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ABSTRACT

AN EXAMINATION OF SEASONAL GROWTH AND SURVIVORSHIP OF 
SIGMODON HISPIDUS IN SOUTHEASTERN VIRGINIA

Heather Alyssa Green 
Old Dominion University, 2006 
Director: Dr. Robert K. Rose

A reexamination of specific population dynamic aspects o f Sigmodon hispidus, 

the hispid cotton rat, is necessary in order to gain additional knowledge and perspective 

on this species in its northernmost distribution on the east coast of the United States. 

Previous studies of Virginia cotton rats were based on data from necropsies, which do not 

allow for the determination of certain population characteristics, such as density, growth, 

and survival. General population trends and rates of growth and survival in males and 

females throughout the seasons in Virginia will also provide a basis for comparison with 

populations of cotton rats in other parts of its range. A monthly mark-and-recapture 

study was conducted in an old field in Chesapeake, Virginia, between December 2002 

and March 2005 to elucidate these aspects of the population, as well as to confirm 

previous reproductive patterns for this geographic region.

Annual population density in this study is similar to that observed in other 

northern populations o f cotton rats. However, slight bimodal distributions also began to 

surface, which are more common in southern distributions o f this species. Current 

patterns of reproduction were not significantly different from those previously reported in 

Virginia and were similar to patterns in northern portions of the species’ range. Highest 

rates of growth were present in the summer, while winter exhibited the lowest rates of 

growth. Previous Virginia studies have suggested males have the ability to gain mass
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over the winter months. Although positive winter growth in males was observed in this 

study, nil or negative growth was just as common. Higher rates o f survival were present 

in the spring and autumn, while lowest rates of survival were in summer and winter and 

were influenced by energetic and environmental stresses, as well as other intrinsic 

population factors. Newly collected winter data reveal that winter growth and 

survivorship in cotton rats are very similar to trends observed in Kansas populations 

located at the same latitude. The new information from this study helps to better 

understand why different geographic populations exhibit differences in body size and 

other population characteristics and the relevant forces of selection promoting these 

patterns.
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1

INTRODUCTION

Of the major terrestrial biomes o f the world, those found in the temperate zones 

pose unique challenges to the animal species that inhabit them. These areas often 

experience warm summers and cold winters. Precipitation varies throughout the year and 

snow is common in the northern limits of the zone. Due to these seasonal changes in 

climate, animals must continuously respond and alter their energy budgets to survive. 

Non-hibernating mammals, with their large costs associated with homeothermy, have 

especially high energy requirements during the winter months.

During the warm seasons, most mammals can maintain their daily energy 

demands without a problem. Reproductive timing is strongly tied to the emerging 

vegetation, which for herbivorous mammals supports the high energy costs associated 

with pregnancy and lactation. Winter is by far the most difficult season for most 

mammals. Some escape winter through migration, while a few others hibernate.

However, these winter strategies are not options for most small mammals. They simply 

endure the effects of winter. Because of their small body size, they already have to 

constantly eat to fulfill their energy demands due to their high metabolic rates (Rose 

1986). In addition, small mammals lose proportionately more heat than larger species 

due to their larger surface-to-volume ratios. To sustain these high energy demands, some 

small mammals cache food, but others simply consume more food and pay the costs of 

dealing with the colder temperatures (Smith and Reichman 1984). Most small mammals 

undergo a suspension o f breeding and exhibit a regression of the gonads to reduce

The model journal used in this thesis is the Journal of Mammalogy.
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2

metabolic costs in winter. The total energetic costs incurred during the winter are greater 

than or equal to the costs during reproduction in the spring and summer, which would 

make reproduction in the winter energetically impossible for most species (Fournier et al. 

1999).

Additionally, most small mammals will get a denser pelage during the pre-winter 

molt, thereby increasing the amount of insulation and reducing the amount o f heat lost to 

the environment. A few small herbivorous mammals have the ability to increase the 

length of small intestine to extract more energy from nutrient-poor standing dead 

vegetation (Gross 1986). Some practice coprophagy, which is another way to extract 

more energy from food. Many small mammals build insulative nests to reduce heat loss 

during their inactive hours (Sealander 1952). There are some instances in which small 

mammals will engage in communal behavior, such as huddling within communal nests, 

which also clearly reduces heat loss for each individual (Sealander 1952). Often small 

mammals will become more diurnal in the winter than in the summer, which reduces or 

eliminates the need to be active during the night, the coldest period (Stokes et al. 2001).

Sigmodon hispidus, the hispid cotton rat, is a good example o f a temperate-zone 

small mammal which is subject to these seasonal conditions. However, this originally 

Neotropical species is at even more of a disadvantage than its north temperate 

counterparts because it lacks some of the energy-saving adaptations o f other small 

mammals. S. hispidus has been known to burrow or construct underground nests, but this 

behavior is not widespread or well-developed (Dawson and Lang 1973; Shump, Jr. 

1978). Cotton rats do suspend breeding and regress their gonads in the winter. S. 

hispidus is not known to cache food, despite the fact that during the winter months their

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



high-energy and high-quality foods disappear (Cameron and Spencer 1981). They are 

forced to eat poor quality foods, namely standing dead vegetation. Oftentimes, S. 

hispidus will have docked tails due to loss from frost bite, further evidence that winter is 

a difficult time for cotton rats.

Depending on the geographic location of populations of S. hispidus, the impact of 

winter may be more or less severe. For instance, the subspecies from Kansas and the 

subspecies in southeastern Virginia are located at the same latitude (37° N) in the United 

States, but the winters experienced in Virginia are much milder due to its maritime 

climate (Rose and Mitchell 1990; Campbell and Slade 1995; Eifler and Slade 1999). The 

effects of winter in Kansas populations of free-living cotton rats have been well 

documented (Slade et al. 1984; Sauer 1985; Slade and Iskjaer 1990; Campbell and Slade 

1993; Eifler and Slade 1998; Eifler and Slade 1999) and include substantial loss of body 

mass and even localized extinctions in severe winters. However, the effects of winter on 

Virginia populations have been less well studied (Rose 1986; Rose and Mitchell 1990; 

Bergstrom and Rose 2004). An in-depth investigation of S. hispidus in southeastern 

Virginia will serve to further demonstrate how this species has adapted to survive at its 

most northerly location on the east coast and how it meets its seasonal energetic 

requirements, most importantly those associated with the winter months.

Sigmodon hispidus is a relatively short-lived and fast-growing species (Campbell 

and Slade 1995) in the family Muridae. S. hispidus has dark brown pelage with yellow 

near the tips, giving it its hispid qualities. Its underside is pale and slightly gray 

(Cameron and Spencer 1981). The distribution o f S. hispidus extends from northern 

South America through Central America and Mexico into the midwestem and
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southeastern United States (Cameron and McClure 1988). The genus Sigmodon has its 

origins in the tropics and it began to spread northward during the late Pliocene era. 

During the last glaciation in North America, some S. hispidus were forced to take refuge 

in Florida and Mexico (Blair 1958; Baker 1969). After the retreat of the glaciers, cotton 

rats began to move northward into the Great Plains and eastern United States (Dalby and 

Lillevik 1969). Cameron and McClure (1988) suggest that the Pleistocene retreat could 

have had a significant impact on the two separate populations of Sigmodon that were 

isolated during this time. Variation in body size and litter size throughout their present 

geographic distribution may be the result of this major event.

Southeastern Virginia is the location of northernmost distribution of S. hispidus 

on the east coast of the United States. The presence of S. hispidus was first recorded in 

Virginia in 1940 (Patten 1941) and it has continued moving northward into central 

Virginia (Rose and Mitchell 1990), although its northward path is now blocked by the 

Chesapeake Bay and the large rivers running eastward into it. S. hispidus was thought to 

be distributed from Virginia Beach westward to locations north o f Richmond and 

extending south and west into Halifax County (Rose and Mitchell 1990). However, since 

2001, Dr. Jack A. Cranford, a mammalogist at Virginia Tech, has reported the species 

from Montgomery and Giles counties, near Blacksburg in western Virginia (pers. comm, 

to R. Rose).

The average body mass of cotton rats varies geographically (Cameron and 

McClure 1988). Adult S. hispidus weigh from 110 to 225 g in males and 100 to 200 g in 

females (Cameron and Spencer 1981). In general, there seems to be a trend for cotton rat 

subspecies from northern latitudes to be larger than those in the southern parts o f their
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distribution. The Virginian subspecies (“virginianus”) is one of the smallest, reaching 

150 g for males and somewhat less for females (Cameron and McClure 1988). 

Therefore, the smaller size of the “virginianus” subspecies goes against the general body 

mass trends.

The largest of the 32 Sigmodon subspecies (Hall 1981), S. h. texianus, is 

concentrated in Kansas, Oklahoma, and northern Texas (Cameron and McClure 1988). 

Cameron et al. (1979) suggest that some of this geographic difference in body size may 

reflect higher fat accumulations in the northern populations. The Virginia subspecies, S. 

h. virginianus, exhibits small body size, which could result from having a shorter life 

span than its southern counterparts (Bergstrom and Rose 2004). Although S. h. texianus 

from Kansas and S. h. virginianus from southeastern Virginia are located at the same 

latitude (37° N) in the United States, they display different body masses. Rose and 

Mitchell (1990), using samples drawn from different locations throughout the year in 

eastern Virginia, noted that although S. h. virginianus males gained weight over the 

winter, female body mass remained relatively low and did not exhibit any substantial loss 

or gain during winter. Their results, however, were based on collections of monthly 

samples for necropsy and not from following the rates of growth o f tagged individuals in 

a mark-release-recapture study, as I have done.

In general, small mammals are at a disadvantage because of their high metabolic 

demands and larger surface areas from which heat is lost more rapidly than in larger 

mammals (Rose 1986). In order to compensate for their small size, S. hispidus consumes 

a mixed diet of both monocots, dicots and some arthropod foods, presumably to 

maximize energy intake and enhance intake of required nutrients (Randolph and
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Cameron 2001). A typical cotton rat diet includes green stems of monocots, such as little 

bluestem grass, gulf cordgrass or eastern gamagrass (Randolph and Cameron 2001), plus 

lesser amounts of dicots and insects (Kincaid and Cameron 1985). The varying levels of 

protein content in plants of different geographic locations may significantly influence 

growth in S. hispidus (Cameron and McClure 1988). In western Kansas, where the year- 

round diet has been examined, Fleharty and Olson (1969) observed cotton rats eating 

insects and other animal material when available.

In addition to the dietary requirements necessary to support their high metabolic 

energy needs, some cotton rats may draw on their limited fat reserves over the winter and 

in times o f food scarcity (Fleharty and Choate 1973; Bergstrom and Rose 2004). Heavier 

cotton rats have the ability to store more fat and energy in muscle mass, and these heavier 

individuals may have the advantage over smaller animals during times o f low food 

availability and the high energy demands of winter (Campbell and Slade 1993). Others, 

however, speculate that smaller size in cotton rats may be advantageous because less 

absolute energy is required to sustain an 80 g animal than a 120 g animal. The chances of 

survival of these smaller animals potentially increase during the winter, as a result of a 

reduction in their metabolic needs when food resources are already limited and are of 

poorer nutrient quality then compared to other seasons (Eifler and Slade 1998).

Food availability may also influence population density, which itself may affect 

overall body size and growth rates. Doonan and Slade (1995) observed increases in 

population density in food-supplemented populations in eastern Kansas, which indicates 

that food may be a limiting resource to individuals and thus affects rates o f population 

growth. High-density populations have the potential to constrain body size, especially in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

the face of increased densities of competitors that reduce access to food (Doonan and 

Slade 1995).

Cotton rats in some northern locations, particularly in Virginia, have the ability to 

gain mass over the winter months (Rose and Mitchell 1990). Rose and Mitchell (1990) 

also observed that newly recruited male cotton rats of small size grow steadily throughout 

the winter. In contrast, some wintering adult cotton rats that were relatively large in size 

have demonstrated weight loss instead o f weight gain in eastern Kansas (Campbell and 

Slade 1993). However, there is a general tendency for cotton rats in Kansas to converge 

towards an intermediate size by the end of winter, which can result by weight gain in 

smaller animals and weight loss in larger animals (Slade et al. 1984). In eastern Kansas, 

cotton rats o f all age classes must reach a certain mass (ca. 80 g) before the onset of 

winter in order to survive (Sauer 1985).

Seasonally low temperatures of northern localities, such as those observed in 

Virginia and Kansas, may constrain the breeding seasons of S. hispidus. Unlike the 

cotton rats in Georgia, which have the ability to breed all year long, S. h. virginianus 

females are reproductively inactive from November through February (Rose and Mitchell 

1990; Bergstrom and Rose 2004). The cessation of breeding in the winter is also 

observed in Kansas populations of S. hispidus (McClenaghan and Gaines 1978). In 

comparison to females, males have a longer period o f reproductive activity. They are 

capable o f breeding one month earlier than females in the spring and one month later than 

females in the fall (Rose and Mitchell 1990; Bergstrom and Rose 2004). Because males 

do not experience the energetic constraints o f pregnancy and lactation, they can more
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easily afford to stay reproductively active longer than females and still have a good 

chance of surviving over the winter.

Females are not quite at their maximal reproductive potential in March and 

October, the first and last months o f the breeding season in eastern Virginia (Rose 1986; 

Rose and Mitchell 1990; Bergstrom and Rose 2004). Females in Virginia may achieve 

maximum pregnancy rates during their shortened breeding season to make up for the time 

that they are reproductively inactive. In order for adult females and autumn-born rats to 

survive to breed in spring, they apparently must stop breeding in the late autumn 

(Bergstrom and Rose 2004). In addition, Bergstrom and Rose (2004) also speculate that 

those females that reproduce throughout the summer and fall do not survive the winter in 

Virginia. It seems that the energies and resources o f these females are drained and cannot 

be recovered before the onset of winter. Therefore, mortality may be closely related to 

the timing of reproduction, at least for autumn-breeding females. These speculations 

hopefully can be confirmed or at least tested in my field study.

By conducting a demographic study of S. hispidus at their northernmost 

distribution on the east coast of the United States, several aspects of population 

dynamics, such as monthly rates of growth and survival can be observed and compared to 

other northern populations o f cotton rats. It is important to explore potential differences 

in the seasonal growth rates of Virginia populations to see if  they contribute to both 

seasonal and overall survivorship. To reconstruct growth trajectories, data from monthly 

capture, tagging, weighing and release o f these animals were used. The monthly 

progression of growth in tagged individuals was used to determine whether animals 

continue to have positive growth throughout the winter. By comparing growth rates
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within each season in Virginia populations, patterns should emerge that may explain 

higher and lower rates of survival during different times of the year.

Examinations of winter growth rates are important to our understanding of cotton 

rat population dynamics because at some other locations, such as in eastern Kansas, 

populations sometimes go extinct during the winter. Therefore, advantages may be 

associated with higher or lower growth rates during the winter months that can affect 

winter survivorship. By assessing the data exclusively from the winter months, trends 

may potentially surface identifying certain patterns o f continued growth, nil growth or 

negative growth over the winter, which have the ability to positively or negatively affect 

winter survivorship. Nil or negative growth over the winter may either demonstrate some 

underlying benefits of small body size that outweigh the costs of growth or some benefits 

to being larger in body size.

An ultimate goal o f this research is to compare growth rates in Virginia cotton rat 

populations to those o f other populations. This will help us better understand the 

relationship between seasonal rates of growth, population density and survival. For 

instance, any differences in annual growth rates between Virginia and other subspecies 

may contribute to the continued persistence of the species in Virginia as it continues to 

move northward. Once we have a better understanding of growth rates and survivorship 

in this Virginia population, we may better understand growth rates and survivorship of 

other populations of hispid cotton rats and perhaps o f small mammals in general.

The objectives of this study were to: (1) observe growth rates of male and female

S. h. virginianus in order to understand the potential adaptive benefits o f variation 

between and within seasons in relation to overall survivorship, (2) examine winter growth
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rates to determine if  these rates may contribute localized extinctions o f cotton rat 

populations observed during the winter months at other locations in the United States, 

and (3) compare growth rates in the Virginia population o f cotton rats to those of other 

geographic populations, in an attempt to better understand the relationship between 

seasonal rates o f body growth and survival, as well as the patterns o f population density.
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Description o f Study Area

The study site, located near Benefit Road in southern Chesapeake, Virginia, was 

an old field on property owned by The Nature Conservancy and is part of the watershed 

o f the North Landing River. The entire field was 11.5-ha, but for the purpose of the study 

only a small portion of the field was used. The field is bordered along its north, west and 

east sides by forest and by a freshwater marsh on the south. The study grid was bisected 

by a ditch that filled with water most often in the winter, and depending on the amounts 

o f recent rainfall, at different times o f the year. In addition to the ditch, the grid 

encompassed a room-sized pool (4-m across) that was also subject to filling after heavy 

rainfall and during the winter months, when the water table rose above ground level on 

several low points on the grid (Figure 1).

Despite its overall uniform age, the field consisted of several different habitats. 

When the Nature Conservancy acquired the land, their intention was to convert it back 

into Dismal Swamp forest. Their efforts to achieve this goal included planting a variety 

o f trees, including swamp chestnut oak (Quercus michauxii), bald cypress (Taxodium 

distichum) and sycamore (Platanus occidentalis). At the end of the year 2000 growing 

season, the land was withdrawn from agriculture and throughout the course o f my study, 

changes to the plant community were observed. Loblolly pines (Pinus taeda), sweet gum 

(Liquidambar styraciflua) and red maples (Acer rubrum), all volunteers, have come to 

dominate the old field at a rapid pace. This was most apparent in the western section of 

the study grid where seeds scattered by the prevailing westerly winds have promoted the 

domination of fast-growing loblolly pines. At the time the grid was established in
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Forest Forest

Forest

Dirt Road
BENEFIT ROA

t Private

F ig . 1.— The study site was located off Benefit Road in Chesapeake, Virginia on land 
owned by the Nature Conservancy. The entire field measured 11.5 ha, but only a small 
portion of the site was used. The field is bordered to the north, east and west by forest. 
A small marshy area was south of the grid. Three private homes were situated west of 
the grid in the forested area.
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December 2002, these pines were small, standing waist high, but over the past three 

growing seasons some have grown to be 4-m tall. In the few places on the grid where the 

pine saplings are dense, the forbs and grasses are slowly being excluded. As a result, the 

herbaceous habitat necessary to sustain Sigmodon hispidus is also being lost. Old-field 

succession to loblolly pines results in low densities of S. hispidus (Langley and Shure 

1980). Other small saplings, such as red maple, swamp chestnut oak and elms (Ulmus 

spp.), are scattered across the grid.

Variation in vegetation was also observed between the growing and non-growing 

seasons. In late autumn of 2002, the majority of the grid was dominated by goldenrods 

(Solidago spp.), asters (Aster spp.), annual ragweed (Ambrosia artemisiifolia) and little 

bluestem (Schizachyrium scoparium), a 1-m tall grass. During the winter months, the 

vegetation was beaten down by heavy winds and rainfall. However, substantial ground 

cover and standing green vegetation still remained, provided by softrushes (Juncus 

effuses and J. tenuis), rosettes o f forb species (Eupatorium spp.), as well as some other 

grasses (Pancium spp.). Softrushes are especially common in the northeast comer and in 

one other section near the center of the grid (both frequently inundated areas), while the 

forbs and grasses are widespread. Throughout the late spring and early summer the field 

was again covered with goldenrods, asters and ragweed. However, in the late summer 

other important forbs, such as dog fennel {Eupatorium capillifollium) and wild tomato 

(Solanum carolinensis), were observed. Over the subsequent growing and non-growing 

seasons, with the exception o f the western portion of the grid where dense pines 

prevailed, the flora remained relatively static.
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Monthly temperature and precipitation patterns based on 50-year monthly means 

were obtained using climate data from the Southeast Regional Climate Center from a 

collection site at Lake Kilby in Suffolk, Virginia. This site is located approximately 50 

km west o f the study grid. For this region, the summers are typically hot and winters are 

relatively mild. The highest monthly temperatures occurred in July (average 25.79 °C), 

while the coldest temperatures were seen in January (average 4.21 °C) (Figure 2). 

Monthly mean temperature patterns for northeastern Kansas, with which comparisons 

will be made, were similar from April to October, but were colder in winter than in 

Virginia. Kansas climate data were obtained from the High Plains Regional Climate 

Center for Lawrence, Kansas.

Monthly precipitation totals ranged from 80 mm in April and November to more 

than 140 mm in July and August; there being no identifiable dry season (Figure 3). In 

contrast, Kansas winters were dry and summers were wet. Based on 50-year monthly 

means, the wettest times of the year are in July, August and September for Virginia, 

while spring and early summer months were wetter in Kansas.

Precipitation and snowfall patterns were also obtained for the duration o f my 

study (2002-2005). The spring of 2003 was wetter and the summer drier than normal, 

whereas rainfall amounts were well below normal for the first five months o f 2004. 

However, winter was as wet as the spring and summer months (Figure 4). Overall, the 

driest time of the year was in both autumns with the exception o f September 2003, which 

experienced increased rainfall due to the impact o f Hurricane Isabelle. Snowfall was 

observed in January 2003, and the winter months of 2004 and 2005, but seemingly did 

not affect populations or my trapping efforts (Figure 5).
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Some portions of the study site were subject to temporary flooding due to 

occasional heavy rain and the high water tables experienced during winter months. One 

of these areas included sections adjacent to the ditch that bisects the grid that often filled 

with water. Another reason the study site is susceptible to flooding is a result o f its 

substrate. The clayey loams easily retain moisture and do not drain readily during 

periods o f heavy rainfall. The northeast comer and the center o f the grid near the small 

pond were often flooded to ankle- and calf-deep levels and usually remained that way for 

the duration o f the winter. These saturated conditions are not suitable to support pines, 

but are ideal conditions for softrushes, sedges (Car ex spp.), and other obligate wetland 

plants.

Detailed information about the structure of plant communities is important when 

conducting population studies, particularly in the case of S. hispidus. S. hispidus is 

herbivorous and occupies areas where covering herbaceous vegetation is abundant. Not 

only does the vegetation act as a primary food resource for S. hispidus, but dense cover 

probably also serves to reduce losses to overhead predation from birds, such as hawks 

and owls. Habitat with sparse vegetative cover is neither suitable to satisfy their 

nutritional needs nor to provide adequate protection. When we first investigated the 

study site in December 2002, the dominance o f little bluestem grass promised to provide 

an ideal cotton rat habitat and preliminary trapping revealed substantial numbers o f S. 

hispidus to be present.

The trapping grid was established inside an 11.5-ha portion o f the field (Figure 6). 

The study grid measured 100-m x 100-m (1-ha) and comprised of 64 trap stations set at 

12.5-m intervals. The grid is about 75-m from a small residential driveway that runs
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F ig . 6.— The trapping grid was established in the 11.5-ha field. The study grid measured 
100 m x 100 m (1-ha) and consisted o f 64 trap stations spaced at 12.5-m intervals. Pine 
trees first became dominant in the lower left quadrant of the grid and they continue to 
spread over the grid. The grid was bisected by a 0.5-m deep ditch and a small vernal 
pond was located in the center o f the grid. The grid was ca. 75 m from a small dirt 
driveway which was bordered by forest to the east and two 1-m deep ditches to the west.
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parallel to the study site. The forest o f the northern and eastern boundaries is about 250 

and 100-m, respectively, from the grid. Cotton rats are known to have larger home 

ranges than microtine rodents; therefore, the 12.5-m interval between trap stations 

seemed advisable (McNab 1963; Swihart et al. 1988).

Trapping Procedures

My study was conducted from December 2002 through July 2004; however, the 

collection of data from this site is ongoing and additional data through March 2005 have 

been incorporated into my results, enabling me to evaluate patterns of growth and 

survival for three winters. Data were collected each month for three consecutive days. 

We tried to consistently maintain the duration of time between trapping sessions; 

however, there were often times when extra time between these sessions elapsed. In 

order to prevent trapping during periods o f the full moon, an extra week between trapping 

sessions sometimes was necessary. Small mammals are known to restrict movements to 

avoid nocturnal predators during the full moon (Daly et al. 1991). However, with the 

exception of winter, the dense vegetative cover found on the majority of the grid may 

have reduced exposure to predators (Stokes et al. 2001). Trapping sessions also were 

postponed due to inclement weather to reduce trap-induced mortality, particularly when 

growth and survival of marked individuals are being evaluated (Sauer 1985).

In May of 2003, we began to see widespread disturbance of traps across the grid. 

We deemed it to be a predator problem and trapping was suspended for the month of June 

in 2003. When trapping was resumed in July of 2003, it appeared that the problem had 

been rectified and the predator had moved on. In January of 2004, it became clear that 

disturbance problems due predation had resurfaced and it became necessary to attempt to
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remove the predator threat. In March 2004, we were successful in capturing and 

permanently removing a raccoon (Procyon lotor) from the study grid. However, 

throughout the following months, the disturbance problems did not subside. During April 

2004, we captured and removed both a gray fox (Urocyon cinereoargenteus) and another 

raccoon from the study grid. Disturbance was not observed again until November 2004, 

when another gray fox was successfully captured and permanently removed. Since that 

time there have been no signs of disturbance on the grid. These predators were released 

at a location approximately 40 km from the study area.

During each trapping session, traps were baited and set during the day and 

checked every morning of the trapping period. S. hispidus is known to demonstrate 

crepuscular activity and hence traps must be open overnight (Eifler and Slade 1998). Air 

temperature, wind speed and overall weather conditions were estimated at the start of 

each day of trapping. At the end o f the trapping session, the traps were locked open until 

the next period of active trapping. During the warmer months, it was necessary to lock 

the traps open in the mornings and reopen them in the afternoons to prevent heat-induced 

mortality of animals that otherwise would have been caught during the day.

At each station, two different types of live traps were used. One was a typical 

Fitch trap (Rose 1994) made with a 355-ml drink can attached to a mesh trap 23 cm long 

and with a 6.5 X 6.5 cm opening. The other trap was a modified Fitch trap in which the 

drink can is replaced with a #10 tin can (Rose 1973). The larger trap allowed us to place 

a substantial amount of hay to reduce winter mortality to nearly zero (Rose et al. 1977). 

The hay was only used during the winter months acting as both an additional food source
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and as insulation. Traps were baited with a combination of wild bird seed and sunflower 

seeds.

Each animal was given a numbered ear tag at the time o f initial capture. Newly 

tagged individuals were identified by species, and tag number, station of capture, body 

mass and reproductive information were recorded. Although the main focus of the study 

was to capture and follow the progress o f S. hispidus, we regularly captured and 

monitored several other small mammal species that were present in the study area. These 

species included meadow vole (Microtus pennsylvanicus), house mouse (Mus musculus), 

eastern harvest mouse {Reithrodontomys humulis), rice rat (Oryzomys palustris), pine 

vole {Microtus pinetorum) and two species of shrews {Blarina spp. and Cryptotis parvd).

Body weight was obtained by using 100-g and 300-g Pesola ™ scales. 

Reproductive condition was determined for both males and females. Males were noted as 

having either descended (reproductive) or abdominal (non-reproductive) testes (McCravy 

and Rose 1992). For females, reproductive condition was based on three characteristics, 

including perforate or non-perforate vaginal opening, size of nipples (small, medium and 

large), and closed, slightly open or open pubic symphyses. Pregnancy was also recorded 

when apparent.

The same information was collected for recaptured animals. However, those 

animals that were recaptured within the same trapping session were counted solely as an 

additional capture and only tag number and station of capture were recorded. In some 

cases, recaptured animals might have lost an ear tag. These animals were retagged and 

later synonymized with the previously tagged individual it was most likely to be. Each 

animal was released at the station of capture.
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Statistical Analysis

Standard programs, such as SPSS version 12.0 and JOLLY, were used to 

determine aspects of population dynamics such as density, rates o f body and population 

growth, survival rates per month and season, and to evaluate patterns of reproduction. 

Mean masses for males and females were calculated for each month, season, mass class, 

and age class. Winter was defined as December, January, February; spring as March, 

April, May; summer as June, July August; and autumn as September, October, 

November. Animals were placed into one of seven mass classes based on mass at time of 

capture, using the criteria similar to other mean mass and growth rate studies on cotton 

rats (Cameron and Spencer 1983; Slade et al., 1984; Campbell and Slade 1993). Mass 

classes were broken down by increments of 20 grams, with the exception of mass class 1, 

which accounted for individuals weighing < 50 grams. Mean growth rates of individuals 

were also categorized in grams per week at the monthly, seasonal and mass class level. 

As a result of small sample sizes, mean mass and mean growth rates could not be 

calculated for some months, seasons, and mass classes.

Sex ratios were evaluated using Chi-square analysis to determine if there were 

significant differences between the numbers of males and females for entire duration of 

the study, as well as for the years 2003 and 2004 (SPSS 2003). Chi-square analysis was 

also conducted on age distributions to examine potential significant differences between 

the numbers of adult and juvenile males and females in the population. Residency 

patterns were also analyzed using Chi-square analysis to test for significant differences 

among three different residency classes o f the population. Transients were defined as 

individuals observed in only one month, visitors as those caught during two consecutive
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months, and residents as individuals known to have lived at least three months on the 

study grid.

Survival rates and density were determined using the software package JOLLY 

(Hines 1996), an executable software program downloaded from the USGS website, 

which uses the Jolly-Seber Model. Density values were also calculated by hand using 

minimum number known alive (MNA) for a given month. The density of a population, 

as estimated by MNA, is calculated by adding the number of individuals captured during 

month t to those tagged animals not captured in month t but known to have survived into 

a following month. Such animals can only be counted for month t if  they were caught in 

month t + 1 or beyond. Correlation analysis was performed on density values produced 

by JOLLY to evaluate a possible correlation between the first and second year o f the 

study. Correlation analysis was also conducted on density estimates produced by JOLLY 

and MNA to determine if a significant correlation was present between the two methods 

of density estimation. In addition, Chi-square statistics were produced by JOLLY to 

assess estimates of density and survival as a suitable model for my data.

I also investigated potential differences between my study based on mark- 

recapture methods and previously reported necropsy data o f Virginia cotton rat 

populations (Rose and Mitchell 1990; Bergstrom and Rose 2004). Correlation analysis 

was used to examine similarities in reproductive patterns for males and females (SPSS 

2003). Correlation analysis evaluated reproductive patterns for males based on external 

reproductive features from the current study and testes weights from the necropsy study 

(Bergstrom and Rose 2004). Correlation analysis also examined female reproductive
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trends and pregnancy rate values obtained from necropsy data from the Bergstrom and 

Rose study (2004).

For analysis of mean mass, Student’s t-tests (two-sample) were used to determine 

potential significant differences in overall mean masses between males and females 

(SPSS 2003). Two-sample t-tests were also performed on males compared to females in 

the years 2003 and 2004. Same-sex comparisons using two-sample t-tests were also 

conducted for both sexes between the years 2003 and 2004. Additional two-sample t- 

tests were performed on mean mass for male and female transients and residents between 

2003 and 2004. Mean mass was also analyzed using model-I two-factor analysis of 

variance (ANOVA) to observe any potential significant differences between the sexes 

and months. A model-I two-factor ANOVA was also used to determine if there were 

significant differences between the sexes and among seasons. In order to observe any 

significant difference between the sexes and among seasons and mass classes for mean 

mass, a model-I three-factor ANOVA was used. Ryan-Einot-Gabriel-Welsch Multiple 

Range (REGWF) tests were performed for each ANOVA where factors proved to be 

significant (SPSS 2003).

Daily growth rates were determined by calculating changes in body mass o f an 

individual from its first capture in one trapping period to its first capture in the next 

trapping period and dividing these values by the number o f intervening days. Obviously 

pregnant females were excluded from these analyses because of the large weight gains 

associated with pregnancy. Juvenile growth was also excluded from growth rate analysis 

because o f their exceptionally large gains in weight in the early stages of their life. To 

compare calculated growth rates with previously published growth rates (Cameron and
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Spencer 1983; Slade et al. 1984; Eifler and Slade 1999), daily growth rates (grams per 

day) were converted to weekly growth rates (grams per week) by multiplying individual 

growth rates by seven. Individual growth rates were averaged by sex, month, season, and 

mass class. Student’s t-tests (two-sample) were used to determine any significant 

difference between overall male and female growth rates for the entire study. Two- 

sample t-tests were also conducted between male and female growth rates for 2003 and 

2004, as well as same-sex comparisons between the two years. Monthly and seasonal 

growth curves were constructed using mean growth rates of individuals. Growth rates 

were also analyzed using a model-I two-factor ANOVA to observe significant differences 

between sexes and seasons. In addition, a model-I three-factor ANOVA was used to 

determine if there were significant differences in growth rates between sex, season and 

mass class (SPSS 2003). When the factors of ANOVAs demonstrated significance, 

REGWF tests were performed to determine the exact interactions that were significant. 

In addition, individual growth trajectories for animals with long capture histories were 

plotted to reveal patterns of growth.

Additional comparisons were made between my study and previously reported 

necropsy data of Virginia cotton rat populations (Rose and Mitchell 1990; Bergstrom and 

Rose 2004). A one-sample, 1-tailed t-test was used to observe any potential significant 

difference between overall mean masses for males and females (SPSS 2003). To rule out 

differences based on the influence of temperature and precipitation, Chi-square analysis 

was conducted on mean yearly weather values from each Virginia population to the 50- 

year mean, as well as against each other.
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In order to better understand the effect of survival on the population, statistical 

analysis was performed on survival rates produced by JOLLY (Jolly-Seber model). 

Daily survival rates were converted to monthly survival rates by multiplying the daily 

rate by 30. Survival rates were calculated with and without juveniles. Two-sample t- 

tests on monthly mean survival rates revealed no significant differences between the 

groups (SPSS 2003). Therefore, monthly survival rates with juveniles were used for all 

of the statistical analyses on survival. Two-sample t-tests were also conducted on 

monthly mean survival rates for males and females for the entire study to determine if 

significant differences were present. Monthly mean survival rates between males and 

females in 2003 and 2004 were also tested for significance using two-sample t-tests. In 

addition, monthly mean survival rates for same sex comparison across 2003 and 2004 

were conducted using two-sample t-tests (SPSS 2003).

Factors that have the potential to influence survival are growth and the proportion 

of transient animals in the population. In order to explore these relationships within my 

population, the survival and growth rates, as well as survival and percentages of 

transients, were compared using correlation analysis (SPSS 2003). For survival and 

growth analysis, monthly growth rates were calculated by multiplying daily growth rates 

by 30. Correlation analysis was conducted monthly and seasonally for both males and 

females to determine if significant correlations were present. These analyses were also 

performed at the monthly and seasonal levels for monthly mean growth rates and 

subsequent survival (e.g., survival in March compared to February growth). For 

comparison of survival and the proportion of transients, correlation analysis was 

conducted using seasonal proportions of transients and seasonal survival rates. Seasonal
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proportions of transients were also compared with seasonal growth rates using correlation 

analysis (SPSS 2003).

Because winter survivorship was an important aspect of the study, the impact of 

survival throughout this season was examined without the use o f JOLLY survival 

estimates. Winter patterns of survival based on individuals of each mass class were 

observed into successive seasons. Over the winter months, individuals from cohorts were 

noted as either present or not present in successive seasons and these patterns are 

presented graphically. Increases and decreases in mean mass into different mass classes 

were not taken into account; only the initial mass class at the start of the season was used 

for each individual. These observations were made for males and females in the winter 

o f 2002-2003, and both autumn of 2003 and 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

RESULTS

During the 28-month study period, 864 animals o f eight different species were 

tagged in 9,088 trap nights. O f these, Sigmodon hispidus accounted for 513 (59.42%) of 

the total number of individuals tagged and constituted the highest number of captures on 

the grid (Table 1). Microtus pennsylvanicus and Reithrodontomys humulis were the 

second and third most common with 135 (15.61%) and 129 (14.91%) tagged individuals, 

respectively. During the first months of trapping, 45 Mus musculus (5.20%) were tagged 

on the grid, but none were caught after May of 2003. Oryzomys palustris, Blarina spp., 

Microtus pinetorum and Cryptotis parva were captured much less frequently and together 

accounted for < 5% of tagged animals. Ten O. palustris tagged during January and 

February of 2003 were recaptured through April of 2003, but none was seen on the grid 

again until November and December of 2003. Thereafter, rice rats were not observed 

until 1-3 were caught intermittently from September 2004 to February 2005. Blarina 

spp. and Cryptotis parva were also captured sporadically throughout the study; many 

were dead in the trap. Microtus pinetorum was the rarest species on the grid. Two of 

these four individuals were captured in November and December 2003, and the other 

individuals were captured six months later in February and March 2004. In the last few 

months of the study, S. hispidus presence began to dwindle on the study grid and M. 

pennsylvanicus and R. humulis were the more common species.

The dynamics of the community are integral to our understanding o f populations 

of small mammals; however, the following results will focus solely on the species of 

interest, S. hispidus. These results are based on data collected in December 2002 to 

February 2005, which includes three winter seasons. Except where specifically
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T a b l e  1.—Number o f tagged males and females captured from December 2002 to February 2005. Sigmodon 
hispidus was the species with the most tagged individuals and Microtus pinetorum was the species with the 
fewest. The sexes o f Cryptotis sp. and Blarina sp. cannot be determined externally.

Species Males Females Unknown Total

Sigmodon hispidus 248 265 0 513

Microtus pennsylvanicus 70 64 1 135

Reithrodontomys humulis 67 62 0 129

Mus musculus 31 13 1 45

Oryzomys palustris 11 9 1 21

Cryptotis parva __ __ 11 11

Blarina sp. --- --- 6 6

Microtus pinetorum 1 3 0 4

Total 23 864

u>
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mentioned, data from March of 2005 were only used to calculate density and growth and 

survival rates.

General Population Trends

For all tagged cotton rats, the sex ratio (265:248; females:males) was not 

significantly different from 1:1 (X2 = 0.56, d.f. = 1, p > 0.50; Figure 7; Table 1). 

However, for the total number of animals captured and accounted for once per month, 

more females were captured than males (652:538; Table 2). These include only 

individuals that were physically captured and not those known to be alive. This sex ratio 

was significantly female-biased (X = 10.92, d.f. = 1, p < 0.001) for the entire study 

(Figure 7).

When each year of study was examined separately based on total individuals 

captured (n = 1190), only the year 2003 (315:254) demonstrated a significantly female- 

biased sex ratio (X2 = 6.54, d.f. = 1, p < 0.01; Figure 7). The sex ratio in 2004 (244:208) 

was not significantly different from 1:1 (X2 = 2.87, d.f. = 1, p > 0.05). In addition to 

female bias observed in the total number captures (652:538), female bias was also present 

at the seasonal level, with males only more dominant in the summer of 2003 and the 

spring of 2004 (Figure 8). Females were most dominant in the winters o f 2003-2004 and 

2004-2005.

During my study, the population was dominated by adults. Of the 538 males 

captured, 466 (87%) were adults, using the maturity criterion of 50 g body mass (Rose 

and Mitchell, 1990), and 72 were juveniles. Similarly, 566 of the 652 (87%) female 

individuals captured were adults and the remaining 86 were juveniles (Table 3). No 

juvenile males were recorded in the last winter (2004-2005) and less than 5% of cotton
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Table 2.—Total number o f animals captured and accounted for once per month o f each species and the total 
number of animals captured o f each sex o f each species, December 2002 to February 2005. Numbers exclude 
those individuals known to be alive but not captured. Numbers in parentheses indicate the total number o f 
multiple captures.

Species Males Females Unknown Total

Sigmodon hispidus 538 (694) 652 (874) 0 1190 (1568)

Microtus pennsylvanicus 141 (181) 124(153) 1 266 (335)

Reithrodontomys humulis 96 (104) 90 (115) 0 186 (219)

Mus musculus 43 (44) 19 (19) 1 63 (64)

Oryzomys palustris 20 (25) 14 (14) 1 35 (40)

Cryptotis parva — — 11 11 (11)
Blarina sp. — — 6 6 (6)

Microtus pinetorum 1 (2) 3(3) 0 4 (5)

Total 840 (1050) 902 (1178) 20 1762 (2248)

u>-p*
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T a b l e  3.— Total numbers o f male and female juvenile and adult Sigmodon 
hispidus captured during December 2002 to February 2005. Juveniles weighed < 
50 g and adults weighed > 50 g. Winter consisted o f months (Dec-Feb), spring 
(Mar-May), summer (Jun-Aug) and autumn (Sept-Nov).

Juveniles Adults

Males Females Males Females

Winter 2002-2003 1 5 74 75

Spring 2003 0 0 53 60

Summer 2003 12 4 27 25

Autumn 2003 14 33 74 88

Winter 2003-2004 1 7 36 63

Spring 2004 11 1 24 29

Summer 2004 16 11 20 37

Autumn 2004 17 25 73 75

Winter 2004-2005 0 0 85 114

Total 72 86 466 566

Grand Total 158 1032
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rats were judged to be juveniles in the first (2002-2003) and second winters (2003-2004) 

(Figure 9). Bursts o f juveniles appeared in the spring o f 2004 and in both summers and 

autumns. Juvenile females were not recorded in the first spring or the last winter (Figure 

9). Approximately 10% of females in the first winter and less than 10% in the second 

winter and second spring were juveniles (Table 3). There was no significant difference 

between the total numbers of male and female juveniles captured (X2 = 1.24, d.f. = 1, p > 

0.25); however, significant differences existed between the total numbers of male and 

female adults captured (X2 = 9.69, d.f. = 1, p < 0.005; Table 3).

Patterns of residency are important because population theory considers resident 

animals to be paramount in understanding the dynamics of populations. Animals that 

pass through populations may contribute little to such important parameters as 

reproduction and survival. Throughout the study, more cotton rats of both sexes were 

residents than transients or visitors. For each residency class, these numbers were based 

on individuals actually observed and accounted for once during a given month, plus those 

known to be alive but not necessarily observed that month. In some cases, animals 

disappeared for 2-3 months and then returned to the study grid (6.85% of tagged males (n 

= 17), 5.66% of tagged females (n = 15)).

Significantly more total female residents were caught than male residents 

(543:428) (X2 = 13.62, d.f. = 1, p < 0.001; Table 4). By contrast, equal numbers of male 

and female visitors were observed (X2 = 0.00, d.f. = 1, p > 0.99; Table 4) and
-y

significantly more male than female transients were observed (X = 6.95, d.f. = 1, p > 

0.01; Table 4). Monthly comparisons of male and female residents confirmed the overall 

pattern that residents outnumbered transients and visitors (Figure 10). These patterns
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T a b l e  4.— Total numbers o f male and female transients, visitors and residents observed during 
December 2002 to February 2005. Transients were individuals observed in only one month, 
visitors during two consecutive months, and residents were individuals known to have lived at 
least three months on the study grid.

Transients Visitors Residents

Males Females Males Females Males Females

Winter 2002-2003 19 26 13 10 50 44

Spring 2003 9 9 5 4 47 45

Summer 2003 12 7 5 0 34 35

Autumn 2003 16 14 15 12 68 102

Winter 2003-2004 10 10 8 9 27 70

Spring 2004 20 3 3 1 18 34

Summer 2004 16 6 0 14 25 34

Autumn 2004 14 9 18 11 77 90

Winter 2004-2005 13 6 8 14 82 89

Total 129 90 75 75 428 543

Grand Total 219 150 971
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also clearly showed that transient males were more numerous than transient females, 

except in December 2003.

For seasonal distributions, the highest proportions of transient males were 

observed in the winter of 2002-2003, summer o f 2003, spring of 2004 and the summer of 

2004 (Figure 11). In the spring of 2004, male transients were slightly more numerous 

than resident males and no visitors were observed. The numbers of visitors noticeably 

increased in both autumns of the study (Table 4). A similar trend o f large numbers of 

residents was observed in both autumns and the winter o f 2004-2005. When total 

numbers of male transients, visitors and residents were compared, significant differences

•y

emerged: male transients were more numerous than visitors (X  = 14.29, d.f. = 1, p <

•y

0.001; Table 4), male visitors were less numerous than residents (.X  = 160.50, d.f. = 1, p

■y

< 0.001) and thus male residents were much more numerous than transients (X  -  247.73, 

d.f. = 1, p < 0.001). For females, more residents were seen than transients or visitors 

(Figure 11). Residents were more dominant in both autumns, as well the winters of 

2003-2004 and 2004-2005. Significantly more resident females were observed than 

visitors (X2 = 354.41, d.f. = 1, p < 0.001) and transients (X2 -  324.18, d.f. = 1, p < 0.001). 

No significant difference was observed in the number of female transients versus visitors 

(X2 = 1.36, d.f. = 1, p > 0.1; Table 4).

Despite differences in total numbers of male and female cotton rats captured, 

some general seasonal trends in transiency and residency were observed. Although 

female transients were fewer than males overall, relatively greater numbers of female 

transients were seen in the autumn of 2003 and the winter of 2003-2004 (Table 4). 

Similar increases in the numbers of male visitors were also present in both autumns of the
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study. There were significantly more female than male visitors in the summer o f 2004

‘j
(Xz = 14.00, d.f. = 1, p < 0 .001; Table 4). Significantly more female than male residents 

were observed in the autumn of 2003 (X2 -  6.8, d.f. = 1, p < 0.01), winter of 2003-2004 

(X2 = 19.06, d.f. = 1, p < 0.001) and the spring of 2004 (X2 = 4.92, d.f. = 1, p < 0.05; 

Table 4).

Population Density

Goodness-of-fit tests demonstrated that JOLLY model-B was the best model for 

my data (X2 = 46.29, d.f. = 33, p = 0.062). Initial late winter estimates were about 60/ha, 

numbers that fell by half in May 2003 before a density o f 60/ha was observed again in 

late summer (Figure 12). By the end of the autumn breeding season in October and 

November 2003 population density reached > 100/ha. Density declined to 30-40/ha 

during the second winter. The population recovered during 2004 and population density 

again reached 100/ha by September 2004 and increased to 101/ha in November and 

124/ha in January as young were being recruited. The apparent decline into the last 

month of study is not accurate because population estimators rely on some animals being 

alive in the following months and the future captures and survival of these animals were 

not known. The significant correlation between the first and second years of the study (r 

= 0.640, n = 11, p < 0.05) indicated that density patterns did not differ between years.

In addition to density estimates produced by JOLLY, minimum number alive per 

month was also calculated by hand based on those individuals captured and those known 

to be alive (Figure 12). These values are commonly used to provide a more conservative 

estimate of population density. There was significant correlation between density values
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produced by JOLLY and those determined by minimum number alive methods (r = 

0.963, n = 25, p <  0.001).

Patterns of Reproduction

Distinctive breeding and non-breeding seasons were evident based on external 

features for both sexes. In both 2003 and 2004, reproductive males o f adult size were not 

observed until March (Figure 13). A small percentage of males were reproductive in 

January 2003 and January 2005. In 2003, males remained reproductively active into 

November, but no reproductive males were seen in November of 2004.

Male reproductive patterns observed in my study did not significantly deviate 

from trends previously observed with necropsy data based on percentage of convoluted 

epididymides (Bergstrom and Rose 2004; r = 0.732, n = 27, p < 0.01; Figure 14). Low 

percentages of convoluted epididymides were associated with periods of reproductive 

inactivity, while increased proportions o f convoluted epididymides demonstrated periods 

when males are reproductively active. Males were reproductively active in both February 

1988 and 1989 and no reproductive males were observed after both October 1988 and 

1989. Despite the overall significance in male reproductive patterns, males in my study 

were reproductively active in October and into November 2003.

Almost all adult females were reproductively inactive over the winter months 

(Figure 15). Females were reproductively active in the spring, as well as in the late 

summer into early autumn, with the proportion of non-reproductive females gradually 

increasing from about August through the end o f the year. In April o f 2003, 70 percent 

o f females were reproductively active and all females were reproductively active in May
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of 2003 and April, May and June o f 2004. Females were reproductively competent 

through November in 2003 and 2004.

During the period when female cotton rats were reproductively active, 20.65% 

were recorded as being pregnant. Pregnant females, seen first in May of both years, were 

observed through November (Figure 16). Pregnant females were most numerous in the 

autumn months, with the most pregnant females recorded in August, September and 

October of 2004. Three females were recorded as being pregnant multiple times in their 

trapping history, but only one survived over the winter to be observed as pregnant in 

another breeding season.

Female reproductive patterns present in my study were not significantly different 

from previously reported necropsy data based on pregnancy rate values (Bergstrom and 

Rose 2004; r = 0.782, n = 26, p < 0.01; Figure 17). High proportions of reproductive 

females were seen in the spring and in late autumn with a cessation of breeding in the 

winter months of both studies. Despite the overall significantly similar reproductive 

patterns between the two studies, the onset of increased breeding activity in the spring 

was later in the 1987-1989 study than in my study. A high percentage o f reproductive 

females was present in both April months o f my study, which was similar to Virginia 

cotton rats in Bergstrom and Rose (2004). In both studies, 100 percent of females were 

reproductive by May. Virginia females from Bergstrom and Rose (2004) remained 

reproductively active through October in 1988 and through November in 1989, trends 

similar to the current study.
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Body Mass

The overall mean body mass for adult males was 99.51 ± 1.327 g (n = 466) and 

for adult females, excluding pregnant females, mean mass was 92.23 ± 1.132 g (n = 522). 

Juvenile masses were also excluded from this analysis. These means were significantly 

different (t = 4.007, p = 0.001). These results were not significantly different from 

Virginia cotton rat body masses reported by Rose and Mitchell (1990), but were 

significantly greater than those reported by Bergstrom and Rose (2004). In the Rose and 

Mitchell study (1990), mean body mass was 101.48 ± 2.027 g for males (n = 152) and 

94.26 ± 1.872 g for females (n = 148; Rose and Mitchell 1990). In comparison to my 

study, these means did not differ significantly for males (t = -1.481, p = 0.139) or females 

(t = -1.797, p = 0.073). However, significant differences were present for males (t = 

5.341, p = 0.001) and females (t = 3.875, p = 0.001) when compared to Virginia 

populations reported by Bergstrom and Rose (2004). In the Bergstrom and Rose (2004) 

study, the mean mass for Virginia males was 92.40 ±26.1 g (n = 234) and 87.80 ± 24.0 g 

for females (n = 239).

The mean masses for male and female cotton rats in the years 2003 (104.71 ± 

2.002 g for males, 92.52 ± 1.490 g for females) and 2004 (97.92 ± 2.218 g for males, 

92.49 ± 2.251 g for females) were significantly different in 2003 (t = 4.555, p = 0.001), 

but not in 2004 (t = 1.931, p = 0.054). Statistical significance was also tested for the 

same sex between years of the study. Males were significantly heavier in 2003 than in 

2004 (t = 2.281, p = 0.024), but females were not (t = 0.714, p = 0.476).

In an attempt to better understand the observed mean mass differences for 

Virginia populations o f cotton rats, mean mass of residency classes in this study were

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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tested for statistical significance using two-sample t-tests. Both male transients and 

residents were significantly heavier in 2003 than 2004 (t = 3.23, p = 0.002; t = 3.32, p = 

0.001, respectively; Table 5). In addition, male residents were significantly heavier than 

transients in both 2003 and 2004 (t = -2.655, p = 0.01; t = -4.632, p = 0.001). However, 

no significant differences in mean mass were found between females transients in 2003 

and 2004 (t = 0.329, p = 0.744; Table 5) or between female residents in the two years (t = 

-0.613, p = 0.540). Female residents were not significantly heavier than transients in 

either 2003 or 2004 (t -  -1.705, p = 0.092; t = -1.50, p = 0.145).

Statistical analysis was also performed on weather data for each individual 

Virginia study period to observe differences that have the potential to affect mean body 

mass. Temperature did not significantly deviate from the 50-year mean for this area 

(1983-1984: X2 = 0.0001, d.f. = 1, p > 0.05; 1987-1989: A2 = 0.006, d.f. = 1, p > 0.05; 

2002-2005: X2 = 0.047, d.f. = 1, p > 0.05; Table 6). The years 1983-1984 and 1987-1989 

were study periods corresponding to earlier studies (Rose and Mitchell 1990; Bergstrom 

and Rose 2004, respectively). No significant differences were present when the 1983- 

1984 study period was compared to the 1987-1989 and 2002-2005 study periods (X2 = 

0.004, d.f. = 1, p > 0.05; X2 = 0.052, d.f. = 1, p > 0.05). Also, no significant difference 

was also observed between the periods 1987-1989 and 2002-2005 (X2 = 0.088, d.f. = 1, p 

> 0.05).

Precipitation also did not significantly deviate from the 50-year mean in this area. 

(1983-1984: X2 = 0.021, d.f. = 1, p > 0.05; 1987-1989: X2 = 0.0305, d.f. = 1, p > 0.05; 

2002-2005: X2 = 0.107, d.f. = 1, p > 0.05). Additionally, no significant differences were 

found between the 1983-1984 study period and the 1987-1989 and 2002-2005 study
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T a b l e  5.— Mean masses (g) o f male and female transients and residents observed 
for the years 2003 and 2004. Numbers in parenthesis are the total numbers per 
year excluding juveniles and pregnant females.

Transients Residents

Year Males Females Males Females

2003 89.16(56) 81.66(56) 104.91 (199) 90.49 (228)

2004 63.91 (55) 78.28 (25) 92.86 (164) 92.32 (266)

4̂
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Table 6.—Mean temperatures ( C) and annual precipitation totals (mm) 
for the 50-year means, as well as for individual study periods obtained 
from the Southeast Regional Climate Center from a collection site at Lake 
Kilby in Suffolk, Virginia. Mean temperatures are reported in degrees 
Celsius and precipitation totals are in millimeters.

Mean Temperatures Precipitation Totals

50-year Means 1501.39 1220.47

1983-1984 1498.09 1257.05

1987-1989 1479.55 1362.20

2002-2005 1562.10 1303.53

Table 7.—Results for model-I 2-factor ANOVA on mean mass with sex 
and month as factors for data collected from December 2002 through 
February 2005.
Source df MS F P
Sex 1 0.099 7.451 0.006
Month 1 0.066 4.975 0.000
Sex * Month 25 0.027 2.046 0.003
Error 933 0.013
Total 982
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periods (X2 = 0.165, d.f. = 1, p > 0.05; X2 = 0.032, d.f. = 1, p > 0.05, respectively). Nor 

were significant differences in precipitation totals found between the 1983-1984 and 

2002-2005 study periods (.X2 = 0.051, d.f. = 1, p > 0.05).

A model-I two-factor ANOVA using sex and months as factors on log 

transformed data confirmed that there were significant mass differences between the 

sexes ( F = 7.451, d.f. = 1,958, p = 0.006) and also significant differences among months 

(F = 4.975, d.f. = 25,958, p = 0.001; Table 7). The sex-month interaction term was also 

significant (F = 2.046, d.f. = 22,958, p = 0.003) as mean body mass for each sex was not 

significantly different in all months. It should be noted that due to small monthly sample 

sizes, some sex-month combinations were excluded from the analysis (males from 

January 2004 (n = 3) and April 2004 (n = 1) and females from May 2003 (n = 2)).

Ryan-Einot-Gabriel-Welsch Multiple Range (REGWF) F-tests were conducted on 

both the month and sex-month interaction terms to show which month and sex-month 

combinations were significantly different from one another. For the monthly factor, May 

of 2004 was significantly different from all other months, except for May 2003 

(Appendix 1). In general, mean mass observed in the spring months was significantly 

higher than all other months. For the sex-month interaction factor, mean mass for males 

from December 2002 was significantly lower than mean mass for males in both May 

2003 and 2004 (Appendix 2). In addition, male mean mass from May 2004 was 

significantly higher than mean mass for males from October 2003, March 2004, July 

2004, November 2004 and the winter months o f 2004 through February 2005. Female 

mean mass from May 2004 was significantly higher from all other sex-month 

combinations with the exceptions of females in April o f 2003 and June and July of 2004.
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Monthly mean mass of cotton rats for the study was plotted for both sexes (Figure 

18). Mean masses increased steadily from January to May for males and less quickly for 

females. Mean mass of females changed little from October through March with the 

exception of a slight decrease in mean mass from January to February 2004. Additional 

increases in mean mass for both males and females were observed during June and July. 

Mean masses o f both sexes were heaviest in May (142 g for males; 152 g for females) 

and lowest over the winter months (84 g for males; 74 g for females).

When monthly mean mass values were combined into seasons (Figure 19), the 

heaviest female cotton rats were found in spring and the lightest females in autumn of 

both years. Cotton rat males were heaviest in the spring of 2004 and next heaviest in the 

spring of 2003. Spring-to-summer decreases in mean mass were observed for both 

sexes, followed by steady increases for males but not females. The most pronounced 

decrease in mean mass was seen in males over the summer of 2004.

A model-I two-factor ANOVA, which used sex and season as factors, was 

performed on log transformed data. Data previously excluded from monthly ANOVA for 

mean mass due to small monthly sample size were incorporated into this analysis. 

Significant differences were present between sexes (F = 15.060, d.f. = 1,980, p = 0.001) 

and among the seasons (F = 6.089, d.f. = 7,980, p = 0.001; Table 8). The sex-season 

interaction term was also significant (F = 1.937, d.f. = 7,980, p = 0.05). REGWF tests, 

performed on the season factor, showed that mean masses for the springs of 2003 and 

2004 were both significantly higher than masses from all three winters and the autumn of 

2004 (Appendix 3). Both summers and the autumn of 2003 were not significantly 

different from other seasons.
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F ig . 18.—Monthly mean masses (g) for males and females over the time period December 2002 to February 2005. Dashed lines 
indicate no trapping was conducted in June 2003. Increases in mean mass were present in the spring months, while decreases and 
plateaus in mean mass were present in the winter months. Pregnant females were excluded from all mean mass estimates. eg
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F ig . 19.— Seasonal mean mass (g) for males vs. females from winter 2002-2003 to winter 2004-2005. Increases mean mass for 
both males and females were observed in both spring followed by slight decline in mean mass into the summer and autumn. A 
slight decrease in mean mass for males compared to females was present in the winter o f 2003-2004. cq
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T a b le  8.—Results for model-I 2-factor ANOVA on mean mass with 
sex and season as factors for data collected from December 2002 
through February 2005.

Source df MS F P

Sex 1 0.215 15.060 0.000

Season 8 0.087 6.089 0.000
Sex * Season 8 0.028 1.937 0.051
Error 970 0.014

Total 988

T a b le  9.— Results for model-I 3-factor ANOVA on mean mass with 
sex, season and mass class as factors for data collected from December 
2002 through February 2005.____________________________________

Source df MS F P
Sex 1 1.751 0.037 0.847
Season 3 22.495 0.477 0.699
Mass Class 6 126260.785 2674.729 0.000
Sex * Season * Mass Class 13 91.239 1.933 0.024
Error 928 47.205
Total 974
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The REGWF test for the sex-season interaction term showed that male mean mass 

for the spring seasons was significantly higher than male mean mass in the winters of 

2002-2003 and 2004-2005 and male mean mass in the autumn o f 2004 (Appendix 4). 

Mean masses for females in the spring o f 2003 and 2004 were significantly higher than 

female mean mass in the winter of 2003-2004. Sex-season interactions that were not 

different from any other sex-season combinations were females in both springs, males in 

both summers, males and females in autumn of 2003 and males in the winter o f 2003- 

2004. Male mean mass was not significantly different between summer and autumn 

seasons, nor was female mean mass significantly different between summer and autumn 

seasons.

After cotton rats were divided into seven mass classes, mean masses for both 

sexes were determined at both the monthly and seasonal levels. Since no significant 

difference was previously established among the same months across the study from the 

REGWF test results, mean masses were combined for monthly and seasonal comparisons 

among the mass classes. However, statistical analysis was performed only on the 

seasonal values due to small sample sizes. A model-I three-factor ANOVA with sex, 

season and mass class as factors on untransformed data determined that significant 

differences were present between the mass class factor (F = 2674.729, d.f. = 6,967, p = 

0.001) and the interaction factor (F = 1.933, d.f. = 12,971, p = 0.024; Table 9). All other 

factors tested demonstrated no significant difference. The only significant difference 

within a sex was female mean mass in mass class 7 from the spring, which was 

significantly higher than the mean mass from females in the autumn. Otherwise, when all
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mass classes with small sample sizes were excluded from the statistical analysis, the 

distribution o f mass classes was similar among seasons (Appendix 5).

In the monthly breakdown of mean mass class, cotton rat males in mass class 1 

appeared in May and were seen through December (Table 10). Female cotton rats had 

similar patterns; mass class 1 was not observed until May, with the exception of the 

month of January (Table 10). Males in mass class 7 were present year-round (except 

February); however, their numbers were small in comparison to other mass classes. For 

example, in January, March, April, June and December, only one male was observed in 

this mass class. The heaviest mass classes for both sexes were most prevalent in May 

through November. There was a trend for the majority of animals to be found in the 

intermediate mass classes, especially during the winter months, but more were seen in the 

smaller mass classes in the late summer and autumn months. Seasonal mass classes for 

both males and females further demonstrated that lightest and heaviest mass classes were 

underrepresented during the winter months (Figures 20 and 21; Table 11).

Despite no significant differences in mean mass for winter months, as 

demonstrated by the REGWF tests from the model-I two-factor ANOVA on the monthly 

data, slight variations in winter mean mass were observed in all three winters (Figure 18; 

Appendix 1). Males gained mass in the first winter, but declined in mass over the second 

winter, and then during the last winter, mass remained relatively unchanged. Females did 

not increase in mean mass over the winter months, but mass remained stable except in the 

second winter (2003-2004), when mean mass decreased slightly.
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T a b le  10.— Mean mass per mass class per month in mass classes 1-7 during the study period. Mean masses from entire study 
were condensed into a single set o f monthly data after no significant differences across months were found. Numbers in 
parentheses were individuals captured once per month. Each mass class column holds both male and female values (M = Males, F 
= Females). Totals were calculated per sex in each mass class per six months. Totals per sex and grand totals o f individuals for 
the entire study found in continuation o f  table 5. Mass Classes 1 = 0-49g, 2 = 50-69g, 3 = 70-89g, 4 = 90-109g, 5 = 110-129g, 6 = 
130-149g, 7 = 150+g, similar to classes as defined by Cameron and Spencer, 1983; Slade et al., 1984; Campbell and Slade, 1993. 
Pregnant females were excluded from these mean mass calculations.

M onth M ass C lass 1 M ass C lass 2 M ass C lass 3 M ass C lass 4 M ass C lass 5 M ass C lass 6 M ass C lass 7

M F M F M F M F M F M F M F

January (0)
43.33

(3)
59.17

(6)
60.67
(15)

80.58
(19)

79.82
(39)

98.44
(9)

97.05
(21)

118.40
(6)

118.00
(6)

134.00
(2)

132.60
(5)

167.00
(1)

158.00
(1)

February (0) (0)
64.67

(6)
62.62
(13)

80.38
(24)

79.00
(33)

98.04
(25)

96.59
(17)

117.86
(14)

117.80
(5)

130.00
(1)

138.67
(3) (0) (0)

M arch (0) (0)
60.00

(1)
63.83

(6)
81.50

(6)
81.72
(22)

98.62
(21)

98.91
(11)

119.56
(9)

122.00
(2)

133.33
(3) (0)

170.00
(1)

(0)

A pril (0) (0) (0) (0) (0)
82.00

(5)
102.80

(5)
98.59
(18)

116.80
(10)

117.20
(5)

134.50
(4)

131.00
(2)

150.00
(1)

(0)

M ay
23.55
(11)

22.00
(1)

(0) (0) (0) (0)
104.00

(1)
106.50

(2)
119.67

(6)
117.00

(2)
138.50

(4)
146.00

(2)
157.80

(5)
167.60

(5)

June
26.20

(5)
39.33

(3)
51.33

(3)
60.00

(2)
(0) (0) (0) (0) (0)

122.00
(1)

132.00
(1)

141.33
(3)

152.00
(1)

172.00
(1)

o\
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Table 10.— (Continued).

M onth M ass C lass 1 M ass C lass 2 M ass C lass 3 M ass C lass 4 M ass C lass 5 M ass C lass 6 M ass C lass 7

M F M F M F M F M F M F M F

July 27.18
(11)

31.75
(8)

60.83
(6)

55.25
(4)

78.00
(1)

76.00
(2)

102.00
(2)

98.00
(4) (0)

114.00 
(2) (0)

132.00
(2)

164.80
(5)

152.00
(1)

August 30.16
(12)

29.75
(4)

60.75
(4)

61.00
(9)

81.63
(8)

80.50
(4)

102.80
(5)

96.00
(4)

119.40
(5)

119.00
(4)

134.00
(2)

137.33
(3)

174.25
(4)

155.00
(2)

September 34.00
(13)

31.71
(14)

58.57
(7)

59.33
(3)

74.43
(7)

82.20
(5)

100.00
(5)

101.86
(8)

116.25
(4)

119.40
(5)

133.00
(2)

148.00
(1)

164.80
(5)

150.67
(3)

October 28.50
(8)

33.05
(20)

60.30
(10)

58.18
(17)

77.67
(18)

84.17
(6)

96.10
(9)

98.71
(7)

120.64
(11)

118.22
(9)

134.50
(4)

142.43
(7)

162.40
(5) (0)

November 32.70
(10)

36.67
(24)

56.29
(7)

60.67
(15)

78.36
(14)

79.38
(24)

100.56
(18)

95.14
(7)

118.00
(12)

118.67
(15)

136.57
(7)

134.50
(4)

161.00
(2)

157.50
(4)

December 37.50
(2)

43.43
(9)

59.06
(16)

63.59
(15)

79.50
(24)

78.50
(40)

101.35
(20)

96.96
(24)

118.38
(13)

117.09
(8)

139.50
(8)

136.33
(7)

160.00
(1)

(0)

Total per 
sex (n) 72 86 66 99 121 180 120 123 90 64 38 39 31 17

Grand 
Total (n) 158 165 301 243 154 77 48

as4̂
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F ig . 20.— Seasonal percentages in the number o f individual males per mass class for the study period. Definitions o f mass classes
can be found in the legend o f Table 7. Mass class 1 was most numerous in the spring, summer and autumn, while intermediate
mass classes (3 and 4) were most prevalent overall. g;
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F ig . 21.— Seasonal percentages in the number o f individual females per mass class for the study period. Definitions o f mass 
classes can be found in the legend o f Table 7. Trends are similar to those seen for males in that mass class 1 was most numerous 
in the warmer seasons, while intermediate mass classes (3 and 4) were overall the most numerous mass classes.
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T a b l e  11.— Mean mass (g) per mass class per season in mass classes 1-7 during the study period. Numbers in parentheses were 
individuals captured once per month. Each mass class column holds both male and female values (M = Males, F = Females). 
Mass class criteria are defined in the legend of Table 5.

Season M ass C lass 1 M ass C lass 2 M ass C lass 3 M ass C lass 4 M ass C lass 5 M ass C lass 6 M ass C lass 7

M F M F M F M F M F M F M F

Winter 47.00 44.00 54.89 57.67 80.78 78.83 98.05 99.12 118.13 116.00 132.50 167.00
'02-03 (1) (5) (9) (6) (27) (42) (20) (26) (15) (1) (2) (0) (1) (0)

Spring 60.00 64.00 82.75 82.00 100.26 100.36 118.47 117.20 135.00 131.00 158.25
'03 (0) (0) (1) (3) (4) (19) (19) (25) (17) (5) (8) (2) (4) (0)

Slimmer 22.67 29.50 63.14 59.63 79.83 82.00 104.00 98.67 117.25 127.00 137.33 170.13 150.00
'03 (12) (4) (7) (8) (6) (3) (2) (3) (4) (2) (0) (3) (8) (1)

Autumn 33.07 34.24 58.17 59.14 77.24 80.56 98.89 96.62 119.62 118.40 137.00 140.33 162.60 152.80
'03 (14) (33) (12) (14) (17) (24) (19) (13) (13) (15) (3) (9) (10) (5)

Winter 28.00 43.43 63.75 63.53 77.33 79.38 103.60 98.13 118.60 113.67 141.25 142.00 160.00
'03-'04 0 ) (7) (4) (19) (12) (21) (5) (15) (10) (6) (4) (2) (1) (0)

Spring 23.55 22.00 63.67 79.00 81.25 98.00 95.33 118.50 119.50 137.33 146.00 158.67 167.60
'04 (11) (1) (0) (3) (2) (8) (8) (6) (8) (4) (3) (2) (3) (5)

Summer 32.50 33.91 53.33 59.00 84.00 76.00 102.00 96.00 128.00 114.40 133.33 137.60 156.00 161.33
'04 (16) (11) (6) (7) (3) (3) (5) (5) 0 ) (5) (3) (5) (2) (3)

Autumn 31.41 34.20 59.08 59.48 77.41 81.91 99.69 101.78 118.07 118.93 134.90 140.00 166.00 159.00
'04 (17) (25) (12) (21) (22) (11) (13) (9) (14) (14) (10) (3) (2) (2)

Winter 63.21 63.33 80.68 78.12 99.25 94.50 118.88 119.67 136.60 135.20 158.00
'04-'05 (0) (0) (15) (18) (28) (49) (29) (21) (8) (12) (5) (13) (0) (1)
Total 72 86 66 99 121 180 120 123 90 64 38 39 31 17

G rand
T otal

158 165 301 243 154 11 48

Os-J
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Growth Rates

Growth rates were calculated for all adult cotton rats caught two times or more for 

the entire study (335 males, 396 females; Figure 22). The overall mean growth rate per 

week for males was 3.22 ± 0.262 g/week and for females, excluding pregnant females, 

was 2.12 ± 0.207 g/week. These means were significantly different (t = 3.307, p = 

0.001). Mean growth rates for the years 2003 (3.37 ± 0.268 g/week for males, 3.21 ± 

0.403 g/week for females) and 2004 (3.17 ± 0.348 g/week for males and 1.72 ± 0.242 

g/week for females) showed no significant differences between the sexes for 2003 (t = 

0.232, p = 0.747), but were different for 2004 (t = 3.425, p = 0.001). No significant 

differences were detected for males between 2003 and 2004 (t = 0.457, p = 0.648), but 

female growth was significantly faster in 2003 than 2004 (t = 3.179, p = 0.002).

Growth rate varied over the course of the year (Figure 22). Positive growth rates 

for females, more pronounced than for males, occurred in the early to late spring and 

again in the late summer to early autumn. Females also exhibited a large peak in growth 

rate during August in 2003; in contrast, negative growth for females was seen in 

September 2004. Although males generally had positive growth, negative growth was 

observed in the second winter (2003-2004) and nil growth in the third winter (2004- 

2005). For females, near negative or nil growth was observed in the first two winters and 

negative growth was seen in the last winter (2004-2005).

As a result of small sample size in at least five months o f the study, monthly 

growth rates were combined into seasons for statistical analysis. Seasonal growth curves 

exhibited trends o f positive growth during the spring and autumn seasons and decreases 

in growth rates before the onset of winter. Overall, males had slightly higher rates of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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F ig . 22.— Pattern of monthly mean growth rates (g/week) for males and females for the study period. Increases in mean growth 
rates were observed in early spring, early summer and late autumn months. Decreases in mean growth rates were observed over 
the early autumn and winter months. A spike in female mean growth rates was observed in August 2003. Juveniles and obviously 
pregnant females were excluded from the growth rate analysis. Solid line indicates mean growth rate for males and dashed line 
indicates mean growth rate for females. An additional solid line at 0.00 on the y-axis represents zero growth rate. o\M3
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seasonal growth (Figure 23), but no significant differences were found between the sexes 

(F = 0.072, d.f. = 1,729, p = 0.789) using a model-I two-factor ANOVA with sex and 

season as factors on the untransformed data (Table 12). However, significant differences 

were observed among seasons (F = 14.315, d.f. = 7,723, p = 0.001) and for the sex-season 

interaction (F = 5.800, d.f. = 7,723, p = 0.001) because not all growth rates for each sex 

were significantly different in all seasons.

REWGF tests on the season factor showed generally that cotton rat growth rates 

in all three winter seasons (2.15 ± 0.328 g/week for winter 2002-2003, 0.98 ± 0.247 

g/week for winter 2003-2004, 0.84 ± 0.420 g/week for winter 2004-2005) were not 

significantly different from each other (Appendix 6). However, growth rates in all three 

winter seasons were significantly lower than growth rates in the summer of 2003 (6.99 ± 

1.186 g/week) and spring of 2004 (4.90 ± 0.636 g/week). In addition, growth rates in 

winters o f 2003-2004 and 2004-2005 were significantly lower than growth rates in spring 

2003 (3.31 ± 0.243 g/week) and both autumn seasons (3.77 ± 0.337 g/week for autumn 

2003, 2.93 ± 0.377 g/week for autumn 2004). Spring growth rates did not differ, but 

those of summer 2003 were significant higher than rates in the summer of 2004 (2.50 ± 

0.614 g/week). No differences were seen in the two autumns.

REWGF tests performed on the sex-season interaction showed that growth rates 

o f cotton rat males were not significantly different from one another in the three winters 

(3.17 ± 0.409 g/week for winter 2002-2003, 1.69 ± 0.531 g/week for winter 2003-2004 

and 1.77 ±1.026 g/week for winter 2004-2005; Appendix 7). Male growth rates in both 

autumns (4.07 ± 0.477 g/week and 4.08 ± 0.584 g/week, respectively) were not 

significantly different, but they were significantly higher than those of both winters 2003-
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T a b le  12.— Results for model-I 2-factor ANOVA on growth 
rates with sex and season as factors for data collected from 
December 2002 through March 2005.
Source df MS F P
Sex 1 1.193 0.072 0.789
Season 8 238.259 14.315 0.000
Sex * Season 8 96.535 5.800 0.000
Error 713 16.644
Total 731

T a b l e  13.— Results for model-I 3-factor ANOVA on growth 
rates with sex, season and mass class as factors for data 
collected from December 2002 through March 2005.__________
Source df MS F P
Sex 1 49.198 5.046 0.025
Season 3 171.693 17.611 0.000
Mass Class 6 186.447 19.124 0.000
Sex * Season * Mass Class 7 23.697 2.431 0.018
Error 625 9.749
Total 665
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2004 and 2004-2005. In addition, male growth rates were not significantly different 

between spring seasons (2.92 ± 0.279 g/week for 2003, 3.89 ± 1.037 g/week for 2004) or 

between summer seasons (4.44 ± 1.008 g/week for 2003, 3.17 ± 0.719 g/week for 2004).

Growth rates for cotton rat females in all three winters (1.17 ± 0.477 g/week for 

winter 2002-2003, 0.62 ± 0.246 g/week for winter 2003-2004 and 0.25 ± 0.218 g/week 

for winter 2004-2005) were not significantly different from each other. Female growth 

rates in all three winters were also not significantly different from those o f summer 2004 

(2.15 ± 0.918 g/week) or autumn 2004 (1.79 ± 0.441 g/week). Female growth rates in the 

spring of 2003 (3.73 ± 0.397 g/week) did not differ from those o f spring 2004 (5.62 ± 

0.781 g/week). However, female growth rates in the spring 2004 were significantly 

higher than those of all three winters, as well as for summer 2004 (2.15 ± 0.918 g/week). 

Female growth rates in the summer of 2003 (11.12 ± 2.346 g/week) were significantly 

greater from every other growth rate for sex or season. In comparison to growth between 

spring seasons, autumn growth rates did not significantly differ between 2003 (3.47 ± 

g/week) and 2004 (1.79 ± 0.441 g/week).

A model-I three-factor ANOVA with sex, season and mass class was also 

performed on the untransformed growth rate data (Table 13). Due to inadequate sample 

sizes within certain mass class groups, fewer growth rates were incorporated in this three- 

factor ANOVA and do not reflect the entire scope of growth rate study (281 for males 

and 384 for females). The only factors of interest examined in depth were mass class and 

the sex, season and mass class interaction factor.

Significant differences were observed for both the mass class factor (F = 19.12, 

d.f. = 6,658, p = 0.001) and the interaction factor between sex, season and mass class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

factors (F = 2.43, d.f. = 7,657, p = 0.018). When REGWF tests were performed on the 

mass class factor, mass class 1 (6.14 ± 0.335 g/week) and mass class 2 (4.63 ± 0.449 

g/week) had significantly different growth rates from each other and both mass classes 

had significantly higher growth rates than all other mass classes (3-7; Appendix 8). 

Growth rates in mass classes 3 (2.34 ± 0.222 g/week), 4 (2.58 ± 0.329) and 5 (1.66 ± 

0.327 g/week) were not significantly different from each other, but the growth rates in 

these mass classes were significantly higher than mass classes 6 (0.04 ± 0.796 g/week) 

and 7 (-0.41 ± 0689 g/week). In addition, mass classes 6 and 7 were not significantly 

different from each other.

REGWF tests were also used to examine sex-season-mass class interactions 

(Table 14; Appendix 9). For male cotton rats, autumn growth rates in mass class 1 (2.36 

± 0.639 g/week) were significantly lower than summer growth rates (8.49 ± 0.662 

g/week). Because of small and nil sample sizes no male growth rates in mass class 1 

could be calculated for the spring or winter. Male growth rates in autumn for mass class 

2 (7.40 ± 0.494 g/week) were significantly higher than for males from mass class 2 in 

summer (1.95 ± 0.692 g/week) and winter (2.77 ± 0.561 g/week). Male growth rates for 

mass class 2 were not observed in the spring. Growth rates for mass class 3 were not 

significantly different among winter (2.17 ± 0.351 g/week), summer (1.43 ± 0.804 

g/week) and autumn (4.85 ± 0.686 g/week). Small spring samples prevented male 

growth rates for mass class 3 to be calculated. For mass class 4, male growth rates in 

winter (1.95 ± 0.679 g/week) and summer (0.36 ± 0.132 g/week) were significantly lower 

than spring (3.86 ± 0.570 g/week) and autumn (4.17 ± 0.549 g/week), but no significant 

differences were detected between winter and summer, and spring and autumn, growth
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Table 14.— Growth rates (g/week) from results from Model-I 3-Factor ANOVA conducted in SPSS in g/week ± standard 
error. All growth rate data were lumped into seasons from all years o f the analysis Numbers o f males and females per 
season in mass classes 1-7 are in parentheses. Male and female values indicated as M = Males, F = Females. Entries with 
no growth rates are the result o f small sample size and were not calculated. Mass classes defined in the legend to Table 5. 
Negative growth rates are emphasized in bold type.

Winter Spring Summer Autumn

Mass
Class M F M F M F M F

— 3.30 ± 1.195 — — 2.36 ±0.351 6.63 ± 1.170 8.49 ± 0.662 6.67 ± 0.364
1 (1) (5) (0) (1) (15) (9) (17) (50)

2.77 ±0.561 1.16 ±0.392 — — 1.95 ±0.692 14.05 ± 0.258 7.40 ± 0.494 4.89 ± 0.397
2 (15) (24) (0) (3) (6) (8) (16) (30)

2.17 ± 0.351 0.95 ± 0.267 — 4.16 ±0.583 1.43 ±0 .804 — 4.85 ± 0.686 3.14 ±0.743
3 (43) (80) (2) (17) (4) (3) (27) (30)

1.95 ±0.679 0.70 ± 0.638 3.86 ±0.570 5.82 ± 1.038 0.36 ±0.132 5.07 ± 2.028 4.17 ±0 .549 1.96 ±0.885
4 (30) (38) (10) (17) (6) (6) (19) (15)

1.57 ±0.763 -2.03 ± 2.242 2.73 ± 0.373 4.19 ±0 .922 0.18 ±0.057 — 2.33 ± 1.013 1.23 ±0.647
5 (15) (4) (15) (5) (7) (2) (10) (21)

— -1.02 ± 0.574 3.39 ±0.620 — - 0.03 ± 0.020 3.12 ±4.005 -0.17 ±1 .046 -2.77 ± 1.451
6 (2) (10) (14) (1) (4) (7) (9) (8)

— — — — 0.06 ± 0.033 — -0.79 ±  1.276 —

7 (0) (0) (1) (0) (4) (2) (5) (1)



76

rates. No significant differences were present among seasonal growth rates for mass 

class 5; however, higher rates of growth were seen in spring (2.73 ± 0.373 g/week) and 

autumn (2.33 ± 1.013 g/week) than in other seasons. Despite the fact that males in mass 

class 6 did not exhibit significant differences in growth rates among seasons, higher rates 

of growth were present in the spring (3.39 ± 0.620 g/week) and almost zero and negative 

growth rates were observed in the summer (0.03 ± 0.020 g/week) and autumn (-0.17 ± 

1.046 g/week. These trends were similar to those present in mass class 5. Only one male 

growth rate was recorded in the winter for mass class 6 and was not included in the 

analysis. For mass class 7, male growth rates of almost zero or negative growth were 

observed in the summer (0.06 ± 0.033 g/week) and autumn (-0.79 ± 1.276 g/week). 

Sample sizes for winter and spring for mass class 7 were too small to be included in the 

ANOVA analysis.

For females (Table 14), REGWF tests showed that winter growth rates in mass 

class 1 (3.30 ± 1.195 g/week) were significantly lower than growth rates in the summer 

(6.63 ± 1.170 g/week) and the autumn (6.67 ± 0.364 g/week; Appendix 8). Summer and 

autumn growth rates for mass class 1 were not significantly different from one another. 

Only one female growth rate for mass class 1 was observed for the spring and this rate 

was excluded from the analysis. For mass class 2, female growth rates in summer (14.05 

±2.580 g/week) were significantly higher than any other mass class growth rate observed 

for either sex. Winter growth rates in mass class 2 (1.16 ± 0.392 g/week) were 

significantly lower than autumn growth rates (4.89 ± 0.397 g/week). Not enough female 

growth rates for the spring season were observed for mass class 2 to include in the 

analysis. For mass class 3, spring and autumn growth rates were not significantly
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different from each other (4.16 ± 0.583 g/week for spring, 3.14 ± 0.743 g/week for 

autumn), but these growth rates were significantly higher than winter growth rates (0.95 

± 0.267 g/week). Not enough females in mass class 3 were observed for summer growth 

rates to be calculated. Female growth rates for mass class 4 were not significantly 

different between winter (0.70 ± 0.638 g/week) and autumn (1.96 ± 0.885 g/week), but 

these seasonal growth rates were significantly lower than spring and summer growth rates 

(5.82 ± 1.038 for spring and summer, 5.07 ± 2.028 g/week). In addition, spring and 

summer growth rates for mass class 4 were not significantly different. For mass class 5, 

growth rates in the autumn (1.23 ± 0.647 g/week) and winter (-2.03 ± 2.242 g/week) were 

not significantly different from each other, but both were significantly lower than spring 

growth rates (4.19 ± 0.922 g/week). Too few female growth rates were observed for 

mass class 5 in summer. Autumn and winter growth rates for mass class 6 were not 

significantly different from each other (-2.77 ± 1.451 g/week for autumn, -1.02 ± 0.574 

g/week for winter), but both were significantly lower than summer growth rates for this 

mass class (3.12 ± 4.005 g/week). Not enough growth rates for mass class 6 for the 

spring were recorded to include in the analysis. For mass class 7, no females were 

observed in mass class 7 for the winter and spring and fewer than three growth rates were 

recorded for the autumn and summer, too few to use the analysis; therefore, these rates 

were excluded from the analysis.

Seasonal growth rates for each mass class were plotted using all the available 

growth rate data for cotton rats; previously excluded data were used here (Figure 24). 

Among seasons, the highest growth rates for both sexes were observed in summer. 

During spring, autumn and winter seasons, growth rates did not go above 10 g/week and
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negative growth was observed during these seasons in the heaviest mass classes. Males 

demonstrated higher rates of growth than females in the autumn and winter among most 

mass classes, but females more often than not had higher growth rates than males in the 

spring and summer.

In spring, male growth rates remained stable for intermediate mass classes (mass 

classes 3 and 4) and for mass classes 5 and 6. Females also demonstrated stability in 

growth rate for the intermediate mass classes, but growth rates decreased in mass classes 

5 and 6, a pattern also seen in males (Figure 24). No males or females were observed in 

mass class 1 in the spring.

Positive growth for all mass classes was seen in the summer season (Figure 24). 

Males and females of mass classes 1 and 2 showed higher rates of growth than the other 

mass classes, while slightly lower rates o f growth were seen in the intermediate mass 

classes (3 and 4). Near nil growth was observed in the heaviest three mass classes for 

both sexes. In summer, females of the lightest four mass classes had extreme positive 

growth trends.

As in the summer season, almost all masses classes in autumn had positive growth 

rates (Figure 24). However, only one autumn growth rate was calculated for females in 

mass class 7. Males and females exhibited a slight decrease in growth rate across the 

mass classes throughout this season, the lightest mass classes had the highest growth rates 

and the heaviest mass classes had lower rates of growth. Negative growth was observed 

for both sexes in mass classes 6 and 7.

Winter growth rates had a more stable pattern of growth (Figure 24). For both 

sexes, mass class 1 demonstrated the highest growth rates and the heavy mass classes (5
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and 6) exhibited negative growth. Growth rates for the intermediate mass classes (3 and 

4) remained stable throughout the winter. No growth rates were observed in mass class 

7.

Growth rates were also determined for individual cotton rats with long capture 

histories. Growth trajectories were based on changes mass from successive months of 

capture. For months with gaps in the trapping record, mean mass was determined by 

interpolation. Male growth trajectories confirmed winter growth rate trends in that males 

showed positive growth during the winters of 2002-2003 and 2004-2005, while nil and 

negative growth was seen in the winter of 2003-2004 (Figure 25). For females, growth 

trajectories were consistent with the trend that no growth and negative growth was 

observed during the winter months (Figure 26). Young bom in the summer months had 

lower positive growth than autumn-bom individuals (Figure 27). Autumn-bom young 

had better over-winter growth compared to summer-born animals.

Survival

Monthly survival rates of cotton rats were calculated for the total population and 

then separately for males and females. Goodness-of-fit tests demonstrated that JOLLY 

results was a good model for males (X2 = 24.10, d.f. = 14, p = 0.055) and females (X2 = 

19.61, d.f. = 16, p = 0.238). Survival rates were calculated with and without juveniles, 

but two-sample t-tests revealed no significant differences among these mean monthly 

survival rates for males (0.624 ± 0.054 for males with juveniles, 0.508 ± 0.064 for males 

without juveniles) or females (0.693 ± 0.044 for females with juveniles, 0.673 ± 0.040 for 

females without juveniles; t = -0.323, p = 0.749 for males, t = 0.310, p = 0.758 for 

females; Figure 28). Therefore, survival rates with juveniles were used in my study. In
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addition, because JOLLY the estimates probabilities for both death or disappearance and 

persistence on the grid but does not evaluate failure to capture animals, transients were 

also incorporated into these survival analyses. The exclusion o f transients from JOLLY 

analysis did not produce any meaningful results.

Overall, cotton rat females had slightly higher mean rates of survival per month 

than males, 0.693 ± 0.044 and 0.624 ± 0.054, respectively. Two-sample t-tests on these 

survival rates revealed no significant differences between these mean survival rates (t = - 

1.133, p = 0.263). Mean survival rates for 2003 (0.655 ± 0.045 for males, 0.678 ± 0.053 

for females) and 2004 (0.638 ± 0.098 for males, 0.777 ± 0.070 for females) did not differ 

significantly between the sexes for 2003 (t = -0.321, p = 0.752) or 2004 (t = -1.323, p = 

0.200). In addition, no significant differences were detected between males in 2003 and 

2004 (t = 0.469, p = 0.644) or females in 2003 and 2004 (t = -0.769, p -  0.450).

Monthly survival rates fluctuated during the year, but males and females 

displayed similar patterns (Figure 29). Decreases in survival rates were observed for both 

sexes towards the end of all three winters, and decreased survival was also seen in the 

late summer o f 2003. Unlike females, males in July 2004 experienced a sharp drop in 

survival, followed by a steady increase in survival through October 2004. Increases in 

survival rates for both sexes occurred in the spring months and again in autumn months 

for both years. These increases in survival rates were generally followed by decreased 

survival rates that continued into the winter months. Females in March 2004 showed one 

of the largest increases in survival rates across the entire study.

Patterns of seasonal survival rate for both sexes confirmed the trends seen in the 

monthly patterns of survival (Figure 30). Seasonal survival rates for females
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were relatively stable with occasional increases in survival throughout the study, except 

for a decrease in survival in winter 2003-2004. Increases in survival rates were observed 

in both autumns for both sexes. Males demonstrated lower rates of survival than females 

in both summers and, unlike females, decreased survival was observed.

Since previous cotton rat studies had suggested that effects o f weather and mean 

mass adversely affect survival rates (Sauer 1985; Campbell and Slade 1993; Eifler and 

Slade 1998), other factors, such as growth rate and proportions of transients in the 

population, were tested against survival rates in this study. Correlation analysis was 

conducted to determine if significant relationships were present between rates of survival 

and mean growth per month. Previously calculated growth rates per day were converted 

into monthly values. This analysis was performed for both sexes, using both monthly and 

seasonal growth and survival rates, as well as monthly and seasonal growth and 

subsequent survival, e.g., survival in March compared to February growth. There was no 

significant relationship between mean monthly growth rates and survival rates for males 

(r = -0.080, n = 47, p > 0.05) or for females (r = 0.072, n = 47, p > 0.05). Nor were 

significant relationships seen for seasonal growth and survival rates for either males (r = - 

0.244, n = 7, p > 0.05) or females (r = 0.025, n = 7, p > 0.05). No significant relationship 

was observed between monthly growth and subsequent monthly survival for either males 

(r = 0.295, n = 45, p > 0.05) or females (r = -0.019, n = 46, p > 0.05), nor were there 

significant relationships for seasonal growth and subsequent seasonal survival for males 

(r = 0.222, n = 6, p > 0.05) or females (r = 0.494, n = 6, p > 0.05).

Despite the fact that significant relationships were not demonstrated using 

correlation analysis, at certain points in the study growth might have influenced survival.
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For cotton rat males, decreases in mean growth rates in January 2003 were associated 

with an increase in survival rate for January 2003 (Figure 31). Similar trends were also 

observed in September 2003. During periods of stable growth, survival rates either were 

stable or increased, as seen in mid-spring through early-summer o f 2003 and in mid­

summer to late-autumn of 2004. In some instances, the opposite trend was observed, 

such as in both August 2003 and June 2004 when increases in mean growth rates were 

associated with sharp decreases in survival. In the late autumn of 2003 through mid­

spring of 2004, patterns of growth and survival appeared to closely follow each other, 

which suggests that something other than growth influenced survival during this period.

Similar patterns of mean growth rates and survival were observed for female 

cotton rats (Figure 32). Overall, periods of stable or decreased growth were associated 

with stable and increased survival rates. Stable periods o f growth and survival rates were 

observed in mid-spring through mid-summer of 2003, autumn of 2003 and mid-summer 

through mid-autumn of 2004. In the winter months o f 2002-2003, decreased growth 

coincided with an increase in winter survival. The opposite trend was observed in 

August 2003, when a sharp increase in mean growth rate was associated with a slight 

decrease in survival. As seen with males, patterns of growth and survival appeared to 

closely follow one another during the winter months o f 2003-2004 through the mid­

summer 2004, being slightly greater in females than males.

Seasonal patterns of rates of growth and survival for cotton rats confirmed those 

seen in monthly comparisons. For males, decreases in rates of growth were associated 

with increases in survival, observed in the spring of 2003 (Figure 33). Increases in 

growth rates were associated with decreased survival rates, seen in both summers.
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Patterns of growth and survival rates during the winter of 2003-2004 and spring o f 2004 

closely followed one another. For females, stable rates o f both growth and survival were 

observed during the winter of 2002-2003 and spring 2003 (Figure 34). Despite the large 

increase in growth in summer of 2003, survival in that summer remained relatively stable 

then. Decreases in growth rates had positive effects on survival, seen in the autumn of 

2003 and all the seasons from summer 2004 through the end of the study. As with males, 

female seasonal growth and survival rates for the winter o f 2003-2004 and spring of 2004 

followed the same patterns.

For mean monthly growth rates and subsequent survival, males exhibited positive 

subsequent survival at times of stable and decreased growth, as seen in February through 

May of 2003 and August through December of 2004 (Figure 35). Slight increases in 

growth rates in June and July of 2003 seemed to have a negative effect on survival in 

both July and August 2003. Patterns of monthly growth and subsequent survival 

followed one another from September 2003 to July 2004. However, decreased growth in 

December 2003 and January 2004 coincided with positive survival in January and 

February 2004.

Concordant patterns of monthly growth and subsequent survival in cotton rats 

were more pronounced in females than in males (Figure 36). The stable and decreased 

growth rates observed in winter months o f 2002-2003, mid-spring of 2003 and mid­

summer of 2004 were associated with stable and increased subsequent survival. 

Increases in growth for March 2003, March 2004 and June 2004 were associated with 

negative survival the following months. Increased subsequent survival in mid-autumn of 

2003 through the spring of 2004 was related to decreased growth rates in these seasons.
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In particular, decreases in growth from November 2003 to February 2004 reflected stable 

and increased subsequent survival in winter of 2003-2004.

Patterns of seasonal growth and subsequent seasonal survival supported those 

patterns previously demonstrated for monthly growth and subsequent survival. These 

seasonal patterns better illustrated the potential for longer lasting effects o f growth on 

survival. For males, with one exception, subsequent survival patterns closely followed 

patterns o f growth (Figure 37). The exception was in spring 2004, when an increase in 

growth rate was negatively associated with summer 2004 survival and was followed by 

an increase in survival, similar to the summer and autumn 2004 pattern. For females, 

seasonal growth for the first half of the study mimicked subsequent survival patterns. 

Despite fluctuations in seasonal growth rates for the latter half of the study, subsequent 

survival rates continued to increase (Figure 38).

Proportions o f transient cotton rats were also compared against both seasonal 

survival and growth rates within the population. Correlation analysis was conducted 

between seasonal survival rates and seasonal proportions of transients for sexes. There 

proved to be significant negative correlations for males (r = -0.768, p < 0.05) and females 

(r = -0.715, p < 0.05) using log-transformed seasonal growth, survival and proportion of 

transient data. For males, increased proportions o f transients were associated with a 

decrease in seasonal survival (Figure 39). The highest percentages of transients were 

seen in spring and summer of 2004, which corresponded with the lowest seasonal 

survival rates. Stable and lower proportions of female transients were associated with 

stable and increased seasonal survival rates (Figure 39). Consistent increases in seasonal
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survival rates were observed from spring of 2004 to the end of the study which coincided 

with a stable pattern in the proportions of transients.

No significant relationships were present for seasonal growth and the proportions 

o f seasonal transients, using log-transformed seasonal growth and transient data (r = 

0.347, p > 0.05 for males, r = 0.230, p > 0.05 for females). However, similar trends of 

the proportions of transients and seasonal growth were observed for males, but not for 

females (Figure 40). For males, increases and decreases in both seasonal growth and 

proportions of transients mimicked one another in the first half of the study. For the 

latter half of the study, no patterns were apparent. For females, the stable and steady 

percentage o f transients did not follow patterns of seasonal growth (Figure 40).

Since winter survivorship in cotton rats was one of the most important objectives 

of the study, winter patterns of survival were plotted based on the same cohort of 

individuals of each mass class observed from the autumn into successive seasons. Mass 

class designations were based on the mass o f individuals in the initial season of 

consideration: winter 2002-2003, autumn 2003 or autumn 2004. Growth o f these 

individuals was not taken into account; instead, their presence or absence in successive 

seasons based on initial mass class was used.

As a result of no data having been collected prior to December 2002, survival data 

was used from this first month of collection. For males, every mass class with the 

exception of mass class 1 was observed in the winter o f 2002-2003 and only the 

intermediate mass classes were seen in the spring, summer and autumn of the following 

year (Figure 41). For females, this same trend was observed (Figure 41). In the autumn 

of 2003, all mass classes of both sexes were present, but only the lightest mass classes
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(mass classes 1, 2 and 3 for males; mass class 3 for females) persisted into the spring of 

2004 (Figures 42). For females, only one individual (#446), which was first observed in 

the autumn of 2003 in mass class 3, survived until January of 2005, a total of 16 months 

as an adult. In this study, the average life span was 2.6 months for males and 3.0 months 

for females. All mass classes for both sexes were present in the autumn of 2004, but only 

females were seen into the first month of the spring of 2005 (Figures 43). O f these 

females, the lighter mass classes (mass classes 1 and 2) were present with greater 

frequency.
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DISCUSSION

Previous studies of Virginia populations of Sigmodon hispidus have focused on 

several different aspects o f its life history (Rose and Mitchell 1990; Bergstrom and Rose 

2004), but not specifically on growth and survival. My study reaffirms previously 

reported population trends, as well as brings new insight regarding growth and survival in 

this geographic region using mark-and-recapture techniques. Patterns of winter growth 

and survival are particularly important for understanding the causes of localized 

extinctions during winter months at other geographic locations.

S. hispidus have been well documented in the midwestem and southern United 

States, particularly in Kansas and Texas (McClenaghan and Gaines 1978; Cameron and 

Spencer 1983; Sauer et al. 1984; Sauer 1985; Campbell and Slade 1993; Slade and 

Campbell 1995; Eifler and Slade 1998; Eifler and Slade 1999; Slade and Iskjaer 1999). 

Similarities and differences observed in the population dynamics of this study compared 

to other geographic populations serve to better understand overall population trends and 

the relationship between seasonal rates o f body growth and survival in S. hispidus and 

perhaps for other seasonally breeding small mammal populations.

In this study, the available habitat allowed for a great variety of species to take up 

residency in this old field. S. hispidus remained the dominant species on the grid until the 

last several months of the study, when Microtus pennsylvanicus and Reithrodontomys 

humulis became the dominant species (Table 1). Changes to the plant community due to 

old field succession negatively affected S. hispidus. S. hispidus is dependent on dense 

herbaceous vegetation as a food resource and for cover, but the rapid influx o f loblolly 

pines and other trees has excluded necessary herbaceous plant species. However, Rose
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and Bimey (1985) noted that M. pennsylvanicus in small mammal communities has the 

ability to become the dominant small mammal and influence other populations. 

Interspecific interactions between Sigmodon and Microtus have been studied (Odum 

1955; Wiegart 1972), but due its larger body size, S. hispidus typically has a competitive 

advantage over Microtus (Terman 1974). Therefore, the decline in Sigmodon was more 

likely due to vegetation changes on the grid rather than interspecific competition from 

increasing numbers of M. pennsylvanicus.

The other species were less abundant than the S. hispidus, M. pennsylvanicus and 

R. humulis (Table 1). Mus musculus disappeared within the first few months of trapping. 

Mus, an introduced species and a superb colonizer o f new habitats, is often displaced 

when populations of native rodents become established (Pearson 1963; Lidicker 1965; 

Delong 1967). Changes in available habitat likely played a role, but interspecific 

competition may also have influenced their disappearance from the grid (DeLong 1967). 

Oryzomys palustris typically inhabits marshes and moist meadows, so their limited 

presence in wet areas of the grid was not unexpected (Kincaid et al. 1983). Both the 

occasional capture of shrews and the rare occurrence o f Microtus pinetorum were due in 

part to proximity to its native forested habitat located west of the study grid (Miller and 

Getz 1969; Dueser and Shugart Jr. 1979). M. pinetorum and the shrews are elusive 

species that typically inhabit underground burrows (Dueser and Shugart, Jr. 1979; 

Schadler and Butterstein 1979). In addition, the presence of M. pinetorum was likely the 

result of seasonal timing associated with its above-ground activities (Miller and Getz 

1969).
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General Population Trends

The 1:1 sex ratio observed in the tagged population was similar to ratios in other 

populations of cotton rats (Goertz 1964; Goertz 1965; Cameron 1977; Stafford and Stout 

1983; Cameron and McClure 1988; Langley and Shure 1988; Table 1). However, the 

overall significant female bias for animals captured and accounted for once per month in 

this study is different from results observed in other cotton rat population studies (Table 

2; Figure 7). Kincaid and Cameron (1985) found a male-biased sex ratio (62.6% 

males:37.4% females) in a Texas coastal prairie. Other studies have demonstrated a 

male-biased sex ratio at certain times of the year at other geographic localities 

(McClenaghan and Gaines 1978; Cameron and Spencer 1983; Cameron and McClure 

1988). In this study, the sex ratio is consistent with these patterns and favored males in 

the spring and summer seasons, while more females were observed in winter (Figure 8).

Males are known to increase their average daily movement and expand their 

ranges during the spring and the summer as they seek mates (Slade and Swihart 1983). 

Both sexes tend to restrict their movements during the winter (Slade and Swihart 1983). 

The overall female bias in captures may be due in part to the significantly higher numbers 

o f male transients and female residents observed in this study. In general, larger home 

ranges and greater average daily movements have been documented for males (Goertz 

1964; Petersen 1973; Cameron and Spencer 1981; Swihart and Slade 1983), but increased 

male transiency within a population could skew sex ratios to favor females.

Habitat quality may also play a role. Cotton rats consume a mixed diet of 

monocots and dicots to maintain their energy and nutrient requirements (Randolph and 

Cameron 2001). Cameron (1995) showed that males are more common in dicot and
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mixed habitats in the Texas coastal prairie, while females occupy mostly mixed habitats. 

Kincaid and Cameron (1985) demonstrated that males occurred equally in mixed and 

monocot habitats, but less in dicot habitats in the coastal prairies of Texas. Females 

exhibited similar distributions, but had stronger negative associations with dicot habitats 

than males (Kincaid and Cameron 1985). In-depth vegetative analysis was not conducted 

in my study, so the proportions of habitat compared to male and female occurrence could 

not be determined. However, it would be worthwhile to conduct this analysis in the 

future to explore the potential contribution of vegetation on the grid to the female-bias in 

the population.

The high incidence of adults observed in this study has been reported in other 

populations of cotton rats (Fleharty and Choate 1973; Drabek 1977; Eifler and Slade 

1999; Table 3). Juveniles never exceeded the numbers of adults in any season, but were 

more abundant at some times than others (Figure 9). During the winter seasons, few or 

no juveniles were present on the grid and none were seen in the last winter season o f the 

study. This pattern is most likely the result of high mortality o f juveniles in winter and 

the rapid growth into adult size classes before the onset of winter (Campbell and Slade 

1993). The presence of few juveniles in the spring suggests either low recruitment and 

potentially high rates of dispersal (Campbell and Slade 1993). Juvenile numbers 

increased in the summer and autumn, indicating greater survival and residency dining 

these seasons. Fleharty and Choate (1973) and Drabek (1977) observed similar trends of 

juvenile recruitment in the summer and autumn seasons.

The proportions of transients, visitors and residents were similar to those seen in 

other populations o f cotton rats (Slade and Swihart 1983; Doonan and Slade 1995; Table
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4). Residents were most numerous, followed by transients, then visitors (Table 4). In 

this study, more female residents were present than males, which likely produced overall 

female bias of captured individuals (Figure 10). However, transient males were more 

prevalent than transient females (Figure 10). Slade and Swihart (1983) also report that 

males move more than females. This greater movement likely contributes to the larger 

proportions o f male transients and female residents observed in this population.

Despite the fact that male transients did not display obvious seasonal patterns, 

seasons in which high proportions of transients were observed often corresponded to 

times of potential dispersal, particularly in the spring (Campbell and Slade 1995; Figure 

11). In general, males begin to increase their movements at the start of their reproductive 

lives (Swihart and Slade 1983). Therefore, increases in the proportions o f male transients 

during the spring and the fact that slightly more male transients than residents were 

observed in the spring of 2004 are to be expected. Even though males display increased 

mobility and demonstrate larger home ranges than females (Goertz 1964; Petersen 1973; 

Cameron and Spencer 1981; Swihart and Slade 1983), residents were still numerically 

dominant in the male segment of the population.

Females are more likely to take up residency than are males. Females had similar 

low proportions of transients and visitors and high proportions o f female residents (Table 

4). Increases in the proportions of female residents were observed in the autumn (Figure 

11), periods of increased population density and a second pulse of reproductive activity. 

Increases in the proportions of resident females in the winters of 2003-2004 and 2004- 

2005 were likely due to the need to restrict movements and conserve energy during the 

winter months (Swihart and Slade 1983; Eifler and Slade 1998).
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In this study, some exceptions to the expected seasonal trends in residency 

patterns were seen. A slight increase in the numbers of transient females in the autumn 

of 2003 and the winter of 2003-2004 were most likely associated with increased 

population density and recruitment during these seasons (Doonan and Slade 1995). 

Similar increases in the proportions of visitors during both autumns, as well as increases 

in the proportions o f resident females compared to males in autumn of 2003 and winter 

2003-2004, can also be attributed to increases in density and recruitment. The increase in 

the proportion of female residents in the spring of 2004 could be related to the increase in 

the proportion of male transients, which are seeking potential mates.

Population Density

Estimates of population density were obtained through two methods: the software 

package JOLLY and the minimum number alive (MNA) technique. Previous studies 

have reported that MNA techniques are conservative and often underestimate density 

(Doonan and Slade 1995). However, correlation analysis revealed the density estimates 

to be similar in my study.

Annual population densities were slightly bimodal in 2004, with large increases 

seen in autumn and smaller increases in the spring o f 2004 (Figure 12). This pattern of 

density is primarily seen in southern cotton rat populations (Odum 1955; Cameron 1977; 

Cameron and Spencer 1981; Kincaid and Cameron 1985). Cotton rat populations in the 

northern portions o f the species’ range, most specifically in Kansas, exhibit one peak in 

abundance in autumn (Fleharty and Choate 1973; Glass and Slade 1980a; Doonan and 

Slade 1995; and Rehmeir et al. 2005). Population density trends in Virginia, then, are 

typical of southern populations, despite being at the same latitude as Kansas (37° N).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

This may be due in part to the warmer oceanic climate observed in Virginia in winter 

compared to Kansas.

Overall, population density was not significantly different between the years of 

the study and similar patterns of change in density were observed both years. Maximum 

densities occurred in autumn with highest numbers in both Novembers (106/ha and 

101/ha) and January 2005 (124/ha), while spring increases in density were not as 

dramatic (60/ha, May 2004) (Figure 12). Such high overall abundances and autumn 

abundances have not previously been reported for natural cotton rat populations. 

However, densities in the 100/ha range were found in Kansas populations supplied with 

supplemental food (Doonan and Slade 1995). Cameron (1977) reported maximum 

autumn densities of 14/ha in Texas, while Odum (1955) reported a ten-year autumn 

average high density of 69/ha in Georgia. Populations from the short-grass prairie of 

western Kansas had maximum density of 20/ha in autumn (Fleharty et al. 1972).

Minimum densities in my study were observed in the 30-40/ha range in early 

spring of 2003 and winter of 2003-2004 and densities never fell below 30/ha at any time. 

Minimum densities in other northern distributions were observed in the spring (0.02/ha; 

Fleharty et al. 1972) and zero (Fleharty et al. 1972; Glass and Slade 1980b). In southern 

populations of cotton rats, Odum (1955) and Cameron (1977) reported lowest densities in 

the winter and summer in Georgia (8/ha) and Texas (0.5/ha), respectively.

Small mammal densities are influenced by several different extrinsic and intrinsic 

factors. Climate can have a substantial impact on population density in cotton rat 

populations, particularly during the winter, when population declines often have been 

observed (Dunaway and Kaye 1961; Goertz 1964; Cameron 1977; Langley and Shure
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1988). Low temperatures associated with winter weather likely cause population declines 

and even localized extinctions. These trends are typically observed in northern 

populations of cotton rats (Sauer 1985). In my study, density declined in the winter, but 

not to the same low levels seen in other northern populations. The milder winters 

observed in my site at the northern part of the species’ range in Virginia likely have less 

impact on population density than do harsher winters found in Kansas (Figure 2). The 

warm autumns and mild winters can also extend the breeding season and lead to higher 

recruitment o f animals into the winter (Rehmeir et al. 2005), which would explain the 

spike in population density in January 2005 (Figure 12).

The quality of the habitat is another factor influencing population density. The 

high levels of plant biomass characteristic of the early summer are tied to the 

reproductive cycle and thereby contribute to large increases in population density in the 

autumn (Cameron 1977; Langley and Shure 1988). During the winter and early spring, 

plant biomass is substantially lower than in other seasons. The decrease in the amount of 

vegetation cover will also affect population density by making animals more susceptible 

to predation (Goertz 1964). The loss o f herbaceous plants due to old-field succession and 

decreased numbers of S. hispidus near the end of my study supports the negative effects 

that changes in vegetation can have on cotton rat population density.

Another factor affecting density is juvenile recruitment during the reproductive 

season. The entrance of juveniles into the population contributes to increases in density 

(Cameron 1977), seen in autumn and to a lesser extent in late spring. Dispersal of 

animals out of the population can have the opposite effect on population density (Stafford 

and Stout 1983), which may also explain decreased population density in the early spring.
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Patterns of Reproduction

Due to the energy constraints, as a result of their small size, small mammals are 

adapted to carefully regulate their energy budgets. Because energy constraints are most 

profound over the winter months, small mammals typically suspend such high-energy 

cost activities, as growth and reproduction. At northern locations, the effects o f winter 

are more extreme and periods of growth and reproduction are even more contracted than 

in southern locations. Cotton rats in my study reproduced in accord with the energy- 

conserving tendencies o f small mammals in general and exhibited the reproductive trends 

observed in other cotton rat populations (McClenaghan and Gaines 1978; Rose 1986; 

Rose and Mitchell 1990; Bergstrom and Rose 2004). The patterns of reproductive 

cessation observed in this population were also similar to those seen in previous Virginia 

cotton rat studies (Rose 1986; Rose and Mitchell 1990; Bergstrom and Rose 2004). In 

these studies, females were reproductively active from March to October and males 

became reproductively active one month earlier and ended one month later. Because 

males do not pay the costs of pregnancy and lactation, they can stay reproductive longer 

and still survive the winter. By increasing testes size in February, mature males also are 

fertile as soon as the first females come into estrus (Rose 1986).

In my study, males of adult size with descended testes were not observed until 

March and reproductive adult females were not observed until April in both years 

(Figures 13 and 15). McCravy and Rose (1992), using data from several species of small 

mammals, including Sigmodon hispidus, examined both externally and internally for 

reproduction, found descended (scrotal) testes to predict reproductive competency with 

86.7-93.8% success, whereas three female features were less useful (vaginal orifice
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69.7%; medium-to-large nipples 73.7%; and slightly open to open pubic symphysis 

67.5%). However, significant correlations between the external character used in my 

study and percent of convoluted epididymides o f Virginia cotton rats from the Bergstrom 

and Rose (2004) study demonstrate that the use o f descended testes is an adequate 

method of determining reproductive activity in males. A comparison between my study 

and the Bergstrom and Rose (2004) study shows that there were several instances when 

no reproductive (only non-scrotal) males were present, but increasing percentages of 

convoluted epididymides were seen during these months, especially in February (Figure 

14). These instances were observed either at the beginning of the breeding season and 

towards the end (February and November). However, the percentages of convoluted 

epididymides during these times were lower than 40% and not as high as percentages 

observed at the peak of the breeding season (Bergstrom and Rose 2004). In the 

Bergstrom and Rose (2004) study, the percentage of convoluted epididymides remained 

at zero in February and November 1987, demonstrating that males were not always 

reproductively active one month earlier or one month later than females. This 

observation was also seen in my study (November 2004) when no reproductive males 

were observed.

McClenaghan and Gaines (1978) also used percentages of convoluted 

epididymides as indicators of male reproductive activity in Kansas populations at the 

same latitude as this study. In their study, males never reached 100% breeding levels 

during the reproductive season and the highest percentages were documented during the 

summer. In contrast to McClenaghan and Gaines (1978), both the current study and the 

Bergstrom and Rose (2004) study showed lower proportions of reproductive males over
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the summer (Figure 14). These decreases in reproductive activity are associated with 

mid-summer lulls in reproduction, which have been suggested to be the result of high 

summer temperatures (Cameron 1977). Decreases in mid-summer reproduction may also 

be associated with spring recruitment and non-reproductive cotton rats entering the 

population. The fact that there are fewer breeding cotton rats in the population at this 

time may contribute to these mid-summer lulls.

Similar shortened breeding seasons with males demonstrating the same one month 

advantage over females were seen in Kansas (McClenaghan and Gaines 1978). However, 

the breeding season started one month later in Kansas and males are reproductively active 

from March to November (Campbell and Slade 1995). This shorter breeding season is 

comparable to the breeding season observed in my study based on only external 

characteristics, which confirms that reproduction during the winter months is not 

advantageous in northern populations of cotton rats.

The small percentages of reproductive males observed in January 2003 and 2005 

are due to the survival of a few large males that failed to regress their testes (Figure 13). 

Cameron (1977) observed that cotton rats in Texas are reproductive all year with reduced 

activity in the winter. Bergstrom and Rose (2004) also noted this trend in populations of 

cotton rats in Georgia. However, despite the relatively milder winter conditions in 

Virginia, this strategy is not energetically possible in northern parts o f the species’ range. 

The energetic costs of pregnancy and lactation during the spring and summer are greater 

than or equal to energetic costs experienced in the winter (Fournier et al. 1999). In 

addition, no reproductive males were present in the months preceding or following 

January in either year. The few males that remained reproductively active throughout the
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winter found no cycling females and thus no winter breeding was detected. Therefore, 

overall patterns of reproductive activity for males in my study concur with previous 

Virginia investigations of cotton rats demonstrating a cessation in breeding (October- 

March) and earlier onset of reproductive activity in males than in females. These results 

are also similar to those observed in Kansas populations at the same latitude.

Female cotton rats are at even more o f an energetic disadvantage than males. 

The combined costs of pregnancy and lactation are energetically demanding throughout 

the entire breeding season. It would be detrimental for females to remain reproductively 

active over the winter months, especially in the northern portions of the species’ range. 

In my study, a small proportion of females continued to display reproductive competence 

during the winter, but none became pregnant (Figure 15). In all instances, these females 

did not survive to the following springs. In other Virginia studies, investigators have 

reported that the breeding season spans from March to October, but females are not at 

their maximal reproductive potential during the first month of the breeding season (Rose 

1986; Rose and Mitchell 1990; Bergstrom and Rose 2004). Despite slight differences, 

overall reproductive trends from my study compared well to those found in Virginia 

females in the Bergstrom and Rose (2004) study. A significant correlation between my 

results and those of Bergstrom and Rose (2004) demonstrated that our findings were 

similar. A cessation of breeding over the winter months was observed for both studies, 

with maximal reproductive output in the spring and autumn months.

The suspension of breeding during the winter is also observed in Kansas 

populations at the same latitude (McClenaghan and Gaines 1978). However, the 

compressed breeding seasons for females in Kansas starts one month later than for
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Virginia females (Rose and Mitchell 1990). The more compressed breeding season in 

Kansas compared to Virginia may be the result of colder and harsher winters. The mild 

and moderating ocean climate of eastern Virginia may allow for a longer breeding 

season. In addition, any differences in seasonal variation on the quality and availability 

of food resources due to environmental factors may also impact the length o f the breeding 

season in northern populations (Derting 1997). In contrast, females in southern 

populations, such as those in Texas and Georgia, have the potential to remain 

reproductively active all year round (Cameron 1977; Bergstrom and Rose 2004). These 

southern geographic regions are also less seasonal than at northern locations, contributing 

to differences in litter sizes, as well as to breeding patterns in general (Derting 1997).

In my study, between 60-70% of females were reproductively competent during 

April 2003 and March 2004, while higher percentages were achieved later in spring and 

persisted into the summer and autumn months. Bergstrom and Rose (2004) also reported 

similar trends in that maximum reproductive potential was attained by mid-spring and 

again during the mid-autumn months. This trend for gradual increase in reproductive 

potential is also reported in other northern populations of cotton rats (McClenaghan and 

Gaines 1978). Pregnancy rates observed in this study (20.65%) were much lower than 

previously reported for Virginia cotton rats based on necropsied females (68.7%; Rose 

and Mitchell 1990). This is most likely due to undetected pregnancy in the population of 

cotton rats in the current study, when only females in the third trimester can be judged as 

pregnant with certainty.

The current study also shows that females were reproductively competent longer 

compared to females in previous Virginia studies (Rose 1986; Rose and Mitchell 1990).
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Bergstrom and Rose (2004) reported that a few reproductively competent females were 

pregnant as late as November. In my study, females remain reproductively active 

through November and a small number o f these females were pregnant during this month 

(Figure 16). The three pregnant females observed in November 2003 did not survive the 

winter. However, one pregnant female seen in November 2004 did survive until March 

2005. This observation is unusual in that Bergstrom and Rose (2004) speculated that in 

order for females to survive the winter, it is necessary to suspend breeding early in the 

autumn.

Bergstrom and Rose (2004) speculated that females that reproduce during the 

summer and autumn do not survive the winter in Virginia. In my study, the majority of 

pregnant females were observed in autumn months, with the next greatest frequency in 

the late summer (Figure 16). From the capture histories recorded of these pregnant 

females, the speculations o f Bergstrom and Rose (2004) are partially supported. No 

females that were pregnant in either the summer or autumn of 2003 survived to the 

following spring. However, three pregnant females from the summer and autumn of 

2004 survived to the spring, which included the November pregnant female previously 

mentioned. The persistence of these females does not support the speculations of 

Bergstrom and Rose (2004). However, o f these surviving females, one was pregnant in 

August 2004, which might have been early enough in the breeding season to recoup 

energies diverted to pregnancy and lactation before winter. The other two females that 

survived to spring 2005 were pregnant in October and November of 2004. This is 

extremely late in the breeding season to have the opportunity to recoup reproductive 

energies; thus, these females appear to be exceptions.
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In all three instances, these females were light (56, 62 and 80 g). This might have 

been a factor to their continued survival over the winter because less energy is required to 

support small body sizes. If so, perhaps Bergstrom and Rose (2004) are correct that fully 

adult females that breed in summer and autumn do not survive to the spring. Cotton rats 

o f intermediate size have better overwinter survival than heavier cotton rats (Campbell 

and Slade 1993); similar trends seen in the current study. In addition, the slightly, but not 

significantly, warmer average temperatures in Virginia experienced in the winter of 2004- 

2005 (5.82 °C) compared to the winter of 2003-2004 (4.54 °C) may also have contributed 

to the survival of these females.

O f the three females recorded as being pregnant multiple times in their trapping 

history, two did not survive over the winter. These females were pregnant in the late 

summer and again in the mid-autumn. As a result o f the higher energy demands of 

multiple pregnancies, the energies and resources of these females are reduced and 

multiple pregnancies are just as detrimental to winter survival as breeding later in the 

season, as predicted by Bergstrom and Rose (2004). The surviving female was pregnant 

twice in its lifetime (May and October o f 2004) and persisted multiple seasons, including 

one winter season. This female was first observed as an adult in October 2003 and last 

seen in January 2005. It was the longest living animal in my study and most certainly the 

exception to the energetic and survival constraints imposed on other cotton rats.

Bergstrom and Rose (2004) also speculated that all breeding females in Virginia 

in the spring were comprised of first-time mothers that were bom no later than September 

or October. These speculations were based on reproductive data from necropsied animals 

and confirmed in the current study. In the spring o f 2004, the large majority (80%) of
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breeding females were overwintering animals bom in October and November o f 2003. In 

fact, one juvenile from late summer also survived to become reproductively competent, 

but was not seen again after April 2004. Some previously untagged intermediate weight 

females were also recruited into this first pulse o f breeding. Females in March 2005 also 

comprised autumn-born animals that survived the winter after recruitment in September, 

October and November of 2004.

A mid-summer lull in breeding activity was present for females in my study in 

2003, but not 2004. Female reproductive rates dropped below 70% in July o f 2003 and 

rebounded to nearly 80% in September (Figure 17). In 2004, female reproductive rates 

were 75% in August of 2004 and almost 95% in September of 2004. Bergstrom and 

Rose (2004) also reported no mid-summer lull in the summer of 1989. The decrease in 

reproductive activity in 2003 is likely the result of the recruitment of young adults into 

the population (Bergstrom and Rose 2004). The later onset of spring recruitment in 2003 

may have increased the number of non-reproductive females into the population during 

the summer of 2003, but this was not the case in the spring of 2004. However, the higher 

temperatures of summer could have depressed both diurnal activity and breeding 

(Cameron 1977), which was observed to a much lesser extent in 2004.

Bergstrom and Rose (2004) believed that June-July breeders, the early phase of 

the second pulse of breeding lasting from June-September, would be composed of early 

spring breeders reproducing for the second time and progeny from the spring pulse 

reproducing once or perhaps twice. Unfortunately, this speculation cannot be confirmed 

because of an insufficient amount of data available for the early stages of the second 

pulse. There was a relatively low number of April and May female breeders observed
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and this translated into even fewer numbers o f reproductive females surviving into 

summer and autumn. These females either had low spring survivorship or simply went 

undetected in the summer and autumn months. However, in 2003, summer breeders 

consisted mainly of older females surviving the winter months. Pregnancy could not be 

confirmed for these individuals in the spring, but they were judged to be reproductively 

competent with monthly trapping. Pregnancy is only confirmable in the third trimester 

and many pregnancies go undetected, even when all females are breeding. The 

remainder of the reproductive population was newly tagged females of intermediate 

weight, likely second-time breeders that contributed to the first birth pulse, which, if  true, 

confirms the speculations of Bergstrom and Rose (2004). Only a few second-time 

breeders were transient reproductive females, which may have contributed to the 

population but were never seen again.

In 2004, trends in summer breeders were similar to those observed in summer

2003. In both years, the autumn breeders consisted mainly of summer-born females, as 

well as mid-summer recruits from the first birth pulse. The majority of these mid­

summer recruits were of intermediate mass and only one or two of these recruits were 

transient individuals. Despite the fact that low numbers of pregnant females were present 

in both April and May in my study, the overall structure of breeding females closely 

follows patterns predicted by Bergstrom and Rose (2004).

Body Mass

In this population of cotton rats, sexual dimorphism in mean body mass was 

evident, a pattern seen in other populations o f cotton rats, irrespective of geographic 

location (Petersen 1973; Cameron and Spencer 1983; Cameron and McClure 1988; Rose
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and Mitchell 1990; Derting 1997; Bergstrom and Rose 2004). Males were significantly 

larger than females; however, there were a few autumn months (October 2003 and 

September 2004) when females had slightly higher mean masses than males (Figure 18). 

These differences are most likely the result of gains in body mass due to undetected 

pregnancy. Sexual dimorphism was also present between the two years of my study. 

Differences in body mass between males and females, as previously reported by Rose and 

Mitchell (1990) for Virginia cotton rats, were smallest at the end of the breeding season.

Mean masses observed in my study are the same as those reported by Rose and 

Mitchell (1990) and significantly higher than those reported by Bergstrom and Rose 

(2004). The two prior Virginia studies were based on necropsy data rather than the mark- 

and-recapture techniques used in my study. This difference in collecting method could 

affect results because the random sample o f animals collected for necropsy may consist 

o f more animals that were either smaller or larger in size. These size effects are 

minimized in all studies by excluding juveniles (<50 g) and pregnant females. The 

exclusion of pregnant females is more accurately done in the necropsy studies because 

reproductive organs are removed to give total somatic body mass. Juveniles could be 

excluded with confidence in my study, but it is possible that undetected pregnancy in 

these females might contribute to the significantly higher mean mass for these females 

compared to females observed in Bergstrom and Rose (2004).

Despite the differences in collection techniques, overall differences in mean mass 

were likely due to the larger number o f individuals captured in my study compared to 

previous Virginia studies. Rose and Mitchell (1990) and Bergstrom and Rose (2004) 

were limited in the number of animals captured, never taking more than 30 out o f the
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field per month. Mark-and-recapture techniques allow more flexibility and greater 

numbers of animals to be captured per month because none o f these animals are being 

permanently removed from the grid. The Bergstrom and Rose (2004) study was just as 

long as my study (28 months), but produced half the number of animals and had an 

overall significantly lower mean mass for both sexes. However, the Rose and Mitchell 

(1990) study was the shortest (12 months) and had even less animals, but exhibited 

slightly higher mean masses. Therefore, the higher numbers of animals in this population 

of cotton rats had a more moderating effect on mean mass, as evidenced by a mean mass 

intermediate to the current study and the Bergstrom and Rose (2004) study. The larger 

number o f animals was also overall a more random sample of the population contributing 

to the variation in mean mass between these Virginia populations o f cotton rats.

When comparing mean mass between years of study, it became evident that it was 

not just the quantity of animals, but the quality of the population that can affect mean 

mass. Mean mass of females was similar between the years, but males had a significantly 

higher mean mass in 2003 than in 2004. Furthermore, more males were present in 2003 

compared to 2004. Of these males, the numbers of male transients were similar in 2003 

and 2004 (Table 4); however, average mean mass of transients was almost ten grams 

higher in 2003 than on 2004. In addition, not only were more resident males observed in 

2003 than 2004, but mean mass for these male residents in 2003 was also higher. A 

larger quantity of heavier transients and residents in 2003 helps to explain the mean mass 

differences for males between years o f the study.

Similar mean masses were observed for females between both years, which 

suggested that residency trends did not affect female mean mass. Although the numbers
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of transients and residents differed between 2003 and 2004, the mean mass o f females 

remained similar between years. Overall, any effects to mean mass due to residency 

patterns would undoubtedly go undetected in necropsy studies, as residency status cannot 

be determined in these animals.

In addition to intrinsic factors affecting mean mass, extrinsic factors, such as the 

weather, could also potentially affect mean masses. However, I do not believe that 

weather played a role in the observed differences in mean mass for these Virginia cotton 

rat populations. Lower annual temperatures and higher precipitation totals could have 

the potential to adversely affect mean mass, as is evident in other populations of cotton 

rats (Goertz 1965; Cameron 1977; Campbell and Slade 1993; Derting 1997). However, 

monthly mean temperatures and monthly precipitation totals for each of the previous 

Virginia studies (1983-1984 and 1987-1989) and my study were not significantly 

different from 50-year means for these geographic locations in Virginia (Table 6). In 

addition, no significant differences were present when temperature and precipitation 

totals for each study were compared (Table 6).

Although annual temperature and precipitation patterns did not differ from the 50- 

year means, isolated events may have negatively affected mass at certain times 

throughout the study. In mid-September 2003, a hurricane passed through eastern 

Virginia and the total rainfall for the month of September was higher than normal (Figure 

4). Mean mass was seemingly unaffected in this month, but it is possible that subsequent 

months could have been affected. The summer of 2004 was also wetter compared to the 

previous summer and any potential negative effects in body mass may not be seen until 

later in the year, e.g., winter months.
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In addition, snowfall was observed during each o f these studies with the highest 

amount of snowfall seen in February 1989 (23.5 inches) in the Bergstrom and Rose study. 

This potentially harsher winter may have contributed to some of the observed difference 

in mean mass; however, significant snowfall (12 inches) was also present in December 

2004 of the current study (Figure 5). Trapping was not conducted while snow covered 

the ground in order to avoid the direct effect o f snowfall on mean mass. Despite high 

snowfall events in the Bergstrom and Rose (2004) study and based on no detected 

influence of snowfall on mean mass in my study, it is likely that snow does not contribute 

to the lower overall mean masses in the Bergstrom and Rose study and other Virginia 

studies of cotton rats (Rose and Mitchell 1990).

Variation in climate between the Virginia and Kansas sites at the same latitude 

may explain geographic differences in mean mass. The previously reported mean masses 

for Kansas populations at the same latitude were 110 g for males and 106.2 g for females 

(Derting 1997). Kansas and Virginia experience similar seasonal weather conditions; 

however, Kansas winters are colder and harsher than those observed in Virginia, which 

likely contributes to the large size of Kansas cotton rats at these northerly locations 

(Bergmann’s rule). Higher mean masses in these Kansas populations are thought to be 

the result of winter selection for larger animals (Campbell and Slade 1993). In more 

seasonal, northern environments, such as those found in Kansas and Virginia, larger 

animals may have larger reserves of energy and may be better equipped to survive during 

times of stress, such as the cold temperatures associated with winter (Campbell and Slade 

1995). The higher accumulation of fat observed in Kansas populations o f cotton rats is a 

factor in their larger overall size (Cameron et al. 1979; Campbell and Slade 1993; Eifler
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and Slade 1998). Although it could be argued that the milder winters o f Virginia could in 

theory lead to increase in body mass during the winter, this does not happen (Figures 18 

and 19). In fact, the Virginia subspecies, virginianus, is the smallest of the four most 

recognized subspecies of Sigmodon hispidus.

In most instances, mean mass in southern populations is lower than mean masses 

seen in northern populations of cotton rats. In southeastern Texas, the reported mean 

mass for males is 94.7 g for males and 80.0 g for females (Cameron and Spencer 1983). 

The mean mass documented for Georgia populations is 102.2 g for males and 96.2 g for 

females (Bergstrom and Rose 2004). In Arkansas populations, males are 74.8 g and 

females are 80.7 g and males and females found in Mexico are 87.7 g and 72.7 g, 

respectively (Petersen 1973; Cameron and McClure 1988). With the exception of 

Georgia cotton rats, Virginia cotton rats have larger mean mass than other southern 

populations of cotton rats. This trend conforms to Bergmann’s rule, which states animals 

of the same species tend to be larger in colder climates, e.g., larger body size at northerly 

geographic locations. Cotton rats in the southern portions of their range do not have to 

cope with the stress of winter; therefore, larger body size is not adaptive in these 

populations and energy can be devoted to reproduction rather than to increases in somatic 

mass. These southern locations are also less seasonal in available habitat quality than 

northern locations, where differences in the amount of available annual protein from 

plants can contribute to lower mean masses (Campbell and Slade 1995).

Cotton rats in Georgia were heavier than their Virginia counterparts, which 

contradicts Bergmann’s rule. Bergstrom and Rose (2004) attributed these differences to 

higher overwinter survival and especially to younger age distributions in Virginia cotton
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rats. In seasonal environments, cotton rats will allocate more energy to thermoregulation 

than to mass gain, which increases the chances o f survival, but would lead to overall 

smaller body mass. Because breeding patterns are constrained in northern locations, 

shorter-lived cotton rats become reproductively competent at a younger age in order to 

promote greater reproductive success, which also leads lower the mean mass of the 

population. Since patterns of reproduction in my study are similar to those reported by 

Bergstrom and Rose (2004), it is likely that comparable younger age distributions and 

overwinter survival also contribute to these observed differences in mean mass between 

my Virginia population and the Georgia population of cotton rats.

In my study, monthly mean mass varies over the year (Figure 18). Mass was the 

highest for both males and females in the spring months, particularly in May o f 2003 and

2004. Increases in mass from the winter into the spring are expected due to warming 

temperatures and a greater availability of food resources. Similar increases in spring 

mass were also observed in previous Virginia populations (Rose and Mitchell 1990; 

Bergstrom and Rose 2004), as well as other geographic populations o f cotton rats 

(Fleharty and Choate 1973; Slade et al. 1984). However, males gain mass more steadily 

than females from January to May because, unlike females, males can divert more of 

their energy to somatic growth (Fleharty and Choate 1973). Slade and Sauer (1985) also 

believed that heavier animals would be favored in early spring, due in part to their larger 

size buffering against the adverse effects o f the environment. Increases in mass for both 

sexes were also associated with preparation for the breeding season, as mean mass for 

females in my study remained relatively flat from October to March, the period of
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suspended breeding. Higher mean masses were also observed in June and July, periods 

of high reproduction in females (Figure 15).

Increases in spring mass may also be due in part to fluctuations in population 

density. Weights of individuals increased when the weather was mild and the population 

was low, while decreases in weights occurred when population density was high and 

when the weather conditions were poor (Odum 1955; Goertz 1965; Joule and Cameron 

1974; Cameron 1977). The spring months in this study exhibited some of the lowest 

population densities (Figure 12) and may have affected body mass in these months. 

However, because no significant correlations were found between mass and population 

density for either sex, my population shows no depressing or releasing effect of 

population density on body mass.

Seasonal patterns of mean mass confirm the overall monthly mean mass trends 

observed in my study. The heaviest males and females, seen in spring, were significantly 

heavier than in winter. Mean masses of females were similar between spring seasons, 

which demonstrate similarities in the timing and impact of the spring breeding season. 

Increases in mean mass in the spring were similar to those reported in other populations 

o f Virginia cotton rats (Slade et al. 1984; Rose and Mitchell 1990; Bergstrom and Rose 

2004), although Cameron and Spencer (1983) found decreases in spring mean masses 

attributable to recruitment of smaller animals into the population. In my study, young 

were not recruited until later in the breeding season, especially in 2003.

Despite the fact that high mean masses were observed in June and July, spring-to- 

summer decreases in mean mass were present for both sexes. The decline in mean mass 

was clearly evident for males in the summer of 2004, but was not significantly different
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from mean mass in the summer of 2003. These decreases in mean mass are most likely 

linked to changes in the plant community. Slade et al. (1984) reported that during the 

summer above-ground plants become dry and cotton rats are forced to find more 

nutritious alternative food sources and in contrast Kansas cotton rat populations will 

exhibit increases in body mass during the summer. Bergstrom and Rose (2004) also 

reported heavier animals in the summer for both Georgia and previous Virginia studies. 

Despite these population differences in summer mean mass, it is possible that changes in 

cotton rat diet have the potential to positively affect mean masses due to increased 

availability of food resources, as seen in the spring. Summer decreases may also be 

attributable to recruitment of smaller animals from the first breeding pulse o f the late 

spring. The later onset of full reproduction in my population results in later entry of 

recruits into the population. These lower mean masses reduce the overall mean mass in 

summer, rather than in the spring (Cameron and Spencer 1983).

In my study, mean mass rebounded into the autumn and these increases were 

steadier for males than for females. Due to reproductive demands associated with 

autumnal breeding, females must manage their energy budgets more carefully than males, 

patterns also seen before spring. It is adaptive for males to divert more energy to somatic 

growth, while females build fat reserves in anticipation of the breeding season (McClure 

and Randolph 1980). Despite the summer-to-autumn increases in mean mass observed in 

both sexes, autumn mean masses did not significantly differ in 2003 or 2004. This 

suggests that both autumns had similar available food resources and that reproductive 

efforts did not have a significant impact on mean mass. Cameron and Spencer (1983) 

observed lower overall mean mass in the autumn due to the breeding season and
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recruitment. Campbell and Slade (1993) also reported loss of body mass in heavier 

cotton rats in autumn, but these losses were interpreted as being associated with the 

imminent winter season. Differences in body mass between the sexes were smallest at 

the end of the breeding season; mean masses were not significantly different in the 

autumn of 2003. Rose and Mitchell (1990) also observed smaller differences in body 

mass during this time of the year.

In order to better understand observed changes for both monthly and seasonal 

mean mass, distributions of mean mass among mass classes were used to obtain a clearer 

picture of the overall effects o f body mass (Figures 20 and 21; Table 10). These 

distributions show the entry of juveniles into the population, animals previously excluded 

from calculations of mean masses. Mass class 1 consisted solely of juveniles, first 

observed in May as part of the first breeding pulse. Juveniles were generally not present 

during the winter months; however, a few juveniles from the autumnal breeding pulse 

were seen into December due to the breeding season extending into November. Three 

juvenile females were seen in January 2003, but none in other winter months (Table 10). 

As the breeding season continued, lightweight animals in mass classes 1 and 2 became 

more prevalent. In Kansas populations, cotton rats o f lighter masses also come to 

dominate during April and May, when reproduction begins to occur, and their presence 

continues to persist through June to November (Slade and Sauer 1985). Other smaller 

mass classes also had more animals in the late summer and autumn months, which further 

demonstrates the recruitment of young animals into the population during these times.

Despite their small numbers in comparison to other mass classes, males in mass 

class 7 were generally observed all year round. Females in these higher mass classes
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were only observed in the wanner months (May-September). Males with fewer energetic 

constraints associated with reproduction can achieve heavier body mass as they continue 

to grow, if slowly (Figures 25 and 26). Although females often attain these high masses 

during pregnancy, they quickly lose this weight after giving birth. Heavy body mass does 

not ensure survival in every season. Campbell and Slade (1993) found that heavy cotton 

rats had lower survivorship compared to lighter cotton rats, most likely due to difficulties 

in maintaining their energetic needs.

Cotton rats in the intermediate mass classes (mass classes 3 and 4) were the most 

common throughout the study (Table 10). Joule and Cameron (1974) also reported twice 

as many animals in the intermediate mass classes during warmer months in Texas when 

food resources were most abundant. Intermediate mass classes were also most prevalent 

in winter, when the lightest and heaviest mass classes were typically underrepresented. It 

is more energetically practical for cotton rats to maintain these intermediate masses, 

especially during the winter, in accordance with fulfilling their higher energetic demands. 

The costs of sustaining the lightest and heaviest masses are even more difficult when 

energy demands are at their limits in the winter. A convergence o f body mass into these 

intermediate mass classes would be achieved by smaller cotton rats gaining body mass 

and larger cotton rats losing mass over the winter months. These trends of winter mass 

gains and losses producing animals o f similar body mass were also observed in Kansas 

(Slade et al. 1984).

In my study, winter mass was o f specific interest because previous studies of 

Virginia populations had suggested mass gains in males over the winter (Rose and 

Mitchell 1990). Cameron and Spencer (1983) also found that males steadily gained
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weight throughout the winter in Texas. This trend is opposite to that observed in Kansas 

cotton rats, where mass losses were more common than gains during the winter 

(Campbell and Slade, 1993). In my study, males had irregular patterns in mass change 

over the winter months (Figure 18). Males did gain mass during the first winter (2002- 

2003), but displayed mass losses over the second winter (2003-2004). In the last winter 

(2004-2005), mass remained relatively unchanged. It is evident that males do have the 

ability to gain mass over the winter months in Virginia, but decreases in mass or nil 

growth over the winter months are just as common. In most instances, it may be more 

beneficial to allocate energy toward thermoregulation than to mass gain and maintain 

stable masses to better ensure survival.

A similar decrease in mean mass was also observed for females in the winter of 

2003-2004, which indicates that similar forces were adversely affecting the population 

then. A combination o f lower temperatures and population density may have negatively 

impacted cotton rats in this season then. Despite this decrease in mass for females in 

winter 2003-2004, females in the two other winter seasons remained stable in mass and 

no extreme changes in mass were observed. In both Virginia and Kansas, similar trends 

in female mass were present over the winter (Rose and Mitchell 1990; and Campbell and 

Slade 1993), i.e., nil or negative growth.

In Texas populations of cotton rats, females steadily gained mass throughout the 

winter (Cameron and Spencer 1983). This is likely the result of temperature and climate 

differences, which allows for this continual gain in mass over the winter. In addition, 

larger animals in the north have proportionately more fat during the winter than do 

smaller animals in the south (Cameron et al. 1979). Northern cotton rats are subject to
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more extensive draining of fat stores during the winter than southern cotton rats 

(Cameron et al. 1979; Campbell and Slade 1993). This is due in part for the need of 

northern populations of cotton rats to allocate more energy toward thermoregulation in 

colder winter climates than do their southern counterparts in locations with milder 

winters. The more stable mass observed in females compared to males over the winter 

months is likely the result of more careful maintenance and regeneration o f these fat 

reserves after the breeding season. Any allocation of energy toward body growth during 

the winter, particularly after recouping energies associated with pregnancy and lactation, 

could compromise survival. In general, larger masses are not necessarily better in 

northern parts of the species’ range, as observed in this study and other populations of 

cotton rats during the winter. The concentration of cotton rats at more intermediate 

masses suggests that animals of this size have the highest survival potential, as their 

masses are more easily energetically maintained.

Growth Rates

Growth rates are highly variable among different populations of cotton rats 

(Cameron and Spencer 1983; Slade et al. 1984; Eifler and Slade 1999). Differences in 

growth can be attributed to effects of the environment on cotton rats, as well as the ways 

in which energy is allocated by these animals in these locations (Slade et al. 1984; 

Derting 1997; Eifler and Slade 1999). Growth rate differences are also reflected between 

the sexes, and in some populations of cotton rats, these differences are solely observed at 

the seasonal levels (Slade et al. 1984; Eifler and Slade 1999). Animals in more seasonal, 

northern environments display more annual variability and faster growth than those in
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less seasonal and more southerly environments (Cameron and Spencer 1983; Slade et al. 

1984; Eifler and Slade 1999).

In my population of cotton rats, males overall exhibited slightly, but not 

significantly, faster growth rates than females. Similar greater male growth rates have 

been reported in other studies (Meyer and Meyer 1944; McClure and Randolph 1980; 

Eifler and Slade 1999). Some o f these observations are more apparent at the seasonal and 

mass class level (Slade et al. 1984). McClure and Randolph (1980) suggested that sexual 

differences in growth are the result of differences in energy allocation. Males have 

higher total ingestion rates and consume more energy because they are larger, but males 

use less in reproduction and can devote greater amounts o f energy toward somatic growth 

(McClure and Randolph 1980). Since males have more available energy to allocate to 

growth than females, males usually have higher rates o f growth. However, Cameron and 

Spencer (1983) reported that females grew faster than males; they could not account for 

the small but significant difference between the sexes. These differences were not the 

result of pregnancy because like many growth rate studies, including my study, pregnant 

females were excluded from the analysis of growth (Cameron and Spencer 1983; Slade et 

al. 1984; Eifler and Slade 1999).

When individual years of the study were compared, males had faster rates of 

growth at the yearly level, except for females in 2003. Mean growth rate for females in 

2003 was higher than males in 2003 and 2004, as well as females in 2004. This is the 

direct result of a significantly higher rate of growth of female cotton rats in August 2003 

(14.08 g/week). The large peak in female growth is the highest growth rate of the study 

and it is unusual when compared to growth rates observed in August 2004. It is likely
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that this higher rate of growth is not only confounded by undetected pregnancy, but also 

in this instance higher growth rates are attributed to an increase in the growth o f lighter 

weight cotton rats being recruited into the population during this month. Although this 

higher rate of female growth is atypical, Slade et al. (1984) reported an even higher rate 

of growth for cotton rats (20.1 g/week), which also occurred over the summer.

Throughout the study, both sexes generally had positive growth, but negative and 

nil growth were observed in some instances (Figure 22). Positive growth was more 

pronounced for females, especially in the spring and early summer, as well as in late 

autumn. Faster rates o f growth during these times are attributed to growth in association 

with reproduction (Eifler et al. 2003) and would likely be higher for pregnant females. In 

addition, increased growth could be the result of lighter weight cotton rats entering the 

population at these times. In the spring, warmer temperatures and an increase in the 

availability of food resources help to expedite the growth o f young cotton rats that are 

coming into reproductive condition for the first time (Eifler and Slade 1999). Recently 

recruited, light-weight cotton rats in late autumn also contributed to increases in growth 

then. However, the slight negative growth of females in the month o f September is also 

likely related to changes in body mass due to undetected pregnancy. Females will 

undoubtedly experience decreases in growth after parturition and they may continue to 

lose mass due to the high costs of lactation, which are approximately three times greater 

than pregnancy (Migula 1969).

Eifler and Slade (1999) also reported that weather affected growth at various 

times of the year. Rain was positively associated with growth in males in most seasons, 

but female growth was adversely affected by rain in all seasons except spring (Eifler and
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Slade 1999). Spring rains trigger the growth o f plants, increasing resources and in turn 

body growth. However, the negative and nil growth of males and females in the winters 

of my study were most likely the result of lower temperatures in the winter months. In 

populations of cotton rats in Kansas, snow cover and low winter temperatures negatively 

affected growth (Eifler and Slade 1998; and Eifler and Slade 1999). Especially in winter, 

increased energy costs associated with both thermoregulation and growth are detrimental 

for cotton rats. Even in warmer winters, cotton rats are susceptible to decreases in 

growth as a result of increased activity in order to forage for food of poor quality (Eifler 

and Slade 1999).

Seasonal differences in growth are more common in northern populations of 

cotton rats (Fleharty and Choate 1973; Layne 1974; McClure and Randolph 1980; Slade 

et al. 1984; Derting 1997; Eifler and Slade 1999) than in southern cotton rat populations 

(Cameron and Spencer 1983). In Texas, the mild climate allows for a continuous food 

supply all year round. Cotton rats in these locations lose a small amount of body fat 

during the summer and none in the winter (Cameron et al. 1979). The average growth 

rate in Texas populations of cotton rats is 4.1 g/week for males and 4.7 g/week for 

females and ranged between 0.6-6.33 g/week (Cameron and Spencer 1983). In 

comparison, seasonal growth in northern populations varies annually and growth is often 

negative or depressed in winter (Dunaway and Kaye 1961; Fleharty and Choate 1973; 

Swihart and Slade 1980; Slade et al. 1984; Eifler and Slade 1999). Cotton rats in 

northern locations are subject to more variation in temperature and resource availability 

(McClure and Randolph 1980), whereas southern locations do not exhibit this same 

variation. Slade et al. (1984) reported growth rates in Kansas populations of cotton rats
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ranging between -6.7-+20.1 g/week, while Eifler and Slade (1999) found growth rates to 

range between -0.44-+15.77 g/week. Despite its southern location, Layne (1974) also 

observed seasonal variation in Florida populations o f cotton rats, but at a smaller 

magnitude compared to Kansas cotton rats (3-4 g/week). Florida cotton rats exhibited 

reduced growth in winter due to dry conditions, which affected plant productivity and the 

quality of food resources available for consumption.

Due to the more mild and moderate climate in Virginia, especially in winter, 

Eifler and Slade (1999) speculate that seasonal differences in growth might not be 

observed in such populations. However, some seasonality in growth rates was observed 

in my study, particularly during the winter months. Positive growth was observed during 

the warm seasons and decreases in growth were seen in winter (Figure 23). Overall, 

winter growth rates for both sexes were lower than in all other seasons. Males exhibited 

similar positive growth rates among the three winters, despite a somewhat higher rate in 

the first winter (2002-2003). Females also demonstrated similarities among growth rates 

in all three winters, but unlike males, positive growth was not detected in any winter 

season. These lower winter rates of growth are likely the result of a combination of 

lower temperatures and poorer quality food resources. Cotton rats are forced to allocate 

energies for their basic maintenance requirements, most importantly towards 

thermoregulation, in order to survive the winter (Eifler and Slade 1999). The lack of 

positive growth of overwintering females serves to further demonstrate the constraints on 

female energetics. Females must carefully balance their energy allocation during the 

breeding season and seemingly cannot contribute as much energy to body growth as 

males do. After the energetically demanding breeding season, females cannot afford to
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allocate energy to growth, but immediately begin paying the higher costs of 

thermoregulation at a time when food is diminishing in availability and quality.

Steady and increased growth rates in both spring and autumn for both males and 

females demonstrate that similar seasonal trends in environmental effects and energy use 

exist in this population of cotton rats. Spring females had faster rates o f growth than 

males; however, in autumn, growth rate patterns were reversed and males had faster 

growth rates. In spring, positive growth reflects warming trends and increased resource 

availability, resulting in females resuming somatic growth as well as the increased mass 

of undetected pregnancies. Increases in growth may also be associated with 

overwintering cotton rats replenishing diminished fat reserves (Fleharty et al. 1973). 

Similar patterns of increased growth, as well as higher female growth, are also present in 

Kansas cotton rat populations in the spring (Slade et al. 1984). However, more variation 

in growth rate is observed in Kansas compared to Virginia populations (3.1-14.5 g/week) 

of cotton rats (Slade et al. 1984). In addition to warmer temperatures and greater food 

availability, this increase in spring growth is also the result of recruitment of light weight 

individuals, which have the highest rates o f growth. Slade et al. (1984) suggest the rapid 

growth of young cotton rats is linked to increased plant productivity. Therefore, these 

younger cotton rats will likely attain sexual maturity more quickly and might contribute 

better reproductive success in the cohorts of my study.

Another large portion of growth can be attributed to gains in mass as a result of 

reproduction. These gains would be more pronounced for females due to increases in 

growth related to pregnancy. Since food resources are becoming less abundant during the 

autumn season, any increases in growth are likely the result of continued recruitment of
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lighter weight animals and the growth associated with reproduction in the second 

breeding pulse. The rapid growth of these individuals enables them to achieve the 

intermediate mass needed in order to survive the winter. Males might display faster rates 

of growth because more energy can be allocated to somatic body growth at the end of the 

breeding season, while females must recoup energy losses diverted to reproduction before 

the onset of winter. Hence, the lower rates of female growth during the autumn seasons 

in my study were likely due to the combination of mass loss as a result of parturition and 

the energetic stability found at more intermediate masses (Figures 23 and 24). In general, 

smaller cotton rats will continue to grow, if  slowly, while larger animals will lose body 

mass and thus survivors converge on an intermediate mass to better survive the winter 

(Slade et al. 1984; Campbell and Slade 1993; Eifler and Slade 1999).

In comparison to the positive growth observed in both spring and autumn, both 

sexes had variable summer growth (Figure 23). Higher summer temperatures adversely 

affect growth rates in populations o f cotton rats in Kansas (Eifler and Slade 1999). 

Similar summer temperatures are observed in Virginia (Figure 2) and most likely have 

the same impact on growth in this cotton rat population. At the same time, the available 

vegetation is changing and may be less nutritious than in the spring. Most often cotton 

rats alter their diets and are forced to find other food sources or deplete stored energy 

reserves, which might also adversely affect growth in the short-term (Fleharty and Olsen 

1969; Slade et al. 1984). Despite the slight spring-to-summer decreases in growth rate 

for the summer of 2004, positive growth was still observed.

The extreme increase in female growth observed in the summer of 2003 is not 

consistent with the lower and decreased growth rates for summer females in 2004 or
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males in either summer season. However, the highest rates of growth for other 

populations o f cotton rats have been observed in the summer (Slade et al. 1984). The 

higher rate of female growth in the summer of 2003 is likely partially confounded by 

undetected pregnancy, as well as the rapid growth of light weight cotton rats entering the 

population from the first breeding pulse of the year.

Growth rate was also analyzed seasonally at the mass class level in order to 

examine the contribution of growth rates from individual classes to the overall scope of 

growth in this population of cotton rats. Previous growth rate studies on cotton rats 

(Cameron and Spencer 1983; Slade et al. 1984; Eifler and Slade 1999) used slightly 

larger mass class intervals than those used in this study. Cameron and Spencer (1983) 

and Slade et al. (1984) categorized mass classes based on 30 g intervals and did not 

designate a mass class only for juveniles. In my study, smaller intervals (20 g) were used 

to account for the overall smaller size o f the Virginia subspecies. Mass class 1 was 

composed strictly of juveniles weighing <50 grams.

In general, growth rates in the lighter mass classes (mass classes 1 and 2) were 

significantly faster than in the intermediate (mass classes 3-5) and heaviest mass classes 

(mass classes 6-7). Rapid growth of lighter and presumably younger cotton rats is also 

seen in other populations of cotton rats (Fleharty and Choate 1973; Cameron and Spencer 

1983; Slade et al. 1984). Juvenile cotton rats are extremely precocial at birth and attain 

independence in 14 days (McClure and Randolph 1980). Juvenile cotton rats have high 

assimilation efficiencies in the early stages of life, enabling Virginia females to become 

fertile by 3-4 weeks of age and males by 5-6 weeks (McClure and Randolph 1980; Rose 

and Mitchell 1990).
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Growth was similar among the intermediate mass classes, but was significantly 

slower than growth in the lighter mass classes. In these intermediate mass classes of 

slower growing animals, less variation among the seasons was observed. This trend is 

also present in other northern populations of cotton rats (Slade et al. 1984). Male and 

female cotton rats that maintain intermediate masses and growth rates have the ability to 

allocate energies differently because their energy budgets have costs associated with 

sexual behavior. For overwintering cotton rats, intermediate masses mean lower 

energetic costs for maintenance (on a per gram basis) than lightweight animals, despite 

higher costs for thermoregulation then. In my study, as well as in Kansas populations of 

cotton rats (Slade et al. 1984), smaller individuals typically gain mass and larger 

individuals lose body mass and converge into these intermediate mass classes, which 

presumably are more energetically efficient.

Although growth rates in mass classes 6 and 7 were similar to each other, they 

were significantly lower than all other mass classes and were often negative or near 

negative in these heavier cotton rats. Larger cotton rats have more energetic challenges 

supporting the costs associated with excess mass than smaller cotton rats and as a result 

will often lose mass in the face of environmental stresses. Nil and negative growth are 

likely associated with the energetic difficulties in maintaining heavier mass and the need 

to attain a smaller mass with its reduced energetic costs. As evident in this study, as well 

as other cotton rat studies (Cameron and Spencer 1983; Slade et al. 1984), the heaviest 

individuals were few in most seasons.

In my study, both male and female growth rates showed seasonal variation at the 

mass class level, particularly in the lightest and heaviest mass classes (Table 14).
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Juvenile males (mass class 1) had faster rates o f growth in the summer than in the 

autumn, while female juveniles displayed similar growth between the summer and 

autumn seasons. Summer and autumn growth of juvenile females were also faster than 

for juvenile males. Slade et al. (1984) found that male cotton rats compared to females of 

similar mass exhibited higher rates o f growth throughout the autumn. Light females in 

Kansas also possessed high rates of growth during the summer, which are likely 

attributable to growth associated with reproduction (Eifler et al. 2003). Slade et al. 

(1984) also observed somewhat (but not significantly) higher rates of summer growth in 

lighter females than in lighter males.

During the spring and winter seasons in my study, few or no juveniles at all were 

observed. These small numbers and absences can be attributed to the later recruitment of 

juveniles from the first breeding pulse, which did not occur until in the early summer 

months, especially in 2003. Juveniles became more prevalent in this population in late 

spring and early summer rather than earlier in the spring. Therefore, no growth rates 

could be calculated for males in mass class 1 for spring and winter or for females in 

spring. Of the few juvenile females observed in the winter, growth rates were at their 

lowest, but still positive. This positive growth in juvenile females suggests that they are 

continuing to grow during the early winter in an effort to attain a higher and more 

survivable mass.

Among growth rates for males in mass class 2, patterns of growth were reversed 

in autumn and summer compared to those in mass class 1 (Table 14). Autumn growth 

rates were significantly higher than summer growth, which conforms to trends for lighter 

male cotton rats previously reported by Slade et al. (1984) during these seasons. Higher
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growth rates might reflect that males in mass class 2 are more actively recruited into the 

population in autumn than males of mass class 1. As previously mentioned, slight 

decreases in seasonal growth for the summer of 2004 were observed for both sexes. 

Increases in mass throughout the summer adversely affect growth at the mass class 2 

level (Table 14). This further demonstrates that as animals gain mass there is increased 

difficulty in the summer maintaining higher rates o f growth, which is most likely due to 

higher summer temperatures depressing diurnal activity and decreasing plant productivity 

(Slade et. al 1984; Eifler and Slade 1999). No growth rates could be calculated for spring 

males of mass class 2, which can be attributed to both poor and delayed recruitment of 

these lighter males.

Females in mass class 2 had significantly higher summer growth rates than 

females in any other mass class (Table 14). These growth rates were higher than those of 

any other mass class and confirm that the source of increased growth described in the 

summer of 2003 is mainly due to increased growth of lightweight cotton rats being 

recruited in the population and to a lesser extent growth due to undetected pregnancy. 

Continued growth of these females may also be attributed to the regeneration of fat 

reserves in preparation for the upcoming litters (McClure and Randolph 1980). Autumn 

growth rates were significantly higher for females in mass class 2 than winter growth 

rates. However, male growth in mass class 2 was higher than females for both autumn 

and winter. These trends correspond to patterns previously reported for lighter 

individuals in Kansas populations of cotton rats (Slade et al. 1984).

The lower rates of female growth found in winter for mass class 2 suggests that 

less energy is being expended on growth and more is being allocated to fulfill the more
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important energy needs o f these cotton rats during the energetically demanding winters, 

including thermoregulation. Because of their small body size, cotton rats are already at 

an energetic disadvantage due to proportionately higher surface-to-volume ratios, hence, 

the necessity for cotton rats to devote more o f their energy, particularly during the winter, 

in order to properly meet their thermoregulatory demands. Like males, too few females 

were observed during the spring to calculate growth rates, which confirms a delay in 

recruitment, likely due to the fact that maximum reproductive potential was not achieved 

by either sex until later in the spring and early summer, especially in 2003.

For growth rates of males in the intermediate mass classes (3-5), seasonal 

variation was present, but the finding of no significant differences among the seasons in 

some mass classes indicates a convergence towards similar rates o f growth (Table 14). 

Growth rates for males in mass class 3 did not exhibit significant differences among 

winter, summer or autumn seasons, which supports the possibility o f similar growth in 

animals of intermediate mass. Although no seasonal differences in growth were observed 

in this mass class, growth rates for males in autumn and winter were higher than summer 

growth rates. These growth trends were similar to those seen for males in the lighter 

mass classes in my study, as well as in the lighter mass classes for males in Kansas 

populations of cotton rats (Slade et al. 1984). Growth rates in mass class 3 could not be 

calculated for the spring due to small sample sizes, which coincided with the lower 

overall densities in this season (Table 14).

For mass class 4, males displayed significantly lower rates of growth in the winter 

and summer than in spring and autumn (Table 14). Similar but not significant trends 

were seen in mass class 3. The lower but not significantly different growth rates between
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winter and summer seasons suggest that extremes in environmental conditions impose 

similar stresses on cotton rats at these masses. Extremes in temperatures have the ability 

to depress growth at any mass (Slade et al. 1984; Eifler and Slade 1999) and energies in 

both seasons are allocated to more effectively maintain thermoregulation at both higher 

and lower temperatures. Spring and autumn growth was higher in mass class 4 and these 

higher rates of growth were likely associated with overwintering and spring-born males 

that are already established in the population. Males were also gaining weight in the 

spring as a result of improved nutrition and the growth in the autumn was associated with 

reproduction.

In males of mass classes 5 and 6, no overall differences in seasonal growth 

between these mass classes were observed (Table 14). Slade et al. (1984) also reported 

no distinct seasonal variation in growth rates o f cotton rats at these masses. Although, in 

my study, slightly higher growth rates in the spring and autumn were observed in mass 

class 5, a higher rate of growth for mass class 6 was only seen in the spring. Any positive 

and higher growth in spring and autumn compared to other seasons for these mass classes 

was indicative of older and more established males gaining mass, as seen for males in 

mass class 4. However, males in these higher masses classes more often displayed 

almost zero and negative growth during all seasons. This becomes evident for summer 

and autumn males in mass class 6, for which growth is near zero or negative (Table 14). 

Negative rates of growth in larger animals are also observed in Kansas populations of 

cotton rats (Slade et al. 1984; and Eifler and Slade 1999). Negative growth in the 

summer is likely due to depressed diurnal activity to avoid thermal stresses during the hot 

and dry days. The higher summer temperatures may decrease growth because larger
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animals have more difficulty dumping excess heat than smaller animals (Eifler and Slade 

1999) and lower masses would be less energetically demanding. This could also account 

for some of the nil and negative growth of larger cotton rats observed in the winter in that 

nocturnal activities are suppressed in order to avoid the stress o f cold nights. In addition, 

and to a lesser extent, negative growth may also reflect decreases in nutritious plant foods 

during these seasons, which are not sufficient to support the daily energy requirements of 

these larger animals. However, this cannot be confirmed in my study without the use of 

vegetative and diet analysis.

O f the seasonal growth rates available for analysis in mass class 7 (Table 14), 

rates of growth in the summer and autumn continue the trend for heavier masses to 

experience both asymptotic and negative growth. Due to their larger body size, heavier 

cotton rats often have difficulty simultaneously supporting such high masses and 

supporting their daily energetic needs, which results in this nil and negative growth. 

Cotton rats o f this heaviest mass class were not observed in winter and only one growth 

rate could be calculated in the spring. Therefore, based on the overall low numbers of 

individuals in mass classes 6 and 7, the attainment of higher masses does not lead to 

longer lives.

Female growth of the intermediate mass classes also exhibited seasonal variation 

in growth, but unlike males, similar rates of growth among mass classes were only 

present in certain seasons (Table 14). For mass class 3, positive growth rates for females 

were similar between spring and autumn, while winter growth was significantly lower. 

These positive rates of growth in spring are likely the result of increased growth of 

females that have survived the winter and are gaining mass due to increased availability
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of resources and increased fat reserves associated with reproduction (Fleharty et al. 1973; 

Eifler and Slade 1999). In the autumn, positive growth might be a consequence of 

animals in mass class 3 allocating energy to a second bout of reproduction before winter 

and the cessation of reproduction (Eifler et al. 2003). However, as seen in my study, any 

attempt to reproduce in the autumn months severely compromises chances o f overwinter 

survival. Therefore, females may exhibit positive growth to reach more intermediate 

masses, which presumably are more energetically efficient and contribute to their 

survival over the winter.

Female cotton rats in mass classes 4-6 had slightly different growth trends than 

those in mass class 3 (Table 14). Spring and summer growth rates were significantly 

higher than growth in the autumn and winter, which were either nil or negative in these 

mass classes. In spring and summer, not only are overwintering females growing at a 

rapid rate in combination with improved nutrition, but lightweight recruits entering the 

population are also growing at a fast pace. These smaller animals are expending huge 

amounts of energy on growth to mostly likely quickly achieve reproductive maturity and 

increase their chances for reproductive success (Eifler et al. 2003). The much slower and 

negative growth observed in autumn and winter indicates that females in mass classes 4-6 

are allocating relatively less energy to growth during these times. Females do not have 

positive growth over the winter months, when the costs of thermoregulation are 

exceedingly high. The lack of available resources during winter makes the promotion of 

growth energetically almost impossible, especially when females are recouping energies 

from reproduction in the autumn. It would seem that lower overall autumnal growth in 

these larger individuals is consistent with trends that less energy is being used for growth.
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Growth associated with reproduction in these higher mass classes is also becoming less 

prevalent.

However, in contrast to female growth, males in mass classes 4-6 maintain 

relatively higher rates of growth during the winter. The necessity to conserve and 

replenish energies from autumnal reproduction is less severe in males than in females. 

Males might be able to divert small amounts o f energy toward growth in the early winter. 

In my study, male growth was positive in mass classes 4-6, but began to decrease with 

increasing body mass, trends also observed in females. These patterns suggest that the 

lighter mass classes have the ability to continue to grow in the late autumn and early 

winter in order to reach more energetically efficient masses, which potentially facilitate 

higher rates of overwinter survival. Kansas populations of cotton rats show similar trends 

in growth in that smaller individuals continue to grow, while larger individuals lose mass 

during the winter (Slade et al. 1984; Campbell and Slade 1993; Eifler and Slade 1999). 

These animals will typically converge on a more intermediate mass throughout the 

winter, which is a more energetically adaptive mass to maintain. The fact that no female 

growth rates could be calculated in mass class 7 for any season shows that the necessary 

energies in these higher masses are extremely difficult to sustain and are often associated 

with heavier pregnant females excluded from this analysis. The few female cotton rats in 

this mass class perhaps indicate that these masses are not energetically adaptive, or 

females with their low rates of growth in the heavier mass classes simply do not live long 

enough to enter mass class 7 in large numbers.

Seasonal growth rates per mass class further illustrate that seasonal as well as 

sexual differences in growth were present in this Virginia population of cotton rats
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(Figure 24). The mean growth per week for the entire study (-6.5-+21.33 g/week) was 

comparable to growth rates observed in other northern populations of cotton rats (-6.7- 

+20.1 g/week, Slade et al. 1984; and -0.44-+15.77 g/week, Eifler and Slade 1999). In 

my study, the highest rates of growth were detected in the summer for both sexes, and as 

previously mentioned, were associated with increased growth o f lighter mass class 

recruits entering the population and into reproduction. These individuals are growing a 

rapid rate to ensure greater reproductive success by attaining reproductive maturity at a 

much younger age (Eifler et al. 2003) and in Virginia at a lower body mass (Rose and 

Mitchell 1990). Slade et al. (1984) also reported that growth rates were highest during 

the summer season. With the exception o f summer in the current study, seasonal growth 

rates never exceeded 10 g/week and negative growth was typical in the heavier mass 

classes.

Males exhibited higher rates of growth in the autumn and winter than females, 

which is likely due to the fact that males can allocate their energies differently than 

females during these seasons (Figure 24). One way males reduce metabolic costs is by 

regressing their testes to 1% of summer mass. Accessory organs (seminal vesicles and 

perineal gland) shrink similar amounts, resulting in greatly lower metabolic costs among 

non-breeding males in winter (Rose and Mitchell 1990). After the energetically stressful 

summer and autumn breeding seasons, females need to concentrate on conserving energy 

and replenishing depleted fat reserves before the onset of winter. Energies diverted 

toward maintaining growth may compromise chances of overwinter survival in females. 

In contrast, males do not have to manage their budgets in the same way and can afford to 

maintain higher rates of positive growth over the winter. However, positive and the
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highest rates o f winter growth were observed in mass class 1, where the last of the 

lightest weight recruits were rapidly growing in early December (Figure 24). Overall, 

winter patterns of growth were unchanged, perhaps to compensate for increased 

environmental stress and the higher energetic demands of winter. Despite the slight 

decrease in autumn growth compared to the spring and summer, the lightest and 

intermediate mass classes maintained positive growth. However, for the heaviest mass 

classes of both sexes (6-7), nil and negative growth was observed during both the autumn 

and winter, which is likely due to the inability o f these larger cotton rats to meet the 

energetic demands associated with these higher masses (Figure 24). These heaviest 

animals are also losing mass and thereby dropping into lower mass classes in order to 

maintain the lower energetic demands of animals at intermediate body sizes, and others 

are disappearing as their numbers are diminished.

Female growth had the opposite seasonal trends to males, exhibiting slightly 

higher growth in spring and summer than males (Figure 24). Higher female growth in 

these seasons was likely the result of increased growth due to reproduction. Not only 

were overwintering females (mass classes 3-4) growing in response to increased resource 

availability in the spring in preparation for the first birth pulse, but lightweight cotton rats 

(mass classes 1 -2) were also growing at a rapid rate to attain reproductive maturity and to 

promote their greater reproductive success (Eifler et al. 2003). Positive and stable rates 

of growth for both sexes were observed in both spring and summer in the lightest and 

intermediate mass classes (1-4). However, near nil growth was observed in the heaviest 

mass classes (6-7), which is likely the result of these larger animals not being able to 

effectively maintain their body temperatures during times of excessive heat (Eifler and
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Slade 1999) and would be potentially detrimental to survival. Consequently, larger 

cotton rats will have nil growth or losses in body mass to achieve smaller and more 

energetically manageable masses. In addition, these slower and negative growth rates 

indicate a reallocation of energies away from growth and more towards thermoregulation.

Growth trajectories of select cotton rat individuals with long capture histories 

serve to strengthen overall growth trends seen in the analyses o f monthly and seasonal 

data. Male growth trajectories confirm that positive growth of lighter weight individuals 

is possible over the winter months (Figure 25). However, male cotton rats in these same 

mass classes also can lose mass during the winter. Negative growth o f some individuals 

with heavier masses was also visible in both winters o f 2003-2004 and 2004-2005. Some 

males had positive growth at all times o f the year. Growth trajectories also showed that 

males can attain masses in the 180+ g range, with the largest male being 188 g. Males in 

Kansas populations of cotton rats attained even heavier masses (Slade et al. 1984).

Growth trajectories for females showed that females were more conservative in 

their growth patterns compared to males, particularly over the winter months (Figure 25). 

In contrast to the more pronounced positive growth o f male individuals during the winter, 

females had either nil or negative growth for all masses in each winter season. These 

trends confirm seasonal patterns of growth previously seen for overwintering females. In 

general, females maintained masses in the intermediate mass class range (mass classes 3- 

4), but the occasional increase into higher mass classes was probably the result of 

pregnancy. At least 20 pregnant females attained masses in excess of >150 g; the 

maximum weight at pregnancy was recorded at 188 g, which was comparable to the 

heaviest scrotal male observed in my study. Females quickly lose mass associated with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

pregnancy and return to pre-pregnancy masses. Due to the higher energetic demands 

experienced in the heavy mass classes, it is unlikely that females are able to sustain such 

high masses for extended periods of time without consequence. Like males in my study, 

female mass never surpassed 200 g, which has been observed in pregnant females in 

Kansas populations o f cotton rats (Slade et al. 1984). This is not surprising, considering 

that Virginia females have much lower overall mean mass than females in Kansas 

(Derting 1997).

It is also evident from these individual growth trajectories that summer-born 

individuals have higher positive growth than autumn-born individuals (Figure 27). Slade 

et al., (1984) found that individuals bom in summer grew rapidly enough to reach sexual 

maturity in less than 2 months (ca. 60 g) in Kansas populations. Kansas cotton rats bom 

in the autumn grew more slowly than summer cotton rats, resulting in these 60-80 g 

individuals overwintering without the opportunity to reproduce (Slade et al. 1984). 

Virginia juveniles had similar growth trends and were most likely the result o f similar 

seasonal environmental and energetic stresses in both Kansas and Virginia due to their 

northern locations.

In addition, autumn-born animals had better overwinter survival than those 

individuals bom in summer (Figure 27). Summer-bom individuals in both sexes were 

generally not seen at the end o f winter. This corresponds with the trend that summer- 

bom individuals, particularly females that reproduce before the end of the breeding 

season, are not likely to survive the winter in Virginia. However, one female bom in 

August of 2003 survived into the spring, but based on its continuous stable winter mass, 

this female did not reproduce in the autumn. On the other hand, autumn-born cotton rats
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that forego reproducing before the onset of winter maintain lower masses and have a 

higher probability o f surviving until spring. These autumn-born survivors rapidly gain 

mass in spring due to somatic growth and increases in gonadal and accessory gland 

masses in males and pregnancy in females. Therefore, not only is it beneficial to 

maintain an intermediate mass over the winter months, but overwinter survival is 

dependent on whether or not additional energies are expended on reproduction at the end 

of the breeding season.

Survival

Survivorship in cotton rats is not as well documented as other aspects o f life 

history, such as mean mass and growth. While many have speculated on the possible 

factors that affect survival in cotton rats (Sauer 1985; Swihart and Slade 1985; Langley 

and Shure 1988; Doonan and Slade 1995; Eifler and Slade 1999), very few have 

conducted survival studies on this species. O f the survival studies reported for 

populations of cotton rats, the majority have been for northern portions of the species 

range (Campbell and Slade 1993; Reed and Slade 2006). In Virginia, speculations 

regarding overwinter survival of reproductive females has been reported (Bergstrom and 

Rose 2004), but monthly and seasonal survivorship in this region had not been previously 

investigated. The mark-and-recapture efforts in my study have allowed for seasonal 

patterns and overall survivorship in Virginia populations of cotton rats to be explored.

Since cotton rats of juvenile mass (< 50 g) might be more susceptible to 

environmental pressures and energy stresses than larger cotton rats (Campbell and Slade 

1993), the possibility for decreased survival of these animals was examined. Juvenile 

cotton rats have been known to influence the outcome o f growth rate studies, hence their
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exclusion from growth analysis in the current study and other studies (Cameron and 

Spencer 1983; Slade et al. 1984; Eifler and Slade 1999). However in regards to survival 

in my study, juveniles and adults of both sexes did not exhibit any significant differences 

(Figure 28). Thus, for further analyses these age classes were combined to strengthen the 

survival rate results.

Even though transients were only observed once, these animals were included in 

the survival analyses. Although it is not known whether these transients die or emigrate 

off the grid, they were still an important factor to survival because they can potentially 

affect the dynamics of the population. The Jolly-Seber approach accounts for both of 

these possibilities and is a good estimator o f survival probabilities in this regard 

(Williams et al. 2002). The exclusion of transient animals from these analyses failed to 

produce any meaningful results. Previous survival studies on Kansas cotton rats have 

used both transients and residents in their analyses (Sauer and Slade 1985; Campbell and 

Slade 1995). However, Doonan and Slade (1995) conducted survival analyses using only 

residents and found lower rates of winter survival. Therefore, to obtain an accurate 

picture of survival, particularly in the winter, the inclusion o f all animals in the 

calculations of survival in my study was necessary.

No significant differences were detected in male and female survival throughout 

the study. Mean rates o f survival were slightly higher for females than males, but both 

sexes displayed similar patterns of monthly survival (Figure 29). Reed and Slade (2006) 

also reported that survival between the sexes in Kansas populations o f cotton rats was 

similar throughout most of the year. However, survival of males and females has the 

potential to differ as a result of sex-specific mortality factors, such as mass-related sexual
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dimorphism and the reproductive efforts of females (Reed and Slade 2006). Female 

survival might also be higher than males due to the greater mobility and larger home 

ranges observed in males (Goertz 1964; Petersen 1973; Cameron and Spencer 1981; 

Swihart and Slade 1983), which could lead to decreased survival at certain times of the 

year.

In my study, both sexes had occasional differences in monthly survival, but 

similar trends for their survival rates were more common. Males and females exhibited 

the lowest rates of survival during the winter and summer months, months with extreme 

temperature and weather conditions, which have the potential to adversely affect survival. 

Cotton rats may experience difficulties with thermoregulation and balancing their energy 

budgets in times of extreme heat and cold. The increased energy demands during severe 

winters can lead to low winter survivorship (Campbell and Slade 1993). Over the winter 

months, reduced food availability and suitable cover may directly reduce overwinter 

survival (Swihart and Slade 1985; Langley and Shure 1988). The decreases in survival 

observed during the summer were likely associated with increased metabolic costs due to 

reproduction, as well as changes in available food resources in these months. The 

vegetation is less nutritious during the summer than in the spring and cotton rats often 

have to alter their diets in order to meet their energy demands (Fleharty and Olsen 1969; 

Kincaid and Cameron 1982; Slade et al. 1984). However, the changes in cotton rat diets 

might not be enough to support the higher metabolic demands o f reproductive cotton rats, 

particularly for females, and the consequence is lower summer survivorship. Lower 

rates of summer survival may also be the result o f the later entrance o f juveniles into the 

Virginia population, as well as the disappearance of older overwintering animals.
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In contrast, increased rates of survival for both sexes were observed in the spring 

and autumn months. The higher rates of survival in spring coincide with warmer 

temperatures and increased food availability. However, increases in survival in the 

autumn months are likely the result of recruitment o f lighter, non-juvenile cotton rats 

entering and establishing themselves in the population. The fast life history of cotton rats 

allows lightweight individuals to reach reproductive maturity at a more rapid rate and 

most likely acts as an adaptive feature for survival. The largest influx o f these 

lightweight cotton rats was also observed during the late spring, which had the potential 

to positively contribute to survival in summer.

Despite the relatively stable patterns of survival in this study, some rates of 

monthly survival greater than 1.00 were observed for females in March 2004 and for 

males in September and December 2004 (Figure 29). These abnormally high rates of 

survival are not an accurate representation o f survival for either sex and represent small 

sample sizes of cotton rats in these particular months. In addition, survival estimates will 

tend to be less accurate towards the end of the study because the future capture histories 

and potential survival of these animals are not known. Although errors in survival are 

present in a few months, this is not enough to compromise the accuracy o f survival rates 

for the entire study. These few discrepancies can be explained and do not negatively 

influence these survival rates; otherwise, significant differences would have been 

observed for both males and females in 2003 and 2004.

Seasonal survival patterns for both sexes confirm trends seen in monthly patterns 

o f survival (Figure 30). Overall, females continue to have slightly higher and more stable 

rates of survival than males, which may be the result o f smaller home ranges and the
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decreased mobility of females. These males may be at somewhat of a greater 

disadvantage than females because they expend more energy associated with increased 

movement (Eifler and Slade 1998). At times of high energy demands, animals are also at 

an increased risk o f exposing themselves to predation while meeting their energetic needs 

(Eifler and Slade 1998). These lower rates o f male survival occur in the summer and 

winter seasons when energy demands are high in conjunction with temperature extremes 

and changes in plant productivity. Despite the relatively stable rates of survival seen in 

females, a pronounced decrease in survival was observed in the winter of 2003-2004 at a 

time when environmental and energetic stresses, such as colder weather and increased 

energy demands for thermoregulation, were very high. In contrast to winter survival, 

increases in autumnal survival for both sexes were likely the result o f the recruitment of 

lightweight cotton rats into the population, as well as reduced energetic demands in 

preparation for the onset of winter. Overall, it would seem that the higher energetic stress 

associated with pregnancy and lactation experienced by females would lead to lower rates 

of seasonal survival than males, but the opposite trends were observed. In this case, the 

increased activity and more transient tendencies exhibited by males could contribute to 

their overall lower rates of survival.

Since balancing energetics is a crucial element to cotton rat survival, results o f my 

study suggest that imprudent allocation of energies at certain times of the year has the 

potential to adversely affect survival. The energy necessary for growth is extremely high 

and consumes a steadily increasing proportion of energy as cotton rats get older 

(McClure and Randolph 1980), even as their growth rate becomes asymptotic. In 

northern populations of cotton rats, growth is influenced by seasonal climate conditions
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and is often depressed over the winter months (Dunaway and Kaye 1961; Fleharty and 

Choate 1973; Swihart and Slade 1980; Slade et al. 1984; Cameron and McClure 1988; 

Eifler and Slade 1999). These already higher energetic demands in the northern limits of 

the species’ range may be more influential in preventing growth in times of extreme 

environmental and energetic stress. In this Virginia population of cotton rats, correlation 

analysis did not detect significant relationships between either monthly or seasonal 

growth and the corresponding rates of survival for males or females. In addition, no 

significant correlations were found for the sexes between both monthly and seasonal 

growth and subsequent survival (Figures 35, 36, 37 and 38). However, comparisons of 

monthly growth and survival rates for both sexes showed that growth may have 

influenced survival at different times throughout the study (Figures 31 and 32).

Males experienced increases in survival during times of decreased growth 

(January and September 2003), indicative of less energy being allocated to growth, which 

positively contributes to survival (Figure 31). This would be particularly important over 

the winter months. It is evident that increased growth in the summer months had a 

negative impact on survival. The warmer temperatures and altered behavior during these 

months did not deter summer growth, but as a result, survival was lower for cotton rats. 

When stable rates of male growth were observed, survival also remained stable or 

increased, perhaps indicating that energy budgets were well-balanced at these times. 

Despite the fact that in most instances growth rates have some effect on survival, there 

was a period in the study (late autumn 2003 to mid-spring 2004) in which patterns of 

male growth and survival closely followed each other rather than exhibiting inverse 

relationships. In addition to slightly, but not significantly, lower winter temperatures in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

the winter of 2003-2004 compared to the other winter seasons, it is likely that some factor 

other than growth influenced survival during this time. In order to properly 

thermoregulate in response to these colder temperatures, cotton rats might expend more 

energy in searching for food and consequently increase their risk to predation (Eifler and 

Slade 1998). Thus, any additional energy allocated for basic maintenance might 

negatively affect survival.

Females exhibited similar but more stable patterns of survival compared to males 

(Figure 32). Stable periods of survival for females were more common throughout the 

study and coincided with both decreased and steady rates of growth. However, decreased 

growth in the winters of 2002-2003 and 2004-2005 seemed to influence increases in 

overwinter survival. Females must carefully manage their energy budgets after the 

energetically demanding breeding season. It is evident that females in these instances are 

more conservative than males in their expenditure of energy to growth during the winter 

months, which positively affects survival. Similar to males, increased growth in the 

summer months results in a slight decrease in survival. This increase in growth in August 

2003 was previously attributed to the higher rates o f growth associated with lightweight 

cotton rats entering the population at this time. Campbell and Slade (1993) also observed 

lower survivorship in the summer months as a result of the entry of juveniles into the 

population. In combination with extreme hot or cold temperatures, increased growth 

during times of high energetic demands may contribute to decreased survival as a result 

of an inability to successfully balance their energy needs, hence, the lower survivorship 

in the winter and summer months compared to other seasons. In addition, females are 

also expending more energy than males towards reproduction throughout the entire
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breeding season. Both the higher temperatures o f summer and the additional energies 

needed to support pregnancy and lactation likely contribute to the decreased survival in 

these months. Females, like males in the winter o f 2003-2004, showed parallel patterns 

of decreased growth and survival, but these trends persisted longer in females and were 

observed into the mid-summer of 2004. Thus, growth has little impact on female survival 

during this time and other environmental and energetic factors seemingly play a role in 

influencing survival.

Seasonal patterns of growth and survival rates for both males and females confirm 

the observed monthly trends in this population of cotton rats. Comparisons of these rates 

in males revealed a more definitive effect o f growth on survival and continue to suggest 

an inverse relationship between growth and survival (Figure 33). Energies allocated to 

growth in the summer months may have a negative effect on survival, while reduced rates 

o f growth seemingly result in stable and increased survival in other seasons. This trend 

was absent during the winter of 2003-2004 and spring of 2004 and was most likely the 

result of additional environmental and energetic stress associated with these specific 

seasons. Energies normally allocated towards growth are likely being used to overcome 

extra energetic stress during the winter, which would prevent increases in survival.

Females exhibited more stability in seasonal rates of growth than males and the 

impact on seasonal survival was less variable (Figure 34). Stable and decreased growth 

has a positive effect on survival in most seasons. The fact that female survival was 

relatively steady throughout most of the study shows that despite the additional energetic 

demands experienced during the breeding season, these female cotton rats appeared to be 

very well-adapted in this geographic region. Positive and stable rates o f survival were
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also observed in the summer of 2003, despite the large increases in growth of female 

cotton rats in August 2003 (Figure 34). This trend was indicative of a moderating effect 

of positive survival from the other summer months of 2003. Like males, the similar 

patterns of seasonal growth and survival in the winter of 2003-2004 and spring 2004 

showed that both sexes were being equally impacted by some factor other than growth. 

These cotton rats were most likely responding to some environmental factors that elicit 

similar energetic responses, such as a harsher winter resulting in decreased survival.

Monthly patterns of growth and subsequent survival support the inference that 

growth can influence survival, but in this respect a more short-term influence o f growth 

on future survival was seen. The stable and decreased growth seen in males often results 

in increased rates o f subsequent survival, while increased growth negatively affects 

survival in most instances (Figure 35). However, in contrast to comparisons o f growth 

and survival, stable and decreased growth, particularly in the winter of 2003-2004, had a 

positive effect on survival in subsequent months. The cessation o f growth, as well as 

decreased growth, during the winter months might not have an immediate impact on 

survival, but it is evident that longer term survival is dependent on careful allocation of 

energy at these times. Any energy-saving strategy over the winter months will positively 

contribute to overwinter survival. Similar to previous comparisons o f male growth and 

survival, increases in male growth in early summer have negative effects on late summer 

survival. Although growth is not hindered in the summer months, it is evident that the 

high energy demands associated with the combination o f growth, reproduction, and basic 

somatic maintenance, e.g., thermoregulation, was particularly costly during this time.
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For females, comparisons o f growth and subsequent survival were similar to those 

o f males, but were more pronounced in terms of effects on future survival (Figure 36). 

As for males, the positive effect of stable and decreased growth on subsequent survival is 

likely due to the proper allocation of energies toward the more important metabolic 

functions. In addition to decreased subsequent survival in some summer months, these 

comparisons also show that rates of subsequent survival in the spring were adversely 

affected by increased growth rates. In these instances, decreased spring survival can be 

attributed to increased and higher rates of growth in the prior months. As with males, 

decreased rates of growth observed as early as autumn 2003 and extending into the winter 

of 2003-2004 have a positive effect on survival in subsequent spring months. This trend 

confirms the benefit of cessation o f growth to increased overwinter survival, the effects 

of which are not immediately observed. It may also be a strong indication that individual 

cotton rats are losing mass and converging on an intermediate mass during the winter in 

order to better conserve their energies and survive the winter.

Seasonal patterns o f growth and subsequent survival for both males and females 

closely mimicked one another throughout the first half of the study (Figures 37 and 38). 

Perhaps seasonal growth has less of an effect on subsequent survival at this broader scale. 

In this instance, growth at the seasonal level for both sexes had less impact on future 

survival and perhaps these larger units of time were less accurate in revealing the 

relationship between growth and subsequent survival. However, inverse patterns 

between these rates for males and females began to emerge in the latter half of the study, 

indicating that seasonal growth can have a lasting impact on future survival rather than no 

impact at all (Figures 37 and 38).
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O f most interest is the positive effect of winter growth in 2003-2004 on survival 

in spring 2004, which was also observed at the monthly level. This trend may show that 

cotton rats do not allocate large amounts o f energy in the winter toward growth as a 

necessary strategy to maintain overwinter survival. In males, it was also evident that 

summer continues to remain an extremely energetically stressful season for this 

geographic population o f cotton rats. As a consequence o f sustaining multiple high 

energy maintenance activities and dealing with warmer temperatures, males had 

decreased survival in the summer of 2004, perhaps in response to increased growth rates 

in spring 2004 (Figure 37).

Females did not exhibit this same inverse o f relationship between seasonal growth 

and survival, which might suggest that some other factor was influencing the decreased 

summer survival in males. Females experience similar and high energetic demands 

during the breeding season, as a result o f the high energetic costs associated with 

pregnancy and lactation. If growth were the only intrinsic factor affecting future 

survival, then females would show similar patterns during this summer season. The 

increased seasonal survival in the last two seasons of the study is the result o f stability in 

male seasonal growth and decreased seasonal growth for females during both the summer 

and autumn of 2004. In contrast to males, seasonal growth in females during this latter 

half of the study demonstrated a more pronounced effect on subsequent seasonal survival 

(Figure 38). In these seasons, more moderate and decreasing rates o f growth allow for 

reduced demand on the energetic budget of cotton rats and energies can be better 

allocated in order to maintain higher rates of survival.
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In addition to environmental and energetic stresses influencing survival, the 

residency status of individual cotton rats in the population may also contribute to the 

observed patterns of survival. Increases in proportions o f transients can account for some 

o f the decreased rates of seasonal survival not fully explained by relationships associated 

with growth, particularly in males. The significant negative correlations found between 

seasonal proportions of transients and seasonal survival suggests that as the proportion of 

transients increases, seasonal survival decreases. Transients negatively contribute to 

survival as a result of their single observation in the study, which is either due to death or 

emigration. The times of the year when large numbers of transients entered the 

population as juveniles or older migrating adults and were never seen again perhaps 

coincided with times of increased movement or decreased survival. Thus, the seasons 

with the lowest rates of survival were influenced either directly or indirectly by increased 

proportions of transients. This trend was most apparent in males because males had 

higher numbers o f transients than females (Table 4). Males had high proportions of 

transients in spring and summer of 2004 (49% and 39%, respectively), seasons with the 

lowest rates of seasonal survival (Figure 39). Hence, the spring and summer had higher 

numbers of transients at times when new recruits also were entering the population. 

Therefore, not only is survival in these seasons influenced by environmental and 

energetic stresses, but also by the residency status of individual cotton rats.

In contrast to the comparisons between proportions of transients and seasonal 

survival, no significant correlations between proportions of transients and seasonal 

growth were detected. Despite the fact that similar patterns o f growth and the 

proportions of transients were observed for males (Figure 40), it is not likely that these
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rates influenced one another. It is more of coincidence that these patterns resemble each 

other because growth of individuals is based on more than one observation between 

successive captures. The fact that transient individuals are only observed once suggests 

that there would not be an effect on seasonal growth. Since male transients were more 

prevalent than females (Table 4), it would not be unusual for the proportions of female 

transients to have no impact on seasonal growth (Figure 40). Therefore, for the reasons 

associated with the calculation of growth rates based on multiple captures, proportions of 

female transients do not have any influence on seasonal growth.

Since one of the most important objectives of the study was winter survivorship, 

winter patterns of survival were investigated in more depth. Previous cotton rat studies 

have suggested that intermediate mass classes have better overwinter survival in northern 

populations o f the species’ range (Campbell and Slade 1993; Eifler and Slade 1999). 

These studies of seasonal survival were based on mass class (Campbell and Slade 1993; 

Reed and Slade 2006). However, there were not enough individuals to conduct survival 

analysis at the mass class level in my study. Instead, individual cotton rats from each 

mass class were observed from autumn into successive seasons in order to gain 

perspective on winter survival based on initial mass before the onset o f winter (Figures 

41, 42, and 43). It has been suggested that during the winter, small individuals continue 

to grow, medium-sized individuals remained constant in mass and larger cotton rats 

sometimes lose mass (Campbell and Slade 1993; Slade et al. 1984). In addition, 

Campbell and Slade (1993) report that cotton rats of intermediate mass (60-119 g) are 

better able to survive over the winter than smaller or larger individuals.
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Therefore, in my study cotton rats from the autumn surviving into successive 

seasons can reveal better survival for individuals in certain mass classes. The higher 

numbers of male and female cotton rats in the lightest and intermediate mass classes that 

survived over the winter showed that these body masses were best adaptive to winter in 

Virginia (Figures 41, 42, and 43). Males and females had no distinct patterns of 

overwinter survival in these distributions o f survival, only the fact that intermediate mass 

classes had better winter survival than other mass classes. However, one female 

individual cotton rat showed exceptional overall survival. This individual (#446, female) 

was present on the study grid for a total of 16 months as an adult and persisted through 

two winter seasons. In comparison to other populations of cotton rats, this is one o f the 

longest periods of residence reported for this species (Odum 1955; Dunaway and Kaye 

1961; Goertz 1964; Joule and Cameron 1974; Cameron 1977; Campbell and Slade 1995). 

Southern cotton rats have been suggested to have longer life spans than their northern 

counterparts (Campbell and Slade 1995). Joule and Cameron (1974) did not observe 

cotton rats in Texas surviving beyond 6-7 months, while Cameron (1977) later reported 

the longest periods of residence as 9-10 months in these same study sites. Dunaway and 

Kaye (1961) also observed some individuals to living 10 months in populations o f cotton 

rats in Tennessee. Although maximum life expectancies are not specifically reported in 

Kansas cotton rats, average life expectancy is approximately 2 months (Campbell and 

Slade 1995), which is similar to average the average life spans in this study (2.6 months 

for males; 3.0 months for females).

In addition, in my study some surviving cotton rats were found in mass class 1 

(Figure 42 and 43), but no individuals are observed in mass classes higher than mass
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class 3 into the spring of 2004 and 2005 or summer o f 2004. Based on the results of 

seasonal mass class growth rates in my study, it is known that individuals in mass class 1 

continued to grow over the winter months, while individuals in the larger mass classes 

exhibited nil and negative growth (Figure 24). Hence, it is reasonable to suggest that 

cotton rats in this population were also converging on intermediate mass over the winter 

months and it is these individuals that possess the best chances o f overwinter survival. 

Trends of the intermediate mass classes persisting over the winter are similar to those 

observed in Kansas populations of cotton rats (Campbell and Slade 1993; Eifler and 

Slade 1999; Reed and Slade 2006). Despite the moderating oceanic climate and warmer 

winter weather conditions in Virginia compared to Kansas, it is interesting to observe the 

continued similarity in overall survival trends in the northern parts of the species’ range.
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CONCLUSIONS

Sigmodon hispidus remained the dominant species on the study grid throughout 

the study. General population trends were similar to those reported in other populations 

o f cotton rats. The sex ratio in the tagged population was 1:1, but female bias was 

observed in the number of captures. The sex ratio was also season-specific, favoring 

higher numbers of males in the spring and summer and more females in the winter. The 

largest proportion of this population of cotton rats was adults, while juveniles increased 

in abundance in the summer and autumn months as a result of recruitment. Juveniles 

were almost non-existent over the winter seasons due to higher juvenile mortality and 

continued growth of smaller animals to attain an energetically efficient mass during these 

times. Patterns of residence also contributed to the dynamics o f the population. 

Residents were more numerous than visitors and transients in both sexes. Overall, males 

had higher numbers of transients than females, but female residents were numerically 

dominant to male residents. In addition, these residency trends also fluctuated at 

different times o f the year.

Population density in this population was similar to those observed in other 

northern populations of cotton rats with one single peak in increased abundance. 

Maximum densities (> 100/ha) occurred in the autumn months and a smaller population 

increase was seen in the spring of 2004. This bimodality in density is more prevalent in 

southern distributions of the species. Densities declined in the winter months (to >30/ha), 

but not to the same low numbers observed in other northern populations o f cotton rats. 

The milder Virginia winter climate might allow for more animals to persist over the 

winter months compared to other cotton rat populations in northern locations.
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Patterns o f reproduction were comparable to those of previous studies o f Virginia 

cotton rats based on necropsied animals. Cessation of reproduction was generally 

observed for both males and females from October to March, which is similar to breeding 

patterns for other cotton rat populations in the northern limits o f the species’ range. 

However, some females remained reproductively active and were pregnant into 

November. Reproductive potential was not maximal until the late spring and mid­

summer lulls in reproductive activity were also present. Speculations that females in 

Virginia that reproduce in the summer and autumn months did not survive over the winter 

was not confirmed because some females persisted into the spring. Other speculations 

about the composition of breeding females during the reproductive season were 

confirmed.

Slight differences observed for mean masses between Virginia populations of 

cotton rats, compared to other populations, were influenced more by intrinsic rather than 

extrinsic factors. Body masses were smaller in comparison to those reported for northern 

populations o f cotton rats. Monthly and seasonal mean masses in this study showed that 

males were typically heavier than females. Increases in mean mass occurred during the 

spring, while lowest mean masses were observed over the winter months. Most males 

had positive growth in the winter, but similar to females, some had nil and negative 

growth. Cotton rats o f more intermediate mass were dominant during the winter as a 

result of a convergence of smaller animals continuing to gain mass, intermediate 

individuals remaining the same mass and larger individuals losing mass or disappearing.

Rates of growth and survival were previously unreported for an Atlantic coast 

population of cotton rats. Like mean mass, males demonstrated slightly faster rates of
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growth than females. Seasonal variation in growth was evident in this Virginia 

population and the highest rates o f growth were found in the spring and summer, while 

the lowest rates o f growth were seen in the winter. Winter growth rates were typically nil 

and negative in both males and females, but positive growth was observed in one winter 

season. Rates of growth at the mass class level continued to support the trend for the 

adaptive value of intermediate mass. In general, lighter cotton rats typically gained mass 

and heavier cotton rats experienced depressed and negative growth. Growth is closely 

related to the annual quality of vegetation, as well as to energetic and environmental 

pressures imposed on populations of cotton rats. Fluctuations in growth are also 

influenced by recruitment of lightweight individuals and gains in mass were associated 

with reproduction.

Females exhibited slightly higher rates of survival than males. Seasonal 

differences in survival rates were also evident. Although rates of survival and growth 

were not correlated, decreased rates of survival were seen in winter, while stable and 

increased growth was observed in all other seasons. The influences on survival were 

similar to those thought to influence growth and a seemingly inverse relationship between 

the growth and survival was present. In addition, the proportions o f transients in the 

population also had an impact on survival. Winter survival was of specific interest in this 

study and survival trends were similar to Kansas populations o f cotton rats in that animals 

with more intermediate masses had better winter survival than those of smaller and larger 

masses.

Despite the milder and moderating oceanic climate in Virginia compared to 

Kansas, it is clear that these populations of cotton rats were more similar to other
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northern populations of cotton rats and have less in common with southern populations. 

The more seasonal environment at these northern limits seemingly imposes similar 

restrictions on these animals. However, in comparison to some other cotton rat studies, 

this was a relatively short term study. Therefore, it would be interesting to continue to 

monitor the effects of growth and survival in this area in order to see if this species 

continues to push farther north with global warming trends and more seasonable 

environmental conditions.
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APPENDIX A

REWGF RESULTS -  MEAN MASS MONTH

REGWF results on log-transformed data for the month factor from a model-12-factor ANOVA for mean mass (g). Significance 
between treatments represented by shared underlines. Mean mass values listed in table with appropriate treatment variable.

Treatments: m n f a w z x i  y v g  n s  b c t o  u 1 r h k i d e q

Treatments Means Treatments Means

a - J a n  ’03 1.925 n - F e b ‘04 1.885
b - F e b  ’03 1.965 o  -M a r  ’04 1.971
c - M a r ’03 1.966 p -  A pr ‘04 1.962
d - A p r ’03 2.037 q -  M ay ’04 2.165
e  -  M ay  ’03 2.109 r -  Jun  ’04 1.980
f - D e c  ’02 1.912 s -  Ju l ‘ 04 1.964
g - J u l  ’03 1.960 t  -  A ug ’04 1.970
h - A u g ’03 1.981 u -  S e p t ’04 1.973
i -  S e p t ’03 1.995 v -  O ct ‘ 04 1.957
j - O c t ’03 1.953 w  -  N ov ’04 1.939
k - N o v ’03 1.986 x  -  D ec ’04 1.943
1 -  D ec ’03 1.975 y  -  Jan  ’05 1.955
m  -  Jan  ’04 1.864 z - F e b  ’05 1.941
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APPENDIX B

REWGF RESULTS -  MEAN MASS SEX-MONTH

REGWF results on log-transformed for the sex-month interaction factor from a model-12-factor ANOVA for mean mass (g). 
Significance between treatments represented by shared underlines. Mean mass values listed in table with corresponding treatment 
variable.

Treatments: 2g 2 n 2 m  lr  I f  Is 2 a 2 v  In  2o 2t 2 f  2 w 2 c2 b  2 x 2 z  lv  lz  la  li 21 lx  lw  2i 2p 2y 2h 2k lu  lv  lh  lb  l i  lk  2s l c 2 d  11 lo  l t 2 r  lg  Id  le  lq 2 q

T r e a tm e n ts  -  
M a le s

M e a n s T r e a tm e n ts  -  
M a le s

M e a n s T r e a tm e n ts  -  
F e m a le s

M e a n s T r e a tm e n ts  -  
F e m a le s

M e a n s

la-Jan ’03 1.947 In -F eb ’04 1.917 2a-Jan ’03 1.912 2o -Mar ’04 1.923
lb -F e b ’03 1.993 lo-Mar ’04 2.014 2b -  Feb ’03 1.931 2p -  Apr ’04 1.962
lc-M ar ’03 2.007 lq -  May ’04 2.151 2c -  Mar ’03 1.929 2q -  May ’04 2.176
Id -A p r’03 2.072 lr-Jun ’04 1.887 2d -  Apr ’03 2.009 2r -  Jun ’04 2.047
le-M ay ’03 2.109 Is-Jul ‘ 04 1.906 2 f -  Dec ’02 1.925 2s -  Jul ‘ 04 2.005
I f -D e c ’02 1.903 It-A ug ’04 2.033 2g -  Jul ’03 1.835 2t-A ug ’04 1.924
lg — Jul ’03 2.049 lu-Sept ’04 1.973 2h -  Aug ’03 1.968 2v -  Oct ‘ 04 1.914
lh-A ug ’03 1.990 lv -  Oct ‘ 04 1.985 2j -  Oct ’03 1.957 2w -  Nov ’04 1.926
li -  Sept ’03 1.995 lw -N ov  ’04 1.955 2k -  Nov ’03 1.969 2x -  Dec ’04 1.934
lj -  Oct ’03 1.948 lx -  Dec ’04 1.953 21- D e c ’03 1.951 2y -  Jan ’05 1.968
lk-N ov ’03 2.003 ly-Jan  ’05 1.938 2m-Jan ‘04 1.864 2z -  b ’05 1.937
11-D ec’03 2.013 lz -  Feb ’05 1.946 2n -  Feb ’04 1.858 ooto
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APPENDIX C

REW GF RESULTS -  MEAN MASS SEASON

REGWF results on the log-transformed data for the season factor from a model-12-factor ANOVA for mean mass (g). 
Significance between treatments represented by shared underlines. Mean mass values listed in table with corresponding treatment 
variable. Winter consisted of months (Dec-Feb), spring (Mar-May), summer (Jun-Aug) and autumn (Sept-Nov).

Treatments: a e i i g c d b f

Treatments Means
a -  Winter ’02-’03 1.937
b -  Spring ‘03 2.008
c -  Summer ‘03 1.975
d -  Autumn ‘03 1.975
e -  Winter ’03-‘04 1.940
f -  Spring ‘04 2.031
g -  Summer ‘04 1.970
h -  Autumn ‘04 1.953
i -  Winter ’04-‘05 1.946

oou>
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APPENDIX D

REWGF RESULTS -  MEAN MASS SEX-SEASON

REGWF results on log-transformed data for the sex-season interaction factor from a model-12-factor ANOVA for mean mass (g). 
Significance between treatments represented by shared underlines. Mean mass values listed in table with corresponding treatment 
variable.

Treatments: 2e 2a 2c 2h 2i li  lg  la  lh  2d 2b Id 2g le  lc  2 f lb  I f

Treatments Means Treatments Means
l a -  Winter ’02-’03 Males 1.952 2a -  Winter ’02-’03 Females 1.922
lb  -  Spring ’03 Males 2.048 2b -  Spring ‘03 Females 1.970
lc  -  Summer ’03 Males 2.005 2c -  Summer ‘03 Females 1.935
Id -  Autumn ’03 Males 1.982 2d — Autumn ‘03 Females 1.970
le  -  Winter ’03-‘04 Males 1.986 2e -  Winter ’03-‘04 Females 1.914
I f  -  Spring ‘04 Males 2.055 2 f -  Spring ‘04 Females 2.011
lg  -  Summer ‘04 Males 1.952 2g -  Summer ‘04 Females 1.984
lh  -  Autumn ‘04 Males 1.956 2h -  Autumn ‘04 Females 1.937
li -  Winter ’04-‘05 Males 1.947 2i -  Winter ’04-‘05 Females 1.946

00-1̂
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APPENDIX E

REWGF RESULTS -  MEAN MASS SEX-SEASON-MASS CLASS

REGWF results on untransformed data for the sex-season-mass class interaction factor from a model-13-factor ANOVA for mean 
mass (g). Significance between treatments represented by shared underlines. Mean mass values listed in table with corresponding 
treatment variable. Mass class (MC) designations found in the legend o f Table 10.

Treatments: lc l  ld l 2cl 2dl lc2 ld2 2c2 2d2 ld3 2c3 2a3 la3 2d3 lc3 lb3 2b3 2c4 2a4 2d4 ld4 2b4 la4 lb4 lc4 ...

Treatments, continued: 2b5 2c5 la5 lb5 2d5 ld5 2a5 lc5 lc6 ld6 2a6 2b6 la6 lc6 lb6 2d6 2d7 2c7 lb7 ld7 lc7 2b7

Treatments Means Treatments — Means Treatments - Means Treatments - Means
Males Males Females Females

lc l  -  Summer MC 1 28.29 1 a 5 -W in te r  MC 5 118.16 2c 1 -  Summer MC 1 32.73 2a5 -  Winter MC 5 118.81
ld l  -  Autumn MC 1 31.16 lb5 -  Spring MC 5 118.58 2d l -  Autumn MC 1 34.22 2b5 -  Spring MC 5 115.88
lc2 -  Summer MC 2 58.62 lc5 -  Summer MC 5 119.40 2c2 -  Summer MC 2 59.33 2c5 — Summer MC 5 118.00
ld2 -  Autumn MC 2 58.63 ld5 -  Autumn MC 5 118.81 2d2 -  Autumn MC 2 59.34 2d5 — Autumn MC 5 118.66
la 3 -W in te r  MC 3 80.25 la6 -  Winter MC 6 138.58 2a3 -  Winter MC 3 79.20 2a6 -  Winter MC 6 135.38
lb3 -  Spring MC 3 81.50 lb6 -  Spring MC 6 138.50 2b3 -  Spring MC 3 81.78 2b6 -  Spring MC 6 136.40
lc3 -  Summer MC 3 81.22 lc6 -  Summer MC 6 133.25 2c3 -  Summer MC 3 79.00 2c6 -  Summer MC 6 137.50
ld3 -  Autumn MC 3 77.33 ld6 -  Autumn MC 6 135.38 2d3 -  Autumn MC 3 80.60 2d6 -  Autumn MC 6 140.25
la4 -  Winter MC 4 99.33 lb7 -  Spring MC 7 158.43 2a4 -  Winter MC 4 97.27 2b7 -  Spring MC 7 167.60
lb4 -  Spring MC 4 100.18 lc7 -  Summer MC 7 167.30 2b4 -  Spring MC 4 99.23 2c7 -  Summer MC 7 157.60
lc4 -  Summer MC 4 102.57 ld7 -  Autumn MC 7 163.17 2c4 -  Summer MC 4 97.00 2d7 -  Autumn MC 7 154.57
ld4 -  Autumn MC 4 99.22 2d4 -  Autumn MC 4 98.73

00U\
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APPENDIX F

REW GF RESULTS -  GROW TH RATE M ONTH

REGWF results on untransformed data for the season factor from a model-12-factor ANOVA for growth rate (g/week). 
Significance between treatments represented by shared underlines. Mean growth rate values listed in table with corresponding 
treatment variable.

Treatments: i e a g h b d f  c

Treatments Means
a -  Winter ’02-’03 2.154
b -  Spring ‘03 3.307
c -  Summer ‘03 6.986
d -  Autumn ‘03 3.772
e -  Winter ’03-‘04 0.980
f -  Spring ‘04 4.901
g -  Summer ‘04 2.497
h -A u tu m n  ‘04 2.931
i -  Winter ’04-‘05 0.840

00o\
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APPENDIX G

REWGF RESULTS -  GROWTH RATE SEX-SEASON

REGWF results on untransformed data for the sex-season factor from a model-12-factor ANOVA for growth rate (g/week). 
Significance between treatments represented by shared underlines. Mean growth rate values listed in table with corresponding 
treatment variable.

Treatments: 2i 2e 2a le  l i  2h 2g lb  lg  la  2d 2b I f  Id  lh  lc  2 f 2c

Treatments Means Treatments Means
la  -  Winter ’02-’03 Males 3.175 2a — Winter ’02-’03 Females 1.171
lb  -  Spring ’03 Males 2.925 2b -  Spring ‘03 Females 3.728
lc  -  Summer ’03 Males 4.441 2c -  Summer ‘03 Females 11.121
Id -  Autumn ’03 Males 4.071 2d -  Autumn ‘03 Females 3.472
le  -  Winter ’03-‘04 Males 1.698 2e -  Winter ’03-‘04 Females 0.620
I f  -  Spring ‘04 Males 3.899 2 f -  Spring ‘04 Females 5.624
lg  -  Summer ‘04 Males 2.997 2g -  Summer ‘04 Females 2.155
lh  -  Autumn ‘04 Males 4.090 2h -  Autumn ‘04 Females 1.791
li -  Winter ’04-‘05 Males 1.776 2i -  Winter ’04-‘05 Females 0.252

00
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APPENDIX H

REWGF RESULTS -  GROWTH RATE MASS CLASS

REGWF results on untransformed data for the mass class factor from a model-13-factor ANOVA for growth rate (g/week). 
Significance between treatments represented by shared underlines. Mean growth rate values listed in table with corresponding 
treatment variable. Mass class designations are in the legend o f Table 10. Bolded values signify negative growth rates.

Treatments: 7__ 6 5 4 3 2___1

Treatments Means
1 -  Mass Class 1 6.137
2 -  Mass Class 2 4.631
3 -  Mass Class 3 2.344
4 -  Mass Class 4 2.580
5 -  Mass Class 5 1.661
6 -  Mass Class 6 0.039
7 -  Mass Class 7 -0 .408

00
00
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