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ABSTRACT 

NEW METHODS TO IMPROVE PROTEIN STRUCTURE MODELING 

Maha Abdelrasoul 

Old Dominion University, 2018 

Director: Dr. Yaohang Li 

Proteins are considered the central compound necessary for life, as they play a crucial role 

in governing several life processes by performing the most essential biological and chemical 

functions in every living cell. Understanding protein structures and functions will lead to a 

significant advance in life science and biology. Such knowledge is vital for various fields such as 

drug development and synthetic biofuels production.   

Most proteins have definite shapes that they fold into, which are the most stable state they 

can adopt. Due to the fact that the protein structure information provides important insight into its 

functions, many research efforts have been conducted to determine the protein 3-dimensional 

structure from its sequence.  

The experimental methods for protein 3-dimensional structure determination are often 

time-consuming, costly, and even not feasible for some proteins. Accordingly, recent research 

efforts focus more and more on computational approaches to predict protein 3-dimensional 

structures. Template-based modeling is considered one of the most accurate protein structure 

prediction methods. The success of template-based modeling relies on correctly identifying one or 

a few experimentally determined protein structures as structural templates that are likely to 

resemble the structure of the target sequence as well as accurately producing a sequence alignment 

that maps the residues in the target sequence to those in the template.   

In this work, we aim at improving the template-based protein structure modeling by 

enhancing the correctness of identifying the most appropriate templates and precisely aligning the 

target and template sequences. Firstly, we investigate employing inter-residue contact score to 



 

 

 

 

measure the favorability of a target sequence fitting in the folding topology of a certain template. 

Secondly, we design a multi-objective alignment algorithm extending the famous Needleman-

Wunsch algorithm to obtain a complete set of alignments yielding Pareto optimality. Then, we use 

protein sequence and structural information as objectives and generate the complete Pareto optimal 

front of alignments between target sequence and template. The alignments obtained enable one to 

analyze the trade-offs between the potentially conflicting objectives. These approaches lead to 

accuracy enhancement in template-based protein structure modeling.
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CHAPTER I 

  INTRODUCTION 

1.1 Statement of the problem 

One of the most important biological substances, which is considered the central compound 

necessary for life, is protein. Proteins play a crucial role in governing several life processes by 

performing the most essential biological and chemical functions in every living cell. Proteins form 

skin, muscles, antibodies, and enzymes. Even some hormones are proteins. They play the main 

role in digestion, respiration, and vision. As a matter of fact, the word “protein” is translated from 

the Greek root word meaning “primary.”   

Proteins are made from amino acids bonded together in long chains. Proteins vary based 

on the number and type of amino acids in the protein chain. There are 20 different amino acids, 

each with a different chemical structure and characteristics. The protein structure relies on the 

amino acids that construct it. Consequently, the protein function is determined by the protein 

structure. Understanding protein structure and function leads to a significant advance in life 

sciences and biology. Such knowledge is vital for various fields such as the development of drugs 

and synthetic biofuels production.   

In nature, the protein amino acid chain does not stretch out in a straight line; rather it folds 

into a unique three-dimensional structure [1]. This structure is critical to the protein biological 

function. Due to the fact that protein structure information provides insights to its function, many 

research efforts have been conducted to determine the protein 3-dimensional structure from its 

sequence information. 
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Fig. 1. Protein Structure Modelling is the determination of the protein three-dimensional structure from its sequence 

information (the sequence and structure information are for 3BB5 [2] ) 

 

The determination of a protein 3-dimensional structure from its amino acid sequence is 

known as protein structure modeling (Fig. 1). There are three experimental methods for 

determining protein structures: X-ray crystallography, NMR, and Cryo-electron microscopy. 

These methods are often time-consuming, costly, and not feasible for some proteins. Also, these 

techniques are low-throughput in nature because of the huge experimental and human efforts that 

are needed to study a single protein [3] [4] [5]. For these reasons, the capacity to produce sequence 

information is extremely higher than that of producing structural information. Accordingly, 

computational approaches to accurately predict protein 3-dimensional structures are highly 

desired. Fig. 2, shows the number of protein sequences and structures available each year. 
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Fig. 2. Number of protein sequences and structures available each year. Blue bar denotes the number of protein 

structures in PDB, orange bar is the number of protein sequences in SWISS-PROT [6] 

 

Today, one of the most accurate and consistent methodologies for computational protein 

structure modeling is template-based modeling [7] [8] [9]. The idea behind template-based 

modeling is simple: when given a protein with unknown structure (target) that is similar in 

sequence to a known protein, then we can deduce that both proteins share structural similarities.  

Hence, the first step in template-based modeling is to find a protein with known structure 

(template) that potentially resembles the target protein sequence. Then, in order to discover the 

shared similarity between the target and template sequences, the two sequences are aligned 

together. The matching parts in the alignment will reveal the similar regions in the two sequences, 

while the dissimilar regions will appear as gaps along the alignment. Subsequently, a framework 

for the target structure can be constructed by copying the aligned regions from the template 

structure. Additionally, the unaligned regions are built up, usually as loops. Finally, the complete 

predicted target structure model is assembled by filling up the gaps in the structural framework 

0

100000

200000

300000

400000

500000

600000

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

N
u

m
b

e
r 

o
f 

p
ro

te
in

s

Year

Structure Sequence



4 

 

 

 

with the constructed unaligned regions. In summary, template-based modeling consists of four 

main steps: 1) finding a template protein structure with a similar sequence to the target (template 

selection); 2) aligning the template and target sequences; 3) constructing a framework for the 

target; and 4) building a complete structural model for the target sequence [10]. The first two steps 

combined are known as the threading procedure [11] [12]. Fig. 3 shows a block diagram for the 

template-based modeling steps. 

                           

                                

                                         Threading

Constructing a 
structural 

framework for the 
target

Building a 
structural model for 

the target

Aligning template 
and target 
sequences

Target Sequence

Template Selection

Template structure

Alignment

Target  :...GNKVYQLRERWEIDCLAFQPDVLSILIGVNDYWHTLTHGY----KGTVETYEND...
Template:...GNTVRDLKARWEEDVIAQKPDWVSIMIGINDVWRQYDLPFMKEKHVYLDEYEAT...

Target Structure 
Framework

Target 
Structure 

Model

 

Fig. 3. Block diagram of the protein template-based modeling steps 
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The success of template-based modeling relies on correctly identifying one or a few 

experimentally determined protein structures as templates that are likely to resemble the structure 

of the target sequence, as well as accurately producing a sequence alignment that maps the residues 

of the target sequence to those of the template.  Hence, identifying the most appropriate template 

protein structures (template selection) to align with the target is a vital process in this methodology. 

However, the continuously increasing protein sequence and structure data provide a challenge to 

differentiate the most appropriate templates from the hundreds of thousands of possibilities. 

Therefore, more sensitive and accurate template selection methods are of a great need to identify 

the most likely structural templates.  

After selecting the most appropriate template for a target sequence, a target-template 

sequence alignment is generated. The created alignment specifies which residues of the target are 

to be modeled based on which residues of the template. A correct alignment is essential for 

successful modeling, while a misalignment of a single residue may result in massive errors in the 

generated model. 

1.2 Contributions of This Dissertation 

Mostly the template selection and target-template sequence alignment are combined in the 

threading procedure. Threading comprises aligning the target protein sequence with all protein 

structures in a PDB library, and ranks the templates based on the alignment to identify the most 

compatible template. Accordingly, the target structural model is built using the same alignment 

that is generated for template selection.  However, this alignment may not be the most suitable one 

to build the target model. As the alignment algorithm implemented in the threading procedure has 

a strict time constraint, in order to generate alignment for the target with all the template structures 
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in a given PDB library in a reasonable time. Hence, after selecting the template, implementing a 

more in-depth target-template sequence alignment shall enhance the protein structure modeling. 

In this dissertation, we aim at improving the template-based protein structure modeling by 

enhancing the correctness of identifying the most appropriate templates and precisely aligning the 

target and template sequences. The major contributions of this work include:  

 Incorporate inter-residue contacts to enhance template selection: Most of the 

template selection methods try to take advantage of multiple structural information 

sources, such as sequence profiles, secondary structures, solvent accessibility, 

backbone dihedral angles, etc., to help find the optimal match between the target 

and the structural templates. In protein structure modeling literature [13], it is well-

known that the inter-residue contacts play an important role in forming and 

stabilizing a protein fold. In this dissertation, we present two template selection 

approaches that incorporate inter-residue contacts to enhance template selection 

sensitivity: 

1. Our first template selection approach combines the inter-residue contact 

score with the sequence profile score, which is a representation of protein 

structural features. More specifically, we incorporate ICOSA [14], a coarse-

grained contact potential correlating inter-residue interaction distance and 

orientation, into MUSTER [15], one of the most successful template 

alignment and selection methods in template-based protein structure 

modeling. Similar to most template selection methods, MUSTER performs 

alignment for target sequence with all the protein structural templates in its 

database. The performed alignment is done using dynamic programming 
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that exploits the protein structural features. These structural feature scores 

are summed along with balancing weights to give the final MUSTER score. 

Afterwards, ICOSA is applied to all structural templates found by 

MUSTER. Since ICOSA is a contact potential measuring global inter-

residue interactions while the sequence profile alignment score in MUSTER 

estimates local interactions, adding the two scores has the potential to 

enhance template selection sensitivity [16].  

2. Our second template selection approach is a further improvement to the 

template based protein structure modeling. In this approach, instead of 

evaluating the ICOSA score of a target adopting a potential structural 

template after an alignment is generated, we use ICOSA score to build the 

alignment along with other structural features scores. A substitution matrix 

is built to score the replacement of each amino acid in the template three-

dimensional conformation with every amino acid in the target. Then, this 

substitution matrix is used in building the alignment along with the 

structural features. The alignment is generated by dynamic programming 

that exploits the protein features including (1) sequence profiles; (2) 

predicted secondary structures; (3) fragment profiles; (4) predicted solvent 

accessibility; and (5) ICOSA score for substituting each target amino acid 

in the template folding topology. These protein features are summed 

together using weights that are determined based on Grid search technique. 

The resulting alignment score is a ranking score that measures the 

favorability of each potential template.  
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 Designing a multi-objective alignment algorithm: We propose a multi-objective 

protein sequence alignment method. As a correct alignment is critical for protein 

modeling, given a set of potentially conflicting objective functions, we develop a 

novel multi-objective sequence alignment algorithm to obtain a set of diversified 

alignments yielding Pareto optimality. The multi-objective alignment algorithm 

guarantees not only Pareto optimality of the alignments, but also completeness of 

the solutions. In theory, the multi-objective sequence alignment algorithms can be 

considered as a super consensus method [37] whose goal is to derive all possible 

alignments with diversified consensus over all positive weight combinations of the 

given objectives. As a result, compared to finding a single alignment by optimizing 

a certain combination of individual objective terms, the alignments obtained by the 

multi-objective alignment algorithm enable one to analyze the trade-offs among 

potentially conflicting objective functions, which allows us to pick more suitable 

alignments for protein modeling. 

1.3 Dissertation Organization 

The rest of the dissertation is organized as follows. Chapter II presents background about 

proteins, protein structure, protein structure modeling, and protein structure prediction. Chapter III 

presents a review of the relevant literature to template-based protein structure modeling, template 

selection, and pairwise sequence alignment. We present our template selection approaches, and 

sequence alignment algorithms in Chapters IV and V, respectively. Finally, Chapter VI 

summarizes the dissertation and discusses our future (post-dissertation) research directions.  
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CHAPTER II 

 BACKGROUND  

Proteins are complex organic compounds formed by chains of simpler compounds, called 

amino acids. Usually, a protein’s chain composition is denoted as the primary structure. The 

primary structure determines the protein’s three-dimensional structure, which in turn regulates the 

protein’s function. In this chapter, we briefly introduce the protein molecular composition, protein 

structure and protein structure modeling. The protein background presented here will assist in 

understanding the problems we are investigating in this dissertation. 

2.1 Proteins 

Proteins are the main components of living cells and constitute more than quarter the 

weight of a typical cell. They play a crucial role in governing several life processes by performing 

the most essential biological and chemical functions in every living cell. The protein structure 

provides invaluable insights into the molecular basis of their functions. Proteins are composed of 

small molecules named amino acids. There are 20 different amino acids, each with a distinct 

chemical structure and characteristics. 

2.1.1 Amino Acid 

Amino acids are compounds that contain an amino group (NH2), and a carboxyl group 

(COOH). Both groups are linked to a central carbon (Cα) that is attached to a hydrogen and a side 

chain (R) (Fig. 4). The side chain determines the specific properties of the amino acid. A protein 

is a chain of amino acids joined together by peptide bonds. Each pair of amino acids forms a 

peptide bond between the amino group of one and the carboxyl group of the other (Fig. 5). The 

atoms forming the peptide bond are known as the backbone atoms. They are the nitrogen of the 

amino group, the Cα, and the carbon of the carbonyl group. 
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Fig. 4. The General Structure of an amino acid. 
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Fig. 5. Peptide bond Formation 

 

Usually, an amino acid is referred to by the first three letters of its name. Such an 

abbreviation is easy to remember; however it uses up unnecessary memory in computer databases. 

Hence, the 20 common amino acids can be encoded by 20 letters of the alphabet, and then each 
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amino acid in a protein sequence uses up only 1 letter rather than 3. Unluckily, we can’t simply 

use the first letter as many amino acids start with the same letter (like Ala, Arg, Asp, and Asn). 

Table 1  list the standard amino acids and their abbreviations. 

Table 1  

Twenty standard amino acids and their abbreviation 

Amino Acid Name 

Three Letter 

Code 

One Letter 

Code 

Alanine Ala A 

Arginine Arg R 

Asparagine Asn N 

Aspartate Asp D 

Cysteine Cys C 

Glutamate Glu E 

Glutamine Gln Q 

Glycine Gly G 

Histidine His H 

Isoleucine Ile I 

Leucine Leu L 

Lysine Lys K 

Methionine Met M 

Phenylalanine Phe F 

Proline Pro P 

Serine Ser S 

Threonine Thr T 

Tryptophan Trp W 

Tyrosine Tyr Y 
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Based on the chemical and physical properties of the side chain amino acids can be grouped 

into several categories, such as size, charge, and affinity for water. According to these properties, 

the side chain categories can be represented as: small, large, hydrophobic, and hydrophilic 

categories. Inside the hydrophobic group of amino acids, they can be subdivided into aliphatic and 

aromatic. Aliphatic side chains are linear hydrocarbon chains and aromatic side chains are cyclic 

rings. Inside the hydrophilic group, amino acids can be further divided into polar and charged. 

Charged amino acids can be either positively charged (basic) or negatively charged (acidic). 

2.2 Protein Structure 

In nature, the protein amino acid chain doesn’t stretch out in a straight line, it rather folds 

into a unique three-dimensional structure. This structure is critical to the protein biological 

function. There are four distinct levels of protein structure: primary, secondary, tertiary, and 

quaternary (Fig. 6). 
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Fig. 6. The four levels of protein structure (source [17]) 

 

2.2.1 Primary Structure 

The sequence of amino acid residues that form a protein chain is called its primary 

structure. The primary structure shows the sequence of the amino acids connected together by 

peptide bonds forming the protein chain. The two ends of the protein chain are: N-terminus at the 

start and C-terminus at the end.  
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Fig. 7. Primary structure of chain A of human insulin protein (1MSO) 

 

2.2.2 Secondary Structure 

Secondary structure refers to the local conformation of amino acids in the protein chain. 

They are stabilized by the hydrogen bonds between carbonyl oxygen and amino hydrogen of 

different amino acids. There are two main types of secondary structure: α helix, and β pleated 

sheet. Both structures are formed and stabilized by the patterns of hydrogen bonds. Other types of 

secondary structure have been identified, such as 310-helix, and π-helix. However, they are less 

common patterns.  Turns or loops are other types of secondary structure that link the more regular 

secondary structure elements. Finally, the conformations that are not related to a regular secondary 

structure are named coils or loops. 

2.2.2.1 α-Helix 

The α-helix main chain conformation resembles a spiral. The α-helix structure is stabilized 

by hydrogen bonds between amino hydrogen (N-H) group and carbonyl oxygen (C=O) of four 

amino acids further along the chain. The hydrogen bond is almost parallel to the helix axis, while 

the side chain groups stem out of the helix perpendicular to its axis. Each turn in the helix spiral 

holds 3.6 amino acids, and it is about 5.4 Å long. The helix turns can be clockwise or counter-

clockwise.  
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Fig. 8. α-Helix from 1amb protein where the hydrogen bond is shown as blue lines and the side chain atoms stem out 

of the helix 

 

2.2.2.2 β-Sheet 

A β-sheet is a stretched configuration built up from two or more adjacent segments of a 

polypeptide chain. Each segment involved in forming the β-sheet is a β-strand. The β-sheet 

structure is held together by hydrogen bonds formed between residues of adjacent strands, while 

the side chain extends above and below the sheet plane. The β-strands may be parallel (extending 

in the same direction), or antiparallel (extending in opposite directions). 
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Fig. 9. β-Sheet from chain A of 4erh protein where the hydrogen bond is shown as blue lines and the side chain atoms 

extend above and below the sheet plane 

 

2.2.3 Tertiary Structure 

Tertiary structure refers to the global three-dimensional conformation of a protein. In other 

words, the tertiary structure is the packing and arrangement of the secondary structure elements. 

The tertiary structure of a protein is determined by the interactions between long distances amino 

acids that are brought close together in space by the way the protein folds. These interactions can 

be electrostatic interactions, hydrophobic interactions, hydrogen bonding, van der Waals bonds, 

and others. The protein tertiary structure is represented by 3D coordinates for each atom. Fig. 10 

shows the tertiary structure of a protein. 
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Fig. 10. Tertiary Structure of 4erh protein chain A. 

 

2.2.4 Quaternary Structure 

Quaternary structure represents the multiple polypeptide chains interactions. It is the three-

dimensional structure of several polypeptide chains that function as a single unit. The quaternary 

structure is stabilized by non-covalent interactions between the atoms of different chains.  
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Fig. 11. Quaternary structure of protein 4erh, and it involves of two polypeptide chains. 

 

2.3 Protein Structure Modeling 

There are three experimental methods for protein structure modeling:  

 X-ray crystallography 

 Nuclear Magnetic Resonance (NMR) 

 Cryo-electron microscopy 

2.3.1 X-Ray Crystallography 

 The first research implemented to study protein structure and function was in the 1950s. 

This work mainly aimed to discover the relationship between protein sequence and protein 

chemical characteristics. One of the earliest research of protein structure modeling is the work 

conducted by F. Sanger to identify the structure of insulin in 1955 [18]. In 1958 and 1960, John 

Kendrew published two research papers [19] [20] that are marked as the first protein three-

dimensional structure determination solution. In his research, John Kendrew used X-ray 

crystallography to determine the three-dimensional structure of the myoglobin protein. Today X-

ray crystallography is the most common technique to determine the three-dimensional structure of 
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a protein in the Protein Data Bank (PDB) by measuring the 3D density distribution of electrons for 

the protein in the crystallized state [21].   

2.3.2 Nuclear Magnetic Resonance (NMR) 

In 1967 Kurt Wüthrich used NMR techniques to study protein three-dimensional structure 

[22]. Subsequently, in 1982 and 1984, his research group published several papers that outlined a 

framework for NMR structure determination of proteins. The NMR technique works by placing a 

protein molecule in a magnetic field that irradiates the protein molecule with radio-frequency 

pulses. Afterward, the position of the atoms is determined by the energy radiated back [23]. Around 

9% of the protein structures in the PDB are determined by NMR techniques. 

2.3.3 Cryo-Electron Microscopy 

 Recently, Cryo-electron microscopy has become an important means of determining 

protein structures. Cryo-electron microscopy was first introduced in 1984 [24] by Marc Adrian.  

Cryo-electron microscopy is a valuable resource for working with very large protein complexes, 

as it identifies protein structures at a high resolution. Cryo-electron microscopy is a microscopy 

technique in which a beam of electrons is transmitted through a protein sample to form an image. 

Its efficiency is allowing specimens to remain in their native state without the need for dyes or 

fixatives to study the fine cellular structures [25].   

2.4 Protein Structure Prediction 

The experimental protein structure modeling methods are often time-consuming, costly, 

and not feasible for some proteins. Therefore, the capacity of producing sequence information is 

extremely higher than that of producing structural information. Accordingly, researches focus 

more and more on computational approaches to accurately predict protein 3-dimensional structure. 



20 

 

 

 

Protein structure prediction techniques can be categorized into two main approaches: ab 

initio and comparative protein modeling. The ab initio approach attempts to build protein three-

dimensional structure from scratch, whereas the comparative protein modeling approach uses 

templates from previously solved structures as the starting points to build the three-dimensional 

structure. 

2.4.1 Ab-initio 

 The ab-initio protein structure modeling method relies on physical principles to search the 

protein conformation space for a possible solution and identify local structure building blocks. 

This is done by modeling an atomic interaction force field or a knowledge-based energy potential 

to locate the conformation yielding the lowest energy. This conformation corresponds to the most 

stable protein structure, according to Anfinsen’s thermodynamics hypothesis. The difficulty in 

these ab-initio approaches lays in the validity of the available molecular models and the 

complexity of the search space [26] [27].   

The most well-known ab-initio algorithm is the assembly of the three-dimensional 

structure of a protein using small fragments, introduced by Bowie and Eisenberg [28]. A similar 

algorithm is that presented in ROSETTA by Baker’s research team [29], which has demonstrated 

success in the Critical Assessment of protein Structure Prediction (CASP) experiments [30] [31].  

An additional ab-initio algorithm was introduced in [26], which is based solely on global 

optimization of a potential energy function. Afterward, Zhang et al. [32] developed the ab-initio 

protein structure prediction approach, called TOUCHSTONE, that combines short-range and long-

range knowledge-based potentials to predict the protein structures. Subsequently, the ASTRO-

FOLD ab-initio protein three-dimensional structure prediction method was designed by Klepeis 
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using binary patterned combinatorial libraries of de novo sequences [33].  ASTRO-FOLD was 

successfully applied to an -helical protein of 102 residues [34].  

In order to increase the efficiency of ab-initio approaches, researchers work on reducing 

the level of protein structure representation, which accordingly will reduce the size of 

conformational search space [35] [36] [37]. Despite recent progress in ab-initio algorithms, it 

remains challenging to fold a general protein [36], particularly if it is a long one.   

2.4.2 Comparative Modeling 

The comparative protein modeling approach is based on the knowledge learned from the 

previously experimentally-determined protein structures. Comparative modeling is considered the 

most accurate protein structure prediction method in recent CASP experiments [38] [39] [40] [41]. 

The fundamental idea behind comparative modeling is to find related proteins with a known 

structure that we can deduce the unknown protein structure from the shared similarity between the 

two proteins. These methods are also known as template-based modeling [42]. 

The idea behind template-based modeling is simple; when given a protein with unknown 

structure (target) that is similar in sequence to a known protein, then we can deduce that both 

proteins share structural similarities.  Hence, the first step in template-based modeling is to find a 

protein of known structure (template) that resembles the target protein sequence. Then, in order to 

discover the shared similarity between the target and template sequences, the two sequences are 

aligned together. The generated alignment will reveal the similar regions in the two sequences by 

aligning them together, while the dissimilar regions will appear as gaps along the alignment. 

Subsequently, a framework for the target structure can be constructed by copying the aligned 

regions from the template structure. Additionally, a built-up structure is constructed for the 

unaligned regions. Finally, the complete predicted target structure model is assembled by filling 
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up the gaps in the structural framework with the constructed unaligned regions. The process of 

identifying the most compatible templates for a target protein sequence, combined with aligning 

the template and target sequences, are known as the threading procedure [11] [12]. 

Threading is one of the most active research areas in protein structure prediction. As the 

success of the modeling of the protein structure mainly relies on the threading process, the accuracy 

of template-based modeling mainly depends on the amount of similarity between the target and 

the template as well as the quality of the alignment performed on the two sequences. 
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CHAPTER III 

 LITERATURE REVIEW 

This chapter presents a review of the relevant literature to the problems inspected in this 

dissertation. We provide an overview of the template-based protein structure modeling techniques, 

template selection methods, and pairwise sequence alignment algorithms. 

3.1 Template-based Protein Structure Modeling 

The foundation for template-based protein structure prediction is based on three 

observations: (1) similar sequences embrace similar protein structures [43] [44] [45]; (2) many 

different sequences fold into similar structures [46] [47]; and (3) the number of unique structural 

folds is relatively small, when compared to the number of proteins in nature [48] [49] [50] [51] 

[52] [53]. The first structural model, predicted using a template-based approach, was built in 1969 

by Browne and colleagues [44]. Their work was based on the X-ray structure of lysozyme. They 

started by aligning the target and the template protein sequences, then constructing an initial 

protein model, and finally finishing by the refinement of the model using energy minimization. 

In 1981, Greer developed a computer program to automate the whole procedure of 

template-based protein structure modeling [54]. Using this program, eight proteins of the 

mammalian serine proteases family were modeled. The modeling method was based on three 

experimentally determined structures from the same protease family. In his work, Greer observed 

that the structure of a protease could be divided into structurally conserved regions, which contain 

the strong sequence homology and structurally variable regions, including all the additions and 

deletions. Additionally, Greer found that a variable region that has the same length and residue 

character in two different known structures usually has the same conformation in both proteins. 
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Based on these two observations he was able to create the conserved and variable regions of the 

structurally unknown proteins from the known structures.  

This method proved that mammalian serine proteases could be built semi-automatically 

from the known homologous structures. Hence, both the need for manual examinations and the 

use of energy force fields were greatly reduced. Greer’s procedure was later implemented in a 

protein molding program, Homology, and integrated into the InsightII molecular graphic package 

[55]. 

Despite using multiple protein structures from the same family to define the conserved and 

variable regions in the target protein, Greer’s method only used one protein structure as the 

template to model the target protein. Blundell and colleagues discovered that an average structure 

(framework) of multiple protein structures from the same family resembles more the target protein 

structure than any single protein structure did. Based on this discovery, they developed a program 

called Composer, which builds a structure framework that serves as a guide for the assembly of 

fragments of homologous proteins in modeling an unknown protein [56]. The framework-based 

protein modeling significantly increased the reliability of model construction over the previous 

semiautomatic methods. Later, Composer was integrated into the protein modeling package Sybyl. 

Continuous improvements in computer graphics and distance geometry have provided important 

tools for template-based modeling of protein structures [57]. Subsequently, the structures of many 

important proteins have been modeled, such as insulin-like growth factors [58], renin [59], and 

immunoglobulins [60].  

Till 1993, protein modeling methods were semiautomatic, including separating modeling 

procedure for the structure of conserved regions, variable regions, and side chains. Sali and 

Bundell were the first to create a full-atom protein modeling program (MODELLER) [61]. 
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MODELLER works on finding the most accurate structure for a target sequence given its 

alignment with known protein structures. The three-dimensional structure of the target protein is 

obtained by optimally sustaining spatial restraints derived from the alignment and expressed as 

probability density functions (pdfs) for the features restrained. MODELLER is one of the most 

popular and widely used modeling programs [62] [63]. 

In 1996, Manuel Peitsch initiated PROMOD and SWISS-MODEL as a fully automated 

protein structure modeling server [64]. SWISS-MODEL begins with the identification of suitable 

template structures. These structures are then aligned with the target, taking into account the 

similarity between all templates. PROMOD is used to construct models for protein target based on 

an averaged framework using the generated multiple sequence alignment. 

 NEST [65] is a model building program that applies an artificial evolution method to 

construct a model from a given template. NEST performs operations of mutation, insertion, and 

deletion on the template structures one at a time. After each operation, a torsional energy minimizer 

is applied and energy is calculated based on a potential function. This process is repeated until the 

target sequence is completely modeled. “FRankenstein’s monster” [66] is a template based protein 

modeling approach, which was developed by Kosinski et al. It merges the finest fragments of fold-

recognition models and iterative model refinement aided by 3D structure evaluation. The 

originality in “FRankenstein’s monster” is that it employs the idea of combining fragments. 

In the last decade, the interest in fully automated protein structure modeling methods 

increased with the growing popularity of CASP [67]. Several fully automated protein structure 

modeling packages were developed, whereas some were freely available servers, such as (PS) 2 

[68] and its advanced version (PS)2-v2 [69]. I-TASSER [70] is another freely available protein 

structure modeling server that was originally developed for participating in CASP7. After being 
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ranked the best method in the server section of the CASP7 experiment, I-TASSER became freely 

available [71]. HHblits [72] is a remarkable automated protein structure modeling server, which 

was the top ranked server for CASP9. Another commonly used freely available server for protein 

structure modeling is RaptorX [73] [74].  

3.1.1 Threading  

Originally, the word “threading” was first introduced by Jones, Taylor, and Thornton to 

describe their novel protein fold recognition approach [12]. The success that was achieved by their 

method gave it a huge recognition in the 1990s. Owing to the popularity of the method,  

“threading” became a generic term to describe fold recognition operation. Though “threading” is 

in fact a special sub-class of fold recognition, the term is often used to distinguish protein three-

dimensional prediction structure-based methods from sequence-based methods [75]. 

Threading is the process of aligning a protein sequence with one or more protein structures, 

where the protein sequence is threaded onto a given structure to obtain the best sequence-structure 

compatibility. Obviously, identifying the most compatible templates for a target protein sequence 

is also part of the threading process. In order to improve the sensitivity of both template 

identification and target-template alignment, threading introduces the use of evolutionary 

information.  

The development of the threading approach is based on the concept that many unrelated 

protein sequences fold into similar structures. Moreover, certain structural folds were detected to 

be popular among proteins without any obvious sequence similarity [76] [77] [78] [79]. 

Consequently, it is more sensible to relate the template protein structures with the target protein 

sequence than to match their sequences.  
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The first threading approach, THREADER [12], uses the technique of double dynamic 

programming similar to the one used by Taylor and Orengo in [80], in order to perfectly fit a target 

sequence onto the 3-dimensional structures of known proteins. Then the best models are identified 

using energy potentials derived from the statistical analysis of known structures. The success of 

THREADER was publicized by its ability in the first CASP to identify 8 out of 11 target sequences, 

which have no discernable sequence similarity to known structures [81].  On the years following 

THREADER, several successful protein structure modeling methods were developed based on the 

threading approach. One of these approaches is the recursive dynamic programming threading 

method developed by Ralf Thiele and his colleagues [82]. 

In 1999 Jones developed another threading algorithm, GenTHREADER [83], which is one 

of the first methods to combine sequence profile-based searches with energy potentials derived 

from threading. The GenTHREADER starts by performing a sequence-profile based search against 

a non-redundant fold library using BLASTP program [84]. This search is performed to generate 

profiles for each template structure in the fold library. Using the generated profile a sequence to 

structure alignment is formed for each template. The resulting alignments is then evaluated using 

the energy potentials from the original THREADER method. Finally, an artificial neural network 

is trained to recognize targets and templates with matching folds, which is used to evaluate the 

output alignments based on the alignment scores, pairwise energy scores, solvation energy scores, 

and length. 

 Following GenTHREADER, a number of threading methods have been developed that 

employed a similar hybrid approach. In 2000, the INBGU method [85] was presented by Daniel 

Fischer. INBGU uses a combination of sequence profiles and comparisons of a predicted 

secondary structures of the target with the observed secondary structures of each template. By 
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incorporating secondary structure scoring, INBGU was able to detect distant homologues as the 

secondary structures are better conserved throughout evolution than sequences. 3D-PSSM [86] is 

another threading approach that incorporated the predicted secondary structure of the target 

protein. In 3D-PSSM the target profiles were aligned against 3D position-specific scoring matrices 

(PSSMs). First, for each template in the fold library, PSI-BLAST [87] was used to generate an 

initial 1D sequence based PSSM. Then further enhancement to this PSSM is performed, using 

solvation potentials, secondary structures, and structural alignments, resulting in a 3D-PSSM. 

Similar to 3D-PSSM, the FUGUE program [88]  uses structural alignments, solvent accessibility, 

and secondary structure information in order to produce environment-specific scoring matrices. 

Additionally, FUGUE made use of structure-dependent gap to align target sequence profiles 

against template structural profiles. 

Hybrid threading methods have gone through several improvements over the past years in 

order to integrate new innovations in sequence searching and alignment. For instance, 

GenTHREADER has been updated to incorporate structural information, which has resulted in the 

detection of more remote homologues [89]. Later, another version of the method, 

mGenTHREADER [90], also incorporates profile-profile alignments. Following mGenThreader, 

pGenTHREADER [91] was presented as another implementation of the GenTHREADER method 

for structure prediction on a genomic scale. This method combines profile–profile alignments with 

secondary-structure specific gap-penalties, classic pair- and solvation potentials using a linear 

combination optimized with a regression Support Vector Machine (SVM) model. Currently, 

EigenTHREADER [92] is the latest version of GenTHREADER, which implements protein 

threading by exploiting new developments in residue-residue contact prediction rather than 

statistical potentials. EigenTHREADER takes a query amino acid sequence, generates a map of 
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intra-residue contacts, and then searches a library of contact maps of known structures. To allow 

the contact maps to be compared, EigenTHREADER uses eigenvector decomposition to resolve 

the principal eigenvectors these can then be aligned using standard dynamic programming 

algorithms. 

Another successful threading method is TASSER [93], which combines the best sequence 

searching and threading methods along with improvements in the selection of the highest quality 

models. TASSER was developed by Yang Zhang and Jeffrey Skolnick. After the success TASSER 

showed in CASP6, Zhang developed I-TASSER [94]. I-TASSER progressively implements the 

TASSER simulations, where template alignments are generated by four simple variants of the 

profile–profile alignment method with different combinations of the hidden Markov model and 

PSI-Blast profiles with dynamic programming alignment algorithms. In CASP7, I-TASSER 

automated server prediction generates models as good as the human-expert does in all categories, 

and was ranked the best prediction server. I-TASSER continued its success in the following CASP 

experiments in both the human-expert and server [95] [96] [97] [98] [9]. Along these experiments, 

several improvements were made to I-TASSER, such as increasing the coverage of template 

detections by combining various structural features with profile-to-profile alignments [99]. Also, 

I-TASSER approach has been extended for annotating the biological function using the predicted 

protein structures, based on a combination of local and global structural similarities with proteins 

of known functions [100] [37]. 

3.1.2 Template Selection 

The performance of a threading program largely depends on how close the template 

structure is to the actual structure of the target protein. Hence, selection of the best template is of 

fundamental importance for the quality of a generated three-dimensional model. Usually, there 
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exist several proteins sharing the common structural core with the target, but many of these 

proteins may still differ in the relative orientation of the secondary structure elements. So, the 

objective is to select a template from several alternatives that is likely to be most structurally 

similar to the unknown structure of the target.  

Optimally, one template would have a very similar structure to the target and is better than 

other templates. If such a template exists, it would be the top match and be used as the main 

template. However, if there is no clearly preferred template, an attentive template selection must 

be applied. There are mainly four categories for template selection methods: sequence-based, 

evolutionary, structural, and knowledge-based [101]. 

Despite the fact that template selection methods work to find a single template, sometimes 

it is not possible to unequivocally select a single best template from a set of alternatives. In such 

cases, a model can be built based on multiple templates. This is performed by either averaging the 

coordinates of superposed templates, or modeling different regions of the target based on different 

templates. Selecting more than one template proves sometimes to be effective and accurate [102] 

[103]. Also, this technique was used in several successful protein modeling methods, such as 

“FRankenstein’s monster” [66]. 

3.1.2.1 Sequence-based Methods 

These methods are based on a theory that the template with the highest sequence similarity 

to the target sequence should also disclose the highest structural similarity. Usually, these methods 

compare between the target and potential templates by building pairwise alignments or by running 

PSI-BLAST against the database that includes the templates sequences. The PSI-BLAST is a 

reliable method for selecting templates if the target template sequence identity is above 40% [104] 

[105]. Instead, more sensitive sequence-based methods for template selection are needed, when 
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target-template sequence identity is lower than 40% [105]. Such methods include comparison of 

profiles or Hidden Markov Models (HHMs) built for sequence families of the target and all 

alternative templates. An example of a more sensitive sequence-based method is HHPRED [106] 

[107], which uses target sequence or Multiple Sequence Alignment (MSA) for building a HMM 

(Hidden Markov Chain). This HMM is aligned with all HMMs representing annotated proteins or 

domains with known structure.     

3.1.2.2 Evolutionary Methods 

The Evolutionary methods rely on a hypothesis that the template with the highest structural 

similarity to the target is the one that is closest to the target on the phylogenetic tree. In this 

approach, the target and all the templates under considerations are aligned together, and a 

phylogenetic tree for this group of related protein sequences is calculated [108]. A phylogenetic 

interpretation, using evolutionary models and maximum likelihood or Bayesian techniques, is a 

much better estimator of evolutionary distances than similarity scores from pairwise sequence 

comparison for closely related sequences. Hence, calculating a phylogenetic tree is useful when 

there is a high sequence similarity between the target and templates. However, for distantly related 

sequences, phylogenetic tree are unreliable. Consequently, evolutionary approaches are less 

popular than other template selection methods [101].    

3.1.2.3 Structural Methods 

The structural template selection methods estimate how a target protein sequence would fit 

into the structure of each alternative template. Then these fits are judged based on a score from the 

threading program. Threading methods that use structural methods for template selection, usually 

build 3D structural profiles [11] [88]. Furthermore, better templates can be obtained after building 

a model for each template, and scoring them using the Model Quality Assessment Programs 
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(MQAPs) [109]. The structural template selection methods are mainly used when there is no 

significant sequence similarity between the target and the templates.  

3.1.2.4 Knowledge-based Methods 

Each Knowledge-based template selection method has a set of rules that are taken into 

consideration when selecting a template. Mainly the rules are to discriminate between structures 

of the same protein solved under different experimental conditions. Hence, an essential rule is that 

the template structure must be solved under similar conditions to the conditions anticipated for a 

model. For example, if the target protein to be modeled is in a ligand-bound conformation, then 

selected templates should be the ones whose structure was solved with a ligand rather than the 

ligand-free structure templates. Additionally, if the target protein in the biologically active form is 

an oligomer, then an oligomeric template with the same number of subunits and symmetry as the 

target should be used. Also, the model should be built and evaluated as an oligomer instead of a 

monomer. Other rules can be the preference for template structure solved using X-ray 

crystallography rather than NMR, or structures with higher resolution [101]. 

3.2 Protein Sequence Alignment 

Protein sequence alignment is the basis for structure and function prediction for a target 

sequence. Sequence alignment reveals the relatedness of two sequences by discovering the shared 

similarity between them. The evolutionary relationship between two sequences, which means that 

the two sequences share a common evolutionary origin, is discovered by a correct sequence 

alignment. For instance, in a sequence alignment, aligned regions that are not identical represent 

residue substitutions, while regions in one sequence that correspond to nothing in the other 

sequence represent insertions or deletions in one of the sequences [110]. Fig. 12 shows an 

alignment between two sequences and the structure matching revealed from the alignment.  
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1F4IA:------QEKEAIERLKALGFEESLVIQAYFACEKNENLAANFLLSQNFDDE
1IFYA:TLVTGSEYETMLTEIMSMGYERERVVAALRASYNNPHRAVEYLLTGIPG--

(a)

(b)

 

Fig. 12. A sequence alignment, between 1F4I (chain A) and 1IFY(chain A). (a) Alignment produced by Chimera 

program [111], where the highlight represents matching regions. (b) The superimposition of the two structures based 

on the generated alignment, where 1F4I is blue and its matching regions are cyan, and 1IFY is red and its matched 

regions are orange.  

 

Since there are only twenty amino acid residues, accordingly two unrelated protein 

sequences can match 5% of the residues in a random chance alignment. This percentage can 

increase to 10-20% when gaps are added. Additionally, sequence length is a factor to determine 

sequence similarities from an alignment.  

For determining a homology relationship of two protein sequences using sequence 

alignment, there are three regions (classes) based on sequence identity and length. The first region 

is referred to as being in the “safe zone”, which means that the sequence alignments between a 

pair of protein sequences unambiguously distinguish between protein pairs of similar and non-

similar structure. A sequence alignment lay in the safe zone when the pairwise sequence identity 

is high (>40% for long alignments). The second region is “twilight zone”. The twilight zone is for 

sequences with sequence identity between 20% and 30%. The third region is “midnight zone”, 
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where high proportions of nonrelated sequences are present. This area is for below 20% sequence 

identity [112]. Fig. 13 shows the three zones of protein sequence alignments. 

 

Fig. 13. The three zones of protein sequence alignments. A safe zone where homologous relationship is confident. 

Sequence identity values below the safe zone boundary, but above 20%, are considered to be in the twilight zone, 

where homologous relationships are less certain. The region below 20% is the midnight zone, where homologous 

relationships cannot be reliably determined. (Source: Modified from [112]). 

3.2.1 Pairwise Alignment 

Pairwise sequence alignment aims to find the best pairing of two sequences, such that there 

are maximum number of correspondences among residues. There are two alignment strategies that 

are often used: global alignment and local alignment. In global alignment, the alignment is carried 

out from beginning to end of both sequences to find the best possible alignment between the two 

sequences across the entire length. Alternatively, local alignment only finds local regions with the 
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highest level of similarity between the two sequences and aligns these regions regardless to the 

rest of the sequence. Fig. 14 shows the differences between global and local pairwise alignment. 

(a) Global Sequence Alignment 

(b) Local Sequence Alignment 

Fig. 14. An example of pairwise sequence comparison showing the distinction between global and local alignment. 

The global alignment (a) includes all residues of both sequences. The local alignment (b) only includes portions of the 

two sequences that have the highest regional similarity. 

 

Both global and local alignment algorithms are fundamentally similar, the only difference 

is the optimization strategy used in aligning similar residues. The two algorithm types can be 

implemented based on three methods: the dot matrix method, the dynamic programming method, 

and the word method.   

3.2.1.1 Dot Matrix Method 

The graphical dot matrix was first introduced in [113] and [114] as a sequence analysis 

technique. Afterwards, dot-matrix plot was among the most popular methods for analyzing 

sequence similarity. The dot plot method concept is rather basic, as a graphical way to compare 
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two sequences. In a dot matrix, one of the sequences is written along the horizontal axis and the 

other along the vertical axis, then a dot is placed where two residues match. Regions of similarity 

between two sequences will appear as many dots lining up to form diagonal lines. These diagonal 

lines reveal the sequence alignment, where interruptions in the middle of the diagonal line indicate 

insertions or deletions as shown in Fig. 15. 

 

The problem with dot matrix method lays when aligning large sequences, spurious matches 

give rise to a background of single dots. The background dots will obscure the identification of the 

true alignment. A standard technique to deal with such a problem is by applying a filter window 

along the diagonals, which keep only dots in the center of the window when their sum exceeds a 

threshold.  The difficulty in the filter window technique is finding the right threshold, as a wrong 

threshold may result in dot-plots with either too much noise or being lack of the relevant diagonals. 

Fig. 15. An example of dot plot method for aligning two sequences, where the dots in diagonal line indicate sequence 

alignment. The diagonal line below the main diagonal represent internal repeats of either sequence. 
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Probabilistic methods have been used to estimate the threshold in several approaches in the 1970s 

and 80s [115] [116] [117] [118].  

Computationally, dot matrix has a problem in the execution time, as it is proportional to 

the product of the lengths of the sequences. Some algorithms dealt with this problem using 

heuristic approaches [119] [120], while others combined trees with heuristics [121]. These 

techniques improve the computation time at the cost of generating a dot-matrix that may not be 

entirely correct. 

An improvement to the initial dot-plot is to encode a score for the dot instead of single-bit 

dot (either on or off). Two different encoding methods have been used: by color [122] [123] [124], 

or by lines of varying thickness [125]. Initially, these score encoding techniques were only able to 

encode 16 different colors or shapes. Later, with the newer graphics hardware allowed the 

employment of 128 different greyscale colors [126].  

The advantage of the dot matrix approaches is that it displays all possible sequence 

matches, but it does not generate a full alignment. Additionally, it lacks statistical rigor in assessing 

the quality of the alignment. Hence, dot matrix is considered more as a pairwise sequence 

comparison tool, rather than an alignment approach. Several sequence alignment visualization 

programs have been developed based on dot plot. One of these programs is DOTTER [126], which 

allows segments from the BLAST suite of searching programs to be superimposed on top of the 

full dot-matrix. VISTA [127] is another sequence alignment visualization program for global DNA 

sequence alignments. VISTA facilitates the visualization of alignments of various lengths at 

different levels of resolution using dot plots.   

Another dot matrix methods for genome analysis were presented by Huang and Zhang 

[128]. In their methods, a fast search algorithm is used to identify short similar sequence regions, 
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then a lookup table containing all possible combinations of a word is employed. The main 

advantages of these methods are the linear space requirement and the efficient computation speed. 

Furthermore, a variety of genome sequence analysis and visualization based on dot-plot were 

introduced, such as GenomeMatcher [129] and MAFFT [130].  GenomeMatcher is a DNA 

sequence comparison software with graphics user interface that uses two sequence alignment 

software: BLAST and MUMmer [131]. MAFFT is essentially a multiple sequence alignment 

software that generates dot plots between the first sequence and the remaining sequences.   

3.2.1.2 Dynamic Programming 

Dynamic programming methods are the only alignment methods that are capable of 

determining the optimal alignments. Before dynamic programming methods, the naïve approach 

to find the optimal alignment of two sequences is to generate all possible alignments, calculate the 

score for each alignment, then select the alignment with the highest score. For two sequences of 

100 residues, there are more than 1075 alignments. Hence, generating all these alignments will be 

both time and space consuming. Fortunately, the development of dynamic programming alignment 

algorithms allowed the generation of optimal alignments in only 𝑚𝑛 steps, where m is the length 

of one of the two sequences and n is length of the other. 

Dynamic programming sequence alignment algorithms were first introduced by 

Needleman and Wunsch [132] for aligning protein sequences, though similar methods 

independently developed in the late 1960s for the speech processing and computer science fields 

[133]. Typically, a dynamic programming alignment algorithm uses a substitution matrix to assign 

scores to amino-acid matches or mismatches, and a gap penalty for matching an amino acid in one 

sequence to a gap in the other. Once the substitution matrix is completed, the optimal alignment is 

identified by tracing back through the matrix in reverse order from the lower right-hand corner of 
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the matrix toward the origin of the matrix. The optimal alignment is the best matching path that 

holds the maximum total score. The Needleman-Wunsch is explained briefly with an example later 

in this section  

Originally, the Needleman-Wunsch algorithm was developed to find similarities between 

two protein sequences. It is also applied to statistical tests of relatedness between pairs of 

sequences by Dayhoff [134]. In 1972, Sankoff introduced another sequence alignment dynamic 

programming algorithm [135].  Sankoff’s algorithm is similar to Needleman’s, where the main 

difference is the introduction of the deletion/insertion (DI) constraint as another indication of 

similarity between two sequences. Sankoff illustrated that a low match scoring alignment that 

holds a low DI value may be better than a higher match scoring alignment that suffers a higher DI. 

Later, Sellers modified Needleman-Wunsch’s algorithm by combining it with Sankoff’s to 

measure the divergence between two sequences [136]. Subsequently, Smith-Waterman extended 

Sellers’ algorithm so that deletion/insertion gaps of any length are allowed [137]. The inclusion of 

varying length gaps is valuable for comparing protein sequences, since a long gap can be produced 

from a single deletion/insertion event. Smith-Waterman’s algorithm with varying length gap 

feature is performed by assigning a weight 𝑤𝑘 ≤ 𝑘𝑤1 to a gap of length 𝑘, whereas the gap weight 

is restrained by 𝑤𝑘 = 𝑘𝑤1 for all 𝑘 values. Later, Smith-Waterman extended the algorithm to find 

local alignment between two sequences [138]. In his approach, Smith-Waterman defined local 

alignment as a pair of segments, one from each of two long sequences, such that there is no other 

pair of segments with greater similarity. 

Despite the effectiveness of Smith-Waterman’s algorithm, it has a drawback as its 

computation requires 𝑚2𝑛 steps. Such a drawback is a serious limitation on the algorithm due to 

the limited computation powers of computers at that time. Accordingly, Gotoh improved Smith-
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Waterman’s algorithm by computing the divergence of the two sequences in 𝑚𝑛 steps, then 

generate the alignment in a second pass, which makes the overall algorithm steps 2𝑚𝑛 [139]. 

Another modification in Gotoh’s algorithm was in using the affine gap cost, which requires the 

gap weight function to be 𝑤 = 𝑢𝑘 + 𝑣 where 𝑘 is the gap length, opening a gap costs 𝑢, and each 

null in the gap costs 𝑢. Gotoh further showed that if the gap weights are limited by 𝑤 = 𝑢𝑙 + 𝑣 

where 𝑘 > 𝑙 for long gaps, the computation could be completed in two passes of (𝑙 + 2)𝑚𝑛 steps 

each.  

Additionally, Gotoh’s algorithm attempts to find only one of the optimal alignments rather 

than all. However, this single alignment occasionally fails to be optimal. Taylor introduced a 

modification of Gotoh’s algorithm that always finds at least one optimal alignment [140]. The 

disadvantage of Taylor’s algorithm is that its storage requirements depend on the length of the 

longest gap to be allowed. Another modification of Gotoh’s algorithm was presented by Altschul, 

which finds all the optimal alignments of two sequences in 𝑚𝑛 steps [141]. After Altschul’s 

algorithm, there have been several other attempts to improve the computation and space 

requirements for dynamic programming sequence alignment algorithms [142] [143] [144] [145] 

[146] [147]. However, the recent advancement in computer systems has made these improvements 

to the original Needleman-Wunsch algorithm pointless. Hence, the most utilized algorithms for 

pairwise sequence alignments in modern research are the Needleman-Wunsch algorithm for global 

alignment and the Smith-Waterman algorithm for local alignment.   

 Needleman-Wunsch Algorithm 

Needleman-Wunsch algorithm is a dynamic programming sequence alignment algorithm. 

The main advantage of Needleman-Wunsch is its capability of computing the optimal sequence 

alignment for a pair of sequences. Originally, Needleman-Wunsch algorithm was developed to 
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find similarities between two protein sequences. However, the methodology can be applied to any 

kind of sequences. 

 The fundamental idea of the Needleman-Wunsch is to build an alignment scoring matrix 

(𝐹) for a given pair of sequences, 𝐴 = 𝑎1𝑎2…𝑎𝑀 and 𝐵 = 𝑏1𝑏2…𝑏𝑁, where 𝑎𝑚 represent the 

columns and 𝑏𝑛 the rows. The concept behind the Needleman-Wunsch is that the optimal 

alignment can be determined by incremental extension of the optimal sub-alignments. Each cell 

𝐹𝑚,𝑛 represents the maximum similarity score between subsequence of 𝐴 of length 𝑚, and the 

subsequence of 𝐵 of length 𝑛. The score for cell 𝐹𝑚,𝑛 depends on the three corresponding cells 

(𝐹𝑚−1,𝑛−1, 𝐹𝑚−1,𝑛, and 𝐹𝑚−1,𝑛−1) and is calculated as follow: 

𝐹𝑚,𝑛 = 𝑚𝑎𝑥 {

𝐹𝑚−1,𝑛−1 + 𝑆𝑚,𝑛                           𝑀𝑎𝑡𝑐ℎ/𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ 

𝐹𝑚−1,𝑛 + 𝑔                                                    𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛

𝐹𝑚,𝑛−1 + 𝑔                                                     𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛
             (3.1) 

where 𝑔 is a gap penalty and 𝑆𝑚,𝑛 is the score for matching the two amino acid pairs 𝑎𝑚 and 𝑏𝑚.  

The cells in 𝐹 are generated one cell at a time starting from one at the up left corner. Once all cells 

in 𝐹 are filled, 𝐹𝑀,𝑁 corresponds to the optimal alignment between sequences 𝐴 and 𝐵. This 

optimal alignment can be generated by tracing 𝐹 backward from 𝐹𝑀,𝑁 to the origin following the 

pathway that leads to maximum similarity score. 

 

Example:- 

Given two sequences: 

A = CTTAACT 

B = CGGATCAT 

Building an alignment using Needleman-Wunsch algorithm based on the following scores: 

Match = 1 
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Mismatch = -1 

Gap = -1 

Fig. 16 shows the steps of Needleman-Wunsch's algorithm, where the optimal alignment 

generated according to the given scores is: 

C T T A A C - T 

C G G A T C A T 

First, the score matrix is initialized by assigning zero to the first cell (𝐹0,0) (Fig. 16 (a)). 

Second, the maximum alignment score is calculated for each cell using equation (3.1) as shown in 

Fig. 16 (a) & (b)), where an arrow is drawn to indicate the origin of the cell score (match/mismatch, 

insert, or delete). Finally, tracing 𝐹 backward from the lower left cell to the origin following the 

pathway indicated by the arrows will lead to generating the alignment (Fig. 16 (d)). 
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-2 0 0 -1 -2 -1 -2 -3 -4

-3 -1 -1 -1 -2 -1 -2 -3 -2

-4 -2 -2 -2 0 -1 -2 -1 -2

-5 -3 -3 -3 -1 -1 -2 -1 -2

-6 -4 -4 -4 -2 -2 0 -1 -2

-7 -5 -5 -5 -3 -1 -1 -1 0

 
    (c)               (d) 

Fig. 16. Generating the optimal alignment between sequences A= CTTAACT and B=CGGATCAT using Needleman-

Wunsch algorithm; (a) Initializing the scoring matrix;(b) and (c) Computing the scoring matrix; (d) Back-tracing the 

scoring matrix to generate the optimal alignment.  

 

 Smith-Waterman’s Algorithm 

Frequently, the divergence level between two sequences to be aligned is not easy to be 

identified. Additionally, the lengths of the two sequences may be different from one another. In 

these cases, identification of regional sequence similarity may be of greater importance than 

finding an alignment that includes all residues. The first dynamic programming algorithm for local 

alignment is the Smith-Waterman algorithm. In the Smith-Waterman algorithm, the longest 

segment pair between two sequences that yields the optimal alignment is recognized by comparing 

all possible segments of all lengths between the two sequences using dynamic programming 

technique.  
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The main difference between the Smith-Waterman algorithm and Needleman-Wunsch’s is 

that negative scores are set to zeros. Therefore, the backtracking process starts at the highest 

positive score cell and proceeds until it encounters a zero score cell.  

In Smith-Waterman, the alignment scoring matrix (𝐹) for a given pair of sequences 𝐴 and 

𝐵 is calculated as follows: 

𝐹𝑚,𝑛 = 𝑚𝑎𝑥

{
 

 
0                                                                                       
𝐹𝑚−1,𝑛−1 + 𝑆𝑚,𝑛                           𝑀𝑎𝑡𝑐ℎ/𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ

 

𝐹𝑚−1,𝑛 + 𝑔                                                    𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛

𝐹𝑚,𝑛−1 + 𝑔                                                     𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

            (3.2) 

where 𝑔 is a gap penalty and 𝑆𝑚,𝑛 is the score for matching the two amino acid pairs 𝑎𝑚 and 𝑏𝑚. 

Example:- 

Given two sequences: 

A = CTTAACT 

B = CGGATCAT 

Building an alignment using Smith-Waterman algorithm based on the following scores: 

Match = 2 

Mismatch = -1 

Gap = -1 

Fig. 17 shows the steps of Smith-Waterman's algorithm, where the optimal local alignment 

generated according to the given scores is: 

A A C - T 

A T C A T 

 

As in the Needleman-Wunsch algorithm, the first cell of the matrix is assigned zero. Then, 

the value for each cell in the matrix is calculated using equation (3.2) as shown in Fig. 17 (a), 
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where an arrow is drawn to indicate the origin of the cell score (match/mismatch, insert, or delete). 

Finally, the local alignment is generated by backtracking the highest positive score cell to the first 

encountered zero score cell (Fig. 17 (b)).    

C G G A T C A T

C

T

T

A

A

C

T

0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 2 1 0

0 1 1 0 0 2 1 1 3

0 0 0 0 0 2 1 0 3

0 0 0 0 2 1 1 3 2

0 0 0 0 2 1 0 3 2

0 2 1 0 1 1 3 2 2

0 1 1 0 0 0 2 2 4

C G G A T C A T

C

T

T

A

A

C

T

0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 2 1 0

0 1 1 0 0 2 1 1 3

0 0 0 0 0 2 1 0 3

0 0 0 0 2 1 1 3 2

0 0 0 0 2 1 0 3 2

0 2 1 0 1 1 3 2 2

0 1 1 0 0 0 2 2 4

 
       (a)                (b) 

Fig. 17. Generating the optimal local alignment between sequences A= CTTAACT and B=CGGATCAT using Smith-

Waterman algorithm; (a) Computing the scoring matrix; (b) Back-tracing the scoring matrix to generate the local 

alignment 

 

3.2.1.3 Word Methods 

Word methods, also known as the k-tuple methods [148], are heuristic methods that work 

on discovering a series of short and non-overlapping subsequences (word, k-tuple). The basic 

assumption is that two related sequences must have at least one word in common. Since these 

methods are heuristic methods, they do not guarantee that an optimal alignment can be found. 

However, they are faster and significantly more efficient than the alignment algorithms based on 

dynamic programming. Hence, they are useful for large-scale database searches where it is 

assumed that most of the candidate sequences do not have significant similarity with the target 

sequence. The most known implementations of word methods are the database search tools 

FASTA [149] and BLAST [84].  

In general, the word methods work as follows: 1) identify a series of short non-overlapping 

subsequences (words) of size 𝑘 in the target sequence; 2) match these words to candidate database 
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sequences; and 3) obtain a longer alignment by extending similarity regions from the words after 

identifying word matches.  Once the regions of high sequence similarity are found, adjacent 

similarity regions can be joined into a full alignment. 

 In FASTA, 𝑘 is defined by the user. It is a slower method but more sensitive at lower 

values of 𝑘. Thus it is preferred for searches involving a very short target sequence. In the BLAST 

family of search methods, a number of algorithms are available for specific types of targets. Unlike 

FASTA, BLAST uses a fixed default word size that is optimized according to the target and 

database type. Also, BLAST only evaluates the most significant word matches, rather than every 

word match as FASTA does. Consequently, BLAST is faster than FASTA but is not as accurate. 

3.3 Multi-Objective Alignment 

3.3.1 Multi-Objective Optimization 

Optimization is the process of finding the most feasible solution which corresponds to the 

maximum/minimum value of a given objective function. When an optimization problem involves 

more than one objective function, the task of finding the optimal solutions is known as multi-

objective optimization. As most of the real world problems involve multiple objectives, multi-

objective optimization has gained lots of popularity in the last decades and has been applied in 

many fields, including engineering, economics, and logistics [150].  

In multi-objective optimization, optimal solutions need to be found in the presence of trade-

offs between two or more conflicting objectives. Thus, no single solution exists that optimizes all 

the objectives. A famous example of multi-objective optimization is decision making involving 

buying a car, where minimizing car cost and maximizing car comfort are the conflicting objectives 

involved in the decision. In this problem, the best solution for each objective is totally different 

from the other one (solution 1 and 2), as shown in  
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Fig. 18. Between these two extreme solutions, there exist many other solutions, where a 

tradeoff between cost and comfort exists (solutions A, B, and C). In this problem, all solutions 

laying on the curve are special in the context of multi-objective optimization and are called Pareto 

optimal solutions.    

  

 

Fig. 18. Hypothetical trade-off solutions for a car buying decision-making problem (modified from [150]) 

 

3.3.1.1 Pareto Optimality 

In multi-objective optimization problems, no single solution exists that simultaneously 

optimizes all objectives. A solution is non-dominated if none of the objective functions can be 

improved in value without deteriorating some of the others. In other words, given a set of objective 

functions 𝑓1(. ),… , 𝑓𝑠(. ), without loss of generality, assuming that maximization is the 

optimization goal for all objective functions, a solution 𝑢 is considered to dominate another 

alignment 𝑣 (𝑢 ≺ 𝑣) if both conditions i) and ii) are satisfied:  

i) for each objective function 𝑓𝑖(. ),  𝑓𝑖(𝑢)  ≥  𝑓𝑖(𝑣) holds for all 𝑖; and 
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ii)  there is at least one objective function 𝑓𝑗(. ) where 𝑓𝑗(𝑢) >  𝑓𝑗(𝑣) is satisfied. 

All the non-dominated solutions form the Pareto-optimal set. All Pareto-optimal solutions 

form the Pareto-optimal front. Fig. 19 shows the Pareto-optimal front for four different 

combinations of two types of objectives. Each objective can maximized or minimized. 

 

 

Fig. 19. Pareto-optimal front solutions for four combinations of two types of objectives (a) the task is to maximize f1 

and minimize f2,(b) the task is to minimize f1 and maximize f2, (c)the task is to minimize both f1 and f1, and (d) the 

task is to maximize both f1 and f2(modified from [151]). 

 

3.3.2 Multi-objective Protein Sequence Alignment 

The most popular approach for protein sequence alignment is Dynamic Programming [132] 

[152] [153], which relies on the scheme to score the equivalence of each of the pairs of amino 

acids. These scoring schemes are calculated based on one or more objectives. The objectives that 

are most taken into consideration for protein sequence alignment are: sequence profile alignment, 
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secondary structures, solvent accessibility, backgone torsion angles, and fragments. The most 

successful protein alignment algorithms integrated all these objectives [11] [83] [91] [154] [15]. 

These algorithms are acknowledged as multi-objective alignment; however none has been able to 

generate the entire Pareto-optimal front for a pairwise sequence alignment under these objectives. 

The previous research of multi-objective pairwise sequence alignment are mainly implemented 

using one of two techniques: 1) performing linear combinations of more than one objective score 

to generate one objective function and use it to generate one alignment [15] [154]; 2) Using an 

evolutionary algorithm which generates an initial population of solutions, modifies those solutions 

using a set of genetic operators, and evaluates the quality of those solutions using a set of objective 

functions to keep only the dominant ones and eliminate the others [155] [156]. For the first 

technique this is not quite a multi-objective way as it treats the multi-objective problem as a single 

objective function. Besides it will only generate one solution under the combined objective 

function. For the second technique there is no guarantee that the generated alignments are the 

optimal and complete. 

3.3.2.1 Protein Sequence Alignment objectives 

Each of the objectives used in protein sequence alignment relies on a scoring system, which 

quantifies the likelihood of one amino acid being substituted by another in an alignment. This 

section will explain the most used objectives for protein sequence alignment and their scoring 

systems. 

 Sequence Profile 

Initially aligning a pair of protein sequences relies only on a system to score the 

equivalency of each of the 210 possible pairs of amino acids. The simplest scoring system 

identifies amino acids as identical and non-identical, where identical pairs are given a positive 
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score and non-identical pairs are scored zero. Such a scoring system is generally considered 

inefficient. Such systems represent the 210 pairs as a 20×20 substitution matrix where identical 

and similar pairs of amino acids are given higher scores that other pairs of amino acids.  

In 1978,   Dayhoff et al. [157] developed the first amino acid scoring matrix that reflects 

their physicochemical properties. The developed matrices are known as the PAM (Point Accepted 

Mutation) matrices, which observe the amino acid mutations that are not expected to significantly 

change the function of proteins. 

 The PAM1 matrix is developed from the substitution frequency of proteins 1PAM from 

each other, where two sequences are within 1PAM distance if they can be converted into each 

other (very similar). 1PAM distance is defined as 1% of the amino acid positions that have been 

changed. The PAM2 matrix is calculated by multiplying PAM1 matrix by itself, then the PAM3 

by multiplying the PAM2 by PAM1, and so on. The bigger the number of the matrix is, the more 

suitable it is for the more divergent sequences (Table 2).  Fig. 20 shows the PAM 250 substitution 

matrix. 

 

Table 2  

The Correspondence of PAM Numbers with the observed percent of amino acid evolutionary distance 

PAM Number The observed amino acid 

Distance (%) 

Sequence Identity  

0 0 100 

1 1 99 

30 25 75 

80 50 50 

110 40 60 

200 75 25 

250 80 20 
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C 12                    

S 0 2                   

T -2 1 3                  

P -3 1 0 6                 

A -2 1 1 1 2                

G -3 1 0 -1 1 5               

N -4 1 0 -1 0 0 2              

D -5 0 0 -1 0 1 2 4             

E -5 0 0 -1 0 0 1 3 4            

Q -5 -1 -1 0 0 -1 1 2 2 4           

H -3 -1 -1 0 -1 -2 2 1 1 3 6          

R -4 0 -1 0 -2 -3 0 -1 -1 1 2 6         

K -5 0 0 -1 -1 -2 1 0 0 1 0 3 5        

M -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6       

I -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5      

L -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -2 4 2 6     

V -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4    

F -4 1 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9   

Y 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10  

W -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 -2 -3 -4 -5 -2 -6 0 0 17 

 C S T P A G N D E Q H R K M I L V F Y W 
  
 

Fig. 20. PAM250 amino acid substitution matrix 

 

BLOSUM (blocks substitution matrix) matrices are another amino acid substitution matrix 

that were developed by Henikoff and Henikoff in 1992 [158]. BLOSUM matrices were derived 

using local multiple alignments of homologous proteins. Similar to PAM, BLOSUM were 

constructed as a series of matrices. The BLOSUM matrix index represents the percentage of the 

identity values of sequences selected to develop the matrix.  Hence, the BLOSUM-N matrix is 

developed from sequences sharing N% identity. Unlike PAM, the greater the matrix index the 

more suitable it is for the more similar sequences.  Fig. 21 shows the BLOSUM62 substitution 

matrix, which has been popularly used in a lot of bioinformatics applications.  
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C 9                    

S -1 4                   

T -1 1 5                  

P -3 -1 -1 7                 

A 0 1 0 -1 4                

G -3 0 -2 -2 0 6               

N -3 1 0 -2 -2 0 6              

D -3 0 -1 -1 -2 -1 1 6             

E -4 0 -1 -1 -1 -2 0 2 5            

Q -3 0 -1 -1 -1 -2 0 0 2 5           

H -3 -1 -2 -2 -2 -2 1 -1 0 0 8          

R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5         

K -3 0 -1 -1 -1 -2 0 -1 1 1 -1 2 5        

M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5       

I -1 -2 -1 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4      

L -1 -2 -1 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4     

V -1 -2 0 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4    

F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6   

Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7  

W -2 -3 -2 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11 

 C S T P A G N D E Q H R K M I L V F Y W 

  

 

Fig. 21. BLOSUM62 amino acid substitution matrix 

 

In 1987 Gribskov [159] suggested the use of protein profiles as scoring system for 

alignment instead of substitution matrices. A profile is a Position Specific Scoring Matrix (PSSM) 

that contains probability information of amino acids. The profile resembles the substitution 

matrices, but is more complex as it contains position information. In a profile matrix, the rows 

represent amino acid positions of particular multiple alignments and the columns represent the 

amino acids. The values in the matrix represent the log odds scores of the amino acids calculated 

from multiple alignments. The profile scores are significantly important when aligning distantly 

related protein sequences.  PSI-BLAST [87] and Hidden Markov Models (HMM) [160] [161] 
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represent two popular methods for generating a protein profile based on the multiple sequence 

alignments among homologous proteins of a target sequence. 

  Secondary Structure 

Secondary structure refers to the general three-dimensional form of the protein local 

segments, where it is classified into three classes: alpha helix, beta sheet, and coil. To perform 

sequence alignment for sequences with low profile similarities, research consider using protein 

structure information [162] [163] [164]. The secondary structure score is a comparison between 

the secondary structure of the target amino acids and that of the template amino acids. Since the 

structure of the target sequence is not known, a secondary structure prediction method, such as 

PSI-PRED [165] and SCORPION [166], is often employed to obtain the predicted secondary 

structure probability.   

 Solvent Accessibility 

Solvent accessibility of an amino acid refers to the amino acid tendency of exposing to 

water, where amino acids can be classified to either exposed or buried. The integration of solvent 

accessibility information in sequence alignment improved the alignment accuracy [83] [154]. 

Similar to secondary structure, solvent accessibility score is a comparison between the solvent 

accessibility of the target amino acids and that of the template amino acids. Consequently, a solvent 

accessibility prediction method is needed to predict the solvent accessibility of the amino acids of 

the target protein sequence, such as Hopp-Woods method [167], Kyte-Doolittle method [168], and 

CASA [166].    

 Fragments 

In any short amino acid sequence segment, the molecular interactions constrain the 

structure into a small number of conformations. These conformations can be modeled as protein 
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fragments, which are distributed across many protein structures from different families. Several 

successful protein alignment algorithms have incorporated fragment information [11] [15] and 

shown noticeable improvement. The constructed fragments are used to build a frequency profile 

at each position of the template, which is calculated by aligning the fragments sequences at each 

position on the template. Thus, the fragment score is the frequency of the template amino acid to 

appear on the fragment sequences corresponding to its position on the template sequence.  

3.4  Summary 

In this chapter, we presented a review of the relevant literature to the protein template-

based modeling. We presented the foundation for the template-based protein structure prediction 

along with an overview of the template-based protein structure prediction methods (Section 3.1). 

Additionally, we provided an overview of the threading and template selection techniques in 

Section 3.1.1 and Section 3.1.2 respectively. We also presented the related research of protein 

sequence alignment (Section 3.2). Toward the end, we presented an overview of the research that 

has been established in the multi-objective alignment and more specifically multi-objective protein 

sequence alignment (Section 3.3). Exploring all these research allowed us to build a knowledge of 

the problem addressed in this dissertation and previous solutions. Consequently, in the next 

chapters, we proceed with our proposed methods for template selection and multi-objective protein 

sequence alignment.  
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CHAPTER IV 

 TEMPLATE SELECTION APPROACHES 

In this chapter, we aim at improving the template-based protein structure modeling by 

enhancing the correctness of identifying the most appropriate templates. Most of the template 

selection methods try to take advantage of multiple structural information sources to help find the 

optimal match between the target and the structural templates. Here, we present two template 

selection approaches that incorporate inter-residue contacts to enhance template selection 

sensitivity. Our first template selection approach combines the inter-residue contact score with the 

sequence profile score, which is a representation of protein structural features (Section 4.1). Our 

second template selection approach is a further improvement to the template based protein 

structure modeling. In this approach, we use the inter-residue contact score to build the alignment 

along with other structural features scores (Section 4.2). The template selection approaches are 

tested over CASP 11 targets and have shown a significant improvement compared to the successful 

template alignment and selection methods. 

4.1 Incorporating ICOSA Score in Template Selection 

When templates with high sequence identity are not available, most template selection 

methods try to take advantage of multiple structural information sources, such as sequence profiles, 

secondary structures, solvent accessibility, backbone dihedral angles, etc., to help find the optimal 

match between the target and the structural templates. In protein structure modeling literature 

[148], it is well-known that the inter-residue contacts play an important role in forming and 

stabilizing a protein fold. We presented an approach to evaluate the favorability of a target 

sequence fitting in the folding topology of a certain template by placing the target sequence 

residues into the mapped template residues in their three-dimensional conformation and evaluating 
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the contact score. Then, we combine the contact score with the sequence profile score to enhance 

template selection sensitivity. More specifically, we incorporate ICOSA [149], a coarse-grained 

contact potential correlating inter-residue interaction distance and orientation, into MUSTER 

[133], one of the most successful template alignment and selection methods in template-based 

protein structure modeling. We use the CASP11 targets to demonstrate the effectiveness of our 

method. 

4.1.1 Methodology 

4.1.1.1 MUSTER Scores 

MUSTER is a template-based protein structure modeling method that works by aligning 

the target sequence with all potential templates in I-TASSER library and then calculating 

MUSTER scores of all resulted alignments to pick the most appropriate templates. The MUSTER 

alignment is done by dynamic programming that exploits the protein structural features including 

(1) sequence profiles; (2) predicted secondary structures; (3) depth-dependent structure profiles; 

(4) solvent accessibility; (5) backbone dihedral torsion angles; and (6) hydrophobic scoring matrix 

[15]. Each structural feature gives an independent score. These structural feature scores are 

summed along with carefully balanced weights derived by various machine learning algorithms 

[15] and then normalized by alignment length, which gives the final MUSTER score. 

4.1.1.2 ICOSA Score of a Structural Template 

ICOSA [14] is a knowledge-based, coarse-grained contact potential that correlates pairwise 

inter-residue interaction distance and orientation using an icosahedral tessellation. ICOSA has 

accuracy and sensitivity comparable to all-atom fine-grained potentials in discriminating near-

natives from misfolds. In addition, ICOSA has been successfully used to fast model protein loops 

in sub-angstrom accuracy [169]. Due to the fact that ICOSA is a coarse-grained potential that only 
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Cα-Cα contacts are taken into consideration, it is capable of implicitly estimating side chain 

interactions via contact orientation and distance while tolerating structural imperfection (Fig. 22). 

Hereby, ICOSA is used to measure the favorability of a protein target when adopting the folding 

topology of a potential structural template. 

 

Fig. 22. Icosahedral local coordinates with CA at the origin [14]. 

 

Fig. 23 shows an example of evaluating the ICOSA score of a target adopting a potential 

structural template 1r43A displayed in Fig. 23(a). Fig. 23 (b) shows the MUSTER alignment of 

the protein sequence target to the sequence of the template. Then, the unmatched residues in the 

structural template are ignored while the remains are substituted by the corresponding residues in 

the target highlighted in orange in Fig. 23 (c). Afterwards, as shown in Fig. 23 (d), the ICOSA 
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score is calculated by summing the pairwise interactions of the target residues adopting the folding 

conformation of the structural template. 

 

 

 

Fig. 23. Estimation of ICOSA score for a template alignment, (a) Structural Template of 1r43A, (b) Alignment 

between 1r43A and target sequences based on structural profile, (c) Substitute template residues (blue) with target 

residues (orange), (d) Calculating template ICOSA score of substituted  

 

(a) (b)  

(c)  (d)  
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For each specific target, ICOSA is applied to all structural templates found by MUSTER. 

A higher ICOSA score typically indicates that the protein target is more favorable in adopting the 

three-dimensional folding conformation of the structural template.  

Since ICOSA is a contact potential measuring global inter-residue interactions, while the 

sequence profile alignment score in MUSTER estimates local interactions, the ICOSA score and 

the MUSTER score are deemed to be independent, so they can be directly added up.  

4.1.2 Results 

We use the Critical Assessment of Protein Structure Prediction (CASP) 11 [67] experiment 

targets to demonstrate the effectiveness of our method. The MUSTER program is obtained from 

the I-TASSER Suite [99] Version 5.1 that was released on March, 10th 2017. First of all, we use 

the MUSTER program to generate structural profile alignments for over 60,000 structural 

templates extracted from the experiment-determined protein structures available in I-TASSER 

library. Templates with over 25% sequence identities with the target sequences are removed. Then, 

we use MUSTER, ICOSA alone, and the combination of MUSTER and ICOSA (MUSTER + 

ICOSA) to rank the templates. The quality of a structural template is evaluated by the Global 

Distance Test – Total Score (GDT-TS), which indicates the percentage of the model conformation 

superimposed correctly onto the native structure, compared to the native structure. 

The performance and comparison of MUSTER, ICOSA and MUSTER+ICOSA on the 

CASP 11 targets are summarized in Table 3. The average GDT-TS score of the top-ranked 

templates selected by ICOSA is lower than the top-ranked templates selected by MUSTER. This 

is mainly because ICOSA only takes three-dimensional topology into account while many other 

important factors such as secondary structures, solvent accessibility, backbone torsion angles 

conformations, and sequence similarity are not considered. However, when the ICOSA score is 
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combined with the MUSTER score, the average GDT-TS score of the top-ranked templates 

increased to 34.31. 

Table 3  

Overall performance of MUSTER, ICOSA, and MUSTER+ICOSAon the CASP11 targets 

Method MUSTER ICOSA MUSTER+ICOSA 

Average GDT-TS of 

the top-ranked model 

32.85 22.91 34.31 

 

Fig. 24 compares the GDT-TS scores of the top-ranked templates selected by MUSTER, 

ICOSA alone, and MUSTER + ICOSA. CASP 11 targets where MUSTER cannot find any 

templates with over 20.0 GDT-TS score are ignored. One can find that when ICOSA score is 

combined with MUSTER score, the top-ranked templates in eight targets have enhanced GDT-TS 

scores than the top ones selected by MUSTER only, while worse in three targets. 
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Fig. 24. The GDT-TS score of the top-ranked models selected by MUSTER, ICOSA, and MUSTER+ICOSA in 

CASP11 targets. 
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Fig. 25. Top-ranked templates selected by MUSTER, ICOSA, and MUSTER+ICOSA (red) in CASP11 target 

T0769(green),(a) top-rank template by MUSTER score,(b) top-rank template by ICOSA score, and (c) top-rank 

template by MUSTER+ICOSA score. 

 

Fig. 26. Top-ranked templates selected by MUSTER, ICOSA, and MUSTER+ICOSA (red) in CASP11 target T0773 

(green), (a) top-ranked template by MUSTER score, (b) top-ranked template by ICOSA score, and (c) top-ranked 

template by MUSTER+ICOSA scores 

(a) 
(b) 

(c) 

(a) (b) 

(c) 
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When the ICOSA score is combined with the MUSTER score, the most significant 

improvement occurs in targets T0769 and T0773, where the GDT-TS scores of the top-ranked 

templates are improved from 30.1 to 61.6 and from 23.8 to 63.1, respectively. Fig. 25 and Fig. 26  

respectively display the models generated from the top-ranked templates by MUSTER, ICOSA, 

and MUSTER+ICOSA in targets T0769 and T0773. It is interesting to notice that in T0773, 

ICOSA itself is unable to identify a high-quality template; however, combining the ICOSA score 

with the MUSTER score leads to the identification of a significantly-improved template. 

4.2 Incorporating ICOSA in Sequence Alignment 

The results of in the previous section (Section 4.1) have shown the importance of using 

inter-residue contacts information (ICOSA score) in template selection. However, this is not the 

only way to integrate inter-residue contacts information in template selection. Instead of evaluating 

the ICOSA score of a target adopting a potential structural template after an alignment is generated, 

we use the ICOSA score to build the alignment along with other structural features. The idea is to 

build a substitution matrix to score the replacement of one amino acid of the template three-

dimensional conformation with each amino acid in the target.   

Then, this substitution matrix is used in building the alignment along with structural 

features. Accordingly, we develop a template selection approach that generates sequence 

alignment incorporating ICOSA (SAICOSA), then uses dynamic programming to search the 

alignment space for the most appropriate template. The alignment generated by dynamic 

programming exploits the protein features including (1) sequence profiles [87]; (2) predicted 

secondary structures [170]; (3) fragment profiles [171]; (4) predicted solvent accessibility [166]; 

and (5) ICOSA score for substituting each target amino acid in the template folding topology [14].  

These protein features are summed together using weights that were carefully balanced using Grid 
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search technique (will be explained in Section 4.2.1.3). The resulting alignment score is a ranking 

score that measures the favorability of each potential template.  

4.2.1 Methodology 

4.2.1.1 Scoring Function 

The scoring function of SAICOSA for aligning the ith residue on the target sequence and 

the jth residue on the template is: 

𝑆𝑐𝑜𝑟𝑒(𝑖, 𝑗) = 𝑆𝑝𝑟𝑜𝑓𝑖𝑙𝑒(𝑖, 𝑗) + 𝑤1𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑖, 𝑗) + 𝑤2𝑆𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡(𝑖, 𝑗) + 𝑤3𝑆𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑖, 𝑗) +

𝑤4𝑆𝐼𝑐𝑜𝑠𝑎(𝑖, 𝑗)                                                                                      (1)                                            

We explain the specific terms as follows. 

 Sequence Profile  

The first term in Eq. (1) is the sequence profiles which is represented as: 

𝑆𝑝𝑟𝑜𝑓𝑖𝑙𝑒(𝑖, 𝑗) = ∑ 𝐹𝑎𝑞(𝑖, 𝑘) + 𝐹𝑏𝑞(𝑖, 𝑘)𝐿𝑡(𝑗, 𝑘)/2
20
𝑘=1 .                                      (2)  

where ‘‘q’’ stands for the target (query) and ‘‘t’’ for the template protein. 

Here 𝐹𝑎𝑞(𝑖, 𝑘) is the frequency of the kth amino acid at the ith position of the multiple 

sequence alignments (MSA) obtained by PSI-BLAST [87] against the non-redundant (NR) 

sequence database with an E-value cutoff of 0.001. 𝐹𝑎𝑞(𝑖, 𝑘) is considered as a close alignment 

frequency. 𝐹𝑏𝑞(𝑖, 𝑘) is a more distant frequency generated using a higher E-value cutoff of 1.0. 

The idea of combining distant and close sequence profiles comes from [15] [172] [173] [174], 

which helps increase the alignment sensitivity in different homology areas. 𝐿𝑡(𝑗, 𝑘) is the derived 

log-odds profile of the template sequence for the kth amino acid at the jth position. The template 

sequence derived log-odds profile generated from PSI-BLAST search with an E-value cutoff 

0.001. 
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 Secondary Structure 

The second term in Eq. (1) is the probability that the predicted secondary structure of the 

ith residue of the target sequence matches with that of the jth residue of the template sequence, 

i.e.,  

𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑖, 𝑗) = 𝑃𝑟𝑜𝑏 (𝑠𝑠𝑞(𝑖) = 𝑠𝑠𝑡(𝑗))                                                             (3)                       

where 𝑠𝑠𝑞(𝑖) is the predicted secondary structure of the ith residue of the target and 𝑠𝑠𝑡(𝑗) is the 

secondary structures of the jth residue of the template sequence. The secondary structure for the 

target is predicted by Scorpion [170] and that for the template is assigned by the DSSP program 

[175]. 

 Fragment Profiles 

The third term in Eq. (1) is fragment profiles, which is anticipated as: 

𝑆𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡(𝑖, 𝑗) = ∑ 𝐹𝑏𝑡(𝑗, 𝑘)𝐿𝑞(𝑖, 𝑘)
20
𝑘=1                                                                     (4) 

The top hundred ten-residue fragments from the fragment libraries in [171] are collected 

and used to calculate the frequency profile at each position of the template. 𝐹𝑏𝑡(𝑗, 𝑘) is the 

frequency of the kth amino acid appearing in the 100 sequences corresponding to the jth position 

on the template. 𝐿𝑞(𝑖, 𝑘) is the log-odds profile for the kth amino acid at the ith position of the 

query sequence from the PSI-BLAST search with an E-value cutoff of 0.001. 

 Solvent Accessibility 

The fourth term in Eq. (1) is the probability that the predicted solvent accessibility of the 

ith residue of the target sequence matches with that of the jth residue of the template sequence, 

i.e.,  

𝑆𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑖, 𝑗) =  𝑃𝑟𝑜𝑏 (𝑠𝑎𝑞(𝑖) = 𝑠𝑎𝑡(𝑗))                                                             (5) 
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where 𝑠𝑎𝑞(𝑖) is the predicted solvent accessibility of the ith residue of the target sequence and 

𝑠𝑎𝑡(𝑗) is the solvent accessibility of the jth residue of the template sequence as indicated by DSSP 

[175]. To predict solvent accessibility 𝑠𝑎𝑞(𝑖) of the ith residue of the target, we use Casa program 

[166]. Hence, the maximum SA value in an extended tripeptide (Ala-X-Ala) is taken from [176].  

The residue exposure status is defined to be either exposed or buried. 

 ICOSA 

The fifth term in Eq. (1) is the contact score calculated by ICOSA for the structural template 

when replacing the jth residue of the template by the ith residue of the target. ICOSA is used to 

score the replacement of one amino acid of the template three-dimensional conformation with each 

amino acid in the target.  Thus, it will incorporate three-dimensional information on building the 

alignment along with the structural features. 

4.2.1.2 Alignment Generation 

The Needleman-Wunsch dynamic programming algorithm is used to build the alignment 

between the target and the template sequences. Gap opening (𝑔𝑜); and gap extension (𝑔𝑒) penalties 

are applied in the alignment generation. 

 Template Ranking 

After the generation of the alignment for all the templates in MUSTER database, the 

templates are ranked based on the raw alignment score.  

4.2.1.3 Parameter Training 

There are overall six parameters in SAICOSA algorithm (i.e. 𝑤1 to 𝑤4, 𝑔𝑜 and 𝑔𝑒), which 

need to be carefully tuned. One of the popular alignment benchmarks is SABmark [177], which is 

often used in tuning methods. SABmark includes alignments that cover the entire known fold 

space, as classified by SCOP [77]. SABmark is a large database of more than 20,000 
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nonhomologous protein pairs. Using all these pairs for training will not be feasible for two reasons. 

First, some pairs in the SABmark database do not share a similar topology, which may mislead the 

training algorithm. Second, the possibility of over fitting, as the protein pairs are not uniformly 

distributed over the fold space. Hence, 425 pairs of proteins were selected with a TM-score [178] 

>0.17, and each pair belongs to one of SCOP super-families.  TM-score is used to assess the 

topological similarity of protein structure pairs with a score in [0,1]. Statistically, a TM-score<0.17 

means a randomly selected protein pair with gapless alignment taken from PDB. Accordingly, the 

selected protein pairs for training are categorized as: 167 pairs with a TM-score>0.5, 163 pairs 

with TM-score<0.5 and>0.3, and 95 pairs with TM-score<0.3 and >0.17.  All the 425 pairs share 

the same class, fold, and super-family in SCOP but different family. 

To train the template selection algorithm, one can tune the parameters by maximizing the 

quality of the structure model created from the generated alignment. Thus, the template selection 

parameters are optimized based on the overall TM-score of the resulting protein models. We use 

a grid-search technique, which split the 6-dimensional parameter space into lattices and try all the 

lattice points. In our grid search implementation a coarse-grained lattice system was used, where 

a finer tuning near the first selected lattice is performed. Finally, the lattice with the highest average 

TM-score is selected. The final parameters used are 𝑤1 = 11.7, 𝑤2 = 0.09, 𝑤3 = 12.22, 𝑤4 =

0.01, 𝑔0 = 1.47, and 𝑔𝑒 = 1. 

4.2.2 Results 

In order to determine the competence of SAICOSA in serving as a template selection 

method, we once again use (CASP) 11 experiment targets. After using SAICOSA to generate 

structural profile alignments for all structures in I-TASSER library, we rank the templates based 
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on the raw alignment score. The quality of a structural template is evaluated by the GDT-TS 

compared to the native structure. 

The performance and comparison of MUSTER, MUSTER+ICOSA and SAICOSA on the 

CASP 11 targets are summarized in Table 4. It can be noticed that SAICOSA selects even better 

templates with an average GDT-TS score of 45.23, which is higher than both selected by 

MUSTER, and MUSTER+ICOSA. 

Table 4  

Overall performance of MUSTER, MUSTER+ICOSA, and SAICOSA on the CASP11 targets 

Method MUSTER MUSTER+ICOSA SAICOSA 

Average GDT-TS of 

the top-ranked model 

32.85 34.31 45.23 
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Fig. 27 compares the GDT-TS scores of the top-ranked templates selected by MUSTER, 

MUSTER + ICOSA, and SAICOSA. CASP 11 targets where the three techniques cannot find any 
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Fig. 27. The GDT-TS score of the top-ranked models selected by MUSTER, and MUSTER+ICOSA compared to the GDT-

TS score of the top-ranked models generated using SAICOSA in CASP11 targets. 
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templates with over 20.0 GDT-TS score are ignored. One can find that for most of the targets the 

top-ranked model generated and selected using SAICOSA have a higher GDT-TS score than the 

ones generated and selected by MUSTER. This demonstrates that not only SAICOSA is better in 

template selection, but also that SAICOSA is capable of generating highly competitive structural 

profile alignments. One of the reasons for such an improvement is the highly accurate tools used 

in generating the protein structural features. For example, the Scorpion [154] secondary structure 

prediction method outperform the secondary structure prediction method used by MUSTER (PSI-

PRED [165]). Also, CASA [166] has proven to predict the solvent accessibility more accurately 

than other states of art methods. Moreover, the fragment libraries proposed in [171] exhibit better 

representability across diverse protein structures. Finally, it is clear that using three-dimensional 

information (ICOSA) in sequence alignment and template selection can highly improve template-

based protein structure modeling. 

For further analysis targets T0790, T0766, and T0821 are picked. Fig. 28, Fig. 29, and Fig. 

30 respectively display the models for the top-ranked templates generated by MUSTER, 

MUSTER+ICOSA, and SAICOSA in targets T0790, T0766 and T0821. T0790 has the most 

significant improvement achieved by SAICOSA, where the GDT-TS score of the top-ranked 

template improved from 7.6 by MUSTER and 5.47 by MUSTER+ICOSA to 71.6. For T0766, 

despite the improvement in the GDT-TS score of the top-ranked template when ICOSA score is 

combined with MUSTER score, GDT-TS score improved from 50.69 to 60.88, a significant 

improvement is achieved by SAICOSA (91.9 GDS-TS score). Finally, in T0821 it is interesting to 

notice that combining ICOSA score with MUSTER score doesn’t lead to any improvement (55.01 

GDT-TS score), however, SAICOSA reaches a significant improvement (84.70 GDT-TS score).  
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In T0790, there is a great improvement achieved by SAICOSA in modeling both the β-

sheet and the α-helix regions (Fig. 28). However, in T0766, it is noticed that the main enhancement 

in SAICOSA model appears in the α-helix regions (Fig. 29). Additionally, for α-helix protein as 

T0821, it becomes clearer that SAICOSA models are better aligning α-helix regions (Fig. 30).    

 

 

 

(b) 

(c) 

(a) 

 

Fig. 28. Top-ranked templates selected by MUSTER, MUSTER+ICOSA, and SAICOSA (red) in CASP11 target 

T0790 (green), (a) top-ranked template by MUSTER score, (b) top-ranked template MUSTER+ICOSA scores, and 

(c) top-ranked template by SAICOSA. 
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Fig. 29. Top-ranked templates selected by MUSTER, MUSTER+ICOSA, and SAICOSA (red) in CASP11 target 

T0766 (green), (a) top-ranked template by MUSTER score, (b) top-ranked template MUSTER+ICOSA scores, and 

(c) top-ranked template by SAICOSA. 
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Fig. 30. Top-ranked templates selected by MUSTER, MUSTER+ICOSA, and SAICOSA (red) in CASP11 target 

T0821 (green), (a) top-ranked template by MUSTER score, (b) top-ranked template MUSTER+ICOSA scores, and 

(c) top-ranked template by SAICOSA. 
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4.3 Summary 

Today, one of the most accurate and consistent methodologies for computational protein 

structure modeling is template-based modeling. The success of template-based modeling relies on 

correctly identifying one or a few experimentally determined protein structures as templates that 

are likely to resemble the structure of the target sequence. This work takes advantage of an inter 

residue contact scoring function to measure the favorability of a target sequence fitting in the 

folding topology of a certain template. This is performed by placing the target sequence residues 

into the mapped template residues three-dimensional conformation and evaluating the contact 

score. Then, we combine the contact score with the sequence profile score to enhance template 

selection sensitivity. This approach has shown a notable improvement in the accuracy and 

sensitivity of template selection in template-based protein structure modeling [16]. 

After the recognizable progress that is achieved in template selection using our first 

approach, we present a second template selection approach that employs three-dimensional 

information of protein in a more efficient way. In this approach, instead of evaluating the 

favorability of a target adopting a potential structural template after an alignment is generated, we 

use the three-dimensional information to build the alignment along with other structural features. 

The idea is to build a substitution matrix to score the replacement of one amino acid of the template 

three-dimensional conformation with each amino acid in the target.  Then, we can use this 

substitution matrix to incorporate three-dimensional information in building the alignment along 

with the structural features.  Consequently, the structural profile alignment between the target and 

templates are totally performed using our own alignment algorithm. The alignment is done by 

dynamic programming that exploits several protein structural features in addition to the three 

dimensional features. The template selection approach is tested over CASP 11 targets and has 
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shown a significant improvement compared to the successful template alignment and selection 

methods. 
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CHAPTER V 

 MULTI-OBJECTIVE PROTEIN SEQUENCE ALIGNMENT 

In this chapter, we present two multi-objective alignment algorithms to obtain a set of 

diversified alignments yielding Pareto optimality. The first algorithm is a preliminary multi-

objective alignment algorithm to examine the suitability of multi-objective alignment in protein 

structure modeling [179] (Section 5.1). Additionally, we develop a multi-objective alignment 

algorithm based on the Needleman-Wunsch algorithm (Section 5.2). The multi-objective 

Needleman-Wunsch algorithm guarantees not only Pareto optimality of the alignments, but also 

completeness. Both algorithms are examined on a set of CASP11 targets. 

5.1 Multi-Objective Alignment (MOA) Algorithm 

Our idea for MOA is based on the Needleman-Wunsch algorithm, but instead of building 

only one score matrix, we build a score matrix for each objective function. Tracing the maximum-

match pathway in each matrix will end up generating the optimal alignment for the objective used 

to build this matrix. To get the multi-objective alignments we trace the maximum-match pathway 

in all the matrices to get each objective’s optimal alignment. Whenever these alignment decisions 

(match, insert, and delete) of the objectives disagree, a new alignment, which has the same starting 

part as the alignment being traced but will continue by following the alignment decision of the 

disagreeing matrix, will be added. This procedure is done until all the alignments are discovered 

while tracing the objective matrices. Finally, the scores of the generated alignments are calculated 

according to all the objectives, and only the non-dominating alignments are kept. 

The implementation of our method is split into two stages: score matrices generation and 

tracing objective matrices to generate the multi-objective alignments. 
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5.1.1 Score Matrices Generation 

Given a set of objective functions 𝑓1(. ), … , 𝑓𝑘(. ), for two sequences 𝐴 = 𝑎1𝑎2…𝑎𝑀 and 

𝐵 = 𝑏1𝑏2…𝑏𝑁, a score 𝑠𝑚,𝑛(𝑓𝑖) is given to an aligned pair of residues 𝑎𝑚 and 𝑏𝑛 based on 

objective function 𝑓𝑖(. ). Besides, a gap penalty 𝑔(𝑓𝑖) is for aligning a residue from 𝐴/𝐵 to a gap. 

For each objective function 𝑓𝑖(. ) a score matrix 𝐹(𝑓𝑖)  is computed according to Needleman-

Wunsch algorithm and based on 𝑓𝑖(. ) scores, where 𝐹𝑚,𝑛(𝑓𝑖) is calculated as follows: 

𝐹𝑚,𝑛(𝑓𝑖) = 𝑚𝑎𝑥 {

𝐹𝑚−1,𝑛−1(𝑓𝑖) + 𝑠𝑚,𝑛(𝑓𝑖)             𝑚𝑎𝑡𝑐ℎ/𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝐹𝑚−1,𝑛(𝑓𝑖) + 𝑔(𝑓𝑖)                                              𝑖𝑛𝑠𝑒𝑟𝑡

𝐹𝑚,𝑛−1(𝑓𝑖) + 𝑔(𝑓𝑖)                                             𝑑𝑒𝑙𝑒𝑡𝑒

                     (6) 

The cells in 𝐹(𝑓𝑖) are generated one cell at a time starting from one at the top left corner. 

Once all the objective matrices are generated (𝐹(𝑓1),⋯ , 𝐹(𝑓𝑘)), the multi-objective alignments of 

sequences 𝐴 and 𝐵 with respect to 𝑓1(. ),… , 𝑓𝑘(. ). can be generated by tracing  these matrices. 

5.1.2 Backtracking the Objective Matrices 

Once the score matrices (𝐹(𝑓1),⋯ , 𝐹(𝑓𝑘)) are completely generated, the multi-objective 

alignments will be generated by backtracking. The difference here is that the backtracking is done 

in more than one matrix. The backtracking of the multi-objective alignments is performed using 

the following iterating steps: 

1. Initialize a set of alignments  𝑈 where 𝑈 initially holds only one alignment 𝑈1. An alignment 

𝑈𝑗 is represented by two empty strings 𝐴𝐴 ← "" and  𝐴𝐵 ← "" to store the alignment, and two 

indices  𝑚 = 𝑀 and 𝑛 = 𝑁 to keep track of the current index in each sequence.  

2. For each alignment 𝑈𝑗 ∈ 𝑈, trace the score at the cell of indices 𝑚, 𝑛 in every score matrix 

(𝐹(𝑓1),⋯ , 𝐹(𝑓𝑘)), to determine the source of   𝐹𝑚,𝑛(𝑓1)⋯𝐹𝑚,𝑛(𝑓𝑘). 

a. If all  𝐹𝑚,𝑛(𝑓1)⋯𝐹𝑚,𝑛(𝑓𝑘) came from a match, update 𝑈𝑗 accordingly as 𝐴𝐴 ←

𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.  
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b. If all  𝐹𝑚,𝑛(𝑓1)⋯𝐹𝑚,𝑛(𝑓𝑘) came from an insert, update 𝑈𝑗  accordingly as 𝐴𝐴 ←

𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. 

c. If all  𝐹𝑚,𝑛(𝑓1)⋯𝐹𝑚,𝑛(𝑓𝑘) came from a delete, update 𝑈𝑗 accordingly as 𝐴𝐴 ←

" − " + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. 

d. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that came from an insert while others 𝐹𝑚,𝑛(. ) came from match, add 

a new alignment 𝑈𝑥 based on the insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " +
𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. Also, update 𝑈𝑗 according to the match as 𝐴𝐴 ←

𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.  

e. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that came from a delete while others 𝐹𝑚,𝑛(. ) came from match, add 

a new alignment 𝑈𝑥 based on the delete where 𝐴𝐴 ← " − " + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 +
𝐵𝐵, 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. Also, update 𝑈𝑗 according to the match as 𝐴𝐴 ←

𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1.  

f. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that came from an insert while others 𝐹𝑚,𝑛(. ) came from delete, add 

a new alignment 𝑈𝑥 based on the insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " +
𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. Also, update 𝑈𝑗 according to the delete as 𝐴𝐴 ←

" − " + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. 

g. If ∃ 𝐹𝑚𝑛(𝑓𝑖) that came from an insert and ∃ 𝐹𝑚𝑛(𝑓𝑙) that came from a delete 

while others 𝐹𝑚,𝑛(. ) came from match, add a new alignment 𝑈𝑥 based on the 

insert where 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛. Also, 

add a new alignment 𝑈𝑦 based on the delete where 𝐴𝐴 ← " − " + 𝐴𝐴 , 𝐵𝐵 ←

𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚, and 𝑛 = 𝑛 − 1. Besides, update 𝑈𝑗 according to the match as 

𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚 − 1, and 𝑛 = 𝑛 − 1. 

3. Repeat step 2 till all the alignments in 𝑈 reach indices 0,0 

4. For each alignment 𝑈𝑗 ∈ 𝑈 calculate its score according to all the objectives 

5. Remove the dominated alignments from 𝑈. 

 Example 

To demonstrate how the algorithm works a simple alignment example is done over the 

following sequences. 

Sequence A P Q Q Y Y P Q  

Secondary Structure C H H B B C C  

Sequence B P N N Y Q P Y Q 

Secondary Structure H C C C H H B B 

The objectives here are the profile and the secondary structure. The scoring function for both will 

be 1 for a match and -1 for mismatch or gap. Fig. 31 shows an illustration of the alignments 
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generation. Table 5 shows all the alignments generated for our example along with their scores 

and Table 6 shows the non-dominated ones. 

 
Fig. 31. (a) The Needleman-Wunsch alignment matrix based on the profile with the maximum-match path traced to 

generate the optimal alignment. (b) The Needleman-Wunsch alignment matrix based on the secondary structure with 

the maximum-match path traced to generate the optimal alignment. (c), & (d) The optimal profile alignment and the 

optimal secondary structure alignment respectively. (e), & (f) The Needleman-Wunsch alignment matrix based on the 

profile and the secondary structure respectively with the maximum-match path traced along with the splits due to 

disagreement of the other matrix, where the decisions taken based on the profile are marked on black and the ones 

based on the secondary structure are marked on red. 
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Table 5  
All alignments generated using MOA 

Generated alignment Profile Score Secondary Structure Score 
P Q Q Y Y P - Q    0 -8 
P N N Y Q P Y Q    

- - - P Q Q Y Y P Q  -6 0 
P N N Y Q P Y Q - -  
- - P Q Q Y Y P Q   -3 -3 
P N N Y Q P Y - Q   

- - P Q Q Y Y P Q   -5 -3 
P N N Y Q P Y Q -   

- - P Q Q Y Y P - Q  -6 -6 
P N N Y Q - P - Y Q  

- - - P Q Q Y Y P Q  -4 -2 
P N N Y Q P - Y - Q  

- - P Q Q Y Y P - Q  -4 -6 
P N N Y Q - - P Y Q  

- - P Q Q Y Y P - Q  -6 -6 
P N N Y Q P - - Y Q  

P Q Q Y - Y P - Q   -3 -9 
P N N Y Q P - Y Q   

P Q Q Y - Y P - Q   -1 -9 
P N N Y Q - P Y Q   

- - - P Q Q Y Y P - Q -7 -5 
P N N Y Q P - - - Y Q 

- P - Q Q Y Y P Q   -3 -3 
P N N Y Q P Y - Q   

- P - Q Q Y Y P Q   -5 -3 
P N N Y Q P Y Q -   

P Q - Q Y Y P - Q   -3 -7 
- P N N Y Q P Y Q   

- - P - Q Q Y Y P Q  -6 0 
P N N Y Q P Y Q - -  

- - P - Q Q Y Y P Q  -4 -2 
P N N Y Q P - Y - Q  

- - P - Q Q Y Y P Q  -6 -2 
P N N Y Q P - Y Q -  

- P - Q Q Y Y P - Q  -6 -6 
P N N Y Q - P - Y Q  

- P - Q Q Y Y P - Q  -4 -6 
P N N Y Q - - P Y Q  

- P - Q Q Y Y P - Q  -6 -6 
P N N Y Q P - - Y Q  

P Q - Q Y - Y P - Q  -6 -8 
- P N N Y Q P - Y Q  

P Q - Q Y - Y P - Q  -4 -8 
- P N N Y Q - P Y Q  

- - P - Q Q Y Y P - Q -7 -5 
P N N Y Q P - - - Y Q 

P - - Q Q Y Y P Q   -1 -5 
P N N Y Q P Y Q -   

P - - Q Q Y Y P Q   -3 -5 
P N N Y Q P Y Q -   

P Q - Q Y Y P - Q   -1 -9 
P - N N Y Q P Y Q   

- P - - Q Q Y Y P Q  -6 0 
P N N Y Q P Y Q - -  

- P - - Q Q Y Y P Q  -4 -2 
P N N Y Q P - Y - Q  

- P - - Q Q Y Y P Q  -6 -2 
P N N Y Q P - Y Q -  

P - - Q Q Y Y P - Q  -4 -8 
P N N Y Q - P - Y Q  

P - - Q Q Y Y P - Q  -2 -8 
P N N Y Q - - P Y Q  

P - - Q Q Y Y P - Q  -4 -8 
P N N Y Q P - - Y Q  

P Q - Q Y - Y P - Q  -4 -10 
P - N N Y Q - P Y Q  

P Q - Q Y - Y P - Q  -2 -10 
P - N N Y Q - P Y Q  

- P - - Q Q Y Y P - Q -7 -5 
P N N Y Q P - - - Y Q 

P - - - Q Q Y Y P Q  -4 -2 
P N N Y Q P Y Q - -  

P - - - Q Q Y Y P Q  -2 -4 
P N N Y Q P - Y - Q  

P - - - Q Q Y Y P Q  -4 -4 
P N N Y Q P - Y - Q  

P - - - Q Q Y Y P - Q -5 -7 
P N N Y Q P - - - Y Q 
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Table 6  

Non-dominated alignments 

Non-dominated alignment Profile Score Secondary Structure Score 

P Q Q Y Y P - Q    0 -8 
P N N Y Q P Y Q    

- - - P Q Q Y Y P Q  -6 0 
P N N Y Q P Y Q - -  

- - P Q Q Y Y P Q   -3 -3 
P N N Y Q P Y - Q   

- - - P Q Q Y Y P Q  -4 -2 
P N N Y Q P - Y - Q  

- P - Q Q Y Y P Q   -3 -3 
P N N Y Q P Y - Q   

- - P - Q Q Y Y P Q  -6 0 
P N N Y Q P Y Q - -  

- - P - Q Q Y Y P Q  -4 -2 
P N N Y Q P - Y - Q  

P - - Q Q Y Y P Q   -1 -5 
P N N Y Q P Y Q -   

- P - - Q Q Y Y P Q  -6 0 
P N N Y Q P Y Q - -  

- P - - Q Q Y Y P Q  -4 -2 
P N N Y Q P - Y - Q  

P - - - Q Q Y Y P Q  -2 -4 
P N N Y Q P Y Q - -  

 

 

Fig. 32. Scores of the alignments generated by MOA where the red ones represent the dominated alignments and the 

blue ones represent the non-dominated alignments 
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5.1.3 Results 

The Critical Assessment of Protein Structure Prediction (CASP) 11 experiment targets are 

used to demonstrate the effectiveness of MOA. Here, we use two scoring functions to measure the 

alignment between the ith residue in the query sequence and the jth residue in the template 

sequence, which result in score matrices of the query and template sequences. The first one is 

based on the sequence profile, which is 𝑆𝑝𝑟𝑜𝑓𝑖𝑙𝑒(𝑖, 𝑗) from Eq. (2) illustrated in Section 4.2.1.1. 

The second scoring function is based on structural features including predicted secondary 

structures and solvent accessibility. 

𝑆𝑆(𝑖, 𝑗) = 𝑤𝑎 𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑖, 𝑗) + 𝑤𝑏 𝑆𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑖, 𝑗)                                                 (7)                  

Here, 𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑖, 𝑗) is the probability that the predicted secondary structure of the ith 

residue of the query sequence matches with that of the jth residue in the template sequence (Eq. 

(3)). Similarly, 𝑆𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑖, 𝑗) is the probability that the predicted solvent accessibility of the ith 

residue of the query sequence matches with that of the jth residue in the template sequence (Eq. 

(5)). Finally,  𝑤𝑎 and 𝑤𝑏 are weights that are carefully balanced using the grid search technique 

explained in Section 4.2.1.3, where 𝑤𝑎 = 1.17 and 𝑤𝑏=1.21.    

The idea of combining the secondary structure information with the solvent accessibility 

information of amino acids lies in the fact that environments around the protein residues can affect 

their tendencies for different structures [180]. Additionally, it has been previously suggested that 

more accurate secondary structure predictions can be achieved by taking solvent accessibility into 

account [181] [182]. Remarkably, secondary structure and solvent accessibility have been shown 

to have a strong influence on amino acid substitution [183]. Accordingly, the amino acid solvent 

accessibility is an effective factor for increasing the structure alignment accuracy between two 

protein sequences.  
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Fig. 33 shows an example of how the secondary structure score and solvent accessibility 

score are combined to generate one alignment matrix. In the example, the two protein sequences 

being aligned are 1A34 (chain A) and 1STM (chain A) (Fig. 33 (a)). The matrices in Fig. 33 (b), 

and Fig. 33 (c) represent the secondary structure and solvent accessibility probabilities 

respectively. By applying Eq. (7) a combined matrix is built (Fig. 33 (d)). Finally, using the 

Needleman-Wunsch algorithm an alignment matrix is generated according to the combined matrix 

(Fig. 33 (e)).   
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1A34A :  

TGDNSNVVTMIRAGSYPKVNPTPTWVRAIPFEVSVQSGIAFKVPVGSLFSANFRTDSFTSVTVMSVRAWTQLTPPVN

EYSFVRLKPLFKTGDSTEEFEGRASNINTRASVGYRIPTNLRQNTVAADNVCEVRSNCRQVALVISCCFN 

1STMA : 

AAATSLVYDTCYVTLTERATTSFQRQSFPTLKGMGDRAFQVVAFTIQGVSAAPLMYNARLYNPGDTDSVHATGVQLM

GTVPRTVRLTPRVGQNNWFFGNTEEAETILAIDGLVSTKGANAPSNTVIVTGCFRLAPSELQSSTLVTGSEYETMLT

EIMSMGYERERVVAALRASYNNPHRAVEYLLTGIPG 

(a) 

 T G D N S ⋯   T G D N S ⋯ 

A 0.9975 0.995 0.9826 0.8712 0.7793 ⋯  A 0.9858 0.932 0.9886 0.9776 0.8994 ⋯ 

A 0.9975 0.995 0.9826 0.8712 0.7793 ⋯  A 0.9858 0.932 0.9886 0.9776 0.8994 ⋯ 

A 0.9975 0.995 0.9826 0.8712 0.7793 ⋯  A 0.9858 0.932 0.9886 0.9776 0.8994 ⋯ 

T 0.9975 0.995 0.9826 0.8712 0.7793 ⋯  T 0.9858 0.932 0.9886 0.9776 0.8994 ⋯ 

S 0.0009 0.0039 0.0089 0.0106 0.0325 ⋯  S 0.9858 0.932 0.9886 0.9776 0.8994 ⋯ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 

 

(b)                               (c) 

 T G D N S ⋯  

A 2.3599 2.2919 2.3458 2.2022 2.0 ⋯  

A 2.3599 2.2919 2.3458 2.2022 2.0 ⋯  

A 2.3599 2.2919 2.3458 2.2022 2.0 ⋯  

T 2.3599 2.2919 2.3458 2.2022 2.0 ⋯  

S 1.1939 1.1323 1.2066 1.1953 1.1263 ⋯  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱  

        

(d) 

  T G D N S ⋯ 

 0 -2.5 -3 -3.5 -4 -4.5 ⋯ 

A -2.5 2.3599 0.3599 -0.1401 -0.6401 -1.1401 ⋯ 

A -3 0.3599 4.6518 2.7057 2.0621 1.3599 ⋯ 

A -3.5 -0.1401 2.6518 6.9976 4.9976 4.4976 ⋯ 

T -4 -0.6401 2.1518 4.9976 9.1998 7.1998 ⋯ 

S -4.5 -1.1401 1.6518 4.4976 7.1998 10.3261 ⋯ 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 

 

(e) 

  

 
Fig. 33. Generation of an alignment matrix for two sequences according to the combination between secondary structure 

score and solvent accessibility score, (a)the two sequences (b)Secondary structure substitution matrix, (c) Solvent 

accessibility substitution matrix, (d) the combined substitution matrix, (e) the Needleman-Wunsch alignment matrix 

based on the combined substitution matrix.   
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MOA is compared with two popularly used template alignment and selection methods for 

template-based protein structure modeling (Muster [15] obtained from the I-TASSER Suite [99] 

Version 5.1and GenTHREADER [83] obtained from the pGenTHREADER Suite [91] Version 

8.9). Each target sequence is aligned with the same templates by the structure profile alignment 

method. Then, tertiary protein structure models are generated by the Modeller program [184] 

according to the alignments. The GDT-TS is used to measure the quality of these models and the 

corresponding alignments. Since MOA generates all Pareto-optimal alignments, which is usually 

more than one, we only show the one with the highest GDT-TS score.  

We first compare MOA and Muster on the top-ranked template of each target specified by 

Muster. The performance of MUSTER and MOA on the CASP 11 targets are summarized in Table 

7. It can be noticed that MOA outperformed MUSTER despite using less objectives than 

MUSTER. Additionally, Fig. 34 shows the GDT-TS score for Muster along with the MOA. As it 

appears in the figure that MOA achieved a higher or equal GDT-TS score for 102 targets. Also 

MOA GDT-TS score was greater than Muster by at least 10 points in seven targets. A similar 

comparison is done between MOA and pGenTHREADER, which is shown in  

Table 7  

Overall performance of MUSTER and MOA on the top-ranked template specified by Muster for the 

CASP11 targets. 

Method MUSTER MOA 

Average GDT-TS  33.28 36.46 

 

Table 8 and Fig. 35. In 83 targets, the GDT-TS scores of models generated by MOA are 

higher than pGenTHREADER, wherein 17 of them, the gain is at least 10 points or higher. 
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Fig. 34. The GDT-TS score of Muster alignment and MOA alignment to CASP 11 targets with the top-ranked template 

selected by Muster. MOA achieved a higher or equal GDT-TS score for 102 targets and most of the time MOA seven 

of them the difference is more than 10 i.e. T0773-D1   
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Fig. 35. The GDT-TS score of pGenTHREADER alignment and MOA alignment to CASP 11 targets with the top-

ranked template selected by pGenTHREADER. In 83 targets MOA GDT-TS score is higher or equal 

pGenTHREADER, 17 of them MOA GDT-TS score was 10 points higher than pGenTHREADER. i.e. T0840 
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Table 8  

Overall performance of GenTHREADER and MOA on the top-ranked template specified by 

GenTHREADER for the CASP11 targets 

Method GenTHREADER MOA 

Average GDT-TS  29.61 36.77 

 

Another comparison is done with Muster and linear combination of objectives using the 

same sequence and structure information over CASP 11 on the top-ranked template of each target 

specified by CASP. The performance of MUSTER, linear combination, and MOA on the CASP 

11 targets are summarized in Table 9. From the table it is clear that MOA outperformed MUSTER 

and linear combination. Also, it is noticed that the presence of a better template enhanced the 

performance of MOA, however, this is not the case for MUSTER. This indicates that MUSTER 

performance better when the template is present in its PDB library. Fig. 36 shows the GDT-TS 

scores of the models generated by MOA and Muster, wherein 93 targets MOA was able to generate 

at least one alignment with a higher GDT-TS score than Muster. Fig. 37 shows the GDT-TS scores 

of the models generated by MOA and linear combination of objectives. One can find that the GDT-

TS scores of the top models generated by MOA are almost always better than those generated by 

the linear combination of objectives. Particularly, the MOA models exceed those generated by the 

linear combination of objectives by at least 10 points in 43 targets.  

Table 9  

Overall performance of MUSTER , linear combination objectives and MOA on the top-ranked template 

specified by CASP for the CASP11 targets. 

 

Method MUSTER Linear Combination MOA 

Average GDT-TS 31.8 28.35 39.29 
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Fig. 36. The GDT-TS score of Muster alignment and MOA alignment to CASP 11 targets with the top-ranked template 

selected by CASP. In 93 targets MOA GDT-TS score is higher or equal Muster, 4 of them MOA GDT-TS score was 

10 points higher than Muster. i.e. T0769-D1. Muster achieved highly in 3 targets i.e T0782-D1   
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Fig. 37. The GDT-TS score of linear combination of objectives algorithm using same sequence and structure 

information and MOA for CASP 11 targets with the top-ranked template selected by CASP. In 113 targets MOA 

achieved higher or equal GDT-TS, most of them MOA GDT-TS score was 10 points higher. i.e. T0759-D1. Only 

at T0776-D1 MOA was lower and by a very small difference. 
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For further analysis, targets T0766-D1 and T0769-D1 are picked. According to CASP 11 

the best template that matches T0766-D1 is 4orlA. When MOA operates on T0766-D1 and 4orlA, 

it generates 6 alignments and the best model has 93.75 GDT-TS score, while linear combination 

model scores only 88.889. Fig. 38 shows the profile and secondary structure/solvent accessibility 

for T0766-D1 and 4orlA alignments. As it is clear from the figure that linear combination 

alignment is dominated by all the alignments generated by MOA. Fig. 39 shows the best model 

generated by MOA alignment and the model generated from Muster alignment along with their 

alignments. 

  For T0769-D1 CASP 11 indicates that 3ramD is its best template. When MOA operates 

on T0769-D1 and 3ramD, it is able to produce 217 alignments where the best model has 54.639 

GDT-TS score, while linear combination model scored only 10.052. Fig. 40 shows the profile and 

secondary structure/solvent accessibility scores for T0769-D1 and 3ramD alignments. As it is clear 

from the figure that linear combination alignment is dominated by all the alignments generated by 

MOA. Fig. 41 shows the best model generated by MOA alignment and the model generated from 

linear combination alignment along with their alignments. 
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Fig. 38. Results for T0766-D1 alignment with 4orlA 

 

Fig. 39. The best scoring alignments generated by MOA and that generated by linear combination for T0766-D1 and 

4orlA. The model generated from MOA alignment scores 93.75 GDT-TS while linear combination scores only 88.889 

(c) Alignment between 4orlA and T0766-D1 

(a) MOA                                                                         (b) Linear Combination 

By MOA 

T0766-D1: MKKRVIFLLTGLFIWTSVLLAQNVPEGVIGAFKEGNSQELNKYLGDKVDLIIQNKSTHADKRTAEGTMA 
4orlA:    --------------------GQEIPAGVITAFKRGSSQELSKYG-DKVNLVFQGRSTNVDKQKATAA-Q  
T0766-D1: AFFSNHKVGSFNVNHQGKRDESGFVIGILMTANGNFRVNCFFRKVQNKYVIHQIRIDKTDE* 
4orlA:    EFFTKNKVSGFNVNHQGKRDESSFVIGTLATTNGNFRVNCFLKKVQNQYLIHQIRIDKINE*  
By Linear Combination 

T0766-D1: MKKRVIFLLTGLFIWTSVLLAQNVPEGVIGAFKEGNSQELNKYLGDKVDLIIQNKSTHADKRTAEGTMA 
4orlA:    --------------------GQEIPAGVITAFKRGSSQELSKYG-DKVNLVFQGRSTNVD-KQKATAAQ 
T0766-D1: AFFSNHKVGSFNVNHQGKRDESGFVIGILMTANGNFRVNCFFRKVQNKYVIHQIRIDKTDE* 
4orlA:    EFFTKNKVSGFNVNHQGKRDESSFVIGTLATTNGNFRVNCFLKKVQNQYLIHQIRIDKINE* 
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Fig. 40. Results for T0769-D1 alignment with 3ramD 
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Fig. 41. The best scoring alignment generated by MOA and that generated by linear combination algorithm for T0769-

D1 and 3ramD. The model generated from MOA alignment scores 54.639 GDT-TS while linear combination scores 

only 10.052. 

 

5.2 A Multi-Objective Needleman-Wunsch Algorithm (MON) 

Despite the competitive results shown from MOA, it suffers from two main deficiencies. 

First, the MOA algorithm generates a new alignment whenever the objectives disagree with each 

(c) Alignment between 3ramD and T0769-D1 

(a) MOA      (b) Linear Combination 
By MOA 

T0769-D1:M------------------------------------------------------------------------------- 
3ramD:   GEKQQILDYIETNKYSYIEISHRIHERPELGNEEIFASRTLIDRLKEHDFEIETEIAGHATGFIATYDSGLDGPAIGFLA 
T0769-D1:-------------------------------------------------------------------------------- 
3ramD:   EYDALPGLGHACGHNIIGTASVLGAIGLKQVIDQIGGKVVVLGCPAEEGGENGSAKASYVKAGVIDQIDIALIHPGNETY 
T0769-D1:------LTVEVEVKITAD--DENKAEEIVKRV--------IDEVEREVQKQY-PNATITRTLTR----DD---GTVELRI   
3ramD:   KTIDTLAVDVLDVKFYGKSAHASEN-A--DEALNALDAISYFNGVAQLRQHIKKDQRVHGVILDGGKAANIIPDYTHARF 
T0769-D1:KVKADTEEKAKSIIKLIEERIEEELRKRDPNATITR---------------------------TVR--------TEVG-- 
3ramD:   YTRATRKE-LDILTEKVNQIARGAAIQTGCDYEFGPIQNGVNEFIKTPKLDDLFAKYAEEVGEAVIDDDFGYGSTDTGNV 
T0769-D1:---------------SSWSLEHH-----------------------------HHH-------------H* 
3ramD:   SHVVPTIHPHIKIGSRNLVGHTHRFREAAASVHGDEALIKGAKIALGLELITNQDVYQDIIEEHAHLKG* 
By Linear Combination 

T0769-D1:-------------------------------------------------------------------------------- 
3ramD:   GEKQQILDYIETNKYSYIEISHRIHERPELGNEEIFASRTLIDRLKEHDFEIETEIAGHATGFIATYDSGLDGPAIGFLA 
T0769-D1:-------------------------------------------------------------------------------- 
3ramD:   EYDALPGLGHACGHNIIGTASVLGAIGLKQVIDQIGGKVVVLGCPAEEGGENGSAKASYVKAGVIDQIDIALIHPGNETY 
T0769-D1:------------------------------------MLTVEVEVKIT------ADDENKA------E--EIVKRVIDEVE   
3ramD:   KTIDTLAVDVLDVKFYGKSAHASENADEALNALDAISYFNGVAQLRQHIKKDQRVHGVILDGGKAANIIPD-YTHARFYT 
T0769-D1:---REVQKQYPNATITRTLTRDDGT--VELRI------------KVKADTEEKAKS-----------------IIK-L-- 
3ramD:   RATRKELDILTEKVNQIARGAAIQTGCDYEFGPIQNGVNEFIKTPKLDDLFAKYAEEVGEAVIDDDFGYGSTDTGNVSHV 
T0769-D1:---I--EE-----------RIEEE----LRKRDPNATITR--T-VRTE--VGSSWSLEHHHHHH--* 
3ramD:   VPTIHPHIKIGSRNLVGHTHRFREAAASVHGDEALIKGAKIALGLELITNQDVYQDIIEEHAHLKG* 
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other, which may lead an exponential growth of the number of the traces and then end up with a 

large number of alignments. This is very computationally costly, particularly when aligning long 

protein sequences. In fact, we are only interested in the non-dominated alignments. Second, MOA 

does not guarantee the generation of the entire Pareto-optimal front. Hence, we develop the Multi-

Objective Needleman-Wunsch (MON) algorithm. Given a set of potentially conflicting scoring 

functions, MON pursues a multi-objective optimization strategy and report a novel multi-objective 

sequence alignment algorithm based on the Needleman-Wunsch algorithm to obtain a set of 

diversified alignments yielding Pareto optimality. MON guarantees not only Pareto optimality of 

the alignments, but also completeness.  

By definition, the alignments which are not dominated by any other alignments form the 

Pareto-optimal front. Our algorithm is designed to extend the Needleman-Wunsch algorithm to 

generate the complete set of Pareto-optimal alignments given a set of objective functions.   

5.2.1 Generation of Multi-Objective Score Matrix 

Given a set of objective functions 𝑓1(. ), … , 𝑓𝑠(. ), for two sequences 𝐴 = 𝑎1𝑎2…𝑎𝑀 and 

𝐵 = 𝑏1𝑏2…𝑏𝑁, a vector 𝑆𝑚,𝑛 is given to an aligned pair of residues 𝑎𝑚 and 𝑏𝑛 as follows: 

𝑆𝑚,𝑛 = [

𝑠𝑚,𝑛,1
𝑠𝑚,𝑛,2
⋮

𝑠𝑚,𝑛,𝑠

]                                                                          (8)  

where 𝑠 is the number of objective functions and each score 𝑠𝑚,𝑛,𝑖 is the score to align 𝑎𝑚 and 𝑏𝑛 

based on objective 𝑖. Besides the score vector, there is a gap score vector 𝐺⃗ for aligning a residue 

from 𝐴/𝐵 to a gap such that   

𝐺⃗ = [

𝑔1
𝑔2
⋮
𝑔𝑠

]                                                                                  (9)  
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Similar to the Needleman-Wunsch algorithm, we firstly construct a (𝑀 + 1) × (𝑁 + 1) 

matrix 𝐹 whose axes are the two sequences, 𝐴 and 𝐵, to be aligned. Instead of keeping the best 

score for the sub-alignment in the Needleman-Wunsch algorithm, here each cell 𝐹𝑚,𝑛 is designed 

to hold a complete set of Pareto-optimal score vectors with respect to the sub-alignment generated 

so far between the two sub-sequences 𝐴̇ = 𝑎1𝑎2⋯𝑎𝑚 and 𝐵̇ = 𝑏1𝑏2…𝑏𝑛 ending up at this cell. 

Assuming that there are 𝑘 sub-alignments, 𝑢1, … , 𝑢𝑘, ending up in 𝐹𝑚,𝑛, then 

𝐹𝑚,𝑛 = {𝐷⃗⃗⃗𝑚,𝑛(𝑢1),, 𝐷⃗⃗⃗𝑚,𝑛(𝑢2),,⋯ , 𝐷⃗⃗⃗𝑚,𝑛(𝑢𝑘)}                         (10) 

where 𝐷⃗⃗⃗𝑚,𝑛(𝑢𝑖) is the score vector for the non-dominating sub-alignment 𝑢𝑖 ending in cell 𝐹𝑚,𝑛 

At the beginning, the cells in the first row and first column are calculated. As these cells 

represent aligning one of the two sequences to nothing, so there could only be one alignment 

passing by any of these cells, which is aligning one sequence to a gap such that 

𝐹0,𝑛 = {𝑛𝐺⃗}, 𝑎𝑛𝑑    

                            𝐹𝑚,0 = {𝑚𝐺⃗}.               (11) 

Then, starting from three neighboring cells 𝐹𝑚−1,𝑛, 𝐹𝑚−1,𝑛−1, and 𝐹𝑚,𝑛−1, three sets of score 

vectors 𝑃𝑚,𝑛, 𝑈m,n, and 𝑄m,n are generated by match, insert, and delete, respectively, such that  

𝑃𝑚,𝑛 = {𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑢1) + 𝑆𝑚,𝑛, ⋯ , 𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑢𝑥) + 𝑆𝑚,𝑛}, 

𝑈𝑚,𝑛 = {𝐷⃗⃗⃗𝑚−1,𝑛(𝑢1) + 𝐺⃗,⋯ , 𝐷⃗⃗⃗𝑚−1,𝑛(𝑢𝑦) + 𝐺⃗}, 

𝑄𝑚,𝑛 = {𝐷⃗⃗⃗𝑚,𝑛−1(𝑢1) + 𝐺⃗,⋯ , 𝐷⃗⃗⃗𝑚,𝑛−1(𝑢𝑧) + 𝐺⃗}.                (12) 
where 𝑥, 𝑦, and 𝑧 are the number of dominating score vectors corresponding to sub-alignments 

ending at cells 𝐹𝑚−1,𝑛−1, 𝐹𝑚−1,𝑛, and 𝐹𝑚,𝑛−1, respectively. 

Denoting 𝐹𝑚,𝑛
∗  as the union of score vectors generated from three neighboring cells, i.e., 

𝐹𝑚,𝑛
∗ = 𝑃𝑚,𝑛 ∪ 𝑈𝑚,𝑛 ∪ 𝑄𝑚,𝑛,                                               (13) 
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a domination function 𝐷𝑜𝑚(.) is carried out on 𝐹𝑚,𝑛
∗  to eliminate the dominated score vectors and 

generate the score vector set for 𝐹𝑚,𝑛 such that  

𝐹𝑚,𝑛 = 𝐷𝑜𝑚(𝐹𝑚,𝑛
∗ ).                                                           (14) 

Here, 𝐷𝑜𝑚(. ) is a domination function returning the Pareto optimal score vectors from a score 

vector set. The pseudo code implementation of the domination function 𝐷𝑜𝑚(.) is described in 

Algorithm 1. 

Fm-1,n-1 Fm-1,n

Fm,n-1 Fm,n

 

Fig. 42. Generation of 𝐹𝑚,𝑛 from three neighboring cells 𝐹𝑚−1,𝑛, 𝐹𝑚−1,𝑛−1, and 𝐹𝑚,𝑛−1 

Algorithm 1 (Dom(.) function): Finding the Pareto optimal (non-dominating) score vectors from a 

score vector set  
Input: 

           Set of score vectors 𝐷∗ 
Output: 

           Set of Pareto-optimal scores vectors 𝐷 

Procedure: 

𝐷 ← {}               //initialize an empty set for 𝐷 

for each 𝐷⃗⃗⃗𝑖 ∈ 𝐷
∗ do 

 dominated ← False 

 for each 𝐷⃗⃗⃗𝑗 ∈ 𝐷
∗ do 

  if 𝑖 ≠ 𝑗 and 𝐷⃗⃗⃗𝑗 ≺ 𝐷⃗⃗⃗𝑖 then 

    dominated ← True 

    break 

                                           end if 

  end for 

  if dominated = False then 

   𝐷 ← 𝐷 ∪ 𝐷⃗⃗⃗𝑖 
                             end if 

 end for 

 return 𝐷 
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The cells in 𝐹 are generated one row at a time and one cell at a time starting from one at 

the up left corner, exactly the same as the Needleman-Wunsch algorithm. Once all cells in 𝐹 are 

filled, the set of score vectors in cell at the down right corner correspond to the complete Pareto-

optimal front of alignments of sequences 𝐴 and 𝐵 with respect to 𝑓1(. ),… , 𝑓𝑠(. ). By putting all 

pieces together, Algorithm 2 depicts the procedure of generating the multi-objective score matrix 

𝐹. Furthermore, Theorem 1 shows the Pareto-optimality and solution completeness of the multi-

objective Needleman-Wunsch algorithm. 

Algorithm 2: Generation of multi-objective score matrix F 
Input: 

Two sequences 𝐴 = 𝑎1𝑎2…𝑎𝑀 and 𝐵 = 𝑏1𝑏2…𝑏𝑁, score vectors 𝑆𝑚,𝑛 for matching 𝑎𝑚 and 𝑏𝑛, and gap penalty 

vector G⃗⃗⃗ 

Output: F matrix 

Procedure: 

// initialize first column 

for 𝑚 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) do 

 𝐹(𝑚, 0) ← {𝑚 ∗ 𝐺⃗} 
end for 

// initialize first row 

for 𝑛 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵)do 

  𝐹(0, 𝑛) ← {𝑛 ∗ 𝐺⃗} 
end for 

// fill out the rest of the elements 

 for 𝑚 = 1 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴) do 

           for 𝑛 = 1 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵) do 

  𝑃𝑚,𝑛 ← {} 

  for 𝑘 = 1 𝑡𝑜 |Fm−1,𝑛−1| do 

                           𝑃𝑚,𝑛 ← 𝑃𝑚,𝑛 ∪ {𝐷⃗⃗⃗𝑚−1,𝑛−1,𝑘 + 𝑆𝑚,𝑛} 
  end for 

  𝑈𝑚,𝑛 ← {} 

  𝒇𝒐𝒓 𝑘 = 1 𝑡𝑜 |Fm−1,𝑛|  do   

                       𝑈𝑚,𝑛 ← 𝑈𝑚,𝑛 ∪ {𝐷⃗⃗⃗𝑚−1,𝑛,𝑘 + G⃗⃗⃗} 
  end for 

  𝑄𝑚,𝑛 ← {} 

  𝒇𝒐𝒓 𝑘 = 1 𝑡𝑜 |Fm,𝑛−1| do 

                           𝑄𝑚,𝑛 ← 𝑄𝑚,𝑛 ∪ {𝐷⃗⃗⃗𝑚,𝑛−1,𝑘 + G⃗⃗⃗} 
  end for 

     𝐹∗ ← 𝑃𝑚,𝑛 ∪ 𝑈𝑚,𝑛 ∪ 𝑄𝑚,𝑛 

    𝐹𝑚,𝑛 = 𝐷𝑜𝑚(𝐹𝑚,𝑛
∗ ) 

 end for 

end for 
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Theorem 1: (Pareto-optimality and Completeness of Multi-Objective Needleman-Wunsch 

Algorithm) The score vectors kept in each cell 𝐹𝑚,𝑛 are Pareto optimal and complete for all 

alignments end up at 𝐹𝑚,𝑛. 

Proof: Theorem 1 is proved by induction. 

Base case: Assume aligning two one character sub-sequences 𝐴 = 𝑎1 and 𝐵 = 𝑏1. Initially, 

there is only one alignment ends up in 𝐹0,1 and 𝐹1,0. Clearly, 𝐹0,1 = 𝐹1,0 = {𝐺⃗} are Pareto optimal 

and are complete. Then, for 𝐹1,1, there exist only three alignments, the Dom(.) function carried out 

on 𝐹1,1
∗  guarantees that the score vectors in 𝐹1,1 are also Pareto optimal and complete.  

Induction step: Suppose that 𝐹𝑚−1,𝑛−1, 𝐹𝑚−1,𝑛, and 𝐹𝑚,𝑛−1 all contain complete Pareto 

optimal score vectors with respect to all sub-alignments ending up in these cells. We need to show 

that the score vectors in 𝐹𝑚,𝑛 are also Pareto optimal and complete. Here we consider the following 

three sub-alignments terminating in 𝐹𝑚,𝑛. 

1) Given two sub-alignments 𝑢 and 𝑣 ending in 𝐹𝑚−1,𝑛−1 with score vectors 𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑢) and 

𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑣), if 𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑢) ≺ 𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑣), then, 𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑢) + 𝑆𝑚,𝑛 ≺ 𝐷⃗⃗⃗𝑚−1,𝑛−1(𝑣) +

𝑆𝑚,𝑛. That is, for the correspondent incrementally built sub-alignment 𝑢′ and 𝑣′ from 𝑢 and 𝑣 

by adding a match (𝑎𝑚, 𝑏𝑛), respectively, 𝑢′ dominates 𝑣′.  

2) Given two sub-alignments 𝑢 and 𝑣 ending in 𝐹𝑚,𝑛−1 with score vectors 𝐷⃗⃗⃗𝑚,𝑛−1(𝑢) and 

𝐷⃗⃗⃗𝑚,𝑛−1(𝑣), if 𝐷⃗⃗⃗𝑚,𝑛−1(𝑢) ≺ 𝐷⃗⃗⃗𝑚,𝑛−1(𝑣), then, 𝐷⃗⃗⃗𝑚,𝑛−1(𝑢) + G⃗⃗⃗ ≺ 𝐷⃗⃗⃗𝑚,𝑛−1(𝑣) + G⃗⃗⃗. That is, for 

the correspondent incrementally built sub-alignment 𝑢′ and 𝑣′ from 𝑢 and 𝑣 by adding a gap, 

respectively, 𝑢′ dominates 𝑣′. 
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3) Given two sub-alignments 𝑢 and 𝑣 ending in 𝐹𝑚−1,𝑛 with score vectors 𝐷⃗⃗⃗𝑚−1,𝑛(𝑢) and 

𝐷⃗⃗⃗𝑚−1,𝑛(𝑣), if 𝐷⃗⃗⃗𝑚−1,𝑛(𝑢) ≺ 𝐷⃗⃗⃗𝑚−1,𝑛(𝑣), then, 𝐷⃗⃗⃗𝑚−1,𝑛(𝑢) + G⃗⃗⃗ ≺ 𝐷⃗⃗⃗𝑚−1,𝑛(𝑣) + G⃗⃗⃗. That is, for 

the correspondent incrementally built sub-alignment 𝑢′ and 𝑣′ from 𝑢 and 𝑣 by deleting a gap, 

respectively, 𝑢′ dominates 𝑣′. 

All sub-alignments ending up in 𝐹𝑚,𝑛 have to pass through either 𝐹𝑚−1,𝑛−1, 𝐹𝑚−1,𝑛, or 

𝐹𝑚,𝑛−1. This indicates that any sub-alignments terminating in 𝐹𝑚,𝑛 built on top of a non-dominating 

sub-alignments from 𝐹𝑚−1,𝑛−1, 𝐹𝑚−1,𝑛, or 𝐹𝑚,𝑛−1 will remain non-dominating. As a result, 𝐹𝑚,𝑛
∗ =

𝑃𝑚,𝑛 ∪ 𝑈𝑚,𝑛 ∪ 𝑄𝑚,𝑛 contains all potentially dominant sub-alignments. Again, the Dom(.) function 

eliminates the non-dominating score vectors in 𝐹𝑚,𝑛
∗ , which results in a complete and Pareto-

optimal set in 𝐹𝑚,𝑛.  

5.2.2 Backtracking the Pareto-optimal Alignments 

Similar to the Needleman-Wunsch algorithm, once the score matrix 𝐹 is completely 

generated, the Pareto-optimal alignments will be generated by backtracking. The only difference 

is that here backtracking is done by matching the score vectors instead of a single score. For each 

score vector 𝐷⃗⃗⃗𝑀,𝑁,𝑐 ∈ 𝐹𝑀,𝑁, the generation of 𝐷⃗⃗⃗𝑀,𝑁,𝑐 will be traced through the matrix from 𝐹𝑀,𝑁 

back to 𝐹0,0 to generate the alignment. The backtracking of 𝐷⃗⃗⃗𝑀,𝑁,𝑐 is performed using the following 

iterating steps: 

1. Initialize two empty strings 𝐴𝐴 ← "" and  𝐴𝐵 ← "" to hold store the alignment.  

2. Initialize 𝑚 = 𝑀 and 𝑛 = 𝑁 to keep track of the current index in each sequence.  

3. For each 𝐷⃗⃗⃗𝑚,𝑛,𝑖 ∈ 𝐹𝑚,𝑛, check the three possible sources of 𝐷⃗⃗⃗𝑚,𝑛,𝑖 in 𝐹𝑚−1,𝑛−1, 𝐹𝑚−1,𝑛, and 

𝐹𝑚,𝑛−1 to determine the source of   𝐷⃗⃗⃗𝑚,𝑛,𝑖.  
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a. If ∃𝐷⃗⃗⃗𝑚−1,𝑛−1,𝑡 such that 𝐷⃗⃗⃗𝑚,𝑛,𝑖 = 𝐷⃗⃗⃗𝑚−1,𝑛−1,𝑡 + 𝑆𝑚,𝑛, then 𝐷⃗⃗⃗𝑚,𝑛,𝑖 came from a match. Update 

𝐴𝐴, 𝐵𝐵, 𝑚, 𝑛, and 𝑤 accordingly as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚− 1, 𝑛 = 𝑛 −

1, and 𝑖 = 𝑡. 

b. If ∃𝐷⃗⃗⃗𝑚−1,𝑛,𝑟 such that 𝐷⃗⃗⃗𝑚,𝑛,𝑖 = 𝐷⃗⃗⃗𝑚−1,𝑛,𝑟 + 𝐺⃗, then 𝐷⃗⃗⃗𝑚,𝑛,𝑖 came from an insert. Update 𝐴𝐴, 

𝐵𝐵, 𝑚, 𝑛, and 𝑟 accordingly as 𝐴𝐴 ← 𝑎𝑚 + 𝐴𝐴 , 𝐵𝐵 ← " − " + 𝐵𝐵, 𝑚 = 𝑚 − 1, 𝑛 = 𝑛, and 

𝑖 = 𝑟. 

c. If ∃𝐷⃗⃗⃗𝑚,𝑛−1,𝑣where 𝐷⃗⃗⃗𝑚,𝑛,𝑖 = 𝐷⃗⃗⃗𝑚,𝑛−1,𝑣 + 𝐺⃗, then 𝐷⃗⃗⃗𝑚,𝑛,𝑖 came from a delete. Update 𝐴𝐴, 𝐵𝐵, 

𝑚, 𝑛, and 𝑤 accordingly as 𝐴𝐴 ← " − " + 𝐴𝐴 , 𝐵𝐵 ← 𝑏𝑛 + 𝐵𝐵, 𝑚 = 𝑚, 𝑛 = 𝑛 − 1, and 𝑖 =

𝑣 

4. Repeat step 3 till 𝐹0,0 is reached.  

 Example 

Here we use two short DNA sequences X = GGCCTACCAT and Y = AAAGAGATT to 

demonstrate the alignment procedure of the multi-objective Needleman-Wunsch algorithm. The 

alignment is performed under two objectives using the following two alignment scoring matrices: 

 1) The default alignment scoring matrix in nucleotide-nucleotide BLAST [185] (blastn) 

(Fig. 43), which is one of the most widely used bioinformatics programs for sequence alignment 

searching: 

 A C G T 

A 2 -3 -3 -3 

C -3 2 -3 -3 

G -3 -3 2 -3 

T -3 -3 -3 2 

Fig. 43. The alignment scoring matrix in nucleotide-nucleotide BLAST [185] (blastn). 

 



102 

 

 

 

The scores represent the most sensitive mode in blastn (-task blastn) targeting sequences 

at 90% sequence identity [186]. 

2) The alignment scoring matrix in K80 model (also known as Kimura 2-parameter) [187] 

(Fig. 44), which distinguishes between transitions (𝐴 ↔ 𝐺 or 𝐶 ↔ 𝑇) and transversions (𝐴 ↔ 𝐶 or 

𝐺 ↔ 𝑇). 

 A C G T 

A 6 1 2 1 

C 1 6 1 2 

G 2 1 6 1 

T 1 2 1 6 

Fig. 44. The alignment scoring matrix in K80 model 

 

Same gap penalty = -1 is used in both objectives. 

Fig. 46 shows the resulting multi-objective score matrix 𝐹. Each cell containing a set of 

non-dominating score vectors, which represent the Pareto-optimal sub-alignments ending at this 

cell. The origin of each score vector is represented by an arrow initiated from one of the three 

neighbor cells.  The yellow, green, and blue arrows represent score vectors generated from the 

match score set 𝑃, the insert score set 𝑈, and the delete score set 𝑄. The four score vectors [
−12
22

], 

[
−5
20
], [
−4
17
], and [

−3
13
] in the cell at the down right corner correspond to the four complete Pareto-

optimal front of alignments of sequences 𝐴 and 𝐵 with respect to the blastn and K80 model scores. 

Tracing these four score vectors through the matrix back to the origin, as shown in Fig. 47, 

generates the following four alignments at the Pareto-optimal front:  
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G G C C T A C C A - T 

A A - A G A - G A T T 

 

- - G G C C T A C C A - T 

A A A G - - - A - G A T T 

 

- - - G - G C C T A C C A T 

A A A G A G - - - A - T - T 

 

- - - G - G - C C T A C C A T 

A A A G A G A - - T - - - - T 

 

Fig. 45. The four alignments at the Pareto-optimal front. 
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Fig. 46. The multi-objective score matrix F for the two DNA sequences X=GGCCTACCAT, and Y=AAAGAGATT, 

where the objectives are the blastn and K80 model. 
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Fig. 47. Backtracking the Pareto-optimal alignments for the two DNA sequences X=GGCCTACCAT, and 

Y=AAAGAGATT, where the objectives are the Blastn and K80 model4. Discussion 
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5.2.3 Time and Space Complexity of Multi-Objective Alignment 

Similar to the Needleman-Wunsch algorithm for pairwise sequence alignment under a 

single objective, the number of steps to filling the score matrix and that of backtracking are both 

𝑂(𝑀𝑁). However, unlike single-objective Needleman-Wunsch, the number of operations to fill 

out each cell as well as each trace back step in the score matrix are no longer constant, which 

instead is related to the number of Pareto-optimal alignments at each cell. Therefore, the overall 

time complexity of the multi-objective Needleman-Wunsch algorithm is 𝑂(𝑘𝑀𝑁), where 𝑘 

denotes the maximum number of Pareto-optimal alignments in each cell. Similarly, the space 

complexity of multi-objective Needleman-Wunsch is also 𝑂(𝑘𝑀𝑁). The value of 𝑘 depends on 

the nature of the multiple objectives. If the multiple objectives are strongly positively correlated, 

𝑘 is usually small. In the extreme case, if all objectives are consistent, the multi-objective 

Needleman-Wunsch algorithm is equivalent to the Needleman-Wunsch algorithm under a single 

objective function. Whereas, if the multiple objectives are strongly conflicting, 𝑘 can increase 

dramatically along the multi-objective optimization process. In the worst case, if every alignment 

generated from three neighboring cells are non-dominated, the total number of Pareto-optimal 

alignments can reach 

∑ (
𝑀 − 𝑖

𝑀 + 𝑁 − 2𝑖
) (

𝑖
𝑀 + 𝑁 − 1

)
𝑚𝑖𝑛 (𝑀,𝑁)
𝑖=0 ,                                  (15) 

whose mathematical derivation based on three-dimensional Pascal triangle*.  

5.2.4 Multi-Objective Alignment vs. Alignment by Optimizing a Weighted-Sum 

Consensus Function 

A popular approach to combine multiple objectives is the weighted-sum method, where 

weights are assigned to various objective terms and a single consensus scoring function is built by 

linearly combining the weighted score terms. Here, the weights are typically determined by 

* The formula was developed by Andrew Fu and Yanyu Jiang from Princess Anne High School, Virginia Beach, 

Virginia. 
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machine learning methods. Optimizing a weighted-sum function by combining multiple terms 

representing different objectives has been widely used in many sequence-alignment applications. 

Nevertheless, there is a fundamental difference between optimizing a consensus weighted-sum 

function as a single objective function and optimizing multiple objective functions in sequence 

alignment. That is, there is one optimal alignment (or a few optimal alignments if they yield the 

same objective function values) in optimizing a weighted-sum consensus function, whereas in 

multi-objective alignment, many Pareto-optimal solutions may exist due to the trade-offs between 

the conflicting objectives. 

Although sequence alignment using a weighted-sum consensus function has been 

popularly used, it encompasses several issues. First, the weighted-sum function assumes the 

existence of a certain preference factor among the objectives that can be applied to deduce fixed 

weights to combine the objectives. However, the optimal weights may vary in aligning different 

pairwise sequences and thus there is unlikely a single set of weights that can satisfy all alignment 

situations, particularly when the objectives are strongly conflicting. In contrast, multi-objective 

alignment algorithms attempt to enumerate all Pareto-optimal alignments and thus is unnecessary 

to determine weights and thus is not sensitive to weights. Second, an optimal alignment with 

respect to a weighted-sum consensus function is Pareto-optimal; however, conversely, certain 

Pareto-optimal alignment may be unreachable when the Pareto optimal front is concave [188] 

[189] [190]. Fig. 48 illustrates a concave function space composed of two objective functions 𝐹1 

and 𝐹2 and the multi-objective optimization problem is to maximize 𝐹1 and 𝐹2. When a set of 

weights are selected, a contour line such as “a” or “b” shown in Fig. 48 is formed. Maximizing the 

weighted-sum consensus function leads to a Pareto-optimal alignment, which is showed as the 

tangent point of the contour line and the feasible solution space. However, no contour line can 
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make a tangent point at the solutions on the concave Pareto-optimal front, regardless the weight 

selection, due to the fact that the contour line becomes a tangent with another point in the solution 

space before touching the concave Pareto-optimal front. In conclusion, some alignments yielding 

optimized compromise among objective terms are not reachable by maximizing any weighted-sum 

consensus functions, regardless the weights selection. Actually, even non-linear combinations 

used to integrate the objective functions may still leave certain Pareto-optimal alignments 

unreachable. 

 

Fig. 48. Linear weight combinations of objectives fails to find some Pareto optimal solutions 

 

5.2.5 Multi-Objective Needleman-Wunsch Alignment vs. Multi-Objective Genetic 

Algorithms 

The multi-objective genetic algorithms (MOGA) [188] have been applied to pairwise 

sequence alignment. MOGAs explore the Pareto-optimal front and obtain diversified Pareto-

optimal solutions by iteratively applying genetic operators such as mutations and crossovers to a 

population of candidate alignments. Similar to evolutionary algorithms in many other applications, 

MOGA mostly has difficulty to guarantee Pareto-optimality for the obtained alignments as well as 

ensuring all Pareto-optimal alignments are generated. In contrast, the multi-objective Needleman-
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Wunsch algorithm not only guarantees Pareto-optimality, but also guarantees solution 

completeness. 

5.2.6 Multi-Objective Needleman-Wunsch with Affine Gap 

Algorithm 2 presented in Section 5.2 employs a linear gap penalty function, which treats 

open gaps and extending gaps the same. In many sequence alignment applications, it is more 

desirable to use an affine gap penalty function with 𝑔𝑜 for opening a gap and 𝑔𝑒 for extending a 

gap. Generally, 𝑔𝑜 is a greater penalty than 𝑔𝑒. Accordingly, the penalty for a gap of length 𝑙 

becomes 𝑔 = 𝑔𝑜 + 𝑙𝑔𝑒. DeRonne and Karypis [191] developed a dynamic programming approach 

extending Gotoh’s sequence alignment algorithm with affine gap [139] to find pairwise sequence 

alignments at the Pareto optimal front, which requires calculation and maintenance of four score 

matrices. Here, we present a multi-objective Needleman-Wunsch algorithm with affine gap that 

requires only one score matrix and guarantees Pareto optimal completeness. 

Different from the multi-objective Needleman-Wunsch algorithm with linear gap penalty, 

to handle affine gap, one needs to keep track of if each sub-alignment is generated from 

match/mismatch, insert, or delete of the previous step. A more challenging problem is, due to the 

fact that 𝑔𝑜 is a bigger penalty than 𝑔𝑒, a dominated sub-alignment may actually lead to a non-

dominated sub-alignment in future steps. Consequently, such a sub-alignment should not be 

eliminated in the domination function until it is clear that it has no possibility to generate non-

dominated sub-alignments. 

In the multi-objective Needleman-Wunsch algorithm with affine gap, there are two gap 

score vectors 𝐺𝑜⃗⃗⃗⃗⃗⃗  and 𝐺𝑒⃗⃗ ⃗⃗ ⃗, corresponding to the open gap and the extending gap penalties, 

respectively. For each sub-alignment 𝑢𝑚,𝑛 terminating at cell 𝐹𝑚,𝑛, we use a field 𝑢𝑚,𝑛. 𝑠 to keep 

track of the score vector, 𝑢𝑚,𝑛. 𝑖 to indicate how 𝑢𝑖 is generated (by match, insert, or delete) from 
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the previous step, and 𝑢𝑚,𝑛. 𝑔⃗ to hold the accumulated gap penalties of of sub-alignment 𝑢𝑖 under 

different objective functions. Then, for all sub-alignments terminating at cell 𝐹𝑚,𝑛, we classify 

them into two sets: 𝐹𝑚,𝑛
∗ , which contains all sub-alignments that can be safely eliminated if 

dominated and 𝑉𝑚,𝑛, which contains sub-alignments that may be dominated in cell 𝐹𝑚,𝑛 but have 

the potential to lead to non-dominated sub-alignments in future steps. The score vectors of the sub-

alignments generated from the diagonal cell 𝐹𝑚−1,𝑛−1 by match are updated by 𝑆𝑚,𝑛 only and are 

not affected by opening and extending gap penalies. Therefore, they can be eliminated safely if 

dominated and are deposited in 𝐹𝑚,𝑛
∗ , as illustrated in the following pseudocode.      

 foreach 𝑢𝑚−1,𝑛−1 in 𝐹𝑚−1,𝑛−1 

   𝑢𝑚,𝑛. 𝑠 ← 𝑢𝑚−1,𝑛−1. 𝑠 + 𝑆𝑚,𝑛 

           𝑢𝑚,𝑛. 𝑖 ← "𝑚𝑎𝑡𝑐ℎ" 

   𝑢𝑚,𝑛. 𝑔⃗ ← 0⃗⃗ 

  𝐹𝑚,𝑛
∗ ← 𝐹𝑚,𝑛

∗ ∪ {𝑢𝑚,𝑛} 

         end 

For the sub-alignments generated from insert or delete, only the dominated sub-alignments 

resulted from a new opening gap or from an extending gap having an accumulated extending gap 

score not less than the opening gap penalty can be safely eliminated. The following pseudocodes 

describe the generations of sub-alignments 𝑢𝑚,𝑛 from 𝐹𝑚−1,𝑛 by insert and from 𝐹𝑚,𝑛−1 by delete. 

 

// handling sub-alignments from 𝐹𝑚−1,𝑛 by insert 

foreach 𝑢𝑚−1,𝑛 in 𝐹𝑚−1,𝑛 

   𝑢𝑚,𝑛. 𝑖 ← "𝑖𝑛𝑠𝑒𝑟𝑡" 
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 if  (𝑢𝑚−1,𝑛. 𝑖 == "𝑚𝑎𝑡𝑐ℎ"||𝑢𝑚−1,𝑛. 𝑖 == "𝑑𝑒𝑙𝑒𝑡𝑒") 

   𝑢𝑚,𝑛. 𝑠 ← 𝑢𝑚−1,𝑛. 𝑠 + 𝐺𝑜⃗⃗⃗⃗⃗⃗ + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                         𝑢𝑚,𝑛. 𝑔⃗ ← 0⃗⃗ 

                𝐹𝑚,𝑛
∗ ← 𝐹𝑚,𝑛

∗ ∪ {𝑢𝑚,𝑛} 

 elseif (𝑢𝑚−1,𝑛. 𝑔⃗ ≥  𝐺𝑜⃗⃗⃗⃗⃗⃗ )               

                         𝑢𝑚,𝑛. 𝑠 ← 𝑢𝑚−1,𝑛. 𝑠 + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                          𝑢𝑚,𝑛. 𝑔⃗ ← 𝑢𝑚−1,𝑛. 𝑔⃗ + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                          𝐹𝑚,𝑛
∗ ← 𝐹𝑚,𝑛

∗ ∪ {𝑢𝑚,𝑛} 

  else 

  𝑢𝑚,𝑛. 𝑠 ← 𝑢𝑚−1,𝑛. 𝑠 + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                         𝑢𝑚,𝑛. 𝑔⃗ ← 𝑢𝑚−1,𝑛. 𝑔⃗ + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                          𝑉𝑚,𝑛 ← 𝑉𝑚,𝑛 ∪ {𝑢𝑚,𝑛} 

   

           end 

end 

 

// handling sub-alignments from 𝐹𝑚,𝑛−1 by delete 

foreach 𝑢𝑚,𝑛−1 in 𝐹𝑚,𝑛−1 

   𝑢𝑚,𝑛. 𝑖 ← "𝑑𝑒𝑙𝑒𝑡𝑒" 

 if  (𝑢𝑚,𝑛−1. 𝑖 == "𝑚𝑎𝑡𝑐ℎ"||𝑢𝑚,𝑛−1. 𝑖 == "𝑖𝑛𝑠𝑒𝑟𝑡") 

   𝑢𝑚,𝑛. 𝑠 ← 𝑢𝑚,𝑛−1. 𝑠 + 𝐺𝑜⃗⃗⃗⃗⃗⃗ + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                         𝑢𝑚,𝑛. 𝑔⃗ ← 0⃗⃗ 
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                𝐹𝑚,𝑛
∗ ← 𝐹𝑚,𝑛

∗ ∪ {𝑢𝑚,𝑛} 

 elseif (𝑢𝑚,𝑛−1. 𝑔⃗ ≥  𝐺𝑜⃗⃗⃗⃗⃗⃗ )               

                         𝑢𝑚,𝑛. 𝑠 ← 𝑢𝑚,𝑛−1. 𝑠 + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                          𝑢𝑚,𝑛. 𝑔⃗ ← 𝑢𝑚,𝑛−1. 𝑔⃗ + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                          𝐹𝑚,𝑛
∗ ← 𝐹𝑚,𝑛

∗ ∪ {𝑢𝑚,𝑛} 

  else 

  𝑢𝑚,𝑛. 𝑠 ← 𝑢𝑚,𝑛−1. 𝑠 + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                        𝑢𝑚,𝑛. 𝑔⃗ ← 𝑢𝑚,𝑛−1. 𝑔⃗ + 𝐺𝑒⃗⃗ ⃗⃗ ⃗ 

                         𝑉𝑚,𝑛 ← 𝑉𝑚,𝑛 ∪ {𝑢𝑚,𝑛} 

   

             end 

end 

 

The sub-alignments in 𝐹𝑚,𝑛 are 𝑉𝑚,𝑛 ∪ 𝐹𝑚,𝑛
∗ . Then, the Dom(.) function is applied to 𝐹𝑚,𝑛 

to identify the non-dominated sub-alignments. However, only those in 𝑉𝑚,𝑛 will be eliminated to 

guarantee the completeness of the Pareto optimal alignments. 

5.2.7 Results 

Similar to MOA, the CASP 11 experiment targets are used to demonstrate the effectiveness 

of MON. Here also, we used the same two scoring functions in the alignment generation (sequence 

profile 𝑆𝑠𝑒𝑞(𝑖, 𝑗), and structural features including predicted secondary structures and solvent 

accessibility 𝑆𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(𝑖, 𝑗)) to measure the alignment between the ith residue in the query 

sequence and the jth residue in the template sequence. 
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MON is also compared with Muster [15] and GenTHREADER [83],  two popularly used 

template alignment and selection methods for template-based protein structure modeling. Each 

target sequence is aligned with the same templates by the structure profile alignment method. 

Then, tertiary protein structure models are generated by the Modeller program [184] according to 

the alignments. The GDT-TS is used to measure the quality of these models and the corresponding 

alignments. Since MON generates all Pareto-optimal alignments, which is usually more than one, 

we only show the one that leads to the highest GDT-TS score. 

We first compare MON and MUSTER on the top-ranked template of each target specified 

by MUSTER. The performance of MUSTER and MON on the CASP 11 targets are summarized 

in Table 10. It can be noticed that MON outperformed MUSTER despite using less objectives than 

MUSTER. Additionally, Fig. 49 shows the GDT-TS score for MUSTER along with the MON. As 

it appears in the figure that MON achieved a GDT-TS score higher or equal to that of MUSTER 

in 104 targets out of 115 total targets. Also MON GDT-TS score was greater than Muster by at 

least 10 in eight targets. A similar comparison is done between MON and pGenTHREADER, 

which is shown in Table 11 and Fig. 50. In 84 targets, the GDT-TS scores of models generated by 

MOA are higher than pGenTHREADER, where in 16 of them, the gain is at least 10. 

Table 10  

Overall performance of MUSTER and MON on the top-ranked template specified by Muster for the 

CASP11 targets. 

Method MUSTER MON 

Average GDT-TS  33.28 36.65 

 

Table 11  

Overall performance of GenTHREADER and MON on the top-ranked template specified by 

GenTHREADER for the CASP11 targets 

Method GenTHREADER MON 

Average GDT-TS  29.61 36.03 
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Fig. 49. The GDT-TS score of Muster alignment and MON alignment to CASP 11 targets with the top-ranked 

template selected by Muster. MON achieved a higher or equal GDT-TS score for 104 targets and most of the time 

MON eight of them the difference is more than 10 i.e. T0773-D1   
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Fig. 50. The GDT-TS score of pGenTHREADER alignment and MON alignment to CASP 11 targets with the top-

ranked template selected by pGenTHREADER. In 84 targets MON GDT-TS score is higher or equal 

pGenTHREADER, 16 of them MON GDT-TS score was 10 points higher than pGenTHREADER. 
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Another comparison is done with Muster and linear combination of objectives over CASP 

11 on the top-ranked template of each target specified by CASP. The performance of MUSTER, 

linear combination, and MON on the CASP 11 targets are summarized in Table 12. From the table 

it is clear that MON outperformed MUSTER and linear combination. Fig. 51 shows the GDT-TS 

scores of the models generated by MON and Muster, where MON is able to generate at least one 

alignment with a higher GDT-TS score than MUSTER in 95 targets. Fig. 52 compares the GDT-

TS scores of the models generated by MON and linear combination of objectives. One can find 

that the GDT-TS scores of the top models generated by MON are almost always better than those 

generated by linear combination of objectives. Particularly, the MON models exceed those 

generated by linear combination of objectives by at least 10 in GDT-TS score in 45 targets.  

 

Table 12  

Overall performance of MUSTER , linear combination objectives and MON on the top-ranked template 

specified by CASP for the CASP11 targets. 

Method MUSTER Linear Combination MON 

Average GDT-TS 31.8 28.35 39.34 
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Fig. 51. The GDT-TS score of Muster alignment and MON alignment to CASP 11 targets with the top-ranked 

template selected by CASP. In 95 targets MON GDT-TS score is higher or equal Muster, 10 of them MON GDT-

TS score was 10 points higher than Muster. i.e. T0769-D1. Muster achieved highly in 4 targets i.e T0782-D1   
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Fig. 52. The GDT-TS score of linear combination of objectives algorithm using same sequence and structure 

information and MON for CASP 11 targets with the top-ranked template selected by CASP. In 113 targets MON 

achieved higher or equal GDT-TS, most of them MON GDT-TS score was 10 points higher. i.e. T0759-D1. Only at 

T0776-D1 MON was lower and by a very small difference. 
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When comparing MUSTER to MON over CASP 11 on the top-ranked template of each 

target specified by CASP, the most significant enhancement occurs in targets T0769-D1 and 

T0796-D1, where the GDT-TS scores of the models generated from the alignments improved from 

20.9 to 40.0 and from 36.9 to 52.3, respectively. Fig. 53 and Fig. 54 respectively display the 

alignments and models generated by MUSTER and MON in targets T0769-D1 and T0796-D1. It 

is interesting to notice that in T0769-D1, MON alignment improves the modeling of both the α-

helix and the β-sheet regions. Hence, the main improvement is in the β-sheet regions, where 

MUSTER model (Fig. 53 (b)) does not include any β-strand while MON model (Fig. 53(a)) 

successfully identifies two β-strands. The improvement in the β-sheets alignment can also be found 

in T0796-D1. For example, the MON model (Fig. 54(a)) appears to have a more accurate alignment 

of the β-strands than the MUSTER model (Fig. 54(b)).     
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(a) MON (RMSD=10.39)                                            (b)  MUSTER (RMSD=19.61) 

By MON 
T0769-D1: --------------------------ML----------------------TVEVEV---------KITADDE 
3ramD:    GEKQQILDYIETNKYSYIEISHRIHERPELGNEEIFASRTLIDRLKEHDFEIETEIAGHATGFIATYDSGLD 
T0769-D1: N-------------------KAE--------------EIVKR-----------------------------V 
3ramD:    GPAIGFLAEYDALPGLGHACGHNIIGTASVLGAIGLKQVIDQIGGKVVVLGCPAEEGGENGSAKASYVKAGV 
T0769-D1: ID-----------------------------------------------------EVEREVQKQYPNATITR 
3ramD:    IDQIDIALIHPGNETYKTIDTLAVDVLDVKFYGKSAHASENADEALNALDAISYFNGVAQLRQHIKKDQRVH 
T0769-D1: TLTRDDG--------TVELRIKVKADTEEKAKSIIKLIEERIEEELRKRDPNATITR--------------- 
3ramD:    GVILDGGKAANIIPDYTHARFYTRATRKE-LDILTEKVNQIARGAAIQTGCDYEFGPIQNGVNEFIKTPKLD 
T0769-D1: ------------TVRTEVGSSWS-----------------------LEHHHHH------------------- 
3ramD:    DLFAKYAEEVGEAVIDDDFGYGSTDTGNVSHVVPTIHPHIKIGSRNLVGHTHRFREAAASVHGDEALIKGAK 
T0769-D1: -------------------------H* 
3ramD:    IALGLELITNQDVYQDIIEEHAHLKG* 
By MUSTER 
T0769-D1:------------------------------------------------------------------------- 
3ramD:   GEKQQILDYIETNKYSYIEISHRIHERPELGNEEIFASRTLIDRLKEHDFEIETEIAGHATGFIATYDSGLDG 
T0769-D1:------------------------------------------------------------------------- 
3ramD:   PAIGFLAEYDALPGLGHACGHNIIGTASVLGAIGLKQVIDQIGGKVVVLGCPAEEGGENGSAKASYVKAGVID 
T0769-D1:------------------------------------------------------------------------- 
3ramD:   QIDIALIHPGNETYKTIDTLAVDVLDVKFYGKSAHASENADEALNALDAISYFNGVAQLRQHIKKDQRVHGVI 
T0769-D1:---------ML-TVEVEVKITADDENKAEEIVKRVIDEVEREVQKQYP----NATITRTLTRDDGTVELRIKV 
3ramD:   LDGGKAANIIPDYTHARFYTRAT-----RKELDILTEKVNQIARGA--AIQTGCDYEFGPIQN-GVNEFI--- 
T0769-D1:KADTEEKAKSII--KLIEERIEEELRKRDPNATITRTV--RTEVGSS------------------WSLEHHHH 
3ramD:   ------------KTPKLDDLFAKYAEEVGEAVI-----DDDFGYGSTDTGNVSHVVPTIHPHIKIGSRNLVGH 
T0769-D1:HH----------------------------------------------* 
3ramD:   THRFREAAASVHGDEALIKGAKIALGLELITNQDVYQDIIEEHAHLKG* 
 

(c) Alignment between 3ramD and T0769-D1 
 

Fig. 53. The best scoring alignments generated from MON and that generated by Muster for T0769-D1 and 3ramD. 

The model generated from MON alignment scores 40.0 GDT-TS while Muster scores only 20.9 
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(a) MON (RMSD=8.8600)    (b)  MUSTER (RMSD=15.7166) 

By MON 
T0796-D1: MIFLAILDL—KSLVLNAINYWGPKNNNGIQGGDFGYPISEKQIDTSIITSTHPRLIPHDLTIPQNLETI 
2d42A:    A----IINLLRELEIY-GMQY---ANSHQ-----YTYGSSYSDDTNPIRIAGLDARI-PDPIVTDPVNH 
T0796-D1: FTTTQVLTNNTDLQQSQTVSFAKKTTTTTSTSTTNGWTEGGKISDTLEEKVSVSIPFIGEGGGKNSTTI 
2d42A:    IVLDRRIITNTTSNSLEGVFSFSNAYTSRTSSQTRDGVTAGTN--ITGKYFANLF-----FEQVGLSGR 
T0796-D1: EANFAHNSSTTTFQQASTDIEWNISQPVLVPPRKQVVATLVIMGGNFTIPMDLMTTIDSTEHYSGYPIL 
2d42A:    IAFEG—AVTNENKYTLDATQDFRDSQTIRVPPFHRATGVYTLEQGAFEKMTVLECVVSGNGIIRYYRTL 
T0796-D1: TWISSPDNSYNGPFMSWYFANWPNLPSGFGPLNSDNTVTYTGSVVSQVSAGVYATVRFDQYDIHNLRTI 
2d42A:    PDNSYTEIVQR--VNIIDVLQANGTPG-FTISKEQNRAYFTGEGTISGQIGLQTFIDVVIEPLPGH--- 
T0796-D1: EKTWYARHATLHNGKKISINNVTEMAPTSPIKTN* 
2d42A:    ---------------------------------A* 

By MUSTER 
T0796-D1: MIFLAILDLKSLVLNAINYWGPKNNNGIQGGDFGYPISEKQIDTSIITSTHPRLIPHDLTIPQNLETIF 
2d42A:    ----AIINLLRELEIYGMQYA---NSHQYTYGSSYSDDTNPIRIAGLDARIPDP-----IVTDPVNHIV 
T0796-D1: TTTQVLTNNTDLQQSQTVSFAKKTTTTTSTSTTNGWTEGGKISDTLEEKVSVSIPFIGEGGGKNSTTIE 
2d42A:    LDRRIITNTTSNSLEGVFSFSNAYTSRTSSQTRDGVTAGTNITGKYFANLFFE---------QVGLSGR 
T0796-D1: ANFAHNSSTTTFQQASTDIEWNISQPVLVPPRKQVVATLVIMGGNFTIPMDLMTTIDSTEHYSGYPILT 
2d42A:    IAFEGAVTNENKYTLDATQDFRDSQTIRVPPFHRATGVYTLEQGAFEKMTVLECVVSGNGIIRYYRTLP 
T0796-D1: WISSPDNSYNGPFMSWYFANWPNLPSGFGPLNSDNTVTYTGSVVSQVSAGVYATVRFDQYDIHNLRTIE 
2d42A:    DNSYTEIVQ--RVNIIDVLQANGTPGFTIS-KEQNRAYFTGEGTISGQIGLQTFIDVVIEPLPGHA---
T0796-D1: KTWYARHATLHNGKKISINNVTEMAPTSPIKTN* 
2d42A:    ---------------------------------* 
 

(c) Alignment between 2d42A and T0796-D1 
 

Fig. 54. The best scoring alignments generated from MON and that generated by Muster for T0796-D1 and 2d42A. 

The model generated from MON alignment scores 52.3 GDT-TS while Muster scores only 36.9 
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Targets T0759-D1 and T0773-D1 are picked for further analysis of the comparison 

between the MON algorithm and the linear combination of objectives algorithm. T0759-D1 and 

T0773-D1 are aligned with the corresponding top-ranked templates 1lm5B1 and 3opkA, according 

to CASP11, resulting in 116 and 225 Pareto-optimal alignments, respectively. The best models 

generated by MON in T0759-D1 and T0773-D1 yield GDT-TS scores of 97.79 and 69.4, 

respectively, which are significantly higher than those generated by the linear combination of 

objectives (27.21 and 11.94). Fig. 55 and Fig. 57 show the profile and secondary structure/solvent 

accessibility scores of the generated alignments for T0759-D1 and T0773-D1, respectively. It is 

observed that for the two targets the scores of the linear combination of objectives alignments are 

dominated by all the Pareto-optimal alignments generated by MON. 

 In Fig. 56, we show the alignments and their corresponding models, produced by MON 

and linear combination of objectives for T0759-D1 with 1lm5B1. The target is an α-helix protein, 

thus an accurate alignment should correctly align the target and template α-helix regions. It appears 

that the MON alignment of the α-helices is highly accurate and is capable of generating an almost 

perfect model for T0759-D1 (Fig. 56(a)), while in the linear combination of objectives model, the 

α-helices are shifted from the correct ones (Fig. 56(b)). Also, in Fig. 58 it is shown that the main 

improvement of the MON alignment is in the α-helix residues. For instance, the MON model 

accurately aligns the two α-helices (Fig. 58(a)) while the linear combination of objectives model 

(Fig. 58(b)) fails to align one of the α-helix and shifts the other.   
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Fig. 55. Results for T0759-D1 alignment with 1lm5B 

 

(a) MON (RMSD= 1.5237)                        (b)  Linear Combination (RMSD=14.2181) 

By MON 
T0759-D1: MGHHHHHHSHMV-VIHPDPGRELSPEEAHRAGLIDWNMFVKLRS-Q-ECD------------------- 
1lm5B1:   ----------IAAIFDTENLEKISITEGIERGIVDSITGQRLLEAQA---CTGGIIHPTTGQKLSLQDA 
T0759-D1: ---------------------------------------------------* 
1lm5B1:   VSQGVIDQDMATRLKPAQKAFIGFEGVKKMSAAEAVKEKWLPYEAGQRFLE* 

By Linear Combination 
T0759-D1: ---------------------------MGHHHHHHSH-----MV------V--IHPDP--GR---ELSP 
1lm5B1:   IAAIFDTENLEKISITEGIERGIVDSITGQRLLEAQACTGGIIHPTTGQKLSLQDAVSQG-VIDQDMAT 
T0759-D1: EEAHRAGLID----------WNMFV------KLRSQECD* 
1lm5B1:   RLKPAQKAFIGFEGVKKMSAAEAVKEKWLPYEAGQRFLE* 
 

(c) Alignment between 1lm5B1 and T0759-D1 
 

Fig. 56. The best scoring alignments generated from MON and that generated by linear combination of objectives for 

T0759-D1 and 1lm5B1. The model generated from MON alignment scores 97.79 GDT-TS while linear combination 

of objectives scores only 27.21 
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Fig. 57. Results for T0773-D1 alignment with 3opkA 
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(a) MON (RMSD= 3.6513)        (b)  Linear Combination (RMSD= 13.4021) 

BY MON 
T0773-D1: --MVDLKIDVSDDEEAEKIIREIREQWPKATVT---------RTNGDIKLDA-------QTEKEAEK 
3opkA:    PEAVVVLCTAPDEATAQDLAAKVLAEKLAACATLLPGATSLYYWEGKLEQEYEVQMILKTTVSHQQA 
T0773-D1: MEKAVKKVKP--NATI---RKTGGS---LEH-HHHHH* 
3opkA:    LIDCLKSHHPYQTPELLVLPVTHGDTDYLSWLNASLR* 

BY Linear Combination 
T0773-D1: --------------------MVDL--K---IDVSDDEEAEKII-R-EIREQWPKATVTRT-NGDIKL 
3opkA:    PEAVVVLCTAPDEATAQDLAAKVLAEKLAACATLLPGATSLYYWEGKLEQEYEVQMILKTTVSHQQA 
T0773-D1: DAQTEKE--A-EKMEKAVKKVKP----NATIRKTGGSLEHH-HHHH*  
3opkA:    LIDCLKSHHPYQ-TP--ELLVLPVTHGD--TDYLSWLNA-SLR---* 

(c) Alignment between 3opkA and T0773-D1 
 

Fig. 58. The best scoring alignments generated from MON and that generated by linear combination of objectives for 

T0773-D1 and 3opkA. The model generated from MON alignment scores 69.4 GDT-TS while linear combination of 

objectives scores only 11.94 

 

5.3 Summary 

Protein sequence alignment is fundamental to many problems in biology, such as protein 

structure modeling, protein design, and functional annotation of proteins. In template based protein 

structure modeling, protein sequence alignments discovers the shared similarity between the target 

and template sequences. The success of template-based modeling highly relies accurately 

producing a sequence alignment that maps the residues of the target sequence to those of the 

template.  In this work, we present two multi-objective alignment algorithms to obtain a set of 

diversified alignments yielding Pareto optimality. The first algorithm is a preliminary multi-
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objective alignment algorithm to examine the suitability of multi-objective alignment in protein 

structure modeling. The preliminary multi-objective alignment algorithm shows competitive 

results compared to other state-of-the-art algorithms [179]. Accordingly, we develop a multi-

objective alignment algorithm based on the Needleman-Wunsch algorithm. The multi-objective 

Needleman-Wunsch algorithm guarantees not only Pareto optimality of the alignments, but also 

completeness. The proposed algorithm has been used to generate potentially more accurate protein 

sequence alignments that shall improve the performance of protein structure modeling. The multi-

objective Needleman-Wunsch algorithm is examined on a set of CASP11 targets using the 

following objectives: (1) sequence profile, (2) secondary structure, and solvent accessibility 

objective functions. The multi-objective Needleman-Wunsch algorithm has demonstrated 

competitive results compared to other state of art methods. 
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CHAPTER VI 

 CONCLUSION AND FUTURE WORK 

In this chapter, I summarize the contribution of this dissertation and discuss future research 

directions. 

6.1 Summary 

Computationally modeling protein structure from its sequence is a grand challenge with 

broad scientific and economic impacts. Today, one of the most accurate and consistent 

methodologies for computational protein structure modeling is template-based modeling. The 

success of template-based modeling relies on correctly identifying one or a few experimentally 

determined protein structures as templates that are likely to resemble the structure of the target 

sequence as well as accurately producing a sequence alignment that maps the residues of the target 

sequence to those of the template. Therefore, addressing these tasks is the key to improving the 

accuracy of template-based protein structure modeling. 

 This work takes advantage of an inter residue contact scoring function to measure the 

favorability of a target sequence fitting in the folding topology of a certain template. This is 

performed by placing the target sequence residues into the mapped template residues three-

dimensional conformation and evaluating the contact score. Then, we combine the contact score 

with the sequence profile score to enhance template selection sensitivity. This approach has shown 

a notable improvement in the accuracy and sensitivity of template selection in template-based 

protein structure modeling [16]. 

After the recognizable progress that is achieved in template selection using our first 

approach, we present a second template selection approach that employs three-dimensional 

information of protein in a more efficient way. In this approach, instead of evaluating the 
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favorability of a target adopting a potential structural template after an alignment is generated, we 

use the three-dimensional information to build the alignment along with other structural features. 

The idea is to build a substitution matrix to score the replacement of one amino acid of the template 

three-dimensional conformation with each amino acid in the target.  Then, we can use this 

substitution matrix to incorporate three-dimensional information in building the alignment along 

with the structural features.  Consequently, the structural profile alignment between the target and 

templates are totally performed using our own alignment algorithm. The alignment is done by 

dynamic programming that exploits several protein structural features in addition to the three 

dimensional features. The template selection approach is tested over CASP 11 targets and has 

shown a significant improvement compared to the successful template alignment and selection 

methods. 

Furthermore, we present two multi-objective alignment algorithms to obtain a set of 

diversified alignments yielding Pareto optimality. The first algorithm is a preliminary multi-

objective alignment algorithm to examine the suitability of multi-objective alignment in protein 

structure modeling. The preliminary multi-objective alignment algorithm shows competitive 

results compared to other state-of-the-art algorithms [179]. Accordingly, we develop a multi-

objective alignment algorithm based on the Needleman-Wunsch algorithm. The multi-objective 

Needleman-Wunsch algorithm guarantees not only Pareto optimality of the alignments, but also 

completeness. The proposed algorithm has been used to generate potentially more accurate protein 

sequence alignments that shall improve the performance of protein structure modeling. The multi-

objective Needleman-Wunsch algorithm is examined on a set of CASP11 targets using the 

following objectives: (1) sequence profile, (2) secondary structure, and solvent accessibility 
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objective functions. The multi-objective Needleman-Wunsch algorithm has demonstrated 

competitive results compared to other state of art methods. 

6.2 Future Work 

In this dissertation we aim at improving the template-based protein structure modeling by 

correctly identifying the most appropriate template protein structures and precisely align the target 

and template sequences. However, there are several interesting aspects that we would like to 

explore in order to further enhance the template-based protein structure modeling.  

Firstly, in the presented template selection approach, we only consider the row alignment 

score to rank the templates. However, it is noticed that the model selected by the row alignment 

score is not always the best model generated by the alignment. Accordingly, the selected structure 

template is not the most appropriate template for a given target sequence. Consequently, it would 

be interesting to explore employing a machine learning technique that makes use of all of protein 

structural features employed in the alignment along with the alignment score to select a better 

template. Such a technique will act as a recommendation system that makes use of the similarity 

between the available protein structures in selecting the most appropriate template for a target 

sequence 

Secondly, the multi-objective Needleman-Wunsch algorithm is examined using only two 

objectives: (1) sequence profile, (2) secondary structure + solvent accessibility. Our future work 

direction will employ more objective functions in the protein sequence alignments, such as 

fragment profiles. Additionally, the number of Pareto-optimal sub-alignments may grow 

dramatically along the multi-objective optimization iterations. However, in practice, one is often 

only able to process a small number of representative alignments. Therefore, it is important that 

these limited number of alignments are selected to evenly distribute on the Pareto-optimal front so 
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that the maximum diversity about the Pareto-optimal front is maintained. Consequently, in 

addition to optimality, another important criteria to assess the quality of the multi-objective 

optimization algorithms are solution diversity and uniformity. We will explore developing an 

empirical, greedy approach to limit the number of generated alignments while maintaining solution 

diversity.  
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