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ABSTRACT

DISTRIBUTION OF FREE MARINE VIRUSES OF LOWER 
CHESAPEAKE BAY AND THEIR EFFECTS ON LIFE-HISTORY PARAMETERS 

OF THE ESTUARINE COPEPOD ACARTIA TONSA DANA.

Lisa A. Drake 
Old Dominion University, 1997 
Director: Dr. Fred C. Dobbs

Naturally occurring viruses are very abundant in fresh, estuarine, and 

marine waters, with densities on the order of 105-108 viruses ml'1. Research has 

focused on virus effects on bacteria, cyanobacteria, and phytoplankton, as well 

as mechanisms of virus production and decay. However, little is known about the 

distribution of viruses in benthic environments or virus effects on organisms in 

higher trophic levels.

To determine the distribution of virus-like particles (VLPs) and bacteria in 

the lower Chesapeake Bay, vertical profiles of VLPs and bacteria were determined 

through the water column and 15-25 cm into the sediment at five stations. VLPs 

were about ten times more abundant in sediment pore water (3.7 x 108 VLPs ml'1) 

than in the water column (3.8 x 107 VLPs ml'1). Similarly, bacteria counts were 

about three times higher in sediment pore water (6.4 x 10s bacteria ml'1) than in 

the water column (2.4 x 10s bacteria ml'1). In the water column, VLP and bacteria 

counts exhibited significant differences among stations, with highest values on the 

southern side of the Bay mouth. In the sediment pore water, VLP abundance 

varied with depth and was negatively correlated with grain size. Bacteria 

abundance was highest at the sediment-water-interface, decreased in the first cm
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of sediment, was uniform in the deeper horizons, and showed no significant 

relationship with grain size. These are the first data indicating the abundance of 

VLPs below the surface layer of sediment in aquatic systems and demonstrate 

that VLPs are components of the sediment microbial community.

To evaluate virus effects on zooplankton, concentrated VLPs were added 

to cultures of Acartia tonsa, then egg production, egg hatching success, and 

mortality of copepods were measured. Elevated VLP concentrations were 

obtained by concentrating the virus-size fraction of fresh seawater or water from 

copepod cultures. Across six experiments, no detrimental effects of viruses on 

copepods were demonstrated. Similarly, adding pulverized copepods and 

copepod exudates to water containing healthy copepods yielded no measurable 

detrimental effect. Therefore, there was no support for the hypothesis that viruses 

infect and negatively affect the longevity and fecundity of A. tonsa.
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CHAPTER I 

INTRODUCTION

Naturally-occurring viruses in seawater are abundant, with densities on the 

order of 104-108 viruses ml*1 (e.g., Larsson et al., 1978; Torrella and Morita 1979; 

Bergh et al., 1989; B0rsheim et al., 1990; Heldal and Bratbak, 1991; Weinbauer 

and Suttle, 1997; see review by Proctor, 1997). Viruses are found in a variety of 

environments, including estuarine (Wommak et al., 1992), coastal (Barsheim et al., 

1990), coral reef (Paul et al., 1993), oceanic (Cochlan et al., 1993), deep water 

(Hara et al., 1996), and high-latitude systems (Bird et al., 1993; Steward et al., 

1996). They infect bacteria (Smith and Krueger, 1954; Spencer, 1955; Frank and 

Moebus, 1987; Proctor and Fuhrman, 1992; Barsheim, 1993; Weinbauer and 

Suttle, 1996; Wilson and Mann, 1997), cyanobacteria (Proctor and Fuhrman, 1990; 

Suttle et al., 1990; Suttle and Chan, 1993; Waterbury and Valois, 1993; Wilson et 

al., 1993), eukaryotic phytoplankton (e.g., Mayer and Taylor, 1979; Seiburth et al., 

1988; Suttle et al., 1990; Muller et al., 1996; see review by Van Etten et al., 1991 

and reviews cited therein), including bloom-forming species (Milligan and Cosper, 

1994; Nagasaki et al., 1994; Jacobsen et al., 1996), heterotrophic nanoflagellates 

(Nagasaki et al., 1993; Garza and Suttle, 1995), and crustaceans (Vago, 1966; 

Kuris et al., 1979; see review by Johnson, 1983). Although their widespread 

occurrence in marine organisms has only become evident within the last 20 years, 

it is not surprising, given the widespread occurrence of viruses in terrestrial and

The model journal for this document is Applied and Environmental Microbiology.
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freshwater bacteria (Safferman and Morris, 1963), plants (Fry, 1996), and animals 

(Adams and Bonami, 1991).

The term "virus", Latin for "slimy liquid" or "slime", has been used since at 

least the first century AD. In his discussion of canine rabies, Roman encyclopedist 

Cornelius Aulus Celsus stated, "Especially if the dog is rabid, the virus should be 

drawn out with a cupping glass" (Hughes, 1977). Celsus' use of the word "virus" 

in his writing either may indicate his understanding that rabies was transmitted via 

saliva, or reflect the most common connotation of virus at that time, which was 

"poison" or "venom" (Waterson and Wilkinson, 1978).

It was not until the late nineteenth century that scientists recognized the 

infectivity of particles smaller than most bacteria. The discovery of the virus is 

usually attributed to Dimitri Isoifovich Ivanovski and Martinus Willem Beijerinck. 

Both documented that tobacco mosaic virus, the agent which causes mottling of 

tobacco leaves, remained infectious after passage through a bacterial filter. 

Ivanovski demonstrated this phenomenon in 1892; Beijerinck independently 

discovered the same in 1898 and described the agent as "contagium vivum 

fluidum" (Waterson and Wilkinson, 1978). Although Ivanovski was technically the 

first person to discover that particles smaller than bacteria were infectious, he 

incorrectly postulated that the infectious quality was due to a bacterial toxin or 

perhaps a bacterium which had passed through a large crack in the filter (Hughes, 

1977). Six years later, Beijerinck correctly hypothesized that the infectious, 

filterable fluid was a noncellular entity.

Shortly after the first discovery of a plant virus, animal and bacterial viruses

i!
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were discovered. The first documented animal virus, the agent of bovine foot and 

mouth disease, was reported in 1898 by Friedrich Johannes Loffler and Paul 

Frosch. Viruses of the bacteria were discovered by Frederick W. Twort in 1916 

and by Felix d'Herelle in 1917; D'Herelle called the viruses "bacteriophage", for 

"bacteria eaters" (Levine, 1992). Since the coining of the word bacteriophage, it 

has been shortened to "phage". A virtual explosion of virus research has occurred 

since these landmark discoveries. Technological advances, such as the 

development of the electron microscope and the elucidation of the structure of DNA 

(Watson and Crick, 1953), have helped us determine the biochemical structures 

as well as life histories of viruses that infect both terrestrial and marine organisms.

Viruses in the Marine Environment 

Life histories of marine viruses suggest that their abundance is either tied 

to the processes that govern the abundances of microbial and larger organisms, 

or that viral abundances are linked directly to the organisms. Free-living viruses 

exhibit 10-4000 fold seasonal variations in abundance (Bergh et al., 1989; Bratbak 

et al., 1990; Wommack et al., 1992). Virus concentrations decrease from coastal 

waters to offshore waters and from surface to deeper waters (Hara et al., 1991; 

Paul et al., 1991; Cochlan et al., 1993). These trends in abundance are also seen 

in organisms in the classical (Ryther, 1969) and the microbial (Hara et al., 1991) 

food webs. Other aspects of viral life cycles that suggest their importance in 

carbon flow are the rapid changes in virus concentrations that can occur, the 

sometimes sudden decay of viruses (Bratbak et al., 1992), and the presence of 

virus-like particles in sediment-trap debris (Proctor and Fuhrman, 1991; Gowing,

i
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1993).

Historically, marine viruses were not considered important components of 

marine ecosystems. It was assumed until recently that the number of marine 

bacteriophage was low, 10°-104 plaque forming units (PFU) per ml of seawater 

(Moebus, 1987). In retrospect, this assumption emerged because counting 

methods were poor. As summarized by Moebus (1987), 'The failure of attempts 

to detect marine bacteriophages is probably due to the lack of suitable methods, 

as was the case during the first half of this century when no phage could be found 

in offshore waters". Densities of bacteria-infecting viruses were estimated by a 

plate method; PFUs on host bacterial lawns were counted. A plate method was 

also used to determine the abundance of bacteria in marine waters, but has been 

virtually discarded because fewer than 1% of naturally occurring marine bacteria 

can be cultured (Jannasch and Jones, 1959). If laboratory-grown bacteria are 

underestimated by two or more orders of magnitude, it is probable that the number 

of bacteriophage are grossly underestimated when enumerated by number of 

PFUs. Indeed, the PFU method of enumeration of bacteriophage has been shown 

to be inadequate (e.g., Bergh et al., 1989). New counting methods using 

transmission electron microscopy and epifluorescent microscopy have shown that 

free virus concentrations in seawater can range from 104-108 viruses mr1 (e.g., 

Proctor and Fuhrman., 1990; Heldal and Bratbak, 1991; Hara et al., 1991; Cochlan 

et al., 1993; Weinbauer and Suttle, 1997). Another factor that probably contributed 

to the earlier underestimation of marine bacteriophages is host specificity of 

viruses. If a seawater sample that contained bacteriophage was plated onto a

i)
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bacteria strain for which the bacteriophage was not specific, no plaques would be 

produced, causing a researcher to erroneously conclude that no bacteriophage 

were present. Indeed, marine bacteriophage and cyanophage can exhibit host 

specificity (Spencer, 1955; Suttle and Chan, 1993).

Statement of the Problem 

To date, most research on viruses in seawater has focused on either the 

ecology of viruses in the water column or the human-health risks of specific 

pathogens found in sediments near sewage outfalls or in shellfish tissues. 

Research results from the last decade suggest that the hosts for the majority of 

free viruses in marine and freshwater systems are bacteria. Thus, any 

investigation of free viruses should include a concurrent investigation of naturally- 

occurring bacteria. Given the widespread distribution of viruses in seawater and 

freshwater and their occurrence in surface sediment samples, I hypothesized that 

viruses are also found in subsurface sediments in marine environments and they 

play a role in structuring sedimentary communities, as they do in the water column. 

To address this hypothesis, I examined a subset of the microbial community— 

viruses, bacteria, and phytoplankton-and physical characteristics of the sediments 

and the water column across the mouth of Chesapeake Bay.

Research on the ecology of viruses in the water column has concentrated 

on microbial populations and primary producers, with little investigation of virus 

effects on organisms in higher trophic levels. Experimental evidence has shown 

that cell lysis by viruses occurs in bacteria and phytoplankton, and causal 

relationships between viruses and overall health of aquaculture crustaceans have

I
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been demonstrated. Given the widespread occurrence of viruses and virus-like 

particles in bacteria, cyanobacteria, phytoplankton, crustaceans, sediment trap 

debris, and in the water column, it is reasonable to assume that crustacean 

zooplankton are also infected with viruses. Due to the prominence of copepods in 

the marine ecosystem, the motivation exists to investigate the interactions between 

copepods and viruses. I hypothesized that viruses infect copepods and negatively 

influence copepod populations by reducing their egg production and increasing 

their mortality. I performed a series of experiments to demonstrate infection of the 

copepod Acartia tonsa Dana by viruses.

iI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r

7

CHAPTER II

VERTICAL PROFILES OF VIRUS-LIKE PARTICLES AND 

BACTERIA IN THE WATER COLUMN AND SEDIMENTS OF 

CHESAPEAKE BAY

Although the existence of aquatic viruses has been known for decades 

(Spencer, 1955; Valentine et al., 1966; Torrella and Morita, 1979), their 

prominence as functional members of aquatic microbial communities first was 

hypothesized when high numbers, on the order of 106-108 viruses and virus-like 

particles (VLPs) ml*1, were counted in fresh- and saltwater environments (e.g., Berg 

etal., 1989; Bersheim et al., 1990; Klutand Stockner, 1990; Hara et al., 1991; Paul 

et al., 1993). Subsequent field and laboratory experiments demonstrated that 

viruses can control aquatic microbial populations at various trophic levels. At the 

bottom of the microbial food web, for example, bacteria can be killed by viruses at 

a rate equal to or greater than mortality caused by the agents thought to be their 

primary grazers, heterotrophic protozoans (Proctor and Fuhrman, 1990; Weinbauer 

and Peduzzi, 1994; Fuhrman and Noble, 1995; Weinbauer et al., 1995). 

Furthermore, up to 62% of the mortality of free-living marine bacteria and 52% of 

particle-associated marine bacteria may be attributable to viruses (Proctor et al., 

1993), with an average of 20% of marine bacteria infected (Suttle, 1994).

Viruses can exert profound effects on phytoplankton populations. Viruses 

and VLPs have been found in marine phytoplankton and cyanobacteria (e.g., 

Proctor and Fuhrman, 1990; Van Etten et al., 1991; Muller and Stache, 1992;

A
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Muller et al., 1996), and viruses specific for eukaryotic algae (Mayer and Taylor, 

1979; Cottrell and Suttle, 1991; Lanka et al., 1993; Milligan and Cosper, 1994; 

Cottrell and Suttle, 1995; Muller et al., 1996) and cyanobacteria (Waterbury and 

Valois, 1993; Suttle and Chan, 1993; Wilson et al., 1993) have been isolated. The 

presence of viruses nearby (Bratbak et al., 1990) and within (Sieburth et al., 1988; 

Nagasaki et al. 1993; Bratbak et al., 1993; Brussard et al., 1996) marine 

phytoplankton cells during and at the end of algal blooms suggests that viruses 

negatively affect high-density algal populations. Laboratory experiments have 

demonstrated viruses indeed can have detrimental effects on phototrophs. Suttle 

et al. (1990) added concentrated viruses to a wide variety of primary producers and 

observed a 70-95% decrease in in vivo fluorescence. Similarly, primary 

productivity decreased as much as 78% following addition of concentrated viruses 

to natural seawater samples (Suttle, 1992). The genetic variation in marine algal 

viruses (Cottrell and Suttle, 1991; Chen et al., 1996) may indicate analogous 

complexity within the entire marine viral community.

Higher up the trophic gradient, marine microzooplankton are also infected 

by viruses. Nagasaki et al. (1993) estimated that 20% of an unidentified 

apochlorotic flagellate population associated with a dinoflagellate bloom was 

infected with VLPs. Garza and Suttle (1995) isolated a virus that infects and lyses 

2 strains of the heterotrophic nanoflagellate genus Bodo, and it can reduce 

flagellate abundance almost 100-fold in 48 h. In another ecological niche, viruses 

can be ingested by flagellates (Suttle and Chen, 1992; Gonzalez and Suttle, 1993). 

At high virus concentrations, flagellates grazing on viruses can acquire up to 9%

il
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of the carbon, 14% of the nitrogen, and 28% of the phosphorus that they acquire 

by grazing on bacteria (Gonzalez and Suttle, 1993).

Given the potential for viruses to control marine and freshwater microbial 

communities (Hennes and Simon, 1995; Hennes et al., 1995; Mathias et al., 1995; 

Middelboe et al., 1996) and, therefore, production of dissolved organic matter 

(DOM) and nutrient cycling, the effects of viruses have been incorporated into 

models of marine pelagic microbial food webs (Bratbak et al., 1992; Bratbak et al., 

1994; Murray and Eldridge, 1994). On the other hand, much less is known about 

the abundance, distribution, and functional role of viruses in sediments. There are 

only a few reports concerning benthic viruses, all of which have demonstrated 

viruses to be more abundant in surface sediment and sediment pore water than in 

the overlying water. Viruses were 10-1,000 times more abundant in the top 1 cm 

of sediment in Lac Gilbert, Canada than in the water column (Maranger and Bird, 

1996). Similarly, viral counts in surface sediments in Key Largo and Tampa Bay, 

U.S.A. were almost 100 to 1,000 times greater than counts from the water column 

(Paul et al., 1993; Rose and Reynolds, unpublished data). Viruses in pore water 

squeezed from the uppermost cm of sediment from the Chukchi Sea were about 

9 times more abundant than viruses in the surface water (Steward et al., 1996).

There have been no reports of viruses below the surface horizon of the 

sediment. In this dissertation, I present vertical profiles of virus-like particles and 

bacteria at the mouth of a large estuary, profiles that extend from surface waters, 

through the water column, and into the sediment. I use these data to infer possible 

functional roles of VLPs in the sediment communities of coastal areas.

A
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Materials and Methods

Study site. Samples were collected on 4 March 1997, during the spring 

phytoplankton bloom (Dobbs et al., unpublished data), at five stations along a 

transect across the mouth of the Chesapeake Bay (Fig. 1; station coordinates listed 

in Appendix A).

Water-column samples. A Seabird Model 25 CTD was used to determine 

vertical profiles of water temperature, salinity, and density. A submersible pump 

was used to collect three independent water samples from the surface, mid-depth, 

and one meter above the bottom at each station. The pump was flushed for 1 

minute at each depth before three independent samples were taken for direct 

counts of virus-like particles (VLPs) and bacteria, and for determination of 

chlorophyll a concentration. For VLP counts, approximately 1 ml of seawater was 

poured into sterile microfuge tubes. For bacteria counts, 10 ml of seawater was 

transferred to glass vials containing 750 iA of filtered (0.2 [A) formalin (2.6 % final 

concentration of formaldehyde). Chlorophyll a samples were taken by filtering 100 

ml of seawater onto 47 mm-diameter glass fiber filters (GF/F Whatman) at a 

vacuum pressure of 150 mm Hg.

Box-coring device. A spade-type box coring device with a rectangular core 

(10.5 cm x 17.5 cm x 35 cm) was used to collect sediment with a minimum of 

disturbance. The device had a hinged cutting arm that sealed the sample in situ.

Sediment pore-water samples. At each station, the boxcore was deployed 

three times, thus, triplicate sediment samples were collected. The vertical profile 

of sediment collected by the boxcore was exposed, and samples were removed

J
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FIG. 1. Map of lower Chesapeake Bay, with stations indicated by numbers.
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from six horizons: sediment-water interface, 0-1 cm, 1-2 cm, 2-3 cm, 3-4 cm, and 

deep (1 cm sample between 11 -27 cm depending on the depth of the core) 

(depths are relative to the sediment-water interface). Samples of sediment for VLP 

and bacteria counts in sediment pore water were collected in sterile 15 ml 

disposable centrifuge tubes. Samples for determining sediment characteristics 

were collected in glass vials. Samples for VLP and bacteria counts were 

centrifuged in a Damon/IEC Division HN-S centrifuge for 10-50 minutes at ca. 745 

x g to express pore water. Water-column and sediment pore-water samples for 

VLP counts were diluted 2x and 100x, respectively, with 0.02 //m-filtered distilled, 

deionized water.

VLP enumeration and counting accuracy. VLPs were counted using the 

method of Hennes and Suttle (1995). Briefly, water samples were diluted with 

0.02 /zm-filtered distilled, deionized water, filtered onto 0.02 ^m-pore size 

Acrodisc™ filters, and stained with the nucleic acid stain YO-PRO™-1 iodide 

(491/509) (Quinolinium,4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1 -[3- 

(trimethylammonio)propyl]-,diiodide). Filters were stored in the dark at -85°C until 

they were randomly chosen (in groups of two), thawed in the dark at room 

temperature for ca. 5 minutes, and VLPs on them were counted using an Olympus 

BX50 System Microscope with a BX-FLA epifluorescence attachment. See Plates 

1 a and 1 b for micrographs of water-column and sediment pore-water samples 

collected at station 5, then diluted 2 x and 100 x, respectively, with 0.02 //m-filtered 

distilled, deionized water, stained with YO-PRO™-1, and examined by 

epifluorescent microscopy.

*!
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PLATE 1. Micrograph of water-column sample (a) and sediment pore-water 

sample (b) stained with YO-PRO™-1 and examined by epifluorescent microscopy. 

VLPs are the round, green circles; bacteria are bigger, irregularly shaped, and 

more yellow than VLPs; detritus particles are yellow. Magnification = 1,000 x

j
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Five control filters were prepared using 0.02 /im-filtered distilled, deionized 

water and the average of their VLP counts was subtracted from field samples. In 

order to determine the number of microscopic fields necessary to estimate 

accurately the number of VLPs on a filter, a running variance:running mean ratio 

was calculated from VLP counts of sediment pore water collected at Station 3.

Epifluorescent and transmission electron microscopy of VLPs. To practice 

using the YO-PRO™-1 technique to enumerate viruses, coliphage T2 (Carolina 

Biological Supply Company) were stained with YO-PRO™-1 and examined by 

epifluorescent microscopy. To confirm that YO-PRO™-1 stained viruses, 

qualitative comparisons of coliphage were made using epifluorescent and 

transmission electron microscopy (TEM). Densities of coliphage prepared for 

epifluorescent and electron microscopy were 1.4 x 107 ml'1 (determined by direct 

counts) and 1.2 x 1010 ml'1 (determined by Carolina Biological Supply Company), 

respectively.

To confirm that YO-PRO™-1 stained viruses in sediment pore water, 

qualitative comparisons of VLPs in sediment pore water were made using 

epifluorescent microscopy and TEM. The sediment pore water was expressed 

from sediment collected at station 5, and it was not diluted.

Samples of coliphage and sediment pore water were prepared for TEM as 

follows: for 60 minutes, each of 3 formvar-coated copper mesh grids was floated 

with the formvar side down on a drop of coliphage or sediment pore water that was 

fixed with electron-microscopy grade glutaraldehyde (final concentration = 1 %), 

then each grid was rinsed by submerging it in each of 3 drops of deionized water.

I
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Grids were stained for 10 s with uranyl acetate by floating grids upside down on a 

drop of stain, then grids were examined at an accelerating voltage of 60 or 80 kV 

and a magnification of 10,000 x - 100,000 x on a JEOL 100CX II transmission 

electron microscope.

Efficiency of VLP extraction from sediment pore water. A known 

concentration of coliphage T2 in 0.85% saline was added to archived sediment 

from the study site, pore water was expressed by centrifugation, and VLPs were 

counted as described above. Extraction efficiency was determined by dividing the 

VLP counts in coliphage-amended sediment pore water (n = 4) by the sum of VLP 

counts in un-amended pore water (n = 3) plus VLP counts of coliphage only (n = 

4). Again, VLP counts were determined as described above.

VLPs vs. dissolved DNA. It is conceivable that YO-PRO™-1 could stain 

dissolved DNA, thereby resulting in inflated estimates of VLP abundance. Hennes 

and Suttle (1995) demonstrated this scenario is unlikely when YO-PRO™-1 is used 

to enumerate VLPs in water-column samples. However, it was appropriate to test 

this possibility using sediment pore water given that sediments are the ultimate 

burial site for DNA produced in the water column and are host to high numbers of 

bacteria (Rublee, 1982), a potential source of dissolved DNA.

VLP counts were compared between sediment pore-water samples treated 

with the DNA-degrading enzyme Deoxyribonuclease I (DNase I) and control 

samples. In September 1997, sediment was collected from Station 5 and pore 

water was expressed as previously described. Two hundred-fifty Kunitz units of 

DNase I (type II, from bovine pancreas, Sigma Chemical Company, D-4527) in

L
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25 fi\ of 0.15 M NaCI were added to a 1-ml sample of sediment pore water and 

incubated at room temperature for 30 minutes (Suttle, 1993; Hennes and Suttle, 

1995). (0.15 M NaCI, equivalent to 8.8 ppt NaCI, is approximately the salinity of 

physiological saline, and it was used as a carrier solution for the DNase according 

to the recipe provided by Sigma Chemical Co.) This amount of DNase will digest 

several fig ml'1 of DNA (Hennes and Suttle, 1995), a concentration 100-1000 times 

greater than the amount of DNA dissolved in the water column. Dissolved DNA 

values range from 0.2 - 44 f i g  I'1 for deep offshore water and estuarine water, 

respectively (DeFlaun et al., 1986). To a 1-ml control sample of pore water, 25 f iI 

of 0.15 M NaCI were added, and the sample was also incubated. Next, both the 

control and experimental samples were diluted 100x, four subsamples were 

removed from each, and VLPs were enumerated by epifluorescence microscopy. 

A colleague randomly labeled the subsamples before the VLPs were enumerated 

so that the VLPs were counted without my knowing which treatment they 

represented.

To confirm the DNase digested DNA in seawater, its activity was assayed. 

Two hundred-fifty Kunitz units of DNase were added to 35 fig ml'1 of DNA (Type I, 

“highly polymerized” from calf thymus, Sigma Chemical Company, D-1501) in 

seawater (salinity = 20, assumed to be representative of the salinity of the pore 

water collected at stations 1-5), and the temporal change in absorbance at 260 nm 

was monitored using a Shimadzu UV-Visible Recording Spectrophotometer 

UV160U.

Bacteria enumeration. Samples were stored in the dark at 4°C for less than

1
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six weeks until they were filtered onto 0.2 /^m black polycarbonate filters (Poretics) 

and stained with the nucleic acid stain DAPI (4' 6-diamidino-2-phenylindole) (final 

concentration of 1 vg ml'1) (Porter and Feig, 1980). Filters were stored in the dark 

at -85°C until the bacteria were counted using epifluorescence microscopy (see 

above).

Chlorophyll a determination. Filters were wrapped in foil and stored at -85 °C 

until they were homogenized, and chlorophyll a was extracted in acetone and 

measured fluorometrically (Parsons et al., 1992).

Sediment characteristics. Sediment from the study site was analyzed to 

determine its particle size, water content, and combustible fraction. To determine 

particle-size distribution, samples from the 0-1 cm horizon and deep horizon (n = 

3 per horizon) were wet-sieved through a series of nested sieves (1000, 500, 250, 

125, and 63 /um) using distilled water. The fraction < 63 y.m was collected by 

vacuum filtration on dried filters (Whatman GF/F). All fractions were placed into 

tared aluminum dishes and dried to constant mass at 60° C. Mean grain size was 

calculated as Folk’s (Folk, 1980). To determine water content, whole 

sediment samples from all six horizons (n = 3 per horizon) were weighed, then 

dried to constant mass at 60°C. To determine the combustible fraction, a 

surrogate measure of organic content, samples from all horizons (n = 3 per 

horizon) were placed in tared aluminum dishes, dried overnight at 60°C, 

combusted for 4 h at 450°C, cooled in a desiccator, and weighed again to 

determine the mass difference following combustion.

£
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Results

Hydrographic data. The water column was strongly stratified at all stations 

across the mouth of the bay, based on changes of temperature and salinity with 

depth (Fig. 2a-c). Water temperature ranged from 7.6° (Station 1, surface) to 

8.9 °C (Station 5, mid-depth), and salinity ranged from 16.2 (Station 4, surface) to 

28.0 (Station 1, bottom). Density profiles (sigma-t) were forced by salinity at 

Stations 1-3 and by both temperature and salinity at Stations 4 and 5. Average 

chlorophyll a values in water-column samples ranged from 7.7 (Station 5, bottom) 

to 19.5 mg nrr3 (Station 4, bottom). A consistent pattern among stations was an 

increase in the average chlorophyll a concentrations in the water over the core 

(WOC) samples relative to the deepest water-column samples (Fig. 2d).

VLP controls and counting accuracy. The mean of the control filters, 4.31 x 10s 

VLPs ml'1 (S.E.=7.0 x 104), was 1.1% and 0.12% of the grand means of VLP counts 

in the water column and sediment pore water, respectively. A running 

variance:running mean ratio was calculated to determine the number of 

microscopic fields necessary to estimate accurately the quantity of pore water 

VLPs on a filter (Fig. 3). The ratio stabilized after eight 100/um x 100//m fields 

were counted, with an average number of 33 VLPs per field. For all samples in 

this study, therefore, VLPs in ten fields were counted on each filter. 

Epifluorescent and transmission electron microscopy of VLPs. A qualitative 

examination of coliphage T2 prepared for epifluorescent and TEM demonstrated 

abundant viruses in both cases (Plates 2 and 3). Examination of undiluted 

sediment pore water showed numerous VLPs (Plate 4), and TEM examination

i i
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FIG. 2. Water-column profiles of temperature (a), salinity (b), sigma-t (c), and 

chlorophyll a (d) at stations 1-5. Data in plot (d) are mean values (n = 2-3) ± 1 SE 

(for data with n = 3); data points not connected to others are samples from water 

over the box core (WOC).
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PLATE 2. Micrograph of coliphage T2 stained with YO-PRO™-1 and 

examined by epifluorescent microscopy. Coliphage are the round, yellow 

circles. Magnification = 1,000 x

J
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PLATE 3. Micrograph of coliphage T2 stained with uranyl acetate and examined 

with transmission electron microscopy. Magnification = 19,000 x.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 5

PLATE 4. Micrograph of sediment pore water stained with YO-PRO™-1 and 

examined by epifluorescent microscopy. VLPs are the round, green circles; 

bacteria are bigger, irregularly shaped, and more yellow than VLPs; detritus 

particles are yellow. Magnification = 1,000 x
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showed virus-like heads with diameters of 34 - 43 nm (Plate 5).

VLP extraction from pore water. Mean efficiency of VLP extraction using 

coliphage T2 was 65.3% (SE = 2.9) (Fig. 4). VLP counts from field samples were 

not corrected to reflect this efficiency however, because viruses used for the 

efficiency test were a monoculture of one size class (70 nm x 100 nm head 

diameter), and they did not reflect the size range of VLPs in the water column of 

natural seawater, typically 20 to 250 nm head diameter (Fuhrman and Suttle, 

1993), with smaller viruses most abundant (30-60 nm, Bergh et al., 1989, 

Wommack et al., 1992; < 60 nm, Bratbak et al., 1990, Cochlan et al., 1993).

VLPs vs. dissolved DNA. There was no significant difference in the 

concentration of VLPs in DNase-treated pore-water samples and control samples 

(p = 0.1564, t-test, SAS version 6.09, Fig. 5). The DNase assay showed 

degradation of DNA within 10 minutes and a change in absorbance of 0.0012 min'1 

ml'1 of DNA substrate (p = 0.0001, regression analysis, Fig.6).

VLPs in the water column and in sediment pore water. VLP concentrations 

were about 10 times higher in sediment pore water samples (grand mean = 3.7 x 

108 VLPs ml'1) than in the water column samples (grand mean = 3.8 x 107 VLPs 

ml'1) (Fig. 7) (p = .0001, Wilcoxon rank sum test). Mean VLP concentrations were 

similar throughout the water column within each station (Table 1). Mean VLP 

concentrations varied significantly among stations (range = 2.6 to 5.8 x 107 VLPs 

ml'1), increasing steadily from Station 1 to 5 (north to south) along the transect (p 

= 0.037,1-way ANOVAon ranked data; Conover and Iman, 1981; Potvin and Roff, 

1993) (Table 1). In contrast, mean VLP concentrations in the sediment pore water

jL
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PLATE 5. Micrograph of sediment pore water examined by transmission electron 

microscopy. Virus-like head diameters are 34 - 43 nm. Magnification = 58,000 x.
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FIG. 7. Distribution of VLPs through the water column and into the sediment at 

stations 1-5. Data are mean values (n = 2-3) or single observations. Error bars (± 

1 SE) are used when n = 3. WOC = water over box core; dashed line indicates the 

sediment-water-interface.
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TABLE 1. Grand means3 of VLPs and bacteria in the water column (WC) and 

sediment (SED) at stations 1-5b.

Station

VLP ml'1x 107 Bacteria ml"1 x 10s

WC SED WCC SED

1 3.03s 34.16^ 2.34AS 6.71A

2 3.25s 44.43a 2.13s 6.16A

3 3.63s 38.46ab 2.46AB 5.93A

4 4.26AS 21.69s 2.49^ 7.34A

5 5.00A 39.57^ 2.49A 6.47A

3Data are mean values (n= 6-18)

bSuperscripts represent results of a posteriori tests. Tukey’s Studentized 

Range (HSD) Test was used for sediment data (sample sizes were unequal), 

Ryan-Einot-Gabriel-Welsch Multiple F test for water-column data (sample sizes 

were equal). Means with different letters are significantly different within the 

column (p<0.05).

cSamples from water over the core (WOC) excluded from calculations.

1
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samples were more variable (range = 1.9 to 7.1 x 10® VLPs ml-1) at each depth 

horizon and with depth in the sediment. Although VLP concentrations were 

significantly different among stations, they did not exhibit the steady north to south 

increase seen in the water-column values (p = 0.0007, 1-way ANOVA on ranked 

data) (Table 1). A consistent pattern among stations was a 7.3- to 18.7-fold 

increase in average VLP concentrations in sediment-water-interface samples 

relative to WOC samples.

Bacteria in the water column and sediment pore water. Bacteria 

concentrations were higher in the sediment pore water samples (grand mean = 6.4 

x 106 cells ml1) than in the water column samples (grand mean including and 

excluding WOC samples = 3.3 x 10s cells ml'1 and 2.4 x 10s cells ml'1, respectively) 

(n = 1-3) (Fig. 8), a significant difference (including and excluding WOC samples, 

p = 0.0001, Wilcoxon rank sum test). Mean bacterial densities were similar 

throughout the water column (range = 1.7 to 3.3 x 10® cells ml'1), but increased 

about three-fold in the water overlying the sediment in the boxcore. Differences in 

water-column bacteria densities among stations were significant, with highest 

values at the southernmost station, when WOC samples were excluded from the 

calculations (p = 0.038, 1-way ANOVA on ranked data) (Table 1). Within the 

sediment pore water, mean bacterial concentrations were maximum at the 

sediment-water interface, decreased in the first cm, and ranged little (4.3 to 6.7 x 

10® cells ml'1) down to 15-25 cm depth (Table 1, Fig. 8). Bacterial densities in the 

sediment pore water did not vary significantly among stations (Table 1).

Virus to bacteria ratio (VBR). The average VBR in the water column was similar

I
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FIG. 8. Distribution of bacteria through the water column and into the sediment 

at stations 1 -5. Data are mean values (n = 2-3) or single observations. Error bars 

(± 1 SE) are used when n = 3. WOC = water over box core; dashed line indicates 

the sediment-water-interface.
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among stations and ranged from 11.8 to 17.2 (Fig. 9). The lowest VBR at each 

station was in the WOC sample (Fig. 9), a result caused by the high bacterial 

counts in these samples (Fig. 8). Within sediment pore water, the average VBR 

was consistently higher and more variable and ranged from 29.3 to 84.7 (Fig. 9).

Sediment characteristics. The sediments from each station consisted of very 

fine to medium sand, with mean particle size varying from 99 to 370 nm and an 

average silt-clay percentage varying from 2.9 to 30.7% (Table 2). The average 

water content of the sediment ranged from 16.8 to 32.1 % across stations (Fig. 10). 

The average combustible fraction of sediment from all stations ranged 0.3 to 2.1 % 

(Fig. 10). Percent water covaried with percent combustibles, otherwise, there 

were no trends among stations.

Property-property plots. A series of scatter plots were constructed to infer 

possible relationships between the sediment parameters and the biological 

parameters. A significant correlation between VLPs and bacteria occurred in the 

water column samples when WOC data were excluded from the calculations 

(Spearman’s coefficient, rs, = 0.31; p = 0.04) (Fig. 11a). Note that VLP 

concentrations varied much less in the water column than in the sediment pore 

water. When only sediment samples were examined, there was a significant 

negative correlation between VLP counts and mean particle size (Spearman's 

coefficient, rs, = -0.41, p = 0.043) (Fig. 11d). There were no significant correlations 

between VLP abundance and percent water content or percent combustibles (Figs.

11b,c).

i i
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FIG. 9. Virus to bacteria ratio (VBR) through the water column and into the 

sediment at stations 1-5. Data are mean values (n = 2-3) or single observations. 

Error bars (± 1 SE) are used when n = 3. WOC = water over box core; dashed line 

indicates the sediment-water-interface.
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TABLE 2. Particle size and percent silt-clay in the uppermost and deepest 

sediment horizons at stations 1 -5. Data are mean values (n = 3) with SE in 

parentheses.

Station Depth (cm) Particle Size (jum) % Silt-Clay

1 0.5 302 (74) 6.4 (2.6)
25.0 213 (30) 16.1 (5-2)

2 0.5 145 (2) 6.8 (0.2)
19.0 169 (14) 10.6 (0.9)

3 0.5 160 (27) 12.5 (4.6)
25.0 171 (22) 8.2 (1.7)

4 0.5 370 (36) 2.9 (0.2)
15.0 299 (4) 3.2 (0.6)

5 0.5 205 (35) 5.2 (2.5)
21.3 99 (10) 30.7 (4.5)

L
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FIG. 10. Percent water and percent combustibles in the sediment at stations 1-5. 

Percent water = O; Percent combustibles = ▲. Data are mean values 

(n = 3) ± 1 SE.
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FIG. 11. Property-property plots. VLPs and bacteria in the water column (water 

over box core (WOC) values excluded) (O), WOC (□), and sediment pore water 

(A)(a); VLPs in the sediment pore water vs. percent water (b), percent combustibles 

(c), and mean particle size (d). In graphs b-d, data from stations 1-5 are 

represented by O •  A A  □, respectively. Graphs a-c represent data from all six 

sediment horizons, while graph d represents data from only the uppermost and 

deepest horizons.
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Discussion

Bacteria and VLPs at the mouth of the Chesapeake Bay were much more 

abundant in sediment pore water than in the overlying water column, a result 

anticipated from synthesis of the ecological (Paul et al., 1993; Rose and Reynolds, 

unpublished data; Maranger and Bird, 1996; Steward et al., 1996;) and public- 

health literature (Gerba et al., 1977; Smith et al., 1978; LaBelle et al., 1980). The 

present study confirms previous research, therefore, and extends our knowledge 

of VLP distributions into deeper sediment horizons than studied previously. In this 

discussion, I will compare our results with those of earlier studies, and consider 

how virus-bacteria interactions in the sediments may contrast with those in the 

water column.

VLPs and bacteria in the water column. Previous water-column studies have 

shown that increases in virus abundances are associated with the thermocline 

(Weinbauer et al., 1995), increases in bacterial abundance (Bird et al., 1993; 

Cochlan et al., 1993; Weinbauer and Suttle, 1997), the chlorophyll a maximum 

(Boehme et al., 1993) or proximity to surface (Hara et al., 1996) and coastal waters 

(Cochlan et al., 1993). In contrast, Wommack et al. (1992) found no difference in 

viral abundance between surface and bottom-water samples in the mesohaline 

portion of Chesapeake Bay, even when the water column was stratified and 

bacteria were more abundant above the pycnocline than below it. In addition, they 

found no association with virus counts and sampling location. In the present study, 

VLP counts in the water column were not correlated with chlorophyll a values; 

however there was a positive and significant correlation with bacteria abundance,

L
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and a significant difference with location across the bay mouth.

Water-column concentrations of VLPs and bacteria were highest at the 

southernmost stations of the transect. Chesapeake Bay is a partially mixed estuary 

(Pritchard, 1952), with the low-salinity bay plume exiting the southern side of the 

estuary mouth, and my hydrographic data reflect that general pattern of circulation. 

Other researchers have documented the increase of virus concentrations from 

oceanic to coastal waters (i.e., high-salinity to lower-salinity waters)(Cochlan et al., 

1993). Here I see such an increase on a smaller scale, inside the bay, consistent 

with classical models of two-layer estuarine circulation.

VLPs and bacteria in the sediment This first report of sub-surface distributions 

of VLPs demonstrates they are numerically significant components of the microbial 

community not only at the sediment-water-interface, but also to at least 25 cm 

depth. Estimates of VLPs in marine and freshwater sediments vary over three 

orders of magnitude, from 107-101°ml'1, with the lowest estimates from sediment 

pore water and the highest estimates from counts of viruses extracted from bulk 

sediments (Appendix B). While part of the large range in values likely arises from 

different methodologies (see discussion below), arguably the biggest difference 

among benthic VLP estimates stems from whether bulk sediment or sediment pore 

water was analyzed. The inventory of VLPs extracted from bulk sediment includes 

particle-adsorbed VLPs as well as VLPs in sediment pore water. Therefore, it is 

not surprising that counts of VLPs extracted from bulk sediment can be orders of 

magnitude higher than counts from sediment pore water alone. The potential roles 

of particle-adsorbed VLPs in microbial dynamics and the infectivity of adsorbed

I
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VLPs are discussed below.

The VBR in Chesapeake Bay pore water was greater than in the water 

column (ratios ranged from 29-85 and 12-17, respectively). In the Chukchi Sea, 

the VBR in pore water (surface 1 cm) also was higher than in surface water (ratios 

were 12.9 and approximately 4.0, respectively) (Steward et al., 1996). The 

saltwater trend of a higher VBR in pore water contrasts with results from freshwater 

Lac Gilbert, Canada, where with the exception of one sample, the VBR in surface 

sediments was lower than that in the water column (ratios were approximately 1.4 

and 13.3, respectively) (Maranger and Bird, 1996). In part, the comparatively high 

VBRs determined in the present study may arise from methodological differences.

I counted viruses using epifluorescence microscopy, a technique that is 1.6 to 7 

times more efficient than enumeration using transmission electron microscopy 

(Hennes and Suttle, 1995; Weinbauer and Suttle, 1997), the method used in the 

other studies (Maranger and Bird, 1996; Steward et al., 1996).

Sediment grain size can potentially be used to predict of the rates of virus- 

host encounter, virus infection, and subsequent cell lysis. The significant, negative 

correlation between grain size and VLPs determined in this study is a phenomenon 

documented for bacteria (e.g., Yamamoto and Lopez, 1985). Decreasing grain 

size is proportionately accompanied by an increase in the surface area:volume 

ratio of particles, resulting in a relative increase in the surface area available for 

molecular adsorption and bacterial colonization (Yamamoto and Lopez, 1985). 

Because bacteria are thought to be the hosts for most marine viruses (Proctor and 

Fuhrman, 1990, Wommack et al., 1992), it follows that more potential hosts for

jL
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viruses will occur in sediment with smaller grain size than in sediment with larger 

grain size. Furthermore, the hosts will be located closer to one another in fine- 

gravel sediments. Densely distributed hosts increase the likelihood of virus 

encounter, since encounter rates are subject to the laws of diffusion (Murray and 

Jackson, 1992). If the time between viral lysis and subsequent infection of new 

hosts is shortened, then virus cycling and release of DOM (from lysed hosts) will 

be greater in sediments having smaller grain size.

Temporal and spatial changes of VLP and bacteria distributions in the water 

column and sediments. There are seasonal changes in the abundances of 

viruses and bacteria in the water column of the mesohaline portion of the 

Chesapeake Bay (Wommack et al., 1992), and it is reasonable to assume that 

seasonal changes also occur at the mouth of the bay. However, the data 

presented here represent a single sampling effort and illustrate only the 

differences in VLP and bacteria abundances over mesoscale distances. As a 

result, one can cannot use them to describe seasonal or daily changes in microbial 

abundance.

The sediments are less sensitive to temperature and nutrient fluctuations 

that occur in the water column, so conditions vary less there than in the water 

column. Given the relative constancy of the sediments and that bacterial densities 

in marsh sediments remained high year round (Rublee, 1982), I hypothesize that 

at any given season or tidal state, the abundance of VLPs and bacteria in sediment 

pore water in the lower Chesapeake Bay is greater than the corresponding 

abundances in the water column.

L
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Adsorbed vs. unadsorbed VLPs. The ratio of virus (or VLP) abundance in 

sediments (including pore waters) to abundance in the water column varies across 

three orders of magnitude (9 — 103) (Table 3). The values and range reported for 

pore waters are lower than those reported for bulk sediments. I suggest that the 

discrepancy between virus counts in pore water and bulk sediment is related to 

adsorption. Adsorption to particles is common among viruses (Kapuscinski and 

Mitchell, 1980) and quantitatively removes viruses from surface waters (Suttle and 

Chen, 1992). In the particle-rich environment of sediments, therefore, I 

hypothesize that most viruses will be adsorbed and only a small percentage of 

them will be found in the pore water.

However, unadsorbed viruses in sediment pore waters were numerous, 

approximately 10 times more abundant than viruses in the water column. In 

contrast, bacteria in the sediment pore water were only about two times more 

abundant. Therefore, the VBR in the sediment pore water increased relative to the 

VBR in the water column. Given the higher VBR in sediment pore waters, if 

unadsorbed viruses are also infective, then the viruses potentially could exert 

greater control on bacterial mortality in the sediments than their counterparts in the 

water column.

Infectivity of VLPs in the sediment. Infectivity is a key issue. Consider the 

hypothetical scenario in which 1), all viruses ultimately bound for the benthos were 

inactivated in the overlying water column by sunlight (Bitton, 1980; Suttle and 

Chen, 1992; Murray and Jackson, 1993; Wommack et al., 1996; Weinbauer et al., 

1997), bacteria (Bitton, 1980), or attachment to particles (Suttle and Chen, 1992)

i
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and 2), no water-column bacteria were infected by viruses prior to their deposition 

in the sediments. In this case, then benthic bacteria could not be infected by 

viruses. One study (Steward et al., 1996) showed despite the presence of free 

virus-like particles, there were no infected bacteria in the sediment pore water. 

The generality of this scenario, however, seems unlikely. First, it seems impossible 

that all infective viruses in the water column could be inactivated. Second, some 

water-column bacteria undoubtedly are infected with viruses prior to their arrival 

at the sediment-water interface (e.g., Proctor and Fuhrman, 1991). There is no a 

priori reason to consider that the process of viral infection operates differently in 

pore waters than in the water column; therefore, in situ production must contribute 

in some part to the inventory of pore-water viruses. Because current methods to 

enumerate viruses cannot distinguish infective ones from non-infective ones, virus- 

production experiments are necessary to understand fully the effects of viruses in 

sedimentary bacteriological communities.

However, one can roughly estimate the in situ production rate of VLPs in the 

sediment pore water at my study sites across the Chesapeake Bay mouth. 

Assuming the deposition of water-column bacteria and VLPs to benthic 

communities is negligible, no bioturbation occurs, benthic VLPs are removed after 

1 day, all hosts for benthic VLPs are bacteria, 30% of benthic bacteria are infected 

by VLPs, benthic bacteria divide once per day, 50 VLPs are released upon lysis of 

each infected benthic bacteria cell, the density of VLPs in the sediment pore water 

is 3.7 x 108 ml'1, and the density of bacteria in the sediment pore water is 6.4 x 106 

ml'1, then 9.6 x 107 VLPs ml '1 day '1 are produced in situ. This estimate accounts

i
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for only 26% of the VLP standing stock. However, the assumptions used in this 

calculation are from water-column studies of VLP-bacteria interactions, which may 

not be applicable to studies of microbial interactions in benthic environments.

Whether viruses attached to sediment are infective or not is a more 

complicated question. Viruses adsorb readily to organic and inorganic particles 

and are protected from inactivation when clay particles (Bitton and Mitchell, 1974), 

non-host bacteria (Bitton and Mitchell, 1974) and sediment (LaBelle and Gerba, 

1980; LaBelle and Gerba, 1982) are added to seawater. However, different 

inorganic surfaces convey differing degrees of protection from virus inactivation 

(Murray and Laband, 1979). While it is interesting that viruses may survive longer 

while attached to sediment than in the overlying seawater, if they are irreversibly 

bound to sediments, their ecological role is diminished relative to their role in the 

water column. While some viruses easily desorb from organic and inorganic 

substrates (Bitton and Mitchell, 1974), LaBelle and Gerba (1979) recovered less 

than 14% of sediment-adsorbed virus in 3 of 4 strains. Maranger and Bird (1996) 

suggested that the low VBR in freshwater sediments may be the result of 

decreased viral production in sediments, owing to the tendency of viruses and 

bacteria to bind to particles. Similarly, Suttle and Chen (1992) could not recover 

appreciable numbers of infectious viruses from microscopic aggregates in seawater 

using several elution methods. They suggested that viruses permanently bind to 

aggregates in seawater and loose their infectivity (Suttle and Chen, 1992). 

Perhaps viruses in sediment pore water are the only infective viruses in the 

sediments.

i
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CHAPTER III

THE EFFECT OF NATURAL VIRUSES ON FECUNDITY, LARVAL 

SURVIVAL, AND ADULT MORTALITY OF AN ESTUARINE

COPEPOD

Naturally-occurring viruses are extremely abundant in aquatic systems, on 

the order of 105-108 viruses ml'1 (Bergh et al., 1989; Barsheim et al., 1990; Suttle 

etal., 1990; Heldal and Bratbak, 1991; Hara etal., 1991; Cochlan et al., 1993), and 

they infect bacteria (Proctor and Fuhrman, 1992), cyanobacteria (Proctor and 

Fuhrman, 1990), prokaryotic and eukaryotic phytoplankton (Suttle et al., 1990), 

nanoflagellates (Nagasaki et al., 1993), and crustaceans (Kuris et al., 1979). 

Distributions of marine viruses suggest that their abundance is either tied to the 

processes that govern the abundances of microbial and larger organisms, or that 

viral abundances are linked directly to the presence of the host organisms. Free 

viruses exhibit 10-4000 fold seasonal variations in abundance (Bergh et al., 1989; 

Bratbak et al., 1990; Wommack et al., 1992). Virus concentrations decrease from 

surface to deeper waters (Hara et al., 1996) and from coastal waters to offshore 

waters (Hara et al., 1991; Cochlan et al., 1993; Weinbauer and Suttle, 1997). 

These trends in abundance are also seen in organisms in the classical (Ryther, 

1969) and the microbial (Hara et al., 1991) food webs .

It has been more than forty years since the first marine bacteriophage was 

found (Spencer, 1955), but marine viruses were little studied until the mid 1980s. 

Since then, there has been a proliferation of research on viruses that infect
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bacteria. Up to 31% of free-living bacteria and 26% of particle-associated bacteria 

are infected with viruses at any time (Proctor et al., 1993), with an average of 20% 

of heterotrophic marine bacteria infected (Suttle, 1994). When the >0.05 pm to 

<0.22 pm size fraction of seawater was concentrated (high molecular weight 

concentrate) and added to seawater, bacterial abundances decreased significantly 

compared to controls (Proctor and Fuhrman, 1992). Although the decrease could 

have been due to high molecular weight compounds, viruses were assumed to 

have caused the majority of the bacteria mortality (Proctor and Fuhrman, 1992).

Viruses infect a wide variety of prokaryotic and eukaryotic marine 

phytoplankters (Mayer and Taylor, 1979; Suttle et al., 1990; Muller, 1991; Suttle 

and Chan, 1995; Cottrell and Suttle, 1995; Brussaard et al., 1996), and viruses 

may change phytoplankton abundance and species composition. Addition of 

concentrated viruses to phytoplankton cultures resulted in significant decreases in 

in vivo fluorescence in five phytoplankton isolates compared to control 

phytoplankton cultures (Suttle et al., 1990). This result suggests that elevated 

virus concentrations can control phytoplankton populations. During the course of 

a spring diatom bloom, a causal relationship between viruses and the termination 

of the phytoplankton bloom was suggested by a 30-fold change in virus 

concentrations (Bratbak et al., 1990). Nagasaki et al. (1994) found virus-like 

particles within red-tide algae at the middle and end of a red-tide bloom. They 

postulated viruses were responsible for the bloom’s termination, based on the 

inverse relationship between numbers of red tide algae cells and virus-like 

particles. Thus, manipulative laboratory experiments and field studies suggest that

i
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viruses may negatively affect phytoplankton populations.

Little is known about marine viruses and higher trophic levels, however, 

there are some well-studied host-virus interactions. Since the first discovery of a 

crustacean-infecting virus (Vago, 1966), research has focused mainly on 

economically important species, chiefly shrimps and crabs. Virus infection is 

documented in crustacean fishery species (Couch, 1978; Johnson, 1983, Bonami 

and Lightner, 1991; Overstreet et al., 1997), as well as aquaculture organisms 

(e.g., Lightner et al., 1983; Lightner and Redman, 1985, Adams and Bonami, 1991; 

Bonami et al., 1997; Edgerton and Owens, 1997).

Transmission of viruses to uninfected crustaceans in the laboratory has 

been accomplished using a variety of methods, including immersing larvae in water 

containing viruses (Johnson, 1983), inoculating uninfected animals with purified 

virus (Overstreet et al., 1997), inoculating uninfected animals with homogenized 

virus-infected tissue (Mari and Bonami, 1988), inoculating uninfected animals with 

virus-infected hemolymph (Johnson, 1983), feeding virus-containing material to 

uninfected animals (Couch, 1978), and feeding virus-infected tissue to brine 

shrimp and in turn feeding the brine shrimp to uninfected animals (Overstreet et 

al.,1988). These experiments are used to study virus infections that occur in the 

artificial environments of aquaculture facilities. Indeed, environmental stresses 

associated with rearing shrimp under crowded conditions is related to greater 

incidence of virus infection (Couch, 1977; Fegan et al., 1991).

The effects of viruses on decapods in the wild and in the laboratory range 

from no apparent effect to weakness, gill infection, disoriented swimming, or

i i
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paralysis that lead to an eventual death (Johnson, 1983). The variance in the time 

from initial virus infection to mortality of laboratory crustaceans is also large, from 

several days to two months (Johnson, 1983).

The effects of virus infection on the population dynamics of feral 

crustaceans are not studied, but viruses have been identified in field-collected 

crabs (e.g., Pappalardo et al., 1986) and shrimp (e.g., Couch, 1977), and the 

prevalence of virus infection in natural populations can be as high as 50 - 80% 

(Johnson, 1983). Similarly, the mechanisms of virus transmission among natural 

populations of marine crustaceans are unknown; Couch (1978) suggested that 

transmission of Baculovirus penaei occurs by cannibalism of infected shrimp by 

healthy shrimp.

Less evidence exists for virus infection of zooplankton, although viral lesions 

have been demonstrated in cultured rotifers (Comps et al., 1991), barnacles 

(Leibovitz and Koulish, 1989), and daphnids (Federici and Hazard, 1975; Bergoin 

et al., 1984). Marine zooplankton may also be vulnerable to infection by viruses.

The marine meso-zooplankton is dominated by copepods in terms of 

biomass and number of organisms (Conover, 1956; Heinle, 1966; Baird and 

Ulanowicz, 1989; White and Roman, 1992). Copepods can occupy different 

trophic levels in marine food webs in that they may feed on primary producers 

(White and Roman, 1992) as well as on protozooplankton (Kleppel, 1993). In turn, 

copepod eggs, nauplii, and adults are a major food source for carnivores such as 

larval fish and invertebrates, including predatory copepods. If virus-zooplankton 

relationships are of interest, then it seems well-considered to study copepods as

i
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host organisms, given their prominent and multi-tiered position in marine food 

webs.

There is no reason to presume copepods are immune to viral infection, 

given that other crustaceans are infected by viruses. That is, I assume that the 

dearth of information on copepod-virus interactions is the result of a lack of 

investigation, rather than a lack of infection of copepods by viruses. Also, the 

susceptibility of copepods to infection by fungi (Redfield and Vincent, 1979), 

ciliates (Turner et al., 1979; Weissman et al., 1993), bacteria (Carman and Dobbs, 

1997), and diatoms (Ho and Perkins, 1985; Carman and Dobbs, 1997) suggests 

that they are not immune to infection by microorganisms. Therefore, although I am 

unaware of any work on the ecology of viruses infecting natural populations of 

zooplankton, I hypothesize that marine copepods are vulnerable to infection by 

viruses.

To quantify the effects of viruses on the copepods, I measured two life- 

history parameters of copepods exposed to elevated concentrations of naturally 

occurring viruses. These parameters were mortality and egg production, the latter 

a characteristic of copepods well-studied in population dynamics. Mortality of 

copepods is attributed to predation (e.g., Lonsdale et al., 1979), temperature 

intolerance, interactive effects of temperature and predation (Fulton, 1983), salinity 

and temperature intolerances (Jeffries, 1962), fungal infection (Redfield and 

Vincent, 1979), and exposure to compounds found in diatoms (Poulet et al., 1994), 

among others. The following factors influence copepod egg production: 

temperature (e.g., Ambler, 1985; Kleppel, 1992), food quantity (Marshall and Orr,

jL
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1972; Dagg, 1977; Kiorboe et al., 1985), food quality (Marshall and Orr, 1972; 

Parrish and Wilson, 1978; Durbin et al., 1983; St0ttrup and Jensen, 1990), 

previous feeding history (Tester and Turner, 1990), and epibiotic ciliate load 

(Weissman et al., 1993). Given that copepod mortality and egg production are 

affected by a suite of parameters, I considered that they are also influenced by viral 

infection.

I attempted to induce viral infection in laboratory-reared cultures of a 

copepod, Acartia tonsa Dana, by exposing them to elevated concentrations of 

natural viruses. My intent was to infect copepods, isolate a copepod virus, and 

proceed with transmission experiments and other manipulative experiments.

Materials and Methods 

Laboratory cultures of copepods. Acartia tonsa Dana were collected from the 

mouth of Chesapeake Bay in July 1995 and kept continuously in culture. 

Copepods were reared in gently aerated 1- and 2-I polymethylpentene beakers 

filled with autoclaved seawater. Beakers were kept in an incubator set at 20 ±

0.5°C and illuminated on a 12L:12D cycle by cool white fluorescent light bulbs. 

Copepods were fed the phytoplankton Isochrysis galbana and Rhodomonas salina, 

clones ISO and 1319, respectively, from the Provasoli-Guillard National Center for 

Culture of Marine Phytoplankton. Phytoplankton concentrations in the cultures 

were not strictly maintained, but copepods were fed 2-3 times weekly 

approximately 4 x 104 cells ml"1 and 2x10* cells mt1 of R. salina and I. galbana, 

respectively. Phytoplankton were grown in F/2 media (minus silica) (Guillard and 

Ryther, 1962) in seawater (salinity 20-25) and maintained in the incubator.

i
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Timing of A. tonsa bloom. I hypothesized that virus infection of A. tonsa would 

be highest in natural seawater when A. tonsa dominated the zooplankton. To 

determine when A. tonsa were dominant, qualitative plankton tows were taken with 

a 202 /zm-mesh plankton net. Most of the following experiments were conducted 

in the spring and summer of 1996 when the zooplankton was dominated by A. 

tonsa adults and copepodites (see Table 4).

Concentration of natural virus assemblage. Seawater was collected in plastic 

containers that were rinsed with seawater. Twenty liters of seawater were 

transferred to an acid-washed carboy, then prefiltered serially through 1) a glass 

fiber filter (Whatman GF/F or Gelman A/E) and 2) a cellulose acetate or 

polyvinylidene difluoride filter into an acid-washed carboy on ice. Vacuum 

pressure during prefiltration was 60 mm Hg. For egg-production, egg-hatching, 

and nauplii-survival experiments (experiments 1-5), as well as for preparing virus

like particle (VLP) concentrate for examination by electron microscopy, cellulose 

acetate filters with a pore size of 0.22 //m were used (Micron Separations, Inc.); for 

the serial-inoculation experiment, polyvinylidene difluoride filters with a pore size 

of 0.45 jum were used (Millipore Corporation). Prefiltered seawater was reduced 

to a volume of 100-200 ml using a MEMBREX Benchmark® Gx Vortex Flow 

Filtration System with a 100 kD filter. A 30 kD filter was used for the first iteration 

of the serial-inoculation experiment. The fraction of seawater that passed through 

the 0.22 i im- or 0.45 /^rn-pore size filter and was retained by the 100 or 30 kD filter 

was considered the VLP concentrate. Filters with cut-offs of 100kD and 30 kD will 

retain particles with spherical diameters of approximately 0.01 ^m and 0.003 //m,

4
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TABLE 3. Details of virus experiments with A. tonsa.

Experiment Parameters Location of
number or measured water collection,
name date

serial
inoculation

egg production

egg production

egg hatching

egg hatching 
nauplii survival

egg production 
egg hatching 
nauplii survival

egg production 
survival 
egg hatching

Lafayette River
25 April 1996

Lafayette River
26 April 1996

CBMb
7 May 1996 

CBM
8 May 1996 

CBM
31 May 1996

Ocean View Beach 
(Chesapeake Bay) 
27 August 1997

Water 
temperature 
(°C), salinity

18.0, 16,0

18.0, 14.0

15.0, 22.0

15.0, 19.0 

17.8, 17.3

22.0, 25.0

VLP density VLP density
in water before in exp. trt.
VFFa(x 107 ml'1) (x 107 ml'1)

n/a 64.1

n/a 69.5

10.2 657

14.2 712

5.0 12.9
359
359

19.1 25.4
25.4
autoclaved
seawater
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TABLE 3. Continued

Experiment 
number or 
name

Parameters
measured

Location of 
water collection, 
date

Water 
temperature 
(°C), salinity

VLP density 
in water before 
VFF“ (x107 ml'1)

VLP density 
in exp. trt. 
(x107 ml'1)

pulverized
copepods

survival CBMC
22 October 1995

19.6, 25.0 n/a 0.07

copepod
exudates

survival CBMC
22 October 1995

20.0, 28.0 n/a 0.03

“Vortex flow filtration, used to concentrate the virus-size fraction of seawater. 

bChesapeake Bay mouth.

“Location of copepod collection.
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respectively (B. Herman, MEMBREX, Inc., pers. com.). VLP concentrate was 

stored in the dark at room temperature until it was added to experimental beakers 

or microfuge tubes, which was within one hour of concentration.

Virus enumeration. Virus-like particles were counted using the method of 

Hennes and Suttle (1995). Briefly, water samples were filtered onto 0.02 /im-pore 

size Acrodisc™ filters and the filters stained with the epifluorescent nucleic 

acid stain YO-PRO™-1 iodide (491/509, Molecular Probes, Inc.) (Quinolinium,4- 

[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(trimethylammonio)propyl]- 

,diiodide). Filters were stored in the dark at -85°C until the virus-like particles 

(VLPs) were thawed in the dark at room temperature for ca. 5 minutes, then 

counted at 1000 x magnification using an Olympus BX50 System Microscope with 

a BX-FLA epifluorescence attachment.

Examination of VLP concentrate by transmission electron microscopy.

To verify that the VLP concentrate contained viruses, I examined VLP 

concentrate prepared on 14 December 1995 as described above (seawater was 

collected from the North Channel at the Chesapeake Bay mouth; coordinates are 

listed in the description of Experiment 11 in Appendix C). Each of 3 formvar- 

coated copper mesh grids was floated with the formvar side down on a drop of 

glutaraldehyde-fixed viral concentrate for 60 minutes, then rinsed 3 times with 

deionized water. Grids were stained for 10 s with uranyl acetate, then examined 

at an accelerating voltage of 80,000 kV and a magnification of 10,000 -140,000 x 

on a JEOL 100CX II transmission electron microscope.

Egg-production experiments. A total of three experiments was performed in

A
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1996 to determine the effects, if any, of virus concentration on egg production 

(Table 4; see descriptions and results of preliminary experiments in Appendix C). 

In each experiment, twenty copepod eggs or first-stage nauplii were removed from 

cultures and placed in each of 6 acid-washed one-liter beakers filled with either 

autoclaved or microwaved seawater (control treatments; n -  2 or 3) or with 

autoclaved or microwaved seawater plus VLP concentrate (virus treatments; n = 

2 or 3; volume of concentrate per beaker = 36 - 57 ml to reach a VLP concentration 

of 1.3 - 7.0 x 108 ml'1). Seawater was microwaved in one-liter volumes for a total 

of ten minutes (3, 2, 3, 2-minute intervals with a 2-minute break between each 

interval (Sanborn et al., 1982; Keller et al., 1988) in a Sharp Household Microwave 

Oven Model R-3A36 (60 Hz). The salinity in the virus beakers was adjusted to 20 

with autoclaved, deionized, distilled water. Phytoplankton cells were counted with 

an Improved Neubauer Hemacytometer and added to each beaker: 19,000 cells 

ml*1 of R. salina and 10,000 cells rrtl of I. galbana. Beakers were arranged 

randomly along a shelf in the incubator. Water was changed twice before 

copepods reached adulthood, each time replacing the water in all beakers with 

autoclaved seawater and new algae. Copepods in experimental beakers were 

exposed to viruses from the initiation of the experiment to the time of the first water 

change, which was 4-7 days.

To measure egg production, 1 - 3 adult females were removed from each 

beaker and placed in an acrylic sleeve having a 202 //m-mesh bottom (D. 

Lonsdale, pers. com.). The sleeve was immersed in a 250 ml polymethylpentene 

beaker filled with autoclaved seawater and 19,000 cells ml'1 of R. salina (2 or 3
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beakers per control and virus treatments). Egg production was monitored over 12- 

hour periods. Females that were not recovered after the egg laying period were 

assumed to have been present during the entire egg laying period. Females found 

dead at the end of the egg laying period in experiment 1 (1 copepod in the control 

and 2 in the virus treatment) were assumed to have died half way through the egg 

laying period.

Egg-hatching and nauplii survival experiments. Experiments were performed 

to quantify the hatching and survival of eggs (three experiments) and nauplii (two 

experiments) in the presence of VLP concentrate (Table 4). In each experiment, 

ten copepod eggs or 5 first-stage nauplii were put in a sterile microcentrifuge tube 

with 50 of autoclaved seawater. To the control tubes (n = 3 or 4), 950 n\ of 

autoclaved seawater or 950 /J of microwaved seawater was added. To 

experimental tubes (n = 3 or 4), 950 /J of VLP concentrate was added to reach a 

VLP concentration of 3.6 - 7.1 x 109 ml'1. The salinity in the experimental tubes 

was not adjusted because the salinity of the VLP concentrate, 17.8 - 22.0, was 

similar (± 11 %) to the salinity in the control tubes. Tubes were incubated for 36 h 

in the dark at 20°C, then eggs or nauplii were checked for hatching or survival. 

Eggs that did not hatch during that time were monitored for an additional 48 h; 

eggs that did not hatch after a total of 84 h were assumed to be non-viable. 

Missing eggs and nauplii were excluded from calculations of hatching success and 

nauplii survival; 6 eggs and 3 nauplii were unaccounted for out of totals of 280 and 

100, respectively, used in all egg-hatching and nauplii-survival experiments. 

Serial-inoculation experiment In an attempt to build the titer of one or more A.

I
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fonsa-infecting viruses, the virus-size fraction of seawater from laboratory copepod 

cultures was repeatedly concentrated and added to 400-600 copepod eggs, which 

ranged in age from 1 - 26.5 h old (Table 4). Initially, twenty liters of seawater were 

collected from Chesapeake Bay, and the virus-size fraction was concentrated (as 

described above). To each of three one-liter beakers, the following were added: 

953 ml of autoclaved seawater, copepod eggs, phytoplankton (1.9 x 104 cells ml'1 

of R. salina and 4 x 104 cells mf of I. galbana), and forty-seven ml of VLP 

concentrate to reach a VLP concentration of 2.5 x 108 mf1. After seven days, 

copepods were removed, stained with Rose Bengal (1:160,040 dilution), and 

counted to determine their percent survival. The virus-size fraction of the three 

liters of seawater was then concentrated and 54 ml of VLP concentrate was added 

to each of three one-liter beakers containing fresh copepod eggs, autoclaved 

seawater, and phytoplankton. The initial VLP concentrations in the beakers was 

8.3 x 107 mf . This cycle of concentrating copepod culture water and 

subsequently adding VLP concentrate (48 - 55 ml) to fresh copepod eggs from 

laboratory cultures was repeated five times, for a total of six iterations, with six or 

seven days between iterations. Initial VLP concentrations in the experimental 

beakers ranged from 4.6 x 107 ml'1 to 1.4 x 108 ml'1. For the sixth iteration, a control 

treatment was added. To each of three one-liter beakers in the virus treatment, 

fresh copepod eggs, autoclaved seawater, phytoplankton, and 52 ml of VLP 

concentrate to reach a VLP concentration of 3.7 x 107 ml'1 were added. To each of 

three beakers in the control treatment, 52 ml of iced, autoclaved seawater (salinity 

= 20) were added in lieu of VLP concentrate. Copepods in both treatments were

t
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reared for 14 days. On day 7, water was changed in all beakers, and fresh 

autoclaved seawater and phytoplankton (3.8 x 104 cells ml'1 of R. salina and 4 x 104 

cells ml'1 of I. galbana) were added. On day 11, copepods were fed again (1.9 x 

104 cells ml*1 of R. salina). On day 14, ten adult female copepods were removed 

from each beaker and egg production was monitored over 12 h (see above). Also 

on day 14, the remaining copepods were stained with Rose Bengal and counted. 

Other attempts to concentrate viruses that infect A. tonsa: pulverized 

copepods and copepod exudates. To test the hypothesis that pulverized 

copepods release viruses that have detrimental effects on copepod survival, about 

1000 field-collected A. tonsa, primarily adults, were rinsed in autoclaved seawater, 

pulverized with a mortar and pestle, and mixed with 500 ml of autoclaved seawater 

(Table 4). The mixture was kept in the dark at 20°C for 4 hours, then centrifuged 

for 16 minutes at ca. 745 x g. The supernatant, which had a VLP concentration of

7.0 x 105 ml-1, was used immediately after centrifugation as the virus inoculum, 

Three hundred nauplii (0 - 33.3 h old) were removed from laboratory cultures and 

evenly divided among 6 acid-washed 250-ml beakers containing either 250 ml of 

autoclaved seawater (control treatments; n = 3; 50 nauplii per beaker) or 210 ml 

of autoclaved seawater plus 40 ml of the virus inoculum (virus treatments; n = 3; 

50 nauplii per beaker). Ten thousand cells ml*1 of R. salina and 10,000 cells ml*1 of

I. galbana were added to each beaker. Beakers were arranged randomly along two 

shelves in the incubator. Water was changed once; water in all beakers was 

replaced with autoclaved seawater and fresh algae. On day 15 of the experiment, 

the number of live adults and copepodites in each beaker was counted.

i l
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To determine if copepod exudates include viruses that negatively affect 

copepod survival, field-collected A. tonsa were rinsed with autoclaved seawater, 

and placed in an acid-washed beaker with 30,000 cells ml'1 of R. salina and 

autoclaved seawater (Table 4). The density of copepods was about 400 copepods 

I'1. The beaker was kept on a laboratory bench (temperature range = 20.5 - 

24.0°C). Twenty-four hours later, water in the beaker passing through a 53 ^m- 

mesh screen was used as the virus inoculum, which had a VLP concentration of

3.0 x 105 ml'1; this mesh size excluded copepods but included fecal pellets. A total 

of twenty male and female adults and copepodites were removed from laboratory 

cultures and placed in each of 6 acid-washed one-liter beakers filled with either 

autoclaved seawater (control treatments; n = 3) or with autoclaved seawater plus 

250 ml of the virus inoculum (virus treatments; n = 3). Phytoplankton were added 

to each beaker 10,000 cells ml'1 of R. salina and 7,650 cells ml'1 of I. galbana. The 

beakers were arranged randomly along a laboratory bench. On day 4 of the 

experiment, 10,000 cells ml'1 of R  salina were added to each beaker. On day 8 of 

the experiment, the number of live adults and copepodites in each beaker was 

counted.

Results 

Examination of VLP concentrate by transmission electron microscopy.

Many of the viruses visible in the VLP concentrate had angular heads with attached 

tails; examples are shown in Plate 6. Head diameters of the viruses in the 

micrographs range from 43-64 nm (Plates 6a, 6b).

Egg-production experiments. Preliminary experiments of virus effects on egg

i!
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PLATE 6. Micrographs of viruses concentrated from a natural water sample and 

examined by transmission electron microscopy. Virus head diameters are 43 and 

64 nm (a) and 50 nm (b). Magnification = 140,000 x for both plates.

i
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production performed in late summer and fall 1995 showed no significant difference 

in egg production between control and virus treatments (data in Appendix C). I 

repeated the experiments during the 1996 spring A. tonsa bloom, presumably when 

viruses infecting A. tonsa would be most abundant. There was no significant 

difference in egg production between control and virus treatments in any of the 

three experiments (p = 1.000, Wilcoxon 2-sample test, Fig. 12a; p = 0.6579, 

Wilcoxon 2-sample test, Fig. 12b; p = 1.0,1-way ANOVAon ranked data, Fig. 12c), 

Egg-hatching and nauplii-survival experiments. In two of the egg-hatching 

experiments, 100% of the eggs in both control and virus treatments hatched (Fig. 

13a, b). In the third experiment, all eggs hatched except for a few in two replicates 

of the control treatment with autoclaved seawater (Fig. 13c). These results 

indicated no significant difference among any treatment groups in all three 

experiments (p = 0.055, 1-way ANOVA on ranked data).

In the first nauplii-survival experiment, nauplii survival was 100% in both the 

control and virus treatments (Fig. 14a). In the second experiment, survival was 

lower in the virus treatment with autoclaved seawater than in its corresponding 

control treatment (Fig. 14b). Nauplii survival was 100% in both treatments using 

microwaved seawater (Fig. 14b). Again, there was no statistically significant 

difference among treatments in both experiments (p = 0.108, 1-way ANOVA on 

ranked data).

Serial-inoculation experiment. There was no significant difference in survival 

of each cycle of copepods during the first five iterations of the experiment 

(p = 1.0; 1-way ANOVA on ranked data, Fig. 15). VLP and bacteria abundances

i
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FIG. 12. Measurements of egg production in experiments 1, 2, and 5 (spring, 

1996), labeled as (a), (b), and (c), respectively. Egg-production was monitored over 

one nighttime 12-hour period with 1-3 females in each replicate. Data are mean 

values (n = 3) ± 1 SE in (a) and (b); n = 2 for (c). C = control treatment of 

autoclaved seawater; V = virus concentrate added to autoclaved seawater; CM = 

control treatment of microwaved seawater; VM = virus concentrate added to 

microwaved seawater.

i
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FIG. 13. Measurements of egg hatching in experiments 3, 4, and 5 (spring, 1996) 

labeled as (a), (b), and (c), respectively. Concentric circles represent the scale; 

triangles represent the percentage of ten eggs that hatched. Thus, the outer circle 

represents 100% hatching. C = control treatment of autoclaved seawater; V = virus 

concentrate added to autoclaved seawater; CM = control treatment of microwaved 

seawater VM = virus concentrate added to microwaved seawater. Arabic numerals 

following the letters indicate replicate number.
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FIG. 14. Measurements of nauplii survival experiments 4 and 5 (spring, 1996), 

labeled as (a) and (b), respectively. Concentric circles represent the scale; 

triangles represent the percentage of ten eggs that hatched. Thus, the outer circle 

represents 100% hatching. C = control treatment of autoclaved seawater; V = virus 

concentrate added to autoclaved seawater; CM = control treatment of microwaved 

seawater; VM = virus concentrate added to microwaved seawater. Arabic numerals 

following the letters indicate replicate number.
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in the copepod water varied inversely over time (Fig. 16). Lastly, there was no 

difference between the control and virus treatment groups of the experiment’s sixth 

iteration with respect to survival (p = 0.3827, Wilcoxon 2-sample test), egg 

production (p = 1.0, Wilcoxon 2-sample test), or egg hatching (p = 0.3865, 

Wilcoxon 2-sample test) (Fig. 17).

Other attempts to concentrate viruses that infect A. tonsa. There was no 

difference in mean survival between control and virus treatments when pulverized 

copepods were used as virus inoculum (p = 0.6625, Wilcoxon 2-sample test) (Fig. 

18). Similarly, there was no difference in survival between control and virus 

treatments in the experiment in which exudates of copepods were used as virus 

inoculum (p = 1.0, Wilcoxon 2-sample test) (Fig. 19). However, the variance 

between replicates is higher in the virus treatment versus the control treatment in 

both experiments.

Discussion

These experiments did not demonstrate any detrimental effects of exposure 

to viruses on copepods. There are at least two possible ways to interpret these 

results. The first line of reasoning involves the modes of virus infection and the 

second concerns the probability of encounter of copepods by viruses.

Infection. Animal viruses can effect host cells in four ways—via lytic infection, 

latent infection, persistent infection, and transformation of cells to tumor cells 

(Brock et al., 1994). A virus that causes a lytic infection is adsorbed by the host, 

initiates host cell production of virus copies, and lyses the host cell, thereby 

releasing virus progeny. On the other hand, an infection is latent when the viruses

t
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FIG. 17. Percent survival, egg production, and egg hatching success in iteration 

6 of the serial-inoculation experiment (summer, 1997). Percent survival of all 

copepods was measured 14 days after the beginning of the cycle. Data are mean 

values (n = 3) ± 1 SE. Egg production per female (ten females per replicate) was 

measured over one nighttime 12-hour period. Twenty-five hours later, hatching 

success of the eggs was measured and represented as a percentage. Data are 

mean values (n = 2 for control treatment; n -  3 for virus treatment). C = control; V 

= virus.
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are present in ceils but do not effect on host metabolism. Subsequently, lytic 

infection can occur. Persistent infections are manifested in a continual release of 

viruses with out killing the host cell. Viruses that cause tumors cause uncontrolled 

growth. It is possible that the copepods in these experiments were infected with 

either a lytic, persistent, or tumorous infection or all three, but if so, evidence of 

infection was not manifested in mortality or diminished fecundity.

Similarly, I may have infected the copepods with a latent virus or viruses. 

That is, a copepod-infecting virus may have been incorporated into copepod cells 

but did not affect the normal functioning of the copepod. Some factor could 

potentially induce the latent infection to become lytic and kill the copepod. Since 

I did not manipulate environmental conditions to induce such an effect, I do not 

know if the copepods had a latent infection.

Encounter rates. Another explanation for the negative results, not mutually 

exclusive to the first, is that low encounter rates between viruses and copepod 

eggs or nauplii resulted in no infection. It is hypothesized that most viruses in 

seawater infect the most numerable organisms, the bacterioplankton (Wommack 

et al., 1992). This hypothesis is supported by data on the size distribution and 

morphology of free viruses in seawater (Berg et al., 1989; Proctor and Fuhrman, 

1990; Cochlan et al., 1993; Wommack et al., 1992). These data are consistent 

with the expected shape (typical phage shape with angular head and attached tail) 

of bacteria-infecting viruses, as well as calculations based on the probability of 

viruses preferentially encountering bacteria cells rather than larger particles 

(Murray and Jackson, 1992). If the viruses I concentrated from natural seawater

L
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contained mostly bacteria-infecting viruses with few A. fonsa-infecting viruses, the 

A. tonsa-infecting viruses may have been inactivated by adhering to particles, such 

as plankton, bacteria, or microaggregates (Mitchell and Jannasch, 1969; Bitton and 

Mitchell, 1974; Noble and Fuhrman, 1997) before encountering a copepod egg or 

nauplius. However, It is notable that under the artificial conditions of aquaculture 

facilities viruses can be transmitted via water (e.g., Johnson, 1983; Overstreet et 

al., 1997).

Virus effects on A. tonsa population dynamics.

Regardless of the negative results of these experiments, copepods may 

have been infected by a virus or viruses. In fact, despite virus-host encounter 

arguments against viral infection of large “particles", marine organisms 10-1000 

times larger than copepods are infected by viruses, including fish (Fryer, 1996) and 

dolphins (Van Bressem et al., 1994). Perhaps viruses that infect organisms larger 

than prokaryotes are transmitted only vertically to increase the likelihood of host 

encounter and minimize the chance of becoming adsorbed to a particle and 

subsequently buried in the sediments.

However, these experiments demonstrated no support for the hypothesis 

that viruses infect and detrimentally affect the longevity and fecundity of A. tonsa. 

If these results are applicable to other life-history parameters and to other 

dominant species of copepods, then it may be that viruses exert no significant 

control on copepod population dynamics.

There are decreasing effects of viruses on marine organisms as trophic level 

increases (Suttle, 1994). That is, an estimated 10-20% of marine heterotrophic

jL
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bacteria are lysed daily by viruses, while at the next trophic level, it is likely that 2- 

3% of primary production is removed by viral infection (Suttle, 1994). The 

decrease between trophic levels is roughly six-fold. An extrapolation of that 

decrease to the next trophic level would yield 0.4% of copepod production lost to 

viral lysis. Perhaps the effects of viruses do decrease from primary to secondary 

producers, and virus efFects, on secondary producers are nonexistent, episodic, or 

below the level of detection.

L
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CHAPTER IV 

CONCLUSIONS

Despite advances made in the last decade, the study of marine viruses 

remains fraught with questions. Much has been learned from investigations of 

water-column distributions of viruses and virus effects on bacterioplankton and 

eukaryotic phytoplankton. However, our knowledge of viral ecology in benthic 

communities and in higher trophic levels is less extensive. Information on viruses 

in benthic communities is limited to a few reports of viral abundance in surface 

sediments, with no data on ecological parameters such as production and decay 

rates of viruses. The subject of viruses affecting higher trophic levels has some 

areas of concentrated research, notably on viruses that infect economically 

valuable crustaceans (e.g., Overstreet et al., 1997), but little work has been done 

on the viral ecology of zooplankton. In this chapter, I will review the highlights of 

my investigations and discuss avenues of future research.

Results

Bacteria and virus-like particle (VLP) profiles in the water column and 

sediments of Chesapeake Bay. As hypothesized, VLPs were found in subsurface 

sediments of Chespeake Bay, on the order of 108 VLPs ml'1 of porewater, and they 

were about ten times more abundant in sediments than in the water column. VLP 

distributions in the water column showed a maximum at the southern side of the 

Bay, consistent with the pattern of higher VLP abundances in coastal versus 

oceanic water (Haraetal., 1991; Cochlan et al., 1993). Abundance of VLPs in the 

sediments showed a significant, negative correlation with grain size, a trend also

jL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

seen in bacteria distributions (e.g., Yamamoto and Lopez, 1985). Given the high 

abundance of VLPs in the subsurface sediment, I hypothesize that VLPs play an 

equally important role in structuring microbial communities in the benthos, as they 

do in the water column.

Experiments on vims-copepod interactions. The experiments presented here 

demonstrated no negative effect on egg production or survival of A. tonsa when the 

copepods were exposed to natural viruses using four different methods- 

concentrating natural seawater, concentrating copepod culture water, pulverizing 

copepods, and concentrating copepod exudates. As stated in Chapter III, the 

possibility exists that copepods were infected, but manifestations of the infection 

were not obvious (see Kinne, 1984). Despite these results, A. tonsa nonetheless 

may be a host to viruses, since many terrestrial and marine metazoans have shown 

to be vulnerable to viral attack. However, I conclude that if virus infection is 

important in structuring the population dynamics of A. tonsa, it is episodic at best 

and is dwarfed by other factors such as food availability, temperature suitability, 

and predation.

Future Work

VLPs in benthic environments. As discussed in Chapter II, the discovery of 

high numbers of VLPs in the sediment invites many questions concerning their 

role. For instance, we do not know what portion, if any, of the VLPs in the 

sediment pore water or adsorbed to sediments are infective. That issue will be 

difficult to resolve, given the tools now used to study marine viruses. When using 

transmission electron microscopy or epifluorescence microscopy to enumerate

£
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viruses, we cannot determine whether or not they are infective. A current method 

used to determine virus infectivity, plating viruses on bacteria lawns and counting 

the number of plaques that form, would be difficult to use in this situation, since 

most marine bacteria are unculturable (Jannach and Jones, 1959). Additionally, 

we do not know which bacteria, if any, are dominant in a given sediment 

community. Thus, obtaining multiple host-phage isolates that are representative 

of benthic microbial communities would be difficult.

Examining thin sections of benthic bacteria with transmission electron 

microscopy would show whether or not benthic bacteria are infected by viruses, but 

one would not know if the bacteria and viruses that infect them were produced in 

situ or if they were deposited from the water column. Given that the doubling times 

of bacteria are short, on the order of days, it would seem that bacteria that survive 

the trip from the water column to the benthos eventually become benthic bacteria, 

which complicates questions regarding dynamics of “water column” vs. “benthic” 

bacteria. Additionally, the absence of viruses from thin sections does not 

necessarily preclude infection. Mature, assembled viruses are present and visible 

in marine bacteria by transmission electron microscopy for only a small portion of 

the lytic cycle, on the order of 20% of the cycle (Proctor et al., 1993).

The biological differences in sedimentary and water-column environments 

may mean that the viral ecology of the two areas are vastly different. That is, given 

the density of potential hosts in the sediment pore water relative to the water 

column, one has to wonder whether rates of host infection, lysis, and subsequent 

DOM production are greater in the sediment than in the water column. Also, since

t
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benthic bacteria generally have greater biovolume than water column bacteria, 

perhaps the burst size, i.e., the number of viruses released during cell lysis, is 

greater for benthic bacteria than the burst size of water-column bacteria. This 

question could be answered by with transmission electron microscopy, using as a 

model the latent period work done using samples from the water column (Proctor 

etal., 1993).

Another intriguing question regarding benthic viruses is borrowed from 

terrestrial microbiology-what role do surface layers of bacteria (“S-layers”) play in 

virus recognition of potential hosts? S-layers are outer layers of protein or 

glycoprotein found in more than 300 Bacteria and Archaea strains (Beveridge, 

1994). Research with Bacillus sphaericus isolated from soil suggests that changes 

occur in its S-layer when oxygen concentration is decreased, rendering them 

unrecognizable to a bacteriophage (Rodriguez and Lewis, 1996). Is this interaction 

paralleled in marine bacteria? If bacteria produced in the water column are buried 

in sediment, perhaps their S-layers change under reduced oxygen conditions, and 

viruses associated with them can no longer attach and infect them.

Isolating a copepod-infecting virus. Even though I concluded that viruses are 

not important to copepod population dynamics, at least to A. tonsa, it is worthwhile 

to try to isolate a copepod-infecting virus. If a host-phage system could be 

maintained, some of the interesting questions to be addressed would be: How is 

the virus transmitted? What is its prevalence? Is it responsible for gene flow 

between different copepod populations? The simplest way to determine virus 

presence would be to look for plaques on tissue lawns. Unfortunately, no cell lines

jL
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exist for copepods. The effort necessary to establish and maintain the line might 

be enormous with little reward. One would have to choose which type(s) of tissue 

to keep in culture, although it is possible that no viruses exist in nature that infect 

it.

Another way to infect copepods with a virus may be to feed them virus- 

infected food. This method is used by researchers who study shrimp viruses (e.g., 

Overstreet et al., 1988). A. tonsa eat their nauplii (Lonsdale et al., 1979); 

therefore, feeding infected nauplii to healthy adults may cause infection in the 

adults. One would need to find visibly virus-infected nauplii in nature, which might 

be distinguished from healthy nauplii by malformity, weak swimming, or 

colonization by microbes. Although these signs could be due to infection by other 

microbes such as bacteria or fungi, rather than viral infection, this method might be 

useful in isolating a copepod-infecting virus.

Combining stress and elevated virus concentrations may be an effective way 

to induce infection. Possible methods to stress copepods are as follows: 1) rear 

copepods under sub-optimum temperature or food conditions; 2) rear copepods in 

very crowded conditions; 3) use copepods that may be naturally stressed, old 

copepods, as the test organisms; 4) exposing copepods to chemicals; and 6) 

expose a healthy population of copepods to concentrated viruses from another 

geographic area. The prevalence of Baculovirus penaei virus is increased in host 

penaeid shrimp when the shrimp are stressed by being kept in aquaria or are 

exposed to polychlorinated biphenyls (Johnson, 1983). Similarly, penaeid shrimp 

showed decreased numbers of inclusion bodies of infectious hypodermal and

L
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hematopoietic necrosis virus as water exchange rates increased from 50 to 100% 

in experimental tanks (Browdy et al., 1993). Therefore, stressing copepods with 

one of these methods then exposing the copepods to elevated virus concentrations 

may lead to the isolation of a copepod-infecting virus.

Infection of copepods by benthic viruses.

One link between the two areas of research discussed in this dissertation 

is the reproductive life cycle of copepods. Many species of copepods, including 

Acartia tonsa, produce two types of eggs, subitaneous and resting eggs (Uye, 

1985; Dahms, 1995). During seasons of active growth, copepods produce 

subitaneous eggs, which hatch immediately, within hours or days. At the onset of 

unfavorable conditions, copepods may produce resting eggs (either true diapause 

eggs or quiescent eggs), which sink and hatch as long as weeks, months, or years 

later. Because resting eggs are deposited in the sediment before they hatch, they 

are subject to infection by microbes in the sediment, including viruses. 

Subitaneous eggs produced in shallow, coastal areas may also be deposited in the 

sediments prior to hatching and could be infected by viruses during their brief stay 

in the benthos. In fact, calculations show that A. tonsa eggs sink to the sediment 

in Chesapeake Bay before they hatch (Appendix D). The potential effects of 

viruses on copepod eggs range from sub-lethal, such as the incorporation of a 

virus that later causes reduced egg production, to lethal, such as a virus that 

prevents egg hatching. Therefore, virus distributions and abundances in 

sediments may affect the life-history parameters of pelagic copepods.

A relatively quick way to check for VLP attachment on copepod eggs

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

deposited in the sediment is to collect copepod eggs from the sediment, stain them 

with the nucleic acid stain YO-PRO™-1, and examine the eggs by epifluorescent 

microscopy. Staining A. tonsa eggs collected from laboratory cultures showed that 

eggs were stained, but there was no obvious attachment of VLPs on the egg 

surface (pers. obs.). An alternative way to examine copepod eggs for virus 

attachment is by transmission or scanning microscopy. However, both methods 

require labor-intensive specimen preparation and are expensive to use.

One way to test the hypothesis that benthic viruses infect A. tonsa is to 

expose copepod eggs to elevated virus concentrations, using methods similar to 

those described in this dissertation:

collect surface sediment
i

express pore water via centrifugation
i

pre-filter through GF/F + 0.45 ^m filters
i

further concentrate viruses in pore water via vortex flow filtration
1

add concentrated viruses + A. tonsa eggs to microfuge tubes
I

monitor eggs for hatching success + compare to hatching success in control
treatments

1
rear eggs that hatch to adulthood in beakers

i
monitor survival of all copepods + egg production of females + compare to 

survival + egg production in control treatment

1
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APPENDIX A

Coordinates of stations from water-column and sediment sampling
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Station

1

2

3

4

5

Coordinates

37° 13.48' N 
76° 03.27' W

37° 09.88' N 
76° 04.92' W

37° 06.22' N 
76° 06.70' W

37° 02.68' N 
76° 08.50' W

36° 59.13' N 
76° 10.12'W
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APPENDIX B

Concentration of benthic viruses (or VLPs) and ratio of benthic viruses (or 
VLPs) to water-column viruses (or VLPs)
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All sampling locations represent saltwater environments except for Lac Gilbert, which is freshwater.

Location Source of benthic 
viruses

Viruses (or 
VLPs)

Ratio 
(benthic: 
water column)

Reference

Chesapeake Bay Pore water 1.9-7.1 x 10® ml'1 3-27 This study

Chukchi Sea Pore water 0.27x10® ml'1 -9 Stewart et al., 1996

Florida Keys Sediment 1.4-5.3x10® cm*3 -102 Paul et al., 1993

Tampa Bay, Florida Sediment -100 x 10® cm*3 -103 Rose and 
Reynolds, unpubl. 
data

Lac Gilbert, Canada Sediment 6.5 -183 x 10® ml*1 101-103 Maranger and Bird,
1996
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APPENDIX C

Notes on preliminary experiments to demonstrate negative effects of 

viruses on the survival and egg production of A. tonsa
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Experiment number = 1 
Start date = 27 May 1995
(Note: All of my experiments were numbered consecutively, however only the 
experiments designed to test hypotheses about copepod-virus interactions are 
included in this appendix.)

-prefilter 20 L of 1-month old Chesapeake Bay water through glass fiber filters + 
0.22/^m cellulose acetate filters
-concentrate VLPs using a MEMBREX Benchmark® Gx Vortex Flow Filtration 
System (VFF) set up in recirculation mode with a 100 kD filter.
-add 60 copepod eggs + 135 ml VLPC (virus-like particle, VLP, concentrate) + 865 
ml seawater (salinity = 25) to 1-L beaker (n = 1) (virus treatment)
-add 60 copepod eggs + 100 ml seawater (salinity = 25) to beaker {n = 1) (control 
treatment)
-add I. galbana to both beakers
-18 days later, measure egg production for 12 h; feed females I. galbana and R. 
salina

-measure egg production in 250-ml beakers (n = 2 beakers for control; n = 3 
beakers for virus) with a sleeve having a 202 /xm mesh bottom submerged inside 
beaker ; put 2-3 females in each sleeve:

Beaker i.d. 
(#of
females per 
beaker)

# eggs + 
nauplii per 
female

Total # eggs Total # live 
nauplii

Total # dead 
nauplii

C1 (3) 9 18 8 1

C2 (3) 10 27 3 0

V1 (3) 18.3 36 19 0

V2 (3) 8 12 12 0

V3(2) 44 58 30 0

-all beakers had green ciliates in them
-♦no difference in egg production in control vs. virus treatments over a 12-hour 
egg- laying period
-♦16 days later, only 1 copepodite in each treatment was alive.

Experiment number = 2 
Start date = 19 June 1995

-prefilter 22 L of 1-day old Chesapeake Bay mouth water through glass fiber filters 
+ 0.22^m cellulose acetate filters

t
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-concentrate VLPs using VFF set up in recirculation mode with a 100 kD filter, 
-add a few copepod eggs + 140 ml VLPC (salinity = 27) + 110 ml seawater (salinity 
= 27) to a 250-ml polymethylpentene (PMP) beaker (n = 1) (virus treatment)
-add a few copepod eggs + 250 ml seawater to a PMP beaker (n = 1) (control 
treatment)
-(few eggs were available from lab cultures for experiments)
-add 50 ml of a mix of I. galbana + f t  salina to both beakers 
-♦All copepods died.

Experiment number = 4 
Start date = 4 July 1995

-collect 24 L of seawater in an acid-rinsed carboy with a 5-L Niskin bottle from a 
depth of 2-3 m 1.5 mi E of the Chesapeake Bay Bridge Tunnel trestle bridge 
-collect A. tonsa from the same location 
-water temperature = 25°C and salinity = 25 
-transport to laboratory in darkness and on ice
overnight, prefilter seawater through glass fiber filters + 0.22//m cellulose acetate 
filters into acid-rinsed carboy on ice
-the next day, concentrate VLPs using VFF set up in recirculation mode with a 100 
kD filter.
-put 15 copepod eggs + 48 ml VLPC + 200 ml autoclaved GF/F-filtered seawater 
(seawater = 27) in 250 ml PMP beakers (n = 3) (virus treatment)
-put 15 copepod eggs + 250 ml autoclaved GF/F-filtered seawater (seawater = 27) 
in 250 ml PMP beakers {n = 3) (control treatment)
-add a 10 ml mix of I. galbana + R. salina to all beakers
-arrange beakers randomly on shelf in incubator; temperature = 20°C; light =
12L.12D (approximately 60 ^moles m'2 s*1)
-♦After 12 days, the only live copepod was one copepodite in a virus beaker.

Experiment number = 8 
Start date = 21 August 1995

-collect 30 L of seawater in an acid-rinsed carboy with a submersible pump from 
a depth of 6 m at the North Channel in Chesapeake Bay 
-water temperature = 25.6°C and salinity = 28.9 
-transport to laboratory in darkness and on ice
-immediately prefilter seawater through glass fiber filters + 0.22Aim cellulose 
acetate filters into an acid-rinsed carboy on ice with a vacuum pressure ^ 60 mm 
Hg
-immediately concentrate VLPs using VFF set up in recirculation mode with a 100 
kD filter; VLPC checked by light microscopy, and it looked clear 
-put 15 copepod eggs + 33 ml VLPC + 217 ml autoclaved GF/F-filtered seawater 
in 250 ml PMP beakers (/? = 3) (virus treatment)
-put 15 copepod eggs + 250 ml autoclaved GF/F-filtered seawater in 250 ml PMP

4!
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beakers (n = 3) (control treatment)
-add I. galbana to all beakers
-put beakers in incubator; temperature = 20°C; light = 12L12D (approximately 60 
//moles nr2 s'1)
-6 days later (day 6 of experiment), change the water in all beakers; replace with 
autoclaved seawater + 1, galbana and R. salina
-11 days later (day 17 of experiment), measure egg production over 24 h 
-measure egg production in 250-ml beakers filled with autoclaved GF/F-filtered 
seawater with R. salina (n = 2 beakers for control; n -  3 beakers for virus) with a 
sleeve having a 202 //m mesh bottom submerged inside beaker; put 1-3 females 
in each beaker:

Beaker 
i.d. (# of 
females 
per
beaker)

# eggs +
nauplii
per
female

Total # 
eggs

Total
#live
nauplii

Total #
dead
nauplii

Total # live 
+ dead 
nauplii + 
eggs 24 h 
after eggs 
were 
counted

C1 (1) 32 22 10 0 3 live 
17 dead 
3 mia 
0 eggs

C2 (1) 33 16 17 0 1 live 
15 dead 
0 eggs

V1 (1) 40 23 17 0 1 live 
20 dead
2 mia 
0 eggs

V2 (2) 26 29 21 2 21 live 
6 dead 
2 eggs

V3(2) 23 51 17 0 9 live 
30 dead 
9 eggs

-♦There was no difference in egg production in control vs. virus treatments over a 
24-hour egg-laying period.

Experiment number = 9

L
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Start date = 1 September 1995

-collect 19 L of seawater in an acid-rinsed carboy with a submersible pump from 
a depth of 5 m at Sand Shoal Inlet, Virginia, on the eastern side of the Delmarva 
peninsula.
-water temperature = 25°C and salinity = 30 
-transport to laboratory in darkness and on ice
-immediately prefilter seawater through glass fiber filters + 0.22//m cellulose 
acetate filters into an acid-rinsed carboy on ice with vacuum pressure < 60 mm Hg 
-immediately concentrate VLPs using VFF set up in recirculation mode with a 100 
kD filter and keep seawater on ice during concentration; VLPC checked with light 
microscopy, and it looked clear
-put 20 copepod eggs + 80 ml VLPC + 920 ml autoclaved GF/F-filtered seawater 
(salinity = 27) in 1-L plastic beakers (n = 3; V1-V3) (virus treatment)
-put 20 copepod eggs + 1000 ml autoclaved GF/F-filtered seawater (salinity = 27 
in 1-L plastic beakers (n = 3; C1-C3) (control treatment)
-add 1.25 x 105 cells ml'1 of I. galbana to all beakers
-arrange beakers randomly on shelf in incubator; temperature = 20°C; light = 
12L:12D (approximately 60 //moles rrr2 s'1)
-7 days later (day 7 of experiment), change water in all beakers; replace with 
autoclaved GF/F-filtered seawater and 19,000 cells ml'1 of R. salina 
-8 days later (day 15 of experiment), measure egg production over 12 h 
-measure egg production in 125-ml Erlenmeyer flasks with autoclaved GF/F-filtered 
seawater and 19,000 cells ml'1 of R. salina; experiment designed in a nested 
fashion: 2-4 groups of 1 -2 female copepods were removed from each experimental 
beaker and placed in a flask (n = 10 flasks for control; n -  6 flasks for virus). 
Arrange flasks randomly on incubator shelf. Egg production was not measured for 
any copepods in beaker V2 because on day 15, there was a lot of green lettuce
like algae in the beaker with only 2 copepods. Beaker V2 was at the end of the 
shelf in the incubator-too little light?

Beaker 
i.d. (# of 
females 
per
beaker)

# eggs +
nauplii
per
female

Total # 
eggs

Total
#live
nauplii

Total #
dead
nauplii

Total # 
nauplii + 
eggs 36 h 
after eggs 
were 
counted

C1a (2) 16 32 0 0 30 nauplii 
2 eggs
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Beaker 
i.d. (# of 
females 
per
beaker)

# eggs +
nauplii
per
female

Total # 
eggs

Total
#live
nauplii

Total #
dead
nauplii

Total # 
nauplii + 
eggs 36 h 
after eggs 
were 
counted

C1b (1)
10 10 0 0 9 nauplii 

1 mia

C1c (2) 10.5 21 0 0 19 nauplii 
2 eggs

C1d (2) 30.5 61 0 0 59 nauplii 
2 eggs

C2a (1) 14 14 0 0 13 nauplii 
(1 egg 
accidently 
smashed 
with pipet)

C2b (1) 16 16 0 0 9 nauplii 
7 eggs

C3a (2) 12 24 0 0 23 nauplii 
1 egg

C3b (2) 19.5 39 0 0 39 nauplii 
0 eggs

C3c (1) 30 30 0 0 29 nauplii 
1 egg

C3d (1) 24 24 0 0 23 nauplii 
1 egg

V ia  (1) 17 17 0 0 0 nauplii 
17 eggs 
unfertilized 
female?

V1b (1) 19 19 0 0 2 nauplii 
17 eggs

V3a (1) 17 17 0 0 17 nauplii 
0 eggs
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Beaker 
i.d. (# of 
females 
per
beaker)

# eggs + 
nauplii 
per 
female

Total # 
eggs

Total
#live
nauplii

Total #
dead
nauplii

Total # 
nauplii + 
eggs 36 h 
after eggs 
were 
counted

V3b (1) 6 6 0 0 6 nauplii 
0 eggs

V3c (1) 18 18 0 0 0 nauplii 
18 eggs 
unfertilized 
female?

V3d (1) 15 15 0 0 13 nauplii 
2 eggs

Grand means of control beakers = 16.75 (C1), 15 (C2), 21.4 (C3)
Grand means of virus beakers = 18 (V1), 14 (V3)

-»Egg production in control vs. virus treatments was similar over a 12-hour egg- 
laying period (note that low egg production in V3 was due to female in flask V3b, 
which produced only 6 eggs).

Experiment number = 10 
Start date = 11 September 1995

-collect 30 L of seawater in a seawater-rinsed carboy with a submersible pump 
from a depth of 7 m at the North Channel at Chesapeake Bay mouth; location 
approximately 37° 10.90 ‘ N, 76° 01.12' W 
-water temperature = 24.5°C and salinity = 27.6 
-transport to laboratory in darkness and on ice
-immediately prefilter seawater through glass fiber filters + 0.22//m cellulose 
acetate filters at vacuum pressure = 50 -60 mm Hg
-immediately concentrate VLPs using VFF set up in recirculation mode with a 100 
kD filter and keep seawater on ice during concentration. Light microscopy of VLPC 
showed stick-like debris in concentrate
-put 40 copepod eggs + 44 ml VLPC + 948 ml autoclaved GF/F-filtered seawater 
in 1-L plastic beakers (n = 3) (virus treatment)
-put 20 copepod eggs + 1000 ml autoclaved GF/F-filtered seawater in 1-L plastic 
beakers (n = 3) (control treatment)
-add 2.0 x 104 cells ml'1 of I. galbana to all beakers
-arrange beakers randomly on shelf in incubator; temperature = 20°C; light = 
12L:12D (approximately 60 ^moles rrr2 s'1)

il
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-5 days (day 5 of experiment) later, change the water in all beakers; replace with 
autoclaved GF/F-filtered seawater (salinity = 27) and 1.9 x 104 cells ml'1 of R. salina 
-4 days later (day 9 of experiment), change the water in all beakers; replace with 
autoclaved GF/F-filtered seawater (salinity = 27) and 1.9 x 104 cells ml*1 of R. salina 
-another 4 days later (day 13 of experiment), change the water in all beakers; 
replace with autoclaved GF/F-filtered seawater (salinity = 27) and 1.9 x 104 cells 
ml*1 of R. salina
-*1 day later (day 14 of experiment), the experiment was terminated because of 
diatom bloom in all 3 virus beakers. There was only 1 live copepod in the V1 and 
V2 beakers; V3 had some live adults

Experiment number =11 
Start date = 11 September 1995

-collect 30 L of seawater in an acid-rinsed carboy with a submersible pump from 
a depth of 7 m at the North Channel at Chesapeake Bay mouth; location 
approximately 37° 10.90 ‘ N, 76° 01.12' W 
-water temperature = 21.8°C and salinity = 29 
-transport to laboratory in darkness and on ice
-immediately prefilter seawater through glass fiber filters + 0.22/um cellulose 
acetate filters at a vacuum pressure of < 60 mm Hg into an acid -washed carboy on 
ice
-immediately concentrate VLPs using VFF set up in recirculation mode with a 100 
kD filter and keep seawater on ice during concentration
-put 3 adult female copepods and 1 adult male copepod + 30 ml VLPC + 220 ml 
autoclaved GF/F-filtered seawater (salinity = 27) in 250-ml PMP beakers (/? = 3; 
V1, V2, V3) (virus treatment)
-put 80 first-stage nauplii + 30 ml VLPC + 220 ml autoclaved GF/F-filtered 
seawater (salinity = 27) in a 250-ml PMP beaker (n =1; V ia ) (virus treatment) 
-put 3 adult female copepods and 1 adult male copepod + 250 ml autoclaved 
GF/F-filtered seawater (salinity = 27) in 250-ml PMP beaker (n = 3; C1, C2, C3) 
(control treatment)
-put 80 first-stage nauplii + 220 ml autoclaved GF/F-filtered seawater (salinity = 27) 
in a 250-ml glass beaker (/? =1; C1a) (control treatment)
-add 1.9 x 104 cells ml*1 of R. salina to all beakers
-arrange beakers randomly on shelf in incubator; temperature = 20°C; light = 
12L:12D (approximately 60 ^moles m’2 s*1)
-2 days later (day 2 of experiment), add enough R. salina to all beakers to bring the
concentration of R. salina to 1.9 x 104 cells ml*1
-3 days later (day 5 of experiment), add enough R. salina to all beakers to bring the
concentration of R. salina to 2.8 x 104 cells ml'1
-*1 day later (day 6 of experiment), the copepods in beakers C1 and C2 were 
dead; the experiment was terminated.
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Experiment number = 22 
Start date = 14 January 1996

-The purpose of this experiment was to immerse live, laboratory-reared copepods 
in virus concentrate, then fix copepods and examine them for the presence of 
viruses with transmission electron microscopy (TEM)
-collect 10 L of surface seawater in a seawater-rinsed bucket from Harrison’s
Fishing Pier, Chesapeake Bay
-water temperature = 2.5°C and salinity = 20
-immediately prefilter seawater through glass fiber filters + 0.22//m cellulose 
acetate filters at a vacuum pressure of < 60 mm Hg into an acid-washed carboy 
-immediately concentrate VLPs using VFF set up in recirculation mode with a 100 
kD filter
-put adult female copepods + 175 ml VLPC + 1400 ml autoclaved GF/F-filtered 
seawater (salinity = 25) in 250-ml PMP beakers (n = 1) (virus treatment)
-put adult female copepods + 175 ml autoclaved GF/F-filtered seawater (salinity 
= 25) in 250-ml PMP beaker (n = 3) (control treatment)
-add 1.5 x 104 cells ml*1 of /. galbana and 3.5 x 103 cells ml*1 of R. salina to both 
beakers
-put beakers on shelf in incubator; temperature = 20°C; light = 12L:12D 
(approximately 60 //moles m*2 s*1)
-3 days later (day 3 of experiment), fix copepods for TEM in 1% electron- 
microscopy grade glutaraldehyde using the protocol of Blades-Eckelbarger (1991) 
-♦Examination of thin sections of copepods in virus and control treatments showed 
no presence of viruses or virus-like particles in copepod tissues.

Experiment number = 33 
Start date = 31 May 1997

-The purpose of this experiment was to collect eggs produced by females that were 
potentially infected by viruses, prepare the eggs for TEM using the protocol of 
Blades-Eckelbarger and Marcus (1992), and examine the eggs for the presence 
of viruses by TEM.
-eggs used were produced by females used in egg-production experiment 5 
(described in Chapter III)
-♦examination of thin sections of eggs in virus and control treatments showed no 
presence of viruses or virus-like particles inside the eggs 
-♦However, there were virus-size structures on the surface of eggs in both control 
and virus treatments that, at first glance, appeared to be viruses. The structures 
had “heads” that were composed of electron-dense tops and bottoms separated by 
regions that were not electron dense. The heasds were attached to the egg 
surface by a tail-like structure. The structures were not viruses, but they have also 
been seen on eggs of A. tonsa collected in Florida by P. Blades-Eckelbarger (pers. 
com.).
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APPENDIX D

Calculation of the sinking time of subitaneous A. tonsa eggs in

Chesapeake Bay

I
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Assume average depth of Chesapeake Bay, including tributaries, = 689 cm 
R. Brumbaugh, pers. com.

Assume fall velocity of subitaneous A. tonsa eggs = 0.0373 cm s'1
from measurement of A. clausi egg settling velocity at 20°C, salinity = 32 
(Uye, 1980, as cited in Marcus and Fuller, 1986; egg type unknown-assume 
it was subitaneous)*

Assume average time to 100% hatch of subitaneous A. tonsa eggs at 20 °C in East
Lagoon, Galveston, Texas = 19 h 

(Ambler, 1985)

distance = rate x time 
689 cm = 0.0373 cm s‘1 x time 

time = 18472 s 
time = 5.1 hours

sinking time = 5.1 hours < average time to 100% hatch = 19 hours

Therefore, subitaneous eggs of A. tonsa should be deposited in sediments prior to 
hatching (unless they are eaten, adsorbed to a buoyant particle, or kept in 
suspension by mixing before they sink to the benthos)

*The fall velocity of diapause eggs of the calanoid copepod Labidocera aestiva is 
about 25% greater than the fall velocity for subitaneous eggs of L. aestiva (Marcus 
and Fuller, 1986). If Uye’s (1980) calculations were for diapause eggs, applying 
the Marcus and Fuller (1986) correction yields a fall velocity of 0.028 cm s'1, which 
translates to a sinking time of 6.8 hours. Eggs of A. tonsa would still sink to the 
benthos before hatching.
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