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Abstract: Two new cancer therapies apply bioelectric principles. These methods target 

tumor structures locally and function by applying millisecond electric fields to deliver 

plasmid DNA encoding cytokines using electrogene transfer (EGT) or by applying rapid 

rise-time nanosecond pulsed electric fields (nsPEFs). EGT has been used to locally deliver 

cytokines such as IL-12 to activate an immune response, resulting in bystander effects. 

NsPEFs locally induce apoptosis-like effects and affect vascular networks, both promoting 

tumor demise and restoration of normal vascular homeostasis. EGT with IL-12 is in 

melanoma clinical trials and nsPEFs are used in models with B16F10 melanoma in vitro 

and in mice. Applications of bioelectrics, using conventional electroporation and 

extensions of it, provide effective alternative therapies for melanoma. 

Keywords: electric fields; electroporation; gene delivery; cytokines; enhanced immunity; 

nanosecond pulsed electric fields; non-thermal effects; apoptosis; caspases; anti-angiogenesis 

 

1. Introduction 

The skin is our largest organ and it is protected by melanocytes, which reside in the basal layer of 

the epidermis, where they produce melanin. Keratinocytes regulate melanocyte number, differentiation 

and melanin production in response to UV radiation. Perhaps because melanocytes have an inherent 

resilience to protect the skin, they cause one of the most deadly forms of skin cancers when they 

undergo tumorogenesis, and, because they originate in the neural crest and migrate to the skin with an 
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innate program for motility, they may be more prone to metastasis. Although genetics plays a role in 

the development of melanoma, exposure to extreme sunlight (UVA and UVB) or tanning bed light 

(mostly UVA) is a dominant etiology for development of melanoma. The American Cancer Society 

estimated for 2009 that in the US, 68,720 new cases of melanoma (188 new cases/day) will be 

diagnosed and 8,650 people will die from the disease (24 melanoma deaths/day). Thus, the incidence 

of melanoma continues to increase and is a significant cause of morbidity and mortality in the Western 

world. Thus, metastatic melanoma remains a persistent therapeutic challenge. Successes in preventing 

this often fatal disease are limited and there are even fewer successes in developing a cure. 

Effective treatment options for melanoma are significantly limited, especially for metastatic 

melanoma. Treatments include resection, when the disease is limited and localized, chemotherapy, 

radiation and/or immunotherapy. Chemotherapy approaches include DTIC (dacarbazine), alone or in 

combination with BCNU (carmustine) or cisplatin. The “Dartmouth regimen” includes these three 

drugs with tamoxifen. Another combination includes cisplatin, DTIC and vinblastin [1,2]. Addition of 

systemic immunotherapy with IL-2 and/or INFά to these regiments resulted in increased toxicity 

without improving progression-free or overall survival [3]. Unfortunately, metastatic melanoma is one of 

the most resistant cancers to a wide range of treatment modalities including single-agent and combination 

chemotherapy, immunotherapy, chemoimmunotherapy and a host of immune stimulators [4]. Since 

these therapies are wanting, novel approaches for treatments are need. 

A major obstacle in treatments for cancer is that it is not a single disease, but hundreds of them; so 

even melanomas are not all alike. Cancers exhibit hundreds of genotypes defined by substantial 

numbers of mutations. To provide more focused characterization of cancer and in order to manage this 

array of diseases, Hanahan and Weinberg [5] defined six major hallmarks of cancer that exhibit 

physiological anomalies that control cell homeostasis and proliferation. These include self-sufficiency 

in growth signals, insensitivity to growth-inhibitory (antigrowth) signals, evasion of apoptosis, 

limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. Kroemer and 

Pouyssegur [6] included evasion of immune surveillance as a seventh hallmark and Luo et al. [7] 

expanded these classic hallmarks to include stress phenotypes of tumorigenesis and defined a large 

class of non-oncogenes that are essential for cancer cell survival. These hallmarks provide major 

strategies to design targeted therapies for cancer treatment. Since there are many molecular 

mechanisms of cancer and they differ among cancer types, to design treatments for them, it is 

important to understand the pathobiology of each one. Over the last several years significant progress 

has been made to understand the pathobiology of melanoma and a number of treatments have been 

designed based on this knowledge. 

In the last ten years, a new field of Bioelectrics has emerged with new therapeutic strategies to treat 

cancer using electric fields. Two different approaches using electric fields include those with durations 

that are in the milli-or micro-second range and intensities of V/cm. These include conditions that are 

referred to as conventional electroporation [8]. These pulses increase the permeability of the plasma 

membrane but have minimal effects on intracellular membranes. This review will discuss uses of 

conventional electroporation for the delivery of genes or electrogene therapy directed towards the 

hallmarks of cancer [5,6] to treat melanoma as a model for cancer. More recently, pulse power 

technology has given rise to electric field pulses that are in the sub-microsecond range, primarily 

nanosecond pulsed electric field (nsPEFs), with intensities of tens to hundreds of kV/cm. These pulses 
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include conditions referred to as supra-electroporation causing high density nanopore formation in all 

cell membranes [9]. The role that these plasma membrane and intracellular membrane nanopores play 

in nsPEF effects remains to be determined. These pulses will be discussed here to eliminate melanoma 

through effects on several cancer hallmarks. However, before these technologies are discussed, other 

treatments for melanoma will be presented describing why new and novel strategies are need to  

treat melanoma. 

Targeted Therapies for Melanoma 

Targeted therapies have been designed to attack specific mechanisms that cancers evade, especially 

those related to proliferation, apoptosis, angiogenesis and immune surveillance. Many cancer 

mutations occur in oncogenes and tumor suppressor genes in several major signaling pathways causing 

aberrant behavior in melanocytes resulting in melanoma. While there are four main clinical subtypes 

of melanoma (nodular, acral lentiginous, lentigo maligna and superficial spreading), none of these 

have been specifically associated with abnormal signaling mechanisms. Whereas it is known that there 

are mutations among these pathways that drive progression of cancer from normal through naevi, 

radial and vertical growth phases, it is not yet clear how these mutations and which ones affect 

signaling mechanisms to achieve progression and metastatic outcome. Major targeted treatment efforts 

have focused on mutations in several hyper-activated pathways in metastatic melanoma [2,10,11]. Two 

of these are pathways downstream of receptor tyrosine kinases, cytokines and G-protein coupled 

receptors that branch from one of three RAS genes (NRAS, HRAS and KRAS). The mutant small 

GTPases from these genes hyper-activate Raf/MEK/ERK signaling, which leads to survival and 

proliferation and PI(3)K/Akt/mTor signaling, which leads to cell survival, proliferation, growth and 

motility. Significant numbers of mutations have been identified in melanoma patients in these 

pathways including NRAS (15–30%), BRAF (50–70%), AKT3 (60%) and PTEN (5–20%), which 

inhibits PI(3)K signaling.  

There have been a number of drugs that target some of these mutant pathways. These include 

inhibitors of Ras, receptor tyrosine kinases, RAF, MEK, proteases, PI(3)Kinase, Akt, and mTOR. 

While some of these approaches are still in phase I or II clinical trials, some targeted drugs in the 

presence or absence of chemotherapeutic agents may be necessary. One such drug for metastatic 

melanoma that showed initial promise is PLX4032, a B Raf inhibitor [2]. The drug demonstrated 

efficacy only in patients with the BRAF mutation. PLX4032 showed both tumor shrinkage and delay 

in tumor progression in patients with the BRAF mutation and reports of improvement in clinical 

symptom. Partial responses have been observed in 70% of patients (greater than 30% tumor regression 

by Response Evaluation Criteria in Solid Tumors), minor responses in other patients (regression 

greater than 10% but less than 30%), disease control lasting up to 14 months with continuous therapy 

and interim median progression-free survival of at least six months. Regression of metastatic lesions 

was observed in all common metastatic sites (liver, lung and bone). Oral administration of the drug is 

relatively well tolerated with minor side effects. However, after chronic treatment, serious adverse 

events were observed in some patients, including possibly drug-related cutaneous squamous cell 

carcinoma, which is typically excised by a patient's dermatologist. While several patients in the trials 

have relapsed, many are still in remission. Nevertheless, this represents an important new therapeutic 
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development in the treatment of melanoma. For those who experienced relapses, a second mutation 

appears to continue to drive tumorigenesis. It will be important to determine what this mutation is. In a 

multicenter phase III trial, approximately 700 previously untreated melanoma patients who will be 

randomized one-to-one with PLX4032 (960 mg BID) or dacarbazine (DTIC), a drug approved for the 

treatment of metastatic melanoma. 

Another protein that may be worthy to target is STAT3 or signaling pathway upstream of  

STAT3 [12–15]. STAT3 is activated in 50-90% of cancers including a majority of melanoma cell lines 

and tumor samples tested [12,13]. It is downstream of several tyrosine kinases including SRC. STAT3 

plays central roles in most cancer hallmarks including tumor cell survival, proliferation, angiogenesis, 

metastasis, and immune evasion. It drives or inhibits the expression of a wide variety of proteins that 

promote these functions [14]. Further, blockade of SRC or STAT3 induces apoptosis and tumor 

regression [12,15]. This protein could be an excellent target for small-molecule drugs to treat melanoma. 

A mentioned earlier, melanomas are particularly resistant to apoptosis induction and are notoriously 

resistant to chemotherapeutic agents that induce apoptosis, suggesting a connection between the  

two [11,16,17]. Melanomas exhibit mutations that activate anti-apoptosis factors and/or inhibit  

pro-apoptotic factors. The BCL2 protein, which inhibits mitochondria-mediated apoptosis, is often 

overexpressed in melanoma. A number of melanoma mutations inhibit pro-apoptosis mechanisms. 

APAF1, a pro-apoptotic protein, is often silenced in melanoma (40%). FLIP, which inhibits death 

receptor-mediated apoptosis, is often overexpressed. TRAIL receptors, which induce death receptor-

mediated apoptosis, can be decreased and IAPs or inhibitors of apoptosis are sometimes overexpressed 

in melanomas [10,11].  

One of the first drugs to target apoptosis was an anti-sense molecule against Bcl2 called oblimersen. 

In phase II clinical trials of oblimersen in combination with DTIC, BCL2 expression was decreased by 

42% in melanoma samples [18]. In trials with oblimersen plus DTIC versus DTIC alone there were no 

significant differences in overall survival between the two treatments. Since Bcl2 expression was 

lower in metastatic melanoma than in benign nevi and Bclxl and Mcl-1 were overexpressed in 

metastatic melanoma, Bcl2 may not be an optimal anti-apoptotic protein to target in melanoma [19]. 

In addition to avoiding apoptosis, cancers also avoid senescence, which is activated by oncogenes 

to halt abnormal proliferation [20]. Cancers reverse senescence by modulating genes that regulate the 

cell cycle such as p16
INK4a

 and p53, which increases p21 expression. Both p16 and p21 inhibit CDK to 

prevent Rb phosphorylation and inhibit cell cycle progression. Genes encoding Cdk4 and p16
INK4a 

are 

often mutated in melanoma such that inhibition of the cell cycle is abrogated. These can also serve as 

potential drug targets, but none have advanced to clinical trials. Other drugs for targeted melanoma 

therapy focus on angiogenic factors such as receptor tyrosine kinases for VEGF, PDGF, c-Kit and 

FLT3 [21].  

Several issues are noteworthy for using targeted drugs. First, targeted therapies are generally 

effective for identified individuals with a specific mutation that the drug targets, so patients can be 

screened before treatment. This exemplifies the impact of personalized medicine on oncology. Second 

is the issue of heterogeneity within a patient’s melanoma. While a specific mutation may be 

determined in a sample, the targeted mutation may not be present in all of the patient’s melanoma 

cells. This provides a potential means for resistances and recurrences. A third issue is the continued 

“pressure” exerted or relieved by a targeted agent on cell signaling in the affected cancer cells. Such 

http://www.news-medical.net/health/What-are-Melanomas.aspx
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events modify signaling dynamics with responses that attempt to “escape” the modification, which 

may also lead to resistances and recurrences. These issues may complicate uses of targeted medicine in 

melanoma treatments. 

2. New Approaches for Melanoma Treatment 

Based on the absences of cancer treatment successes, there is little doubt that cancer treatment, 

especially of melanoma, requires new and innovative strategies beyond the uses of present modalities 

discussed above. While considerable efforts focus on development of drugs that target one or more 

cancer hallmarks, some alternative therapeutic approaches have been advanced that use physical 

methods with or without other agents that specifically target the tumor mass as a whole. The tumor is 

the target. One interest in tumor targeting technologies is the potential to locally affect cells and tissues 

within defined treatment boundaries without systemic disturbances. Two physical methods that are in 

practice use extreme temperature deviations such as cryotherapy that freezes tumors and microwave 

and radiofrequency ablation that thermally destroys tumors and other tissues. Both temperature-

induced ablation methods primarily induce necrosis. However, these methods are not used to treat 

cutaneous melanomas, but have been used to treat metastatic melanomas in other organs such as liver 

and lung [22]. 

In different approaches that also focus treatments within defined boundaries, several new strategies 

in pre-clinical trials and/or emerging into clinical applications use non-thermal pulsed electric fields 

(PEFs) to eliminate cancer. Two major approaches discussed here focus on treatments that are directed 

to three major cancer hallmarks including avoidance of immune surveillance, evading apoptosis and 

sustained angiogenesis. Both approaches use electric fields in a new discipline called Bioelectrics to 

accomplish anti-cancer outcomes. Bioelectrics uses pulsed electric fields in the absence of drugs to 

control cell functions and membrane transport processes. This includes approaches that use 

conventional electroporation with durations of micro- and milliseconds and sub-microsecond pulses 

with durations of pico- and nanoseconds. One approach discussed here is called electrogene therapy 

(EGT) using conventional electroporation to deliver genes that locally activate one or more cancer 

hallmarks against melanoma. EGT is in clinical trials for treating melanoma. The other approach 

discusses nanosecond pulsed electric fields (nsPEFs), which extends electroporation using electric 

pulses to induce apoptosis and apoptosis-like features as well as to inhibit angiogenesis. NsPEFs have 

demonstrated effectiveness in a murine B16F10 melanoma cell culture model in vitro and a B16F10 

ectopic murine in vivo model. Other studies indicate that this treatment is not limited to melanomas. 

2.1. Nanosecond Pulse Generation and Delivery  

NsPEFs utilize pulsed power technology, generating pulses that are distinctively characterized by 

their ultrashort duration, rapid rise-time, high power, and low energy density [23–28]. Temperature 

increases caused by these pulses have been measured in vitro and in vivo and the observed nsPEF 

effects have been shown to be non-thermal [29–31]. Relatively long electroporation pulses are 

generally considered to primarily affect plasma membranes. NsPEFs, on the other hand, affect 

intracellular organelles and the plasma membrane, have different pulse durations (0.1–20 milliseconds 

vs. 1–300 nanoseconds); exhibit different EF strengths (0.2–4 kV/cm vs. 10–350 kV/cm); have 
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different energy densities (J/cc vs. mJ/cc) and different powers (500 W vs. 180 MW). The short duration 

and rapid rise time charges intracellular membranes, which do not occur with EP pulses [9,32–34].  

For the definition of nsPEFs that includes intracellular effects two criteria must be met. First, pulses 

must have nanosecond rise times and fall times with effective rise times on the order of or less than the 

charging time of the plasma membrane, which is less than 100 ns. Second, pulses must have 

nanosecond pulse durations. For nanosecond pulse durations the first condition is automatically 

satisfied, so the main focus has been on pulse duration as the definitive parameter for nsPEFs. 

2.2. Pulse Generators  

Research on nanosecond pulse effects and applications for melanoma treatment require electrical 

pulse generators that provide well-defined high voltage pulses with fast current rise to the load. The 

load could be either cells in suspension or tumor tissue. The applied voltage is determined by the 

required threshold field for intracellular effects, which is dependent on the target, the type of cell and 

tissue. For single pulses, typical electric fields for inducing characteristic consistent with apoptosis 

range from tens to hundreds of kV/cm. The highest values for 10 ns pulses were 300 kV/cm. The 

threshold value also depends on pulse duration of nanosecond pulses: to achieve comparable effects 

with single pulses, the electric field times the pulse duration must be approximately constant. A third 

parameter which affects the efficiency of the treatment is the pulse number. For cells in solution it was 

found that the effects scale with the square root of the pulse number [35]. For tissue the effect might be 

proportional to the pulse number rather than its square root. In order to study intracellular electro-

effects both, in vitro and in vivo, mainly pulse generator based on the Blumlein concept have been 

used. Details are described in a paper by Kolb et al. [36]. 

Figure 1. Generic circuit diagram of a Blumlein pulse generator. The two coaxial cables of 

identical length, l, are charged through a resistor, Rcharge, to a voltage V0.The two cables are 

discharged by closing a switch, into the load, RL, which for a matched system is twice the 

impedance of the cables. 

 

Pulse generators based on the Blumlein concept are line-type pulsers (Figure 1). For short pulses 

(less than 100 ns) the pulse forming lines consist of two strip lines or two coaxial cables of equal 

length, l, with the total length determined by the desired pulse duration, : 

cτ
l =

ε
        [1] 
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where c is the speed of light in vacuum, and  is the relative permittivity of the dielectric which 

separates the metallic strip lines or the conductors in a coaxial cable, respectively. For two coaxial 

cables of each 1 m length and a relative permittivity of 2.25 (typical for dielectrics used in cables) in a 

Blumlein configuration, the pulse duration, according to equation 1 is 10 ns. The Blumlein pulse 

generator provides a unipolar, square wave voltage pulse of the same amplitude as the voltage applied 

to a matched load between the two lines (matched: the load resistance has the same value as twice the 

stripline or coaxial cable impedance), by closing the switch at the end of one of the strip lines. In order 

to switch at the required voltage with a rise time of one nanosecond, a pressurized spark gap was used, 

operated in the self-breakdown mode.  

Such pulse generators, where spark gaps have been used as switches, have been used to apply high 

voltages of tens of kV to cell suspensions or tissues over electrode distances of millimeters and more, 

A second class of lower voltage pulse generators was designed for observations of individual cells 

under a microscope. Consequently, the gap distance can be reduced to the 100 µm range, and 

simultaneously, voltage requirements can be relaxed. Instead of typical pulsed power components, low 

voltage, high frequency cables can be used in the design together with fast semiconductor switches. 

Such types of pulse generators – micropulsers – operate at voltages of less than one kV. However, 

because of the small electrode gap, electric field intensities of up to 100 kV/cm are possible and can be 

applied to cells in suspension that are placed in the electrode gap. This type of pulse generator has 

been built with variations in pulse length, type of switch, type of pulse forming network, as a line type 

pulser, and as a hard tube pulser, in many of the ultrashort pulse studies. Circuits and designs are 

described in references [37–41]. The compactness of these pulse generators makes them standard tools 

for in vitro ultrashort pulse effect studies. 

For pulses longer than 100 ns usually a pulse-forming network is used instead of cables or strip-

lines. An example, such a pulse forming network was used in in vivo experiments described in 

previously [30]. The pulse-forming line which replaces the pulse forming lines shown in Figure 1, 

consists of 30 pairs of high voltage capacitors and 30 inductors arranged in a Blumlein configuration, 

and generates a 300 ns long high voltage pulse (Figure 2). The pulse was originally triggered by means 

of a spark gap that was later replaced by a mercury displacement relay controlled by a microcontroller. 

Figure 2. Typical voltage (red) and current (blue) pulse generated across a tumor with a 

300ns pulse (reprint with permission from Elsevier [30]). 

 

Figure 2 (above) shows the temporal development of voltage and current used in in vivo melanoma 

studies [30]. Whereas the research team at the Frank Reidy Research Center as well as a group at 
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BioelectromMed Corporation [42] has used 100 ns and 300 ns long pulses, respectively, a group at the 

University of Southern California has focused its nsPEF research on the use of even shorter pulses. In 

animal studies and a single human basal cell carcinoma, 20 ns long pulses were used at pulse numbers 

of up to 1000. The pulse generators for these studies provided pulses of typically 6.5 kV, and required 

relatively small electrode distances of 1.5 mm to achieve required electric fields comparable to those 

used at the Frank Reidy Research Center for Bioelectrics. The pulse generators used for the studies at 

USC were different from the ones described before. They were MOSFET based, inductive adder pulse 

generators with a balanced coaxial cable pulse forming network and spark-gap switch. More recent 

developments of pulse generators with less than 20 ns pulse duration for possible applications in skin 

cancer treatment have been described [43].  

2.3. Pulse Delivery 

For in vitro studies commercially available electroporation cuvettes are often used. They have 

electrode gaps varying between 1 and 4 mm, and electrode areas of up to 1 cm
2
. For in vivo studies and 

medical applications generally needles, inserted into the tissue, are used as electrodes. For the in vivo 

studies performed at the Frank Reidy Research Center for Bioelectrics, the electric field was applied 

using two different electrode configurations [30]. The first was a 5-needle electrode array in which the 

needles penetrated about 2 mm into the mouse skin. The central needle was placed in the center of the 

melanoma to be treated and the outer four needles were outside of the boundary edges of the 

melanoma. This electrode array exhibits a sharply non-uniform field with field lines parallel to the 

surface of the skin and strongest near the center electrode (Figure 3). 

Figure 3. Needle array electric field pattern (reprint with permission from Elsevier [30]). 

 

Figure 3 (above) shows the electric field distribution in the five-needle pulse delivery system [30]. 

The second electrode configuration used involved placing the tumor between two parallel plates 

(Figure 4). The electric field between two parallel plates is uniform, except at the edges, so that all 

cells between the plates will be exposed to the same field strength. These electrodes were used when 

treating 48 mice by lifting a fold of skin containing the melanoma away from the mouse and placing it 

between the electrodes in such a way that the entire tumor is localized between the plates. This means 

that the field will be oriented perpendicular to the skin surface rather than parallel to it as with the 

needle electrodes. The distance between the plates was typically 0.5–1 mm, depending on tumor 

thickness. Based on our previous results with needle electrodes, we used field strength of 40 kV/cm. 
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One difference between the two electrode types is the appearance of the skin beginning two days after 

treatment. A scab appears on the stratum corneum in the pulsed region and it remains for about two 

weeks as the stratum corneum is regenerated. Histological examination of this scab indicates that it is 

composed of clotted red blood cells. 

Figure 4 (below) shows a close-up of one of the plates of parallel plate electrode showing it 

recessed by 0.5 mm to allow a space for a conductive agar gel to be placed on it [30]. 

Figure 4. Close-up of one of the plates of parallel plate electrode showing it recessed by 

0.5 mm to allow a space for addition of conductive agar gel (reprint with permission from 

Elsevier [30]). 

 

2.4. Nanosecond Pulsed Electric Fields Effects are Different than Conventional Electroporation Effects 

As indicated above, pulse power applications of ultrashort duration, rapid rise-time, high power, 

and low energy density distinguishes nsPEFs from classical electroporation. Modeling evidence for 

single cells [9,34] indicated that nsPEFs, in contrast to conventional EP, induced intracellular 

membrane effects. However, a more recent modeling approach suggested that electroporation pulses 

generate fields inside cells that are high enough to permeabilize intracellular membranes and vesicles 

and/or gate organelle channels [44]. This paper predicts for EP that these membrane pores allowing 

ionic conduction currents to expand and become larger than nsPEF-induced nanopores, but 

nevertheless predicts an alternative to nanosecond pulsed electric fields for intracellular manipulation. 

It will be important to experimentally test this in cells and tissues to discern real differences between 

electroporation and nsPEFs concerning intracellular effects and therapeutic relevance. What is 

relatively clear about nsPEFs is the concept of supra-electroporation with high density nanopores in all 

cell membranes [9,34]. For nsPEFs, nanopores on the order of a nanometer have been experimentally 

demonstrated in plasma membranes using patch clamp methodologies [45]. These nanopores exhibit 

ion channel-like properties, but are distinct from them. They are voltage sensitive, inwardly rectifying 

and affect electrolyte and water balance. The role these nsPEF-induced nanopores play, both in 

intracellular and plasma membranes, remain to be fully explored. 

Gowreshankar and Weaver [46] modeled the effects of electric fields on tissues using an irregular-

shaped, multicellular model with closely spaced cells. They compared conventional electroporation 

conditions (100 µs, 0.1–2 kV/cm), which is used in electrochemotherapy, with supra-electroporation 

conditions (300 ns, 1–80 kV/cm), which was used to eliminate B16f10 melanoma tumors in vivo [30]. 

This model shows that nanosecond pulses induced supra-electroporation with high density pore 
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formation corresponding to an aqueous fractional area of 3.4% compared to conventional 

electroporation corresponding to an area of 0.02%. Further, the 300 ns pulses induced spatially 

homogeneous pores that included tight junctions and nuclei. In contrast, conventional electroporation 

included heterogeneous pore formation that excluded tight junctions and nuclear membranes. This 

supra-electroporation is highly likely to account for mechanisms that contribute to cell death as well as 

nsPEF-induced non-lethal effects.  

NsPEFs have a broad range of effects that can be above and below a threshold for cell death 

depending on the pulse duration, number and electric field. Much less is known about effects of pulse 

repetition rate. This provides new approaches to initiate intracellular signaling and affect electro-

chemical kinetics from the external environment [9,23,27,32,34,47–49]. Applications of nsPEF activate 

cell signal transduction mechanisms that mobilize calcium [27,47,50,51] and activate programmed cell 

death (PCD) mechanisms, consistent with apoptosis in vitro [26, 52–54], ex vivo [25] and in vivo [55]. 

In preliminary studies by Ren and Beebe, there is also evidence for induction of non-caspase-mediated 

cells death, such as calpain activation in E4 squamous carcinoma cells. NsPEFs activate human  

platelets [56], activate L-type calcium channels in chromaffin cells [57], induce action potentials in 

cardiomyocytes [58] and permanently eliminate B16F10 melanoma tumors in mice [30,42,55,59]. 

Regarding nsPEF-induced cell death, it should be considered that all signatures of apoptosis may 

not be observed in vitro because the cell membrane potential may not be maintained for extended 

periods of time and because of other in vitro conditions. This is also true in vivo because 

phosphatidylserine externalization is not easily discerned and phagocytosis may not take place rapidly 

in tumor masses. Furthermore, it is highly likely that multiple cell death mechanisms are activated by 

nsPEF treatment and their characteristic markers overlap. In general, the nsPEF treatment-specific 

presence of significant levels of active caspases in many cells indicate that they may have passed a 

“point-of-no-return”, especially in the presence of cytochrome c release and other apoptosis markers. 

In most instances of nsPEF-induced definitions of apoptosis, multiple methodologically unrelated 

assays have been used to quantify dying and dead cells as suggested in cell death literature [60,61]. 

3. Applications of NsPEFs for Melanoma Treatment 

NsPEFs have been shown to eliminate murine B16F10 melanoma in vivo without recurrence 

[30,42,55,59] and in a human basal cell carcinoma [62]. Elimination of B16F10 melanomas was 

independent of temperature given that measured joule heating was limited to temperatures that were 

below the minimal temperature for hyperthermia effects [30,31]. For 300ns pulses, a threshold of 

greater than 20 kV/cm and an effective electric field of 40 kV/cm was needed to completely eliminate 

tumors for 4–5 months requiring 2–4 treatment sessions with 100 pulses per session using parallel 

plate electrodes [30, see Figure 4]. Histological and other evidence indicated rapid nuclear shrinkage 

and interruption of tumor blood supply and a decreased tumor volume that was not readily detectable 

by ultrasound 2–3 weeks after treatment [30,31,55].  

3.1. NsPEFs Target Melanoma Cancer Hallmarks: Apoptosis Evasion 

The application of nsPEFs targets at least two hallmarks of cancer: evasion of apoptosis and 

sustained angiogenesis, both of which are major cancer therapeutic targets. Further, effects to inhibit 
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sustained angiogenesis implicate a third cancer hallmark- tissue invasion and metastasis. Apoptosis is 

an important target since it is the major form of cell death in all animals and a common target for 

tumorigenesis [63]. Caspase-associated induction of apoptosis-like characteristics appears to be an 

early nsPEF-induced mechanism that correlates with melanoma tumor demise as indicated by 

activation of executioner caspases, which remain active 2–8 hours after treatment in melanoma [55]. 

However, apoptosis may not go to completion. DNA fragments are not present as indicated by the 

presence of large DNA fragments and absences of ~180 bp DNA fragmentation ladders on agarose 

gels, a late stage apoptosis marker. However, this does not mean that apoptosis is not an effective cell 

recycling mechanism. It is anticipated that considerable tumor disassembly takes place early after 

initiation of cell death signals, providing a potential advantage for efficient tumor removal. The in vivo 

tumor masses are too large to be removed quickly by endogenous apoptosis mechanisms [55].  

One of the largest and most complex cellular structures for degradation and removal is the genome. 

Morphologic and molecular evidence suggest that initial effects on DNA may be independent of 

apoptosis-like traits in B16F10 melanoma. Pyknosis and chromosomal condensation occurred rapidly, 

within the first tens of minutes after treatment [30]. Chen et al. [55] demonstrated the presence of 

histone 2AX phosphorylation (γH2AX) indicating that DNA double strand breaks were elevated one 

hour and occurring in 80% of cells three hours after treatment, but were essentially absent after that. 

Further, TUNEL positive cells, suggesting DNA damage, peaked at three hours and remain elevated 

six hours after treatment. However, both of these markers occurred before peak caspase activation at 

six hours, suggesting that major effects on DNA may not be associated with caspase activation. Other 

studies have indicated nsPEF-induced DNA damage in vitro using comet [59,64] and ex vivo using 

TUNEL [25,27,52]. However, none of these studies confirmed that these were related to apoptosis. 

These studies suggest that nsPEF-induced DNA damage probably occurs before apoptosis proceeds 

significantly and may be a direct electric field effect or more likely occurs rapidly and early as a 

possible secondary effect, which remains to be defined. It seems unlikely that these low energy pulses 

can directly induce DNA double strand breaks. Another possible mechanism for DNA damage could 

be generation of reactive oxygen species (ROS). However, nsPEFs are non-ionizing and may not 

ionize water like ionizing radiation does. However, ROS can be generated by other mechanisms that 

are activated by nsPEFs. Nevertheless, in contrast to treatment with ethanol or decreased temperatures, 

no increases in ROS were observed in B16F10 melanoma cells [54]. In yet unpublished work by Ren 

and Beebe, increases in ROS were not observed in E4 squamous carcinoma cells after nsPEF treatment 

in vitro. However, other cell types have not been tested. The mechanism for nsPEF-induced DNA 

damage requires further analysis. 

3.2. NsPEFs Target Melanoma Cancer Hallmarks: Sustained Angiogenesis 

Another nsPEF therapeutic target is tumor vasculature. There were significant macroscopic effects 

on tumor blood vessels within nsPEF treatment zones [30,31,55]. This appears to cause a near 

immediate tumor infarction, at least in some zones within the tumor [55]. Treated tumors showed 

increased staining for iron, a sign of hemorrhage indicating that nsPEFs caused some acute blood 

vessel rupture and bleeding inside the tumor [31]. More specifically, Chen et al. [55] demonstrated 

several molecular indicators for anti-angiogenesis in treated melanoma tumors. First, a decrease in 
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vessel number supplying tumors was coincident with a decrease in tumor mass, suggesting interruption 

of tumor-driven angiogenesis. Second, one week after treatment there were diminished levels of the 

most ubiquitous pro-angiogenic factor VEGF, which is a requirement for the angiogenic switch and is 

a limiting factor for multistage carcinogenesis [5]. This is clearly a harbinger for the absence of 

revascularization and renewed tumorigenesis. Reduced levels of PD-ECGF, a well known chemotactic 

factor for vascular endothelial cells, provided further evidence that nsPEFs depleted the melanoma 

environment of needed angiogenic factors. Moreover, significant downstream VEGF effectors were 

reduced, including three major microvascular density markers. These included CD31, a platelet-

endothelial cell adhesion molecule used as a pan-endothelial cell marker; CD34, an endothelial cell 

marker; and CD105, a proliferation-related endothelial cell marker. These results indicate that while 

melanoma tumors shrink and vessel numbers were significantly reduced, formation of new vessels was 

significantly inhibited. These observations indicate that nsPEFs have acute effects on tumor 

vasculature as well as chronic effects that discourage revascularization and tumor recurrences. 

3.3. Mechanisms for nsPEF-Induced Apoptosis-like Effects in B16F10 Melanoma 

While experiments in B16F10 tumors in vivo provide information about mechanisms for nsPEF-

induced effects at the tumor level, in vitro studies provide greater flexibility to more directly determine 

cellular mechanisms. Experiments carried out on B16F10 melanoma cells in vitro also implicate 

apoptosis-like mechanisms [54], but not all apoptosis markers are present, nor do these cells respond to 

nsPEFs like other cell types such as Jurkat, HL-60, HCT116 colon carcinoma [25,52,53]. One of the 

most striking differences between these cells and B16F10 melanoma cells is that the melanoma cells 

did not release cytochrome c in response to nsPEF-induced cell death [54]. In Jurkat cells, the time 

courses for caspase activation and cytochrome c release were nearly coincident, suggesting that 

cytochrome c release and caspase-associated apoptosis were related. This indicated that the intrinsic 

and/or Bid-dependent extrinsic apoptosis mechanisms were operative in Jurkat cells [25]. The intrinsic 

pathway could be activated by intracellular stresses to the endoplasmic reticulum (ER), mitochondria, 

nucleus or other intracellular organelle, while the extrinsic pathway could be activated by stress to the 

plasma membrane that activated mitochondria mechanisms. In HCT116 colon carcinoma cells, caspase 

activation occurred before cytochrome c release, suggesting that the Bid-independent extrinsic 

pathway was activated before mitochondria-mediated apoptosis mechanisms [53]. In unpublished 

work, the same responses were observed in E4 squamous carcinoma cells by Ren and Beebe. This 

suggested that activation through the plasma membrane was the earliest response to apoptosis-like 

effects induced by nsPEFs in these cells. In B16F10 cells, pro-apoptotic proteins including cytochrome 

c, apoptosis inducing factor (AIF) and Smac/DIABLO were not released from mitochondria. This 

suggested that a Bid-independent extrinsic pathway was exclusively used to induce cell death and that 

the death signal most likely originated at the plasma membrane [53]. It should be noted that  

nsPEF-induced caspase-independent apoptosis mechanisms have been identified in B16F10 melanoma 

in vivo [55]. This suggests that other forms of programmed cell death are activated by nsPEFs and 

likely overlap with one of more apoptosis programs. 

DNA damage is known to lead to programmed cell death, especially apoptosis. As discussed above, 

nsPEFs induce DNA double strand breaks in B16F10 melanoma tumors in vivo [55] and DNA damage 
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(comet and TUNEL) in cells [59,64] and tumors [51,55]. While DNA damage precedes caspase 

activation in B16F10 melanoma tumors in vivo [55], it is possible that DNA damage contributes 

secondarily to apoptosis. While responses to DNA damage are extensive, many responses that lead to 

apoptosis act through mitochondria-mediated mechanisms. 

In B16F10 melanoma tumors in vitro, release of pro-apoptotic factors from mitochondria were not 

observed. However, not all nsPEF-induced responses in B16F10 cells are fully characteristic of 

apoptosis, suggesting that other cell death mechanisms may be operative. For example, in response to 

nsPEFs, B16F10 cells did not externalize phosphatidylserine (PS), a well characterized apoptosis 

marker [54]. However, this appears to be dependent on the buffer used [unpublished data]. This is also 

surprising since nsPEFs directly induce PS externalization, irrespective of apoptosis [49,65,66]. Given 

that both PS and cytochrome c release require oxidation reactions, it is possible that oxidation 

reactions are limited by melanin and/or other radical scavengers, such as Bcl2 [67]. This is further 

supported by the absence of ROS in nsPEF-treated B16F10 cells [54]. Regardless of the mechanisms, 

B16F10 cells appear to have potent anti-apoptosis mechanisms by preventing cytochrome c release, a 

compelling survival mechanism [54]. Nevertheless, nsPEFs induce death in B16F10 melanoma cells [54] 

and tumors [55]. 

3.4. Advantages for nsPEFs as a Melanoma Cancer Treatment 

There are a number of advantages for using nsPEFs as a means for cancer therapy as opposed to 

other physical methods that rely on overt necrosis for tumor cell death. These advantages include  

(1) multiple programmed cell death mechanisms, including apoptosis-like signatures, and  

anti-angiogenesis, two well known cancer hallmarks, the latter necessary for a third likely cancer 

hallmark, invasion and metastasis; (2) rapid death induction with minimal treatment exposures, which 

reduces chances for resistances and recurrences; (3) non-mitochondria-mediated programmed cell 

death, which can bypass many melanoma and other cancer-causing mutations; (4) effective treatment 

of all cells within electric fields, including rapidly growing tumor cells, slower growing host cells and 

cancer stem cells; and (5) minimal local and systemic side effects. 

NsPEFs provide a local targeted treatment at the level of the entire tumor without systemic effects, 

affecting multiple molecular structures and functions in plasma membranes and intracellular 

organelles. All tumor cells exposed to conditions of pulse duration, number and electric field that are 

above the threshold for cell death are subject to programmed and other forms of cell death. The 

foremost targets bypass two important hallmarks of cancer causing apoptosis-like appearances and 

anti-angiogenesis. In its full capacity, this should lead to inhibition of invasion and metastasis, another 

cancer hallmark. The multi-mechanism interactions of nsPEFs with tumors are similar to using a 

combination of two chemotherapeutic agents and/or molecular targeted drugs that induce apoptosis-

like characteristics and limit angiogenesis; both well defined sites for cancer targeted drugs. The 

observed decreases in vessel numbers and angiogenic factors (VEGF and PD-ECGF) prevent the 

possibility for re-vascularization and reduce chances for tumor cells to continue to proliferate [55]. 

Sustained hypoxia prevents cycles of hypoxia that have been implicated in metastasis and hypoxia 

induced factor (HIF) transcriptional activity that is beyond that of normal tissue [68,69]. The 
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combination of apoptosis-like qualities and anti-angiogenesis as sites of nsPEF action makes this 

therapy an attractive cancer treatment [55]. 

Another advantage to nsPEF interactions with tumors is the rapid onset of apoptosis-like features 

and some level of tumor infarction. Caspase activation in vitro is seen within 30–45 minutes [25] and 

within the first hours in vivo [55]. This rapid caspase activation is likely to provide specific advantages 

by rapidly inducing cell death mechanisms. In contrast, chemotherapeutic agents, ionizing radiation, 

molecular targeting drugs are administered over weeks or months and often do not eliminate cancer 

but reduce tumor size or stabilize it. This provides a potential for mechanisms to allow tumor cells to 

escape therapeutic action and increases the possibility for treatment resistances and recurrences. 

Examples include upregulation of drug efflux transporters and tumor immune evasion in 

chemoresistant melanomas [70] and the chemotherapy-induced upregulation of factors like clusterin, 

an anti-apoptotic protein conferring resistances to several cell death agonists [71]. NsPEF-induced 

interruption of the tumor blood supply is also rapid, limiting blood flow to the tumor as it is being 

dismantled, at least in part by apoptosis-like mechanisms. NsPEF treatment has rapid therapeutic 

onset, which should reduce the potential for resistances and recurrences as all tumor cell are affected 

by conditions above the threshold for cell death.  

Many mutations that lead to cancers occur in mitochondria-mediated mechanisms, most likely 

because there are more regulatory sites through intrinsic and Bid-dependent extrinsic pathways than in 

mitochondria-independent apoptosis pathways. Consequently, many chemotherapeutic agents and 

ionizing radiation have significant effects on mitochondria-dependent apoptotic mechanisms [72]. 

NsPEFs have both mitochondria-dependent and -independent sites of action that appear to be cell type 

dependent. In melanoma, the exclusive recruitment of mitochondria-independent extrinsic mechanisms 

provides an alternative mechanism to many cancer therapeutic treatments that act on mitochondria-

dependent pathways. A simple, bistable rate-equation based model of apoptosis pathways predicted 

that the extrinsic caspase-8 mechanism was more sensitive than the mitochondrial intrinsic pathway 

for electric pulse induced cell apoptosis [73], which is in keeping with results from B16F10  

melanoma [54] as well as HCT116 colon carcinoma [53]. Thus, by favoring the extrinsic apoptosis 

pathway, nsPEFs may bypass many cancer causing mutations in mitochondria-mediated apoptosis 

mechanisms, which are often involved in resistances and recurrences.  

Another potential advantage of nsPEF as a cancer therapy is related to considerations for cell type 

specificity. Chemotherapeutic drugs and ionizing radiation primarily affect rapidly dividing cells. 

NsPEFs have some cell type specificity, but it may not have therapeutic relevance. Cultured cells that 

grow attached as opposed to cells in suspension require longer pulse durations, greater numbers of 

pulses and/or higher electric fields to elicit cell responses [64], including cell death [25,53,54]. In 

contrast to conventional electroporation, which affects larger cells more readily than smaller ones, cell 

size did not matter for plasma membrane permeabilization with nsPEFs [74]. However, there is no 

evidence that nsPEFs preferentially affect only rapidly proliferating cells. S phase synchronized cells 

under limiting nsPEF conditions exhibited greater membrane integrity and maintained cytoskeletal 

structure but did not differ in survival compared to unsynchronized cells [75]. Thus, within a 

heterogeneous tumor mass, nsPEF therapy is expected to induce cell death in rapidly proliferating 

tumor cells as well as slower proliferating host cells that are collaborating with tumor cells regardless 

of their size. This suggests an alternative to almost all therapeutic regiments that predominantly target 
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rapid proliferating cells. Melanoma tumors also can contain cancer stem cells or other slower cycling 

cells, which possess characteristics common to normal stem cells, including self renewal capacity, high 

tumorigenicity and potential to differentiate into multiple cell types [76–79]. Cancer stem cells or other 

slower cycling cells may be more prevalent in tumors than initially considered as demonstrated with 

melanomas from 12 different patients [80]. Herlyn and colleagues have suggested an alternative to the 

unidirectional stem cell model in melanoma proposing a dynamic temporarily distinct subpopulation of 

slow cycling melanoma cells that are responsible for tumor maintenance [79] The existence of these slow 

cycling cells is clinically relevant because they would be resistant to most therapeutic regimens [79], but 

probably not to nsPEF therapy. Cancer stem cells or slow cycling cells have been reported to be 

responsible for recurrences after chemotherapy and ionizing radiation therapy through multiple 

mechanisms. One of these mechanisms is to minimize therapy-induced DNA damage that is produced 

by free radical scavengers to minimize the effects of reactive oxygen species (ROS). Cancer stem cells 

had significantly lower levels of ROS and enhanced ROS defenses compared to non-tumorigenic  

cells [81]. NsPEFs are non-ionizing and they do not appear to induce cell death by generating 

measurable ROS in B16F10 melanoma cells [54]. Thus, this mechanism would not provide survival 

advantages to cancer stem cells exposed to nsPEFs. Another mechanism that may be responsible for 

resistances and recurrences with conventional treatments is to preferentially activate DNA damage 

checkpoint response and increase in DNA repair capacity [82]. NsPEFs do cause DNA damage in 

B16F10 melanoma tumors [55]. However, DNA damage may not be a major cause of cell death in 

these tumors [55]. Furthermore, DNA damage induces apoptosis through release of pro-apoptotic 

factors from mitochondria [83–85] and nsPEFs induce melanoma cell death in the absence of release 

of pro-apoptotic factors [54]. Thus, minimizing DNA damage and enhancing repair would not provide 

survival advantages to cancer stem cells or slow cycling cells exposed to nsPEFs. 

An important benefit to local treatment with nsPEFs is an absence of side effects and toxicities, 

which are common with nearly all systemic treatments, especially chemotherapy and ionizing 

radiation. In studies with mice, nsPEFs have minimal and resolvable effects on skin. With parallel 

plate electrodes that eliminated B16F10 melanoma, the stratum corneum showed signs of necrosis and 

hemorrhage with accompanying superficial erosion of the epidermis [30]. However, these characteristics 

appeared two days after treatment, differentiating the effect from burn or heat related injuries, which 

occur immediately. With a four plus one needle array electrode, nsPEFs caused some edema and 

bleeding, but the damage was resolved within a week [31]. Small scabs formed but were resolved 

within two weeks and did not leave a scar. However, mice do not readily scar. In an unpublished 

clinical study observing effects of nsPEFs on human skin, treatments with two parallel needle 

electrodes caused some irritation, redness and itching at insertion/treatment sites, which were readily 

relieved by anti-histamines, local anti-inflammatory ointment and protection from scratching. The 

treatment caused no permanent scars or discoloration of skin regardless of pigmentation. While there 

was some pain and discomfort with applications of nsPEFs without anesthesia, they were eliminated 

when a local anesthetic was injected at treatment sites. In addition, nsPEF caused no muscle 

contractions like those observed with conventional electroporation and irreversible electroporation. In 

addition, studies monitoring general reactions to nsPEFs with parallel plate electrodes, mice had 

slightly higher heart rates and respiratory rates, but body temperature and systolic blood pressure did 

not change significantly [31]. Thus, as tested so far, applications of nsPEFs are generally safe,  
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non-toxic and without scarring or other permanent effects on skin in mice and humans. While nsPEF 

treatments can now be used for surface tumors using needle or plate electrodes, applications to internal 

tumors will likely be possible as catheter electrodes are developed for laparoscopic surgeries. For all 

nsPEF treatments, multi-needle electrode systems with adjustable field orientations would likely 

enhance apoptosis in the context of pulsed voltage-induced inactivation of tumor cells [73]. 

4. Applications of Conventional Electroporation for Gene Delivery and Melanoma Treatment 

With potential problems inherent in viral vector-mediated gene delivery, non-viral gene therapy has 

become more attractive for treatments of cancer. Several non-viral approaches have been investigated 

including the use of plasmid DNA or protein-DNA complexes placed in contact with cells to be 

transfected or delivered by microinjection, liposomes, calcium phosphate precipitation, gene gun, 

ultrasound cavitation (sonoporation), hydrodynamic and electroporation. Conventional electroporation, 

which is the focus of bioelectric approaches to cancer treatment, has been used for over a quarter of a 

century to deliver genes to cells [86,87]. While the delivery of genes and DNA to cells by conventional 

electroporation has played a major role in molecular cell biology with transformation of bacteria and 

transfection of cells in basic science studies, the delivery of drugs or genes to tumors and other tissues 

has therapeutic application in the practice of medicine. One of the early efforts to deliver molecules to 

tissues for therapeutic purposes was to deliver poorly permeable chemotherapeutic agents such as 

bleomycin to induce cell death and tumor regression in animals [87–96]. A number of studies were 

carried out using bleomycin or cisplatin delivery in mice showing both safety and efficacy with various 

electroporation conditions and delivery devices [93–95]. Further, electroporation methodologies for drug 

and gene delivery did not significantly change gene expression profiles in malignant melanoma cells, 

especially not tumor suppressor genes, oncogenes of cell cycle regulation or genes involved in the 

stability of DNA. Only seven out of 2698 genes exhibited changes in expression, including a stress 

related protein, a gene involved in chromatin assembly and down regulation of genes involved in protein 

synthesis [96]. It was also shown that only minor histological changes occurred in electroporated muscle 

with no changes in gene profile for cell death, inflammation and muscle regeneration [97]. In another 

study only two out of 140 genes changed expression levels and none involved in stress or toxic 

responses [98]. Thus electroporation is safe and does not promote tumorigenesis. 

Successes in drug delivery to tumor tissues provided the basis for gene deliver to animal cells and 

tissues in vivo. Early gene therapy methods used viral-mediated gene transfer, but a number of safety 

concerns mounted including potential for toxicity, immune and inflammatory responses and the 

possibility that the virus may recovery its ability to cause disease. Further, incorporation of the viral 

vector into a site of a functional protein, such as a tumor suppressor gene, could lead to tumorogenesis. 

However, the onus of non-viral gene therapy would be to achieve sufficient levels of gene expression 

to reach therapeutic efficacy. Non-viral methods included systemic liposome-mediated gene  

delivery [99,100], or injection of calcium phosphate precipitated DNA vector into liver, spleen [101], 

into the peritoneal cavity with expression in liver and spleen [102] or muscle injection [103]. 

The first reported attempt to deliver genes using electric pulses into newborn mice skin used a 

plasmid with a neomycin-resistance gene controlled by SV40 early promoter and including a gene for 

the SV40 T-antigen to transform cells and a plasmid containing the E1A region of Adenovirus 2, 
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which could immortalize cells [104]. Neomycin resistant primary fibroblasts were cultured in vitro 

from treated skin, restriction fragments from the SV40 promoter and the E1A gene of adenovirus were 

identified in total DNA samples from clones on Southern blots and expression of the SV40 large  

T-antigen was found on Northern blots. These and other results suggested that the genes were 

integrated into the chromosomes. While gene delivery was accomplished in vivo, gene expression was 

carried out in vitro.  

In another approach, C6 glioma cells were inoculated into the right striatum of rats to form brain 

tumors. Ten days later the tumors were electroporated followed by injection of a bacterial LacZ gene 

specifically into the brain circulation. The technique resulted in efficient and controlled gene transfer 

to the brain tumor. A major limitation of this approach was the potential for non-specific delivery of 

the plasmid to unwanted tissues. However, β-galactosidase activity was evident in tumors 3 weeks 

after electroporation treatment, but surprisingly not in other brain regions or other organs [105]. 

In keeping with the introduction of gene expression vectors directly into organs, electroporation of 

rat liver with a plasmid that expressed luciferase or β-galactosidase was the first example of 

electroporation-mediated gene delivery and expression directly into an organ in vivo [106]. Optimal 

conditions for electroporation established dose-dependent luciferase expression kinetics, peaking on 

day two and maintaining significant expression for three weeks. β-Galactosidase expression was also 

demonstrated in isolated hepatocytes by flow cytometry. Histological examination indicated the 

absence of tissue damage and that expression was broadly and randomly distributed within the 

electroporated tissue. This study demonstrated that efficient gene transfer and expression could be 

achieved in sufficient numbers of cells with an electric field to be of therapeutic interest. 

While initial interest in gene therapy focused on correction of single gene defects in hereditary 

diseases, gene therapy for cancer treatment has received the most attention for therapeutic application 

in clinical trials. Following the study by Heller et al. [106], a number of other studies confirmed the 

simplicity, convenience, efficacy and safety of in vivo gene delivery by electroporation in wide range 

of tissues in several different species demonstrating the potential for therapeutic applications. 

Muramatsu et al. [107] electroporated and successfully expressed a LacZ reporter gene driven by the 

testes specific mouse-protamine 1 promoter in spematogenic-like cells in mouse testis. This same 

group also showed that electroporation-mediated delivery of a lacZ reporter gene driven by the 

chicken actin promoter was superior to microparticle bombardment and lipofection for gene delivery 

to somatic cells in early chicken embryos in ovo [108]. Rols et al. [109] demonstrated intratumoral 

delivery of both the β-galactosides protein and a reporter plasmid carrying the gene in murine B16 

metastatic melanoma tumors. Other studies established electroporation-mediated delivery of a green 

fluorescent protein reporter plasmid in rat liver [110], a plasmid for IL-5 expression in mouse  

muscle [111] and long term (9 months), high level expression of a reporter plasmid in muscle [112]. 

The most common animal/tumor model that led to beliefs in therapeutic possibilities in tumors, as 

well as in muscle or skin, was the C57Bl/6 mouse harboring B16F10 melanoma tumors. Gene therapy 

for cancer has focused on several basic strategies including immune potentiation, suicide gene therapy, 

restoration of tumor suppressor genes and/or inhibition of oncogenes, anti-angiogenic genes, genes 

encoding toxins or siRNAs to knockdown proteins important for survival and growth [113,114]. 

Although the roles played by these anti-tumor expression products are often multifaceted, complex and 

not fully defined, considering the hallmarks of cancer [5,6], electrogene therapy has aimed to overcome 



Cancers 2010, 2                

 

 

1748 

essentially all of them with the exception of invasion and metastasis. However, since genes responsible 

for metastasis have not been specifically identified, the inhibition of sustained angiogenesis indirectly 

addresses this category. While these hallmarks have been addressed by electrogene therapy, the most 

attempted and successful strategy has been the evasion of immune surveillance. Nevertheless, further 

consideration for expression of many of these gene products is prudent.  

4.1. Gene Therapy to Prevent Apoptosis Evasion in Melanomas 

In efforts to overcome apoptosis evasion in melanomas, several different electrogene therapeutic 

approaches have been investigated. In one effort, pro-apoptotic genes apoptin and E4orf4 were 

delivered by electroporation into B16F10 tumors. Apoptin, a protein encoded by chicken anemia virus, 

induces cell death by apoptosis [115]. It induces G2/M cell cycle arrest and activation of caspases 

through an intrinsic mitochondria mechanism [116,117], in some but not all cell types. E4orf4, the 

protein encoded by open reading frame 4 in the E4 region of adenovirus, promotes cell death by  

p53-independent apoptosis and is specific for transformed cells. Apoptosis induction by E4orf4 

requires binding to protein phosphatase 2A and involves downregulation of MYC, a multifunctional 

transcription factor involved in cell growth, differentiation, genomic stability, cell motility, cell 

adhesion and apoptosis [118]. These could be effective suicide genes, but unfortunately, gene transfer 

and/or expression were too low and tumor growth inhibition was not a permanent therapeutic effect. 

A more successful series of studies utilized another viral protein, HIV-1 Vpr (accessory protein R) 

in B16F10 tumors. Vpr regulates a number of cell functions including cell cycle arrest at G2/M and 

subsequent p53-independent apoptosis. B16F10 cells transfected with Vpr were less effective in 

colonizing lung tissue than non-Vpr-B16F10 cells, inhibited in vitro growth and preferentially affected 

rapidly proliferating cells and resulted in tumor growth attenuation and complete regression in some 

tumors [119–122]. Further support for electrogene delivery of Vpr as an anti-cancer agent comes from 

the demonstration of in vitro growth inhibition with peptides from the carboxy-terminal third of  

Vpr [123], which encodes part of the third alpha helix [124] and contains part of the sequence with the 

greatest effects on viability [125]. 

4.2. Gene Therapy to Avoid Sustained Angiogenesis in Melanomas 

Survivin is a member of the inhibitor of apoptosis (IAP) family, which functions to inhibit the 

activity and the activation of caspase proteases, affecting both the extrinsic and intrinsic apoptosis 

pathways [126]. While survivin is an anti-apoptotic protein, it plays a particularly important role in 

endothelial cells, where its expression is increased by VEGF, inhibiting apoptosis during vasculogenesis 

and angiogenesis [127,128]. Further, it plays an important role in cell cycle regulation, where Cdc2 

phosphorylation of survivin on Thr 34 stabilizes an anti-apoptotic complex during metaphase to allow 

cell cycle traverse, providing cytoprotection to proliferating cancer cells [129]. In its dual role in 

apoptosis and proliferation, bridging cell death and survival, its prominent role in angiogenesis and the 

consequences of overexpression in cancer, including melanoma [130], make it an excellent target for 

cancer therapy. Further, since it is mostly absent in differentiated cells and overexpressed in tumors [126], 

and antibodies to survivin have been found in sera from some cancer patients [131], it is considered a 

tumor-associated antigen and is an attractive target for T cell-based immune strategies against cancers. 
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Using in silico epitope prediction algorithms and binding to HMC class I molecules, Lladser and  

co-workers [132] delivered a CD8+ T-cell epitope of survivin20–28 by intradermal electroporation. 

Expression from the survivin coding plasmid produced CD8+ cytotoxic T cell response with cross 

reactivity to the mouse survivin20–28 as determined by INFγ staining. In addition, intradermal delivery 

of a plasmid encoding the full length survivin suppressed angiogenesis and provided protection against 

a challenge from aggressive B16 melanoma. These results provide the motivation for further analysis 

of intradermal electroporation as a means of survivin or other DNA vaccination. 

Another electrogene therapeutic strategy for melanoma is designed to inhibit sustained 

angiogenesis. This approach was to electro-transfer a plasmid expressing endostatin. Endostatin, a  

20 kDa C-terminal fragment of collagen XVIII, specifically inhibits endothelial proliferation and 

inhibits tumor growth and angiogenesis. It is an inhibitor of Wnt signaling, which promotes β-catenin 

degradation that prevents transcription of a number of genes, including cyclin D. This is consistent 

with endostatin inhibition of cyclin D1 promoter activity, which causes G1 arrest in endothelial cells, 

reinforcing the idea that catenin is a target for endostatin [133]. Thus, Wnt signaling plays an 

important regulatory role in the vasculature and appears to be critical to angiogenesis [134]. 

Considering this, it was shown that electrotransfer of endostatin into muscle tissue resulted in reduced 

numbers of B16F10 tumor in the lung, demonstrating the electrogene transfer can be successfully used 

to deliver anti-angiogenic genes and prevent neoplasia in tissues [135]. 

Another anti-angiogenesis approach was to deliver vasostatin, the N-terminal domain of calreticulin 

inclusive of amino acids 1180 [136]. Vasostatin is a potent angiogenesis inhibitor. It selectively 

inhibits basic fibroblast growth factor (bFGF)-induced endothelial cell proliferation in vitro and  

bFGF-induced angiogenesis and neovascularization in vivo [137]. Using the B16F10 melanoma model, 

a vasostatin plasmid was electroporated into hind limb tibial muscles and cyclophosphamide, a  

pro-drug, converted to an active chemotherapeutic DNA alkylating agent in the liver, was injected 

intraperitoneally over a period of days. The combination of the two therapies was better than either one 

alone. There was both a significant inhibition of tumor growth and an extended survival of treated 

mice. About 10% of mice treated with vasostatin and cyclophosphamide survived for 3 months 

compared to no survival at 53 days with vasostatin alone. The authors suggested alternative strategies 

for combining both treatments could improve therapeutic reliability. 

Continuing to use the concept of electrogene therapy for anti-angiogenesis, Chan et al. [138]  

co-delivered angiostatin and endostatin, both shown to inhibit angiogenesis, in combination with three 

melanoma-associated antigens. These included tyrosinase-related protein 2 (TRP2), which had been 

shown to be expressed in a variety of cancers including melanoma and had shown clinical tumor 

regression with TRP2-specific T-cells [139]; gp100, a melanosomal matrix protein whose expression 

is closely correlated with cellular melanin content, a frequent melanoma tumor antigen recognized by 

cytotoxic T lymphocytes and expressed in patients with metastatic melanoma [140,141]; and PADRE 

(AKXVAAWTLKAAA, where X is cyclohexylalanine), a linear carbohydrate-peptide construct based 

on the 13 amino
 
acid non-natural pan class II epitope. The melanoma vaccination together with 

expression of angiostatin and endostatin resulted in 57% tumor-free survival for over 90 days after 

challenge [138]. 

Another strategy to eliminate melanoma is to downregulate signal transducer and activator of 

transcription 3 (STAT3). STAT3 is a cytoplasmic transcription factor that is activated by cytokine or 
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growth factor binding to their respective receptors. It is overexpressed constitutively in cancers of 

diverse origins. It is involved in transcription of a multiplicity of genes that cover most of the cancer 

hallmarks including controlling proliferation, differentiation, apoptosis, angiogenesis, metastasis, 

immune evasion and tumor survival [13,142]. The importance of STAT3 in oncogenesis makes it an 

excellent target for cancer therapy. To prevent the function of this protein, a dominant-negative 

STAT3 construct was used in an electrogene therapy strategy that transferred dnSTAT3 into B16F10 

tumors [143]. The growth of STAT3 treated tumors was significantly inhibited in a majority of mice. 

TUNEL staining, as an apoptosis marker, indicated that expression of dnSTAT3 resulted in apoptosis 

in greater than 50% of treated tumor cells and as great as 90% in two mice. Further, there were more 

cells that were apoptotic then were transfected, suggesting a bystander effect. This bystander effect 

could be explained, at least in part, by the release of soluble factors in B16F10 cells upon inhibition of 

STAT3, such as TRAIL, which can induce apoptosis [144]. As might be expected, gene knockout or 

siRNA effects targeting STAT3 have multiple effects on melanoma, including inhibition of HIF1ά 

expression, which turns off many genes involved in vasculogenesis and angiogenesis; inhibition of 

endothelial cell migration and vessel formation; and initiation of pro-inflammatory cytokine and 

chemokine production, which activates innate immune cells and initiates anti-tumor immune 

responses. Increasing or overexpressing STAT3 has also been shown in melanoma cells to upregulate 

the pro-survival proteins MCL1 and BCL2; induce VEGF, the most potent angiogenic factor; 

downregulate p53, which can induce cell cycle arrest and apoptosis; and activate matrix 

metalloproteinases, promoting melanoma metastatic capacity [13]. Many of these same STAT3 effects 

were observed in studies using human cells in nude mice, human melanoma cell lines and human 

tissue specimens. In the mouse model, brain metastasis was increased when STAT3 was constitutively 

expressed and decreased when dnSTAT3 was overexpressed [145]. It was also shown that STAT3 

activity in melanoma cells affects recruitment of diverse immune effectors and it can be manipulated to 

activate the effector phase of innate immune responses [146]. 

4.3. Gene Therapy to Avoid Evasion of Immune Surveillance in Melanoma 

One of the most frequently applied cancer treatments with electrogene delivery is directed towards 

the cancer hallmark, evasion of immune surveillance. There is increased recognition that the 

relationship between tumors and host immunity plays critical roles throughout the diverse stages of 

tumorogenesis and that understanding and manipulating these interventions has important therapeutic 

benefits for controlling melanoma and other cancers [147]. One of the most investigated and successful 

electrogene delivery strategies is intratumoral delivery of IL-12 followed by electroporation. IL-12 is an 

interleukin that activates T-cells, stimulating their growth and function. It is mainly expressed by 

dendritic cells. IL-12 regulates innate and adaptive immune responses to pathogens and tumors and 

produces protective immunity by promoting Th1 differentiation of CD4+ cells, engaging CTL into 

tumors through the induction of various cytokine mechanisms and stimulating macrophage and NK 

cell cytotoxicity. It also starts anti-angiogenesis mechanisms by directly activating INFγ and inhibiting 

VEGF and matrix metalloproteinase 2/9 [148]. T-cells and natural killer (NK) cells respond to IL-12 

by the production of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) and 

attenuation of IL-4-mediated repression of IFN-γ, providing immunoregulatory function and anti-tumor 
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activity [149]. In addition, IL-12 has recently been shown to have direct anti-tumor activity on murine 

B16 melanoma cells expressing functional IL-12 receptors [150]. However, systemic administration of 

recombinant IL-12 produced significant toxicities. Nevertheless, antitumor activities have been 

demonstrated by transferring IL-12-expressing tumor cells or plasmids expressing IL-12. 

Electrogenetherapy with IL-12 has been investigated with a number of electroporation conditions 

showing tumor regression and prolongation of survival. 

Lucas and Heller [151] examined a wide range of electroporation conditions in mouse skeletal 

muscle delivering a plasmid encoding IL-12. Parameters included millisecond pulses with low voltage 

(40–200 V/cm) and microsecond pulses with high voltage (750–1500 V/cm). Of the conditions tested, 

low-voltage, millisecond pulses resulted in higher, prolonged expression of plasmid DNA than high-

voltage, microsecond pulses. Using 20 milliseconds, 100 V/cm pulses, IL-12 and a downstream 

effector IFNγ were both elevated for as long as 21days. This in-depth study provided evidence and 

protocols for electroporation-mediated immune-modulation delivering IL-12 to skeletal muscle. Heller 

and colleagues [152] also demonstrated that IL-12 delivery to skin by electroporation was about  

10 times better than injection of the plasmid without electroporation. Lohr and co-workers [153] 

showed that intratumoral injection of IL-12 or IL-2 with electroporation gave similar levels of 

expression as intratumor delivery of IL-12 by an adenovirus expressing IL-12; however, serum levels 

were higher and toxicities were present with adenovirus delivery. Kishida et al. [154] delivered IL-12 

and IL-18 using an Epstein-Barr-based plasmid replicating vector containing EBV EBNA1 gene, 

which exhibits several functions including nuclear plasmid transfer, plasmid binding to the nuclear 

matrix and up-regulation of gene expression. This EBV-based vector expressed 20-times higher 

luciferase levels than the conventional plasmid, while IL-12, IL-18 and IFNγ serum levels with the 

EBV-based plasmid were only about 1.4, 3.3 and 3.0 times higher, respectively. IL-12 gene 

transfection resulted in significant tumor growth suppression and the therapeutic effects were 

enhanced by co-transfection with IL-12 and IL-18. When tumors were treated repetitively on days 0, 2, 

10 and 12, results were significantly better than treatment on days 0 and 2 and 70% of mice survived at 

least 40 days. NK and CTL activities were significantly higher with co-transfection of the two 

cytokines. The high expression levels and serum levels of IL-12, IL-18 and IFNγ may be due to the use 

of the replicating EBV-based plasmid and/or to the intense pulsing conditions. No toxicities were 

reported. Lucas et al. [155] compared IL-12 electroporation delivery into tumors and muscle in the 

B16F10 melanoma model. Tumor deliver was clearly better than muscle delivery for effects on 

tumors. While serum levels of IL-12 and IFNγ after muscle delivery were present, there was no tumor 

regression. Tumor delivery resulted in anti-angiogenesis effects observed by decreases in blood vessel 

numbers and decreases in levels of the micro-vessel density marker CD31. Forty seven percent of 

tumor bearing mice survived for at least 100 days, considered a cure. Tumor delivery resulted in influx 

of CD4+ and CD8+ cells into tumors and 70% of tumor-bearing mice were resistant to challenge. 

Further, administration of IL-12 by electroporation did not result in tumor regression in nude mice 

with either delivery to tumors or muscle. This supports a role for T-cells in tumor regression in 

response to IL-12. 

Kishida et al. [156] combined electrochemotherapy using bleomycin and electrogene therapy using 

IL-12 with intratumoral delivery and intravenous inoculation with B16F10 tumors. Serum and tumor 

levels of IL-12 were not different when IL-12 was transfected alone or in the presence of bleomycin. 
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Nearly 38% of mice that received both agents in tumors showed complete remission and were resistant 

to challenge. With intravenous injection of melanoma, mice that received IL-12 and bleomycin 

showed significantly longer mean survival time and cytotoxicity activities of NK and CTL. In contrast, 

mice that received IL-12 alone exhibited similar numbers of metastatic foci to the co-treated mice, but 

only the combination therapy significantly prolonged mean survival time of tumor bearing mice and 

only partially elevated NK activity. The study indicated that electrochemogene therapy elicited marked 

suppression of treated mice and innate and adaptive anti-melanoma immunity. IL-12 alone and IL-12 

plus bleomycin suppressed bystander metabolic lesions. 

Lucas and Heller [157] studied effects of IL-12 electrogene therapy on primary and secondary 

tumors in the B16F10 murine melanoma model. With three treatments of intratumoral IL-12 delivery, 

80% of treated mice with B16F10 tumors were tumor free for greater than 100 days, suggesting a cure. 

The cured mice were resistant to challenge with a second injection of B16F10 tumor cells. In another 

approach, two B16F10 tumors were injected. When the first tumor was treated, a second injection of 

B16F10 tumor cells was established on the opposite flank. Only 43.8% of mice treated with two or 

three electrogene treatments developed the second distant tumor, compared to 87% of age-matched 

control mice injected for the first time. In another approach, B16F10 cells were injected intravenously 

and tumor development in the lungs were analyzed after intramuscular IL-12 electrogene therapy. 

Only 37.5% of mice electrogene treated with IL-12 in muscle developed nodules in the lung, while 

87.5% of mice not treated developed nodules. These studies established IL-12 as an effective therapy 

for primary and distant tumors as well as metastatic B16F10 tumors in mice.  

A thorough toxicity study with electrogene transfer of IL-12 was required in mice before this 

therapeutic modality could be introduced into clinical trials [158]. For mice receiving IL-12 encoded 

constructs, no significant toxicities were observed. Only minor histopathologies were found and some 

inflammation in the kidney. The animals were healthy, indicating a diminished disease burden.  

The first phase I electrogene clinical trial was carried out by delivery of IL-12 into metastatic 

melanoma tumors in patients [159]. The study was designed to determine safety and tolerability and 

the correct dose of this type of treatment as well as its effectiveness in treating melanoma. While 

clinical trials with electroporation had been carried out with drug delivery, the combination of plasmid 

injection and electroporation was tried here in humans for the first time. Toxicity profiles indicated 

that electrogene delivery was safe, well tolerated with minimal toxicity and only transient pain sensed 

during delivery of electric pulses. The maximum tolerated (dose 5.8mg/treatment), was the highest IL-

12 plasmid dose tested. There were both local and systemic responses observed. Forty two percent 

(eight out of 19) of patients showed disease stabilization and 10% (two out of 19) with non-

electroporated lesions and no other treatment therapy showed complete regression of all metastases. 

Post treatment biopsies indicated plasmid dose-dependent responses. Levels of IL-12 and IFNγ 

increased as much as 18-fold and 7- to 60-fold, respectively, in tumors over median baseline 

measurement for the entire study group. No increases in IL-12 or IFNγ were observed in serum 

samples. The successful outcomes of this trial led to phase II trials, which are in progress. 

In a phase 1 clinical trial of electrogene delivery of IL-2 to patients with malignant melanoma, with 

maximum tolerated dose 5.0 mg/tumor injection site, responses were observed in treated and untreated 

lesions, indicating decreased tumor size and local and systemic activity. No serious adverse events 

were reported other than Grade 1 due to drug injection and/or the electroporation procedure [160]. 



Cancers 2010, 2                

 

 

1753 

These clinical trials with IL-12 and IL-2 treatment for metastatic melanoma demonstrate safety, 

efficacy and systemic immune responses, validating electrogene delivery as an important new addition 

to cancer treatment modalities. Other animal studies have indicated that this method can be used alone 

or in combination with other therapies, including electrochemotherapy. 

In contrast to electrogene delivery and expression of IL-12, similar studies in B16F10 tumors in 

mice with IL-2 or GM-CSF (granulocyte macrophage colony stimulating factor), a cytokine secreted 

by macrophages, T-cells and others that functions as a white blood cell growth factor, were not 

sufficiently effective to provide a survival benefit [161]. In spite of good luciferase expression, 

expression of GM-CSF in electrogene treated tumors was apparently too transient to be effective to 

significantly slow tumor growth. However, electrochemotherapy treatment with bleomycin, which 

resulted in short term, complete regression but no resistance to challenge, followed by electrogene 

treatment with IL-2 or pretreatment with GM-CSF caused long term immunity to recurrences and 

resistance to challenge in 25% of treated mice. However, while the GM-CSF plasmid was delivered 

directly to the tumor, the IL-2 electrogene treatment needed to be peritumoral and not intratumoral. 

Apparently, IL-2 expression in healthy tissue surrounding the tumor was sufficient to generate a 

survival advantage as well as long-term antitumor immunity in B16 mice pretreated with 

electrochemotherapy. Given successes in phase I clinical trials with IL-2, the limited success with IL-2 

mouse melanoma suggests that higher plasmid levels for electrogene treatments may find better 

success with IL-2 and GM-CSF without electrochemotherapy. This is further supported by previous 

studies with irradiated B16 melanoma cells transformed with retroviruses individually expressing one 

of 10 different gene products, founding that GM-CSF was the most potent molecule tested [162]. 

While irradiation alone was ineffective, GM-CSF expressing irradiated cells exhibited long lasting and 

specific anti-tumor immunity, requiring both CD4+ and CD8+ cells. 

Interferon alpha (IFNά) was the first cytokine to show efficacy in cancer patients including those 

with melanoma [163]. IFNά binds to its receptor and activates the JAK-STAT signaling complex 

resulting in activation of p38 mitogen-activated protein kinase (MAP kinase) and phosphatidylinositol 

3-kinase (PI3K) signaling pathway [164] to promote the differentiation and activity of host immune 

cells generating long-lasting antitumor responses [165]. To determine if IFNά was an effective agent 

for electrogene therapy, Heller et al. [166] delivered IFNά to mice with B16 melanoma tumors directly 

into tumors or into the gastrocnemius muscle. Intratumoral delivery, but not intramuscular delivery 

slowed growth and induced complete and long term regression in mice. Seventy percent of mice were 

tumor free for at least 75 days with the highest plasmid dose tested. 

IL-15 has also been used as an immune stimulant in the treatment of melanoma in mice. IL-15 is 

structurally similar to IL-2 and they share many biological activities. One of the most important IL-15 

functions is to promote memory CD8+ T cell and natural killer cell survival, both of which are crucial 

for tumor immune surveillance [167,168]. In IL-15 receptor knockout mice, natural killer cells did not 

survive [169]. To determine if IL-15 would support survival in mice with B16F10 melanoma,  

Ugen et al. [170] tested delivery of an IL-15-plasmid by electrogene transfer. Results indicated that 

37.5% of mice receiving IL-15 by electroporation survived with complete B16F10 tumor regression. 

Like studies with electrogene transfer of other cytokines, this emphasizes the potential clinical use of 

plasmid treatment of malignant tumors by electrogene delivery.  
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4.4. RNA Interference and Electrogene Therapy for Melanoma 

In essentially all of the examples of electrogene therapy discussed so far, the plasmids used increase 

the expression of genes that in one way or another inhibit or eradicate melanoma tumors. A more 

recent strategy is to interfere with expression of genes that exemplify cancer hallmarks and promote 

tumorogenesis. While this can be done by overexpressing dominant negative cDNA plasmid mutants, 

such as with dnSTAT3 as discussed earlier, another methodology is therapeutic applications of RNA 

interference (RNAi) or microRNAs. This tactic makes use of the discovery of intrinsic microRNAs 

that impede the expression of genes by post-transcriptional gene silencing mechanisms, triggered by 

small interfering double-stranded RNA (siRNA) with degradation of mRNA homologous in sequence 

to the siRNA [171–173]. This can be done by the delivery of mature siRNA molecules or as short 

hairpin RNAs (shRNAs) using plasmids. This introduces a new dimension into nucleic acid based 

therapeutics for gene therapy. Takahashi et al. [174,175] demonstrated that RNAi was effective to 

suppress luciferase expression in B16-BL6 melanoma cells stably expressing both firefly and sea 

pansy luciferase after intratumoral injection and electroporation in mouse footpads using either siRNA 

or siRNA-expression plasmids. Luciferase expression was decreased by about 60% of control values 

24 hour after treatment. Golzio and colleagues [176,177] also demonstrated feasibility of silencing 

enhanced green fluorescent protein (EGFP) with electrically mediated delivery of siRNA in mice 

bearing stably expressed EGFP B16F10 melanoma tumors. They demonstrated gene silencing that 

lasted 2–4 days after a single treatment with electric field-mediated delivery of siRNA using 

fluorescent imaging in mice as well as conformation of decreased EGFP by quantitative PCR. 

Beyond the siRNA-mediated knockdown of reporter genes, the use of shRNA using electrogene 

therapy by intratumoral injection of RNA expressing plasmids targeting β-catenin or hypoxia-

inducible factor 1ά (HIF1ά), was demonstrated by Takahashi and colleagues [174,175] in B16-BL6 

melanoma cells. Twenty four hours after treatment with siRNA for β-catenin or HIF1ά mRNA levels 

were reduced to 25% and 35% of control values, respectively. After tumor cells were inoculated, 

intratumoral siRNA delivery and electroporation on days 7, 10 and 19 caused about an 80% decrease 

in tumor volume about 3 weeks after the initiation of treatment. Thus by suppressing β-catenin 

expression and thereby inhibiting Wnt signaling, which is important for expression of a number of 

genes important for angiogenesis, or by blocking expression of HIF1ά, which also directs the 

expression of genes involved in upregulation of angiogenic proteins, siRNA electrogene therapy can 

effectively inhibit tumor growth. However, it will be important to continue to investigate this method 

for cancer therapy by optimizing expression conditions, determining the most effective genes to silence 

for therapeutic benefit and to follow animals for longer periods of time to determine long term efficacy. 

While therapies for melanoma have been designed to target specific molecules that are hallmarks of 

cancer and cytokine immunotherapy has been used to enhance immune responses, Nakai and  

co-workers [178] combined both approaches. Instead of targeting classic cancer hallmarks for their 

first target, they targeted microphthalmia-associated transcription factor (Mitf), which is involved in 

melanin synthesis as well as malignant transformation of melanocytes into melanoma. Thus, Mitf is a 

more specific cancer target for melanoma. Mitf is involved in a number of melanocyte and melanoma 

functions including not only pigmentation, but also survival, proliferation and melanoma progression. 

Mitf is a suspected melanoma oncogene that also induces HIF and VEGF. However, Mitf also has 
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other reported functions that may be involved in cell cycle arrest, apoptosis and growth inhibition. 

Thus Mitf knockdown was shown to abate tumor growth. Previously, Nakai et al. [179] demonstrated 

that siRNA transfection of sequences corresponding to Mitf in mouse B16F10 melanoma tumors by 

both lipid-mediated and electroporation delivery downregulated Mitf and tyrosinase, which is involved 

in melanin synthesis, induced apoptosis and reduced tumor growth. By combining Mitf knockdown 

with IL-12 therapy, they targeted different anti-tumor mechanisms that could induce apoptosis as well 

as decrease angiogenesis, invasion and increase anti-tumor immunity. 

4.5. Mechanisms for DNA Delivery to Cells and Tissues 

Exactly how large molecules such as plasmid or naked DNA are transported across lipid bilayers, 

through the cellular milieu and across the nuclear membrane barrier to access the transcriptional 

machinery are still shrouded in some mysteries. Theoretical models predict that external electric fields 

increase the electrical conductivity of plasma membranes and when a critical threshold is reached 

(about 1 V) there is a transition from an insulating to a conductive state whereby lipid molecules are 

rearranged to form pores, or aqueous channels requiring a series of steps [87,180]. However, these 

pores have never been visualized and they cannot be as large as DNA plasmids, so DNA cannot pass 

through by simple diffusion [181]. Many studies of gene delivery define non-viral DNA vectors using 

DNA complexes with cationic liposomes, hydrophilic polymers or combinations of DNA with peptides 

or proteins [182–184]. Most of these non-viral DNA deliveries occur by endocytosis. 

Several theories for electrogene delivery have been proposed and reviewed by Escoffre et al. [185]. 

Of greatest interest is increasing understanding of DNA-plasma membrane complex formation as an 

early and key step in electrogene transfer [186–189]. Data suggest that there are specific domains on 

plasma membranes that are competent to form stable DNA-lipid bilayer complexes in electroporated 

membranes [185,189]. Such complexes are similar in size to lipid rafts, which are cholesterol- and 

glycosphingolipid-enriched microdomain on the outer leaflet of plasma membranes that serve as 

platforms or recruitment centers involved in cell signaling and membrane trafficking [184,189]. 

Adenoviruses, adeno-associated viruses, retrovirus and liposomes have been shown to enter cells 

through clatherin-coated pits [184]. DNA-dendrimer complexes or dendriplexes appear to enter cells 

by mechanisms that require cholesterol and lipid raft integrity in endothelial cells [191]. This same 

group later found in HeLa and HepG2 hepatocellular carcinoma cells entry was more likely through 

dendrimer-DNA complexes with caveolin 1 [192]. Thus, mechanisms for delivery of these DNA 

complexes without electroporation were different in different cells. While a number of studies defining 

endocytosis pathways use general inhibitors, it will be important to investigate these mechanisms more 

specifically using specialized cell lines or knockdown strategies with dominant negative mutants, 

RNAi and/or knockout mice. Seternes and co workers [193] found that 
125

I-labeled plasmid DNA 

injected into the circulation of Atlantic cod was rapidly taken up by scavenger receptors in endocardial 

endothelial cells in the atrium and ventricles. This was confirmed in cultured atrial endothelial cells 

and in cultured cod head kidney leukocytes. This study also emphasizes another difficulty for 

therapeutic DNA expression since the plasmid DNA was degraded and not expressed in these cells. 

However, it might be expected that cells expressing and using scavenger receptors may be 

programmed for destruction of the cargo once internalized.  
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Many of these results suggest that DNA delivery without electroporation may include endocytosis 

by one mechanism or another; the process does not seen to be random but likely at preferred sites or 

domains. However, the cell type and perhaps the nature of plasmids play roles in uptake mechanisms. 

For electrogene delivery of naked- and plasmid-DNA, it is important to ask if electric fields enhance 

inherent cellular mechanisms, induce unique membrane changes or some combination of the two. The 

concept of “pore” creation suggests unique features that may not be present, or present very 

infrequently, in non-permeabilized cells. On the other hand, DNA-membrane interactions in specific 

competent domains or well-defined permeabilized caps [189] suggest electric field interactions with 

inherent cellular mechanisms for electrogene delivery. Nevertheless, given that so many particulate 

macromolecules presented to cell membranes are subject to endocytosis, discussion of these 

mechanisms is not unreasonable. Cell entry pathways can be mediated by clatherin, non-clatherin, 

caveolae, non-caveolae endocytosis pathways as well as phagocytosis and macro-pinocytosis [184]. 

Recruitment of any of these pathways is likely to depend upon the cell type and nature (size, sequence, 

others) of DNA constructs. Because the mechanism of intracellular transport begins with DNA binding 

to cell membranes, the cell entry pathway may determine the pathways for cytoplasmic trafficking, 

endosmolysis, and nuclear entry mechanisms. Thus, the cell entry mechanisms could be fundamental 

to understanding subsequent mechanisms for electrogene delivery and therapeutic expression. It is 

clear that the plasma membrane is only the first of several barriers for DNA to reach the transcription 

machinery. DNA must traverse the landscape of the cytosol, which is not a sea of physiological salt, 

but a crowded topography of cytoskeletal structures presenting navigation barriers. It has been 

hypothesized that microtubular structures are altered by the electric fields, especially those near the 

plasma membrane [185,194]. It is also known that the cytoskeleton provides a highway for vesicular 

transport mediated by molecular motors as exemplified by dynein motors transporting vesicles 

budding from clatherin-mediated pathways along microtubules.  

In cases of DNA containing vesicles, the question arises as to how DNA escapes endocytotic 

vesicles, a major barrier to efficient gene transfer. These considerations may be excluded for instance 

when DNA is transported across the plasma membrane without vesicles as it is in planar lipid  

bilayers [195]. These data indicate that DNA is electrophoretically pulled through the porous zones in 

the planar membrane. The cargo in transported vesicles are often transported to lysosomes and 

degraded by proteases and several mechanisms for endosomolysis have been considered [182]. DNA is 

designed to withstand all measures of degradation, but DNAses are its major nemesis.  

Another barrier to expression is the nuclear membrane. It is known that gene expression is greatest 

for cells that are dividing when the nuclear membrane is degraded, so access to transcription 

machinery is limited. As indicated earlier, delivering IL-12 and IL-18 using an Epstein-Barr-based 

plasmid included features that enhance expression potential [154]. As electrogene delivery 

mechanisms are better understood, it may be possible to engineer specialized sequences to enhance 

therapeutic outcome. However, as DNA plasmid constructs become larger, their delivery and 

expression becomes encumbered by electroporation. 
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5. Conclusions 

Bioelectrics is a new field that provides novel strategies for treating melanoma and other cancers. 

Using nanosecond pulsed electric fields provides a means to eliminate melanoma tumors in  

mice [30,55,59] by inducing characteristics typical of apoptosis in B16F10 melanoma cells [54] and 

tumors in mice [55]. It directly targets two cancer hallmarks, apoptosis evasion and sustained 

angiogenesis, and through the latter one suggests a third hallmark, invasion and metastasis. These are 

well-defined therapeutic objective for treating melanoma and other cancers [54]. In another 

Bioelectrics domain, applications of micro- and milli-second pulses have proven effective for 

eliminating melanoma by a number of mechanisms revolving around electrogene transfer. Electrogene 

therapy is a simple, safe and effective method to deliver genes to tumor cells and tissues. It has proven 

effective for cancer hallmarks including evasion of apoptosis, sustained angiogenesis (invasion and 

metastasis) and evasion of immune surveillance. Its effectiveness in clinical trials [159] establishes it 

as a major method for gene therapy. As perhaps the most effective means of non-viral gene delivery to 

date, it is anticipated that it will find continued therapeutic successes with delivery of other genes 

and/or RNAi that will interfere with tumorigenesis, making a greater impact on cancer therapies than 

previous modalities. 
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