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The effect of the direction of the detected beam on the intensity of ECE is studied. It is found that
the combined effects of the strong dependence of the conversion efficiencey of O mode at the
plasma resonance on the direction of the incident wave and the partial screening of the beam waist
by the MAST vessel wall, can be responsible for the weakening of ECE emission for some
frequencies. The theoretical model for ECE data interpretation on MAST has been significantly
improved. New features of the model are as follows: the quasioptical treatment of the receiving
antenna, interference, polarization and screening effects of the vacuum window and collisional
damping of EBWs in the peripheral plasma. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1783601]

I. INTRODUCTION

Extensive ECE data from 16 to 60 GHz are available in
MAST.1 The characteristic low magnetic field and high
plasma density of a spherical tokamak do not permit the
typical radiation of O and X modes from the first five elec-
tron cyclotron harmonics. Thus only electron Bernstein
modes,(modes not subject to a density limit), which mode
convert into electromagnetic waves in the upper hybrid reso-
nance region, can be responsible for the measured radiation.2

The instantaneous magnetic field and its spatial deriva-
tives are reconstructed from 2D splining of two potentials
determined by an EFIT equilibrium reconstruction code, as-
suming toroidal symmetry. The plasma density and tempera-
ture profiles in the wholeRZ cross section of the plasma are
obtained from mapping the high spatial resolution Thomson
scattering measurements onto magnetic surfaces. We im-
proved our 3D plasma model in Ref. 3 by the inclusion of
complete MAST ECE antenna geometry(see Fig. 1). We use
the Gaussian beam formalism to find the waist positions(one
in horn and the second in front of the window) between
mirrors (see Fig. 2). Only linearly polarized waves are de-
tected by our radiometer and the plane of polarization can be
selected by the orientation of the polarization rotator. At the
mirrors the polarization follows the simple rule:

Eref = − Einc + 2NmsEinc ·Nmd,

whereEinc andEref are the incident and reflected fields and
Nm is the normal to the mirror. At the window the waves are
partly reflected and the linear polarization becomes slightly
elliptical.

To simplify the computation we use a separate set of
straight rays to project the rim of window and the visible

area onto the second waist plane. Such an approach takes
into account the shape of the Gaussian beam in the near and
far antenna regions. At the intersection of the rays with the
last closed flux surface(spots) we consider an auxiliary plane
stratified plasma slab which is inhomogeneous along the lo-
cal density gradient. In this slab we solve Maxwell equations
for wave propagation in a cold plasma by the finite element
method with adaptive steps between nodes4 (see Fig. 3). The
power absorbed in the vicinity of the upper hybrid resonance
due to weak collisions corresponds(if n /v→0) exactly to
the power converted to the electron Bernstein waves. The
reverse process is appropriate for ECE because we can as-
sume reciprocity between emission and absorption.

Two processes here play a role: the direct EBW-X con-
version as well as the process in which an obliquely incident

FIG. 1. ECE antenna on MAST. Ray between the second mirror and the
window is inclined atwdev from the equatorial plane upward and the angle
between its projection onto the equatorial plane and the vertical plane going
through the tokamak axis and the antenna position iswlong.
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EBW is first converted to an X mode which subsequently
mode converts to an O mode5 at the plasma resonance. We
also use this slab model to determine the position of the
UHR nearest to each spot and to obtain here the solution of
the electrostatic dispersion relation of the electron Bernstein
waves(EBW). This solution serves as an initial condition for
the standard ray tracing6 describing the propagation of EBW
in 3D.

To determine the radiative temperature for Rayleigh--
Jeans black body radiation we must solve, for each ray, the
radiative transfer equation simultaneously with the ray evo-
lution equation. This approach takes into account the reab-
sorption of radiation which is important for nonlocal wave
damping.

II. SIMULATED ECE POWER DETECTED
BY ANTENNA

The intensity of ECE detected by the antenna can be
expressed as

IECE= const

3E EdSWGaussCEBW-X-Ov2TradCwindowVrelat,

where the Gaussian weightWGauss=e−s2r2/w0
2d, w0 is the beam

waist radius,CEBW-X-O is the mode conversion efficiency,
v2Trad is the Rayleigh–Jeans back body radiation,Cwindow is
the power transmission coefficient through the MAST win-
dow, and the relative visible areaVrelat=w2/w0

2 (w is the
Gaussian beam radius at the plasma surface). The integration
is taken over the intersection of the waist and the projection
of the vessel window rim onto the waist plane.

In Fig. 4 we compare the experimentally detected ECE
for discharge No. 7798 att=240 ms, when the high spatial

resolution Thomson scattering measurements of density and
temperature are taken, with the simulations for three differ-
ent orientations of the detected beams.

First we consider the detected beam withwdev=wlong

=12°. The discrepancy between the measured and the simu-
lated results is striking(at 36.46 GHz the simulated value is
3 times higher than the experimental value). We now inves-
tigate some possible reasons for this discrepancy. For shot
No. 7798, the conversion region for low frequency waves is
situated in the highly turbulent plasma scrapoff layer. Under
these conditions mode conversion is weak and nonrobust. So
we exclude these waves with frequencies in the range
15–22 GHz from further consideration.

At the plasma boundary where the temperature is low
and the density sufficiently high collisions could play an im-
portant role. On incorporating collisions into the EBW dis-
persion under the BGK approximation,7 we found only weak
effects, even atZeff=4.

We also investigated the effect of the polarization of the
detected wave. From the results shown in Fig. 5, we see that
the peak at 36.46 GHz is three times higher irrespective of
the wave polarization.

The last important quantity, which could influence the
intensity of detected emission, is beam directionality. The

FIG. 2. Intensity of Gaussian beam in MAST antenna system forf
=40 GHz;W01 andW02 are waist positions.

FIG. 3. Components of the wave electric field(arb. Units) in an inhomoge-
neous slab. There is a high density of nodes at the upper hybrid resonance,
x,0.065 m.

FIG. 4. ECE from MAST, shot No. 7798,t=240 ms. Reference frequency
f =23.14 GHz, for whichIECE=1.

FIG. 5. IECE as a function of the angle between the electric field of the
linearly polarized wave in the horn mouth and the equatorial plane: No.
7798,wdev=wlong=12°.
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power of the O-mode transmitted through the plasma reso-
nance region depends strongly on the direction of the inci-
dent wave:

T = expS−
pkvac

4kp
S 2v

vce
D1/2Hvce

2

v2 F1 −SNz
inc

Nz
optD2G2

+
2vce

v
sNy

incd2JD ,

whereNz
opt=fvce/ sv+vcedg1/2 andz denotes the direction of

the total magnetic field at the plasma resonance.8 We thus

suspect that the conversion efficiency will be sensitive to
small changes in the directions of the detected beams.

To verify this, we plot the conversion efficiency pro-
jected onto the waist plane for both peaks(23.14 and
36.46GHz) and three choices ofswdev,wlongd: the original
(12° and 12°), and then(15° and 15°), and the choice(17°
and 17°) that gives the best fit to experiment, see Fig. 6. We
see, that for the wave withf =36.46 GHz, the conversion
efficiency maximums0.6d is situated at the center of the
waist at wdev=12° ,wlong=12° but for wdev=17° ,wlong=17°
the rim of the window crosses the waist center and the con-
version efficiency is smalls0.1–0.2d. This decrease in the
conversion efficiency to theIECE results in a better agreement
between the simulated and measured data as plotted in Fig. 4
for wdev=17° ,wlong=17°. It is thus possible that the actual
directionality of the detected beam is(17° and 17°) rather
than the originally supposed(12° and 12°). A similar situa-
tion also arises for the shot No. 4958, although in this shot
the beam directionality error can be estimated at 2°(see
Fig. 7).

1V. Shevchenko, 15th rf Power in Plasma, Moran(2003), p. 359.
2H. P. Laqua, 15th rf Power in Plasma, Moran(2003), p. 15.
3J. Preinhaelter, 15th rf Power in Plama, Moran(2003), p. 388.
4J. Urban and J. Preinhaelter, Czech. J. Phys.54, Suppl. C, C109(2004).
5J. Preinhaelter and V. Kopecky, J. Plasma Phys.10, 1 (1973).
6P. Pavol and L. Krlin, Nucl. Fusion31, 711 (1991).
7S. Pesic, Physica C125, 118 (1985).
8J. Preinhaelter, Czech. J. Phys.45, 399 (1995).

FIG. 6. Contour maps of the conversion efficiency projected onto the Gaussian beam waist plane for No. 7798,t=240 ms as derived from our code. The dots
correspond to the individual rays, the circle forms the boundary of the beam waist and the ellipse segment is a rim of the MAST window projected onto the
plane of the waist.

FIG. 7. ECE from MAST, shot No. 4958,t=120 ms. Reference frequency
f =17.94 GHz, for whichIECE=1. The diamonds are experimental points,
the full line (best fit) corresponds towdev=18° ,wlong=22° and the dashed
line to the originalwdev=16° ,wlong=20°.
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