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1 Introduction

Sequence spaces such as the classical spaces £# play an important role in functional analysis. Indeed, they are often
the first Banach spaces covered in a basic functional analysis course. Moreover, they often serve as starting points, or
possibly ending points, for various conjectures. Historically, via Beurling’s theorem, the unilateral shift S on £2 was
one of the first operators to have a full characterization of its invariant subspaces. They key observation by Beurling
was to equivalently recast £2 from a mere sequence space to a Hilbert space of analytic functions H?Z, the Hardy
space, where the vast toolbox of function theory comes into play.

This paper is a selective survey of results on the sequence space £7, indexed by the nonnegative integers, with
a special emphasis on the associated Banach space of analytic functions Zﬁ. Here we focus on their multipliers.
As it turns out, the multipliers of Zi (the Hardy space) are thoroughly understood since they turn our to be just
the bounded analytic functions on the open unit disk. When p # 2, the multipliers are well studied but are still
somewhat mysterious, and some basic questions remain open. For example, every inner function is a multiplier of
631; however, the atomic singular inner function is not a multiplier for Zﬁ when p # 2. In fact, it is unknown whether
any singular function serves as a multiplier when p # 2 (though it is known that many do not). Furthermore, since
in the p = 2 case the multipliers are just the bounded analytic functions, their non-tangential boundary behavior is
well understood. When 1 < p < 2 the multipliers actually enjoy somewhat better boundary behavior than generic
bounded analytic functions. Even more surprising is that the multipliers of Eﬁ and those of its dual space EZ are the
same set — even though the spaces Eﬁ and EZ are very different in terms of their boundary behavior.

Recent work is beginning to shed some light on the fact that in some Banach spaces of analytic functions, every
function can be written as a quotient of two multipliers. This is indeed true for the Hardy space, and for the Dirichlet
space, as well as other reproducing kernel Hilbert spaces with a Nevanlinna-Pick kernel. For £ z this “quotient of
two multipliers” property turns out to be spectacularly false when p > 2, but remains an open question when p < 2.

We became interested in these sequence spaces through our work in two papers [20] and [5], where we studied
various natural function theory questions through the lens of Birkhoff-James orthogonality. In [5] we explored a
version of the classical inner-outer factorization and its applications to ARMA processes, while in [20] we revisited
some classical estimates of zeros of analytic functions. Work on those papers led us quite naturally to questions
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about multipliers of £7; in fact we continue that discussion in this paper with a multiplier proof of a result in [20],
as well as a refinement, via Birkhoff-James, of coefficient estimates of multipliers.

2 Basic properties of £7

For p € [1, 00) define £ to be the set of sequences
a= (ap,ai,...)

of complex numbers for which

) 1/p
lall, = (Z |ak|”) < o0
k=0

The quantity ||a||, defines a norm on £# which makes ¢” a Banach space. Furthermore, from Holder’s inequality,
we know that (£7)* the normed dual of £7 is isometrically isomorphic to £9, where g denotes the usual conjugate
index, i.e.,

+ 1, ey

1 —_—
q

= |-

via the bi-linear pairing

o0
(@ab)= Y agbr. act” bell. )
k=0

Here, in the case p = 1, we have ¢ = oo, and the dual space (£!)* = £ is endowed with the norm
[blloc := sup{|bx [}rZo-

Throughout this paper, we will always adhere to the notation that g is the Holder conjugate index to p.
For an a € {7 we set

a(z) =Y axz* 3)
k=0

to be the power series whose Taylor coefficients are a. Note the use of a (bold faced) to represent a sequence and a
(not bold faced) to represent the corresponding power series.
Consider the case when p € (1, 00). By Holder’s inequality we see that forany z e D = {z € C: |z| < 1},

[e’s) fo'e) 1/p %) 1/q 1
3 laxllzk] < (Z |ak|”) (2 |z|’“'> ~ lall (=)
k=0 k=0 k=0

This implies that the above power series used to define the function a in (3) determines an analytic function on D.
Let us define

1/q

0 ={a:aclf}

and endow each a € (% with the norm ||a|,. With this, ¢/ becomes a Banach space of analytic functions on D.
Furthermore, for each z € D and a € £/ we have

1 1/q
< |la _— . 4
@) < ol (=17 ) @
Similarly, if p = 1, then
o0
la(z) = Y lakllz*| < ||
k=0

Thus if a sequence of functions converges in the norm of 61{1’ then it converges uniformly on compact subsets of D.
The following is obvious from the definition of £%, but worth stating here for later use.
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Proposition 2.1. Let p € [1,00). Ifa € £ with

o>
a(z) = Z arz®,
k=0
then

K

k

a— a -0, K — oc.

o= 30 ], >
k=0

Corollary 2.2. If p € [1, 00), then the analytic polynomials are dense in Ef; .

Of special distinction is the Wiener algebra 5114. Let us recall that £! € £7 for all p € [1, 00). Furthermore, for
ae ZL, the Taylor series converges uniformly on D = {z € C : |z| < 1} and thus E}l is contained in C (D), the
continuous functions on ID. We now address the “algebra” part of the term Wiener algebra.

For two sequences a and b, the convolution a * b is the sequence

e

By multiplying Taylor series coefficients, notice how a * b corresponds via (3) to the pointwise product a(z)b(z) of

n=0

the functions a and b. Young’s inequality [26, p. 37]
la % bll, < [lall»bll1, a€t” bedl ®)

shows that £! is a convolution algebra (i.e, a,b € {! = axb € £!). Now by the correspondence between
convolution of sequences and multiplication of power series, we see that that (3}4 is an algebra of functions (i.e.,
a,be E:l — ab e le).

3 Evaluation functionals and duality

The estimate in (4) says that for each w € D, the evaluation functional
Ay 4 —-C

is continuous for each p € (1, 00).
We can even compute its norm

1Awll = sup{l f(w)] : f €41 fllp <1}

Proposition 3.1. Let p € [1, 00). For each w € D,

1 1/q
Awl=(——1) .
20t = (= )

1
(= wln)/a"

Proof. From (4) we get

[Awll < (©)

For fixed p € (1, 00), consider the test function

1
1 —|wl¢2wz

1) = > (wlw)" "
n=0

and observe that |

1= w7

Apf = fw) =
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On the other hand,
o0 o0 o0 1
IF17 = 3 Il =27 = 3 ol @0 = 3wl = g
n=0 n=0 n=0
Hence
1Ay > Bl _ ! T ™
1Al (1 =[w]9)l/9
Comparing (6) and (7), we deduce that
1
[Awl = A= w@yi/a’ (3)
The p = 1 case is similarly handled. O

With our identification of Kﬁ with £7, we can appeal to (2) and see that the norm dual of Zﬁ can be isometrically
identified with Efl via the bi-linear pairing

o
(a.b)= > arbx., actf.betd.
k=0

from (2). Since this series converges absolutely, we know from either Abel’s Theorem or the Dominated Convergence
Theorem that

o0
a,b) = lim apbprk.
(a,b) r_>1_k2—:0 kbk

Now an integral calculation, and the simple fact that

21 40
/eikeg = k.0
0

shows that we can write the pairing in terms of the “Cauchy pairing”
2 40
(a,b) = lim / a(re'®)b(re=1%)—.
r—1- 2w
0

Using the notion of duality, the following is another useful interpretation of the evaluation functional A, which
also yields a more concise proof of Proposition 3.1. For a fixed w € D, define

(o)
kw(z) = Z wz", )
n=0
Clearly ky € €% and, by (2),
Aw f = (fikw). (10)

In other words, ky, plays the role of a reproducing kernel.

4 Connection to Hardy spaces

For p € [1, 00) the classical Hardy space H? is the space of analytic functions f on D for which
1/p

27
; do
Ifler = s [1reeOrsl) <. (an
0

o<r<l1
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For p = o0, the class H °° is the space of bounded analytic functions on D. Classical theory [7] says that functions
in H? have radial limits

F(?) = lim f(re'?)
r—>1-
for almost every @ € [0, 27] and the corresponding (almost everywhere defined) boundary function e? > f(e??)

belongs to L? (T, d8). In fact,
1/p

2w 40
e e
i

0
When p = 2, the space H? can also be described as those analytic functions

(o)
10 =Y axz*
k=0

on ID for which
o0
Z lax|? < oc.
k=0

Moreover, by Parseval’s identity, we have

o0

27
i do
11 = [17EPS = 3l <.

o k=0

Consequently, Efl = H? with equal norms, and thus H? is a Hilbert space.
The Hausdorff-Young inequalities [26, p. 101] show, for p € [1,2], that H? C Efl with

lally < llalzr a€H?.
On the other hand, when p € [1, 2], we also have ZA{’ C HY with

lalle < llalp a€€f.

In particular, when p € [1,2], every a € Zﬁ has radial boundary values almost everywhere. When p € (2, 00) the
above containments fail, and, as we will see in the next section, radial limits become a problem as well.

5 Boundary values

From the discussion in the previous discussion, Ei C H4, when p € [1, 2]. Furthermore, each function in H¢, and
hence Eﬁ , has a radial limit almost everywhere on T. When p > 2, the boundary behavior can be more complicated.
To see this, we bring in a theorem of Littlewood.

Proposition 5.1 (Littlewood [7]). Assume that {a, }n=0 is a sequence of complex numbers such that

o0
Z |an|2 = OoQ.
n=0

Set
>
) =) enanz",
n=0

where €, € {—1, 1}. Then there are choices of signs &, such that the corresponding function f fails to have radial
limits almost everywhere on T.
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As a matter of fact, Littlewood introduces a probability measure on the family of all possible signs, i.e., {—1, 1},
and then he shows that for almost all such signs the above proposition holds. However, for our discussion below, the
existence of even one such function is enough.

Let AV denote the Nevanlinna class of analytic functions on D which can be written as the quotient of two
bounded analytic functions. By well-known theorems of Riesz and Fatou [7], every function in the Nevanlinna class
has a radial limit almost everywhere.

Corollary 5.2. For each p € (2, 00) the space Ef; is not contained in N'.

Proof. Pick any sequence {a; },,=0 € £¥ such that

o0
E lan|? = oo.
n=0
For example,
1
ap = —5—, nz=l1,
npr+2

does the job. Then, by Proposition 5.1, there are choices of signs &;, such that the corresponding function f fails to
have radial limits almost everywhere on T. This function certainly belongs to £ ﬁ but not the Nevanlinna class N'. [

6 Operators on £/

We define the forward shift operator
S:L? > ¢P, Sa=(0,a9,a1.az2,...)
and observe that S is an isometry on £7. For a € {7, let [a] be the S-invariant subspace generated by a, that is,
[a] := \/{a, Sa, S%a, ...}

where \/ denotes the closed linear span in £7. A vector a € £7 is said to be cyclic if [a] = £7.
Also define the backward shift operator

S*: 49 ¢4, S*a=(aj,az,...)
and observe that S* is a contraction on £4. If a € £ and b € £9, it is straightforward to see that
(Sa,b) = (a, S*b). (12)

This is a fundamental connection between S and S*.
One can view the shift S on £ fl) as the operator

a(z) — za(z)

of multiplication by the independent variable z on the corresponding function space Zﬁ . From this viewpoint, note
that for a € Eﬁ, [a] is the Eﬁ -closure of the set of all Pa, where P is an analytic polynomial. We will identify the
shift operator on the sequence space £# with the multiplication (by z) operator on the function space £%, and denote
both by S. A similar convention is applied for S*. For example, considering the definition (9), we see that

S¥kyw = wky. 13)

Again, the reader should be take note of the absence of conjugation in the above formula.
The S-invariant subspaces of £7 . i.e., those (closed) subspaces M C Kﬁ for which SM C M, are sometimes
difficult to describe. When p = 2, we have already seen that Efl = H? and a well-known theorem of Beurling
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[7] says that the (non-trivial) invariant subspaces M of Efl = H? are given by M = @H?, where © is an inner
function. Notice how this says that the quotient space M/SM is one dimensional. When p > 2, the situation is much
more complicated. For example, one can show [1] that given any n € N U {oo} there is an S-invariant subspace M
of £ such that the quotient space M/SM is n-dimensional.

Given w € D, the difference quotient operator Q. is defined on the set of analytic functions on D by

(Qu ) = LA

Proposition 6.1. Let w € D. Then
feth = Qufell.

Moreover, Qy, is a bounded operator on Kﬁ .

In particular, Qg is precisely the backward shift S™*. For the proof of the p = 2 case see [11, p. 100]. The general
case is substantially similar.

In other words, one can always “divide out” a zero of @ and still remain in EZ. For many Banach spaces of
analytic functions contained in the Nevanlinna class, the most prominent example being the H# classes, one can
divide out any inner factor and still remain in the space. Moreover if ® is inner then

®f e H? — f e H”.

Even though Zﬁ is contained in H4 for p € (1,2), ZAf’ does not always have the analogous property. We will discuss
this further in the next section about multipliers.

7 Multipliers

An analytic function ¢ on D is called a multiplier of (iﬁ if
et = of €tf.

The set of multipliers of £ ﬁ will be denoted by .#,. (One can also consider a multiplier ¢ from Zﬁ to (iﬁl, ie.,
feth = of eth,

though we will not discuss this in our current paper.)
For ¢ € .#), an application of the closed graph theorem shows that the operator

szﬁﬁﬁﬁﬁ, Myf =of
is continuous. Thus we define the multiplier norm of ¢ by

lel.a, == supilleflp: f € 4.1 flp <1}

In other words, the multiplier norm of ¢ coincides with the operator norm of M, on Zﬁ. It is often customary to
equate the multiplier ¢ with the multiplication operator M.

Proposition 7.1. Let p € (1,00). If ¢ € .#) then ¢ is a bounded function and
sup{l(z)| : z € D} < [l¢|l.z,-

Proof. Since ¢ € .#) then so is ¢" for all n € N and thus, for each z € D, we can use (6) to see that

el Mzl el
(I —[z[)7a ~ (1= |z[)1/4 ~ (1 |z]4)1/a"

lo()I" = [Az¢"| <
Taking the n-th root and letting n — oo yields the result. O
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The above result, and the fact that the constant functions belong to £#, imply that
Mp € H® N LY, (14)

whenever p € (1,00). When p = 1, Young’s inequality (5) ensures that KL, the Wiener algebra, coincides with the
algebra of multipliers on £ }1. In other words,
M = 3114.

When p = 2, we use the fact that Zfl is the Hardy space H? and the boundedness of integral means in the definition
of H? from (11) to show that H® C .#>. Hence

Moy = H.
We will see from Corollary 15.7 below that the singular inner function

14z
1—z )
which is certainly bounded on D, is not a member of .#,, for any p # 1,2. Thus

s(z) = exp(—

Mp SLENH™, p#1,2.

8 ., as the commutanat

Clearly ¢(z) = z is a multiplier of Zﬁ . In fact M, = S and we have already established that S is an isometric
operator. Moreover, since My, S = SM,, forall ¢ € .4}, we see that .#), is a subset of the commutant of S, defined
by

(SY ={A¢e %’(Zf{) : AS = SA}.

In fact, more can be said.
Proposition 8.1 (Nikolskii [21]). For p € [1, 00) we have {S} = .

Proof. Clearly we have .#, C {S}’. Conversely suppose A € {S}’. Then for any analytic polynomial P we have
A(P(SD) = P(S)A(D),

equivalently, A(P) = PA(1). By the density of the polynomials in £ (Proposition 2.1) we can, for a given f € {4,
find a sequence of polynomials { Py, },,=1 such that P, — f in the norm of Zﬁ. Since point evaluations on D are
continuous in the norm of Zﬁ (Proposition 3.1), we get P, — f pointwise on ID. Since AP,, — Af both in norm
as well as pointwise on D, it follows that Af = A(1) f. Thus ¢ = A(1) € #p and A = M,,. O

To bring in more operator theory techniques, we now give an equivalent characterization of .#), explored in [21].
Given a sequence of complex numbers {a, },>0, define the infinite (Toeplitz) matrix A by

ap 0 0 0 ---
a1a00 0 ---

A:=|azarao 0 -+ | (15)
asza> ay ag -+

Proposition 8.2 (Nikolskii [21]). Suppose
(o)
p(z) = Z anz"
n=0

is an analytic function on D. Then ¢ € #), if and only if the infinite matrix A from (15) defines a bounded operator
on £P. In this case,

lell.z, = 1 Aller—er-
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Proof. Let
o0
f@) =) bu" et
n=0

and write b := {b;, }n=0 € £”. Then
o0 n
(pf)(z) = Z cnz", cp = Z agby—k.
n=0 k=0

Therefore ¢ € .#) if and only if

[ele] oo p

n
dolenl” =3 | > axbn—k

n=0 n=0 lk=0

< Q.

On the other hand, setting ¢ := {c; }n=0, We see that b and c are related via the matrix identity
Ab =c. (16)
Thus ¢ is a multiplier for Eﬁ if and only if
bel? < Abe(”.

By the closed graph theorem, the latter is equivalent to A € B(£7).
For the equality of norms, note that by (16),

lell.z, = suplllefllp: f € th N flp <1}
supi[[4bllp : [bll, < 1}
Aller—er. O

From (2) recall the bi-linear pairing (a, b) between £# and £¢. Proposition 8.2 implies the useful inequality

I(Ax. V)] < llell.a, Xlpllyllg. x€€”.y €9, a7

This next result relates the multipliers on the dual spaces and is often an important reduction to our multiplier
discussion.

Proposition 8.3 (Nikolskii [21]). For p € (1, 00) we have .#, = .#y with equal multiplier norms.

Proof. Extend the definition of £7 = {7 (Np) to

1/p
7(Z) := {b = {bp}nez : [bll, = (Z |bn|P) <00

nez

Extend the definition of the shift S on £7 to £7 (Z) as
S{bn }neZ = {bn—l }neZ

and the backward shift B on £”(Z) as
B{bn }nGZ = {bn—i—l }nGZ-

For p € (1, co) the projection P : £ (Z) — £” (Np) defined by
P{bninez = {bn}nen,

is continuous (in fact contractive). If ¢ € .#),, with

oo
p(z) = Z anz"
n=0
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and A : {7 (No) — £7(Np) from (15) is the matrix operator formed from the sequence {a, },en,, one can use the
facts that the operators S and B are isometric on £#(Z) and apply the Banach-Steinhaus Theorem to see that the
sequence of operators

BN APSN, N eNy,

are uniformly bounded in operator norm. Applying this sequence of operators to the basis vectors e, = {§; .}, ez
one can verify (equating the sequence {a, }nen, With the sequence {a, }nez, where a,, = 0 for n < 0) that for any
{bninez € P (Z),
Jim (BN APSN){bylner = ;2 bkan_k}
kez nez

and this operator, which we call L, is continuous on £”(Z). Informally, L is multiplication by ¢ when equating a
sequence in £7 (Z) with its corresponding Fourier series. By the dual pairing

o0
(c.d) =Y cxdp. cetP(Z).det!(2).
keZ

one can show that the adjoint L* of L, which is continuous on £9(Z), turns out to be

kez

L*{bn}nez = {Z bkzn—k§ ,
nez

where
{dntnez ={...,a3,a2,a1,a0,0,0,0,...}.

Informally, one can think of L* is multiplication by ¢(e %) on the Fourier series formed by sequences from £9 (Z).
Restricting L™* to £9(—Ng) one can see, by reindexing, that ¢ is a multiplier on Zfl. Thus we have shown that
Mp C Mq. Since this argument was symmetric in p and ¢, we conclude that .#, = .#4.
The proof also shows that

||Mw||@§_>e§ = ||M<p||ez_>gjl~ O

Corollary 8.4. If

o0
0= Z arzX e .,
k=0
then
(i) p et N,
(ii) max{¢ll,. llellg} < 914,
(iii) |ao] + lar| + laz| + -+~ + lan| < ¢]l.a, (1 + 1)7.

Proof. Statement (i) follows from Proposition 8.3. Statement (i i) follows from

el = llg-p = IMpllly < lell.ay, ity = lel.z,

and Proposition 8.3.
To prove (iii), apply

x=(1,0,0,...), y=(o,...,¢4,0,0,...), gj:e—iargaj
to (17) to deduce
laol + lai| + laz| + -+ + lan| = [Soao + -+ + Cnan|
= |(4x,y)|
< g llag (n + )7 0

We remark that when examining .#),, we can use Proposition 8.3 to justify focusing our efforts to the study of .#),
for p € (1,2].
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9 Connection to Fourier multipliers

For p € [1,2] let A,(T) denote the space of all functions f in the Lebesgue space L?(T) whose Fourier coefficients

2
~ ; odl
f(n) = f Fee "2 pez,
2w
0
form a sequence in £7 (Z). More explicitly,
o0 o~
Ap(M):={feL>M): Y [fm)]” < oo}. (18)
n=-—oo0

Parallel to the definition of the norm in ﬁﬁ , we define a norm

o0

1
4
1f L4y = ( > |?<n>|p)
n=—oo
on A, (T). Use that fact {7 C £ for p € [1,2] along with Parseval’s Theorem to see that A, (T) is a Banach space
when p € [1,2].
The corresponding multiplier space, the so called £7-Fourier multipliers, is defined to be the family of all ¢ €

L% (T) (essentially bounded Lebesgue measurable functions on T) such that ¢f € A,(T) whenever f € A,(T),
ie.,

Mp(T) :={p € L) : [ € Ap(T) : of € Ap(T)}.

We naturally define the corresponding multiplier norm by

l@llaz, oy := suptlleflla, o < 1/ la,m < 13-

In Proposition 7.1, we saw that .#, C H°°. Therefore each ¢ € .#), can be considered either as an analytic
function on D or, via radial boundary values, as a measurable function on T with a vanishing negative spectrum (i.e.,
its Fourier coefficients with negative indices are zero). To distinguish between the two interpretations, we denote the
latter function, via radial boundary values, by ¢*. It turns out that ./, naturally sits inside M, (T).

Proposition 9.1. Let p € [1,2] and ¢ € H®®. Then
pEMp < @M.
Moreover, |l¢ll.z, = 9™ llm, ).

Proof. Let 9™ € M, (T). Since Eﬁ - Zfl = H? C L?(T), we can consider Zﬁ as a subclass of A, (T). In particular,
for each f € £ we have ¢* f* € A,(T) and

le™ £y < le™la, @l f *lla, @-

Moreover, the negative parts of the spectrum of ¢™ and f* are identically zero, and thus so is that of ¢™* f™*.
Therefore, p* /* € A,(T) implies that ¢/ € £/ and the above inequality can be rewritten as

lefllp < lle*laz,mll flp-

In other words, ¢ € . and ||¢|l.z, < ll¢™ |7, )

Now assume that ¢ € .#,,. Let f be a trigonometric polynomial of degree N. Then e/ V? f(e??) is an analytic
polynomial and can be considered as an element of Zﬁ . Thus, since ¢ is a multiplier of £, we have pe! N f € Zﬁ
and

i N6 i N6
lpe" ™" fllo < llella,lle™ fllp-

Brought to you by | Old Dominion University
Authenticated
Download Date | 11/30/17 7:54 PM



DE GRUYTER OPEN Multipliers of sequence spaces = 87

Since the operator f > ¢!V f is isometric on A, (T), we can rewrite the previous inequality as

le™ flla, o < llela, 1 f 4, -

Since trigonometric polynomials are dense in A, (T), the estimate above holds for all f € A, (T). Therefore ¢* €
My (T) and [[¢™*|lar,(r) < ll¢ll.#,. Combine this inequality with the reverse of it shown before to complete the
proof. O

Though this Fourier multiplier problem might seem like a detour from our main discussion concerning the multipliers
of £ fl) , it will surface again later when examining boundary values of multipliers.

10 Quotients of multipliers

Classical factorization results [7] say that any f € H 2 can be written as f = h1/hs where hy and h5 are bounded
analytic functions and /15 is zero free. Since the multiplier space of H? is precisely H°°, this result can be stated in
the following equivalent form for a Banach space of analytic functions X" and its multiplier space M, i.e.,

— hl
f= ' 19)

where /11 and /5 belong to the multiplier space M and /5 is zero free. This point of view opens the door for the same
question about any Banach space of analytic functions. In some cases the answer is known. Besides the Hardy space
H?, it seems that the answer is affirmative for the classical Dirichlet space as well as reproducing kernel Hilbert
spaces with a Nevanlinna-Pick kernel (several unpublished results). We are interested in this question for Ei’ spaces.
When p = 2, we are in the classical setting of {2 = H? and thus, as seen above, the answer is affirmative. The case
p = lis also trivial since E}l is itself an algebra, and thus it coincides with its multiplier algebra. For p € (1, 2), the
question is still open. Using function theory tools mentioned earlier, we can show that the answer is negative when
p € (2,00).

Corollary 10.1. Let p € (2,00). Then there are functions in Eﬁ which cannot be represented as the quotient of two
multipliers.

Proof. By Corollary 5.2, there are functions in Zﬁ which are not in the Nevanlinna class N. Such a function cannot
be represented as the quotient of two multipliers, since by (14), such a quotient is in N. O

Using a similar technique, one can show that the representation (19) fails in the Bergman space since it is well-known
that the Bergman space is not contained in the Nevanlinna class.

11 Isometric multipliers

Which multipliers ¢ satisfy
lefllo =1flp. fety? (20)

These are known as the isometric multipliers.

Once again the case p = 2 is exceptional. It is well known that (20) holds for ﬁfl = H? if and only if ¢ is an

inner function. Indeed, Proposition 7.1 and (20) show that
lp(z)| <1, zeD.

Then use Parseval’s identity to rewrite (20) in integral form as

2w

: L db
J1EOra-eP 5 =0 f e,
0]
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which holds if and only if |@(e‘?)] = 1 almost everywhere. In other words, ¢ is inner. When p # 2 the story is
different. Observe that

12" fllo =1 fllp.  fetf, 1)

for all n = 0. In other words, the monomials z" are isometric multipliers for Zﬁ . Are there others?

Theorem 11.1 (Nikolskii [21]). If p € (1,00) \ {2} and ¢ is an isometric multiplier for £, then ¢(z) = yz"* for
some n = 0 and a unimodular constant y.

The proof is based on two sets of elementary inequalities due to Bernoulli [22, p. 31]. In the following x = 0, y = 0
andt = —1.

(i) ForO0<a <1
(a) we have
()% < x4y
and equality holds if and only if either x = O or y = 0.
(b) we have
(I+D*<1+at
and equality holds if and only if = 0.
(i) Forl <a < 00
(a) we have
(xr+3)% = x% 4+
and equality holds if and only if either x = O or y = 0.
(b) we have
A+n%z21+at

and equality holds if and only if 7 = 0.

Proof of Theorem 11.1. We treat the case 1 < p < 2 for which the first set of inequalities above are used. The other
case is similar.

We may write ¢(z) = yz"¢1(z), where y is unimodular, n is the order of the zero of / at the origin, and ¢ is
such that ¢1 (0) > 0. By (21), we have

lei fllp = 1f 1o f L5

We will now show that ¢ = 1.
Hence, considering the above reduction, assume that ¢(0) > O and |¢f |, = || f|p forall f € ﬁﬁ. Take

fz)=14¢"z,

where we treat 6 as a free parameter. If
(e}
EEDIED
n=0

the isometric identity can be rewritten as

o0
laol” + ) lan+1 + ane'®|” = 2. (22)

n=0

We integrate both sides with respect to d6. First, due to periodicity, we have

2w 2
/|a+bei9|Pd9=[||a|+|b|ef9|"d9.
0 0
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Second, an elementary calculation reveals that
llal + 1ble"|* = |af? + [bI* + 2|ablcos = (la|? + b|*) (1 + s cos 0),

where
2|ab|
§ = ————.
lal> +1b]2

Note that 0 < s < 1 and thus ¢ := s cos § = —1. Third, by the above Bernoulli inequalities we have

! 2w 5 b2 » 2w

. 2
—/||a|+|b|e’9|pd0=M /(1+scose)% do
2 2
0 0

2

P4 |p|P

< % /(1+%cos9) do
0

= lal” + 1617,
and the equality holds if and only if either a = 0 or » = 0. Returning to (22), we get
(o) oo
2< aol” + D (ant11” +lanl?) =2 lan|”.
n=0 n=0

If we plug f = 1 in we see that

0o 1/p
lell, = (Z |an|”) =1
n=0

Hence, in the above relation, equality holds, which in return implies that equality holds in all preceding inequalities.
Since ag # 0, we must have
a]) = 0.

We now repeat the above procedure with the function
f(z)=14¢"922

and deduce that ap = 0. By induction, we have a;, = 0 for all n = 1. Since ap > 0 and ZZO:O lan|? =1, we
conclude that ¢ = ag = 1. O

12 Smooth multipliers

The family of analytic functions which are defined on a disk larger than the open unit disc is denoted by Hol(DD).
From Young’s Inequality (see (5)) we see that

ty S My, peloo)
with equality when p = 1. Thus certainly we have
Hol(D) C ..

We present below an alternative proof of this fact where we can obtain further information.
Let us recall Schur’s test. Let A = [a; ;] be an infinite matrix, and let p € (1, 00). Assume that there are positive
constants  and 8 and positive sequences {p; } and {g; } such that

|al~‘|p'saLI'7 ]21!
J 1 J
i
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and
D laijlq? <Bpf. izl
7

Then A is a bounded operator on £” and moreover,

1Al er—ser < a? B, (23)

For each f € Hol(ID) with Taylor series expansion
oo
f@)=>"an".
n=0

there is R > 1 and a ¢ > 0O such that

%, n=0. (24)

The constants R and ¢ depend on f, but work uniformly with respect to n. This exponential decay plays the major
role in establishing the following result.

lan| <

Theorem 12.1. If p € (1, 00), then Hol(D) C .#,,.

Proof. By Proposition 8.2, it is enough to show that the matrix A formed with the coefficients of ¢, according to
recipe (15), is a bounded operator on £7. We apply Schur’s test with p; = g; = t!, where  is a positive parameter
to be determined momentarily.

Fixing j, by (24), we have

(oo}
Y laij|l pf =) lai—j|1'”
i

i=j
o
ttp
<
<c) Ri—J
i=j
o ipNi
=C[jp (?)
i=0
c .
3

Similarly, fixing i, by (24), we have

i

J j=0
i qu
<
\CZ Ri—J
Jj=0
i 1 J
=ct'? —
> ()
Jj=0
c
= T Di s 1 =0.
l—th

Schur’s test ensures that

N =

1
q
C C
||A||€P—>€P § ( t”) ( 1 ) .
-r e

The above geometric series are convergent provided that 1” < R and ¢t > 1/R. Hence, the acceptable range of ¢ is

<t<RYP,

R1/4a
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Therefore we can say that
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L\
A < inf
ler—er < ot (5

In particular, with z = 1 we get
c

1—

|Aller—er < ——
R
which is enough for our applications.

%
: ) . (25)
T 1R

(26)

O

In the above proof, we took # = 1 in (25). Is it possible to get a better bound by choosing another value of #? In other

words, what is the optimal value of #?

The proof of Theorem 12.1 contains more information than presented in the theorem. By a closer look, we

obtain the following interesting convergence result.

Corollary 12.2. For p € (1,00) and ¢ € Hol(D) and denote its Taylor polynomial of degree n by ¢,,. Then

lim — = 0.
n ||‘Pn wn%,,
MOVEOVE}'; the rate ofdecay is exponential.

Proof. Since

(o0 o0
0@ —en(z) = D axz* =" Y apingat,

k=n+1 k=0

by (21), we have

len —oll.z, =

o0

k
Z Ak+n+1Z
k=0

Thus, according to Proposition 8.2,

lgn —¢ll.a, = 1 Anller—er,

where the matrix A, is given by (15) but with the sequence
Ok = dk+4n+1, k=0.

By (24) we have the estimate

¢ (c/R"1)
|Olk| = |ak+n+l| < Rk+n+1 = Rk
Therefore by (26),
c Rn+l
Mnllerer < LR
-z

which reveals that ||@, — ¢||_#, exponentially decreases to zero.

WV
o

O

Corollary 12.2 does not hold for an arbitrary multiplier. For example, we saw that .#> = H °°. However if ¢ € .#>

satisfies

lon — oll.y = llon — @llco — 0,

then ¢ is continuous on D.
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13 ¢! embeds contractively in .7,

In this Section, we provide a result which contains Theorem 12.1 as a special case. However, we stated that theorem
separately since the estimate in (25) should provide a better bound for the norm of the narrower class of multipliers
Hol(D).

Theorem 13.1. For p € (1, 00) we have 5114 C Mp and
.z, < IRl

1
forevery h € €.

Proof. Of course the result follows immediately from (5) (and also observed in [21]) but we include a proof using
the tools developed above. We again appeal to Proposition 8.2. Hence, it is enough to show that the matrix A formed
with the coefficients of & according to recipe (15) is a contraction on £”. We apply the simplest version of Schur’s
test, i.e., with p; = ¢q; = 1.

Fixing j, we have

o0 o0
D olaiflpl =Y lai—jl =Y lakl = llh]1.
i k=0

i=J

Similarly, fixing i, we obtain

i i
D laijlg? =Y lai—jl = lax| < |l
J j=0 k=0

Therefore we may take
a=p=]|hl.

Schur’s test (23) ensures that
Aller—er < [I2]1. O

Corollary 13.2. Let p € (1, 00) and for h € 5114 denote its Taylor polynomial of degree n by hy,. Then
ng}moo Ihn — hll.z, = 0.
If the coefficients of & are all nonnegative, then Theorem 13.1 is reversible.

Theorem 13.3. Let p € (1,00). If h € .#), and the Taylor coefficients of h are nonnegative, then h € 6/11.

Proof. In the inequality (17), take

to get

n i

Y3 a4y <+ Dlhll.a,.
0

i=0/=

After rearranging the sums we obtain

n ( k
3 (1- —)ak < Il
o n—+1

By the monotone convergence theorem, let n — oo to deduce

o0
3 ax < k. 0
k=0
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14 Boundary properties of multipliers

Since .#, C H®® each h € .#), has a non-tangential limit
< lim h(z)
z—elf

for almost every 6. Lebedev and Olevskii [14, 17, 18] observed that more can be said. Their work is based on the
following technical discussion.
Recall the definition of A, (T) for p € [1, 2] from (18)

(e}

Ap(M):=feLXM): Y [f(m)]” <oo

n=—oo

and its corresponding space of multipliers
Mp(T) :={p € L=(T): f € Ap(T) : ¢f € Ap(T)}.
This next result is a bit technical and we refer the reader to the references for the proof.

Theorem 14.1 (Lebedev and Olevskii [14, 17, 18]). If p € [1,2) and € My (T), there is a continuous function W
on T such that v = V almost everywhere on T.

Corollary 14.2. Let p € [1,2) and ¢ € #p. Then the unrestricted limit

hm_6 o(z)

z—e!

exists for almost all 6.

Proof. From Proposition 9.1 we know that the almost everywhere defined radial boundary function ¢* belongs to
M, (T) and, by Theorem 14.1, there is a continuous function ® on T that is equal to ¢™ almost everywhere. Since
@™ is the radial boundary function for ¢, we have the well-known Poisson integral formula

27 40 27 40
o(2) = / P2 = / P02
2w 2w

(0] 0

where P (e'?) is the Poisson kernel.
If ¢’? is a point of continuity of W, a well-known fact from harmonic analysis says that

2
. L do .
lim | P.(e!?)®(e'f)— = d(e').
z—>ell 27
However, almost every point of T is a point of continuity of ® and the result now follows. O

The essential feature of Corollary 14.2 is that z € D freely tends to the boundary point ¢ and it is not obliged to stay
in a Stolz domain (non-tangential approach region). We also mention that it is sometimes (often?) the case the set of
multipliers for a Banach space of analytic functions are better behaved near the boundary than generic functions in
the space.

15 Inner multipliers

A worthy set of functions to test as possible multipliers for .#), are the inner functions. We know that the monomials
¢n(z) = z™ are multipliers, in fact isometric multipliers. Are there any other inner multipliers?

Certainly any finite Blaschke product is an inner multiplier since these are analytic in an open neighborhood of
D (see Theorem 12.1). There are some infinite Blaschke products which are multipliers for all of the Eﬁ classes.
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Theorem 15.1 (Vinogradov [25], Verbitskii [23]). Let {z;,}n=1 be a Blaschke sequence in D such that
(i) limy—>oozn = 1,
(ii) and

Z |1 —z,| = O(), &—0.

{n:|1—z,l<e}

Let B be the corresponding Blaschke product. Then

B e ﬂ Mp.

l1<p<oco
The Blaschke product presented in Theorem 15.1 is discontinuous at the point z = 1. As a matter of fact,

liminf|B(z)| =0 while limsup |B(z)| = 1.
z—1 z—1

The first example of this type was constructed by Vinogradov. He proved Theorem 15.1 for zeros tending
nontangentially to 1 in [24] and then generalized it in [25]. The same result was obtained independently by Verbitskii
[23]. Finally, Lebedev [15] showed that Theorem 15.1 is partially reversible. See also [16] for a short survey on inner
£7 -multipliers.

It is worth mentioning that Vinogradov [24] obtained the weak version of Theorem 15.1 as the corollary of a
more general result. To present his result, we need the domain

Q(r,a) ={z:|z| <r}\{z:|arg(z — )| < a},
wherer > land 0 < o < 7/2.

Theorem 15.2 (Vinogradov [24]). For eachr > 1 and a € (0, %), we have

H®(Qr.a)<S () M,

PE(l,00)

A little thought will show that any Blaschke product whose zeros tend non-tangentially to 1 (i.e., lie in a fixed
Stolz domain) satisfies the condition of Theorem 15.2 for some r > 1 and « € [0, 7, 2), and thus the weak version
of Theorem 15.1 follows. However, there is a large family of functions which are not inner and still fulfill the
requirements of Theorem 15.2. Note that this result does not apply to the singular inner functions

sq(z) :=exp (—a1 +Z), (a > 0).
1—z

As a matter of fact, we will see that s, does not belong to .4, for any p € (1,00) \ {2}.
We can use Corollary 14.2 to eliminate certain classes of inner functions as multipliers. Let us recall that if / is
an inner function, then its boundary spectrum is

o(h) = {; € T liminf |h(2)] = 0}.

Equivalently [11, p. 154], if » = BS is the decomposition of / as the product of a Blaschke factor B formed with
zeros {z, }n=1 and a singular inner function S formed with the singular measure v, then o (%) is precisely the union
of the spectrum of v and the accumulation points of {z,},=1 on T. The Lebesgue measure of a measurable set
E C Tis denoted by |E|.

Theorem 15.3. Let h be an inner function such that |o (h)| > 0. Then
hd

forany p € (1,00) \ {2}.
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Proof. Since .#, = .#4 (Proposition 8.3) we can assume p € [1,2).If h € M, then, by Corollary 14.2,

h(§) =0

for almost all { € o(h). Since at the same time || = 1 almost everywhere on T, we conclude that the Lebesgue
measure of o (h) is zero. O

Surprisingly, the mere existence of a singular inner function in .#), is still an open question. According to Theorem
15.3, the condition |o(k)| = 0 is necessary for being a multiplier. However, this condition is not sufficient. For
example, as we mentioned before, Verbitskii [23] showed that the simplest singular inner function

1
sa(z):exp(—al+z), a>0.
—z

is not in any .#,, for p € (1,00) \ {2}. We provide some further results clarifying the fact that the condition
|o(h)| = 0 is far from being sufficient for multipliers.
Let E C T. Foran arc I C T, we define the quantity

de(I):=sup{|J|:Jisanarc,J C I,J NE = 0@}.

In other words, and naively speaking, when we remove the points of £ from I, then d g (1) is the size of largest arc
among the remaining pieces. We say that ¢ € T is a point of thickness of E provided that d g (1) = o(|I|) for arcs I
containing ¢ and shrinking to this point. The set of all points of thickness of E is denoted by E’ " Tt is clear that for
a closed set E, we have E! h C E. The following result establishes the connection between the measures of an arc
anddg ().

Lemma 154. Let S be a singular inner function, corresponding to the singular measure |, let E be its support.
Suppose that S € M), for some p with p € (1,00) \ {2}. Then for each arc I < T with dg (1) > 0 we have
17]*
c s
dp(I)

p(l) <
where ¢ does not depend on 1.
We need a technical result first which uses our previous Fourier multiplier discussion.
Proposition 15.5. Let O(t) be a real-valued 27 -periodic function on R such that
p:=e%c M, (T)

Sfor some p € (1,00)\{2}. Suppose I C R is an interval of length at most 2wt and that ® has a continuous derivative

of ordern =2 on I. Then c

1’

inf |07 ()| <
tel
where the constant ¢ = ¢(0, p,n) does not depend on I .

Proof. By Corollary 8.3, we have .#, = .#,. Therefore, without loss of generality, we assume that p < 2. Let y;
denote the characteristic function of . It is easy to directly verify that y; € A,(T) and estimate its norm. In fact,
the Fourier coefficient of y; are given by

o
x7(0) = o
and in(k|7]/2)
- sin
w0 =y D e oy,

where yx is a unimodular constant. Hence, y; € A, (T) and, moreover,

Ixzlla, e = Ixzller @
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1
p

Z Ix:(k)l”)

> ( X1 (k)1”
kl<m/211]

=

\V

(H1/4m)"?
|k\<n/2|1|

ALV LTS
|7] 471 15
Note that the last estimate also holds for p = co. Since ¢ € M, (T), and thus

Ixrlla,cm = lle xexrlla,m < lella,a 1@xrlla, .

we conclude that

_ 1 -
lexilla,m = o7 7. 27
v 15)@llar, (T

Therefore, we need a strategy to deal with the left side of above inequality. To this end, we need the well-known
Corput lemma [3, Chapter I]: if a real-valued function g has a continuous derivative of order n = 2 on an interval 7/,

then
. C’
/ezgm di| < n _
n

7 (inf |g<"><r)|)
tel

where ¢, is a positive constant that just depends on n. We apply this result to the function g(t) = ®(¢) + kt. Since
n = 2, we have

inf [g" (1) = inf |7 (1)|.

tel tel

Thus, forall k € Z,

_ 1 o
0] = 5| [ OO0 ) < R
1 27 (inf |®<">(z)|)
tel

In short, this means that
— Cn
l@xrllese(z) < -

2t (inf |®<")(t)|)"
tel

At the same time,
Iz lle2zy = 1611 le2zy = Ll
2

Now, we can interpolate {7 between 2 and £° [?, Chapter 6] to obtain
loxrlla,m = llexrller @

— 12z 2
S ”‘/)XI“goo&‘) ”(/)XI ”;2(2)
1—

. cn Ll
1 2
27 (inf |®(")(z)|)
tel

If we plug this estimation into (27) we obtain the required result. O

SIS

N
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Proof of Lemma 15.4. Assume that dg (1) > 0 (otherwise the result is trivial). Hence, there is an arc J C [ such
that J N E =@ and |J| > dg(I)/2. Moreover, we may also assume that dist(J, E) > 0. We consider a copy of J
on R in the following way: let A be an interval on R such that |A| < 27 and

J=1{el 11 €A}

We can write S(e’!) = ¢!®®) where O is a real-valued 27 -periodic function and, for € A, it is given by

2
O@) = | cot (E) du(e').
[

Since dist(J, E) > 0, the function ® is infinitely differentiable on A and the operator d/9d¢ can commute with the
integral. Since

93 (s—t) 3cos2((s —1)/2) + sin?((s — 1) /2)
73C0t = 4
ot 2 4sin™((s —t)/2)

_ 1 B 4

T asin*((s —1)/2)  lefs —eit]*’

we see that
4p(l)
|74

4 ; 4 ;
3) is is
© (f)medW )Zf o5 —gria W) =
T 1

By Proposition 9.1, the assumption S € .#), is equivalent to el®eM »(T). Therefore, applying Proposition 15.5

for the third derivative of ®, we obtain
4u(l) c
< .
PARSE VNG

Since |A| = |J| > dE(1)/2, the result follows. O

Now we have all the required tools to establish an important result which shows that the condition | E| = 0 alone is
not enough to ensure that S € .#),, for some p € (1,00) \ {2}. The set E is the boundary spectrum of S.

Theorem 15.6 (Lebedev [15]). Let S be a singular inner function and let E be its boundary spectrum. If Et" # E,
then S & ), for any p with p € (1,00) \ {2}.

Proof. Suppose that, to the contrary, there is a p € (1, 00) \ {2} for which S € .#),. Then, by Lemma 15.4, for any

arc I C T, we have
1

dp(1)’

where ¢ does not depend on /. Let us write this inequality as

(20" <11t
|7 Ty

Since p is singular, for p-almost all ¢ € T, we have

wh)
7]

ul) <c

as I contains ¢ and shrinks to this point. Therefore, at all such points,

de ()
]

— 0,

or equivalently, they are points of thickness for E. Hence, we can surely say (T \ E‘*) = 0. As E is closed and
E'" C E, we must have E/# = E, which contradicts our assumption. O
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To effectively use Theorem 15.6, let us introduce the concept of porous sets. We say that E C T is a porous set if
there exists a constant ¢ > 0 such that for all arcs / C T

de() = cl|l|.

For example, a singleton is a porous set. But, there are more sophisticated constructions. Clearly, if E is porous, then
E'" = . Hence, we immediately deduce the following corollary.

Corollary 15.7 (Lebedev [15]). Let S be a singular inner function whose spectrum is a porous set. Then S & .#
forany p € (1,00) \ {2}.

In particular,

14z
sq(z) = exp (—a ] + ) , a>0, (28)
-z
is not in ., for any p € (1,00) \ {2}. Using special techniques from the theory of Bessel functions, this particular
result was first obtained by Verbitskii [23]. However, the original proof of Verbitskii has interesting pieces worth
mentioning. Bessel functions are an important topic in the theory of special functions [8—10]. A Bessel function of
the first kind and order v is defined by

(e o]

—1)" 2n+v
w0=3 (3
n=0
Fix the constant y > 0 and define the kernel
k(x) := %Jl(y\/}), x> 0.

From here we can define the integral operator

oo

K@ = [ koS =0 de
0

on L?(RY). Using special properties of Bessel functions, we can show that K is unbounded whenever p € (2, 4).
To see this, consider

)= x"20,BVx), x>0,

where the parameters v and 8 will be determined soon. If
1 v 1
v+ —>0 and (z=—-)p+1<0,
P 2 4

then f € L?(R1). Moreover, one of the Sonine relations for Bessel functions [9] says that

(Kf)(x) = WW”J—V((% _pV2UR). x>0
Therefore,
/|xv/2J_v((y2_ﬂ2)l/2ﬁ)’de
IKS 1 e PO,

”f”Zp(R) - Vp()/z —,BZ)VP/Z co
[ 120 (07 2

0
[ 2 ()
0

/32(vp+1)
yP(y?—p2yrett o
/|xv/21v(¢;);de
(0]
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The above estimate shows that »
IKFI2

1717 0

as B tends to y. Hence, K is an unbounded operator on L? (R1) when p € (2, 4). Therefore,
k & Mp(R),

where M, (R) is the class of Fourier integrals that is defined similarly to M, (T) [12]. However, the Fourier transform
of the kernel k is 5
k(x) = =(1—e72i@/),
Y

where o = y2/8 whence
e YN o M,(R).

This assertion is equivalent to
et o/ tan(x/2) ¢ Mp (R)

The advantage of the latter is that it is a 277 -periodic function on R. Thus in light of de Leeuw’s theorem [6], the
atomic inner function given by the formula (28) is not a multiplier on .#),.
Our second theorem has the same flavor and it leads to interesting corollaries which are easy to verify.

Theorem 15.8 (Lebedev [15]). Let S be a singular inner function, and let E be its spectrum. Suppose that, for each
& > 0, there are at most countably many arcs I, such that

EgUIn

n=1
and
11,]*
Z 3 <e. (29)
a=1 dgUn)

Then S & M) for any p € (1,00) \ {2}.

Proof. Suppose that, to the contrary, there is a p € (1, 00) \ {2} for which S’ € .#),. Therefore, for each ¢ > 0, there
is a covering of E by arcs [, such that (29) holds. In the light of Lemma 15.4, we deduce that

I 4
B < Y nn < Y e <
n=1 n=1 d(In)
Since ¢ is arbitrary, we must have & = 0 which is a contradiction. O

The success of Theorem 29 lies on the fact that a covering with the property 29 forces the p-size of the set to be zero.
Hence, if the covering holds just for a smaller subset F C E for which w(F) > 0, then the conclusion of theorem
is still valid. The condition of Theorem 29 is rather difficult to verify. However, we can establish a link between this
result and the length of complementary arcs of E which is way easier to handle.

Corollary 15.9 (Lebedev [15]). Let E C T be a closed subset of Lebesgue measure zero. Let J,, denote the arcs
that are complementary to E and ordered such that

|| = |Jnt1l, n=1.

Assume that |
k}glggw Z [Jn] = 0. (30
n>N

If S is a singular inner function whose spectrum is contained in E, then S & ), for any p € (1,00) \ {2}.
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Proof. Fix N.By removing Jp,...,Jxn from T, we obtain N arcs which we call Ky, ..., Ky. Let I, be the arc of
size 3| K| and concentric with K,,. Then

N
Ec | I
n=1
and

de(In) = min{| Ky |, [Jn [}

Note that, as an extreme case, it is possible that J,, is a singleton. In this case, to avoid certain technical difficulties,
we may replace it with a small arc, e.g., of size 2|J |. Then

N 4 4 4
S PILIM TG 171
n=1 dg(In) I<ns<N dg(In) I<nsN dg(In)
[Knl<|IN| [Knl>|JN|
GlKn)* GlKn)*
< — t —_—
1@2:1\/ |Knl? 1SnstN [InI?
[Knl<|INI [Knl>|Jn|
4
812|Kn|+|J (Z| n|)
n=1
_812|Jn|+|J (Z|n|)
n>N n>N
By hypothesis, the right hand side can be made arbitrarily small. Therefore, the conditions of Theorem 15.8 are
fulfilled and S cannot be in any .#), for any p € (1,00) \ {2}. O
It is easy to see that if
Z |Jn| < o0,
n=1

then (30) holds. We provide further classes below.
To obtain a similar useful corollary, we need a well-known concept. Given E C T, its e-neighborhood is

={{ e T:dist((, E) < &}.

To measure the distance, we might use either the arc length or the Euclidian metric. The choice is irrelevant for the
following result.

Corollary 15.10 (Lebedev [15]). Let E C T be such that

lim |Ee|
e—0 83/4

=0. (31)
If S is a singular inner function whose spectrum is contained in E, then S & .#,, for any p € (1,00) \ {2}.

Proof. Fix ¢ > 0. Without loss of generality, we assume that £, # T. Otherwise, we choose a smaller ¢. The set E,
is a disjoint union of a finite number of arcs, e.g., I, ..., I ;. Certainly, for each arc,

dg (I n) =€
Therefore, for the covering [, of E, we have
N

1 [* s (N IR
Zd3(l) 832'"' Z|In| = 83 .

n=1 n=1

By assumption, the right hand side can be made arbitrarily small and thus the conditions of Theorem 15.8 are
fulfilled. Hence, S ¢ .#), for any p with p # 2,1 < p < 0. O
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We end this section by showing that a wide range of generalized Cantor sets fall into the family of sets described
above. Let (A,),=0 be a sequence in the interval (0, 1). Let I be a closed arc on T of size pg = |/|. The generalized
Cantor set is constructed as follows:

Step 1: from I we remove the concentric open arc of length Agpp. As so, we obtain two arcs of length

1
p1 = (1 —20)po.
2
Step 2: from each of the remaining two arcs, we remove an open concentric arc of length A1 p1. As so, we obtain
four arcs of length
1
=-(1-2 .
p2 = 5( 1)p1
Step n: we continue the above process and in the n-th step we would have 2’ intervals of length

_ (O=Ap—1)pn—1 _ (1 =2u—1)---(1 —20)po
B 2 B 2n '

Pn

The remaining set, which can be written as the intersection of the union of the above 2" arcs, is called the generalized
Cantor set. It is rather straightforward to see that if

1
lim 3
N —o0 )VN

N—1
[Ta-an=0
n=1

then the conditions of Theorem 15.8 are fulfilled. Hence, S is any singular inner function whose spectrum is
contained in E then S ¢ .#), for any p € (1,00) \ {2}.

16 Orthogonality

The notion of Birkhoff-James orthogonality [2, 13] extends the concept of orthogonality from an inner product space
to a more general normed linear space. Let x and y be vectors belonging to a normed linear space X'. We say that x
is orthogonal to 'y in the Birkhoff-James sense if

Ix+ Byllx = Ix]lx (32)

for all scalars f. In this situation we write x L x y. It is straightforward to show that when X’ is a Hilbert space, then
x L yis equivalent to x Ly y. The relation L x is generally neither symmetric nor linear. When X = £7, let us
write L, in place of the more cumbersome L ¢». Of particular importance here is the following explicit criterion for
the relation L, when p € (1, 00).

Theorem 16.1 (James [13]).

oo
alpb < Y |ax|? *axbi = 0. (33)
k=0

where any occurrence of “|0|” =20 in the sum above is interpreted as zero.
Borrowing from (33) we define, for a complex number o = re’?, and any s > 0, the quantity

ol = (rei9)<s) = pSeTi0 34)
It is easy to verify that for any complex numbers o« and 3, real exponent s > 0, and integer n > 0, we have

(aﬂ)m — a‘”ﬁ“)

o] = Jarf?
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(s) |S+1

o
@) = (@)
(@P=Dyla=1) — ¢

o =|o

In light of the definition (34), for a = (ax)x =0, let us write
a? = @”")izo. (35)
Ifa € £7, it is easy to see that al?—1) ¢ ¢4 and thus from (2) and (33),
al,b < (ba?")=0o. (36)

Note that L, is therefore linear in its second argument, when p € (1, 00), and it then makes sense to speak of a
vector being orthogonal to a subspace of £7.

Due to the isometry between £Z and Zﬁ, we can pass the Birkhoff-James orthogonality from £# to Kﬁ . More
explicitly, if

oo o0
az) =Y axzf. and b(z) =Y bz
k=0 k=0

are in Kﬁ,then
alp,b < al,b.

Similarly, we define

oo
aP V()= 3 afrm k.
k=0

Note that a{?~1) € Efl and (36) is rewritten as

aly,b < (ba'?~")=0. (37)

17 An application to zeros of analytic functions

In this section we discuss an application of multipliers and Birkhoff-James orthogonality to estimating zeros of
polynomials from [20].

We first introduce a special function that enables us to connect an analytic function to an orthogonality condition.
For p € (1,00) and w € D \ {0}, define

l—z/w
P = e
Since |w'?~ 1| = |w|9~! < 1, the function By, is analytic in . When p = 2 observe that w?>~!’ = w and so
1l w—z
Boow = —+——, (38)
wl—-w:z

which is just a constant multiple of a Blaschke factor. Using the fact that | B y, (¢??)| = |w|~! for all 6, we see that

A 49 1 ... do

/Bz,w(eie)SkBZ.w(em) — = — / eik9 — =0, k=>=1.
27 |w|? 2

0

Thus Bs .y Lo S¥ B, y, forall k = 1. It turns out that something analogous holds when p € (1, 00). We refer the
reader to [20] for the proof.

Lemma 17.1. For each p € (1,00) and w € D \ {0} we have
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(i) Bp.w Lp Bp.wf forall f € £5 with f(0) = 0;
. _ (1 —|w|9)P~1q1/p
(i) |Bp.wlp = [1 + T]

It could be said that B, y, plays arole in Kﬁ analogous to that of a Blaschke factor in the Hardy space H 2. However,
here the situation is more complicated. See [5] for an exploration of this idea.

Here is our application of ﬁﬁ multipliers to obtain another proof of a set of classical bounds for the zeros of an
analytic function. These bounds are tied to the well-known estimates for polynomial roots by Cauchy, Lagrange, and
others (see, for example, [19]). Yet another proof of this result appears in [20], along with some extensions, based
on using Birkhoff-James orthogonality more directly.

Theorem 17.2. Suppose that

@)=Y ag
k=0

is analytic in D, and ag # 0. If w € D is a zero of f, then

—1

a a a
lez[\—l +\—2\+\—3\+.--} (39)
ao ao ao
—1
|w|>[1+sup{a—l,)a—z‘,‘ai,mﬂ (40)
ao ao ao
and y
ai |P a» | P as |P q/p ™4
|w|>[1+((—1 + 27+ 2+ ] @1
ao ao ao

forall p € (1, 00).

Proof. Fix p € (1,00) and assume that f € Zﬁ . Otherwise the right hand side is zero and the inequality is
automatically true. Recall that

1=\ k=0

and note that S| f] is a (closed) subspace of 62’ since S is an isometry. Write ? for the metric projection of f onto
S[f]. Since Zﬁ is uniformly convex [4], this metric projection is the unique function f € Zﬁ satisfying

inf{L £~ gllp 8 € SUF =17 = Tl )
Let ;
7@ i= L5 = —w(@u )

and note, by hypothesis, that f7 analytic in D and

S1(0) = f(0) = ao. (43)

Furthermore, by Proposition 6.1, we have f] € Kﬁ. If P denotes the analytic polynomials, we have

Ifllp =1/ =7, (by(@2) (44)
inf{|| f + zqflp : q € P}

l[10-3) <ot 2] a7
inf{”fl(l _ %)(1 —I—zq)Hp g e 73}

inf{Hﬁ(l—%)QHp:QeP,Q(O):l}. 45)

Brought to you by | Old Dominion University
Authenticated
Download Date | 11/30/17 7:54 PM



104 —— R.Chengetal.

For any Q € P with Q(0) = 1 we have the identity

fiBpuw(1-v V20 = fi(1-=)o.

Furthermore, if
1- w(‘f Dz Z diz"
and
n
Qn =Y diz,

k=0
then Q, € P with Q,,(0) = 1 and by Corollary 12.2, we get
Y

1_w(q_1)20%p - 0,

|0n -
From here we see that

lonn(1=5)=nmwel, <1-5] o

which goes to zero as n — oco. Combine this with (46) to see that the sets

- l_w(q_])z

DE GRUYTER OPEN

| 17l

{f/iBpwQ:0€P,00)=1} and {fl(l—%)Q 10 eP,Q0)=1}

have the same closure in Zi’ . Thus (45) is equal to

inf{|| f1BpwQlp: @ € P, Q(0) = 1}.

In a somewhat similar way, let @ € P with Q(0) = 1. If

o0
Q = Z Cka
k=0
and
1 & X
= — Ckz,
On = k;
then Q, € P with Q,,(0) = 1 (see (43)) and

1/p
oo

laoOn — f1Qlp = Z lex 1P — 0.

k=n-+1
Thus

”aon,w On— N Bp.wQ”p < ”Bp,w”//lp laoOn — f1 Q“p - 0.

This says that the closure of

{aoBpwQ : Q €P.Q(0) =1}
in Eﬁ is contained in the closure of

{/1BpwQ:0€P.0(0) =1j.
From this containment of closures, we see that (47) is bounded below by

|ao|inf{[| Bp.wQll» : @ € P, Q(0) = 1.

Using the fact that Q(0) = 1, write

BpwQ = Bpw + (0 —0(0)Bp.uw
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and use Lemma 17.1 and (32) to see that (48) is bounded below by

laol - |1 Bp.wllp-
By Lemma 17.1, the above is equal to

(1= Jw|9)P~91/p
Jr+ =]
|aol [ + |7

Following this all the way back to (44) yields the inequality

(1= w|!)r=tq1/7
ol -1+ A= I077)
£l = laol - | ol
from which it follows |
1 —|wl|9)P~ a|p  |az|?
a—Jw|)P— ‘ +‘7z +‘£
o wlr
Writing
az |P 1/p
o 2 )
ao
we have

(1 —[w]4)P~!
[wl|?
(1= w)?~" < |lw|P?M?
(1= |w|H" < |w|M
(1—[w]?) < [w]?M4
1
(M4 + 1)/

<MP?

< |wl.

This proves (41). The bounds in (39) and (40) are obtained by taking the limits p — 1 and p — oo, respectively. [

18 Coefficient estimates

We know from Corollary 8.4 that if i € M, then in fact h € ¢4 and
12llp < 1A ]| r,,- (49)

If we use the #{?~1) idea via Birkhoff-James orthogonality, we can sharpen this inequality considerably.

Proposition 18.1. Suppose that p € (1,00) and h € 4. Then

_ q
1R Whlla = [(laol” + lar|” + laz]” + -+ ) (50)
- — _ q
+‘a§p l)ao—l—aép Dy —i—agp 1)a2+...)
— q
+ ‘“ép Yag +al?"Vay +al’Vas +)

(p—1)

+1al? Pag +al? Var +al? Va4 -

1/q
4]

Proof. Let f(z) = Y reo bk z¥ belong to Zﬁ. Let us write f for the isomorph of f in the sequence space £# and
hf for the corresponding sequence for 4 f". Then for any ¢ € £9, the linear functional

f > (hf, )
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is continuous on £% with norm no greater than |[|A|]. ¢l In particular, we could consider the basic vectors
eo :=(1,0,0,0,...),

e :=(0,1,0,0,...),
e :=(0,0,1,0,...),

for £, where we find that

k
(hf, e ) = Z ax—;bj
Jj=0

=, (ax,ax—1,...,a1,a0,0,0,...)).

Set
uc = (ag,arx—1,...,a1,a0,0,0,...).

It follows that for any ¢ := (co,c1,¢2,...) € £9, we have
(oo
(hf.c) = (£. Y cxh™)

k=0

If we interpret this operation

o
f— (f, Z cxu'®)
k=0

as a bounded linear functional on £7, the Riesz Representation Theorem says that the sequence

oo
> i
k=0

must belong to £9. Let us write out what that means term by term:

‘aoco +ajc1 +azcr + - ‘q
+ ‘aocl +ajcy +azez +--- ‘q
+ ‘aocz +aycs +ascqg +--- ‘q
< Nl - llelZa- (51)
Now it is a simple matter to substitute
c= (a(()p_l),a§p_l),a§p_l), ),
which belongs to £, to obtain (50). O

Remark 18.2. Notice that if you drop all but the first line in the right side of (50), then you obtain (49), and
so Proposition 18.1 does indeed represent a dramatic sharpening of (49). Also notice that if h is Birkhoff-James
orthogonal in Z,Z 1o zKh for all positive integers k, then in fact all but the first line in the right side of (50) is zero.
This is the case when h = Bp, y,.
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19 Hadamard multipliers

Let f and g be two analytic functions on D with Taylor series expansions
o0 oo
f(z) = Z anpz" and g(z) = Z bnz".
n=0 n=0
The Hadamard product of f and g is defined by
o0
(fog)z) =Y anbnz".
n=0

Since f and g are analytic on DD, it is easy to verify that f ¢ g is also analytic on ID. Note that the disk of convergence
might be larger, e.g., consider odd and even functions. We say that 4 is a Hadamard multiplier of Kf; if the operator

My, 02 > 00, Muf=hof

is well-defined and continuous. As a rule of thumb, if the norm is defined via Taylor coefficients, e.g., Dirichlet
space, Hardy space H?2, Bergman space A2, and Eﬁ spaces, then determining the Hadamard multipliers if usually
not a difficult task. However, if the norm is defined differently, e.g., via an integral as in the Hardy spaces H 7, the
Bergman spaces A”, and the harmonically weighted Dirichlet spaces D, determining the Hadamard multipliers is
non-trivial.

In [7] one can find a discussion of the Hadamard multipliers between various H? classes. Here is a
characterization of the Hadamard multipliers for Zfz .

Theorem 19.1. Let p € (1,00). Then the Hadamard multiplier space of Zﬁ is isometrically isomorphic to L.
More explicitly, for each h € £S°, we have
9 nll = 112l esp-

Conversely, if | My | < oo, then h € L.

Proof. First suppose that h(z) = Y72 ga,z™ € €. Then for each f(z) = Y2 o byz" € €4, we have

o0 5
19 f Nl en = (Z |anbn|P)

n=0
1
o0 P
< (sup |an|) > 1bal?
n=0 n=0
= [lhllese IS ez

Thus 4 is in fact a Hadamard multiplier and moreover,
19 (| < (7]l g5

To show that equality holds, consider the monomials f,;;,(z) = z", m = 0. Then || f, || o0 = 1 and

=

”mhf”eA = (Z |anbn|p) = lam|.

n=0

Thus
MMl = lam|  m =0,

which implies the reverse inequality
19971 = 1Al ege-
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By a similar argument, we can show that if |90t || < oo, then & € £5°. In fact, we must have

IMn fller < IMallllfller

forall f € Eﬁ. In particular, if we apply the inequality above to f;,,, we obtain

lam| < |Mnll.  m =0.

Taking supremum with respect to m implies i € £5°. O
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