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Stable equilibrium statistical states for spheromaks 
George Vahala and Linda Vahala 

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 
and Department of Physics, College of William and Mary, Williamsburg, Virginia 23185 
(Received 30 August 1978; final manuscript received 18 October 1978) 

Incompressible nondissipative magnetohydrodynamic turbulence is treated for spherical systems. From the 
absolute equilibrium expectation values of the fields one can investigate those initially quiescent states for 
which no large mean square velocity will develop. This stable state is force-free and gives rise to the Hill 
vortex structure for the magnetic flux surfaces. 

I. INTRODUCTION 

Recently, Montgomery et al .1 introduced a new way of 
considering the problem of nonlinear incompressible 
magnetohydrodynamic stability. In this approach, one 
determines the absolute equilibrium states for initially 
quiescent systems and considers a state to be stable if 
no finite level of mean kinetic energy is predicted; 
otherwise, the state is said to be unstable. Here, we 
shall apply these techniques to finding stable equilibrium 
states for spherical (Spheromak2• 3) geometry. 

The basic procedure for finding the absolute equili­
brium states of a plasma is to: (i) expand the velocity 
and magnetic fields in an appropriately chosen eigen­
function basis, (ii) truncate these infinite series ex­
pansions and consider the phase space consisting of 
the generalized Fourier coefficients, (iii) identify those 
(quadratic) invariants of the motion which remain in­
variant under any finite level of truncation in the series 
expansions (the so-called "rugged invariants"), and, 
(iv) construct the equilibrium Gibbs ensemble (with the 
rugged invariants and any externally imposed constraints 
in the exponent). The reader is referred to Ref. 1 and 
the cited references therein for a more detailed ac­
count of the numerical verifications of this statistical 
approach as well as the connection this model has with 
turbulence. 

II. SPHEROMAK EQUILIBRIA 

For ideal incompressible magnetohydrodynamics 

av et +v , Vv =- vp +(V x B) x B, (1) 

BB Bf =V X (v X B) , (2) 

V•B=O, (3) 

V ,v=O, (4) 

where v and B are the velocity and magnetic fields. 
Since the velocity field is assumed incompressible, the 
pressure is a bilinear functional of v and B, p =P(v, B). 
We assume the plasma to be enclosed by a perfectly 
conducting spherical shell of radius a, so that for the 
radial components of the fields 

(5) 

From the magnetohydrodynamic action principle, 4 

time and gauge invariances lead to the following quadra­
tic integrals of the motion which are the rugged invari­
ants: total energy E: 

E= f d3 x(v2 +B 2
), (6) 

the magnetic helicity Hm: 

Hm=J d3 xA,B, (7) 

where A is the magnetic vector potential (V x A= B), and 
the cross helicity He 

He= f d3 xv ,B. (B) 

We denote by le any externally imposed global con­
straints on the plasma, which will involve the magnetic 
and not the velocity field .1 

Because the magnetic helicity is a rugged invariant, 
it is convenient to expand the magnetic and velocity 
vector potentials in terms of the eigenfunctions of the 
curl operator. In spherical polar coordinates (r, e, </>), 
the eigenfunctions of 

V XF=;\F, (9) 

with 

F, r=O, at r=a (10) 

are5 

. (-[ j (;\ r)J -{ im . dPm(cosB) 1 d } Fnm,=cnm,exp(zm<P) r n(n+l)P:(cos())=rui:...!. +e -.-fl P:(cosB)J.(;\n r) +-~·~-~--[rj (;\ r)] 
l\n,r Slno O dB ;\nqr dr · n nq 

+ -{ dP;:'(cosB) . ( im m 1 d l . ]}\ 
<P - dD ln l\nqr) +-.-fl P. (cose)---d YJ.(;\.qr) ) . 

u Slno ;\n,r r (11) 

P: are the associated Legendre polynomials and the boundedness of F , r at r =0 requires the integer n? O. The 
integer Im I =0, 1, ... , n and from the boundary condition, Eq. (10), ;\nqa is the qth zero of the nth spherical Bessel 
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function 

(12) 

with n =1, 2, 3,. [since for n =0, Eq. (11) gives F 000 

=0]. Finally, the cnmo are normalization constants 
such that 

(13) 

Thus, the spectral expansions for the vector potentials 
are 

A(r, e, (/),I)= L~nmq(l)Fnmq(r, e, <p)' (14) 
nmq 

Av(r, e, <p, I)= L7lnmq(t)Fnmq(r, e, <p)' (15) 
nmo 

where ~nmo(t) and 7/nmo(t) are generalized Fourier coeffi­
cients. 

The equilibrium statistical states to which the plasma 
would evolve are determined by the Gibbs' canonical 
ensemble 

(16) 

where the Lagrange multipliers Cl', /3, y, and 6 can be 
interpreted as inverse temperatures and are deter­
mined by the requirement that the ensemble average 
(E), (Hm), (He>• and Ve>• calculated from Eq. ,16), are 
equal to the given values for the problem at hand. It 
should be noted that for spherical geometry all the 
eigenvalues :\no are determined by the boundary condi­
tion (10), while for cylindrical geometry, 1•'' one of the 
eigenvalues is not determined by the boundary condi­
tion but must be determined by externally imposed 
constraints. 

For initially quiescent systems (v =0), the cross 
helicity He =0. For ensembles for which (He) =0, one 
can readily show that the corresponding inverse temp­
erature 

y=O. (17) 

Since B =V X A and v=V X~, 

(18) 

(19) 

so that the rugged invariants take the following simple 
forms 

(20) 

(21) 

or using the orthogonality condition ( 13). 

Using Eqs. (17), (20), and (21) one can readily cal­
culate 

(Hm)=L ,.\ l +f-3 [1+0(6)], 
CT nq 

(22) 
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FIG. 1. The magnetic flux surfaces for the stable spherical 
plasma. 

(23) 

where the mean kinetic energy of the plasma is given 
by an equipartition spectrum in the 11, n1, q modes 

(24) 

(le) =0(6) with the symbol 0(6) standing for those terms 
introduced by the imposition of the external global con­
straint. 

Equation (24) implies that for nearly all choices of 
(E> and (Hm), initially quiescent magnetohydrodynamic 
profiles are unstable. However, for a special choice 
of (E> and (H m), there is a stable limit in which the 
mean kinetic energy of the equilibrium statistical state 
is zero. In this limit LY - +00 • i3 - - n with cY, fj - - 1 :\ 11 • 

so that a>. 11 +i3 - constant while cY :\"• +j:l - +<X) for all 
other (11,q) values since :\ 11 is the minimum eig·envalue. 
This stable state yields a maximum for the ratio of 
magnetic helicity to energy 

(25) 

and has all the excitation locked in the 11 =q =1 purely 

~ 
~~~~~~~~ 1 ~~o,;,~' 

FIG. 2. Conjectured dual cascade process for a dissipative 
medium. 
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magnetic mode, which is necessarily force-free. Since 
the n =q =1 mode is degenerate in rn, the corresponding 
magnetic field 

B =,\11 (~ 101F 01 +~ 111F 111 +~ 1, -1, 1F 1,-1, 1) 

(26) 

However, by the addition theorem for Legendre poly­
nomials, there exists a rotation of axes which simpli­
fies Eq. (26) to the structure of B 101 : 

{ 
j 1 (,\ 11r) ~ 1 d [ . ( ) J B 101 =A 11 ~ 101c 101 2 coser--,--d rJ 1 A11r 

A11r "- 11r r 

x sine ii +j 1 (,\ 11r) sin8cp} , (27) 

which gives rise to the Hill vortex structure, Fig. 1, 
for its magnetic flux surfaces (B101 • V1/J =O) 

1/!(r, B) =rj1 (,\ 11r) sin2e =const. (28) 

These flux surfaces can be considered to be the limiting 
case of a low-aspect-ratio, D-shaped tokamak ("spher­
omak"). 

111. DISCUSSION 

The (fully) nonlinear analysis given here indicates 
that for initially quiescent spherical plasmas, the 
stable absolute equilibrium state must be (i) force-free, 
and (ii) have a ratio of magnetic helicity to energy 
which is determined by geometry 

(Hm)/(E) =1/4.493a, 

where a is the radius of the sphere. That is, any 
incompressible state with a pressure profile is neces­
sarily unstable in the sense that the plasma will have 
a finite mean kinetic energy arising from an equiparti­
tion spectrum for (v2

). This result holds not only for 
spherical geometry, but for all geometries for which 
Hm and E are rugged invariants, e.g., cylindrical and 
toroidal geometries [the invariance of Hm follows 
immediately from Eqs. (2) and (3) and the boundary 
condition B • n =0. H m ceases to be a rugged invariant 
if one externally imposes the constraint of constant 
toroidal magnetic field]. However, in nonspherical 
geometry the ratio of Hm/E is determined by the ex­
ternal imposed constraint Ic (e.g., toroidal current) 
with an upper bound to Ic determined by geometry. 1• 6 

This result rests on the assumption that the eigenfunc­
tions of the curl operator are complete. 
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Rosenbluth2 and Bussac et al.3 have employed Tay­
lor's 7 theory (which incidently was first shown by Wolt­
jer8) that decay of energy to a minimum value compati­
ble with conserved magnetic helicity leads to a force­
free state. The decay process is unspecified. In our 
approach, E and H,,. are given constants and we search 
for stable (ideal) states. For completeness, we men­
tion' a conjectured relaxation mechanism to explain 
the significance of the Taylor-Woltjer prescription: 
from the spectral forms for E and Hm, Eqs. (20) and 
(21), one can immediately conjecture that E should 
peak at high values of ,\ while Hm should peak at lower 
,\' s giving rise to the dual cascade process illustrated 
in Fig. 2 for a dissipative (via resistivity and/or vis­
cosity) medium. Since resistivity/viscosity enter the 
magnetohydrodynamic equations through the v 2 operator 
on the fields (which corresponds to a ,\2 behavior), 
dissipation should have important effects predominantly 
at high ,\'s. Hence, one can conjecture that energy 
would decay much faster than the magnetic helicity. 
(It should be pointed out that all verified dual cascade 
processes in fluids and plasmas have first been con­
jectured from the ideal, nondissipative theory and then 
actually demonstrated numerically from the full dissi­
pative equations.) 
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