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Abstract. This study proposes a novel methodology towards using ant colony

optimization (ACO) with stochastic demand. In particular, an optimization-
simulation-optimization approach is used to solve the Stochastic uncapacitated

location-allocation problem with an unknown number of facilities, and an ob-

jective of minimizing the fixed and transportation costs. ACO is modeled using
discrete event simulation to capture the randomness of customers’ demand, and

its objective is to optimize the costs. On the other hand, the simulated ACO’s

parameters are also optimized to guarantee superior solutions. This approach’s
performance is evaluated by comparing its solutions to the ones obtained us-

ing deterministic data. The results show that simulation was able to identify

better facility allocations where the deterministic solutions would have been
inadequate due to the real randomness of customers’ demands.

1. Introduction and literature review. In the continuous uncapacitated loca-
tion allocation problem (also referred to as multi-facility weber problem (MWP)),
the aim is to locate m new facilities that will serve n known demand points with
an objective of minimizing the fixed costs of opening facilities and variable costs
of transportation. The literature reports that most of the models developed for
the facility location problem are very hard to solve to optimality and classified as
NP-hard [15].

Due to the computational complexity of the problem, the literature offers limited
exact methods for its solution. Earlier studies were able to solve for 2 facilities and
30 customers using branch and bound [10]. The problem size increased to cover 2
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to 100 facilities and 287 customers with Krau [9] that used a combination of B&B,
global optimization, and Column generation.

Since exact solutions were not appropriate for practical scenarios where the prob-
lem size is usually large, researchers have focused more on heuristics and meta-
heuristics for the deterministic version of the problem. Bischoff and Klamroth [5]
presented several heuristics to solve the capacitated version of the problem with
rectilinear distances. Aras et al. [2] tackled the problem by partitioning the feasi-
ble region into a finite set of domains and solving the corresponding mixed-integer
subproblems. Bischoff et al. [4] provided two heuristics for the MWP with bar-
riers, and reported that their algorithms can attain solutions of reasonably sized
multi-facility locationallocation problems with barriers, both with regard to com-
putation time and solution quality. Brimberg et al. [6] compared between Genetic
Algorithms (GA), TS, and Variable Neighborhoud Search (VNS), noted that the
heuristics’ solutions deteriorate when the number of facilities increases, with VNS
performing better. Arnaout [3] introduced an Ant Colony Optimization (ACO)
algorithm for the same problem with deterministic demand. ACO was compared
to GA, VNS, TS, and the previous’ superiority proven. For more on deterministic
location-allocation literature, the reader can refer to Jabalameli and Ghaderi [8],
Aras et al. [2], Salhi and Gamal [18], Gamal and Salhi [7], Liu and Xu [11], and
Pasandideh and Niaki [17].

As shown above, most of the literature has focused on the deterministic version
of the problem. Unfortunately, and in realistic scenarios, customers demand are
always changing; i.e. customers have a stochastic demand and not a deterministic
one. Logendran and Terrell [12] were the first to introduce the stochastic uncapaci-
tated version and they modeled price sensitive stochastic demands with an objective
of maximizing expected profits. Zhou [21] tackled the same problem with stochas-
tic demand using an expected value model, chance-constrained programming and
dependent-chance programming. In a later study, Zhou and Liu [20] generated new
stochastic models for the capacitated variant of the problem. Finally, Mehdizadeh
et al. [13] introduced a new hybrid algorithm for the capacitated version also.

More recent studies by Ozkisacik et al. [16] and Altinel et al. [1] addressed the
probabilistic version of the problem, where they considered the customer locations
to be randomly distributed. Their work differed from this research as the latter
considers random customer demand but known locations.

In this study, we modify the ACO that was introduced for the deterministic
problem in [3] to account for the stochastic nature of the problem, where customers
demands follow uniform distributions. Following this, the stochastic ACO (referred
to hereafter as ACOS) is modeled using discrete event simulation, and then the
algorithm’s parameters are optimized using a combination of metaheuristic pro-
cedures in order to reach superior solutions. In other words, our novel approach
optimizes the simulated ACOS parameters in order to optimize the solution of the
problem at hand.

To the best of the author’s knowledge, there does not exist published research
that addresses the problem with unknown m and stochastic demand, nor research
that models ant colony using discrete event simulation and uses optimization with
simulation to determine the algorithm’s parameters.
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2. ACOS application to MWP. The objective function minimizes the TotalCosts
(transportation and fixed costs) and is formulated as:

Min

n∑
i=1

m∑
j=1

Dij .Zij .T.d(i, j) +

m∑
j=1

kj .F (1)

where, n is the number of demand sites, d(i, j) is the distance between demand
point i and facility j, kj is the index of new facilities (kj= 1 if facility j is open,
0 otherwise), and m = n is a suitable upper bound on the number of facilities as
highlighted in [3]. Necessary parameters and variables are defined as follows:

• xFj , yFj : decision variables that indicate respectively the x and y coordinates
of new facility j.

• xDi
, yDi

: respectively the x and y coordinates of demand point i.
• F: fixed cost of opening a new facility.
• T: transportation cost per unit of distance per unit demand.
• Di: stochastic demand / number of trips to demand point i.

As discussed earlier, the ACOS will be modeled using simulation. Furthermore,
the MWP with m unknown can be solved in three ACOS stages: first, we determine
the number of facilities m; second, we decide on initial temporary estimates for the
facilities’ coordinates (xFj , yFj ); and third, we determine the assignment of demand
points n to the facilities m based on the latter’s estimated coordinates, and we
compute the final exact coordinates of each facility. The algorithm simulation logic
is depicted in Figure 1, where at the initialization phase an entity is created to assign
appropriate values to the pheromone trails of each of the three stages: τ Ij , τ

II
ij , τ

III
ij .

2.1. Stage 1: Determining the number of facilities m. The first stage consists
of deciding on the value of m, the number of facilities to open. We represent the
first stage with a vector (S1) that contains n entries representing the number of
facilities m and each entry is populated with a facility number (j = 1, ,m = n).
For instance, if we have 10 customer points (n = 10), then the following vector: S1
= [1 2 3 4 5 6 7 8 9 10] will represent the possible edges that an ant could move
to. If an ant moves to edge [3] in (S1), it means that m = 3 facilities in this ant’s
tour. The Pheromone trail (τ Ij ) is defined for this stage to indicate the favorability
of choosing the number of facilities from (S1). In addition to the pheromone, we
assist the algorithm with (ηIj ) to solve the problem. The probability to select m

is calculated as shown in (2) and (ηIj ) is calculated using (3), which suggests the
greedy heuristic of minimizing the number of facilities in order to minimize the fixed
costs.

ΠI
j =

(τ Ij )α.(ηIj )β∑
l∈Ψ(τ Il )α.(ηIl )β

(2)

ηIj =
1

j
(3)

Following Equations (2) and (3) and as highlighted in Figure 1, the cumula-
tive distribution function (CDFI(j)) is populated. Next, a random variable (rv)
between 0 and 1 is generated based on which m is determined. Using this proba-
bilistic approach in choosing m (versus solving for all its possible values) is better
in terms of computational time, especially as m increases.
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2.2. Stage 2: Initial temporary facilities’ coordinates. In Stage 2, initial
temporary estimates for the facilities’ coordinates are assigned. Note that the m
facilities should be located far from each other. Having two facilities next to each
other is inefficient because they are uncapacitated; i.e. it makes more sense to
replace them with one single facility. The coordinates’ estimates are obtained by
putting them equal to the ones of m demand points, where the latter are chosen as
follows. The first facility (j = 1) coordinates are set to be equal to the ones of a
randomly selected demand point. Now that one facility has coordinates (xF1 , yF1),
(ηIIij ) for the remaining facilities are computed following (4), where d(i, k) is the
Euclidean distance between demand point i and facility k, with k referring to the
predecessor facility (with an already assigned temporary coordinates). The proba-
bility to set the coordinates of facility j to be equal to the one of demand point i is
calculated as shown in (5).

ηIIij = d(i, k) (4)

ΠII
ij =

(τ IIij )α.(ηIIij )β∑
l∈Ψ(τ IIlj )α.(ηIIlj )β

(5)

The Pheromone trail (τ IIij ) is defined for this stage to indicate the favorability of
choosing the coordinates of demand point i for facility j’s temporary coordinates.
Similar to Stage 1, CDFII(i) is populated and rv is generated, based on which
each facility is assigned temporary coordinates. The second stage output can be
represented by a vector (S2) that contains m entries representing the demand points
from which we obtained facility j’s temporary coordinates. For example, if we
determined m = 4 from Stage 1, then S2=[2 10 4 6] indicates that the first facility’s
coordinates were set to be equal to the coordinates of the second demand point
(i = 2), the second facility to i = 10’s coordinates, the third to i = 4, and the forth
facility to i = 6’s coordinates.

2.3. Stage 3: Allocation of demand points to facilities. Now that the m
facilities have initial coordinates, we determine in Stage 3 the assignment of demand
points n to the facilities. A Pheromone trail (τ IIIij ) is defined for this stage to
indicate the favorability of assigning demand point i to facility j. The probability
to assign i to j is calculated as shown in (6) and (ηIIIij ) is calculated using (7), which
suggests the greedy heuristic of minimizing the distances between the demand points
and the facilities.

ΠIII
ij =

(τ IIIij )α.(ηIIIij )β∑
l∈Ψ(τ IIIlj )α.(ηIIIlj )β

(6)

ηIIIij =
1

d(i, j)
(7)

The third stage output can be represented by a vector (S3) that contains n
entries representing the demand points. Each entry is populated with the assigned
facility number (j = 1, ,m). Note that this assignment was based on the temporary
facilities’ coordinates from Stage 2, and it will be used to determine the actual
facilities’ coordinates as highlighted in Section 2.4.

2.4. Facilities coordinates, total costs, and pheromone update. After the
third stage, each facility has a group of towns assigned to it. We use here a modi-
fication of the iterative procedure proposed by Weiszfeld [19] to come up with the
facilities’ coordinates. For every facility j, the steps below are implemented, where
nj refers to the demand points that are assigned to facility j.
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Step 1. Set the inital values of xFj and yFj according to 8:

xFj
=

∑nj

i=1 xDi

nj
, yFj

=

∑nj

i=1 yDi

nj
(8)

Step 2. For i = 1, ..., nj ,
{if(xFj

= xDi
and yFj

= yDi
) → (x′ = xDi

; y′ = yDi
)}

else, exit for-loop and go to Step 4.
Step 3. For each demand point i, evaluate x′ and y′ as defined in 9:

x′ =

∑nj

i=1
DiTxDi

d(i,j)∑nj

i=1
DiT
d(i,j)

and, y′ =

∑nj

i=1
DiTyDi

d(i,j)∑nj

i=1
DiT
d(i,j)

(9)

Step 4. If(x′ = xFj
and y′ = yFj

), STOP
Else, set(xFj = x′ and yFj = y′) and go to Step 2.

Step 5. (xFj
, yFj

)=(x′, y′)
After all ants finish their paths, we update the pheromone amounts in each link

locally by reducing the amounts due to evaporation. We also update the pheromone
amounts in each link globally by increasing the ones constructed by the ant that
produced the least TotalCosts. This is estimated according to 10, 11, and 12.

τ Ij ←− (1− ρ)τ Ij + φ.∆τ I,Bestj (10)

τ IIij ←− (1− ρ)τ IIij + φ.∆τ II,Bestij (11)

τ IIIij ←− (1− ρ)τ IIIij + φ.∆τ III,Bestij (12)

Where:

∆τ I,Bestj =

{
1

TotalCostsBest , if j is used by best ant

0, Otherwise

∆τ II,Bestij ; ∆τ III,Bestij =

{
1

TotalCostsBest , if arc(i, j) is used by best ant

0, Otherwise

The innovative aspect about our solution methodology is the use of three succes-
sive trails to solve the problem: one for determining the number of facilities, another
one for generating the facilities’ temporary coordinates, and one more for assigning
the demand points to the facilities. Note that Di follows uniform distribution as
described in Section 4.

3. Optimization of ACOS parameters. As can be seen from Section 2, ACOS
has several parameters that will regulate the algorithm’s performance. In particu-
lar, before simulating ACOS , we need to find the optimal values for the following
parameters (along with their ranges): Ants : (5, 60); ρ : (0.01, 0.3); ϕ : (0.01, 0.3);
α, β : (1, 2); τ Ij , τ

II
ij , τ

III
ij : (1, 10). The ranges were adopted from Arnaout [3]. In

order to decide on the optimal ACOS parameters, an optimization tool is used with
simulation as shown in Figure 2. In particular, OptQuest from OpTek Systems, Inc.
is a computer software system that allows users to automatically search for optimal
solutions to complex systems, and is integrated within Arena, the Simulation soft-
ware that was used in this study. The optimization software based on its integrated
heuristics, decides on values for the ACOS parameters. The latter is used in the
simulation run and the TotalCosts are recorded. TotalCosts is input back into the
optimization tool to decide on appropriate values of ACOS parameters for the next
simulation. This loop is repeated for as many replications and simulations needed
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Optimization Software
OptQuest

While ((Objective 95% CI) > 
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{Continue Optimization}
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Figure 2. Optimization Approach for ACOS

Figure 3. Avg TotalCosts for all problems 

Figure 2. Optimization Approach for ACOS

to guarantee a minimum TotalCosts with a 95% Confidence Interval that is at most
5% from the average TotalCosts.

4. Computational tests. The proposed ACOS was modeled on Arena 13.0 Sim-
ulation Software from Rockwell Systems, running on Windows XP with a Pentium
4 processor at 2.33 GHz and 2 GB of RAM. The algorithms were run on small (5
and 20 stochastic demand points) and large (60 and 100 stochastic demand points)
problems and each size was tested with 5 instances of the problem. The reason
stochastic data was used for the customers’ demand is to ensure a more realistic
representation of the supply chain environment. The demands are stochastic fol-
lowing uniform distributions: Di = U [0.8Ddi , 1.2Ddi ], where Ddi is the demand
of customer i in the deterministic case as generated in Arnaout [3]. In particular,
the data used for the demand (Di) and coordinates of the demand points came
from randomly generated values from a uniform distribution U [1, 100]. The reason
uniform distributions were used is due to their high variances, ensuring that the
presented heuristics are being tested under unfavorable conditions. Furthermore,
the algorithms were compared under different dominance of F and T as follows.
The selection of the fixed cost of opening a facility (F ) and the transportation
(variable) cost (T ) values determines the level of dominance. That is, when the
fixed and variable costs are balanced (denoted by F, T Balanced), they are set
to F = $30, 000 and T = $30. When fixed costs are dominant (denoted by F
Dominant), then the values of F and T are $30, 000 and $10 respectively. When
the transportation costs are dominant (denoted as T Dominant), then F and T are
set to $30, 000 and $50 respectively. Following this, a total of 60 problem instances
were solved by each algorithm. This dominance approach was used to cover the
different scenarios that might exist in practice, where the ratio of fixed and variable
costs is highly dependent on the industry type and its location. Furthermore, the
values of F and T were adopted from Arnaout [3] to have a fair comparison between
ACOS and ACOD.
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4.1. Deterministic ACO (ACOD). As one of the objectives of this study is to
highlight the advantage of simulating stochastic demand versus using directly the
deterministic ACO, the latter was implemented as follows.

The MWP with stochastic demand can be solved using the deterministic ACO
(ACOD) in Arnaout [3] that was modeled using Visual C++ and can only handle
deterministic data. This is done by using the average of the demands’ stochastic
distributions (i.e. Ddi) as input, running ACOD to output the number of facili-
ties, their locations and allocations. Next, these outputs are simulated under the
stochastic demand in order to generate the actual TotalCosts.

In Arnaout [3], a design of experiments was utilized to determine the most suit-
able ACOD parameters that will minimize TotalCosts. These parameters were
used in this study and they are as follows: Ants = 60 ; ρ = 0.01 ; ϕ = 0.01 ; α = 1;
β = 1 ; τ Ij = 2.555 ; τ IIij = 1 ; τ IIIij = 10 and MaxNoIter = 10363.

4.2. Results. Table 1 and Figure 3 show the average and maximum TotalCosts
for all problem structures and all algorithms. In particular, Table 1 shows the
average and maximum TotalCosts attained, along with the number of new facilities
recommended by both ACOD and ACOS . It can be seen from the latter that the
number of facilities is different when the simulation was used to model ACO and
capture the stochastic demand, leading to lower TotalCosts. It can be seen that
ACOS performed better than ACOD in all the 60 instances. This is due to the fact
that a more suitable number and allocation of facilities was attained after simulating
the randomness of the demand.

Table 1. Avg and Max TotalCosts; Avg and Max δ for all Problems

ACOD ACOS δ
Demand Facilities Avg Max Facilities Avg Max Avg Max

F Dominant

5 3 91418 93468 2 77430 77658 18 20
20 4 245229 248614 3 220412 220894 11 13
60 7 627527 644356 6 502022 503403 25 28
100 10 945643 971370 8 716396 724903 32 34

F, T Balanced

5 4 120563 123091 3 99451 99746 21 23
20 8 388249 400121 10 363961 367935 7 9
60 18 1108033 1138302 23 872467 27882405 27 29
100 29 1833518 1884079 38 1378585 1385353 33 36

T Dominant

5 4 127561 131693 4 123327 123328 3 7
20 10 460391 472180 10 427723 434819 8 9
60 26 1459744 1499851 33 1186784 1199881 23 25
100 42 2534624 2604796 55 1964825 1973330 29 32

Even though ACOS outperformed ACOD in all problem instances, and as the
latter’s solutions appeared to be close to ACOS (see Figure 3), the percentage
deviation (δ) of ACOD from ACOS was used as a measure of performance for each
problem instance. That is:

δ =
TotalCostsACOD

− TotalCostsACOS

TotalCostsACOS

× 100% (13)

Figure 4 shows the average values of δ for the three dominance combinations for
all problems. It can be clearly seen that ACOD’s deviation from ACOS increased
with the problem size. Another important note about the δ values is that the
average and maximum deviations of ACOD for all problem instances were 20% and
36% respectively.

4.3. Computational times. As highlighted earlier, ACOD was modeled using
Visual C++ for deterministic demand, while ACOS was modeled using discrete
event simulation in order to account for the stochastic demand. Consequently,
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Optimization Software
OptQuest

While ((Objective 95% CI) > 
(5% of the mean))

{Continue Optimization}
Else

{STOP & Output 
Results}

Input 

ACOS Parameters

Simulation Model
Arena

Objective
(TotalCosts)

Simulation Output (Objective)

Output
TotalCosts

Continue

S
top

Figure 2. Optimization Approach for ACOS

Figure 3. Avg TotalCosts for all problems 

Figure 3. Average TotalCosts for all problems

Figure 4. Avg δ for all problems 

Figure 4. Average δ for all problems

comparing the computational times for the two ACO approaches would not be a
reasonable assessment. Furthermore, the solution of ACOD is simulated in order
to generate the TotalCosts, and ACOS ’s parameters are optimized to generate the
TotalCosts; i.e., both will require an additional computational time beyond the
algorithms’ scope.

Having said this, and to give the reader a sense of the computational performance,
Table 2 depicts the average times (minutes) for the algorithms (excluding ACOD’s
simulation and ACOS ’s optimization). As can be seen, both ACOD and ACOS
have similar performance; this is logical because both follow similar algorithmic
steps. Furthermore, it can be noted from Arnaout [3] that ACOD requires less time
to converge to more superior solutions than Genetic Algorithms (GA); subsequently,
the same would hold for ACOS .

5. Conclusions. While lots of research has tackled the deterministic continuous
facility location-allocation problem, few works addressed the stochastic version of
the problem, and no previous published studies were found on the problem with
unknown number of facilities with stochastic demand, nor research that modeled
ACO using discrete event simulation and used optimization with simulation to
determine the ACO parameters.
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Table 2. Computational Times

Small Problems Large Problems
Demand Points 5 20 60 100

ACOS

F Dominant 3.62 13.83 47.77 79.86
F, T Balanced 1.03 16.63 64.23 123.39
T Dominant 0.92 10.6 74.42 180.58

ACOD

F Dominant 3.53 14.08 47.57 77.42
F, T Balanced6 1.04 16.74 62.51 122.16
T Dominant 0.89 10.98 74.19 188.95

In this paper, we have modeled a previously introduced ACO ([3]) using discrete
event simulation to account for the randomness of customers’ demands for the
Stochastic Euclidean facility location-allocation problem with unknown number of
facilities. The differences between this study and its predecessor ([3]) are as follows:

1. In Arnaout [3], ACO was modeled using Visual C++. On the other hand, in
this study ACO was modeled using simulation. Up to the author’s knowledge,
no literature exists that models Ant Colony Optimization using simulation;
in particular, discrete event simulation. This allowed for the introduction of
stochastic demand in this study.

2. The computational results indicated a significant reduction in costs when
ACO was simulated in comparison to its previous deterministic implemen-
tation in Arnaout [3]. In particular, a reduction of up to 36% in total costs
was attained. Furthermore, better facilities allocations were achieved when
the randomness of data was taken into account.

3. One of the challenges of ACO is finding suitable parameters. In Arnaout [3],
design of experiments was used to find suitable parameters. In this study, an
optimization approach was used with Simulation to find the optimal ACO pa-
rameters. This by itself is another addition to the body of knowledge. In par-
ticular, optimization decides on values for the ACOS parameters. The latter
is used in the simulation run and the TotalCosts are recorded. TotalCosts is
input back into the optimization tool to decide on appropriate values of ACOS
parameters for the next simulation. This loop is repeated for as many repli-
cations and simulations needed in order to guarantee a minimum TotalCosts.
In other words, we are optimizing an optimization method (ACOS) using
Simulation.
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