upstream of the shock and both
wave numbers of the disturbance tangential to the shock are
also fixed by the deflection of the shock produced by the
upstream disturbance. There is a finite range of tangential
wave numbers that exclude the existence of plane acoustic
waves which propagate downstream. If the tangential wave
numbers lie outside of this range, then a plane wave propa-
gates at an angleup to the shock. In the case of the tangential
wave numbers being within the excluded range, an acoustic
field is generated that decays algebraically rather than expo-
nentially as would be the case in the absence of the wedge. If
the tangential wave number is outside of the excluded range,
then the solution in the presence of the wedge exhibits two
types of behaviour, dependent upon the angle of propagation
of an acoustic disturbance in the absence of the wedge. If the
angle of propagationup is greater than the angle between the
shock and the wedgeb2u, then the pressure disturbances
generated at the shock intersect with and reflect from the
wedge surface, leading to a non-decaying pressure field ev-
erywhere between the shock and the wedge surface, with a
superimposed algebraically decaying pressure field owing to
the requirement of an attached shock and zero velocity nor-
mal to the wedge surface. If the angle of propagationup is
less than the angle between the shock and the wedge surface,
then the pressure field is divided into two regions by a ray
emanating from the apex and parallel to the direction of
propagation of the pressure disturbance in the absence of the
wedge. Between the shock and this ray there is a non-
decaying pressure field, with the aforementioned superim-
posed algebraically decaying component. Between the ray
and the wedge surface the pressure field is algebraically de-
caying and there is no component with sustained oscillations.
This was referred to as the shadow region by Ducket al.11

The various downstream limits are determined by the

value ofũ. If ũ is real, then the wave number of the imposed
disturbances lies within the excluded range, and the pressure
along any ray u25constant decays algebraically For
u25u0 the solution does not decay leading to the appropriate
oscillatory behaviour necessary to match conditions at the
shock. If ũ is complex, then the condition

U ~a1 cot b1a2!~cosu1l sin u!1
U2vl

U2
22as

2

k̂eĵ
U.1,

~94!

is satisfied. We also note that for equation~73! to be satisfied
then sinũ must remain real, which requires that

ũ56p/22 i ũ i , ~95!

where

ũi5 cosh21H 6

~a1 cotb1a2!~cosu1l sinu!1
U2vl

U2
22as

2

k̂eĵ
J.
~96!

ũ i is related to the angle between the direction of the shock
and the direction of the acoustic disturbanceup through
tanhũi5b̂ tanup . If ũ i is greater thanu0 , then the generated
or transmitted acoustic waves intersect the wedge surface.
For 0, ũ i,u0 , there are two regions: a region of sustained
oscillatory behaviour of the pressure field near the shock
whenu2. ũ i , and a region of algebraic decay of the pressure
field near the wedge surface whenu2, ũ i .

These features are common to those found in the two-
dimensional case by Ducket al.11 Additionally, we can ex-
pect that the downstream~forced! behaviour will take the
same form as in the two-dimensional case. Taking the wall
pressure, for example, we may write the decomposition

e2 ivt2 i b̃zp5P0 expS 2
ivU2x2
U2
22as

2 1 i k̂e cosh~ ũ i2u0!x2D
1P1x2

21/2 expF2S ivx2
U22as

2 i
p

4 D G
1P2x2

21/2 expF2S ivx2
U21as

2 i
p

4 D G1Q~x2!,

~97!

i.e., a solution with an oscillatory component, two decaying
acoustic waves, and a~faster! decaying component,Q(x2).

VI. CONCLUSIONS

The interaction between a shock wave and three-
dimensional freestream disturbances has been considered, in
particular the nature of the flow far downstream. The some-
what fortuitous cancelations that were found to occur in the
analogous two-dimensional work~Duck et al.11!, again in-
triguingly occur, yielding a non-growing physical solution
downstream, thus confirming the stability of shocks with
downstream supersonic flow, in line with the widely held
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belief regarding the stability of such shock waves. Our re-
sults also point to the ‘‘instability’’ of shocks with down-
stream subsonic flow, since in that case the argument of the
Bessel functions in~39!–~42! becomes imaginary, and as a
result exponential growth will be expected downstream. Fi-
nally we note that the location of the boundary between
growing and non-growing downstream waves is unaffected
by the crossflow wave numbera3 .
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