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M. Y. Hussaini 
Institute for Computer Applications in Science and Engineering, NASA LangIey Research Center, 
Hampton, Virginia 23665 

(Received 6 November 1990; accepted 28 March 199 1) 

The interaction of an oblique, overdriven detonation wave with a vorticity disturbance is 
investigated by a direct two-dimensional numerical simulation using a multidomain, finite- 
difference solution of the compressible Euler equations. The results are compared to those of 
linear theory, which predict that the effect of exothermicity on the interaction is relatively 
small except possibly near a critical angle where linear theory no longer holds. It is found that 
the steady-state computational results whenever obtained in this study agree with the results of 
linear theory. However, for cases with incident angle near the critical angle, moderate 
disturbance amplitudes, and/or sudden transient encounter with a disturbance, the effects of 
exothermicity are more pronounced than predicted by linear theory. Finally, it is found that 
linear theory correctly determines the critical angle. 

I. INTRODUCTION 

The passage of a weak shear disturbance through a reac- 
tive shock wave, or detonation, was examined by Jackson et 
al.’ Supersonic engines based on oblique, overdriven, react- 
ing shock waves have been proposed as a possible alternative 
to the SCRAMJET for high-speed propulsion.2 It is still a 
matter of exploration as to whether or not such waves can be 
stabilized. Of particular interest in this investigation was the 
effect of heat release on the refraction and amplification of 
the vorticity disturbance and the simultaneous generation of 
acoustic and entropy signals behind the overdriven detona- 
tion. The detonation was assumed to be at an angle to the 
base flow, and the normal Mach number of the gas ahead of 
the detonation front was taken to be greater than the Mach 
number of a Chapman-Jouget wave. The vorticity distur- 
bance was assumed to be a small amplitude, planar, shear 
wave with wave vector parallel to the base flow (i.e., trans- 
verse disturbances). There exists a critical angle, dependent 
upon the exothermicity of reaction and the overdrive, such 
that the relative velocity of the base flow behind the front is 
subsonic for 8 < 6, and supersonic for 6 > 8,. In the former 
case, the amplitude of the generated acoustic disturbance is 
exponentially decaying behind the detonation; in the latter 
case, the amplitude is constant. The critical angle ap- 
proaches zero as the Chapman-Jouget limit is approached. 
It was found that the vorticity was significantly amplified by 
the exothermicity and that the generated acoustic response is 
most affected by exothermicity near the critical angle. Fur- 
thermore, the manner in which the shape and structure of 
the detonation are altered by the disturbance was also inves- 
tigated. 

of a planar shear wave, the generalized Rankine-Hugoniot 
conditions were linearized about the base flow providing the 
conditions to determine the amplitudes and angles of the 
transmitted vorticity wave and the generated acoustic and 
entropy waves. The effect of the disturbance on the structure 
of the detonation was found by considering the limit of large 
activation energy E. The thickness of the induction zone 
(the region between the lead shock and the fire zone) is a 
measure of the thickness of the detonation. The lead shock 
and the fire zone were treated as discontinuities on a length 
scale comparable to the induction zone thickness. The equa- 
tions governing the perturbations within the induction zone 
due to disturbances ahead of the lead shock were derived, 
and the fire zone position was determined as the point at 
which the the solutions become singular. It was found that 
disturbance amplitudes O(E - ‘) have an 0( 1) effect on the 
fire zone position. 

The aim of the present investigation is to examine the 
predictions of linear theory and to determine by means of a 
direct two-dimensional numerical simulation the regions of 
validity for linear theory. For this investigation, the detona- 
tion is treated as a discontinuity, and the generalized Ran- 
kine-Hugoniot relations are used to provide appropriate 
jump conditions across the detonation. The effect of the dis- 
turbances on the internal structure of the detonation is not 
considered. Of particular interest is the behavior of the solu- 
tion for angles near critical where linear theory, if it applies, 
predicts that exothermicity can have a significant effect on 
the generation of acoustic signals. 

II. NUMERICAL WMULATION 
The analysis was accomplished by considering the de- To study the interaction of a detonation wave with a 

tonation wave, which consists of a lead shock, an induction 
zone, and a fire zone, as a discontinuity on the length scale of 

vorticity disturbance, a numerical approach similar to the 

the disturbance. The discontinuity separates an unburnt 
one utilized by Zang et als3F4 is considered. The major differ- 

mixture of reactants from a burnt mixture of reaction prod- 
ences are that the present routine takes advantage of the 
periodic nature of the solution in the transverse direction 

ucts. After superimposing a vorticity disturbance in the form and also uses a multidomain scheme in the normal direction. 
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Rather than using coordinates in which the position of the 
detonation is stationary, it is assumed that at time t = 0 an 
infinite, planar detonation wave starts at x = 0 and propa- 
gates into the unburnt mixture. The position of the detona- 
tion x, (y,r) is calculated by using the improved shock-fitting 
approach of Kopriva et uZ.,~ generalized to include exother- 
micity. The initial conditions are chosen such that in the 
absence of disturbances the detonation wave will propagate 
to the right with a Mach number (relative to the gas in front 
of the detonation wave) greater than the Chapman-Jouget 
Mach number. The base flow in the region ahead of the de- 
tonation has only a vertical component so that the net result 
of the velocity of the detonation front in the positive x direc- 
tion and the vertical component produce a base flow at an 
angle 8 in a coordinate system attached to the detonation 
front. Superimposed on the uniform base flow is a vorticity 
disturbance which propagates at the same angle 8 to the x 
axis (see Fig. 1). The disturbance is assumed to have unit 
wavelength, 2n/lkl = 1, where k is the wave vector. The 
flow is therefore periodic in the y direction with period 
2n-/k, = set 0. The initial flow behind the detonation front 
has a vertical component such that the tangential velocity 
across the front is continuous. It should be noted that the 
flow ahead of the front is prescribed and is used to impose the 
appropriate jump conditions across the discontinuity. 

The physical domain in which the fluid motion is com- 
puted is given by 

xL GxGx, (y,t), OQKsec(B), 00, (1) 
where x, is the shock position and x,~ (y,O) = 0. The left 
boundary xL is some suitably chosen negative number 
(usually minus one). This domain takes advantage of the 
periodic nature of the solution in they direction. In the x 
direction, a multidomain approach is used which allows for a 
greater number of grid points near the detonation front 
where greater accuracy is needed and fewer grid points away 
from the front where the solution is smoother. The interfaces 
between the domains are denoted by x, (y,t) where the left 

. boundary is x0 (y,t) = xL, the detonation front is 
x,, (y,t) = x,~ (y,t), and the planar interfaces between the do- 
mains are x, (y,t) = xi(t), for i = l,..., n - 1. Since the be- 
havior of the solution near the critical angle is of interest, it is 
necessary to continue the calculations until the detonation 

wave penetrates a significant distance into the unburnt mix- 
ture. Because of this expanding domain, a greater number of 
grid points in the x direction is needed at the end of the 
calculation than is needed in the beginning. The resolution in 
each subdomain is monitored, and the number of grid points 
is increased when necessary. A linear interpolation is used to 
transfer the solution to the finer grid. The numerical routine 
also allows for ramping of the amplitude of the imposed dis- 
turbance, thereby decreasing in size the portion of the tran- 
sient caused by the sudden encounter of the undisturbed de- 
tonation with the vorticity wave. The approach to steady 
state was smoother, allowing an accurate comparison to lin- 
ear theory. 

The following change of variables is made to computa- 
tional coordinates 

xi = 
X - xi - 1 (.YTr) 

Xj (y9t) - xi _ I (.YYt) ’ 
i = l,...,n, (2a) 

Y=ycos(@, (2b) 
T= t. (2c) 

The computational domains are therefore 
O<&<l, O<Y<l, r>,o. (3) 

The fluid motion is governed by the two-dimensional 
Euler equations. In terms of the computational coordinates 
these are 

QT + BQ,, + CQr = 0, i = l,...,~, (4) 

where 
Q = [P,u,v,S I’, 

ui TX&,x Yxi,y O 

B= 
C*Xi,x /y Ui 0 0 

C2X,,/Y 0 u, 1 0 ) 

(5a) 

(5b) 

(5c) 

Vi = Xi,, + Uxj,x + vxi,y 9 

v= Y, + UY, + uyy. 

(5d) 

(Se) 

1 BURNT UNBURNT 

FIG. 1. Schematic of model problem in the physical domain. Velocity of 
unburnt mixture is W, + W, . 

Here, P is the natural logarithm of pressure, c is the local 
sound speed, and S is the entropy divided by specific heat at 
constant volume. The velocities u and v, in the x and y direc- 
tions, respectively, are scaled by the sound speed ahead of 
the shock. The ratio of specific heats y is taken to be 1.4 for 
all calculations. 

As in Zang et al., 3*4 the equations are discretized in each 
subdomain using the finite difference method of MacCor- 
mack,’ which is a variant of the Lax-Wendroff method. 
Conditions at the right boundary, at the interface between 
the domains, and at the left boundary need to be imposed to 
determine the system completely. At the right boundary, the 
improved shock-fitting routine of Kopriva et aL5 has been 
generalized to include exothermicity and time dependence of 
the flow ahead of the shock. Details are given in the Appen- 
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dix. At the interface between domains, a routine similar to 
Kopriva’ is used. Since the interfaces are perpendicular to 
the Xaxis, the derivatives in Y can be calculated by using the 
values of Q along the interface. The values of the derivatives 
in X, however, must be taken from the left or right of the 
interface or a combination of both. The method chosen here 
is 
Q: -k :(B -I- lB I*,Q$ -t $tB - IBI*)Q; + CQ: = 0, (6) 

I 

where /B I* is an approximation to IB 1 = P IAlP - ‘, A is a 
diagonal matrix with the eigenvalues of B on the diagonal, 
and P is a matrix of the eigenvectors of B. The superscript 5 
refers to values calculated on the interface and the super- 
scripts R and L refer to the finite difference approximations 
to theX derivative in the subdomain to the right and to the 
left of the interface, respectively. The approximation used 
for these calculations is 

gu+cqq +gu-@I 0 gu+qq -flu--c#l 0 

/B}* 0 IUI 0 0 = ilU+ 4 -flu-c$i[ 0 #Q-C~l+:I~--c45l 0 1 ) (7) 

where 4 = (X 2 + Xz ) “*. The conditions imposed at the 
left boundary naturally depend on the inflow at the bound- 
ary being supersonic or subsonic. If the inflow is supersonic, 
then all four components of Q can be prescribed; however, if 
the inflow is subsonic, only three of the four components can 
be prescribed at the left boundary. For the parameters of this 
study, the inflow is always supersonic. It should be men- 
tioned that the normal component of the flow behind the 
detonation is supersonic in the laboratory frame; however, 
the normal component of the flow behind the detonation is 
subsonic in a frame of reference moving with the detonation. 

III. RESULTS AND COMPARISON WITH LINEAR 
THEORY 
A. Linear theory 

Consider a coordinate system attached to the detona- 
tion front such that the speed of the detonation is zero. The 
flow ahead of the front is assumed to be at an angle B to the 
front, the normal component of the velocity has Mach num- 
ber M,, and the vertical component of the velocity is tv, (see 
Fig. 1) . The generalized Rankine-Hugoniot conditions for a 
detonation with heat release parameter cr provides that the 
normal component of the flow behind the front has Mach 
number (relative to the upstream speed of sound) 

m, = l++f,: 1 
(Y-f 1wo -(yf 

> 
I/2 

- xy-t- lb (8) 

and requires that the tangential components be continuous 
Lo, = w,. (9) 

Therefore, the angle of the base flow behind the detonation is 
given by 

tan fj = (Me/m, ) tan 8. (10) 
Superimposed on the upstream base flow is a sinusoidal dis- 
turbance in the veIocity given by 
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u, = &JO cos( k’*x ) , (11) 
where U, = (Me, W,) and U,ek’ = 0. When this constant 
pattern of vorticity is convected through the detonation 
front, the vorticity wave is refracted and amplified, and an 
acoustic and entropy wave are generated. Linear analysis 
provides analytic expressions for the amplitudes and angles 
of all three disturbances downstream. The result is that the 
following planar waves are superimposed on the base flow 
and the pressure downstream (x < 0) : 

u, = [;:I +.JolS[coy+y 

4- ‘+Jo IRX) 
cos(k,,-x + 6,) 1 psin(k,*x + 8,) ’ (12) 

PI = - eyIUOIMo set qSP(x) cos(k,-x + S,), (13) 
where 

s= s 1 
so, pu> 1, 
0, pctl, 

P= 
i 
PO, pu> 1, 
PO ew(Rx), p < 1, 

(14) 

(15) 

and ,u is the local Mach number of the relative base flow 
behind the detonation front. The constants So, S,, PO, PO, 
S,, S,, and /z are given in Jackson et al.’ The vector k is 
perpendicular to the downstream base flow and the vector kP 
is perpendicular to the direction of acoustic propagation 
which makes an angle 4’ with the x axis (see Fig. 2). This 
angle is given by 

r4’=( 4--at-*(p), “” (16) 
-tan-‘[(~@~)2cos2~tan~], P<l, 

with /3= ((1 -~z()“2 and ,B 5 = 1 - p2 cos’ 4. A similar 
disturbance is also superimposed on the temperature and 
density due to the generated entropy wave. 

Et. Nonlinear calculations 

The comparison of the two-dimensional calculations to 
the linear theory consists of comparing the amplitudes of the 
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UNBURNT 

FIG. 2. Schematic of model problem for linear theory. Acoustic distur- 
bances in the burnt gas propagate at angle qS’ to the x axis. Vorticity and 
entropy disturbances are convected with the mean flow at angle 4. 

vorticity and acoustic waves behind the detonations with the 
predictions. To achieve this comparison, a least-squares fit 
to the functional forms 

U,, -0, =S, cos(k;y) +S, sin(k;y), (17) 
P= PO +P, cos(kl,y) +Pz sin(kj,y) (18) 

is performed for the computed vorticity and acoustic fields 
for each value ofx. The amplitudes ofthe above vorticity and 
acoustic disturbances SC ($.p +s*)“* 
P= (Pi +P:)“2 are divided dy &JO Ik; 

and 
and 

~yl U, IM, set 4, respectively, and graphed as a function of x 
for various times t. In the calculations presented here, the 
front is initially at position x = 0, and behind the front there 
is no disturbance (i.e.,7 = 0 and 3 = 0). As time progresses, 
the front moves downstream into a region with a nonzero 
vorticity disturbance. Therefore, the numerical solutions in- 
clude transient behavior. The relaxation to steady state de- 
pends on both the acoustic and the vorticity responses as 
well as the angle of incidence. If 8 is above the critical angle, 
then the predicted acoustic response is constant; therefore, 
steady state is indicated by a broad flat response behind the 
front. If 8 is below the critical angle, an exponentially decay- 
ing acoustic response is predicted; therefore, steady state is 
indicated when the value of the acoustic response at the front 
remains essentially constant as the front propagates a suffi- 
cient distance. Since the vorticity response is constant in 
both cases, steady state is indicated when a broad flat vorti- 
city response behind the shock has been achieved. 

For many of the calculations involving either large dis- 
turbance amplitudes or angles of incidence near critical, the 
solution did not asymptote to a steady state even after the 
detonation front had penetrated a significant distance into 
the unburnt mixture. The nature of this transient behavior is 
important since real turbulence consists of sudden non- 

steady phenomena, not steady plane waves. In general, the 
transient depends on the suddenness in which the front 
meets with the full disturbance, the amplitude of the distur- 
bance, and the angle of incidence. To resolve the portion of 
the transient caused by the sudden encounter of the front 
with a nonzero disturbance, the calculations allow for a slow 
or fast ramping of the amplitude of the imposed disturbance; 
the amplitude as a function of time is given by 

c(t) = 
%(M,t/R)*(3 - 2M,t/R), t<R/M,, 

Eo, t>R/M,. 
(19) 

Therefore, when the position of the front is x, = R, the flow 
ahead of the front will have its maximum disturbance ampli- 
tude. 

The value of the exothermicity parameter a is chosen to 
be equal to two for all calculations. This value is chosen since 
linear theory predicts that the value of*T will be significantly 
different from its value in the nonreacting case for almost all 
values of angle 8 and the value of p will be significantly 
different for values of the angle near critical. The strength of 
the detonation is chosen so that the normal Mach number of 
the flow is 1.5 times the Chapman-Jouget number. The criti- 
cal angle for these parameter values is 8, = 24.89”. 

The pressure and vorticity responses to a 1% distur- 
bance at an angle of 0 = 40” for ramping parameter R = 6.0 
and R = 0.5 are shown in Figs. 3 (a) and 3 (b), respectively. 
For these calculations, 32 grid points in they direction are 
used. For slow ramping, the gas behind the front responds to 
each small increment in the amplitude of the disturbance, 
and a smooth approach to steady state is observed. For fast 
ramping, R = 0.5, the acoustic response shows significant 
overshoot of the predicted linear value. The vorticity re- 
sponse is somewhat smoother. The influence of heat release 
on the transient is considered by letting a = 0, R = 0.5 [Fig. 
3 (c) ] and prescribing the same normal Mach number; the 
overshoot and fluctuations of the acoustic response are con- 
siderably less than for the reacting shock, but the vorticity 
response shows essentially the same behavior as in the deton- 
ation. 

As seen from Fig. 3(a), when the ramping is slow and 
the amplitude of the disturbance is small, the predictions of 
linear theory agree with the calculated acoustic response but 
there is a discrepancy in the vorticity response of about 2%. 
As mentioned in Zang et a1.,3*4 since the vorticity response 
involves computation of derivatives in both the x and y direc- 
tions, the vorticity response calculations are possibly less 
accurate than the pressure response calculations. When only 
16 grid points are used in they direction, the discrepancy in 
the vorticity response increases to 4%-5% and the pressure 
response still agrees with the linear predictions. It should be 
noted that the calculated vorticity response is always less 
than the predicted values. Another important parameter 
which influences the transient behavior is the amplitude of 
the disturbance. For the 10% disturbance at 8 = 40” [Fig. 
3 (d) 1, the acoustic response takes a longer time to asymp- 
tote to a steady state. 

The comparison between linear theory and numerical 
simulations for other angles is seen in Fig. 4. The circles are 
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FIG. 3. (a) Pressure and vorticity response to a 1% slowly ramped disturbance: R = 6, a = 2, and B = 40”. Solid line is linear theory. The curves correspond 
tot = 0.380,0.613,0.847, 1.140, 1.341. (b) Response to 1% disturbancewith fast ramping: R = 0.5, a = 2, and 6’~ 4.0”. Thecurvescorrespond tot = 0.377, 
0.719, 1.026. (c) Response to 1% disturbance with fast ramping: R = 0.5, a = 0, and B = 40”. The curves correspond to t = 0.219, 0.669, 1.026. (d) 
Response to a 10% disturbance with slow ramping: R = 6, a = 2, and 0 = 40”. The curves correspond to f = 0.237,0.512,Q.7@$, 0.933, 1.208, 1,342. 
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FIG. 4. Pressure and vorticity responses as a function of angle. Circles rep- 
resent 1% disturbances and diamonds 10% disturbances. Solid line is linear 
theory for a = 2. 

FIG. 5. Response to a 30% disturbance. R = 3.0, LI = 2, and 0 = 40”. The 
curves correspond to t = 0.319,0.459,0.554. 

the calculated responses to a 1% disturbance and the dia- 
monds are the calculated responses to a 10% disturbance. 
As previously found for the interaction of a nonreacting 
shock with a vorticity disturbance, the linear predictions and 
the calculated acoustic responses agree for disturbance am- 
plitudes up to 10% when the angle of the incoming flow is 
not near the critical angle. The calculated vorticity responses 
are consistently about 2% below the predicted values when 
32 grid points are used. Although many calculations were 
made for small amplitude disturbances ( 1% or less) and 
angles within 5” of critical, the results are not given in Fig. 4 
since a steady-state value could not be reliably determined. 
The results of these calculations are discussed below. 

For disturbance amplitudes larger than lo%, the solu- 
tion did not reach a steady state. A typical run is shown in 
Fig. 5 for a 30% disturbance at 0 = 40” with ramping param- 
eter R = 3. Linear theory is a good predictor of the scale for 
the overall response, but the distortions produced in the de- 
tonation front prevent the solution from reaching steady 
state; in fact, the distortions prevented the calculations from 
proceeding further since the time step based on the CFL 
number became exceedingly small. Furthermore, since the 
front is no longer planar, the comparison between the least 
squares fit to the forms (17) and the linear case no longer 
holds. The same behavior was observed for 10% distur- 
bances at angles within 5” of critical. 

Linear theory predicts that exothermicity has its great- 
est effect on both the vorticity and pressure responses near 

the critical angle; therefore, it is important to resolve the 
behavior of the solution for angles near critical. As the angle 
of incidence approaches the critical angle, it is observed that 
the relaxation of the transients takes longer and longer. 
These transients are not related to the ramping of the distur- 
bance amplitude as was shown for 0 = 40”. The response to a 
1% disturbance with 8 = 30” is shown in Fig. 6 ( 16 grid 
points in they direction and ramping parameter R = 6). The 
transient nature of the solution provides for considerable 
overshoot of the predicted acoustic response with very little 
relaxation over the duration of the run. To continue the cal- 
culations past x, = 10 would require adding additional grid 
points in the x direction to keep the same resolution making 
each time step considerably more expensive. In addition to 
the large pressure fluctuations, the vorticity response also 
displays some overshoot which is not observed for slowly 
ramped disturbances at angles more than 5” from critical. 
This is particularly surprising since calculations at other an- 
gles indicate that the vorticity response remains at 5% below 
the predicted value and it is quite smooth for such slowly 
ramped disturbances. The same parameter values were used 
but with fewer grid points in thex direction allowing integra- 
tion to continue until x, = 24. Although the resolution is 
less, a relaxation of the transients is observed; the acoustic 
response oscillates about a value accurately predicted by lin- 
ear theory, and the vorticity response oscillates about a value 
that is approximately 5% below the value predicted by linear 
theory; there appears to be a slow decrease in the amplitude 
of these fluctuations. These results are consistent with steady 
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states at larger angles of attack found using 16 grid points. A 
similar trend in the vorticity response for angles of attack 
slightly less than critical develops. The vorticity response 
displays a slight overshoot of the value predicted by linear 
theory which is not present for angles away from critical, 
and returns to a small oscillation about a value below the 
linearly predicted value. The overshoot of the predicted 
pressure and vorticity responses is observed for angles of 
attack between two and five degrees of the critical angle; 
however, relaxation of the transients is significantly slower 
as the angle of incidence nears critical. For 0 = 24.9” (Fig. 
7), it can be seen that the acoustic response does not reach 
the value predicted by linear theory but is still increasing 
when the calculation is stopped. The vorticity response is 
also still increasing, having reached only half of the value 
predicted by linear theory. This calculation was terminated 
due to the increasing expense of maintaining an accurate 
numerical resolution; however, the calculations were repeat- 
ed using a very coarse grid, and it was found that even 
though the pressure and vorticity responses continue the 
slow increase, the pressure has achieved only 40% of the 
linear theory value and the vorticity only 60% of the linear 
theory value when X, = 50. These results are only qualitative 
at best but seem to indicate that the lengthening of the tran- 
sient response for angles within 2” of critical counteracts the 
transient overshoot of the pressure and vorticity responses 
found for other angles within 5” of critical. 

IV. CONCLUSIONS 
Nonlinear calculations of the response of an initially 

plane detonation wave to a vorticity disturbance show that 
the results of steady-state linear theory are useful in provid- 
ing an overall scale of the response. In cases in which the 
angle of incidence is near critical, disturbance amplitudes 
are moderate, and/or there is a sudden encounter with a 
disturbance, the calculated responses display a transient 
overshoot of the linear prediction. It is found that exother- 
micity increases the overshoot in addition to increasing the 
value of the predicted linear response. Also, the significant 
departures of the predicted responses of the reacting shock 
from the nonreacting shock near the critical angles appear to 
be real, and the calculated responses show transient over- 
shoot of the predicted values for angles between two and five 
degrees of critical. Closer to the critical angle, the lengthen- 
ing of the relaxation time for the transient produces a com- 
peting effect. Also, it is found that critical angle of linear 
theory is an accurate predictor of the transition in the behav- 
ior of the acoustic response. Previously,3,4 it was reported 
that the change from a constant pressure response to an ex- 
ponentially decaying pressure response occurred at an angle 
significantly different than predicted by linear theory. For 
the situation presented here, it is determined that the long 
relaxation of the transients for angles slightly above critical 
makes the pressure response appear to be exponentially de- 
caying; when in fact, if the calculations are of a sufficient 
duration, the pressure response eventually changes and 
eventually oscillates about a a constant value which is con- 
sistent with the value predicted by linear theory. 

Since exothermicity is seen to increase both the vorticity 
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FIG. 6. Transient response to a 1% disturbance for B = 309 R = 6 and 
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and acoustic responses for the detonation wave/vorticity 
wave interaction, it would be appropriate to study the inter- 
action of a detonation wave with a fully developed vortex. 
Such a numerical study was presented in Meadows etaI.’ for 
the nonreacting shock using a shock capturing scheme 
which is more appropriate than the shock fitting scheme for 
the study of shock interaction with large disturbances. Of 
particular interest is the ability to capture secondary shocks 
which agree with experimentally observed features of the 
flow. This is not possible using shock-fitting methods. 
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APPENDIX: GENERALIZED SHOCK FITTING 
The improved shock-fitting scheme utilized by Kopriva 

et al.’ is generalized to allow for exothermicity of the react- 
ing shock and to allow for a time-dependent flow ahead of 
the front. The generalized Rankine-Hugoniot conditions for 
a stationary reacting shock can be simply written as 
P2 = P, +g(M), (AlI 

m =f(M), (A21 

g(M) = In 
M[l +cf++Jy- l)W--*)] 

, (A3) 
m 

where the subscript 1 refers to known quantities ahead of the 
front and subscript 2 refers to the corresponding quantity 
behind the front;& M) is given by (8). Here, Mis the normal 
Mach number of the flow ahead of the front, and m is the 
normal velocity behind the front divided by the sound speed 
ahead of the front. If all other velocities are nondimension- 
alized with respect to the speed of sound for the mean how 
ahead of the front, then the prescribed flow has a local speed 
ofsound c, at the front which differs from unity and depends 
upon both y and t. Denoting the front position by r/&t), the 
speed of the front traveling in the positive x direction is 
(d/dt)r,(y,t) = ( U,,O). The velocities of the gas in the 
frame of reference where the front moves Qi = ( ui,ui ) are 
related to M and m by 

c,M= UfNx - Q,*N, (A4) 
c, m = UfNx - Q2*N, (A51 

where N = (N, ,N,, ) is the normal to the shock front point- 
ing in the direction of the domain subscripted by 1. The key 
to the shock fitting routine is the compatibility equation, 
P2.r + (y/c)N*Qz., 

= - Q-VP - (y/c)N.R - cN*VP - R,, 

where 
C-46) 

R = (UU, + UU~,UU, + VU,), R, = yu, + v,, (A7) 
derived from the Euler equations. By differentiating the 
Rankine-Hugoniot relations and Eqs. (A4) and (A5 ), an 
equation for the acceleration of the detonation front can be 
found and is given by 
uJ;, (y,t) = { - c, cP,,, + cl CC + (cG - yF, 

x (Q,.,*N + Q,*N,) - (cG - yF+ V/C, 1 U/N,., 

+ C, yQ,-N, + cl,t [ (cG - YOM + cl rm]} 

X[W-yF+yc,)N,]-‘, (A81 
where G = g’ (M), F = f’ (M), and Cis the right-hand side of 
Eq. (A6). During the calculations, the quantity Cis evaluat- 
ed using the solution of the Euler equations from the pre- 
vious time step, and all other quantities are calculated using 
the appropriate jump conditions. The front position and ve- 
locity are updated for each time step using MacCormack’s 
method. 

‘T. L. Jackson, A. K. Kapila, and M. Y. Hussaini, Phys. Fluids A 2, 1260 
(1990). 

*D. T. Pratt, I. W. Huamphrey, and D. E. Glenn, AIAA Paper No. AIAA- 
87-1785, 1987. 

‘T. A. Zang, M. Y. Hussaini, and D. M. Bushnell, AIAA J. 22, 13 ( 1984). 
“T. A. Zang, M. Y. Hussaini, and D. M. Bushnell, Paper No. AIAA-82- 

0293, AAIA 20th Aerospace Sciences Meeting, Orlando. FL. January 
1982. 

‘D. A. Kopriva, T. A. Zang, and M. Y. Hussaini, Florida State University 
Reoort No. FSU-SCRI-89- 116 (to appear AIAA J.). 

‘R. W. MacCormack, Lecture No& -in P/zysics (Springer-Verlag, New 
York, 1971), Vol. 8, p. 151. 

’ D. A. Kopriva, in Computational Acoustics: Algorithms and Applications, 
edited by D. Lee and M. H. Schultz (Elsevier, New York, 1988), Vol. 2. 

“K. R. Meadows, A. Kumar, and M. Y. Hussaini, AIAA J. 29, 2 (1991). 

1979 Phys. Fluids A, Vol. 3, No. 8, August 1991 Lasseigne, Jackson, and Hussaini 1979 


	Old Dominion University
	ODU Digital Commons
	1991

	Nonlinear-Interaction of a Detonation Vorticity Wave
	D. G. Lasseigne
	T. L. Jackson
	M. Y. Hussaini
	Repository Citation
	Original Publication Citation


	tmp.1507643965.pdf.5phAL

