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Aside from mathematical models, simulation models provide an effective tool to 

improve the irrigation networks. According to Yeh (1985), “From practitioner’s point 

o f view, mathematical programming techniques have, thus far, not proven to be 

widely useful because of the complexity of water resources and non-commensurable 

objective in water resources management. In this regard, simulation is an effective 

tool for studying the operations of the complex water resource system incorporating 

the experience and judgment of the planner or design engineer into the model.” 

However, direct incorporation of complex simulation models into an optimization 

model is computationally prohibitive (Neelakantan and Pundarikanthan, 2000). The 

conventional way to incorporate a simulation model into an optimization model is 

that the optimization model passes decision variables to the simulation model, 

receives the output of the simulation model, and then decides the next step based on 

evaluation of the objective value. In that case, the direct search methods, such as 

Hooke and Jeevs method (Gates and Alshaikh, 1993, Neelakantan and 

Pundarikanthan, 2000) is used to solve the problem. Evolutionary computation 

provides another effective way to incorporate simulation models in an optimization 

model.

Another means of enhancing irrigation is by controlling the canals operations. The 

automatic gate operation technique is used to increase the crop productivity and 

prevent damage due to flooding. Among these studies, Reddy et al. (1992) presented 

a technique for operation of irrigation canals in the presence of arbitrary external 

disturbances. They solved a linearized form of the continuity and gate-discharge 

equations. They assumed the lateral canals to be located immediately upstream of the 

last node in each pool. They verify their model using a nonlinear open-channel flow 

simulation model. The simulation model estimates the flow rates and water depths at 

each point in the reach, then these data will be used by the observer and the controller 

to calculate the change in the gate opening. After this, the flow through this regulator 

will be calculated and used as a boundary condition in the next time step.

The current study treats the problem of enhancing the irrigation networks 

differently. The goal of the current study is to define the optimal irrigation schedule 

for a short-term irrigation period (eg. For a typical irrigation period of five days in
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Egypt), which can minimize the total water consumed while satisfying the system 

constraints, which are:

□ No water shortage at any point in the network at any time during the irrigation 

period.

□ No flood at any point in the network at any time during the irrigation period.

□ The difference between the upstream water level and the downstream water level 

of any regulator is less than the maximum allowable difference at any time during 

the irrigation period.

□ Water volume in the network at the end of the irrigation period is enough to start 

the next irrigation period.

The importance of tackling the problem this way stems from the following two 

facts:

□ For some irrigation networks, such as that in the case study described in Chapter 

2, defining the optimal crop pattern is not a practical issue, as it is hard to 

implement it in reality. This is because the cultivated area in such networks is 

divided among thousands of owners, who have the freewill to decide the 

cultivated crops. In the current model, the crop pattern will be treated as input 

data, and it will be treated stochastically as there is uncertainty associated with it.

□ Using mean seasonal inflow or monthly inflow can be used while drawing a 

general strategy, but it cannot guarantee prevention of flood or water shortage 

during daily operations, unless suitable operations are defined based on the actual 

consumption rate and the hydraulic characteristic of the network.

Thus, the current study aims to develop an optimization model to define the best 

set of gate operations, and the best boundary conditions to minimize the total water

consumed and prevent damages caused by water shortage, flooding or instability of 

regulators. This optimization model will be solved using a genetic algorithm (GA) 

based-search based procedure, and incorporates an unsteady flow model to evaluate 

each potential solution. A user-friendly interface was developed to make it easier for 

the user to enter the data and present the results. The model is applied to a case study 

involving a large-scale irrigation canal network in Egypt.

The current study is organized as follows:
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Chapter 2 describes the optimization model and gives a brief introduction to GAs, 

and how the GA is implemented on the current study. Also the details of the case 

study in Egypt are presented at the end of this chapter. Chapter 3 describes the 

unsteady flow model that was used within this model. The GA parameter values used 

within this model are tested and discussed in Chapter 4. Different ways to handle the 

constraints are discussed and compared in Chapter 5. Chapter 6 addresses the 

uncertainty that is associated with crops pattern and water consumption rates. Chapter 

7 gives a brief description of the user-friendly interface that was built for this model. 

The conclusions and recommended future works are presented in Chapter 8.
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CHAPTER 2 

OPTIMIZATION MODEL

2.1 Introduction

The goal o f the current model is to define an efficient irrigation canal operation 

schedule (initial gate opening, gate operation and boundary condition) that minimizes 

the irrigation water volume consumed in an irrigation canal network, while satisfying 

four constraints, which are:

□ The water level must stay at or above minimum-required water levels. In most 

irrigation canals, these minimum-required water levels are zero meaning that the 

canals should not run dry.

□ The water levels must not exceed maximum-allowable water levels, which are 

channels’ banks levels.

□ The difference between the water levels upstream and downstream any regulator 

must not exceed the maximum-allowable difference.

□ For some canals in the network, the water levels must not go blow some pre

defined levels at the end o f the routing. This constraint ensures that the water 

volume at the end o f the flow routing will be sufficient for the beginning o f the 

next irrigation period.

An optimization model is developed using the above defined objective and 

constraints, and is solved using a Genetic Algorithm (GA), which has been shown to 

be a powerful tool for solving very complex models without any simplification. An 

unsteady flow model is used to evaluate each potential solution (string) in the GA. 

This chapter describes the optimization model, gives a brief introduction to GAs, and 

how a GA is implemented in the current study. Also, a case study in Egypt will be 

presented in the end o f this chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

2.2 Optimization model

The optimization model used herein is as follows:

Minimize z  =  t2-1)
t e N T  t e N T  o s  NO

Subject to:

y p( t)> y r Vp ,V t ........................ (2.2)

WLp(t) < FLp V p , V t ........................ (2.3)

USWLg(t) -  DSWLg (t) < MDg V# , V /....................... (2.4)

WLp(tend)> R W Lp V p e R P .....................(2.5)

Where:

N T : Number o f time steps o f the flow routing.

Qt : Discharge at the inflow point during time step t.

N O : Total number o f outflow points.

Q : Discharge at the outflow point o during time step t.

y p : Water depth at point p.

y r Minimum required water depth, and for irrigation, it was

considered as zero to just prevent the water shortage.

WLp : Water level at point p.

FLp : Maximum allowable water level at point p.

USWLg : Upstream water level o f regulator g.

DSWLg : Downstream water level o f regulator g.

MDg : Maximum allowable difference between upstream water level and

downstream water level for regulator g.
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RP Number of points that have required water levels at the end o f

simulation.

RWLp Required water level at point p.

t: Routing time step.

tend: Time at the end o f the flow routing.

2.2.1 Decision variables

This model contains two types o f decision variables; gate opening values and 

boundary conditions. Boundary conditions include the upstream boundary condition, 

which is the water level at the upstream end o f the network, and the downstream 

boundary conditions, which represent the discharge at the downstream end o f each 

regulator. Also gate-opening values include both initial gate opening (at the beginning 

o f the routing) and operations during the routing.

2.2.2 Constraint violations tolerance

In a real irrigation network such as the one presented in the case study, there may 

be some weak points, such as a bank with a low elevation, or a branch with an 

entrance that has a higher bed level than that o f the adjacent point in the main canal. 

These points could be actual weak points or could be a result o f inaccuracy in data 

input. These weak points, even if  very few, can make finding a feasible solution very 

difficult. Assuming a small tolerance for constraint violations can prevent these few 

points from controlling the whole network, and can lead to better solutions.

Figure 2.1 presents two examples o f the same scenario o f the case study, with 

and without allowing for a small constraint violation tolerance. Without considering 

tolerance (case the left graph of Figure 2.1), the number o f feasible solutions during 

the whole run is zero, and there are no strings that satisfy the first constraint (water 

shortage). Only 14 strings in the first four generations satisfied the second constraint 

(Flood). The second graph in Figure 2.1 presents the same scenario while using the 

following constraint violations tolerance levels:
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Figure 2.1
Number of the strings that satisfy each constraint, and that satisfy all constraints without and with

constraint violation tolerance respectively

&  Water shortage: 0.01

jsS Flood: 0.005

js£  Regulator stability: 0.0

Required water level: 0.05

The difference between numbers o f feasible solutions is very clear. In the final 

optimal solution, the total flooded length is 90 m (0.0005 o f the total length), and total 

cultivated land affected by water shortage is 630 feddan (0.0009 o f the total cultivated 

area). The method for calculating the violation for each constraint is discussed in 

section 2.4.2.

2.3 Solving the optimization model

Many optimization techniques have been used in hydraulics or water resources 

systems optimizations, including linear, dynamic and non-linear programming, direct 

search methods, evolutionary computation, and complete enumeration techniques.

Linear, and dynamic programming techniques cannot be used with the current 

study because o f the complex nature o f the problem. Also, complete enumeration 

would be impractical, as the decision variables are continuous, and the computational 

time required would be prohibitive.
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Regarding nonlinear optimization, Yeh (1985) compared nonlinear programming 

with other techniques (linear and dynamic) for a reservoir routing problem, and stated 

that nonlinear programming has not been as popular in water resources systems 

analysis as other methods due to the complication in implementing the technique and 

the difficulty to account for the stochastic nature o f the system. Simpson et al. (1994) 

compared genetic algorithm (GA) techniques with complete enumeration and 

nonlinear optimization for a water distribution problem, and they concluded that the 

complete enumeration approach is only applicable with small problems with few 

pipes due to the heavy computational requirements. Nonlinear programming is an 

efficient technique when applied to small network. GA is an efficient technique with 

computational effort relatively high compared to nonlinear optimization, but very 

small compared to total enumeration. Yoon and Shoemaker (1999) compared 

different methods for a groundwater problem, including some evolutionary 

computational methods, some direct search methods, and some derivative-based 

optimization methods. In their study, the binary-coded genetic algorithm performed 

poorly, but an evolution strategy technique achieved a good balance between speed 

and accuracy. Other researchers refer to similar drawbacks o f using gradient-based 

programming compared to genetic algorithm techniques in water resources problems 

(Wu and Simpson, 2001).

Regarding the current study, the complication o f implementing gradient-based 

(nonlinear) programming can be explained by assuming a very simple network with 4 

points (Figure 2.2) and considering the optimization model (Equations 2.1 to 2.5). 

The following points could be mentioned:

□ The decision variables in the problem (B l, B2, and g) are not explicitly expressed 

in the optimization model. However, there is a system o f differential equations 

related stated variables (A and u) with decision variables included in equations FI 

to F8. (Details o f  these equations are in section 3.3)

□ Obtaining a relationship between any o f the stated variables and decision 

variables, and their derivatives, is difficult. For example, defining a direct 

relationship between A l and B2, should be obtained through relationships o f A l 

with A2, A2 with A3, A3 with A4 and A4 with B2. Considering the equations that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

are used within the simulation model, and considering a typical example, like one 

that is used in this study, with hundreds o f points and tens o f decision variables, 

obtaining the derivatives would be very difficult.

FI

Al
ul

oCQ

F2
F3

- 0

F4
F5

1 gJ

A2 ' A3
u2 u3
Regulator

F6
F7

F8

A4
u4

3oQQ

Figure 2.2
Simple example of an irrigation canal network

□ For some situations, relationships between stated variables (A and u), and some 

decisions variables do not exist. As an example, assume a gate operation during 

the routing with a given range (decision variable), and assume that the water level 

at this regulator during the time of the operation is less than the gate opening with 

the given range. In this case, this regulator will be treated as a constriction, and 

this decision variable will not be included in the system o f the equations. Thus, 

one cannot obtain a relationship between any stated variable and this decision 

variable. This situation may happen frequently, especially in small channels.

□ The fact that the problem is dynamic, where values o f A and u are calculated for 

different time steps, and that the number o f stated variables and decision variables 

keep changing from one time to the other, based on the operations or water 

shortage, and some variables should be treated stochastically, all increase the 

difficulty for using nonlinear programming in this problem.

□ Another drawback o f gradient-base optimization is that it can get trapped in local 

optima, and thus many policies (starting points) should be used to guarantee 

achieving optimal or near-optimal solutions.
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Unlike traditional optimization techniques, direct search methods and 

evolutionary algorithms do not require the derivative information. They can be easily 

combined with simulation models by using the output o f the simulation model to 

define the next step. An example o f how these methods works was presented in 

Neelakantan and Pundarikanthan (2000) “In Hooke and Jeeves algorithm, the step 

length along the decision parameter axes is kept constant for each cycle o f moves, 

and a probe is made first in the positive direction and then in the negative direction of 

each axis. Iterative improvement can get stuck in a local minimum, as the algorithm is 

essentially ‘greedy’ and accepts only those moves that optimize the objective 

function. As a result, the solution depends upon the starting configuration. Hence, 

several starting points (policies) are used to make sure that a better solution is found.” 

Many direct search methods were used with hydraulics problems, such as Hooke and 

Jeeves (Neelakantan and Pundarikanthan, 2000, Gates and Alshaikh, 1993) or Nelder 

and Mead (Yoon and Shoemaker, 1999) or response surface method (Gates el al., 

1992). Comparing direct search methods with evolutionary computation, the 

following observations can be noted:

□ Both direct search methods and evolutionary computational can easily incorporate 

a simulation model inside the procedure.

□ Direct search methods are “greedy” optimization techniques that can get trapped 

at local optima, while evolutionary algorithms are more robust, and can move to 

optimal or near optimal solutions.

□ Although direct search methods are considered faster in general, this may depend 

on different factors. One o f these factors is the number o f starting points that will 

be used with direct search methods to make sure a good solution is found. Also, 

the type o f GA that is used associated with the parameters and constraint-handling 

technique, affects the rate o f convergence as well as the accuracy. An example of  

this is what was concluded by Yoon and Shoemaker (1999) while comparing 

different optimization methods including direct search methods and evolutionary 

computational methods. They found that an evolution strategy method was the 

best in combination o f speed and accuracy, while a binary-coded genetic 

algorithm performs poorly regarding the accuracy and the speed.
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The current study will use a genetic algorithm to solve the optimization problem 

and the output o f the simulation model will be used to evaluate each potential 

solution.

2.4 Genetic Algorithms (GAs)

Genetic Algorithms (GAs) are a class o f techniques that mimic the processes of 

natural selection and genetic propagation in nature to “evolve” good solutions to a 

problem. The interest in genetic algorithms is mainly due to their ability to handle 

very complex problems, which do not easily fit into the traditional optimization 

frameworks. The GA search procedure maintains a population o f potential solutions 

to the problem, each o f which is represented as a string o f design features. Unlike 

traditional optimization techniques, a GA requires no gradient information, but 

instead uses an evaluation function to determine the “fitness” or goodness o f a 

solution. The GA-based search framework can incorporate complex simulation 

models without any simplification.

According to Davis (1987), genetic algorithms have five basic components:

□ A genetic representation o f a solution to the problem.

□ A way to create an initial population of solutions.

□ An evaluation function rating solutions in terms o f their fitness.

□ Genetic operators that alter the genetic composition o f children during 

reproduction.

□ Values o f the parameters that the genetic algorithm uses (population size, 

crossover probability, etc.)

A global structure for genetic algorithms is shown in the Figure 2.3.
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Begin

NO
Cond?

Yes

Stop

gen = 0
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Reproduction

Evaluation

Crossover

Mutation

Assign Fitness

Initialization Population

Figure 2.3
Flow chart of genetic algorithm (Deb, 2001)

2.4.1 Representation

According to Herrera el al. (1998), “Representation is the key issue in GA work 

because GAs directly manipulate a coded representation o f the problem and because 

the representation schema can severely limit the window by which a system observes 

its world.” Regarding representation types, there are two main categories, binary and 

real representation. Binary representation has dominated the field o f GAs since its 

beginning until the early 1990’s. The reason for this is that there are theoretical 

results that show them to be the most appropriate ones, and they are amenable to 

simple implementation. However, binary representations have two main drawbacks: 

Hamming cliff, which means that two adjacent values are different in all o f their bits, 

and redundancy, which means the decoding o f a given code doesn’t belong to the 

domain. For most real-world problems, binary encoding is not the most suitable. 

According to Davis (1989), “We cannot handle most real-world problems with binary 

representations and an operator set consisting only o f binary crossover and binary
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mutation. One should incorporate real-world knowledge in one’s algorithm by adding 

it to one’s decoder or by expanding one’s operator.”

The other way to encode a real-world problem is real representation. The interest 

in real representation began in the 1990’s. There are many advantages to real 

representations such as the following (Wright 1991, Gen and Cheng 2000; 

Michalewicz 1996, Herrera et al., 1989):

□ It moves the genetic algorithm closer to problem space, as the distance between 

the points in the representation space is analogues to the distance between the 

points in the problem space.

□ The use o f real parameters makes it possible to use large domains for the 

variables.

□ The capacity o f real representation to exploit the graduality o f the functions with 

continuous variables, where graduality refers to the fact that slight changes in the 

variables correspond to slight changes in the function.

□ It increases the efficiency and the precision.

□ It doesn’t require a lot o f memory.

The current study uses real representation to encode the decision variables.

2.4.2 Evaluation

This step plays the role o f the environment, and it rates solutions based on their 

fitness. Each potential solution (string) in the population will be evaluated using the 

objective function equation, or a simulation model, to check its fitness. This is a 

straightforward step in unconstrained optimization problems. However, in an 

optimization problem with constraints, a heuristic must be used to handle the 

constraints. Handling constraints in a GA can be challenging and will be discussed in 

detail in Chapter 5.

To evaluate each string, the unsteady flow model is used to route the flow, and the 

output from the model will be used to calculate fitness parameters. These outputs are 

calculated as follows:

□ During the routing and for each time step, the following items will be calculated:
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jb s The difference between the inflow discharge at the first point in the network, 

and outflow discharges from the downstream ends o f the canals that convey 

water outside the network is calculated for each time step. The cumulative 

value o f all these differences during all time steps presents the total water 

consumed (objective value). 

jb s The water shortage will be checked at each time step. Whenever there is a 

zero or negative (numerically) water depth anywhere in the network, the 

program will assume that the part o f the channel downstream is dry, and the 

cultivated area downstream of this point will be used to calculate a penalty for 

water shortage. If the end regulator o f the channel if  not closed, the program 

will add the cultivated area downstream this regulator to the shortage area. 

Even if  the water comes back to this part o f the channel during the routing, the 

program will still consider it as a violation o f the first constraint. The only 

exception is with the operations. When a new channel is opened, the program 

will assume a traveling time for each opened reach, and if  the reach is dry 

only during this time, the program will not consider this as a violation o f the 

water shortage constraint. 

jsS  For the flood penalty, the program will determine all points that have a water 

level higher than the flood level at any time during the flow simulation. The 

total flooded length is used to calculate the flood penalty term. Regardless o f  

the number o f the time steps the water level exceeds the maximum allowable 

water level, the program will consider this as a violation o f the second 

constraint.

jb s For the regulator stability, the program will check each regulator for the 

difference between upstream water level and downstream water level and 

compare this value against the maximum allowable difference o f this 

regulator. If the difference between water levels is higher, this will be 

considered as a violation of the third constraint.

□ At the end o f the routing, the water volume in canals that have a required ending 

water level will be calculated and compared with the volume o f the water based 

on the given required water levels. If the actual water volume is less than the
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required ending water volume, this will be considered as a violation of the fourth 

constraint.

2.4.3 Selection

The selection operator imitates the natural selection and survival o f the fittest in 

nature. It gives strings that have better fitness values a higher probability to get more 

copies, while strings with poor fitness values have a higher probability to die off. 

According to Gen and Cheng (2000), “Selection provides the driving force in genetic 

algorithms. With too much force, genetic search will terminate prematurely; with too 

little force, evolutionary progress will be slower than necessary”. The most 

commonly used selection procedures (Goldberg and Deb (1991), Gen and Cheng 

(2000), Runarsson and Yao (2000)) are:

□ Proportionate Selection: in this class o f selection, a chromosome has a probability 

to be selected proportional to its fitness. In these types o f selection, the number of  

copies o f an individual in any generation is related to the ratio between the fitness 

o f this individual and the average fitness

P . =  P  —1 i,l+1 1 i,l ~T
J  i

Proportionate selection can be preformed using roulette wheel, stochastic 

remainder selection, or stochastic universal selection. According to Goldberg and 

Deb (1991), proportionate selection is found to be significantly slower than other 

methods.

□ Ranking selection: this technique was proposed by Baker (1985), then by 

Grefenstette and Baker (1989). In ranking selection, the population is sorted from 

the best to the worst, and assigns the number o f copies that each individual should 

receive according to a non-increasing assignment function, and then performs 

proportionate selection according to that assignment.

□ Tournament Selection: (Goldberg and Deb, 1991), tournament selection is based 

on randomly selecting a few strings and picking the best from them, and repeating 

until the mating pool is filled. The number of strings that is compared defines the
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sub-category o f this method. Binary tournament selection, where two strings are 

compared at a time is the most commonly used selection technique.

□ Stochastic Random Selection: Runarsson and Yao (2000) proposed this method as 

a constraint-handling technique method to avoid the fine-tuning through using 

penalty functions. The idea is to use only the objective function or the constraints 

for the selection, rather than using the fitness function that is a combination of 

both. The one (objective or constraints) that will be used to determine the winning 

individual in the selection is chosen randomly. They suggested a probability 

between 0.4 & 0.5 for using the objective to rank the individuals (besides the case 

when both individuals are feasible, in which the objective function is used as 

well); otherwise the ranking will be based on the level o f constraint satisfaction. 

Three selection techniques were tested in the current study, which are:

□ Binary tournament selection.

□ Binary tournament selection with superiority o f feasible solution.

□ Stochastic tournament selection, which is a new proposed technique. The details 

about this technique are given in Chapter 5.

2.4.4 Crossover

The selection process increases the average fitness by increasing copies o f  good 

solutions and eliminating some bad solutions, but it doesn’t add any new information 

to the problem. The way of exploring more of the search space is done through 

crossover and mutation. In crossover, two parents, from strings that survive after the 

selection process, will exchange a part o f their data. Just a portion o f the population 

will undergo crossover, while the rest o f the population will move to the next 

generation as they are. The portion is defined by the crossover probability. The 

importance o f  this probability and suggested values will be discussed in Chapter 4.

According to the representation, there are two main categories o f crossover, 

binary-coded crossover, and real-coded crossover.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



21

2.4.4.1 Binary-coded crossover

Binary crossover is used for GAs with binary representations, and it three 

different types, which are:

□ One point crossover

□ Two point crossover

□ Uniform crossover

Figure 2.4 illustrates examples about these three types o f binary crossover. In one 

point crossover, a location along the string length is selected at random, and all bits to 

the right o f this location will exchange their data. In two point crossover, two 

locations are defined randomly, and the bits between these two locations will 

exchange their data. In uniform crossover, each bit in the first offspring decides (with 

some probability p) which parent will contribute its value to it. The second offspring 

receive the bit from the other parent. The probability that is normally used within 

uniform crossover is 0.5, and so it could be done using a mask with digits o f 0 and 1. 

If the value o f the mask’s chromosome is zero, each parent will give its value to the 

corresponding child (parent 1 for child 1 and parent 2 for child 2). If the value o f  

mask’s chromosome is 1, the values o f parents’ chromosomes will be exchanged.

i i i

Parent 1 1 o l o l l 1 1 0 I 0 I 1 I 0 I I I 0 1 Parent 11 0 I 0 I 1 1 1 0 I 0 I 1 0 1 1 1 0 1

Parent 2 1 o 1 0 1 1 ° 1 1 1 0 1 1 1 1 1 1 1 Parent 2 0 I 1 I 0 1 | 0 1 I 10 ■ I ' M
1
1

Child 1 [T 0 I 1 1 | 0 1 1 1 0 1 1 1 1 1 1 1 Child 1 o i o r n 1 1 0 1 1 10 0 I 1 I 0 I
Child 2 [T 1 0 oooo Child 2 0 1 1 1 0 1 | 0 1 0 1 1 • 1' 1' 1

1
One point Crossover

1 1 
Two points Crossover

Parent 1 Parent 2
1 o 1 o I i | l 0 0 1 0 I 0 I 1 0 i | ° | 1 | ° | 1 0 1 1 1 1 1 1
..V___ k___ ) J

Y Mask .Y ,
1 0 1 0 1 1 1 1 | 0 | 0 | 1 | 1 1 I 0 ]
A.

/ C
1 0 I 0 I 0 | 1 0 I 0 I 0 1 ! 1 1 1 0 1 10 1 | ! | i | ° | i 1 I 0 I 1 I 1

C hild 1 C hild 2
U niform  C rossover

Figure 2.4 
Examples of binary-coded Crossover
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2.4.4.2 Real-coded crossover:

There are many real-coded crossover techniques have been proposed since the 

1990’s. The difference between these methods is how to generate the children from 

their parents. In linear crossover, reported by Wright (1991), three children are 

generated from two parents in the locations (-0.5/^ + 1.5P2) , (0.5P, +0.5P2), and 

(l.5T5 -0 .5 P 2) then the best two children will be chosen to the next generation. In 

simulated binary crossover (SBX) (Deb and Agrawal, 1995), new solutions will be 

randomly chosen from a specific probability distribution around the parents based on 

a random number w(. and a distribution index rjc as in Figure 2.5. A large distribution 

index indicates that the offspring will be close to their parents. In Unimodal 

Normally Distributed Crossover (UNDX) (Ono and Kobayashi, 1997), two children 

are generated from a region o f normal distribution defined by three parents. These 

two children are generated around the center o f mass o f their parents. Simplex 

crossover (SPX) (Tsutsui et al., 1999) assigns a uniform probability distribution for 

creating offspring in a restricted search space around the region marked by the 

parents. In this method, the center o f parents is calculated, then from a space defined 

by this point with the parents, a number o f solutions (200 is suggested) is created, 

then two parents will be replaced by the best from these solutions and parent 

solutions. In blend crossover, proposed by Eshelman and Schaffer (1993), two 

children are generated from the range [p2 + cd ,p l - a l ] ,  where p i and p2 are the 

values o f  the parents, p 2 > p l , I  = p 2 -  p x, and a  is a coefficients between 0 and 1. 

Many other types o f real-coded crossover are listed in Herrera et al. (1998), Gen and 

Cheng (2000), and Deb (2001).
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Figure 2.5 illustrates different types o f real-coded crossover.
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Herrera et al. (1998) conducted an experiment to compare different binary and 

real coded crossover techniques, and they stated, “Generally, BLX-a crossover 

allows the best final results to be obtained. The higher the a  is, the better the results 

are. As a  grows, the exploration level is higher, since the relaxed exploitation zones 

spread over exploration zones, increasing the diversity levels in the population”

The current study uses blend crossover. The optimal value for blend crossover 

extension a  is discussed in detail in Chapter 4.
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2.4.5 Mutation

Originally, the mutation operator was considered to be a background operator. 

According to Holland (1975), “mutation is a ‘background’ operator, assuming that the 

crossover operator has a full range o f alleles so that the adaptive plan is not trapped 

on local optima.” However, later researchers argued about this fact, and they stated 

that mutation has a stronger role than previously recognized (Schaffer et al., 1989). 

The objective o f mutation, like crossover, is to increase the variance o f the population 

and prevent the GA from converging to local optima. In this step, the values o f some 

strings that are selected randomly will be changed. In binary encoding, the value o f  

the bit will be changed from 0 to 1 or vice versa. In real encoding, there are many 

proposed mutation implementations. The one that is used in the current study is 

random mutation, where a new random value will be selected between the maximum 

and minimum allowable values o f the gene that will be mutated. The details o f other 

different mutation techniques can be found in Herrera et al. (1989).

The number o f strings that will undergo mutation is decided based on the 

mutation rate. The effect o f the mutation rate, and suggested values will be discussed 

in Chapter 4.

2.5 Case study

An irrigation canal network in El Monofiya, Egypt is used as a case study (see 

Figure 2.6). In Egypt, the Nile River is the sole source o f irrigation water. It provides 

Egypt with about 55.5 billion cubic meters o f water per year, which barely meets the 

water demand (Abu-Zeid, 1992). It is expected that the water demand in Egypt will 

soon exceed the supply as the population increases. It is estimated that Egyptian 

agriculture consumes between 84% (Abu-Zeid and Rady, 1992) and 95% (Naff and 

Matson, 1984) o f the water used in Egypt. Also, more water is consumed in Egyptian 

agriculture than in many other areas, primarily because o f  the wasteful use of 

irrigation water (Samah, 1979). This means that any plan to address the water supply 

for the future should include more efficient use o f irrigation water. A part o f the 

wasteful use o f irrigation water is the result o f the inability to determine efficient
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strategies to make the best use o f the irrigation water in the network. The network 

used for the case study is shown in Figure 2.6, and consists o f man-made canals used 

mainly for irrigation purposes. The total cultivated area that is served by the network, 

on a rotating basis, is about 187,320 hectares (483,708 acres). All o f the channels 

have mild slopes, as the longitudinal bed slope changes from 0.0 (horizontal bed) to 

0.0001, and thus the flow is subcritical and water levels are gradually varied in the 

entire network. The network contains a main canal (El Monofy Rayah), for which the 

intake at the Nile River is the upstream end o f the network.

All branches in the network divert from this main canal or from its branches. The 

case study considers the network from El Monofy Rayah intake to Meleg regulator 

(km 53.51 on El Monofy Rayah). In this reach o f the main canal, there is one middle 

regulator, which is El Quarinien Regulator at km 29.30. There are two main branches: 

El Bagoriya Canal and Tanta Navigation Canal, which carry discharges to other 

directorates. The water is distributed through the branches on the basis o f  a periodic 

system, whereby a part o f the network is opened for five days and then closed for ten 

days.
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2.5.1 The Data and its accuracy

The data used by the simulation model includes the following:

□ Canals data: this category includes the canal length, the total cultivated land, 

number o f regulators, and number o f branches. These data tend to be very 

accurate.

□ Reaches geometry data: this category includes the length, cultivated land area, 

and cross sectional area o f each reaches. The accuracy may be affected if  the 

actual cross sectional in some places has been changed from the design values. 

Also, the bank levels at each point are interpolated between the values at 

regulators and branches. The actual levels may deviate from this.

□ Regulators design data: this category includes gate width, regulator bed level, 

cultivated land area downstream of the regulator, regulator thickness, and the 

maximum allowable difference between upstream water level and downstream 

water level. Also, this category o f data includes the discharge coefficient o f this 

regulator. The accuracy o f the discharge coefficients is questionable especially 

with small regulators, where there are no field measurements to obtain empirical 

equations for them. In the absences o f better information, the value 0.61 is used 

for such regulators.

□ Initial data: these mainly are the initial water levels upstream o f each canal and 

upstream and downstream of each regulator. Initial water levels were assumed 

with an average o f levels at the time that was used for routing the flow.

□ Boundaries and gate openings: the boundaries and gate openings are decisions 

variables unless they are fixed values. Downstream boundaries for canals that 

carry the water to downstream directorates will always be decisions variables. For 

some branches that the program will route only a part o f them, the boundary 

might be fixed value, and it will be calculated based on the cultivated land area o f  

the downstream part o f this branch, and the average water consumption rate.

□ Water consumption rates and crop allocation data: regarding the water 

consumption rate, the average values defined by the agricultural departments and 

by other previous researchers are used. For the crop allocation ratio, the ratios
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were assumed based on the average ratios for crop allocation in Lower Egypt as

was presented in previous studies (Ali, A. S. (1999), Ali, H. M. (2000), Fawzy, G.

M. (1999), and El Qusoy, D. (1995)).

2.5.2 Suggested scenarios

Three scenarios o f the case study are considered in this study. They are different 

in the number of decisions variables, number o f the constraints and in the difficulty to 

find a feasible solution as a result o f some sudden changes in the flow routing.

The first scenario (Figure 2.7) is the simplest one. It assumes that gate openings 

are constant during the whole run. The boundaries change gradually in four points 

and they are fixed in all other points.

This scenario consists o f the following:

□ Number o f decision variables:

m s There are 19 decision variables as follows:

S  11 initial gate openings (No operations).

•S 8 Boundaries conditions at 4 points (one upstream point and three 

downstream points at canals 1,6, and 12).

□ Number o f constraints:

m s For both water shortage and flood: the model checks 646 points for 120 

time steps

ms For regulator stability: the model checks 12 regulators for 120 time steps

m s For required water level: the model checks 83 points at the last time step

□ Constraint violation tolerance:

m s Constraint violation tolerance for this scenario is zero meaning that the 

solution must satisfy each constraint perfectly to be considered feasible.

The boundaries at the end o f all branches are fixed values, and one gate opening is 

assumed a free opened regulator.

Figure 2.8 displays the water level upstream and downstream o f El Quarinien 

regulator. Water levels change smoothly during the routing. There is an effect from 

the initial condition in the first part o f the routing,
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The second scenario (Figure 2.9) presents the case during a typical irrigation 

period, when there are few changes in the schedule o f the operations. Also, this 

scenario presents the case when the amount o f water delivered to the downstream 

directorates is changed between branches (Increase the discharge o f one branch at the 

expense o f other branches).

This scenario consists o f the following:

□ Number o f decision variables:

jes There are 31 decision variables as follows:

S  19 initial gate openings and 7 gate operations.

S  12 Boundaries conditions at 5 points (one upstream point and four 

downstream points at canals 1 ,6 ,10 , and 12).

□ Number o f constraints:

eS For both water shortage and flood: the model checks from 795 to 837 

points for 120 time steps. 

es For regulator stability: the model checks from 15 to 18 regulators for 120 

time steps.

ss For required water level: the model checks 83 points at the last time step

□ Constraint violation tolerance:

&  Constraint violation tolerance for this scenario is as follows:

■S Water shortage: 0.005 

S  Flood: 0.0 

S  Regulators stability: 0.0 

S  Required water levels: 0.01

□ Operations in the main regulator

■S El Quarinien regulator: gate opening increased twice, at time step 24 

and at time step 96.

□ Boundary at the main outflow

S  Canal 1: gradually changes until time step 24, and then becomes 

constant.

S  Canal 6: suddenly decreases after 24 time steps.

S  Canal 12: suddenly increases after 36 time steps.
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□ Changes that have fixed values (Not decision variables)

S  Canal number 5 will be closed at time 96.

Figures 2.10 to 2.12 represent the water levels from one o f the runs o f this 

scenario. Figure 2.10 presents the water level upstream and downstream El Quarinien 

regulator. The effect o f opening the gate at time step 24 is clear in the downstream, as 

is the effect o f increasing boundary conditions at canal 12 at time step 36. Also, at the 

downstream, the increased difference between water surface elevation and energy 

grade line elevation indicate the increased velocity, and thus the discharge. At the 

upstream, the effect o f decreasing the boundary o f canal number 6 with increasing El 

Quarinien gate opening at time step 24 can be seen. Also, the effects o f opening 

canals 9 and 46 at time step 48, and increasing El Quarinien gate opening after time 

step 96 are clear.

Figure 2.11 presents the water level upstream o f the second regulator o f canal 3. 

Water levels increase for the beginning, but the rate of increase changed after time 

step 24, when the gate opening o f the intake increased. The water levels begin to 

decrease after this due to the opening o f the second regulator.

Figure 2.12 presents the water level upstream o f the intake regulator o f canal 45. 

It is close to the water level upstream of El Quarinien regulator, as it shares it the 

same pool with no structures between them. The effect o f opening the gate at time 

step 48 has no significant effect than the upstream of El Quarinien.

This change in the water levels during the routing increases the chance o f  

violating any constraint, and thus finding a feasible solution is harder than for the first 

scenario.
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The third scenario o f the case study (Figure 2.13) represents a typical change of 

an irrigation period. The flow will be routed for 6 days, the last day in the current 

irrigation period with the five days o f the next irrigation period. The irrigation period 

changes mainly from the branches upstream of El Quarinien regulator to the branches 

downstream of it, in addition to some other branches upstream it. The cultivated land 

for the new irrigation period is less than the cultivated land for the previous one, so 

the gate opening for El Monofy intake will be reduced, and the outflow to the 

directorates downstream o f the network will increase. At the end o f the routing, the 

gate opening of El Monofy intake will increase again to prepare the network for the 

next irrigation period.

This scenario consists o f the following:

□ Decision variables:

mS  There are 52 decision variables as follows:

S  14 initial gate openings and 18 gate operations.

✓ 20 Boundaries conditions at 12 points (one upstream point and 11 

downstream points at 11 different canals as in Figure 2.13).

□ Constraints:

m s For both water shortage and flood: the model checks from 735 to 716 

points for 144 time steps.

m s For regulator stability: the model checks from 15 to 14 regulators for 144 

time steps.

ms For required water level: the model checks 83 points at the last time step.

□ Constraint violation tolerance:

m s Constraint violation tolerance for this scenario is as follows:

S  Water shortage: 0.01

✓ Flood: 0.005

S  Regulators stability: 0.0 

v' Required water levels: 0.05

□ Operations in the main regulator

S  First regulator: gate opening is decreased 2 times (time steps 12 and 

36) and then it is increased 2 times (time steps 108 and 120).
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S  Second regulator: gate opening is increased 5 times (time steps 12, 24, 

36,48, and 60).

□ Boundary at the main outflow

Canals 1, 6, and 12: Sudden increase after 24 time steps

□ Changes that have fixed values (Not decision variables)

S  Six branches that divert from the main canal are closed (3 after 24 

hours, and other 3 after another 12 hours).

S  The boundary o f 11 small branches that divert from canal 3 will 

change after 24 hours to 0.0.

Figures 2.14 to 2.16 present the water levels in some points o f the network during 

the routing in one o f the runs of this scenario.

□ The water level upstream El Quarinien is decreasing until time step 109 when 

it begins to increase again as an effect o f increasing the gate opening o f El 

Monofy intake.

□ The water level downstream of El Quarinien is increasing until time step 24, 

then it begins decreasing when two main branches downstream o f it are 

opened, and the discharge to other directorates increases. From time step 100, 

it begins to increase again. With the decreasing water level, the difference 

between water surface and energy grade line elevation increases meaning that 

the velocity increases. In a typical run of this scenario, the discharge increases 

from 43.7 m3/sec at the beginning o f the routing to 83.8 m3/sec at the end of 

the routing.

□ Figure 2.15 presents the last point in canal 3 before the second regulator that 

was opened at time step 24. Also Figure 2.16 presents the point on canal 46 

upstream o f canal 86 that was opened at time step 12. The effect o f opening 

new reaches or new canals is clear.

This increase o f the decision variables with the sudden changes o f the boundaries 

increases the difficulty in finding a feasible solution unless the decision variables are 

chosen suitably.
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These three scenarios o f the case study present different levels o f difficulty to find 

feasible solutions and will be used to check the best parameters that should be used 

within the GA and suitable constraint-handling techniques in later chapters.
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