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ABSTRACT

An analytic solution is presented for the steady-state depth-averaged western boundary current flowing over
the continental slope by combining three highly idealized models: the Stommel model, the Munk model, and
the arrested topographic wave model. The main vorticity balance over the slope is between planetary vorticity
advection and the slope-induced bottom stress torque, which is proportional to ry (h21)x where r is the Rayleigh
friction coefficient, h is the water depth, and y is the meridional velocity. This slope-induced torque provides
the necessary source of vorticity for poleward flow over the slope, its simple interpretation being that vorticity
is produced because the bottom stress has to act over the seaward-deepening water column. The character of
the solution depends on the slope a as well as on the assumed bottom drag coefficient, and the length scale of
the boundary current is ; . It is further shown that, if the depth-averaged velocity flows along isobaths,Ï2r/(ba)
then the stretching of water columns associated with cross-isobath geostrophic flow, which compensates bottom
Ekman transport, is identical to the slope-induced torque by the geostrophic velocities.

1. Introduction

The classical theories underlying our understanding
of large-scale ocean circulation are mainly based on
beta-plane and flat-bottom assumptions (e.g., Stommel
1948; Munk 1950). There is little observational evi-
dence on the influence of topographic features on mi-
docean mean circulation, probably because of the sur-
face-trapped nature of wind-driven circulation in a strat-
ified ocean. This has likely dwarfed the importance of
topography in process-oriented models of the subtrop-
ical gyres, in particular the role played by topographic
features in lateral boundaries (e.g., Huang 1991). The
importance of the slope at the ocean boundaries became
clear in Warren’s (1963) idealized model on the me-
andering of a western boundary current due to vortex
stretching over a sloping bottom. Holland (1973) did a
numerical study to find that the continental slope has a
profound influence on the western boundary current and
the midcirculation gyre. Salmon (1992) investigated the
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similarity solutions for the Stommel-type western
boundary current over a sloping bottom. His steady-
state solution indicates a southwestern intensification
due to both the planetary and the topographic beta ef-
fects. More recently Griffiths and Veronis (1997, 1998)
reported a similar result from laboratory and theoretical
studies.

Coastal oceanographers, on the contrary, have nor-
mally focused on f-plane dynamics, treating bottom to-
pography as a principal constraint to the character of
the flow (e.g., Csanady 1982, 1988). Tidal and wind-
induced currents within the continental shelf are greatly
controlled by the shelf topography. Topographic or
coastal-trapped waves are another clear example, within
the continental shelf and slope, resulting from vortex
stretching induced by cross-isobath velocities.

The connection between these two rather opposite
approaches has come slowly. Csanady (1988), in a mas-
sive and intense paper, summarized progress made on
the role of the continental slope in ocean circulation.
He illustrated a number of examples of what he called
the fundamental slope effect on ocean circulation: ve-
locities perpendicular to depth contours are responsible
for the stretching or squashing of vortex tubes, in what
may be interpreted as torque induced by bottom pres-



3350 VOLUME 31J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

sure. Csanady (1979, 1988) pointed at the possibility
that bottom pressure torque, induced by an alongshore
pressure gradient found on the east coast of North Amer-
ica, may balance planetary vorticity advection. A related
issue is the potential contribution of baroclinicity to
bottom pressure torque, what has been named the joint
effect of baroclinicity and relief (Sarkisyan and Ivanov
1971; Simons 1979; Shaw and Csanady 1983; Huth-
nance 1984; Csanady 1988).

A particular example of the fundamental slope effect
is the arrested topographic wave, where bottom pressure
torque is balanced by wind and bottom stress torque
(Csanady 1978, 1982, 1988). This balance has been used
to model the shelf circulation problems. Csanady
(1988), for example, illustrated a situation where cou-
pling between the coastal and deep oceans takes place
in a shelf-edge boundary layer stretching 55 km on the
shelf side and 17 km on the slope side, in which the
bottom stress torque is as large as bottom pressure
torque. These calculations, applied to western boundary
currents in contact with the sea bottom, suggested that
bottom friction is indeed important but only in the upper
slope waters, probably down to depths of about 300 m.

A key factor in the above discussion is the parame-
terization of bottom friction. Csanady (1976) justified
that a linear friction law, with a constant Rayleigh fric-
tion coefficient, is adequate when considering the mo-
mentum equations for the mean flow. This result is co-
herent with the linear decay term that appears in the
vorticity equation, with bottom friction parameterized
using a constant eddy viscosity model. A linear friction
law with a constant coefficient is, however, a gross sim-
plification on how bottom stress is transferred from the
bottom boundary layer into the interior ocean, in par-
ticular on how it reduces the strength of vortex tubes.

Recently a lot of interest has arisen on the potential
role of the bottom boundary layer in transferring prop-
erties to the deep ocean (for a review see Garret et al.
1993), making clear the necessity of a proper represen-
tation of this layer. Several observational works (Thorpe
1987; Thorpe et al. 1990; Lentz and Trowbridge 1991)
have shown that the bottom boundary layer at conti-
nental slopes has large spatial and temporal variability
depending, among other things, on current magnitude
and direction. These works have been followed by the-
oretical studies of issues such as the blockage of Ekman
transport in the bottom boundary layer, the interaction
between the interior flow and the boundary layer, and
the transfer of mass and vorticity into the interior ocean
along isopycnals (e.g., Thorpe 1987; Garret 1990;
McCready and Rhines 1991, 1993; Garret et al. 1993;
Trowbridge and Lentz 1991; Csanady and Pelegrı́ 1995;
Chapman and Lentz 1997). A corollary from these
works has been the recognition of the difficulties in
specifying the bottom boundary layer dynamics and,
hence, in finding a proper specification of the bottom
boundary conditions for the interior vorticity.

In this study we look for a steady-state solution of

the depth-averaged western boundary current over a
continental slope, with the bottom friction representa-
tion commonly used for coastal ocean studies. The bot-
tom stress (a force per unit area) divided by the water
depth gives a force per unit volume and its curl is pro-
portional to the bottom stress torque acting over the
whole water column, which modifies the strength of the
interior vortex tubes. The bottom stress torque is inter-
preted as resulting from the contribution of two terms.
The first one is proportional to the bottom stress curl,
with bottom stress directly proportional but opposite to
the velocity, acting over an ocean of constant depth.
This contribution produces bottom Ekman transport
analogous to that usually found with the quasigeostroph-
ic approximation, and commonly interpreted as causing
stretching/shrinking of interior vortex tubes. The second
contribution, called the slope-induced bottom stress
torque, is related to the different response experienced
by water columns of different thickness when exposed
to the same bottom stress. It is nonzero, even with null
interior vorticity, and suggests an additional mechanism
of coupling between the interior flow and the boundary
layer. We also investigate the behavior of the quasigeo-
strophic vorticity equation over the sloping bottom. For
the case of depth-averaged flow along isobaths we find
that the geostrophic vorticity may change because of
stretching/squashing of the interior water columns due
to cross-isobath geostrophic flow. This term resembles
the slope-induced bottom torque, but with the torque
now induced by the geostrophic rather than the depth-
averaged flow.

We are really not interested in how accurate this rep-
resentation may be, particularly since we recognize the
limitation involved in neglecting the important role of
stratification. But, we have been indeed attracted by the
fact that such a simple modification introduces new and
realistic elements to the classical homogeneous solution.
Furthermore, for the special case of a linear depth pro-
file, the equation has an exact analytical solution. Our
hope is that it may motivate further research on the
behavior and importance of the bottom boundary layer
in the vorticity balance within western boundary cur-
rents.

2. The vorticity equation over the slope

a. Ekman pumping on a sloping bottom

The backbone for our understanding of large-scale
ocean circulation is Ekman pumping at the boundaries,
which drives the geostrophic flow in the interior ocean.
In the quasigeostrophic approximation the usual manner
to obtain the vorticity equation describing this balance
is to scale the momentum equations and to express the
dependent variables as asymptotic series in terms of a
small parameter, the Rossby number. The lowest order
fields are geostrophic and the quasigeostrophic vorticity
equation is obtained as the curl of the next order equa-
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tions. Using the continuity equation it becomes (Ped-
losky 1979)

Dz fg 21 by 5 A ¹ z 1 (w 2 w ). (1)g h g t bDt h

The nomenclature is the usual: ug and yg are the cross-
slope (eastward, along x) and alongslope (northward,
along y) geostrophic velocities, D/Dt [ ]/]t 1 ug·= is
the material derivative calculated using the geostrophic
velocities, zg 5 ]yg/]x 2 ]ug/]y is the geostrophic rel-
ative vorticity, h is the water depth, f 5 fo 1 by is the
planetary vorticity in the beta-plane approximation, Ah

is the lateral eddy viscosity, and wt and wb represent the
vertical velocities at the top and bottom boundaries,
respectively.

Even at the continental slope the bottom has a rather
gentle slope; for example, where the Gulf Stream flows
over the continental slope typical values are 2000 m in
50 km giving 2 3 1022. Pedlosky (1979) has shown
that in this case lateral friction is negligible and the
vertical velocity at the bottom is given by

1/2Ayw 5 2 u · =h 1 z , (2)b g g1 22 fo

where Ay is the vertical eddy viscosity. In the quasi-
geostrophic theory this vertical velocity is considered
as resulting from both cross-isobath bottom flow and
nonconstant Ekman transport within the bottom bound-
ary layer, and has been interpreted as causing stretching/
squashing of the interior vortex tubes. A point to note
here is that this expression for wb is obtained under the
condition of constant Ay.

Salmon (1992) studied a similar vorticity balance on
a sloping bottom. In his vorticity equation, however, the
depth h in the denominator of the Ekman pumping term
[Eq. (1)] is replaced by the deep water depth H. This
assumption greatly simplifies the calculation procedure
but, as we will see below, it obscures some aspects of
the boundary layer physics. Griffiths and Veronis (1998)
used an analogous method to obtain a series solution
for Eq. (2) in powers of E1/2, where E is the Ekman
number.

b. The depth-averaged vorticity equation

One alternative method to derive the vorticity equa-
tion, commonly used in coastal ocean literature, is to
integrate the momentum equations from the sea surface
to the bottom and then take the curl of these vertically
integrated equations (e.g., Csanady 1982). The depth-
averaged momentum equations are

Du ]h tbx2 fy 5 2g 2 , (3a)
Dt ]x rh

tDy ]h by
1 fu 5 2g 2 , (3b)

Dt ]y rh

where u and y are the cross-slope (eastward, along x) and
alongslope (northward, along y) depth-averaged veloci-
ties, h is the surface water elevation, r is the density,
and g is the gravity acceleration. The bottom friction
forces are taken to depend linearly on the depth-averaged
velocity as tbx 5 rru, tby 5 rry, where r is the Rayleigh
friction coefficient with units of meters per second. After
cross-differentiation these equations lead to

Dz f
21 by 5 A ¹ z 1 (Ã 2 Ã ). (4)h t bDt h

The nomenclature is as before, but now the material
derivative D/Dt [ ]/]t 1 u·= and the relative vorticity
z 5 ]y/]x 2 ]u/]y are calculated using the depth-av-
eraged velocities, and Ãt and Ãb are variables analogous
to the vertical velocities at the top and bottom bound-
aries, respectively. The expression for this bottom ver-
tical velocity is as follows:

th ] ] tby bxÃ 5 2 u · =h 1 2b 1 2 1 2[ ]r f ]x h ]y h

r r ]h ]h
5 2 u · =h 1 z 2 y 2 u . (5)1 2f f h ]x ]y

| | | | | |
z z z

(i) (ii) (iii)

The last equality assumes constant r. The first contri-
bution to this bottom vertical velocity comes from the
cross-isobath depth-averaged flow. The other contri-
butions come from the bottom stress torque, their phys-
ical interpretation arising if we consider the following
decomposition:

t] ] tby bxh 2 h1 2 1 2]x h ]y h

]t t]t t ]h ]hby bybx bx5 2 1 2 . (6)1 2 1 2[ ]]x ]y h ]y h ]x

The bottom stress torque may now be considered as the
result of the two terms in the right-hand side of (6). The
first term is the bottom stress curl already discussed by
other authors in coastal literature (e.g., Csanady 1988).
It is proportional to the torque acting over the squared
bottom face of a column of constant depth h. This may
be readily calculated expanding tbx and tby as Taylor
series and integrating the torque (tbyx 2 tbxy) over the
squared bottom face. The second term is due to the
volume force imparted by the bottom stress (tbx/h, tby/
h), which retards different amounts of water mass de-
pending on the actual water depth, that is, on the slope
]h/]y, ]h/]x. We name this second term as the slope-
induced or slope contribution to the bottom stress
torque.

Equation (5) has three terms, and the first two terms
are fully analogous to those in the bottom vertical ve-
locity of the quasigeostrophic equation (2). These terms
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FIG. 1. Sketch of the slope contribution to the bottom stress torque.
The boundary jet gains positive (negative) vorticity for northward
(southward) flow.

are (i) the cross-isobath flow term and (ii) the term
depending on the vorticity, although it is important to
emphasize that here we are dealing with depth-averaged
velocities. If the geostrophic and depth-averaged veloc-
ities were equal, then these two vorticity terms in both
equations would be identical provided that r 5 (Ay fo /
2)1/2. In the depth-averaged vorticity equation, the vor-
ticity-dependent term (ii) is the result of bottom stress
curl (or bottom stress torque for constant water depth),
while in quasigeostrophic theory it is identified as re-
sulting from the expansion/compression of interior vor-
tex tubes. Recent results have shown that within the
boundary layer Ay is rather large (e.g., Garret et al.
1993). Using typical values Ay 5 1024 ; 1022 m2 s21

and f 5 1024 s21 we obtain r 5 1024 ; 1023 m s21,
which is of the order of magnitude usually quoted for
the Rayleigh friction coefficient (e.g., Weatherly 1972;
Csanady 1976, 1982). This number may also be com-
pared with estimates for r/H of 100 days21, which gives
r ; 1024 m s21 (e.g., Gill 1982). This indeed suggests
that these two terms are analogous, although with the
depth-averaged velocities in Eq. (5) and the geostrophic
velocities in Eq. (2). Note that the analogy would have
disappeared if we had used a constant depth in the last
term of Eq. (1), as assumed by Salmon (1992) and Grif-
fiths and Veronis (1998).

Equation (5) has one additional term, the slope-in-
duced bottom stress torque (iii) that depends on the
velocity, the water depth, and the bottom slope. To il-
lustrate the role played by the slope-induced bottom
torque let us consider a western boundary current flow-
ing northward along a continental slope (Northern
Hemisphere). In the absence of a slope the sign of the
bottom torque will depend only on the curl of the bottom
stress. In particular, if the boundary current initially has
zero relative vorticity and the bottom boundary layer is
spatially uniform (constant r or Ay), then the torque is
zero. However, if the water depth increases offshore,
the bottom stress has to act over increasingly thicker
water columns and produces a bottom torque, resulting
in a gain of positive vorticity by the northward flow,
even if the curl of the bottom stress is negative. A simple
scheme that portrays the slope-induced bottom torque
is illustrated in Fig. 1. Note that the size and sign of
the slope-induced torque depends on the bottom slope:
within a western boundary current flowing over a steep
continental slope it opposes the bottom stress curl term
in the cyclonic side of the stream.

This derivation of the depth-averaged vorticity equa-
tion illustrates that there are three different mechanisms
for modifying the interior vorticity:

1) cross-isobath flow of the depth-averaged velocity;
2) bottom stress curl, or bottom stress torque for con-

stant water depth; and
3) slope-induced bottom stress torque that results from

the coupling between the depth-averaged current, the
bottom slope, and the dynamics of the bottom bound-

ary layer (here simply specified as a constant bottom
drag coefficient).

c. Cross-isobath flow

Let us further investigate the analogy between Eqs.
(2) and (5). With this purpose we write the depth-av-
eraged velocities as

u h 1 u dg E E
u 5 (7a)

h

y h 1 y dg E E
y 5 , (7b)

h

where dE stands for the thickness of the bottom Ekman
layer and uE and yE indicate the x and y components of
the Ekman velocity. The use of Eq. (7) leads to

]h ]h ]h ]h
u 1 y 5 u 1 yg g1 2]x ]y ]x ]y

u d ]h y d ]hE E E E1 1 . (8)1 2h ]x h ]y
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FIG. 2. Sketch of the model configuration. The model domain is
divided into the coastal zone of linear bottom slope and the deep
water zone of constant depth H.

The components of the bottom Ekman transport, uEdE

and yEdE, are related to the bottom stress as follows:

r
u d 5 2 y , (9a)E E gf

r
y d 5 u . (9b)E E gf

Substitution of these expressions in Eq. (8) leads to

]h ]h ]h ]h
u 1 y 5 u 1 yg g 1 2]x ]y ]x ]y

r ]h ]h
1 y 2 u . (10)g g1 2f h ]x ]y

This shows that, if the depth-averaged flow is along
isobaths, then the stretching due to cross-isobath geo-
strophic flow is analogous to a slope-induced bottom
torque by the geostrophic flow. For this case the bottom
vertical velocity in the quasigeostrophic vorticity equa-
tion and its counterpart in the depth-averaged vorticity
equation have exactly the same dependence:

]h ]h r
w 5 2 u 1 y 1 zb g g g1 2]x ]y f

r ]h ]h r
5 2 y 2 u 1 z , (11a)g g g1 2f h ]x ]y f

]h ]h r r ]h ]h
Ã 5 2 u 1 y 1 z 2 y 2 ub 1 2 1 2]x ]y f f h ]x ]y

r r ]h ]h
5 z 2 y 2 u . (11b)1 2f f h ]x ]y

In the depth-averaged vorticity equation the cross-iso-
bath term is zero while in the quasigeostrophic vorticity
equation the stretching related to the cross-isobath geo-
strophic flow has exactly the same dependence as the
slope-induced torque.

If there is a coast, then the flow normal to the coast
has to be zero, what is usually called the coastal con-
straint. This condition will hold far from the coast only
when there are no changes in the alongshore direction;
that is, for poleward flow, onshore bottom Ekman trans-
port will be compensated through offshore geostrophic
transport such that the total cross-isobath flow is zero.
We have just shown, however, that, when the depth-
averaged flow is along isobaths, a compensating geo-
strophic flow always exists, regardless of the presence
of the coast, and the slope-induced bottom torque is
exactly equal to the cross-isobath stretching term.

3. Model formulation

Equation (1) with (2) has been referred to as the qua-
sigeostrophic vorticity equation, and Eq. (4) with (5) as

the depth-averaged vorticity equation. For the particular
case of depth-averaged along-isobath flow we have
shown that the mathematical dependence is exactly the
same, with the forcing terms given by Eq. (11). In this
and the following two sections we will examine the
solution of Eq. (1) or (4), forced by (11). The analysis
of the differences between the geostrophic and the
depth-averaged solutions will be left for the discussion
and conclusions.

If the depth-averaged flow is steady and parallel to
the coastline and the vorticity input by the local wind
stress is not important, Eq. (1) or (4), with (11), is

3d y r dy ry dh
by 5 A 2 1 . (12)h 3 2dx h dx h dx

The model variables are made nondimensional by
scaling the horizontal coordinates by the Munk length
lm[5(Ah/b)1/3], the vertical by the deep ocean depth H,
and the horizontal velocities by co/H/lm where co is the
volume transport stream function at x 5 `. The model
ocean includes the coastal area of uniform slope H/lt

and the deep ocean of constant depth, that is,

H/l x, 0 , x , l /lt t mh(x) 5 (13)51, l /l , x,t m

as illustrated schematically in Fig. 2, where lt is the
length of the sloping zone. Then the dimensionless form
of Eq. (12) is

a a1 1y - 2 y9 1 2 1 y 5 0 for x , l /l , (14)t m21 2x x

y - 2 a y9 2 y 5 0 for x . l /l , (15)2 t m

where ls(5r/bH) is the Stommel length and the coef-
ficients a1 and a2 are expressed in terms of the three
different length scales; that is,

l ls ta 5 , (16a)1 2lm

lsa 5 . (16b)2 lm
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The governing equations (14) and (15) are two third-
order ordinary differential equations; therefore six
boundary conditions are required to solve them. At x
5 0 a no-slip condition is applied and at x 5 ` the
solution must be bounded. Other boundary conditions
are that velocity, shear stress, and pressure must be con-
tinuous across the interface (White 1991). Accordingly,
the matching conditions at x 5 lt (in dimensional form)
are

y 5 y , (17a)c d

dy dyc dA 5 A , (17b)h hdx dx

h 5 h , (17c)c d

where the subscripts c and d represent the coastal side
and deep-ocean sides, respectively. In order to express
the pressure continuity condition (17c) in terms of the
velocity variables, we need to look at the momentum
equations from which the vorticity equations are de-
rived. They are, in dimensional form,

]h
2( f 1 by)y 5 2g , (18)o ]x

2]h ] y r
0 5 2g 1 A 2 y . (19)h 2]y ]x h

Close inspection of these equations reveals that, since
the velocity is only a function of x, the general form of
the surface elevation is

h(x) 5 h (x) 1 h (x)y.o 1 (20)

Therefore, the y momentum equation (19) becomes
2] y r

0 5 2gh 1 A 2 y . (21)1 h 2]x h

Due to the continuity conditions of pressure (17c) and
velocity (17a), Eq. (21) becomes

2 2d y d yc dA 5 A at x 5 l . (22)h h t2 2dx dx

The continuity of the y-independent surface elevation
ho(x) is automatically satisfied since the velocity is con-
tinuous and finite at the interface. Finally, the following
(dimensional) condition determines the amplitude of the
solution:

l `t

y h dx 1 y h dx 5 c . (23)E c E d o

0 lt

The result is that we have six boundary conditions;
hence, they are sufficient to solve the vorticity equations
(14) and (15). For future convenience, the six boundary
conditions are summarized here in nondimensional
form:

y (0) 5 0, (24a)c

y (`) is bounded (24b)d

l lt ty 5 y , (24c)c d1 2 1 2l lm m

l lt ty9 5 y9 , (24d)c d1 2 1 2l lm m

l lt ty 0 5 y 0 , (24e)c d1 2 1 2l lm m

l /l `t mlm y x dx 1 y dx 5 1. (24f)E c E dlt 0 l /lt m

4. The analytic solution

An analytic solution in terms of infinite series can
readily be found for the third-order system (14) and (15)
with the boundary, continuity, and flow conditions
(24a)–(24f). Considering Eq. (14) first, we can show
that there exists two linearly independent series solu-
tions of the form

`

ny (x) 5 a x , (25a)O1 n
n50

`

ny (x) 5 b x , (25b)O2 n
n50

where the coefficients are given recursively by

a (n 2 2)a 1 a1 n21 n23a 5 ,n n(n 2 1)(n 2 2)

a 5 0, a 5 1, (26a)0,2 1

a (n 2 2)b 1 b1 n21 n23b 5 ,n n(n 2 1)(n 2 2)

b 5 0, b 5 1. (26b)0,1 2

The third independent solution, y3(x), can be found
knowing the previous two and using the reduction

y y1 2y 5 y dx 2 y dx, (27)3 2 E 1 E2 2W W

where W 5 y1 2 y2 is the Wronskian. Thus they9 y92 1

general solution of (14) is

y 5 C y 1 C y 1 C y .1 1 2 2 3 3 (28)

However, we can show that y3(0) 5 1/2 and, since y1(0)
5 y2(0) 5 0, the boundary condition at x 5 0 is satisfied
only if C3 5 0. Therefore, the rather complicated so-
lution y3 is not part of our solution.

The characteristic polynomial for the constant coef-
ficient equation (15) is m3 2 a2m 2 1 5 0. For a2 $
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0, there is one root whose real part is always positive
and therefore eliminated by the condition at x going to
infinity. The two needed roots whose real parts are al-
ways negative are

Ï3A 1 B 3
m 5 2 6 (A 2 B)i, a , , (29a)1,2 2 32 2 Ï4

where

1/33A 1 4a25 1 6 1 2 , or (29b)
31 2 1 2!B 27Ï2

a f 2p 32m 5 2 cos 6 , a . , (29c)1,2 2 31 2! 3 3 3 Ï4

where

27
cosf 5 . (29d)

3!4a2

For a2 5 3/ then m1,2 5 21/ , which is the de-3 3Ï4 Ï2
generate case. The a2 , 3/ case is of most interest3Ï4
and has a solution in the form

2l(x2x )sy 5 D e cosv(x 2 x )1 s

2l(x2x )s1 D e sinv(x 2 x ), (30)2 s

where l 5 (1/2)(A 1 B), v 5 ( /2)(A 2 B), and xsÏ3
5 lt/lm. The remaining constants can be evaluated using
the conditions (24c)–(24f). From the continuity condi-
tions at x 5 xs, we can show that

D 5 C y (x ) 1 C y (x ), (31a)1 1 1 s 2 2 s

1
D 5 {C [y9(x ) 1 ly (x )]2 1 1 s 1 sv

1 C [y9(x ) 1 ly (x )]}, (31b)2 2 s 2 s

2 2y9(x ) 1 2ly9(x ) 1 (v 1 l )y (x )1 s 1 s 1 sC 5 2 C2 12 2y9(x ) 1 2ly9(x ) 1 (v 1 l )y (x )1 s 2 s 2 s

5 2KC . (31c)1

From (24f) we find:

1
C 5 S 2 KS 11 1 2 2 25 (v 1 l )

21

3 [2ly (x ) 2 2Kly (x ) 1 y9(x ) 2 Ky9(x )] ,1 s 2 s 1 s 2 s 6
(31d)

where

` an n11S 5 x , (32a)O1 sn 1 2n50

` bn n11S 5 x . (32b)O2 sn 1 2n50

So, using back substitution, all the arbitrary constants
can be evaluated and the solution is

C y (x) 1 C y (x), x , x1 1 2 2 sy (x) 5 (33)
2l(x2x )5 se [D cosv(x 2 x ) 1 D sinv(x 2 x )], x . x .1 s 2 s s

5. Results

We have examined the solution of the y-independent
vorticity equation, with the slope-induced torque, for
different ranges of lt, lm, and ls. We have found that only
when lt . lm, ls (specifically a1 . 1 or equivalently

. lm) the results are substantially different fromÏl lt s

the solution of the flat-bottom vorticity equation, which
has already been investigated exhaustively and reported
elsewhere (e.g., Pedlosky 1979, 1996). Furthermore, us-
ing a horizontal eddy viscosity of 100 m2 s21 (Bower
et al. 1985), a bottom friction coefficient of 1023 m s21

(Csanady 1982), and typical length scales for the South
Atlantic Bight, we get both ls and lm of order 10 km and
lt of about 100 km, which implies that the above con-
dition is met.

Figure 3 shows the velocity and vorticity profiles
when lm 5 ls. From the different lt cases considered it
may be appreciated that the axis of the boundary current

is shifted offshore as the width of the slope increases,
suggesting that the sloping topography has a significant
influence on the dynamics of the western boundary cur-
rent. Since the exact values of ls and lm are not known,
it seems pointless to examine the model results with
different values of these parameters.

Figure 4 shows the depth-integrated contribution of
each term in the vorticity budget when lt 5 2lm 5 2ls,
whose solution is depicted in Fig. 3. Over most of the
slope both the beta and bottom stress torque for constant
water depth terms are negative and the equation is bal-
anced due to the slope-induced bottom stress torque.
Furthermore, the creation of positive vorticity by this
torque results in an offshore shift of the current axis
(Fig. 3).

6. Discussion
We have found that the vorticity equation derived

from the vertically integrated momentum equations,
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FIG. 3. Zonal structure of (a) velocity and (b) vorticity for lt/lm 5
0, 2, 6, 10, and ls 5 lm as inferred from Eq. (33).

FIG. 4. Depth-integrated vorticity budget for lt 5 2lm and ls 5 lm as
inferred from Eq. (33).

with a linear bottom stress, introduces a new term that
is interpreted as a slope contribution to the bottom stress
torque. In his seminal study of the mean circulation in
a coastal zone, Csanady (1978) had already incorporated
a bottom stress torque that included the above contri-
bution. In that paper Csanady obtained a vorticity equa-
tion similar to the vorticity equation for topographic
wave generation, with linear friction replacing the time
derivative, and its solution was named the arrested to-
pographic wave. In that case the vorticity balance was
between the torque by both surface and bottom stress
and the torque by bottom pressure (see also Csanady
1982, p. 188). In the present study there is no external
forcing and the steady-state solution corresponds to a

balance between bottom stress torque and planetary vor-
ticity advection. This could be thought of as a reverse
Sverdrup balance, with poleward flow sustained by bot-
tom stress torque.

a. Depth-averaged or geostrophic velocities

We have shown that in the case under consideration
(depth-averaged flow is along isobaths) the bottom forc-
ing in the depth-averaged and quasigeostrophic vorticity
equations is exactly analogous, so our results may equal-
ly apply to one or the other. This fully analogous de-
pendence makes us anticipate that the difference be-
tween the actual depth-averaged and geostrophic veloc-
ity and vorticity values will be small, but it seems worth-
while to briefly examine the size of this difference.

In our case the coastal constraint holds away from
the coast, so uEdE 5 2hug, and using equation (9a) we
get that the relation between the alongshore and cross-
shore geostrophic velocities is given by ug 5 (ryg)/(fh).
The alongshore Ekman transport is then calculated as

2 2y d 5 (ru /f) 5 r /(fh) y h.E E g g

Hence, the cross-isobath geostrophic velocity (and
transport) is a factor r/(fh) smaller than the along-isobath
geostrophic values, while the along-isobath Ekman
transport is a factor r2/(fh)2 smaller than the along-iso-
bath geostrophic transport. Similarly, by substituting the
definition of the depth-averaged velocities [Eq. (8)] into
z 5 ]y/]x 2 ]u/]y it may be shown that the difference
between the depth-averaged and geostrophic vorticities
will be of (r/f)2d(yg/h2)/dx, which is typically a factor
r2/(fh)2 smaller than the geostrophic vorticity unless the
slope dh/dx is very large.

If the dimensional bottom friction coefficient is given
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by r 5 5 3 1024 m s21, for typical midslope depths of
about 500 m, the r/(fh) factor is about 0.01. This in-
dicates that the cross-isobath geostrophic transport is
much smaller than the alongshore geostrophic transport
and clearly confirms that the alongshore Ekman trans-
port is negligible. Equally, the difference between the
depth-averaged and the geostrophic vorticity will be
negligible.

When the depth-averaged flow is not along isobaths,
then the bottom forcing will differ by as much as the
cross-isobath term in Eq. (2) or (5). Because of the
coastal constraint, however, this term will usually be
small over the continental slope when the coast is suf-
ficiently long. Far from the coast, for example, over
seamounts, the cross-isobath term may be relatively im-
portant, and the solution of the depth-averaged and qua-
sigeostrophic vorticity equations may substantially dif-
fer.

b. Potential vorticity conservation

In section 2 we examined the interior problem, forced
through bottom Ekman pumping, for the particular case
when the depth-averaged flow is along isobaths. In this
case the Ekman bottom transport is compensated
through geostrophic cross-isobath flow, which is exactly
analogous to the slope-induced torque. It is illustrative
to appreciate the role of the geostrophic cross-isobath
flow by considering conservation of potential vorticity
for the linear balance:

D f 1 Df f Dh
[ 2 5 0, (34)

21 2Dt h h Dt h Dt

where h here is the thickness of interior material col-
umns. For the particular case of our analytical solution,
that is, there are no changes in the y direction, this last
equation becomes

f dh f ]h
by 5 u 1 . (35)g gh dx h ]t

In general, the thickness of the interior column is mod-
ified through bottom Ekman pumping as

]h ](u d ) ](y d )E E E E5 1 . (36)
]t ]x ]y

In our case the second term in the right-hand side is
zero because of the assumed y independence. Substi-
tuting back into Eq. (35) and using the expressions for
bottom Ekman transport [Eq. (9)] we get

dyf dh r g
by 5 u 2 . (37)g gh dx h dx

Since there are no changes in the y direction, the depth-
averaged continuity equation is

d(u d 1 u h)E E g
5 0. (38)

dx

So, because of the coastal constraint, we get uEdE 5
2ugh. Using Eq. (9a), we arrive at ug 5 (ryg)/(fh). Sub-
stitution of this equation into Eq. (37) leads to our con-
trolling equation (but without lateral friction):

ry dy d(y /h)dh rg g g
by 5 2 5 2r . (39)g 2h dx h dx dx

The first term on the right-hand side, proportional to
dh/dx, is always positive (negative) for northward
(southward) flow. The interpretation is that the stretch-
ing necessary for meridional flow takes place mainly
through cross-isobath water movement.

At this point it is worthwhile to emphasize the po-
tentially critical role played by the dynamics of the bot-
tom boundary layer. In our very simple representation
these dynamics are all hidden in the bottom friction
coefficient, which we have chosen as constant. We have
shown, however, that the bottom friction coefficient is
indeed proportional to the vertical eddy viscosity, so
this coefficient will surely change in the cross-isobath
direction depending on the dynamics of the interior flow,
inducing some type of feedback process. For the y in-
dependent case, the slope-induced bottom torque would
need to be replaced by y (rh21)x.

c. Meridional integrated transport

An argument against the potential importance of
Stommel’s (1948) bottom friction model has been that
where a western boundary current touches bottom, so
that bottom friction is high, its curl integrates to zero
because the velocity must be small at both sides of the
stream (Csanady 1988). For a flat bottom the simplified
balance between bottom stress curl and planetary vor-
ticity advection is given by (again with dimensional
variables)

r dy
by 5 2 , (40)

h dx

and the poleward transport integrated across the western
boundary section is zero:

L L y (L)r dy r
yh dx 5 2 dx 5 2 dy 5 0. (41)E E Eb dx b0 0 y (0)

This is not necessarily true anymore over the continental
slope. In this case the simplified balance is

d(y /h)
by 5 2r , (42)

dx

which, when integrated across the western boundary
section, leads to

L L Lr dy y dh
yh dx 5 2 dx 1 dxE E E5 6b dx h dx0 0 0

Lra y
5 dx (43)Eb h0
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FIG. 5. Zonal structure of velocity and vorticity when lt 5 2.4ls as
inferred from Eq. (45).

FIG. 6. Depth-integrated vorticity budget for lt 5 2.4ls as inferred
from Eq. (45).

after using dh/dx 5 H/lt [ a. The total transport now
depends on the ratio y/h, everywhere positive for north-
ward flow.

d. The general solution to Eq. (42)

The general solution to Eq. (42) is

xb
y 5 Ch exp 2 h dx , (44)E[ ]r 0

where C is the arbitrary constant. It is important to note
that, since the layer depth h(x) vanishes at the coast (x
5 0), the no-slip condition is automatically satisfied.
For the discontinuous shelf, the pressure must be con-
tinuous at the shelf break which, from the momentum
equations, means that y must be continuous. The arbi-
trary constant C is related to the flow rate and can be
readily determined by the matching condition.

The upshot is that the simple solution (44) of the
quasigeostrophic vorticity equation (42), with only the
bottom friction (including the slope-induced bottom
friction) and beta terms, satisfies the no-slip condition
even without lateral friction. Of course, this does not
mean that the solution will be as realistic as the one that
includes lateral friction. For a linear continental slope
this solution becomes


y bHl bHo t 2exp 2 x exp 2 x for x , lt1 2 1 2 l 2r 2rlt t

y (x) 5 
bH

y exp 2 x for x . l , o t1 2r

(45)

which is illustrated in Fig. 5. It is to be noted that the
vorticity is discontinuous at the shelf break (the match-
ing point) due to the absence of lateral friction. Nev-
ertheless, the solution is remarkably realistic, while pro-
viding a simple interpretation on the dynamics of west-
ern boundary currents.

The above solution illustrates that, as long as lt . ls,
the axis of the alongshore stream is located over the
continental slope, a feature frequently observed in many
western boundary currents including the Gulf Stream in
the South Atlantic Bight. A length scale for the offshore
displacement of the stream axis is given by L 5

, where a [ H/lt is the bottom slope. This scaleÏ2r/b·a
is identical to the width of the arrested topographic wave
(Csanady 1978) provided that b replaces fk, where k is
the wavenumber of the alongshore periodic wind stress
forcing. The length scale may also be written as L 5
(2 ltls)1/2, which is consistent with the observed feature
that the flow moves offshore with increasing lt. If lt ,
ls, then the length scale becomes ls itself, which is the
natural spatial scale arising from Eq. (42).

The depth-integrated vorticity budget is plotted in
Fig. 6. It confirms that the main balance is between
planetary vorticity advection and the slope-induced bot-
tom stress torque, while the torque acting on constant
depth columns has the same sign as planetary vorticity
advection over most of the slope and changes sign over
deep waters. The explanation for this is simple, as fol-
lows. The velocity increases from the western boundary
to the stream axis so that the vorticity induced by the
bottom stress curl (or torque on constant-depth water
columns) is negative on the cyclonic side of the stream
and positive on the anticyclonic side. On the other hand,
the slope-induced bottom stress torque is positive over
a steep slope because of the increasing difficulty for
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bottom stress to act over the seaward-deepening water
columns, despite its velocity also increasing seaward,
and turns to zero off the slope.

7. Conclusions

We have examined the character of the homogeneous
western boundary current flowing over the continental
slope. Our formulation combines three highly idealized
models: the Stommel model (Stommel 1948), the Munk
model (Munk 1950), and the arrested topographic wave
(Csanady 1978). The model is based on very crude rep-
resentations of the Reynolds fluxes at the bottom by a
linear bottom friction law, so we do not seek much
realism in the details of the solution. Even so, this study
clearly shows that the steepness of the continental slope
does play a very important role in determining the struc-
ture of the western boundary current.

In our simple representation, with a northward flow-
ing current independent of latitude and with a constant
bottom friction coefficient, the main vorticity balance
over the slope occurs between planetary vorticity ad-
vection and the slope-induced bottom torque. It is indeed
the slope-induced torque that allows a nonzero inte-
grated northward transport. Furthermore, this new term
satisfies the no-slip condition, even in the absence of
lateral viscosity. The simple solution for the case of no
lateral viscosity shows that the position of the stream
axis depends on the steepness of the slope. When the
width of the continental slope, lt, is larger than the Stom-
mel scale, ls, the scale for the offshore displacement of
the stream axis is (2 ltls)1/2.

We have further shown that, if the depth-averaged
flow is along isobaths, the bottom stress torque term
has the same dependence in both the depth-averaged
and the quasigeostrophic vorticity equations; that is, the
slope-induced torque caused by the geostrophic flow is
exactly equal to the stretching due to cross-isobath geo-
strophic flow. In this circumstance the governing equa-
tion may be interpreted either as the one controlling the
depth-averaged flow, the new term corresponding to a
slope-induced torque, or as the equation controlling the
interior geostrophic velocity, the new term correspond-
ing to the cross-isobath geostrophic flow. In our partic-
ular model of the western boundary current, with all
variables independent of latitude, the geostrophic and
depth-averaged vorticity and alongshore velocities turn
out to be numerically almost identical.

One question we should ask ourselves is what are we
really trying to model—the depth-averaged or the geo-
strophic velocities? The formulation for the forcing role
of the continental slope proposed here is quite general,
so the answer to this question will depend on the specific
problem under consideration. If we were modeling the
coastal ocean, then the answer would certainly be the
depth-averaged velocities, but, since we deal with
boundary flows over the continental slope, then we are
likely more interested in the geostrophic velocities.

From this point of view it is correct to say that the
latitude-independent continental slope allows water col-
umns to move poleward by flowing offshore and stretch-
ing out.

In order to describe properly the role of the conti-
nental slope on the dynamics of the barotropic western
boundary currents there are still many issues to be clar-
ified. In particular it is important to clearly identify the
role of alongshore pressure gradients (or across-isobath
flow) and the characteristics of the bottom boundary
layer over the slope, that is, the character of the feedback
mechanism between the bottom boundary layer and the
interior flow over the slope. Other effects, such as the
influence of stratification and the dynamic instability of
the boundary current, are undoubtedly very critical in
controlling the actual bottom stress torque over the
slope.
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