5-2017

Editorial for the Special Issue on Micro/Nano-Chip Electrokinetics

Xiangchun Xuan

Shizhi Qian
Old Dominion University, sqian@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/mae_fac_pubs

Part of the Nanoscience and Nanotechnology Commons

Repository Citation

Original Publication Citation

This Editorial is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Editorial for the Special Issue on Micro/Nano-Chip Electrokinetics

Xiangchun Xuan 1,* and Shizhi Qian 2

1 Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
2 Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA; SQian@odu.edu
* Correspondence: xcxuan@clemson.edu

Academic Editor: Nam-Trung Nguyen
Received: 2 May 2017; Accepted: 2 May 2017; Published: 4 May 2017

Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating and sensing various analyte species (e.g., ions, molecules, fluids and particles, etc.) [1,2]. This Special Issue in Micromachines is aimed to provide the recent development in the field of Micro/Nano-Chip Electrokinetics. It consists of 15 papers, which cover both fundamentals and applications, original research and reviews. These papers can be classified into four groups as summarized below.


(2) Applications of electrokinetics to (bio)particle manipulations. Natu and Martinez-Duarte [6] used numerical simulation to investigate the effects of device geometry and experimental variables on the continuous sorting of neural stem/progenitor cells via streaming dielectrophoresis (DEP). Zhou et al. [7] proposed a microfluidic device with a contraction channel and tested it numerically for the deformability-based particle separation by DC DEP. Zhu et al. [8] demonstrated the use of multiple parallel microchannels in a two-layer stacked microfluidic device for a significantly enhanced throughput in particle and cell manipulation via reservoir-based DEP (rDEP). Li et al. [9] presented a rapid fabrication of high-aspect-ratio 3D hydrogel microstructures using optically induced electrokinetics (OEK).


(4) Other electric field-based applications. Wang et al. [14] investigated the frequency-dependent electroformation of giant unilamellar vesicles in between 3D and 2D microelectrode systems. Liu et al. [15] presented a new method for analyzing the deformability of fused cells under
electrical stresses in a microfluidic array device. Tsai et al. [16] studied the effects of system parameters on the power generation by reverse electrodialysis in a microfluidic device with a Nafion ion-selective membrane. Wang et al. [17] developed a microfluidic device for classification of microalgae cells based on the simultaneous detection and analysis of the signals of fluorescence, scattering, and resistance pulse sensing.

We would like to thank all the contributors for submitting their papers to this Special Issue. We also thank all the reviewers for dedicating their time to help improve the quality of the submitted papers.

Conflicts of Interest: The authors declare no conflict of interest.

References


© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).