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Figure 3 Box plots of the classification performance achieved on the six tasks. Each plot corresponds to one of the six tasks, and nine different
data sets are generated by using different thresholds for the fold enrichment and different image sections (coronal, sagittal, and coronal + sagittal).
For each task, the entire data set is randomly partitioned so that 2/3 of the data is in the training set and the rest 1/3 is in the test set. A total of 30
random partitions are generated. The central mark represents the median, the edges of the box denote the 25th and 75th percentiles. The whiskers
extend to the minimum and maximum values not considered outliers, and outliers are plotted individually. The numbers of genes used for different
tasks are given in Table 1.

Specifically, we used stability selection to rank the bag-
of-words features, which correspond to the cluster centers
of the descriptor pool. Since the cluster centers might
not coincide with SIFT features, we located the SIFT
features in the pool that were closest to these cluster cen-
ters. Finally, we traced back to obtain the ISH images

from which these descriptors were extracted. We also
recorded the specific locations that these SIFT features
were computed and the names of genes corresponding
to these ISH images. Some sample highly-ranked features
were visualized in Figure 6. We can observe that most of
the highly-ranked features identified by our method were
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Figure 4 Comparison of classification performance achieved by our image features and that by the voxel features used in prior work. The
performance on the six tasks are compared, and nine data sets are used for each task. For each task on a specific data set, the entire data set is
randomly partitioned so that 2/3 of the data is in the training set and the rest 1/3 is in the test set. A total of 30 random partitions are generated, and
the average performance is reported. The numbers of genes used for different tasks are given in Table 1.

indeed located around the boundaries between regions
such as hippocampus and isocortex. Additionally, most of
these features spanned the boundary between the white
matter and the gray matter. It has been widely known
that the main function of oligodendrocytes is to provide
support and to insulate the axons of neurons. Thus, oligo-
dendrocytes mostly occupy the white matter. In contrast,

neurons are mainly located in the gray matter to control
information flow within the brain. Therefore, the most
discriminative features that distinguish genes enriched in
neurons and oligodendrocytes should span the bound-
ary between the gray matter and the white matter. These
results demonstrated that our feature ranking method can
identify locations in the brain that can distinguish genes
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Table 2 Statistical test results in comparing our image-based method with voxel-based method

Folds Sections A vs. Neg. N vs. Neg. O vs. Neg. O vs. A A vs. N N vs. O

1.5

Coronal 0.0822 1.7E-06 4.7E-06 0.0036 1.7E-06 1.7E-06

Sagittal 1.7E-06 8.5E-06 0.1306 2.9E-6 1.7E-06 2.1E-06

Cor.+Sag. 3.5E-06 1.2E-05 0.0017 1.7E-06 2.6E-06 1.7E-06

10

Coronal 6.6E-04 1.7E-06 0.9263 9.3E-06 8.7E-05 0.7343

Sagittal 0.0558 1.7E-06 5.5E-4 0.0916 0.0180 0.0052

Cor.+Sag. 0.0387 1.1E-05 0.5038 0.1086 0.3389 0.4908

20

Coronal 0.0612 1.9E-06 0.9590 0.0001 0.7188 0.0100

Sagittal 0.0387 0.0026 0.0157 2.7E-5 5.7E-6 0.0614

Cor.+Sag. 0.6435 9.7E-05 0.0114 4.0E-4 0.3359 0.0349

We employed two-sided Wilcoxon signed rank tests on the AUC values produced by 30 random trials, and the p-values were reported. We also performed the
one-sided statistical test to compare the mean of image-based multiple trials with that of voxel-based method. The bold values indicate tasks on which image-based
method outperforms voxel-based method significantly.

enriched in different cell-types, thereby providing insights
on the relationships among brain cell-types.

Performance comparison among different tasks
We observed that the six tasks achieved different per-
formance, and these differences might be related to the
intrinsic relationship between various brain cell-types.
In order to expedite cross-task comparison, we showed
the performance of the six tasks on the combination of
coronal and sagittal images in Figure 5. We can see that
the relative performance differences among the six tasks
are generally consistent across the three data sets with
different levels of enrichment.

We can see that the classification of genes enriched in
astrocytes versus the negative set yielded the lowest per-
formance on all three data sets. Indeed, astrocytes are
among the least-understood brain cells currently, though
they account for a high proportion of the brain cells
[46]. This type of cells fill the space between neurons
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Figure 5 Comparison of performance achieved on the six
different tasks. We only report the results using combination of
coronal and sagittal data, since this data yielded the best performance.
The numbers of genes used for different tasks are given in Table 1.

and were traditionally considered as providing support-
ive functions to neurons. However, recent studies showed
that thy might control the concentration of extracellu-
lar molecules, thereby providing important regulatory
functions [46-48]. Thus, the difficulty of distinguishing
astrocytes with other cells might be due to the fact
that they are spatially very close to other major brain
cell-types, and they are found in all areas of the brain
[46,48,49].

On the other hand, the classification of genes enriched
in neurons and oligodendrocytes yielded the highest per-
formance on all three data sets. Indeed, oligodendrocytes
are examples of well-understood glia in the brain. Their
primary function was to insulate the axon and thus expe-
dite the transduction of impulses between neurons by
creating the myelin sheath [46,48,49]. Thus, oligodendro-
cytes mainly reside in the white matter, while neurons
mainly reside in the gray matter. The spatial comple-
mentarity between oligodendrocytes and neurons might
explain the relatively high performance of distinguishing
genes enriched in these two cell-types.

Conclusion and outlook
In this study, we aimed at identifying cell-type-specific
genes in the mouse brain automatically. This was achieved
by combining the high-resolution ISH images from the
Allen Brain Atlas with the experimentally-generated lists
of genes enriched in astrocytes, neurons, and oligo-
dendrocytes. We constructed invariant, high-level repre-
sentations from the ISH images directly and employed
advanced machine learning techniques to perform the
classification and image feature selection. Results showed
that our image-based representations were predictive of
cell-type enrichment. We also showed that the highly-
ranked image features identified by our method explained
the intrinsic relationships among brain cell-types. Overall,
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Figure 6 Visualization of the highly-ranked local image features in discriminating genes enriched in neurons and oligodendrocytes. For
each highly-ranked feature (i.e., cluster center) generated by stability selection, we found the closest SIFT descriptor in the pool and then displayed
the corresponding ISH image and the locations on which the SIFT descriptor was computed. The images in the left column are the ISH images
along with the SIFT descriptors. The right column shows parts of the ISH images in red boxes on the corresponding image to the left. The grid is
used to illustrate the 4 by 4 neighborhoods for the SIFT descriptor. The arrow denotes the direction and the length denotes the magnitude of the
orientated histogram.

our results demonstrated that automated image comput-
ing could lead to more quantitative and accurate compu-
tational modeling and results [50-52].

In the current study, the features for identifying
cell-type-specific genes are generic representations and
are not trained and tuned to specific tasks. We will
explore deep models that are trained end-to-end for fully

automated cell-type-specific gene prediction [53,54]. We
formulated the cell-type-specific gene identification prob-
lem into six separate classification tasks in the current
work. However, the prediction of specificity in multiple
cell-types might be related. We will employ multi-task
learning techniques [55-57] to identify cell-type-specific
genes in multiple cell-types simultaneously in the future.
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