
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Engineering Management & Systems
Engineering Theses & Dissertations

Engineering Management & Systems
Engineering

Summer 2012

Incorporating Memory and Learning Mechanisms Into Meta-RaPS Incorporating Memory and Learning Mechanisms Into Meta-RaPS

Arif Arin
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/emse_etds

 Part of the Artificial Intelligence and Robotics Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Arin, Arif. "Incorporating Memory and Learning Mechanisms Into Meta-RaPS" (2012). Doctor of
Philosophy (PhD), Dissertation, Engineering Management & Systems Engineering, Old Dominion
University, DOI: 10.25777/a08z-9k79
https://digitalcommons.odu.edu/emse_etds/37

This Dissertation is brought to you for free and open access by the Engineering Management & Systems
Engineering at ODU Digital Commons. It has been accepted for inclusion in Engineering Management & Systems
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse_etds
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse
https://digitalcommons.odu.edu/emse_etds?utm_source=digitalcommons.odu.edu%2Femse_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Femse_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.odu.edu%2Femse_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/emse_etds/37?utm_source=digitalcommons.odu.edu%2Femse_etds%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

INCORPORATING MEMORY AND LEARNING MECHANISMS

INTO META-RAPS

by

Arif Ann

B.S. August 1995, Air Force Academy, Turkey
M.S. March 2002, Air Force Institute of Technology

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ENGINEERING MANAGEMENT

OLD DOMINION UNIVERSITY
August 2012

Approved by:

Ghaith Rabadi (Director)

sit tfngJ^Member)

Holly Handley (Member)

Okay Isik (Member)

ABSTRACT

INCORPORATING MEMORY AND LEARNING MECHANISMS
INTO META-RAPS

Arif Arin
Old Dominion University, 2012

Director: Dr. Ghaith Rabadi

Due to the rapid increase of dimensions and complexity of real life problems, it

has become more difficult to find optimal solutions using only exact mathematical

methods. The need to find near-optimal solutions in an acceptable amount of time is a

challeng when developping more sophisticated approaches. A proper answer to this

challenge can be through the implementation of metaheuristic approaches. However, a

more powerful answer might be reached by incorporating intelligence into

metaheuristics.

Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic

that creates high quality solutions for discrete optimization problems. It is proposed that

incorporating memory and learning mechanisms into Meta-RaPS, which is currently

classified as a memoryless metaheuristic, can help the algorithm produce higher quality

results.

The proposed Meta-RaPS versions were created by taking different perspectives

of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a

stochastic learning technique that creates a probability distribution for each decision

variable to generate new solutions. The second Meta-RaPS version was developed by

utilizing a machine learning algorithm, Q Learning, which has beeen successfully applied

to optimization problems whose output is a sequence of actions. In the third Meta-RaPS

version, Path Relinking (PR) was implemented as a post-optimization method in which

the new algorithm learns the "good" attributes by memorizing best solutions, and follows

them to reach better solutions. The fourth proposed version of Meta-RaPS presented

another form of learning with its ability to adaptively tune parameters. The efficiency of

these approaches motivated us to redesign Meta-RaPS by removing the improvement

phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS

could solve even the largest problems in much less time while keeping up the quality of

its solutions.

To evaluate their performance, all introduced versions were tested using the 0-1

Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms,

Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best

and worst performance, respectively. On the other hand, they could all show superior

performance than other approaches to the 0-1 MKP in the literature.

V

This dissertation is dedicated to my family who have always been with me during this
long journey.

vi

ACKNOWLEDGMENTS

Although only my name is written on the cover of this dissertation, indeed, I am

only one of the many people who have contributed to this work. Foremost, I would like to

express my sincere gratitude to my advisor, Dr. Ghaith Rabadi, for his continuous

support, patience, motivation, enthusiasm, and knowledge. He gave me the freedom to

explore on my own, and, at the same time, the guidance to recover when my steps

faltered. His guidance helped me during the time of the research and writing of this

dissertation. I have been amazingly lucky to be his student.

I would like to thank my doctoral committee members for their valuable input and

discussions; Professor Resit Unal, Chair of Department of Engineering Management and

Systems Engineering, Dr. Murat Ermis and Dr. Okay Isik from the Turkish Air Force

Academy, for insightful comments and scholarly inputs. I owe sincere thankfulness to Dr.

Reinaldo J. Moraga for his interesting ideas and inspiring me to enter into this exciting

research field with Dr. Ghaith Rabadi.

I am also thankful to the system server staff who maintained all the machines so

efficiently that I could obtain tha data to complete many parts of this work.

I would like to thank Professor Oktay Baysal, Dean, and Professor A.Osman

Akan, Associate Dean of the Frank Batten College of Engineering and Technology, for

their support and their valuable contributions on creating the cooperation between Old

Dominion University and Aeronautics and Space Technologies Institute. 1 deeply

appreciate the financial support from Turkish Air Force.

I would like to show my gratitude to my friends and colleagues I had the privilege

to enjoy their friendship. I am so grateful for their precious welcome and hospitality I

have received.

Finally, I am truly indebted and thankful to my wife, Belma, for her consistent

support, encouragement, tolerance and love. Her immovable faith in me enabled me to

have strength necessary to complete this work. I owe a lot to my other family members,

who encouraged and helped me at every stage of my personal and academic life, and

longed to see this achievement come true.

NOMENCLATURE

ACO Ant Colony Optimization

AI Artificial Intelligence

ALS Adaptive Learning Search

AMP Adaptive Memory Programming

AP Adaptive Parameter

BCS Best Constructed Solution

BBO Black Box Optimization

CL Candidate List

CMean Mean of Constructed Solutions

COMSOAL Computer Method of Sequencing Operations for Assembly Lines

CS Constructed Solution

DGR Dynamic Greedy Rule

DOE Design of Experiments

DP Dynamic Programming

EA Evolutionary Algorithms

EDA Estimation of Distribution Algorithms

EP Evolutionary Programming

ES Evolution Strategies

GA Genetic Algorithm

GP Genetic Programming

GRASP Greedy Randomized Adaptive Search Procedure

i% Improvement Percentage

I Number of Iteration

IMean Mean of Best Improved Solutions

IS Improved Solution

Meta-RaPS Meta-heuristic for Randomized Priority Search

MKP Multidimensional Knapsack Problem

p% Priority Percentage

PR Path Relinking

PSO Particle Swarm Optimization

r% Restriction Percentage

RL Reinforcement Learning

SA Simulated Annealing

RS Reactive Search

SS Scatter Search

TS Tabu Search

WCS Worst Constructed Solution

X

TABLE OF CONTENTS
Page

LIST OF TABLES xii

LIST OF FIGURES xvi

1. INTRODUCTION 1
1.1 Metaheuristics 2
1.2 Meta-RaPS as a Memoryless Metaheuristic 3

2. META-RAPS AND 0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM 5
2.1 Meta-RaPS, a Simple and Powerful Metaheuristic 5
2.2 0-1 Multidimensional Knapsack Problem 15

3. MEMORY AND LEARNING IN METAHEURISTICS 22
3.1 Concepts of Memory and Learning 23
3.2 Memory and Learning in Metaheuristics 25
3.3 Metaheuristics with Memory and Learning 30

4. METHODOLOGY 46
4.1 Performance Comparison of the Proposed Algorithms 46
4.2 Stopping criteria 48
4.3 0-1 MKP Instances 48
4.4 Tuning Parameters 51
4.5 Statistical Comparison 56
4.6 Conditions for the Comparison 57

5. INCORPORATING ESTIMATION OF DISTRIBUTION ALGORITHMS INTO
META-RAPS 58
5.1 Literature Review 58
5.2 Estimation of Distribution Algorithms 60
5.3 A Representative Example of 0-1 MKP 66
5.4 Meta-RaPS Dynamic Greedy Rule (DGR) Solution for 0-1 MKP 67
5.5 Meta-RaPS EDA Solution for 0-1 MKP 76
5.6 Comparison of Meta-RaPS with EDA and DGR for 0-1 MKP Example 83
5.7 Meta-RaPS EDA Algorithm 84
5.8 Meta-RaPS EDA for Small and Medium 0-1 MKP Instances 93
5.9 Meta-RaPS EDA for Large 0-1 MKP Instances 95

6. INCORPORATING Q LEARNING INTO META-RAPS 97
6.1 Literature Review 97
6.2 Temporal Difference Algorithm - Introduction to Q Learning 102
6.3 Q Learning 105
6.4 Meta-RaPS Q Solution for 0-1 MKP Example 109
6.5 Meta-RaPS Q Algorithm 115

xi

6.6 Meta-RaPS Q for Small and Medium 0-1 MKP Instances 116
6.7 Meta-RaPS Q for Large 0-1 MKP Instances 118

7. INCORPORATING PATH RELINKING INTO META-RAPS 119
7.1 Literature Review 119
7.2 Path Relinking Algorithm 122
7.3 Meta-RaPS PR Algorithm 125
7.4 Meta-RaPS PR for Small and Medium 0-1 MKP Instances 127
7.5 Meta-RaPS PR for Large 0-1 MKP Instances 131

8. INCORPORATING ADAPTIVE PARAMETER TUNING INTO META-RAPS... 133
8.1 Literature Review 134
8.2 Adaptive Parameter Tuning 139
8.3 Meta-RaPS Adaptive Parameter (AP) Algorithm 141
8.4 Meta-RaPS AP for Small and Medium 0-1 MKP Instances 145
8.5 Meta-RaPS AP for Large 0-1 MKP Instances 147

9. REDESIGNING META-RAPS 149
9.1 Redesigning Meta-RaPS 150
9.2 Meta-RaPS V2 for Small and Medium 0-1 MKP Instances 155
9.3 Meta-RaPS V2 for Large 0-1 MKP Instances 156

10. CONCLUSIONS 159
10.1 Comparison of Meta-RaPS Versions for Small/Medium 0-1 MKP Instances... 159
10.2 Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances 164
10.3 Statistical Comparison of Meta-RaPS Versions 174
10.4 Comments on Meta-RaPS Versions 182

11. RESEARCH CONTRIBUTION 186

REFERENCES 189

VITA 231

xii

LIST OF TABLES

Table Page

1. Classification Method for Metaheuristics 3

2. Memory Structures in Some Metaheuristics 26

3. Small and Medium Size 0-1 MKP Test Instances 49

4. Large Size 0-1 MKP Test Instances 50

5. D-Optimal Design with k = 3 54

6. Parameters of the Proposed Meta-RaPS Algorithms for 0-1 MKP Instances 55

7. 0-1 MKP Example 67

8. The Initial Priority Matrix 69

9. The Meta- RaPS Parameters for the 0-1 MKP Example 69

10. a. The Updated Priorities after Selecting Item 5 71

10. b. The 1st Step in Iteration 1 of Meta-RaPS 71

11. a. The Updated Priorities after Selecting Item 7 72

11. b. The 2nd Step in Iteration 1 of Meta-RaPS 72

12. Report for the Construction Phase in Iteration 1 of Meta-RaPS DGR 73

13. Decision for Improvement Phase in Iteration 1 of Meta-RaPS DGR 74

14. The Meta-RaPS DGR Solution Report of the 0-1 MKP Example 76

15. The Random Solution Set and Related Information 77

16. The Conditional Probability Matrix 78

17. The Probabilistic Priority Matrix 79

18. Report for the Construction Phase in Iteration 1 of Meta-RaPS EDA 80

xiii

Table Page

19. Decision Phase for Improvement in Iteration 1 of Meta-RaPS EDA 80

20. Meta-RaPS EDA Solution Report of the 0-1 MKP Example 81

21. The Updated Probabilistic Priority Matrix after Iteration 1 82

22. The Updated Probabilistic Priority Matrix after Iteration 10000 82

23. Diversity Calculation between Solutions 88

24. Meta-RaPS EDA-R and G Solutions 94

25. Meta-RaPS EDA Solution for Large 0-1 MKP Instances 96

26. The Q Learning Matrix After 1000 Episodes for 0-1 MKP Example 110

27. The Updated Q Learning Matrix after t = 1 111

28. The Updated Q Learning Matrix After t = 2 112

29. The Q Learning Matrix After 1001 Episodes for 0-1 MKP Example 114

30. Meta-RaPS Q Solutions for Small/Medium 0-1 MKP Problems 117

31. Meta-RaPS Q Solution for Large 0-1 MKP Instances 118

32. Meta-RaPS PR Process 126

33. Meta-RaPS PR Results for Small/Medium 0-1 MKP Instances 127

34. Meta-RaPS PR Solution for Large 0-1 MKP Instances 132

35. Meta-RaPS AP-G Solutions for Small/Medium 0-1 MKP Instances 142

36. Meta-RaPS AP-G Solutions for Small/Medium 0-1 MKP Instances 143

37. Parameters of Meta-RaPS AP for Small/Medium 0-1 MKP Instances 144

38. Meta-RaPS AP Results for Small/Medium 0-1 MKP Instances 145

39. Meta-RaPS AP Solutions for Large 0-1 MKP instances 147

Table Page

40. Parameters of Meta-RaPS AP for Large 0-1 MKP Instances 148

41. Instances to Evaluate PR Alternatives 152

42. Summary of Solutions by PR Alternatives 152

43. Overall Averages of Solutions According to PR Options 153

44. The New Parameter Setting of Meta-RaPS V2 for Small/Large 0-1 MKP
Instances 155

45. Meta-RaPS V2 Results for Small/Medium 0-1 MKP Instances 156

46. The New Parameter Setting of Meta-RaPS V2 for Large Instances 156

47. Meta-RaPS V2 Solution for Large 0-1 MKP Instances 157

48. Comparison of Meta-RaPS Versions for Small/Medium 0-1 MKP Instances
Using DGR 162

49. Comparison of Meta-RaPS Versions to Other Algorithms in the Literature
for Small/Medium 0-1 MKP Instances 164

50. Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances 165

51. Detailed Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances 166

52. Creating Scaled Factors for Simplicity and Flexibility 169

53. Comparison of Meta-RaPS Versions in Terms of Performance Criteria 170

54. Comparison of Meta-RaPS Versions to Other Algorithms for large 0-1 MKP
Instances 174

55. ANOVA of Percentage Deviation for the Set of 100 Items and 5
Knapsacks 175

56. Tukey's Test of Percentage Deviation for the Set of 100 Items and 5
Knapsacks 176

57. Tukey's Test for Percentage Deviation for the Set of 100 Items and 10
Knapsacks 177

XV

Table Page

58. Tukey's Test for Percentage Deviation of the Set of 100 Items and 30
Knapsacks 177

59. ANOVA of Time for the Set of 100 Items and 5 Knapsacks 179

60. Tukey's Test of Time for the Set of 100 Items and 5 Knapsacks 180

61. Tukey's Test of Time for the Set of 100 Items and 10 Knapsacks 181

62. Tukey's Test of Time for the Set of 100 Items and 30 Knapsacks 181

xvi

LIST OF FIGURES

Figure Page

1. Meta-RaPS Pseudo Code 14

2. Replacing Items in 2-Opt Algorithm 74

3. Insertion Items to the Left 75

4. Trend of Probabilistic Priorities of Items Selected in the Optimal
Solution 83

5. Trend of Probabilistic Priorities of Items Not Selected in the Optimal
Solution 84

6. Meta-RaPS EDA Pseudo Code 86

7. a. Deviations% for the Selected Instances after Updating the Memory Matrix
by Four Methods 89

7. b. Number of Iterations for the Selected Instances after Updating Memory
Matrix by Four Methods 89

8. Mean Deviations% after Updating Memory Matrix by Four Methods for
Different Number of Iterations 90

9. a. Normalized Number of Iterations Required for Different Memory Set
Sizes 92

9. b. Trends of Means for Normalized Number of Iterations Required for
Different Memory Set Sizes 92

10. Calculating Q Value for t = 1 111

11. Calculating Q Value for t = 2 112

12. Calculating Q Value for t = 3 113

13. Calculating Q Value for t = 4 113

14. Meta-RaPS Q Pseudo Code 116

Figure Page

15. Meta-RaPS PR Pseudo Code 126

16. The Number of Optimum Solutions Found in 10 Replicates of Meta-RaPS PR
Construction Phase for 55 Small/Medium Instances 128

17. The Distribution of Best Solutions Found in 10 Replicates of Meta-RaPS PR
Improvement and PR Phases for 55 Small/Medium Instances 129

18. a. Trendline of Best Solutions Found in 10 Replicates by Improvement
Phase of Meta-RaPS PR for 55 Small/Medium Instances 130

18. b. Trendline of Best Solutions Found in 10 Replicates by PR Phase of
Meta-RaPS PR for 55 Small/Medium Instances 131

19. Meta-RaPS AP Pseudo Code 144

20. Trend of Parameters for Instances in Meta-RaPS AP-G 146

21. Meta-RaPS V2 Pseudo Code 154

22. a. Trends for Average Deviations% of Small/Medium 0-1 MKP Instances
for Meta-RaPS EDA and Meta-RaPS Q without Using DGR 160

22. b. Trends for Average Deviations% of Small/Medium 0-1 MKP Instances
for Meta-RaPS PR, Meta-RaPS AP and Meta-RaPS V2 without Using DGR. 160

23. a. Trends for Average Deviations% of Small/Medium 0-1 MKP Instances
for Meta-RaPS EDA and Meta-RaPS Q Using DGR 163

23. b. Trends for Average Deviations% of Small/Medium 0-1 MKP Instances for
Meta-RaPS PR, Meta-RaPS AP and Meta-RaPS V2 Using DGR 163

24. a. Trends of Average Deviations'^ of Large Instances for Meta-RaPS
EDA and Meta-RaPS Q Based on Instance Tightness Ratios 167

24. b. Trends of Average Deviations% of Large Instances for Meta-RaPS PR,
Meta-RaPS AP and Meta-RaPS V2 Based on Instance Tightness Ratios 167

25. Sensitivity of Total Weighted Values for Different Weights of Deviation% 171

26. Sensitivity of Total Weighted Values for Different Weights of Time 171

1

CHAPTER 1

INTRODUCTION

"fy ate are (a euAieoc ne&dU tceex iejpne accomfcliA&ed,

we mutt expect fo employ met&od* newt tyone attempted.

Sit "ptOMeU SOCOK

In our constantly changing environment, we always adapt ourselves to different

situations that we encounter in life. Instead of "hardwiring" (Alpaydin, 2004) all types of

behavior into us, we learn the best strategies in certain cases and store them in our brain

to call when similar situations arise again.

Learning, according to Fogel (1995), is an intelligent process in which the basic

unit of mutability is the idea. "Good" adaptive ideas are maintained, much as good genes

increase in a population, while poor ideas are forgotten. In insect societies, this only

requires the evaporation of pheromone trails; in humans it requires time for actual

forgetting (Kennedy, et al., 2001). In a similar manner, memory and learning mechanisms

in metaheuristics can learn and remember "good" ideas related to the search process to

make it possible to create high quality solutions for optimization problems by utilizing

this information. In the problem solving arena, the definition of intelligence emerges in

metaheuristics via memory and learning. Many successful metaheuristics employ

"intelligent" procedures to obtain high quality solutions for optimization problems.

2

1.1 Metaheuristics

With the growing complexity of today's large scale problems, it has become more

difficult to find optimal solutions using only exact mathematical methods. Due to

computational efficiency concerns, the need to find near-optimal solutions in an

acceptable amount of time requires using heuristic approaches. Birattari (2009) defines a

heuristic as "a generic algorithmic template that can be used for finding high quality

solutions of hard combinatorial optimization problems" (page VII). Heuristic approaches

have already proved themselves in many large scale optimization problems by offering

near-optimal solutions where it is difficult to find optimal solutions by other approaches.

In theory, there is a chance to find the optimum solution by implementing

heuristic methods. However, often being trapped in local optima can move the heuristics

away from the optimum solution. Metaheuristics or "modern heuristics" confront this

challenge by adding strategies and mechanisms to avoid local optima to the construction

and local search mechanisms already existing in heuristics (Moraga, 2009). Glover &

Laguna (1997) define metaheuristics as "a master strategy that guides and modifies other

heuristics to produce solutions beyond those that are normally generated in a quest for

local optimality" (page 17).

Glover & Laguna (1997) introduced a classification method for metaheuristics

depending on three design choices: the use of adaptive memory, the type of neighborhood

exploration used, and the number of current solutions carried from one iteration to the

next. The metaheuristic classification notation can be illustrated in the form a|b|c. If the

metaheuristic has adaptive memory, the first letter, a, will be A, and M if the method is

memoryless. Depending on the neighborhood mechanism, the second letter, b, will be N

3

for somehow systematic neighborhood search, and S for using random sampling. The

third letter, c, can be 1 for a single-solution approach or P for a population-based

approach with population size of P. The classification method for metaheuristics is

summarized in Table 1.

Table 1. Classification Method for Metaheuristics

a b c

Use of Adaptive

Memory
Type of Neighborhood

Number of Solutions

Carried at Iterations

A M N S 1 P

Adaptive
Memoryless

Memory

Systematic
Random

Neighborhood
Sampling

Search

Single Population

Solution Size of P

1.2 Meta-RaPS as a Memoryless Metaheuristic

Besides exact mathematical methods, metaheuristics methods are quite promising

approaches in solving optimization problems especially in terms of their results, the size

of the problem dealt with and computational effort consumed. Although, as a

metaheuristic, Meta-heuristic for Randomized Priority Search (Meta-RaPS) has been

generating very promising solutions when applied to optimization problems, Meta-RaPS

is currently classified as a memoryless metaheuristic. The reason for this classification is

that there is no memory mechanism in Meta-RaPS to memorize the information created

in the solution process, nor a learning mechanism to learn the structure of this process in

making future decisions.

4

In many cases it has been observed that, memory and learning mechanisms

increase the effectiveness of the solution process, and as a result, the solution quality.

Therefore, by incorporating some memory and learning tools into Meta-RaPS, the

algorithm is expected to use this information in creating higher quality solutions. To

reach this goal, four algorithms from different fields are selected: Estimation of

Distribution Algorithms (EDA) as a stochastic approach and Q learning as a machine

learning approach are the first two algorithms to offer their memory and learning abilities

to Meta-RaPS. The third algorithm is Path Relinking (PR), a post-optimization method

that learns the "good" attributes of the best solutions, and follows them to reach better

solutions. The fourth algorithm is selected from Adaptive Parameter (AP) tuning area that

plays a key role in a metaheuristic's performance. The ultimate goal of this research is to

redesign Meta-RaPS to become more "intelligent" with the ability to memorize and learn

in order to reach higher quality solutions more efficiently by removing the improvement

phase in Meta-RaPS if possible.

The proposed algorithms share a common characteristic of employing some

memory and learning mechanisms in their search spaces. To evaluate the performance of

the proposed algorithms, the 0-1 Multidimensional Knapsack Problem (MKP), which is a

special case of the general linear 0-1 integer programming problem with nonnegative

coefficients, will be used as testbed.

5

CHAPTER 2

META-RAPS AND 0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM

The two main actors having constant roles in each process of incorporating

memory and learning mechanisms are Meta-RaPS (Metaheuristic for Randomized

Priority Search) and the 0-1 Multidimensional Knapsack Problem (MKP). As a

memoryless metaheuristic, various intelligent versions of Meta-RaPS will be proposed

and the 0-1 MKP will be used as their testbad in the applications that will be presented in

this research.

2.1 Meta-RaPS, a Simple and Powerful Metaheuristic

Meta-RaPS is one of the randomized search metaheuristics, and stands for "Meta­

heuristic for Randomized Priority Search". Moraga, et al. (2006) defines Meta-RaPS as

"generic, high level search procedures that introduce randomness to a construction

heuristic as a device to avoid getting trapped at a local optimal solution" Page (10-8).

Meta-RaPS combines the mechanisms of priority rules, randomness, and sampling.

Meta-RaPS is currently classified as a memoryless metaheuristic and can benefit

from existing memory and learning mechanisms to increase its effectiveness.

2.1.2 Literature Review

Meta-RaPS produced high quality solutions when applied to discrete optimization

problems, such as the Resource Constrained Project Scheduling Problem (DePuy &

Whitehouse, 2001) and the Vehicle Routing Problem (Moraga, 2002).

6

DePuy, et al. (2005) aimed to develop a simple method to find good solutions to

traveling salesman problems (TSP). The Meta-RaPS approach was introduced as a

method of incorporating randomness in established TSP priority schemes. The Meta-

RaPS approach outperformed most other solution methodologies in terms of percent

difference from optimal. Additionally, an industry case study that incorporates Meta-

RaPS TSP in a large truck route assignment model is presented. The company estimates a

more than 50% reduction in engineering time and over $2.5 million annual savings in

transportation costs using the automated Meta-RaPS TSP tool compared to their current

method.

Moraga, et al. (2005) presented Meta-RaPS approach for the 0-1

Multidimensional Knapsack Problem (0-1 MKP). The Meta-RaPS incorporated with a

greedy algorithm called the Dynamic Greedy Rule (DGR) outperformed many other

solution methodologies, such as simulated annealing, tabu search, genetic algorithms, and

0-1 MKP heuristics, in terms of differences from the optimal value and number of

optimal solutions obtained. They also noted that the performance of Meta-RaPS DGR

was not quite as good as that of Chu and Beasley's (1998) genetic algorithm or Bertsimas

and Demir's (2002) approximate dynamic programming for the largest problem sizes,

and further investigation can be done to improve the solution quality for these large

problems.

Rabadi, et al. (2006) introduced Meta-RaPS for the unrelated parallel machine

scheduling problem (PMSP) with machine-dependent and sequence-dependent setup

times to minimize the makespan. According to the results, Meta-RaPS found all optimal

7

solutions for small problems and for larger problems it outperformed the solutions

obtained by the existing heuristic the Partitioning Heuristic by Al-Salem (2004).

The Set Covering Problem (SCP) was another optimization problem selected as

the application for Meta-RaPS where it is found that these randomization methods work

well (Lan & DePuy, 2006; Lan, DePuy & Whitehouse, 2007). Lan, DePuy & Whitehouse

(2007) developed an effective heuristic to solve the set covering problem (SCP) by

applying Meta-RaPS. In addition to basic principles of Meta-RaPS, they penalized the

worst columns if the solution searching space is highly condensed to enhance the

performance of the basic Meta-RaPS. They reported this algorithm was the best in

solution quality among all the heuristic algorithms available in the literature for solving

the test instances in the OR Library.

Hepdogan, et al. (2009) applied Meta-RaPS algorithm to the early/tardy single

machine scheduling problem with common due date and sequence-dependent setup times

(ETP). In this case, the Smallest Adjusted Processing Time (SAPT) rule is modified by

Meta-RaPS with its ability of randomness. When comparing Meta-RaPS ETP with a

simulated annealing (SA) and a hybrid approach Smallest Adjusted Processing Time -

SA (SAPT-SA) technique, they observed that Meta-RaPS produced better solutions in

terms of percent difference from optimal and in computation time.

Kaplan, et al. (2010) used Meta-RaPS approach to solve the Aerial Refueling

Scheduling Problem (ARSP), a real world problem that requires high quality solutions in

an acceptable time frame. ARSP can be defined as determining the refueling completion

times for each fighter aircraft wing (job) on multiple tankers (machines) and therefore

can be modeled as a parallel machine scheduling with release times and due dates to

8

minimize the total weighted tardiness. In their study, Meta-RaPS showed to be a

promising metaheuristic with its simplicity and effectiveness to find high quality

solutions for the ARSP. Kaplan and Rabadi (forthcoming) also presented a Simulated

Annealing and Meta-RaPS algorithm for the ARSP with due date-to-deadline windows

and release time.

Garcia and Rabadi (2011) developed a new algorithm based on Meta-RaPS for

solving the parallel multiple-area spatial scheduling problem with release times. Meta-

RaPS presented better performance on a set of highly diverse benchmark problems when

compared to the results obtained by a MIP model solved with CPLEX; it was very

effective and in most cases tied or outperformed CPLEX requiring less than 20% of the

computational time used by CPLEX.

Different from other authors, Hepdogan, et al. (2008) investigated the problem of

setting parameters using Meta-RaPS. They presented two different dynamic parameter

setting methods, Nonparametric Genetic Algorithms (NPGA) and Reactive Search (RS),

for Meta-RaPS while a solution is being found. These parameter setting methods were

used to set the parameters of Meta-RaPS to solve 0-1 MKP and ETP.

2.1.3 Meta-RaPS - Related Algorithms

Meta-RaPS is based on the "Computer Method of Sequencing Operations for

Assembly Lines" (COMSOAL). Meta-RaPS, however, is a general form of GRASP

(greedy randomized adaptive search procedure) which is a greedy metaheuristic to solve

combinatorial optimization problems. In the following sections both algorithms are

discussed due to their relevance to the Meta-RaPS.

9

2.1.3.1 COMSOAL

Meta-RaPS is based on the COMSOAL, which is an iterative computer heuristic

introduced by Arcus (1966) for balancing large complex machine-paced assembly lines.

COMSOAL originated in an industrial operations research project and was in use at some

factories of the Chrysler Corporation in an early form (Arcus, 1966).

COMSOAL generates a list of activities (candidate list) to be scheduled next. In

order to be selected for the candidate list, an activity must have all its predecessor

activities completed and there must be enough resources available to perform the activity.

The next activity is selected randomly to be scheduled from this candidate list. This

iterative process continues until all activities have been scheduled and a feasible schedule

is obtained. After several iterations of this procedure the best solution found is reported

(DePuy & Whitehouse, 2000).

DePuy and Whitehouse (2000) discussed the adaptation of the COMSOAL

approach to the resource allocation problem as well as a designed experiment used to

investigate the appropriateness of COMSOAL for a known set of resource allocation test

problems. DePuy and Whitehouse (2001) modified COMSOAL to the resource

constrained project scheduling problem (RCPSP). The Modified COMSOAL was using

priority schemes intermittently with a random selection technique, and outperformed the

other heuristics in terms of the average and maximum percentage difference from

optimal.

According to DePuy, et al. (2001), although the modified versions of COMSOAL

keep the fundamental ideas of Arcus (1966), in practice, the created versions of

10

COMSOAL differ considerably from the original one, thus leading to the development of

Meta-RaPS.

2.1.3.2 GRASP

GRASP is an iterative greedy heuristic introduced by Feo and Resende (1989) to

solve combinatorial optimization problems. The GRASP algorithm consists of two

phases: construction and local search. The feasible solutions constructed in the first phase

are not guaranteed to be locally optimal. Usually a local search is performed to attempt to

improve each constructed solution in the second phase.

In the construction phase of GRASP, the next components or activities are

selected according to their greedy evaluation function which calculates their incremental

cost if they are incorporated with the current components in the partial solution. The best

components or activities, i.e., the ones with the minimum incremental costs, are collected

to create the restricted candidate list (RCL) from which the components or activities are

chosen randomly to incorporate. While the first phenomenon indicates greedy attributes,

the latter shows probabilistic attribute of the algorithm. After incorporating the

components or activities in the partial solution, the RCL is updated by calculating the

new incremental costs of the components or activities left in the process which points out

the adaptive attribute of the GRASP (Resende & Ribeiro, 2003). Because the solution

generated in the construction phase is not usually optimal, the local search phase becomes

part of the solution process to improve the solutions. Besides local searches, any single-

solution heuristic can also be employed as an improvement means for GRASP (Talbi,

2009).

11

The main parameters for GRASP are related to the stopping criterion and the

quality of the solutions in the RCL. Increasing the number of the iterations will also

increase the probability of reaching better solutions but consuming more computer time;

on the other hand, the second parameter will help improve the quality of the best

solutions in the RCL. One of the approaches to reach the latter goal is value-based criteria

by using a threshold parameter a 6 [0, 1] which controls the greediness and the

randomness in the search process. If c(a) is the incremental cost when the component or

activity a is incorporated in the current partial solution; and cmm and cmax are denoted as

the smallest and the largest incremental costs, respectively, the RCL can be formed from

the component or activity a associated with c(a) selected as in (2.1):

c(a) e [cmin, cm,n + a(cmax - cmin)]. (2.1)

The parameter a for GRASP specifies the balance between intensification using

more greediness attribute and diversification using more randomness attribute. For the

case of a = 0 GRASP runs as a greedy algorithm, and for the case a = 1 GRASP runs as a

random algorithm.

Although GRASP generates solutions by introducing randomness to a greedy

heuristic like Meta-RaPS, it does not implement any probabilistic priority to the best

solutions (Hepdogan, et al., 2009). The iterations in GRASP algorithm are totally

independent, and there is no search memory. GRASP is classified as M|S|1.

2.1.4 Meta-RaPS Algorithm

Like GRASP, Meta-RaPS is a two-phase metaheuristic: a constructive phase to

create feasible solutions and an improvement phase to improve them. In the constructive

12

phase, a solution is built by repeatedly adding feasible components or activities to the

current solution in an order that is based on their priority rules until the stopping criterion

is satisfied. Generally, solutions obtained by implementing only constructive algorithms

can reach mostly local optima, which can be avoided in Meta-RaPS by employing

randomness in the constructive phase.

Meta-RaPS uses four parameters: number of iterations (I), the priority percentage

(p%), the restriction percentage (r%), and the improvement percentage (i%). Meta-RaPS

does not select the component or activity with the best priority value in every iteration,

nor does it select the one with the lowest incremental cost. Instead, the algorithm may

randomly accept an activity or component with a good priority value, but not necessarily

the best one. The parameter p% is used to decide the percentage of time a component or

activity with the best priority value will be added to the current partial solution, and

100% - p% of the time it will be randomly selected from a candidate list (CL) containing

"good" components or activities. The CL is created by including items whose priority

values are within r% of the best priority value. The CL is therefore created using

equations (2.2) and (2.3) where Pb is the component or activity with the best priority

value and F is the set of feasible components or activities (Lan, et al., 2007):

C L = { i : i e F a n d P i < P b • (1 + r %) } f o r m i n i m i z a t i o n . (2 . 2)

C L = { i : i 6 F a n d P i > P b • (1 - r %) } f o r m a x i m i z a t i o n . (2 . 3)

In the construction phase, the level of the randomness is adjusted by controlling

the values of the parameters p% and r% where smaller values of p% and larger values of

r% will randomize the search more. The construction phase of Meta-RaPS is completed

when a feasible solution is produced.

13

The improvement phase is performed if the feasible solutions generated in the

construction phase are within i% of the best unimproved solution value from the

preceding iterations. For the feasible solution to be improved in this phase, it must be

determined whether its objective function value Z satisfies the requirements in (2.4) and

(2.5) where Z* is the solution with the best objective function value obtained in the

construction phase (Lan, et al., 2007). Meta-RaPS pseudocode is shown in Figure 1.

Z < Z* • (1 + i%) for minimization. (2.4)

Z < Z* • (1 - i%) for maximization. (2.5)

The quality of the solution created by Meta-RaPS is heavily dependent to its

parameters, especially the number of iterations and the improvement percentage.

However, increasing the values of these parameters will also increase the need for more

computational time (Hepdogan, et al., 2009).

Meta-RaPS can be compared with COMSOAL and GRASP depending on the

values of the parameters in Meta-RaPS. While using 0 for the priority percentage, an

infinitely large restriction percentage, and 0 for the improvement percentage will imitate

COMSOAL; 0 for the priority percentage and 100 for the improvement percentage will

simulate GRASP (Moraga, et al., 2005). Because, in Meta-RaPS these three parameters

can take different values other than 0 and 100%, it exhibits much more flexibility over

COMSOAL and GRASP.

Meta-RaPS procedure is simple and effective procedure with only two main

parameters to be set. The simple nature of Meta-RaPS coupled with its ability to generate

high quality solutions, makes Meta-RaPS a good metaheuristic method for combinatorial

optimization problems (Hepdogan, et al., 2009).

14

For i teration ^ I

While (feasible solution is not constructed)

Find priority value for each feasible activity

Find best priority value

If rndO ^ priority^ then

add item with best priority value to solution

Else create CandidateList from feasible activities with

priority values ^ Limit

Limit = MinimumPriority +

restriction* • (MaximumPriority - MinimumPriority)

Choose randomly an item from CandidateList and add to solution

End While

A = BestConstructedSolution • improvement*

If ConstructedSolution ^ A then improve

If ImprovedSolution > BestImprovedSolution then

Assign ImprovedSolution as BestImprovedSolution

End For

Report BestImprovedSolution

Figure 1. Meta-RaPS Pseudo Code

DePuy, et al. (2001) expressed the advantages of the Meta-RaPS over other

metaheuristics. According to them;

• Run times for Meta-RaPS are not significantly affected by the size of the

problem,

• Meta-RaPS is easy to understand and to implement (i.e. write computer

code),

15

• Meta-RaPS generates a feasible solution at every iteration.

Many real world optimization problems require a deep understanding of

mathematical and computer programming. In this aspect, since it is easy to understand

and to put into application, and it can create good results in a reasonable amount of time,

Meta-RaPS should be particularly attractive to industrial practitioners too (Moraga, et al.,

2005).

2.2 0-1 Multidimensional Knapsack Problem

The multidimensional 0-1 knapsack problem (0-1 MKP) is a special case of

general linear 0-1 programs. The MKP can be considered as a subproblem of other

optimization problems as the multidemand multidimensional knapsack problem (Wilbaut

& Hanafi, 2008). In the literature there are different names used for the MKP: tri­

dimensional knapsack, problem, multidimensional knapsack problem, multiknapsack

problem, multiconstraint 0-1 knapsack problem (Freville, 2004). The name

multidimensional 0-1 knapsack problem that will be used here was mentioned first by

Weingartner and Ness (1967). The MKP is often used as a platform to evaluate new

metaheuristics and will therefore be used in this research to evaluate the effectiveness of

the proposed methods.

2.2.1 Literature Review

The first applications of 0-1 MKP had been presented by Lorie and Savage (1955)

and by Manne and Markowitz (1957) as a capital budgeting model. To solve the 0-1

MKP, both exact and approximation algorithms have been used. Exact algorithm includes

16

enumeration method, graph theoretic approach and dynamic programming (Martello, et

al., 2000). The development of exact algorithms began at the same time for both the KP

and MKP and included dynamic programming, branch-and-bound network approach,

hybridization of dynamic programming and branch-and-bound, special enumeration

technique and reduction schemes (Freville, 2004).

Exact methods for 0-1 MKP are based on dynamic programming (Gilmore &

Gomory, 1966; Martello, Pisinger & Toth, 1999; Pisinger, 1997; Weingartner & Ness,

1967), and in branch-and-bound techniques (Gavish & Pirkul, 1985; Martello and Toth,

1988; Pisinger, 1995; Sarin, Karwan & Rardin, 1988; Shih, 1979). Balev, et al. (2008)

presented a new dynamic programming based approach to the 0-1 MKP where they used

sparse data representation, which decreases memory and time requirements. Meier,

Christofides and Salkin (2001) proposed a realistic approach that uses this problem as a

subproblem coupled with generalized upper bound constraints. Boussier, et al. (2010)

proposed an exact method based on a multi-level search strategy for solving the 0-1 MKP

which combines Resolution Search, a Branch and Bound, and a Depth First Search

algorithm that exploit efficiently both the reduced costs and the fixed number of item

constraints.

Even when recent advances of methods such as branch-and-cut have made the

solution of middle size MKP instances possible, increasing the number of constraints

makes approximation algorithms necessary. Fleszar and Hindi (2009) presented the

heuristics appropriately chosen deterministic or randomly generated constraints imposed

on the linear relaxation can be used to partition the solution space effectively, leading to

good solutions for 0-1 MKP. The method of Boyer, Elkihel and El Baz (2009) solved the

17

0-1 MKP with two heuristics. The first heuristic using surrogate relaxation was solved via

a modified dynamic-programming algorithm to provide a feasible solution, and a second

heuristic was used to improve the bound obtained by exploring some nodes rejected by

the modified dynamic-programming algorithm.

James and Nakagama (2005) decomposed the 0-1 MKP into two parts by

applying enumeration methods to decrease memory requirement to solve large instances.

Wilbaut and Hanafi (2009) presented several convergent algorithms to solve a series of

small sub-problems generated by exploiting information obtained from a series of

relaxations. Hill, et al. (2012) introduced new problem-size reduction heuristics for the 0-

1 MKP. Their heuristics are based on solving a relaxed version of the problem, using the

dual variables to formulate a Lagrangian relaxation of the original problem, and then

solving an estimated core problem to achieve a heuristic solution to the original problem.

Tabu search approaches proposed by Glover and Kochenberger (1996) and Hanafi

and Fr^ville (1998) alternated between constructive and destructive phases and allowed

the visit of infeasible solutions during the search. The tabu search approach of Hanafi and

Freville (1998) was based on strategic oscillation and surrogate constraint information

that provides a balance between intensification and diversification strategies. The

algorithm of Vasquez and Vimont (2005) combines Linear Programming with an

efficient tabu search. He, et al. (2006) proposed a Tabu Search method based on a Double

Tabu-List inspired by the conclusion of the cognitive psychology about the human

memory system.

The genetic algorithms of Chu and Beasley (1998) and Haul and Vo (1998)

obtained good lower bounds for this problem. Haul and Vo (1998) introduced surrogate

18

relaxations into their genetic algorithm to enhance the process. Khuri, et al. (1994) used a

genetic algorithm for solving 0-1 MKP, while Cotta and Troya (1998) combined a

constructive heuristic for initialization and a local search method with a genetic

algorithm. Kato and Sakawa (2003) introduced the genetic algorithm with decomposition

procedures as an approximate solution method for large scale 0-1 MKP utilizing with

block angular structures. Cleary and O'Neill (2005) employed grammatical evolution

(GE) using different representation schemes.

Moraga, et al. (2005) have applied Meta-RaPS on the 0-1 MKP. The quality of

their solutions was close to the one obtained by Chu and Beasley (1998) while using a

reasonable computational effort. Hembecker, et al. (2007) applied particle swarm

optimization (PSO) for solving 0-1 MKP. Gong, Zhou and Luo (2011) proposed a hybrid

artificially glowworm swarm optimization algorithm that utilizes two important

strategies, how to select the item based on its unit volume value and the binary

glowworm swarm optimization algorithm. In addition to the ant-based approach of Kong

(2007), Chiang, et al. (2011) also proposed a novel ant-inspired constructive algorithm,

AST-MKP, which adopted a constructive graph for leading artificial ants in making

decisions to select effective solution components. Gallardo, et al. (2007) introduced a

hybrid model that combines branch-and-bound and memetic algorithms for the 0-1 MKP.

Wilbaut, et al. (2009) proposed new iterative heuristics with variable fixation to reduce 0-

1 MKP until it becomes sufficiently small to be solved with an exact method in a

reasonable CPU time. Other than these approaches, several metaheuristics have been

developed including Differential Evolution (Sima & GUlsen, 2005), Simulated Annealing

(Drexl, 1988) and Immune Inspired Algorithm (Maoguo, et al., 2007) focusing on the 0-1

MKP.

The 0-1 MKP has wide range of real-world application areas, such as capital

budgeting, allocating processors and databases in distributed computer systems (Gavish

& Pirkul, 1985). Cutting stock (Gilmore & Gomory, 1966) and loading problems

(Bellman, 1957; Shih, 1979) are also known applications. The MKP has also recently

been used to model the daily management of a satellite like SPOT (Vasquez & Hao,

2001), the resource allocation in distributed data processing (Gavish & Pirkul, 1982) and

the planning of data-processing programs (Thesen, 1973). The MKP has also been used

as a subproblem for solving a multicommodity network optimization problem (Gabrel,

Knippel & Minoux, 1999).

Most of the best-known solutions for the instances in the OR Library (Beasley

1990) were obtained by Vasquez and Hao (2001) and Vasquez and Vimont (2005).

Vimont, Boussier and Vasquez (2008) obtained several new optimal solutions on hard

instances of the OR Library with their implicit enumeration algorithm based on a reduced

costs analysis which tends to fix non-basic variables to their exact values.

Pisinger (1995) investigated knapsack problems in general and their

categorizations. Chu and Beasley (1998) classified the 0-1 MKP approaches into exact

algorithms and heuristic algorithms. Wilbaut and Hanafi (2008) presented a family of

knapsack problems with their applications and reviewed appropriate techniques

successful in solving these problems. An extensive survey on MKPs can be found in

Freville (2004) and Fr^ville and Hanafi (2005). The books by Kellerer, Pferschy and

Pisinger (2004) and Martello and Toth (1990) provide interesting reviews and useful

20

references. Wilbaut, et al. (2008) produced a survey paper with an emphasis to effective

heuristics and their applications.

2.2.2 Definition of the 0-1 Multidimensional Knapsack Problem

The 0-1 MKP is the generalized form of the classical knapsack problem (KP). In

KP there is a knapsack with an upper weight limit b, a set of n items with different profits

Cj and weights a, per item j. The problem is to select the items from the set such that the

total profit of the selected items is maximized without exceeding the upper weight limit

of the knapsack. If m knapsacks exist, the problem becomes the MKP in which each

knapsack has a different upper weight limit b„ and an item j has a different weight atJ for

each knapsack /. The objective is to find a set of items with maximal profit such that the

capacity of each knapsack is not exceeded (Gallardo, et al., 2009). The 0-1 MKP can be

formulated as in the equations (2.6 - 2.8):

n

Maximize Y.cjxj ' (2.6)
;=!

n

Subjectto <6,, i= 1, ...,m;j= 1, ...,n. (2.7)
y=i

Xje {0,1}, j = 1,..., n (2.8)

where x is a vector of binary variables such that Xj = 1 if item j is selected, and Xj = 0

otherwise. The 0-1 MKP can be accepted as a special case of the general linear 0-1

integer programming problem with nonnegative coefficients. In the literature it is

assumed that profits, weights and capacities are positive integers. However they can be

easily extended to the case of real values (Martello & Toth, 1990).

The MKP is an NP-hard problem (Garey & Johnson, 1979) and the number of

constraints increases its difficulty. Although the classical KP is weakly NP-hard, the

MKP is much more difficult even for m = 2. According to Wilbaut, et al. (2008), the 0-1

MKP instances with 500 variables and 30 constraints cannot be solved optimally within a

reasonable amount of computing time and memory requirement.

22

CHAPTER 3

MEMORY AND LEARNING IN METAHEURISTICS

One of the most important effects of improvement in modern sciences and

technologies is understanding and modeling real life problems realistically and in more

detail. The natural outcome of this fact is the rapid increase of problem dimensions and

complexity, which challenges us to develop more sophisticated approaches. A powerful

answer to this challenge can be based on solving problems by incorporating intelligence

in the proposed solution methods. Intelligence can be defined as the ability to make the

right decisions given a set of inputs and a variety of possible actions. In the problem

solving arena, this is transformed into the term "artificial intelligence", or AI, that

emerges by systematizing intellectual tasks relevant to human intellectual activity. AI

employs intelligent procedures to understand and to create intelligent entities (Yang,

2010).

Computational Intelligence (CI) is a modern name for the subfield of AI (also

named scruffy or soft) techniques. CI has a similar meaning to the well-known phrase AI,

although CI is perceived more as a "bottom up" approach from which intelligent behavior

can emerge, whereas AI tends to be studied from the top down, and derive from

pondering upon the meaning of intelligence (Mumford & Jain, 2009). CI involves

approaches based on strategy and outcome, and includes adaptive and intelligence

systems, e.g. evolutionary computation, swarm intelligence (particle swarm and ant

colony optimization) (Engelbrecht, 2007; Pedrycz, 1997).

23

Metaheuri sties can be viewed as another name for the strategy-outcome

perspective of scruffy AI. Metaheuristics or "modern heuristics" confront this challenge

by adding strategies and mechanisms to existing construction and local search

mechanisms in heuristics to avoid local optima (Moraga, 2009). A procedure in a

metaheuristic is considered black box in that little (if any) prior knowledge needs to be

known about it by the metaheuristic, and as such it may be replaced with a different

procedure.

3.1 Concepts of Memory and Learning

There are substantial relationships between the term intelligence and the terms

memory and learning. Intelligence is the ability that requires information captured by

learning and stored in memory to make correct decisions in solving problems. The level

of intelligence depends on the efficiency of learning activities and the capacity of

memory; thus enhancing intelligence will then mean enhancing both memory and

learning. Most researchers accept intelligence as an umbrella that covers the intellectual

activities.

Webster's Dictionary (1996) defines memory as "the act or fact of retaining and

recalling impressions, facts, etc."; and learning as "knowledge acquired by systematic

study or by trial and error". Based on these definitions, we can see that the concepts of

learning and memory are closely related. Furthermore, learning can be thought of as the

acquisition of skill or knowledge, while memory as the expression of what you have

acquired. Another factor that can be used in defining these two concepts is the rate at

which the two processes occur: If the new skill or knowledge is gained slowly, that is

24

considered learning, but if the gain happens instantly, it is then considered creating

memory (Kazdin, 2000).

The structure of memory is central to one's knowledge of the past, interpretation

of the present, and prediction of the fiiture (Kesner, 1998). Memory related to the past

can be employed to create predictive models in the present, and therefore can guide

current thoughts, decisions, and actions. Learning lets human beings have a greater

degree of flexibility and adaptability than any other species.

Due to significant advancement in neuroscience, the concepts of memory and

learning have undergone enormous changes over the last decade. In cognitive

psychology, types of memory can be classified in a number of ways, depending on the

criterion used. With duration as the criterion, it is divided into three functions for storage:

sensory, short-term, and long-term (Anderson, 2000). Sensory memory takes the

information provided by the senses and retains it accurately but very briefly. It is often

considered part of the process of perception, and essential for storing information in

short-term memory. The short-term memory temporarily records the succession of

events, and determines what information moves from sensory memory to short-term

memory. This information will quickly disappear forever unless we make a conscious

effort to retain it. Sensory memory is a necessary step for short-term memory, and short-

term memory is a necessary step toward the next stage of retention, long-term memory.

Long-term memory is relatively permanent storage with information stored on the basis

of meaning and importance. According to Anderson (2000), its capacity seems unlimited;

however it sometimes distorts the facts, and tends to become less reliable as time goes by.

Based on the distinctions related to memory structure, learning can be accepted as a long-

term change in mental representations or associations as a result of experience (Ormrod,

2008). If learning is a change in behavior, it can then be measured by observing the

changes in behavior. The most common ways of measuring learning are recording the

reduction in errors, the changes in the form and/or intensity of the behavior, the change in

the speed with which a behavior is performed, and the change in the rate or frequency at

which a behavior occurs (Chance, 2008).

Since memory stores and retrieves the information that is learned, it is then an

essential component to all learning activities. Memory is nothing more than the record

left by a learning process, and thus, memory depends on learning. But learning also

depends on memory because the knowledge stored in memory provides the framework to

new knowledge.

3.2 Memory and Learning in Metaheuristics

Alan Turing, known as the founder of artificial intelligence, was probably the first

to use heuristic algorithms during the Second World War in breaking German Enigma

ciphers via his cryptanalytic electromechanical machine, the Bombe. The Bombe used an

algorithm to search for the correct setting coded in an Enigma message among about 1022

potential combinations. Turing named his search method as heuristic search, as was

expected to work most of the time, but there was no guarantee to find the correct

solution; it was a great success, nevertheless (Yang, 2010).

The mechanisms of memory and learning in algorithms store various information

related to search history so that the algorithm can reach high quality solutions. Learning

26

takes place when the problem at hand is not well known at the beginning, and its

structure becomes clearer and clearer when more experience with the problem is gained.

Online learning is the type of learning in which an algorithm uses task-dependent local

properties for a problem instance while it is solving that instance to determine the

appropriate level trade-off between diversification and intensification (Yang, 2010).

Different memory and learning structures have been used in different metaheuristics, as

shown in Table 2 in which only Tabu Search (TS) is a single-solution metaheuristic and

the rest are population-based metaheuristics.

Table 2. Memory Structures in Some Metaheuristics (Adapted from Talbi, 2009)

Metaheuristics Search Memory

Tabu search Tabu list

Evolutionary algorithms Population of individuals

Scatter search Population of solutions

Path relinking Population of solutions

Ant colony optimization Pheromone matrix

Particle swarm optimization Population of particles

Estimation of distribution algorithms Probabilistic learning model

The memory and learning structures can be described in the best way by taking

TS algorithm as a baseline. In the memory and learning structures of TS, four main

aspects are defined; recency, frequency, quality, and influence. The recency-based

27

memory keeps track of the attributes of the solutions found in the search process which

have changed in the recent past. Attributes found in the solutions visited recently are

defined as tabu-active which are called tabu in TS.

While the aspect of recency can be accepted as a short term memory

implementation, the aspect of frequency deals with the long term TS strategies. The

frequency-based memory consists of mainly two ratios: transition frequencies, which

record how often the attributes are changed, and residence frequencies, which record how

often the attributes are component of solutions produced. In scheduling for example, the

number of times job j has been moved to an earlier position in the sequence can be an

example for transition frequencies, and the sum of tardiness of job j when it occupies

position Pj can be an example for residence frequencies (Glover & Laguna, 1997). The

quality-based memory discovers the common elements in good solutions, or the paths

that lead to good solutions. In these mechanisms some penalties can also be applied to

move away from poor solutions. The last aspect of influence-based memory considers the

effects of the decisions made in the solution process on both the quality and the structure.

The quality aspect can be accepted as a special case of the influence aspect.

Intensification and diversification are two important strategies for the memory

structure. According to Rochat and Taillard (1995), "diversification drives the search to

examine new regions, and intensification focuses more intently on regions previously

found to be good" Intensification strategies modify the algorithm to search the promising

regions more thoroughly based on high quality solution features found in the search

process, or by modifying choice rules to favor the inclusion of attributes of these

solutions. These strategies focus on inspecting the neighborhood of elite solutions by

28

incorporating their good attributes into new solutions. On the other hand, diversification

strategies encourage the algorithm to explore new regions and mainly utilize long term

memory mechanisms. Local search optimization methods often rely on diversification

strategies to reach better solutions. Diversification strategies help prevent cycling of the

search process, and give more robustness to the algorithm.

The more sophisticated version of a tabu search includes longer term memory

with associated intensification and diversification strategies. Glover and Laguna (1997)

define this approach as Adaptive Memory Programming (AMP) because it is based on

exploiting the strategic memory components. Taillard, et al. (2001) sketch the following

algorithm of AMP based on the common features of the methods that use these strategic

memory components:

1. Initialize memory.

2. Until the stopping criteria are met, do:

a. Generate a temporary solution s using data stored in the memory;

b. Improve 5 by implementing local search, 5and

c. Update the memory using data brought by j '.

Based on the AMP approach, Dreo et al. (2007) present Adaptive Learning Search

(ALS) emphasizing that the memorized data are not only raw input, but provide

information on the distribution and, thus, on the solutions. The algorithm for ALS

consists of the following steps:

1. Initialize a sample.

2. Until the stopping criteria is met, do:

a. Sampling: either explicit, implicit or direct;

29

b. Learning: the algorithm extracts information from the sample;

c. Diversification: it searches for new solutions;

d. Intensification: it searches to improve the existing sample; and

e. Replace the previous sample with the new one.

The main difficulty for metaheuristic search is the issue of balancing the

intensification and diversification strategies. The search process can easily converge

toward a local optimum and to diversify the search process, or to visit the solutions with

different attributes, requires increasing the number of moves or components that are

labeled as undesirable. For TS, the discussion then turns into finding the optimum tabu

list size. Indeed, the reactive TS is designed to automatically adapt the tabu list size

(Battiti & Tecchiolli, 1994).

The term reactive search supports the integration of learning techniques into

metaheuristic search to solve complex optimization problems. The word reactive here

describes an immediate response to events during the search through an internal feedback

loop for online adaptation. The knowledge related to the search history is utilized for

adaptation in an automatic manner. The algorithm keeps the ability to respond to different

situations during the search process, but the adaptation is automated, and executed while

the algorithm runs on a single instance reflecting on its past experience. Intelligent

optimization refers to a more extended area of research, including online and offline

schemes based on the use of memory, adaptation, and incremental development of

models, experimental algorithmics applied to optimization, intelligent tuning, and design

of metaheuristics (Battiti, Brunato & Mascia, 2008).

3.3 Metaheuristics with Memory and Learning

Memory and learning in metaheuristics represent the information extracted and

stored during the search for better solutions. The content of these mechanisms varies

from a metaheuristic to another (Table 2). While tabu list represents memory in TS, in

most of the metaheuristics such as evolutionary algorithms and scatter search, the search

memory is limited to the population of solutions. In Ant Colonies Optimization (ACO),

the pheromone matrix is the main component of the search memory, whereas in

Estimation Distribution Algorithms, it is a probabilistic learning model that composes the

search memory.

Of the algorithms in Table 2, Estimation Distribution Algorithms and Path

Relinking proposed to be incorporated into Meta-RaPS will be discussed in detail in the

following chapters with Q learning algorithm from machine learning area and algorithms

with adaptive parameter tuning.

3.3.1 Tabu Search

Tabu Search (TS) algorithms, introduced by Glover (1989), are one of the most

common single-solution based metaheuristics that improve a single solution. The major

property of this approach emerges from storing information related to the search process,

which is called memory. A TS can be classified either as A|N|1 or A|N|P. The reason

behind this classification is that TS employs adaptive memory using a neighborhood

search and it moves from one current solution to the next after every iteration.

A TS begins with local or neighborhood search and generally the whole

neighborhood is explored deterministically and the best solution found in the

31

neighborhood is selected as the new current solution. According to Talbi (2009), a TS

may be considered as a dynamic transformation of the neighborhood; however, this

mechanism may create cycles, which in order to be avoided, the TS "memorizes" the

recent search trajectory by means of a tabu list. Usually, a tabu list consists of a constant

number of solutions or attributes of the moves, which are updated at each iteration of the

search process. Besides the tabu list, there is another mechanism called the aspiration

criteria, to accept a solution that is "good" even though it is in the tabu list. A common

aspiration criterion is if a solution is better than the best solution so far.

Due to the fact that a tabu list generally contains the information of recent

solutions or moves, it can be classified as a short-term memory. Along with the short-

term memory, in a TS there are medium-term and long-term memory mechanisms to

apply for different purposes. While the medium-term memory, or intensification memory,

stores the elite solutions and gives priorities to their attributes, the long-term or

diversification memory, keeps the information of the visited solutions to use in exploring

unvisited regions in the solution space.

3.3.1.1 Reactive Tabu Search

As a design parameter, the size of the tabu list plays a very important role in

reaching high-quality solutions. Increasing the size of the tabu list can prevent cycles;

however it can constrain the search process in a certain region, too. To handle this trade­

off, various methods are developed in the literature. During the search process, the robust

tabu approach chooses randomly different tabu list sizes from a specified range, and the

deterministic tabu approach picks tabu list sizes that are previously assigned. A common

feature of these methods is that they require a fixed range determined before the start of

the search process (Wassan, 2007). These facts brought Battiti and Tecchiolli (1994) to

the more sophisticated version of the TS, a reactive tabu search in which the size of the

tabu list dynamically, or reactively, adapts as the search progresses. They created an

analogy between the evolution of the search process in combinatorial optimization and

the theory of dynamic systems. According to the authors, similar to a dynamic system,

three cases should be avoided in the search process: local minima, limit cycles, and

chaotic attractors. Local minima are attractors of the system dynamics, and they are fixed

points until the system is enforced by some phenomena to leave the local optimum and

continue the search process. Limit cycles, or closed orbits, denote the case of visiting

solutions previously found in the search process. Even in the absence of local minima and

limit cycles, the solution space can be narrowed or deformed, and the search process can

visit only parts of the solution space due to the chaotic attractors (Chiang & Russell,

1997). Battiti and Tecchiolli (1994) used the term chaotic attractor as an example of a

dynamic behavior that could affect the search process. In their study, chaotic attractors

are identified "by a contraction of the areas, so that trajectories starting with different

initial conditions will be compressed in a limited part of the solution space, and by a

sensitive dependence upon the initial conditions, so that different trajectories will

diverge". They suggested that for an effective and efficient search process, preventing

limit cycles is not enough, and the chaotic-like attractors should be removed too.

According to Glover and Laguna (1993), avoiding cycles is not the ultimate

purpose of the search process; another purpose is to continue the exploration of new

solution regions. To reach these goals, reactive tabu search implements two mechanisms:

33

first is adapting the size of tabu list (tabu tenure) throughout the search process depending

on the repetitions of the solutions. The algorithm stores the information related to the

solutions visited during the search process to control the repetitions and the interval

between visits. The mechanism increases the size of tabu list when the number of

repetitions exceeds a certain threshold, and vice versa. The second mechanism is an

escape or diversification strategy, to take the search process out from its current region

randomly if it repeats itself excessively (Wassan, 2006), or in other words, when there is

evidence for chaotic attractors in the search space.

While adapting the size of the tabu list, intensification strategies are also

employed to deeply search the area that gives good or elite solutions. Reactive tabu

search algorithms aim to balance the intensification and diversification functions to

control and run the search process fluently. As in the basic tabu search, in addition to the

tabu list, the aspiration criteria also help prevent getting trapped at a local optimal

solution.

3.3.2 Evolutionary Algorithms

The works of Mendel on the heredity from parents to offspring, and Darwin's

theory of evolution presented in his famous book On the Origin of Species from the 19th

century have inspired computer scientists in designing evolutionary algorithms (EAs) in

the 1980s. Since then different approaches have evolved independently in the

evolutionary algorithms area: Genetic algorithms, mainly developed by Holland (1962;

1975); evolution strategies, developed by Rechenberg (1965; 1973) and Schwefel (1965);

34

evolutionary programming by Fogel (1962; 1966) and genetic programming proposed by

Koza (1992). Each of these approaches is inspired by the principles of natural evolution.

Genetic Algorithms (GA) are generally associated with binary representations;

however, other types of representations can also be employed in different versions of

GAs. The GA usually implements a crossover operator to two solutions having a "good"

fitness values, and a mutation operator to modify the individual solution to create

diversity. The replacement, or survivor selection, is performed by replacing the parents

systematically with offspring. The basic crossover operator is based on a n-point or

uniform crossover while the mutation is bit flipping. Probabilities are applied to both of

the crossover and mutation operators.

Evolution Strategies (ES) are mostly applied to continuous optimization where the

problem representations are based on real-valued vectors. ES usually use an elitist

replacement strategy, and a normally (Gaussian) distributed mutation, while crossover is

rarely used. An individual is composed of the problem's decision variables as well as

some search parameters in order to evolve both the solution and the strategy parameters

(e.g., mutation step size) at the same time. Their main advantage is their efficiency in

terms of time complexity (Talbi, 2009).

Evolutionary programming (EP) mainly uses mutation, but not recombination or

crossover. Traditional EP algorithms have been developed to evolve finite state machines

to solve time series prediction problems and more generally to evolve learning machines

(Fogel, 1966). Contemporary EP algorithms have later been applied to solving

continuous optimization problems using real-valued representations. They use normally

distributed mutations and self-adaptation principle of the parameters as in ESs. The

35

parent selection operator is deterministic, while the replacement operator is probabilistic

and is based on a stochastic tournament selection (Eiben, 2003). EP is less used than the

other approaches of EAs because of its similarity to ES.

Genetic programming (GP) expands the scope of the generic model of learning to

the space of programs. Its main distinction from other EAs approaches is that the

evolving individuals are themselves programs (nonlinear representation based on trees)

instead of fixed length strings from a limited alphabet of symbols (linear representation).

In GP, the parent selection is based on fitness proportions and the survivor selection is a

generational replacement. The crossover operator is based on subtrees exchange and the

mutation is based on random change in the tree. One of the main problems in GP is the

uncontrolled growth of trees, which is called bloat. Theory of GP is less developed than

in evolution strategies and genetic algorithms (Langdon & Poli, 2002) and it is widely

applied in machine learning and data mining tasks such as prediction and classification.

In EAs, the population is usually generated randomly. Every individual in the

population is an encoded version of a solution that is called chromosome while the

decision variables within a solution (chromosome) are genes. The possible values of

variables (genes) are the alleles and the position of an element (gene) within a

chromosome is called locus. An objective function stands for a fitness value which shows

the ability of an individual or a solution to survive in its environment. At each step,

individuals are selected to form parents depending on their fitness value; individuals with

better fitness are selected with a higher probability. The selection mechanism will lead

the population to better solutions. However, individuals not having "good" fitness are not

discarded immediately since they may have useful genetic material for future operations.

36

The selection process is executed by assigning a strategy, e.g. roulette wheel selection,

tournament selection, stochastic universal sampling, or rank-based selection.

The selected individuals are then reproduced using variation operators (e.g.,

crossover, mutation) to generate new offspring. Finally, a replacement mechanism is

applied to select which individuals (parents and offspring) of the population will survive

to the new generation. Mutation operators are unary operators acting on a single

individual representing small changes to selected individuals of the population. The

probability Pm defines the mutation probability for each element (gene) of the

representation. In general, small values are recommended for this probability

(Pm € [0.001, 0.01]). Some strategies initialize the mutation probability to 1/k where k is

the number of decision variables, meaning that only one variable is mutated. The role of

crossover operators is to pass down some characteristics of the two parents to generate

the offspring. Unlike unary operators such as mutation, the crossover operator is binary

and sometimes «-ary. The crossover probability Pc represents the proportion of parents on

which a crossover operator will act. Common values for crossover probability are

typically selected in the interval [0.45, 0.95].

The population size is another important parameter for EAs and usually larger

population sizes have greater chances of converging to better or optimal solutions. While

the sampling errors become more important in smaller populations, the time complexity

of EAs grows linearly with the size of the population. A proper level of population size

between the quality of the obtained solutions and the search time must be determined. In

practice, a population size between 20 and 100 is usually considered typical.

37

3.3.3 Scatter Search

The concept of scatter search (SS), first proposed by Glover (1977), is a

deterministic algorithm applied to both combinatorial and continuous optimization

problems. SS is a population metaheuristic that recombines solutions selected from a

reference set to build others, and from this point of view, it can be seen as an

evolutionary algorithm (Glover, Laguna & Marti, 2003). SS creates the reference set by

selecting "good" solutions from the population obtained in the previous search process.

The selected solutions from the reference are combined to provide starting solutions to an

improvement procedure, and the reference set is updated to incorporate both high-quality

and diversified solutions. The diversity can be measured by taking the minimum

Hamming distance from a solution to any solution selected for the reference set. The set

of solutions is evolved by the use of recombination of solutions and applying some local

search algorithms.

SS is designed by integrating of five methods:

• A Diversification Generation Method to generate a set of diverse initial

solutions in order to diversify the search by selecting high-quality solutions.

• An Improvement Method to transform a trial solution into one or more

enhanced trial solutions, in general, by applying a local search procedure.

• A Reference Set Update Method to create a reference set from the "best"

solutions by keeping both diverse and high-quality solutions.

• A Subset Generation Method to operate on the reference set, to produce a

subset of its solutions as a basis for creating combined solutions. This method

is similar to the selection operator in EAs with the differences being, first, the

38

SS uses a deterministic operator, whereas in EAs, it is generally a stochastic

operator; second, the size of the reference set in SS is much smaller than the

size of the population in EAs (Talbi, 2009).

• A Solution Combination Method to transform a given subset of solutions

produced by the Subset Generation Method into one or more combined

solutions. The combination method can be seen as the crossover operator in

EAs where more than two individuals are recombined.

3.3.4 Swarm Intelligence

In the field of optimization there are some promising algorithms inspired by the

behavior of some species such as ants, birds, fish, bees, etc. These types of algorithms are

called swarm intelligence algorithms. The expression "swarm intelligence" was first used

by Beni, Hackwood, and Wang (Beni, 1988; Beni & Wang, 1989; Hackwood & Beni,

1992) in the context of cellular robotic systems. Swarm intelligence is defined as a field

of computer science which is focused on the efficient computational methods for solving

problems in a way that is inspired by the behavior of real swarms or insect colonies

(Bonabeau, Dorigo & Theraulaz, 1999: Kennedy, Eberhart & Shi, 2001). The main

characteristics of (artificial) swarm intelligence algorithms are that the particles, or

species, are simple and nonsophisticated agents; they cooperate by an indirect

communication instrument; and they move in the decision space of the optimization

problem (Ahuja, et al., 2002).

Indeed, the behavior of real species is complex; they can process a lot of sensory

inputs, which means a large amount of information. However, the complexity of the

39

species is still not sufficient to describe what these social colonies can do. This issue of

how to connect individual behavior with collective performance can be explained by

using self-organization (SO) concept, and in reality, the activities of social species are

self-organized. SO theories originally developed in the context of physics and chemistry

but have been extended to social insects to show that complex collective behavior may

emerge from interactions among individuals that exhibit simple behavior (Haken, 1983;

Nicolis & Prigogine, 1977). Recent research shows that SO is a major component of a

wide range of collective phenomena in social species (Deneubourg, et al., 1989). The

modeling of social species by means of SO can help design artificial distributed problem-

solving devices that self-organize to solve problems, or in other words swarm-intelligent

systems. SO is based on four elements (Bonabeau, Dorigo & Theraulaz, 1999).

• Positive feedback (amplification) promotes the creation of structures. For

instance, recruitment to a food source is a positive feedback that relies on trail

laying and trail following in some species like ants.

• Negative feedback counterbalances positive feedback and helps stabilize the

collective pattern; it may take the form of saturation, exhaustion, or competition.

• Amplification of fluctuations (random walks, errors, random task-switching, etc.).

Not only do structures emerge despite randomness, but randomness is often

crucial since it enables the discovery of new solutions, and fluctuations can act as

seeds from which structures nucleate and grow.

• Multiple interactions. A single individual can generate a self-organized structure,

however, SO generally requires a minimal density of mutually tolerant

40

individuals. Moreover, individuals should be able to make use of the results of

their own activities as well as of others'.

SO in social insects often requires interactions among insects and such

interactions can be direct or indirect. Indirect interactions are more subtle however; two

individuals interact indirectly when one of them modifies the environment and the other

responds to the new environment at a later time. This type of interaction is an example of

stigmergy, which was introduced by Grasse (1959; 1984) and is considered the second

most important theoretical concept of swarm intelligence after self-organization.

Stigmergy (from the Greek stigma: sting, and ergon: work) does not describe how species

coordinate their activities, however, it does provide a general mechanism that relates

individual and colony-level behaviors: individual behavior modifies the environment,

which in turn modifies the behavior of other individuals.

The most successful swarm intelligence inspired optimization algorithms are ant

colony and particle swarm optimization. Besides the wide range of applications of swarm

intelligence in the literature, hybrid techniques in which swarm intelligence algorithms

work with other metaheuristics can also be a promising concept to make use of both the

intelligence of swarms and the efficiency of metaheuristics.

3.3.5 Ant Colony Optimization

Ant colony optimization (ACO) is one of the most successful swarm intelligence

algorithms. The possibility of "forming of communication by means of modifications of

the environment" is defined as stigmergy, which is one of the basic concepts for the ACO

(Dreo et al, 2006).

41

The ACO aims to imitate the real ants as multiagent systems to solve optimization

problems and was first proposed by Dorigo (1992). Even though real ants cannot see

well, they can find the shortest path between two points. In this process they are using a

very simple and yet powerful mechanism; a chemical trail called a pheromone. The ants

follow their routes according to the amount of pheromone; the larger the amount of the

pheromone on a route, the larger the probability of being selected by the ants. However

the pheromone is a volatile substance and it decreases over time. In the beginning of the

process, the probabilities of selecting the routes by ants are equal, but since the shorter

routes need less time to travel, they will emerge with higher rates of selection due to

higher amounts of pheromone. This process, supported by the evaporation mechanism,

will end up with finding the shortest path. The pheromone trail, in essence, represents the

long term memory of the entire system and where information related to the process is

stored (Dorigo & Stiitzle, 2004).

ACO is composed of two main steps: construction of solutions and updating the

pheromone. In the first step solutions are constructed by adding solution components to

partial solutions according to the probabilistic transition rule in equation (3.1):

' E m W (3 I >
leN-

where Ty is pheromone desirability, rjy is heuristic desirability, a is ratio of pheromone

desirability (0 < a < 1), and p is ratio of heuristic desirability (0 < P < 1) for selecting

component j after the component /. By using this probabilistic transition the construction

algorithm takes into account both the amount of pheromone and problem-dependent

heuristic information.

In the second step the amount of pheromone is updated in two phases:

evaporation phase and reinforcement phase. In the evaporation phase the pheromone trail

is reduced by a fixed ratio q (0 < q < 1) for all components in the decision space by

applying equation (3.2). This evaporation process protects all ants from a premature

convergence toward good solutions and encourages diversifying the search space.

tij = (l-q)tij (3.2)

In the reinforcement phase, the amount of the pheromone is updated according to

solutions generated by using two main strategies: online and offline updates. In the case

of online updating, the pheromone trail is updated by an ant either at each step of the

solution construction (step-by-step updating) or after a complete solution is generated

(delayed updating). The offline updating is more popular where the updating process is

applied only after all ants generate a complete solution. In this approach different

strategies can be performed including quality-dependent, rank-based, elitist solution,

best-worst, moving average, and minimum pheromone values update (Merkle &

Middendorf, 2005).

The selection of the of ACO parameters plays a critical role in the search process.

Therefore, a good trade-off between the ratios of the pheromone desirability (or

intensity), and heuristic desirability (or visibility) must be found to balance intensification

and diversification. If the ratio of pheromone desirability is equal to 0, the ACO

algorithm will act like a stochastic greedy algorithm, and if the ratio of heuristic

desirability is equal to 0, only the pheromone trails will guide the search.

43

ACO can be classified as a construction and population-based metaheuristic,

which although has been created mainly to solve discrete optimization problems, it has

been extended to deal with continuous optimization problems.

3.3.6 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic population-based metaheuristic

inspired by swarm intelligence. PSO simulates the social behavior of natural organisms,

e.g. bird flocking or fish schooling, in search of food. Among these organisms, or the

swarm, a dynamic behavior in relatively complex displacements can be observed, where

the individuals have access to limited information, like their closest neighbors' positions

and speed (Dreo, et al, 2006). Each individual uses the local information regarding this

displacement to decide on its own displacement. In other words, a coordinated behavior

using local movements emerges without any central control.

In PSO algorithms, each individual particle of a swarm represents a potential

solution in a multidimensional search space. The particles start searching randomly for

the optimal solution of a given objective function by moving through the search space.

The objective function measures the quality or amount of food at each place and the

particle swarm searches for the place with the best or most food (Merkle & Middendorf,

2005). The position of each particle is adjusted according to its velocity (i.e., rate of

change) and the difference between its current positions, the best position found by its

neighbors, and the best position it has found so far. As the model is iterated, the swarm

focuses more and more on an area of the search space containing high-quality solutions

(Blum & Li, 2008).

The individual particle is represented by the vector x*, which has its own position

and velocity. Each particle adjusts its position according to the global optimum with

respect to two factors: the best position visited by itself (pbesti) denoted by the vector pb

and the best position visited by the whole swarm (gbest) denoted by the vector gj. The

vector (pi - Xj) shows the difference between the current position of the particle i and the

best position of its neighborhood. The neighborhood, which must be defined for each

particle, describes the social influence between the particles in the swarm. To define a

neighborhood, two methods are traditionally used: the global best method and the local

best method. In the global best method, the neighborhood is defined as the whole

population of particles, whereas in the local best method, the neighborhood of a particle

is the set of directly connected particles, in which case, the neighborhood may be empty

and the particles isolated. A particle is composed of three vectors: the x-vector for its

current position, the p-vector for the location of the best solution found so far by the

particle and the v-vector for the direction of the particle to travel in the search space. In

each iteration, the movement of the particle can be given by equation (3.3):

Xj(t) = Xi(t-l) +Vj(t) (3.3)

Updating of the particles' positions is dependent on the direction of their

movement, their speed, the best preceding position p, and the best position pg among the

neighbors as shown in the equation (3.4):

Vi(t) = v<t - 1) + piai x (pi - Xj(t - 1)) + p2 a2 x (pg - Xj(t - 1)) (3.4)

where pi and p2 are random variables in the range [0, 1], and cti and 0.2 represent the

learning factors. The parameter ai is the cognitive learning factor that decides the level

that a particle has toward its own success, and the parameter 0.2 is the social learning

45

factor that reflects the level of attraction that a particle has toward the success of its

neighbors. Socio-psychology suggests that the movements of the individuals are

influenced by their last behavior and that of their neighbors who are closely placed in the

social network and not necessarily in space.

To control the balance between intensification and diversification of the search

space, a weight w, called inertia, is generally added to the velocity update procedure, as

in equation (3.5):

Vj(t) = w x Vj(t - 1) + pi x (ps - X|(t - 1)) + p2 x (pg - Xj(t - 1)) (3.5)

A large inertia weight encourages diversification of the search, and a smaller

inertia weight encourages intensification of the search in the current region. According to

the new velocity, each particle updates its position in the solution space was given in

equation (3.3).

After these updates each particle will update the best local solution, pi = Xi

if (xi) < pbesti, and the best global solution of the swarm, gj = Xj if (Xj) < gbest- As such, a

particle changes its position after each iteration according to its own and to its neighbors'

positions.

Unlike ACO algorithms, PSO has been successfully designed originally for

continuous optimization problems; however, by employing velocity models, PSO can be

applied to discrete optimization problems also. Velocity models for discrete optimization

problems are inspired from mutation and crossover operators in EAs. The velocity

models may be real valued, stochastic, or based on a list of moves. In stochastic velocity

models for binary encodings, the velocity is associated with the probability for each

binary dimension to take value of 1.

46

CHAPTER 4

METHODOLOGY

In the process of incorporating memory and learning mechanisms into Meta-

RaPS, four of the proposed approaches, EDA, Q learning, Path Relinking, and adaptive

parameter tuning, will be investigated throughly and designed to create its own main

version of Meta-RaPS. For each of these main versions, two versions will be introduced

depending on how solutions are generated for their memory mechanisms: randomly (or

simply using the weights of items) and using a greedy rule. Although the first type is not

expected to produce high quality solutions, it may give an idea about the pure

contribution of memory and learning ability to an independent algorithm, i. e. not getting

any help from a greedy rule. And the main idea for the second type is to guarantee

obtaining high quality solutions by applying a greedy rule.

After completing these four proposed algorithms, the Meta-RaPS was redesigned

as the fifth algorithm by utilizing all the lessons learned from the efforts of incorporating

the memory and learning mechanisms. All these proposed algorithms were evaluated and

reported by following the same method.

4.1 Performance Comparison of the Proposed Algorithms

Due to the existence of strong randomness component in the proposed Meta-RaPS

versions were run 10 times for each instance and the average will be taken for all runs.

After completing the solution process, the performance of each algorithm will be reported

in terms of solution quality, or percentage deviation, number of iterations, CPU time, and

47

frequency of reaching optimum/best solutions. The percentage deviations were calculated

using equation (4.1):

f(S,)-f(S)xlOO (4 I)
f(s«) '

where s is the solution found in the current method and s* is the optimum solution/best

solution. The percentage deviations were calculated not only for the average of best

improved solutions (IMean), but also for the best of the best improved solutions found in

10 runs (IBest) and for the average of constructed solutions (CMean). While IMean

shows the mean performance of the algorithm, IBest may give an idea about the limits of

the algorithm. CMean helped evaluate the quality of the initial solutions produced by

using the priorities of memory and learning mechanisms since the improvement phase is

same for all algorithms.

In terms of the frequency of reaching optimum/best solutions, the number of

times the algorithm has found the optimum/best solutions in 10 runs were given under the

heading of Optimum Frequency. The heading "Optimum Instance" shows the number of

instances solved optimally/with best solutions by the algorithm. To finish the report, the

averages and standard deviations for these metrics were calculated.

Comparison of the proposed Meta-RaPS algorithms were implemented in the

following aspects:

• Between versions of proposed Meta-RaPS algorithms,

• Before and after memory and learning inclusion into Meta-RaPS, and

• With other applications in the literature applied to solve 0-1 MKP.

For the second aspect, the solutions of the proposed algorithms were compared

with the results of the original versions of Meta-RaPS by Moraga et al. (2005).

48

4.2 Stopping criteria

Stopping criteria for the proposed algorithms are:

• To run the algorithms 10,000 iterations for small, medium and large size

instances,

• Or, to stop whenever the deviation% of the solution from the optimal/best found

solution becomes 0, whichever comes first.

Although the small and medium size instances do not need 10,000 iterations for

their solution process, this number of iterations is accepted only to be consistent with the

number of iterations selected by Moraga, et al. (2005) in their Meta-RaPS approach.

4.3 0-1 MKP Instances

To test and compare the performance of the proposed algorithms, they will be

applied in 0-1 MKP test instances in the literature. The standard library of 55 small and

medium size 0-1 MKP test instances in the literature developed by Petersen (1967),

Weingartner and Ness (1967), Shih (1979) and Freville and Plateau (1990) were solved

by proposed versions of Meta-RaPS. Details of small and medium size 0-1 MKP

problems are shown in Table 3.

For large size 0-1 MKP test instances, 270 test instances generated by Chu and

Beasley (1998) were used. These 0-1 MKP test instances are created by accepting the

tightness ratios of 0.25, 0.50 and 0.75 for each group of 10 instances in the set,

respectively. The tightness ratio a is defined as the ratio between the constraint value and

the sum of the corresponding weights (4.2).

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

49

Table 3. Small and Medium Size 0-1 MKP Test Instances

Name Item Knapsack # Name Item Knap

HP1 28 4 29 WEISH04 30 5

HP2 35 4 30 WEISH05 30 5

PB1 27 4 31 WEISH06 40 5

PB2 34 4 32 WEISH07 40 5

PB4 29 2 33 WEISH08 40 5

PB5 20 10 34 WEISH09 40 5

PB6 40 30 35 WEISH10 50 5

PB7 37 30 36 WEISH11 50 5

PETERSEN1 10 6 37 WEISH12 50 5

PETERSEN2 10 10 38 WEISH13 50 5

PETERSEN3 15 10 39 WEISH14 60 5

PETERSEN4 20 10 40 WEISH15 60 5

PETERSEN5 28 10 41 WEISH16 60 5

PETERS EN6 39 5 42 WEISH17 60 5

PETERSEN7 50 5 43 WEISH18 70 5

SENTOl 60 30 44 WEISH19 70 5

SENT02 60 30 45 WEISH20 70 5

WEING1 28 2 46 WEISH21 70 5

WE1NG2 28 2 47 WEISH22 80 5

WEING3 28 2 48 WEISH23 80 5

WEING4 28 2 49 WEISH24 80 5

WEING5 28 2 50 WEISH25 80 5

WEING6 28 2 51 WEISH26 90 5

WEING7 105 2 52 WEISH27 90 5

WEING8 105 2 53 WEISH28 90 5

WEISH01 30 5 54 WEISH29 90 5

WEISH02 30 5 55 WEISH30 90 5

WEISH03 30 5

50

ff = —-i—e {0.25,0.5,0.75}

Is (4'2)
j=i

Resource consumptions a,y are random numbers assigned between (0, 1,000), and

profits are correlated to the weigths Cj are are generated via equation (4.3):

JH, a
Cj = V—+(500r)e {0.25,0.5,0.75} (4.3)

where m is the number of knapsacks and r, is a random number generated from (0, 1].

Using the gap, i. e. the relative distance between the best integer value found in the

branch and bound and the LP value of the best unexplored node in the three (Osorio &

Cuaya, 2005), as a measure of hardness, Pirkul (1987) concluded that the gap increases as

the constraints become tighter, if the number of variables and constraints are constant.

Distribution of large size 0-1 MKP problems in terms of item and knapsack is

summarized in Table 4. Besides best/optimal solutions found for these test problems, the

LP relaxation values for these large size test problems are also available in the OR-

Library (Beasley, 1990).

Table 4. Large Size 0-1 MKP Test Instances

Knapsack

Item 5 10 30

"TOO 30 30 30

250 30 30 30

500 30 30 30

Total 270

51

Two versions of the four proposed algorithms will be first employed to solve the

small and medium size instances. Depending on their performances, one of these two

versions will be selected as its main version of Meta-RaPS to solve first three sets of

large size instances presented in the first row in Table 4. In the case of redesigning Meta-

RaPS, all small, medium, and large 0-1 MKP instances will be solved.

4.4 Tuning Parameters

The values of the parameters for the metaheuristics have significant impact on

both the solution process and solution quality. To obtain the best results, the issue of

"finding the best parameter setting" for metaheuristics becomes an optimization problem

by itself. There is no universal set of parameter for a certain metaheuristic to be applied

to different problems. In fact, for different problems, there are different optimal

selections (Wolpert & Macready, 1997).

In setting the parameters of the algorithms, two main forms are defined:

parameter tuning and parameter control (Eiben, Hinterding & Michalewicz, 1999). In

parameter tuning, or offline tuning, parameters are set a priori. In the case of parameter

control, or online tuning, initial values for the parameters are assigned and changed

during the search process.

One-Factor-At-a-Time (OFAT) and Design of Experiments (DOE) approaches are

offline parameter tuning methods used to find the best parameter setting in the literature

(Daniel, 1994). Unlike DOE, OF AT neglects the interactions between the parameters that

might change the whole solution process and quality. Particularly, in terms of the

interactions, DOE methods are promising approaches and can be employed to tune the

52

parameters more effectively. There have been many studies to tune the parameters of

metaheuri sties by means of DOE (e.g, Figlali, et al., 2009; Kramer, Gloger and Goebels,

2007; Li et al., 2009).

4.4.1 Design of Experiments (DOE)

To finetune the Meta-RaPS parameters in the most effective way, DOE offers 2-

level (2k) full factorial, orthogonal array, central composite and D-optimal design

methods. 2-Level (2k) full factorial design generated by using the Yates algorithm (Box,

Hunter & Hunter, 1978) is one of the most widely used DOE tools where k is the number

of factors. One drawback of 2k full factorial design is the rapid increase of the number of

experiments as the number of factors increases. The fact that effects of 3 or higher

interactions tend to be insignificant, and therefore may be ignored, bring us to a fractional

factorial design type named orthogonal array (OA) design where only main factors and

the 2-factor interactions are considered.

In 2k full factorial and OA designs, it is assumed that the relationship between the

2-level factors is linear. It is possible to increase the number of levels to 3 to capture the

nonlinearity, however, it would be a bit controversial and none of the rules for the 2-

levels would apply in those designs. Also, this would not be the best candidate for

continuous factors like parameters used in metaheuristics. A better approach to cope with

the nonlinearity and continuous factors could be Response Surface Methods (RSM) using

Central Composite Design (CCD) developed by Box and Wilson (Box & Wilson, 1951).

After implementing multiple DOE methods to a GA parameter setting, it was

observed that, D-optimal design is the most effective DOE methods in terms of tuning

53

parameter settings (Arin, Rabadi & Unal, 2011). This study encourages the application of

a D-optimal design in tuning the parameters of the Meta-RaPS' proposed versions.

4.4.2 D-Optimal Design

CCD is quite an efficient design especially due to adding the second-order

nonlinearity; however, in some cases it may not be enough to understand the relationships

between factors, and also, the number of experiments must be kept to an absolute

minimum. If a design has an absolute minimum number of experiments, such design is

called "saturated design". Saturated designs are constructed by applied D-optimality

criterion. Creating a D-optimal design begins with the estimator of simple linear

regression in equation (4.4):

Y=b 0 + £b ,x (4 . 4)

where bo is the intercept, bj are the slopes. If this equation is written in matrix form, we

will have (4.5):

Y = XB+e (4.5)

The set of design B can be estimated in the form given in (4.6) by applying the Least

Square Regression method.

B = (XTX)-'XTY (4.6)

A statistical measure of accuracy of B is the variance-covariance matrix in (4.7):

V(B)=ct2(XtX)"1 (4.7)

where a2 is the variance of the error. V(B) is a function of (XTX)"' and to increase the

accuracy, (XTX)"' should be minimized. Statistically, minimizing (XTX)"' is equal to

54

maximizing the determinant of (XTX). "D" in the term "D-optimal" comes from the first

letter of the word "determinant" where the D-optimal design seeks to maximize |X X|.

The minimum number of experiments for D-optimal design is calculated as

(n+l)(n+2)/2 where n is number of factors. To obtain more accurate results, D-optimal

designs can be augmented by adding more experiments. D-optimal design with k = 3 is

created by augmenting the design by two experiments in Table 5.

Table 5. D-Optimal Design with k = 3

Experiment A B C AB AC BC A2 B2 C2

1 -1 -1 -1 1 1 1 1 1 1

2 -1 -1 1 1 -1 -1 1 1 1

3 -1 0 0 0 1

4 -1 1 -1 1 -1 1 1 1

5 -1 1 1 -1 -1 1 1 1 1

6 0 -1 0 0 0 0 1 0

7 0 1 0 0 0 0 0 1

8 1 -1 -1 1 1 1 1

9 1 -1 1 -1 1 -1 1 1 1

10 1 1 -1 1 -1 -1 1 1 1

11 1 1 0 1 0 0 1 1 0

12 1 1 1 1 1 1 1 1 1

Besides the advantages mentioned before, if some experiments are infeasible, D-

optimal designs can still be used by extracting these experiments from the design. Some

of the interesting features of D-optimal designs, unlike the previous DOE methods, that

55

they are not orthogonal, and there are no degrees of freedom to test the accuracy of the

model. There are some heuristics (Box & Drapper, 1974), and software (SAS Institute,

2007) available to come up with a design that maximizes |X X|.

In applying D-optimal design, the first step is coding the parameters (priority as

factor A, restriction as factor B, improvement as factor C) in lower, medium, and upper

levels (-1,0,1). In each experiment, the factors, or parameters, are set and run according

to the first three columns in the design shown in Table 6. After the solutions from the

experiments are obtained, the results are analyzed by implementing regression analysis

and its mathematical model is derived. The model can then be solved by a linear

programming solver, such as MS Excel, to minimize the objective function, which is

percentage deviation from optimum/best solution found. The parameter setting by D-

Optimal is found after coding back these findings to their real values.

By applying the D-optimal design the parameter settings are tuned for the first

three Meta-RaPS algorithms presented in Table 6 for small/medium and large size 0-1

MKP instances.

Table 6. Parameters of the Proposed Meta-RaPS Algorithms for 0-1 MKP Instances

Values
Parameter

Small/Medium 0-1 MKP Large 0-1 MKP

Priority (p) 04 05

Restriction (r) 0.2 0.5

Improvement (i) 0.1 0.1

Number of iterations (I) 10000 10000

56

These parameter settings were used only for the versions of Meta-RaPS EDA,

Meta-RaPS Q and Meta-RaPS PR as offline parameter tuning. In the Meta-RaPS AP

version, parameters were tuned online, i.e. adaptively changed with the solution process.

In the redesigned version of Meta-RaPS, the parameters found adaptively in the Meta-

RaPS AP were used.

4.5 Statistical Comparison

In the statistical comparison of the proposed algorithms, the first step is to

determine whether there are any significant differences between the means of the Meta-

RaPS versions in terms of percentage deviation and computational time. Since more than

two algorithms are proposed, it is inappropriate to employ a t-test which compares the

pairs. In this case, the way to evaluate whether or not the difference between the

algorithms is statistically significant is using a one-way analysis of variance (ANOVA).

The one-way ANOVA applies the F-test to determine whether there is a significant

difference among treatment means. When the null hypothesis (Ho: "Means of Percentage

Deviations/Time for Meta-RaPS Versions Are Equal") is rejected via the one-way

ANOVA, this shows that some of the treatment or factor level means are different but

does not identify which ones are different. To determine which specific algorithms differ

from each other, a post-hoc Multiple Comparisons Test is needed. Tukey's multiple

comparison test is one of several tests that can be used to determine which means

amongst a set of means differ from the rest. Tukey's multiple comparison test is also

called Tukey's HSD (honestly significant difference) test. The test compares the

difference between each pair of means with appropriate adjustment for the multiple

57

testing. The Tukey multiple comparison test, like the t-test and ANOVA, assumes that the

data from the different groups come from populations where the observations have a

normal distribution and the standard deviation is the same for each group (Montgomery

& Runger, 2003). In the one-way ANOVA analysis, the significance level is accepted as

0.05.

4.6 Conditions for the Comparison

All of the proposed Meta-RaPS algorithms are implemented in C++. The

small/medium instances are solved on the Intel i5 CPU 2.27 GHz PC and the large

instances are solved on the Intel(R) Xeon(R) CPU E5690 3.47 GHz workstation. Since

there are many parts in the proposed algorithm in which randomness plays a very

important role, all of the proposed algorithms solved each instance 10 times, and their

mean and standard deviations were calculated for analysis.

The proposed algorithms were created by incorporating different memory and

learning mechanisms into Meta-RaPS. In other words, the only difference among all the

proposed algorithms is the learning and memory mechanisms, while the Meta-RaPS

approach keeps its main structure the same. By following this approach, the efficiency of

different memory and learning mechanisms were compared in a fair way as shown in the

following chapters.

58

CHAPTER 5

INCORPORATING ESTIMATION OF DISTRIBUTION ALGORITHMS INTO

META-RAPS

In demonstrating the contribution of memory and learning into metaheuristics,

Estimation of Distribution Algorithms (EDA) is the first method incorporated as a

memory and learning mechanism into the Meta-RaPS. EDA is a recent stochastic

optimization technique that explores the space of candidate solutions by sampling an

explicit probabilistic model constructed from promising solutions found so far (Hauschild

& Pelikan, 2011). EDA estimates the probability distribution for each decision variable

and with the help of this distribution it generates new solutions. These new solutions will

then replace the old population according to given rules. This process iterates until

termination criteria are met.

5.1 Literature Review

The term EDA was first introduced by Miihlenbein and PaaB (1996) in their

seminal work. They revealed that selecting individuals (i.e. solutions) by means of the

estimation of their probability distribution was one way to create more efficient

Evolutionary Algorithms (EAs). Later, Miihlenbein, et al. (1999) identified the

factorization of the probability distribution according to a probability model, as a

practical method that permits the computation of estimations which have been the core of

what mostly known as EDAs (Santana, 2005). Since then, the growing interest in EDAs

constituted a discipline in evolutionary computation.

59

Usually, the probabilistic model as well as the learning and sampling methods

employed in EDAs are static. Santana, et al. (2008) presented a general framework for

introducing adaptation in EDAs. Gao and Culberson (2005) identified criteria that

characterize the space complexity of two typical implementation schemes of EDAs - the

factorized distribution algorithm and Bayesian network-based algorithm. Chen, et al.

(2010) investigated the computational time complexity of a simple EDA, the univariate

marginal distribution algorithm (UMDA), in order to gain more insight into EDAs

complexity.

Santana (2005) proposed a new probability model based on what in statistical

physics is known as the Kikuchi approximation. Shakya and McCall (2007) presented a

Markov random field (MRF) approach to estimating and sampling the probability

distribution in populations of solutions. Handa (2007) incorporated mutation operators: a

bitwise mutation operator and a mutation operator into EDA in order to maintain

diversities in populations. Lima, et al. (2011) investigated the relationship between the

probabilistic models learned by the Bayesian optimization algorithm (BOA) and the

underlying problem structure.

In the literature there are different EDA designs developed for continuous

optimization (Bosman & Grahl, 2008; Ding et al., 2008; Miquelez, et al., 2007; Xiao, et

al., 2009), dynamic optimization problems (Yuan, et al., 2008), clustering (Ahn &

Ramakrishna, 2006; Qiang & Xin, 2005), non-separable problems (Agapie, 2010) and

polygonal approximation problems which is important especially in the area of pattern

recognition (Wang, et al., 2009). Besides multiobjective EDA applications (Marti, et al.,

2011; Qingfu, et al., 2008; Zhang, et al., 2008), EDA created high quality solutions when

60

hybridized with algorithms such as Particle Swarm Optimization (Hongcheng, et al.,

2011), memetic algorithms (Huang, et al., 2010), neural networks (Zhou & Wang, 2010)

and variable neighborhood search (Santana, et al., 2008). Quadratic assignment problem

(Zhang, et al., 2003), software testing (Sagama & Lozano, 2005), robust airfoil

optimization (Zhong, et al., 2008), nuclear reactor fuel management optimisation (Jiang,

et al., 2006) and real-time video tracking (Patricio, et al., 2009) are applications of EDA.

EDAs have also been used with permutation type optimization problems

including scheduling problems such as nurse scheduling (Uwe & Jingpeng, 2007),

flowshop scheduling (Jarboui, Eddaly & Siarry, 2009), job shop scheduling (Zhang,

2011) and project scheduling (Wang & Fang, 2012). Chen, et al. (2010) produced

guidelines for designing EDAs in solving single machine scheduling problems.

Extensive information about EDA can be found in Pelikan, Goldberg and Lobo

(2002), Lozano, et al. (2006), and Sastry, et al. (2006). Very recently, Hauschild and

Pelikan (2011) introduced a research on the introduction and survey of EDA.

5.2 Estimation of Distribution Algorithms

EDA is one of the recent optimization techniques that belongs to the class of the

population-based metaheuristics. EDA is based on the idea that the probability

distribution created from promising solutions would keep giving higher probability to

high quality solutions and approach the optimum. These new solutions are then used in

updating the probability distribution by replacing the old population in terms of some

criteria such as the fitness function or diversity which can be defined as the measure of

distinctness among the solutions. The important aspect in EDA is that the probability

distribution should not perfectly represent the population of promising solutions, but

61

rather capture the features of candidate solutions that make them better than other

candidate solutions (Hauschild & Pelikan, 2011). EDA have been specifically designed

for black box optimization (BBO) problems in which objective functions are not given in

a closed analytical form (Grahl, 2007). In a BBO, the structure of an optimization

problem is hidden from the optimization process and the only information that can be

exploited is a quality measure that is assigned to candidate solutions.

EDA is an outgrowth of EAs where statistical information is obtained from the

population to form a new population and the Darwinian operators are replaced by

probability distributions. However, the main difference between most EAs and EDAs is

that the probability distribution used in EDAs to generate new candidate solutions is

defined explicitly whereas the distribution in most EAs is defined implicitly (Hauschild

& Pelikan, 2011).

The main step in EDA is estimating the probability distribution P(x) which

assigns to items the probability of being selected in each position. If the optimization

problem is represented by a bit vector, the distribution is represented by a single vector of

n probability elements P = (pi, p2, pn). Each element of this probability vector stands

for the probability of being included in the solution, i.e. 1 if selected, 0 otherwise with

probability of 1 - pn. Assuming that the population size is large enough to ensure reliable

convergence, the EDA based on the probability vector provides an efficient and reliable

approach to solving many optimization problems (Goldberg, 2002).

While creating new populations, EDA implements a probabilistic learning model

that is used as memory. If the probabilistic learning model can capture the important

62

features of promising solutions and create new solutions based on these features, then the

EDA should be able to quickly converge to the optimum (Miihlenbein & Mahnig, 1999).

The learning model is a key element in EDA, thus EDAs are usually classified by

the type of learning model. Since the interactions between the decision variables are very

important in learning models, EDA takes into account the level of variable interactions in

the probabilistic model. The assumption that decision variables of the problem are

independent will often prevent convergence to the optimum when their interactions are

strong. In terms of the interactions, EDA can be classified as univariate, bivariate, and

multivariate EDAs.

In the class of univariate EDAs, no interactions between the decision variables are

considered in the generation of the probabilistic model. Mathematically, a univariate

model decomposes the probability of a candidate solution (X]5 X2, . . . , Xn) into the

product of probabilities of individual variables as in (5.1):

P (X l ,X J , . . . ,Xj = nP<Xi) (51)
i=l

where p(Xj) is the probability of variable Xj, and p(Xi, X2,..., Xn) is the probability of

the candidate solution (Xi, X2, . . . , Xn). One of the most known univariate EDAs is

Population-Based Incremental Learning (PBIL) which is the first EDA strategy applied to

solve optimization problems (Baluja, et al., 1994). On the contrary to the EDAs keeping a

population of candidate solutions, incremental EDAs fully replace the population with the

probabilistic model. In PBIL, after generating new solutions, the best solution or the set

of best solutions, is selected to create the probability distribution of best solutions, Pbest =

(Pibest, P2best, pnbest), which will be used to update the probability distribution of

solutions, P = (pi, P2,..., pn), by using the rule in equation (5.2) (Saez, 2009):

Pi = (1 - a) pi + a pibest- (5.2)

where a is the learning factor. A smaller learning factor implies a diversifying search

process and a higher learning factor means an intensifying search process. According to

Saez (2009), the mutation operator plays also an important role during the search process

to guarantee convergence, avoiding local optima, and maintaining the diversity through

the iterations. The mutation operator in PBIL algorithms can be applied at two levels:

solution vector or probability matrix to maintain genetic diversity. Besides the genetic

algorithm operators, local search algorithms can also be implemented in EDA to enhance

the solution quality (Zhang, et al., 2006). Besides PBIL, the univariate marginal

distribution algorithm (UMDA) (Mtihlenbein & PaaB, 1996) and the compact genetic

algorithm (cGA) (Harik, et al., 1997) are other univariate type of EDAs.

In the bivariate EDAs, or tree-based models, there are interactions between two

decision variables and the conditional probability of a variable may only depend on the

other variable. The mutual-information-maximizing input clustering (MIMIC) is in the

class of bivariate EDAs, and uses a chain distribution to model interactions between

variables (De Bonet, et al., 1997). In MIMIC, given a permutation of the n variables in a

problem, rc = ii, i2,.. ., in, the probability distribution of p(X|, X2,.. ., Xn) is formed as

in (5.3);

p„(X) = pfX.JXjpfX, |X j . . . p (x , jx jp(xj (5.3)

where p(Xf, |X^Jis the conditional probability of Xj given . Candidate solutions

are generated by sampling this probability distribution. To improve the expressiveness of

the probabilistic models compared to MIMIC, Baluja and Davies (1997) used

dependency trees to model promising solutions. The other bivariate EDA is the bivariate

64

marginal distribution algorithm (BMDA) that constructs a model based on a set of

mutually independent trees (a forest) (Pelikan & Miihlenbein, 1999).

Multivariate EDAs define the probabilistic model considering the interactions

among more than two decision variables. While univariate and bivariate models provide

EDAs with the ability to identify the characteristics of sampling population, they are

often not enough to solve problems with highly overlapping interactions between

variables. One way to describe multivariate interactions in the multivariate EDA is by

using the concept of Bayesian network. A Bayesian network is an acyclic directed graph

with one node per variable, where an edge between nodes represents a conditional

dependency (Hauschild and Pelikan, 2011). A Bayesian network with n nodes encodes a

joint probability distribution of n random variables Xi, X2,..., Xn (5.4):

p (X„ X„ . . . , X „) = nP(X, |e,) (5.4)
i=l

where 0j is the set of variables from which there exists an edge into Xj, and p(Xi | 0,) is the

conditional probability of Xj given 0j. New candidate solutions are generated by sampling

the probability distribution.

Another way to encode multivariate interactions is via Markov networks. The

difference between Markov networks and Bayesian networks is the use of undirected

connections between variables for Markov networks. A Markov network may sometimes

be considerably less complex than a Bayesian network, at least with respect to the

number of edges (MUhlenbein, 2008); however, sampling in Markov networks is more

difficult than in Bayesian networks. Following these two approaches, the Bayesian

optimization algorithm (BOA) (Pelikan, et al., 2000) and the Markovianity-based

optimization algorithm (MOA) (Shakya & Santana, 2008) are developed for multivariate

EDAs.

If the interactions between the variables in the optimization problem are not

significant, univariate and bivariate EDAs will give better results; however if higher

order interactions between the variables emerge, multivariate EDAs should be used to

improve the solutions. However, it should be taken into consideration that using more

expressive models implies that the solution process will be more computationally

expensive.

The 0-1 Multidimensional Knapsack Problem can be modeled by using the EDA

variants presented until now. In the 0-1 MKP, the order, or permutation, is not important;

only the item selection decision is important for the solution. Therefore, these algorithms

are not directly applicable to problems where candidate solutions are represented by

permutations such as the quadratic assignment problems, traveling salesman problems

and other scheduling problems. These types of problems often contain two specific types

of features or constraints: the absolute position of a symbol in a string and the relative

ordering of specific symbols (Hauschild & Pelikan, 2011). To deal with this type of

problems researches developed EDA-based algorithms, e.g. random key encoding (Bean,

1994), the dependency-tree EDA (dtEDA) (Pelikan, et al., 2007) and the edge histogram

based sampling algorithm (EHBSA) (Tsutsui, 2002).

There are some features that distinguish EDA as a stochastic optimization

algorithm from other metaheuristics. According to Hauschild and Pelikan (2011), one of

the biggest advantages of EDAs over other metaheuristics is their ability to adapt their

operators to the structure of the problem, instead of using fixed operators to explore the

space. EDAs also provide information about problem structure, i.e. promising parts of

search space, dependency relationships between decision variables, or other important

properties of the problem landscape, by means of utilizing probabilistic models. On the

other hand, developing explicit probabilistic models in EDA is often more time

consuming than using operators in implicit models, such as tournament selection and

crossover in EAs. It is also difficult to learn an adequate probabilistic model for the

problem; and it may cause creating ineffective algorithms to search the problem space.

5.3 A Representative Example of 0-1 MKP

Suppose there are three knapsacks with upper weight limits of 82, 65, and 51,

respectively. A decision maker has to select a set of items from 8 items with different

profits and different weights such that the total profit is maximized without exceeding the

upper weight limit of each knapsack. Data for the 0-1 MKP example is summarized in

Table 7.

The 0-1 MKP can be coded as a general linear 0-1 integer programming problem

with nonnegative coefficients, as in equations (5.5 - 5.9).

Maximize 9xi + 5x2 + 19x3 + IOX4 + 17xs + 1lx$ + I6X7 + 6xg (5.5)

Subject to 19xi + 14x2 + 13x3 + 9x4 + 15xs + 27x6 + 25x7 + 18xg < 82 (5.6)

20xi + 13x2 + 6x3 + 10x4 + 4x5 + 18x6 + 27x7 + 5xg < 65 (5.7)

3xi + 2x2+ 5x3+11x4+14x5 + 23x6+ 6x7+13x8 <51 (5.8)

Xi e {0,1}, i = 1,..., 8 (5.9)

67

Table 7. 0-1 MKP Example

Constraints

Item Profit 1 2 3

1 9 19 20 3

2 5 14 13 2

3 19 13 6 5

4 10 9 10 11

5 17 15 4 14

6 11 27 18 23

7 16 25 27 6

8 6 18 5 13

Upper Weight Limits: 82 65 51

After this example is solved optimally, items 3,4, 5, 7 and 8 will be selected with

an optimum profit of 68.

5.4 Meta-RaPS Dynamic Greedy Rule (DGR) Solution for 0-1 MKP

In this section, the 0-1 MSP example will be solved first by using Meta-RaPS

before incorporating a memory mechanism. Meta-RaPS is a two-phase metaheuristic: a

constructive phase to create feasible solutions and an improvement phase to improve

them. In solving the MKP example with Meta-RaPS, the Dynamic Greedy Rule (DGR)

will be used as a priority rule in determining the priorities or order of the items between

them (Moraga, et.al, 2005). In this rule, a penalty factor for each item is calculated

according to equation (5.10):

68

™ a
wi=LiT7V'fori = 1'(5.10)

J=1 Dj-CWj

where ay is the coefficients of item i in constraint j, bj is the amount of resource for each

constraint j, and CWj is the amount of resource j consumed by the items so far; i.e., in the

partial solutions. To determine the priority of an item /, its profit Cj is divided by its

penalty factor, i.e. c,/w,. The item with maximum Cj/w, has the highest priority in the

solution process. Because the penalty factors change after each iteration in the

construction process, the priorities of the items are updated after each item is added to the

partial solution. For example, in the beginning of the process, the priority of item 3 is

obtained after the calculations given in equations (5.11-5.12):

a3i a,, a„ 13 6 5 A _ _ w, = V — = —— + —-—I -— = K H = 0.35. (5 1 n
3 jTf bj — CWj b, -0 b2 -0 b3 -0 82-0 65-0 51-0 K >

c 19
pr io r i ty 3 = —= —— = 54 .5 . (5 .12)

w3 0.34 v '

Since in the construction phase of the Meta-RaPS the items are added to the

partial solutions, and their order is not important (5.13), the initial priority matrix in

Table 8 is created by adding the priority of item i to the priority of item j if item i is

selected after j was included in the (partial) solution (5.14);.

priorityij = priority^ (5.13)

priority jj = priority; + priorityj (5.14)

Meta-RaPS does not select every time the item with the best priority value. The

algorithm may accept one with good (not necessarily the best) priority value based on a

randomized approach. The priority percentage (p%) is employed to decide the percentage

of time the item with the best priority value will be added to the current partial solution,

69

and (l-p)% of the time an item with a good priority value is randomly selected from a

candidate list (CL) that contains items with "good" priorities.

Table 8. The Initial Priority Matrix

Item 1 2 3 4 5 6 7 8

1 - 27.2 69.5 35.9 47.8 25.4 34.1 25.9

2 27.2 - 66.7 33.1 45.0 22.6 31.3 23.1

3 69.5 66.7 - 75.3 87.2 64.9 73.6 65.3

4 35.9 33.1 75.3 - 53.6 31.3 40.0 31.7

5 47.8 45.0 87.2 53.6 - 43.2 51.9 43.6

6 25.4 22.6 64.9 31.3 43.2 - 29.5 21.3

7 34.1 31.3 73.6 40.0 51.9 29.5 30.0

8 25.9 23.1 65.3 31.7 43.6 21.3 30.0 -

Table 9. The Meta-RaPS Parameters for the 0-1 MKP Example

Parameter Value

Priority percentage (p) 0.6

Restriction percentage (r) 0.2

Improvement percentage (i) 0.7

Number of iterations (I) 10

70

The parameters used in the Meta-RaPS are as given in Table 9. The CL is created

for maximization problems by including the ones whose priority values are higher than

the lower limit found by equation (5.15):

Lower Limit = Minimum Priority +

(Maximum Priority - Minimum Priority) • (r%). (5.15)

Checking the feasibility of the (partial) solution in each step of every iteration is

very important. That is, the items with the highest priorities and those in the CL must

ensure that the (partial) solutions are feasible (i.e., within the limits of the constraints) if

added to the (partial) solution.

Meta-RaPS starts by selecting an item randomly as the first item in the partial

solution. Because the selected item consumes some of the resources, the priorities in the

priority matrix should be updated after each item is added to the partial solution. If, for

example, item 5 is selected in the beginning, the updated priorities according to equations

(6.10 - 6.13) would be as in Table 10a.

Maximum and minimum priorities of row 5 in Table 6a are 69.9 and 33.8,

respectively. If the random number created is smaller than or equal to p%, the item with

maximum priority is chosen; otherwise, another item is selected randomly from the CL.

Since lower limit [= 33.8 + (69.9 - 33.8) • (0.2)], calculated by using equation (5.14), is

equal to 41.02, CL is created by accepting items 4 and 7 whose priorities are larger than

lower limit, 42.2 and 41.8 respectively. In the 1st step of iteration 1, because the random

number happened to be 0.76 which is greater than p = 0.60, an item from the CL is

selected randomly which is for now item 7 as shown in Table 10b.

71

Table 10a. The Updated Priorities after Selecting Item 5

Item 1 2 3 4 5 6 7 8

1 - 23.5 57.4 29.8 38.5 21.3 29.4 21.5

2 23.5 - 54.9 27.3 36.0 18.8 26.9 19.0

3 57.4 54.9 - 61.2 69.9 52.8 60.8 53.0

4 29.8 27.3 61.2 - 42.2 25.1 33.2 25.3

5 38.5 36.0 69.9 42.2 - 33.8 41.8 34.0

6 21.3 18.8 52.8 25.1 33.8 - 24.7 16.9

7 29.4 26.9 60.8 33.2 41.8 24.7 - 24.9

8 21.5 19.0 53.0 25.3 34.0 16.9 24.9 -

Table 10b. The 1st Step in Iteration 1 of Meta-RaPS

Max
Item

Priority

Min

Priority

Lower

Limit

Max

Item

Candidate

List

Random

Number
P Decision Profit

5 69.9 33.8 41.0 3 4, 7 0.76 >0.60 Select 7 17

After item 7 is added to the partial solution, the priority matrix is again updated,

and the column and row of item 5 are deleted. The updated priority matrix for this step is

given in Tables 1 la and b.

72

Table 1 la. The Updated Priorities after Selecting Item 7

Item 1 2 3 4 5 6 7 8

1 - 14.3 37.3 19.5 13.7 18.0 13.9

2 14.3 - 35.8 18.0 12.2 16.5 12.4

3 37.3 35.8 - 40.9 35.1 39.5 35.4

4 19.5 18.0 40.9 - 17.3 21.7 17.6

5

6 13.7 12.2 35.1 17.3 - 15.9 11.8

7 18.0 16.5 39.5 21.7 15.9 - 16.1

8 13.9 12.4 35.4 17.6 11.8 16.1 -

Table 1 lb. The 2nd Step in Iteration 1 of Meta-RaPS

Item
Max

Priority

Min

Priority

Lower

Limit

Max

Item

Candidate

List

Random

Number
p Decision Profit

5 69.9 33.8 41.0 3 4,7 0.76 >0.60 Select 7 17

7 39.5 15.9 20.6 3 4 0.28 <0.60 Select 3 16

This process is followed until there are no items left without affecting the

feasibility of the partial solution. After adding item 3 to the partial solution, it can be seen

from the report in Table 12 that item 4 has the highest priority, and there are no items in

the CL. However, accepting item 4 makes the partial solution infeasible, and therefore

cannot be selected. Because the other items (2, 6, and 8) give the same result, the first

iteration of the algorithm stops. The constructed solution in the first iteration is (5, 7, 3,

and 1) and the total profit is 61. The construction phase of Meta-RaPS continues in this

fashion until the number of iterations or any other stopping criterion is met.

Table 12. Report for the Construction Phase in Iteration 1 of Meta-RaPS DGR

Max Min Lower Max Candidate Random
Item p Decision Profit

Priority Priority Limit Item List Number

5 69.9 33.8 41.0 3 4,7 0.76 >0.60 Select 7 17

7 39.5 15.9 20.6 3 4 0.28 <0.60 Select 3 16

3 31.4 26.7 27.6 4 1 0.83 >0.60 Select 1 19

1 5.79 3.59 5.13 4 - - - Stop 9

Total: 61

The improvement phase of Meta-RaPS is performed only if the feasible solutions

generated in the construction phase are within i% of the best unimproved solution value

from the preceding iterations (Moraga, et al., 2006). To decide whether to perform the

improvement phase after the construction phase for maximization problems or not, the

value of A in equation (5.16) is calculated;

A = WCS + (BCS - WCS) • (i%) (5.16)

where WCS and BCS stand for Worst Constructed Solution and Best Constructed

Solution, respectively (Moraga, 2009). If the current solution (CS) is smaller than or

equal to the A-value, the improvement phase will be executed. At the end of the

construction phase for iteration 4, the data collected in this process is summarized in the

74

Table 13 which shows that an improvement phase is required for iterations 2 and 3. As an

example for the improvement phase iteration 3 is selected where the minimum solution

value is obtained in the construction phase.

Table 13. Decision for Improvement Phase in Iteration 1 of Meta-RaPS DGR

Iteration CS BCS WCS A CS vs. A Decision

i 61

2 60 61 60 60.7 CS<A Improve

3 56 61 56 59.5 CS<A Improve

4 61 61 56 59.5 CS > A Not Improve

In the improvement phase two different algorithms will be employed: 2-opt and

insertion algorithms. In the 2-opt algorithm, the item in the solution is replaced with an

item that is not in the solution in a systematic way. To follow this process, the solution is

first coded in a binary string, i.e. the solution (5, 7, 3, 1) is coded as (1 0 1 0 1 0 1 0), and

the l's are replaced with 0's. As it can be seen in Figure 2, the better solution is reached

by applying the 2-opt algorithm to CS. The improved solution (IS) is generated from (5,

7, 3, 1) with the objective function value of 61 to (5, 7, 3, 6) with objective function value

of 63 by replacing items 1 and 6(1 <-* 6).

Item f(x) F/NF

CS

IS ©. "
i :

I
1 •

0

0

i ©

j-.jh

o

0

61

63

Figure 2. Replacing Items in 2-Opt Algorithm

75

In the other improvement algorithm, insertion, the selected item is inserted to the

right or to the left of another item in the solution and items between the old and new

places of inserted item are shifted towards the old place of the inserted item in the same

order (Arroyo et al., 2008). Other items remain in their positions. In Figure 3, item 7 is

inserted to the left of item 4, and items 4 - 6 are shifted towards the old place of item 7.

Items 1,2,3 and 8 keep their positions.

Item 1 2 3 4 5 6 7 8 f(x) F/NF

1 1 0 (0)

(0) 1 1 0

Figure 3. Insertion Items to the Left

Although the Meta-RaPS algorithm does not require the improvement phase for

iteration 4 in Table 11, it was carried out for investigation purposes. The effect of the

improvement phase can be observed as percentages of increase in the solution objective

function values. The optimum value is reached only after applying both algorithms in the

improvement phase. Table 14 summarizes the solution report of the 0-1 MKP example by

Meta-RaPS for which it could find the optimum value at the 4th iteration.

76

Table 14. The Meta-RaPS DGR Solution Report of the 0-1 MKP Example

Construction Improvement Phase
Iteration

Phase 2-opt Increase% Insertion Increase%

1 61

2 60 67 11.7

3 56 61 8.9

4 61 63 3.3 68* 7.4

5.5 Meta-RaPS EDA Solution for 0-1 MKP

EDA implements a probabilistic learning model as a memory mechanism where it

estimates the probability distribution for each decision variable to generate new candidate

solutions that replace the old population according to some criteria. This process iterates

until termination criteria are met. To be able to create the distribution of the solutions for

Meta-RaPS EDA algorithm for the 0-1 MKP example, first a memory set of five feasible

solutions (SI - S5) in Table 15 is generated randomly.

The probability of an item being selected in solutions for this set, P(i), is

calculated as in equation (5.17).

#item i in solutions
P(item i) = ; : (5.17)

#solutions in memory set

For example, if item 1 is found four times in five solutions then P(item 1) = 4 / 5 = 0.8.

77

Table 15. The Random Solution Set and Related Information

f(x)
Item 1 2 3 4 5 6 7 8 f(x)

f(x)
f(x)

Ratio

SI 0 0 1 1 0 1 1 0 56 0.21

S2 1 1 1 1 1 0 0 0 60 0.23

S3 1 1 1 1 0 0 0 1 49 0.19

S4 1 1 0 1 1 0 0 1 47 0.18

S5 1 1 0 0 1 0 1 0 47 0.18

P(i) 0.8 0.8 0.6 0.8 0.6 0.2 0.4 0.4 1259 1.00

wP(i) 0.156 0.156 0.127 0.164 0.119 0.043 0.080 0.074

To include the effect of their objective function values into the process as

"weights", the ratio of the objective function value to the total objective function value of

solutions in the memory set is calculated for each solution. For example, the objective

function value of SI is 56 and equal to 21% of the total objective function value for all

solutions in the memory set which is 259. The contribution of each item to the solution

process can be found by taking the mean of ratios of the objective function values for the

solutions in which the item is selected. Item 1 is found in solutions 2, 3, 4 and 5, and their

ratios are 0.23, 0.19, 0.18 and 0.18, respectively. The contribution of item 1 is the mean

of these ratios, which is 0.195. If this contribution is multiplied by P(i), the probability of

being selected for item 1, then the (weighted) P(i) is obtained, as Wjtem iP(item 1) = 0.8 •

0.195 = 0.156.

Next step is obtaining the level of interactions between items, e.g. conditional

probabilities. The conditional probability, P(item i | item j), which is the probability of

78

selecting item i given that item j has already been selected in the solution set, is computed

for each item by using equation (5.18).

P(item i f| item j)
P(item 11 item j) = — . (5.18)

P(itemj)

For example, assuming item 1 is already selected, the probability of selecting item

3 as the next item for the partial solution is calculated as in (5.19):

times both item 3 and item 1 selected (in S2 and S3) 2
P(item 3 item l) = - - = - = 0.5 (5 19)

times item 1 selected (in S2, S3, S4, S5) 4

After obtaining the conditional probabilities for all pairs of items, the conditional

probability matrix in Table 16 is formed.

Table 16. The Conditional Probability Matrix

Item 1 2 3 4 5 6 7 8

1 - 1.00 0.50 0.75 0.75 0.00 0.25 0.50

2 1.00 - 0.50 0.75 0.75 0.00 0.25 0.50

3 0.67 0.67 - 1.00 0.33 0.33 0.33 0.33

4 0.75 0.75 1.00 - 0.50 0.25 0.25 0.50

5 1.00 1.00 0.33 0.67 - 0.00 0.33 0.33

6 0.00 0.00 1.00 1.00 0.00 - 1.00 0.00

7 0.50 0.50 0.50 0.50 0.50 0.50 - 0.00

8 1.00 1.00 0.50 1.00 0.50 0.00 0.00 -

To transform these two probabilities into an estimation of distribution for items in

the memory set, the probability of selecting item / given that item j has been already

79

selected is multiplied by the probability of selecting item z, i.e. P(item i | item j) • wP(item

i). For example, to find 0.064 in Table 17, meaning that is the information within the

estimation of distribution for item 3 after item 1 is selected, the probability of selecting

item 3 given that item 1 has been selected (= 0.50) is multiplied by the probability of

selecting item 3 (= 0.127).

Table 17. The Probabilistic Priority Matrix

Item 1 2 3 4 5 6 7 8

1 - 0.157 0.064 0.123 0.089 0.000 0.020 0.037

2 0.157 - 0.064 0.123 0.089 0.000 0.020 0.037

3 0.105 0.105 - 0.164 0.039 0.014 0.026 0.024

4 0.118 0.118 0.127 - 0.059 0.011 0.020 0.037

5 0.157 0.157 0.042 0.110 0.000 0.026 0.024

6 0.000 0.000 0.127 0.164 0.000 - 0.080 0.000

7 0.078 0.078 0.064 0.082 0.059 0.022 - 0.000

8 0.157 0.157 0.064 0.164 0.059 0.000 0.000 -

The probabilities in Table 14 constitute the probabilistic priority matrix that will

serve as the priority matrix in Meta-RaPS EDA, similar to the DGR values for Meta-

RaPS DGR. Progressing in the same fashion with Meta-RaPS DGR and using the same

parameters used in Meta-RaPS, the solution (5, 3,4, 8, and 1) with the total profit of 61 is

80

obtained at the end of the construction phase in iteration 1 of Meta-RaPS EDA. The

detailed report for the last step in iteration 1 is given in Table 18.

As in Meta-RaPS DGR, the current solutions are improved whenever CS is

smaller than or equal to the A-value calculated using equation (5.15) as shown in Table

19.

Table 18. Report for the Construction Phase in Iteration 1 of Meta-RaPS EDA

Item
Max

Priority

Min

Priority

Lower

Limit

Max

Item

Candidate

List

Random

Number
P Decision Profit

5 0.157 0.000 0.031 1,2 3 0.76 >0.60 Select 3 17

3 0.164 0.014 0.044 4 1,2 0.28 <0.60 Select 4 19

4 0.118 0.011 0.032 1,2 8 0.83 >0.60 Select 8 10

8 0.157 0.000 0.031 1,2 - 0.58 <0.60 Select 1 6

1 All NF 9

Total 61

Table 19. Decision Phase for Improvement in Iteration 1 of Meta-RaPS EDA

Iteration CS BCS WCS A CS vs. A Decision
. -

2 56 61 56 59.5 CS<A Improve

3 56 61 56 59.5 CS<A Improve

4 56 61 56 59.5 CS<A Improve

81

The improvement algorithms are applied to the CSs when the decision is

"improve". After using the two improvement algorithms demonstrated earlier in Meta-

RaPS DGR, Meta-RaPS EDA algorithm could find the optimum value for the 0-1 MKP

example in three iterations. Table 20 summarizes the solution report at the end of 4

iterations.

Table 20. Meta-RaPS EDA Solution Report of the 0-1 MKP Example

Iteration
Construction Improvement Phase

Iteration
Phase 2-opt Increase% Insertion Increase%

1 61 68* 11.5 -

2 56 68* 21.4 -

3 56 58 3.6 68* 17.2

4 56 61 8.9 - -

After the improvement phase at the end of each iteration of the algorithm, the

Meta-RaPS EDA memory matrix is updated by replacing the solution found in the

current iteration with the solution in the memory matrix. In other words, the memory set

will be updated via information obtained after the iterations are completed. The updated

probabilistic priority matrix after iteration 1 is shown in Table 21. To memorize and learn

the problem structure, Meta-RaPS will need more iterations to converge the probabilistic

priority matrix. Only then the Meta-RaPS EDA can have accurate probabilistic priorities

to select items in the solution process. Table 22 presents the updated probabilistic priority

matrix after 10,000 iterations that helps the algorithm find the optimum solution.

82

Table 21. The Updated Probabilistic Priority Matrix after Iteration 1

Item 1 2 3 4 5 6 7 8

- 0.111 0.112 0.112 0.084 0.000 0.040 0.028

2 0.111 - 0.112 0.112 0.084 0.000 0.040 0.028

3 0.056 0.056 - 0.166 0.063 0.010 0.061 0.042

4 0.056 0.056 0.166 - 0.063 0.010 0.061 0.042

5 0.037 0.075 0.112 0.112 - 0.000 0.040 0.028

6 0.000 0.000 0.166 0.166 0.000 - 0.122 0.000

7 0.037 0.037 0.055 0.112 0.084 0.013 - 0.028

8 0.056 0.056 0.166 0.166 0.063 0.000 0.061

Table 22. The Updated Probabilistic Priority Matrix after Iteration 10,000

Item 1 2 3 4 5 6 7 8

__ _ 0.007 0.004 0.014 0.007 0.003 0.006 0.009

2 0.005 - 0.007 0.014 0.009 0.003 0.006 0.007

3 0.004 0.010 - 0.013 0.007 0.003 0.007 0.008

4 0.007 0.009 0.006 - 0.008 0.002 0.007 0.008

5 0.006 0.010 0.005 0.014 - 0.002 0.008 0.008

6 0.006 0.010 0.006 0.010 0.005 - 0.003 0.004

7 0.005 0.007 0.006 0.013 0.009 0.001 - 0.009

8 0.008 0.007 0.006 0.014 0.008 0.001 0.008

83

5.6 Comparison of Meta-RaPS with EDA and DGR for 0-1 MKP Example

Because of the memoryless nature of Meta-RaPS DGR, it begins every iteration

from the same point, and has no information about the search history. However, in the

case of Meta-RaPS EDA, the probabilistic priority matrix serves as a memory and

learning mechanism that is updated at every iteration until it converges to its optimum

values as iterations proceed. If the items in the probabilistic priority matrix for the 0-1

MKP problem are tracked, it can be easily observed from Figures 4 and 5 that the means

of the probabilistic priorities of items in the optimum solution are increasing while other

items' means of the probabilistic priorities are decreasing. This observation shows that

algorithm memorizes the items with "good" attributes and selects them with higher

probabilities, and learns the search space by upgrading the memory matrix after each

iteration.

o . i s :

0.16 f

0.14 i-

o.i; •

0.10 • I

0.08 j-

0.06 !

0.04 !

o.o; s

0.00 '

item j

•item 4

-it em 5

item?

item 8

initial iteration 1 iteration; iterations iteration 4

Figure 4. Trend of Probabilistic Priorities of Items Selected in the Optimal Solution

84

0.18 r

0.16 -

0 14 |~

0 12 f

0.10 1

0 08 -

0.06 ?-

0.04 I

o.o: ;
0.00 i

iteration s iteration 4 iteration

-^item 1

item 2

-••—item 6

initial iteration 1

Figure 5. Trend of Probabilistic Priorities of Items Not Selected in the Optimal Solution

Meta-RaPS highly depends on the parameters that are used in the search process.

The results obtained in both algorithms could be very different for other choice of

parameters. Due to this concern, the same parameter values and also the same random

numbers were used for both Meta-RaPS DGR and Meta-RaPS EDA algorithms to be able

to compare the performance of each. As a second precaution, all iterations of both

algorithms started with the same items for the same reason.

5.7 Meta-RaPS EDA Algorithm

The previous small example presents the role of memory and learning in

improving the efficiency of the search process in Meta-RaPS EDA. Because of the

probabilistic nature of Meta-RaPS EDA algorithm, the trend for convergence and

accuracy of the probabilistic priority matrix is expected to increase with the size of the

instances. The pseudocode of Meta-RaPS EDA in Figure 6 was developed based on the

pseudocode of Meta-RaPS in Figure 1.

The core concept of Meta-RaPS EDA is creating probabilities that will serve as

priorities in assigning each item to the (partial) solution. The memory matrix is formed

by obtaining feasible solutions, and the quality of this matrix is significant in terms of

"right" priorities of items. The first step of calculating these priorities is finding the

average number of times of each items selected for the solutions in the memory matrix

which gives the probability of being in the solution (equation (5.17)).

On the other hand, the goal of solving the 0-1 MKP is to reach the highest profit

by selecting appropriate items whose total resource consumptions are under the limit of

each knapsack. This fact implies that there should be strong interactions between items

since selecting an item affects the selection of other items, which means that the

conditional probabilities between items is meaningful as was given in equation (5.18).

Although each of these probabilities carries valuable information, combining

these probabilities can have more information for the search process. In addition,

including the average value of solutions having item / into the probabilistic model as

"weight" will empower the probabilistic priority of each item. Based on these factors, the

probabilistic model for Meta-RaPS EDA to solve 0-1 MKP can be shown in (5.20);

86

While (not reached to Memory Matrix size)

Generate initial solution

Accept promising solution to Memory Matrix

End While

Build Probabilistic Priority Matrix from Memory Matrix

For i teration ^ I

Apply Meta-RaPS rules with priorities from Probabilistic Priority

Matrix to produce ImprovedSolution

If ImprovedSolution > BestImprovedSolution then

Assign ImprovedSolution as BestImprovedSolution

If ImprovedSolution > WorstSolution in Memory Matrix then

Replace ImprovedSolution with WorstSolution in Memory Matrix

Update Probabilistic Priority Matrix

End For

Report BestImprovedSolution

Figure 6. Meta-RaPS EDA Pseudo Code

n
, fo r /= 1 .

p (x ,)H (5.20)

• w x P(X i)P (X j |X j) , fo r i > j , j = 1,2, ...,n, i = 2 , . . . , n .

where / and j are the selection orders, P(Xj) is the probability of item X in the selection

order i and wx is the weight of item X for the memory set. The algorithm starts randomly

assigning the first item since the conditional part of probabilities does not take place yet.

With the beginning of selecting the second item, the algorithm employs Meta-RaPS rules

with priorities given by the probabilistic model.

In addition to memory, learning is the other important part of a "smart" algorithm.

While memory is created from the memory set, learning happens mainly by updating the

memory set. Updating activities make it possible for the algorithm to learn the structure

of the problem and decide new directions in the search space. There are different criteria

to update the memory set, i.e. replacing new solution with a solution in the memory set.

The new solution can be replaced with a solution in the memory set selected randomly;

or, replacing the solutions can take place only if the objective function value of the new

item is greater than the worst objective function value of any solution in the memory set.

Diversity is another way to update the memory set. Diversification in the search

space is an important aspect for the solution process in metaheuristics. The level of

diversity between solutions can be found by using hamming distance concept. The

hamming distance is often used to quantify the extent to which two-bit strings of the

same dimension differ (Bookstein, et al. 2002). The diversity between the constructed

solution (in Table 11) and the optimum solution for the 0-1 MKP example is calculated

as in Table 23. The diversity levels of the new solution and solutions in the memory set

can be calculated, and the solution with highest diversity can be selected to replace the

existing solutions.

Updating the memory set in Meta-RaPS EDA algorithm is a critical process in

integrating learning into the algorithm. Since the small and medium 0-1 MKP instances

can be solved quickly, it is important to analyze the memory updating process especially

for large size instances.

88

Table 23. Diversity Calculation between Solutions

Item 1 2 3 4 5 6 7 8

Constructed Solution 10 10 10 10

Optimum Solution 0 0 1 1 1 0 0 1

D i f f e r e n c e + . _ + _ _ + +

Diversity 4

For this analysis, 1st (01100x5), 6th (06 100x5) and 22nd (22 100x5) instances

from the set of the instances with 100 items and 5 knapsacks are selected randomly and

the algorithm is run for 1,000 iterations. To update the memory set after each iteration,

the solution in the memory set that will be replaced with the new solution can be selected

by four different methods. First, the solution having the minimum value in the memory

set can be chosen; secondly, the selection of the solution can be made randomly from the

memory set. Third method is to choose the solution with the maximum diversity in the

memory set, and last method is applying one of these three methods randomly, named as

"All". Figure 7a shows deviations% and Figure 7b shows number of iterations of the

three instances after updating memory matrix by each of these methods.

89

0.20

0.18

0.16

0 .14 -r

0.12

0.10
Minimum Value Random Maximum

Diversity
Afl

•01_100x5

•06_100x5

22 100x5

Figure 7a. Deviations% for the Selected Instances after Updating the Memory Matrix by

Four Methods

06 100x5

22 100x5

Minimum Value Random Maximum
Diversity

Figure 7b. Number of Iterations for the Selected Instances after Updating Memory Matrix

by Four Methods

90

To update the memory matrix, in terms of deviations%, the first and fourth

methods turned out to be better than the other methods, and the third method (selection

the solution with the diversity), was found to be the worst method in this analysis. On the

other hand, from the figure on number of iterations, it seems that diversity makes the

algorithm faster. Fine tuning the update method requires also deeper understanding of the

behavior of each method as iterations proceeding. The same instances were solved by

changing the updating methods for different number of iterations ranging between 25 and

1000, and the mean deviations% are presented in Figure 8.

0.20 -f —-

015 ! V

j ^ ^ ^ linxmum Value

j \ / / Maximum Diversity

i

I i
0.00 4 1 r T-- : 1

25 250 500 750 1000

Figure 8. Mean Deviations'^ after Updating Memory Matrix by Four Methods for

Different Number of Iterations

The fourth method, i.e., randomly selecting from the update methods with

minimum value, random and maximum diversity, behaves like the regression of the first

three methods, and seems to benefit from the advantages of each method in terms of

mean deviations'^ of the instances. Therefore, in order to exploit all the opportunities

created by these three methods, the fourth method (randomly selecting among the three

methods) is selected as a mechanism to update the memory matrix.

The last issue in Meta-RaPS EDA is deciding the size of memory set. This is a

tradeoff between size of memory set and iteration number which, in most cases, may be

interpreted as computational processing time to achieve fast converging and better results

versus computational complexity and cost. Finding the best size for the memory set

actually adds another parameter, i.e. size of memory set, for the algorithm to deal with.

To tune this parameter, 4 instances are solved with different memory set sizes (25, 50, 75,

100 and 125 solutions) and recorded the number of iterations and time used in each

process. To be able to compare the required number of iterations in the same scale, their

values are divided by the mean values of different memory sizes for the same instance,

and the normalized values of the number of iteration are analyzed. To be consistent, the

instances with same or close number of items are selected. In Figures 9a and b the

normalized values for each instance and their means are respectively shown for memory

sizes between 25 and 125 solutions. From these figures, the most effective memory size

is determined as 75 in terms of iteration number. After investigating these figures, the

size of memory set for the instances with number of items 30 turns out to be 75, which is

approximately 2.5 times larger than number of items. The ratio of memory size to number

of items can be accepted as a parameter to be tuned before the solution process, and in

this case, this parameter is 2.5. It is also observed that, to obtain "good" memory set, i.e.

reflecting the structure of the problem, the algorithm should run 4 times the size of

memory set, and then solutions in the memory set are selected from these solutions.

92

1.50 ^

-WEISH05_30x5

•\VEINGl_2Sx2

PETIRSEN5_10x2S

•HP1 2Sx4

Figure 9a. Normalized Number of Iterations Required for Different Memory Set Sizes

2.00 r

I
i

1.50 ;
l

1.00 |
1

I
0.50 f

0 00 : • • •
25 50 "5 100 125

Figure 9b. Trends of Means for Normalized Number of Iterations Required for Different

Memory Set Sizes

After completing formalization of the proposed algorithm, Meta-RaPS EDA can

be applied to 0-1 MKPs existing in the literature to further evaluate its performance over

the small, medium and large instances to ensure more robust conclusions; however, the

same approach can be followed.

5.8 Meta-RaPS EDA for Small and Medium 0-1 MKP Instances

One of the critical aspects of Meta-RaPS EDA is the way the population is

created, i.e. the memory set. The solutions in the memory set that form the probability

matrix can be generated randomly or by following a greedy rule. Depending on the way

the memory matrix is created, Meta-RaPS EDA will have two different versions; Meta-

RaPS EDA-R and Meta-RaPS EDA-G.

In the Meta-RaPS EDA-R version, the solutions assigned to the memory matrix

are generated totally randomly, and the probabilistic model is produced based on this

memory matrix. For the Meta-RaPS EDA-G version, the solutions to form the memory

matrix are generated by employing a greedy rule, in this case DGR. With the help of the

probabilistic priorities produced from these memory matrices, both versions will be used

to solve small and medium 0-1 MKP instances. The parameter settings for small/medium

size instances reported in Table 6 was used for both versions of Meta-RaPS EDA, and

comparison of their performances is presented in Table 24. IMean and IBest refer the

mean and best values of the Improved Solution (IS), respectively, and CBest refers the

mean value of the Constructed Solution (CS). Observing the quality of the CSs is

important in measuring the effectiveness of the way solutions are created and assigned in

the memory matrix.

Meta-RaPS EDA-R could find the optimum values for 54 out of 55 instances

previously mentioned in Section 4.3, and WEING7 is the instance that could not be

solved optimally. Its average deviations% from optimum/best solutions found for the CSs

and ISs are 1.447% and 0.016%, respectively. The algorithm found the optimum

solutions around 9.2 of 10 times on the average of all instances. The average time to

solve the small and medium instances was 286.8 seconds on the average of 1199

iterations.

Table 24. Meta-RaPS EDA-R and G Solutions

Deviation % Iteration Time Optimum

Version IMean IBest CMean Number (Sec.) Frequency Instance

Meta-RaPS EDA-R 0.016 0.000 1.447 1199 286.83 9.18 54

Meta-RaPS EDA-G 0.001 0.000 0.107 421 120.09 9.84 55

Average 0.009 0.000 0.777 810 203.46 9.51 54.50

Std.Dev. 0.011 0.000 0.948 550 117.90 0.47 0.70

On the other hand, the average deviation percentages for the Meta-RaPS EDA-G

algorithm are 0.107% and 0.001% for the CSs and ISs, respectively. Meta-RaPS EDA-G

could find optimum solutions for all small and medium instances, and the mean number

of times optimum solutions were found was 9.8 in 10 times for each instance. The

average time to solve the instances was 120 seconds on the average of 421 iterations.

When comparing the Meta-RaPS EDA-R and Meta-RaPS EDA-G, it is clear that

Meta-RaPS EDA-G produced higher quality solutions in both the IS and CS aspects in

lower amount of time than Meta-RaPS EDA-R. It could also find optimum/best solutions

for all the small and medium size instances in much shorter time. The standard deviations

of the instances' statistics are low for both versions of the Meta-RaPS EDA algorithm, as

a sign of being robustness.

These results show that Meta-RaPS EDA-G algorithm is superior to Meta-RaPS

EDA-R, in other words, training memory set formed by implementing a greedy rule

produces better results than one generated randomly. Therefore, from this point, the

Meta-RaPS EDA-G version is accepted as the main version of Meta-RaPS EDA, and will

be used to solve large size 0-1 MKP intendances.

5.9 Meta-RaPS EDA for Large 0-1 MKP Instances

With the parameter setting for large instances in Table 6, Meta-RaPS EDA was

applied to solve large size 0-1 MKP instances. Detailed solution summary for the first

three sets of instances is presented in Table 22. The proposed algorithm could find

optimum values for 20, 17 and 10 instances of the 100 items and 5, 10 and 30 knapsacks,

respectively, with an average of optimum instances of 15.7 out of 30 instances. The

overall average deviations% from optimum/best solution found was 0.142% in an

average of 50 minutes and 1872 iterations. The overall average deviations% for CSs was

also low, 0.54. Meta-RaPS EDA was also successful at finding optimum/best results in

3.6 of 10 replications as defined in section 4.1. The best average performance of the

algorithm, i. e. the best average deviations%, for all instances was 0.084 as shown in

Table 25.

Table 25. Meta-RaPS EDA Solution for Large 0-1 MKP Instances

Deviation% Iteration Time Optimum

Instance Set IMean IBest CMean Number (Min.) Frequency Instance

100x5 0.045 0.026 0.296 1389 16.19 5.17 20

100x10 0.136 0.078 0.519 1869 33.79 3.90 17

100x30 0.246 0.147 0.804 2357 101.13 1.63 10

Average 0.142 0.084 0.540 1872 50.37 3.57 15.67

Std.Dev. 0.101 0.061 0.255 484 44.83 1.79 5.13

97

CHAPTER 6

INCORPORATING Q LEARNING INTO META-RAPS

The second method in adding memory and learning to Meta-RaPS is selected

from the machine learning area. Machine learning implements the theory of statistics in

building mathematical models of the system by obtaining information from inputs. This

is a two-phase process; first is the training phase in which efficient algorithms are used to

solve the optimization problem as well as store and process the information derived. In

the second phase, new solutions are generated by using the learned model of the problem.

Machine learning approaches can be successfully applied in optimization

problems whose output is a sequence of actions, or an optimum policy. Selection of the

best actions in intermediate states will not mostly lead to the optimum policy. This type

of applications defines the scope of a well known machine learning algorithm known as

Q Learning. The Q function is the learned action-value and is defined as the maximum

expected, discounted, cumulative reward the decision maker can achieve by following the

selected policy. In a Q Learning algorithm, models of the agent or the environment are

not required (Monekosso & Remagnino, 2004).

6.1 Literature Review

After Q Learning was introduced by Watkins (1989), many successful

applications were presented by researchers in the literature. Cairon and Dorigo (1997)

investigated the integration of immediate reinforcements with standard delayed

reinforcements in which reinforcements assigned only when the agent-environment

relationship reaches a peculiar state, such as when the agent reaches a target.

The complexity the update process in Q Learning based on lookup tables is

bounded by the size of the state-action space. To deal with this issue, Wiering, et al.

(1998) created a faster algorithm based on the observation that Q-value updates may be

postponed until they are needed. In their Q Learning algorithm, Hirashima, et al. (1999)

used an adaptive-sized Q-table based on the Memory Based Learning (MBL). By using

the generalization property of the MBL system, the learning effect for a Q-value could be

spread to adjacent Q-values, and therefore the number of trial and error actions could be

reduced.

The balance between exploration and exploitation is one of the key problems of

action selection in Q Learning. Guo, et al. (2004) introduced the Metropolis criterion of

Simulated Annealing (SA) algorithm in order to balance exploration and exploitation of

Q Learning.

Inspired by the idea that, by using other agents' experiences and knowledge, a

learning agent may learn faster, make fewer mistakes, and create some rules for unseen

situations, Ahmadabadi and Asadpour (2002) introduced some criteria to measure the

expertness of the learning agents, and a new cooperative learning method called weighted

strategy sharing (WSS) in which each agent measures the expertness of its teammates and

assigns a weight to their knowledge and learns from them accordingly.

Conventional Q Learning techniques are goal dependent; when the reward

conditions change, previous learning interferes with the new task that is being learned,

resulting in very poor performance. Ollington and Vamplew (2005) presented a new Q

99

Learning algorithm where the rewards and the environment may change. The algorithm is

reward independent, allowing the mechanics of the environment to be learned

independently of the task. On the other hand, Fuchida, et al. (2010) proposed a method to

propagate negative rewards by taking the absolute value of the next state.

Tesauro and Kephart (2002) investigated a Q Learning utilized by adaptive

software agents to make economic decisions such as setting prices in a competitive

marketplace. Lee, et al. (2007) employed the Q Learning approach in portfolio

management for trading in the stock market. Andrecut and Ali (2001) presented a

numerical investigation of the minority game model used to study the competitive

interaction of complex adaptive agents in a socioeconomic environment, where the

dynamics of the agents is described by the Q Learning algorithm. Zhang and

Bhattacharyyaz (2007) produced a Q Learning-based method for supply network agents

to search for 'optimal' values of a parameter in their operating policies simultaneously

and independently. Jeon, et al. (2011) suggested a routing method for automated guided

vehicles in port terminals that uses the Q Learning technique to estimate the waiting

times of each vehicle.

There are also studies of the Q Learning algorithm for continuous domains. In the

Q Learning algorithm of Millan et al. (2002), the results in robotics domains showed the

superiority of the continuous-action Q Learning over the standard discrete-action version

in terms of both asymptotic performance and speed of learning. Hagen and Krose (2003)

produced a Neural Q Learning algorithm as a continuous state-action space equivalent of

the discrete state-action space Q Learning. Er and Deng (2004) presented a dynamic

fuzzy Q Learning (DFQL) method capable of tuning fuzzy inference systems online to

100

calculate actions and Q-fiinctions to deal with continuous-valued states and actions. A

reinforcement distribution method for fuzzy Q Learning to learn a set of fuzzy rules by

reinforcement (Bonarini, et al., 2009) and design of fiizzy controllers by ACO

incorporated with fuzzy-Q Learning, called ACO-FQ, (Juang & Lu, 2009) are other

fiizzy-based Q Learning approaches.

Among the hybrid applications of Q Learning, Monekosso and Remagnino (2004)

combined the standard Q Learning technique with a synthetic pheromone introducing a

belief factor into the update equation, named the pheromone-Q Learning (Phe-Q)

algorithm. Lima, et al. (2007) used the Q Learning algorithm for the constructive phase

of GRASP and as generator of the initial population for the GA which was applied to the

symmetrical traveling salesman problem. Torre, et al. (2010) offered Q Learning as a

mechanism to control how the different evolutionary approaches contribute to the overall

search process.

In order to cope with the size of the spaces in Q Learning, various strong

approaches to the state and action value function might be needed. Clausen and Wechsler

(2000) developed the theory of quad-Q Learning which is applicable to problems that can

be solved by "divide and conquer" techniques where the environment was viewed as a

hierarchy of states where lower level states are the children of higher level states, and the

objective was to maximize the sum of rewards obtained from each of the environments.

Castro and Mannor (2010) generalized the classical Q Learning algorithm to an algorithm

where the basis of the linear function approximation change dynamically while

interacting with the environment. While Bhatnagara and Babu (2008) offered using the

two-timescale stochastic approximation methodology in updating Q-values, Langlois and

101

Sloan (2010) presented a function approximation approach to Reinforcement Learning

(RL) via Q function for the Blocks World problem, and they obtained similar learning

accuracies with traditional RL, but with better running times. In Hwang et al.'s algorithm

(2011), an adaptive resonance method is employed as a cluster to classify input vectors

and the results are sent to the Q Learning in order to learn how to implement the optimum

actions.

Wang and Silva (2010) presented a Q Learning algorithm with Kalman filtering

for decision making in multirobot cooperation where Kalman filter was employed to

update Q-values instead of observed rewards. They observed that the algorithm had better

performance than the conventional single-agent Q Learning or the team Q Learning in the

multirobot domain.

In addition to the applications mentioned before, many other interesting

applications were created based on Q Learning, such as channel assignment in mobile

communication systems (Nie & Haykin, 1999), multi-agent cooperation for robot soccer

(Park, et al., 2001), weightings for optimal control and design problems (Kamali, et al.,

2007), robot navigation (Chen, et al., 2008), morphing Unmanned Air Vehicles (Valasek,

et al., 2008), adaptive waveform selection in cognitive radar (Wang, et al., 2009), motion

control for bionic underwater robots (Lin, et al., 2010) and path selection in disaster

response management (Sul, et al., 2011). Learning policies for single machine job

dispatching (Wanga & Ushera, 2004), dynamic parallel machine scheduling with mean

weighted tardiness (Zhang, et al., 2007) and stochastic resource constrained project

scheduling with new project arrivals (Choi, et al., 2007) are some of the Q Learning

solution approaches presented in the scheduling area.

102

A comprehensive tutorial is produced by Kealbling, et al. (1996) and more

information about the Q Learning algorithm can be found in Watkins (1989), Watkins

and Dayan (1992) and in the textbooks by Mitchell (1997), Sutton and Barto (1998) and

Alpaydin (2004).

6.2 Temporal Difference Algorithm - Introduction to Q Learning

Based on available feedback, machine learning can be classified as supervised,

unsupervised and reinforcement learning. In supervised learning, correct values are

provided by a supervisor; however, in unsupervised learning, there are only input data

and no supervisor. The goal is to obtain the regularities in the input which is defined as

density estimation in statistics. Clustering is a method for density estimation. In RL,

unlike supervised leaning, the machine is not told which actions to take but has to

discover which actions yield the most reward (Yao & Liu, 2005). The modern science of

RL has emerged from a synthesis of notions from four different fields: classical Dynamic

Programming (DP), Artificial Intelligence (AI), stochastic approximation, and function

approximation (Gosavi, 2009). What RL algorithm does is evaluating the goodness of

policies' and learning from the good action sequences to create a policy. Trial-and-error

search and delayed reward are the two most important unique characteristics of RL (Yao

& Liu, 2005).

The RL process creates a sequence of actions; it indeed applies a Markov decision

process (MDP) to model the agent. However, there is a significant difference between

these two cases. While in MDP the sequence of signals is produced by an external

process, in the RL algorithm the agent itself generates the sequence of actions (Alpaydin,

103

2004). A more realistic approach would be to explore the environment and use this

information for updating the current state. These types of RL algorithms are defined as

Temporal Difference (TD) algorithms (Sutton, 1988). In TD we look at the difference

between the current estimate of the value of a state and the discounted value of the next

state and the reward. TD approach is historically based on animal learning psychology

and artificial intelligence (Klopf 1972; Samuel, 1959).

A TD algorithm is a combination of Monte Carlo (MC) and dynamic

programming (DP) ideas. TD methods can learn directly from the experience without a

model of the environment's dynamics like MC methods, and, like DP, TD can update the

estimated values based on other learned values, without waiting for a final outcome. The

relationship between TD, DP, and MC methods is the recurring concept of RL (Sutton &

Barto, 1998). TD updates the estimates of the value function V* for a given policy ti. The

simplest TD method, known as TD(0), is presented in equation (6.1);

V(st) «- V(st) + a [rt+1 + y V(st+I) - V(st)] (6.1)

where rt+i is the actual return at time (t+1), a is step-size, or learning parameter and y is

the discount parameter. Note that the definition of an optimal policy in equation (6.1) is

inspired by considering Bellman's equation (6.2), which forms the foundation for many

dynamic programming approaches to solving MDPs.

(Vs e S)V * (s) = E[r(s, rc(s))+yV * (5(s, tt(s)))] (6.2)

Bellman (1957) showed that the optimal policy %* satisfies the equation (6.2) and

that any policy % satisfying this equation is an optimal policy. The main contribution of

Bellman's work was to show that the computational burden of an MDP could be

dramatically reduced via DP (Gosavi, 2009).

104

Unlike MC, TD will not wait until the end of the episode to determine V(st),

instead, it just needs to wait only until the next time step. This feature is the most obvious

advantage of TD methods over MC methods. In practice, TD has usually been found to

converge faster than constant-a MC methods on stochastic problems (Sutton & Barto,

1998).

Different from DP, TD does not need a model of the environment, reward and

next-state probability distributions. If all the rewards and next-state probability

distributions are known, DP could be used instead of the RL algorithm. However,

obtaining this information can be very costly and seldom possible. According to

Alpaydin (2004), the RL has two advantages over classical DP: first, while learning, it

can intensify the important parts of the search space and ignore the other parts; and

second, it can implement function approximation methods to model the problem and

learn faster. Q Learning may be accepted as stochastic approximations to DP (Jaakkola,

etal., 1994).

In complex problems with several governing random variables, it is usually

difficult to compute the values of the transition probabilities. This phenomenon is called

the curse of modeling. In problems with large dimensions, storing or managing these

values becomes challenging. This is called the curse of dimensionality. DP breaks down

on problems which suffer from any one of these curses because it requires all these

values. RL can generate near-optimal solutions by making inroads into problems that

suffer from any of these curses and cannot be solved by DP (Gosavi, 2009).

When the feedback used is from one state transition of the MC, the algorithm is

named a TD(0) algorithm, as in equation (6.1). When the feedback is from multiple

105

transitions, the algorithm is then referred to as a TD(X) algorithm. In TD(X), we have that

feedback = r, + Xri+i + X2ri+2 +•» ; where n is the immediate reward received in the ith

iteration. The Q Learning algorithm is derived from the definition of Q values and TD(0)

algorithm (Gosavi, 2009).

6.3 Q Learning

TD focuses on the tansitions from state to state and the learned values of states. If

instead, the tansitions from state-action pair to state-action pair are considered, their

learned values will bring us to the Q Learning algorithm; one of the most important

breakthroughs in RL (Sutton & Barto, 1998). In Q Learning algorithm, the learned

action-value function, Q, directly approximates Q*, the optimal action-value function. On

the other hand, TD algorithms learn by iteratively reducing the differences between the

estimated values produced by the agent at different times. In this sense, Q Learning is a

special case of a general class of TD algorithms (Mitchell, 1997).

In the Q Learning algorithm, the value of evaluation function Q(s, a) is defined as

the maximum discounted cumulative reward that can be achieved starting from state s

and applying action a as the first action. The Q value is the reward received immediately

after selecting action a from state s, plus the value, discounted by y, of following the

optimal policy. If the agent learns the Q function, it will be able to select the action that

maximizes Q(s, a) among available actions in its current state.

In the terminology of the Q Learning algorithm, the decision maker is called

"agent". There are several possible "states" for the agent to move from one to another.

The "environment" is the current state in which the agent interacts and makes decisions.

106

The agent has a set of possible, or feasible, actions that affect both the "reward" and the

next state. Once an action is taken, the state will be changed. For each action the agent

receives feedback, called the "reward". The rewards are delayed, and required for the

agent to learn the system. To solve the optimization problem the agent learns the best

course of actions that have the maximum cumulative reward. The sequence of actions

from the first state to the terminal state is called episode.

Q(s„a t)<-(l-a) Q(s t ,a t)+ a rt+1 + YmaxQ(s t + 1 ,a t + 1)
at+l

(6.3)

In the Q Learning transition, equation (6.3), Q(st, at) is nominated as the

cumulative quality or reward of action taken in state s for time t. rt+i is the reward

received when the action a is taken at time (t + 1). Q(st+i, at+i) is the value for the next

state, and has a higher chance of being correct. If st+i is terminal, then Q(st+i, at+i) is

defined as zero, a is the learning factor, 0 < a <1, which is gradually decreased in time

to converge. It has been shown that as a is gradually decreased in time for convergence,

this algorithm converges to the optimal Q* values (Watkins & Dayan, 1992). More

general convergence results were proved later by Jaakkola, et al. (1994) and Tsitsiklis

(1994).

The learning factor a is a function of the number of iterations. Let a' denote the

main learning rate in the i1*1 iteration. Some commonly used examples for step-sizes are:

a' = a/(b + i) where for instance a and b are constants and log(i) = i (Gosavi, 2009).

Besides the learning factor, Q values for the next state, i.e. Q(at+i, St+i), are

discounted by a discount factor y, where 0 < y < 1, since these Q values will happen in

the next step, in other words, in the future (Junior et al., 2008). The discount concept

107

essentially measures the present value of the sum of the rewards earned in the future over

an infinite time, where y is used to discount money's value horizon, in equation (6.4):

where n is the rate of interest. The right part of the equation is raised to the power 1

because in the MDP the time duration of each transition is fixed at 1. If y = 0, only the

immediate reward is considered. As y approaches 1, future rewards are given greater

emphasis relative to the immediate reward.

After discounting, if we add it to the immediate reward [rt+i + y max Q(st+i, at+i)]

then this term can be accepted as an estimated value of the action in the next step which

is called backup because it can be viewed as "backing it up" to revise the estimate for the

value of a current action (Alpaydin, 2004).

In the process of Q Learning algorithm, all Q values are stored in a lookup table,

and initially all Q(st, a,) = 0 for all actions. Assuming all Q values are initialized to zero,

Q Learning has two general properties that hold for any deterministic MDP (Mitchell,

1997). First, the Q values never decrease during training, and second, throughout the

training process every Q value will remain in the interval between zero and its true Q

value.

A Q Learning algorithm can be proven to converge to their optimal Q values

when the estimated Q values for each state-action pair are represented by a lookup table

with a distinct entry for each state-action pair. The key idea of the proof of convergence

of Q Learning is that the table entry Q(s, a) with the largest error must have its error

reduced by a factor of y whenever it is updated. The reason is that its new value depends

only in part on error-prone Q estimates, with the remainder depending on the error-free

(6.4)

108

observed immediate reward r. According to convergence theorem of Q Learning for

deterministic MDP with bounded rewards, \r(s, a)\ < c for all s, a, first consider that the Q

Learning agent uses the training rule of equation (6.3), initializes the look-up table Q(s, a)

to arbitrary finite values, and uses a discount factor y such that 0 < y < 1, for the nth

update. If each state-action pair is visited infinitely often, the estimates of Q„(s, a)

converges to the real values of Q(s, a) as n —* oo, for all s, a (Mitchell, 1997).

The most constraining assumption in Q Learning is that the Q function is

represented as a lookup table with a discrete entry for every state-action pair. However,

there are a number of problems with this lookup table approach (Alpaydin, 2004):

• Increasing the numbers of states and actions makes the size of lookup table quite

larger.

• Instead of discrete entries for state-action pair, states and actions may be

continuous.

• When the search space is large, more episodes may be needed to fill the entries of

the lookup table with acceptable accuracy.

To be able to overcome these problems in Q Learning, other practical algorithms

are often combined with the Q Learning training rules, such as regression models,

function approximation methods, artificial neural networks and clustering. In practice, a

number of successful RL systems have been developed by incorporating such algorithms

in place of the lookup table (Mitchell, 1997).

Updating Q(st, at) values in the lookup table can be carried out in two ways; off-

policy and on-policy. In off-policy control, the policy being evaluated to update the Q

values can change in every iteration. In on-policy control, a unique policy is evaluated for

109

some time during the learning (Gosavi, 2009). On-policy updating version of the Q

Learning algorithm is called SARSA. The term comes from the initial letters of State,

Action, Reward, State, and Action (Battiti, et al., 2008). The SARSA algorithm was first

introduced by Rummery and Niranjan (1994), who called it modified Q Learning. The

name "SARSA" was used first by Sutton (1996).

Q Learning methods are the most widely used RL methods, probably due to their

great simplicity. They can benefit from the experience generated from interaction with an

environment, and be applied with a minimal amount of computation (Sutton & Barto,

1998). The novel aspect of Q Learning is that it assumes the agent must move about the

real world and observe the consequences. The primary concern is usually the number of

real-world actions that the agent must perform to converge to an acceptable policy, rather

than the number of computational cycles it must expend (Mitchell, 1997).

6.4 Meta-RaPS Q Solution for 0-1 MKP Example

To demonstrate how the Meta-RaPS Q Learning algorithm works, it was applied

to the 0-1 MKP example in Section 6.3. In this algorithm, the agent, i.e., decision maker,

will select the next item to add to the partial solution as an action in the current state. The

decision of agent depends on the current and next states as well as the rewards, i.e.

weights or priorities, of the feasible items. After one selection, the agent moves to the

next state to take another action (selecting another item), until the current episode, i.e. the

constructed solution, is completed. For this example, learning factor a and discount factor

y are assumed to be 0.7 and 0.1, respectively.

110

To begin the algorithm, first the lookup table for the Q Learning matrix is created

and initialized with zeros, i.e. Q(st, at) = 0, for all actions and all states. While

progressing, the Q(st, at) values will be stored in this matrix. The Q Learning matrix after

1000 episodes presented in Table 26 will be used to explain the updating operations of Q

values by equation (6.3). Note that in the Q Learning matrix, some cells are filled with

zeros since it is not possible to select an item in every state to reach optimal solutions for

0-1 MKPs, i.e. not all items can be accepted in the solution set due to feasibility concerns.

However, for permutation problems, such as scheduling problems where the goal is to

create optimum ordering of jobs, in each state a job would be selected and therefore the

matrix would be filled with numbers other than zeros.

Table 26. The Q Learning Matrix after 1000 Episodes for 0-1 MKP Example

Q(s», at) 1 2 3 4 5 6 7 8

1 39.496 24.242 64.365 35.355 36.908 14.828 25.164 18.336

2 13.030 14.451 44.368 20.676 25.461 17.164 20.275 14.687

3 9.014 6.929 25.214 19.539 15.563 7.454 9.474 5.991

4 9.196 4.197 17.963 5.319 9.240 0.000 4.459 6.665

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 7.047 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The process begins randomly by selecting an item for the first or current state, and

another item as the next feasible item for the next action. If in the current state, t = 1, the

I l l

selected item is 6, the value of Q(l, 6) is calculated by using equation (6.3) based on all

feasible actions after item 6 in Figure 10, and the Q Learning matrix is updated by

replacing new Q(l, 6) with the previous one, as in the Table 27. In this calculation, rt+i is

19, the weight of item 3 that has the maximum Q value in state t + 1.

Q(l,6) = (1 - 0.7) • Q(l, 6) + 0.7 • [r2 + 0.1 • max{Q(2, 1), Q(2, 2), Q(2, 3), Q(2,4),

Q(2, 5), Q(2, 7), Q(2, 8)}]

= 0.3 • 14.828 + 0.7 • [19 + 0.1 max{ 13.030, 14.451,44.368,20.676,

25.461,20.275,14.687)}]

= 20.860

Figure 10. Calculating Q Value for t = 1

Table 27. The Updated Q Learning Matrix after t = 1

Q(s», a,) 1 2 3 4 5 6 7 8

1 39.496 24.242 64.365 35.355 36.908 20.860 25.164 18.336

2 13.030 14.451 44.368 20.676 25.461 17.164 20.275 14.687

3 9.014 6.929 25.214 19.539 15.563 7.454 9.474 5.991

4 9.196 4.197 17.963 5.319 9.240 0.000 4.459 6.665

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 7.047 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

112

Once item 6 is assigned, the next item is chosen in state 2 among the feasible

unassigned items, i.e., we seek the value of Q(2, 3) to update the Q Learning matrix.

Again, after following calculations carried out according to equation (6.3) in Figure 11,

where rt+2 is the weight of the item 4, whose Q value in state t + 2 is maximum, the new

value of Q(2, 3) is replaced with the former value in the Q Learning matrix, as in the

Table 28.

Q(2,3)= (1 - 0.7) • Q(2, 3) + 0.7 • [r3 + 0.1 • max{Q(3, 1), Q(3,2), Q(3,4), Q(3, 5),

Q(3,7), Q(3, 8)}]

= 0.3 • 44.368 + 0.7 • [10 + 0.1 • max{9.014, 6.929, 19.539, 15.563,

9.474,5.991}]

= 21.678

Figure 11. Calculating Q Value for t = 2

Table 28. The Updated Q Learning Matrix after t = 2

Q(st, at) 1 2 3 4 5 6 7 8

1 39.496 24.242 64.365 35.355 36.908 20.860 25.164 18.336

2 13.030 14.451 21.678 20.676 25.461 17.164 20.275 14.687

3 9.014 6.929 25.214 19.539 15.563 7.454 9.474 5.991

4 9.196 4.197 17.963 5.319 9.240 0.000 4.459 6.665

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 7.047 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

113

After selecting item 4, in state 3 we update the value of Q(3, 4) by assigning an

item so that the solution remains feasible. In this case, only adding one of the items 1, 2

and 7 keeps the solution feasible (Figure 12).

Q(3, 4)= (1 - 0.7) • Q(2, 3) + 0.7 • [r4 + 0.1 • max{Q(4, 1), Q(4,2), Q(4, 7)}]

= 0.3 • 19.539 + 0.7 • [9 + 0.1 • max{9.196, 4.197, 4.459}]

= 12.805

Figure 12. Calculating Q Value for t = 3

Item 1 is the last feasible item added for the solution in this episode. Although

there will not be any item to select for the next state, we can calculate the value of the last

state-action pair, Q(4,1) in Figure 13:

Q(4, 1)= (1 - 0.7) • Q(4, 1) + 0.7 • [r5 + 0.1 • 0]

= 0.3 • 9.196

= 2.756

Figure 13. Calculating Q Value for t = 4

114

After assigning items 6, 3, 4 and 1 there are no other feasible items to add to the

solution, thus the algorithm is stopped for this episode. Table 29 presents the Q Learning

matrix after 1,001 episodes.

Table 29. The Q Learning Matrix after 1001 Episodes for 0-1 MKP Example

Q(s«, at) 1 2 3 4 5 6 7 8

1 39.496 24.242 64.365 35.355 36.908 20.860 25.164 18.336

2 13.030 14.451 21.678 20.676 25.461 17.164 20.275 14.687

3 9.014 6.929 25.214 12.805 15.563 7.454 9.474 5.991

4 2.756 4.197 17.963 5.319 9.240 0.000 4.459 6.665

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

In the Meta-RaPS Q Learning algorithm, the converged Q Learning matrix is used

as the probabilistic priority matrix for Table 22, created for the Meta-RaPS EDA

algorithm in Chapter 5, to determine the priorities of each item in partial solutions, and

the process Meta-RaPS followed in assigning new items. After each iteration, the Q

Learning matrix is updated by accepting the improved solution as an episode of Q values

for selected items and their states.

115

6.5 Meta-RaPS Q Algorithm

The Q Learning matrix is the memory and learning mechanism that provides the

priorities necessary to select the items by Meta-RaPS. Since this mechanism draws its

strength from the transition equation (6.3), this equation has a key role in obtaining a

matrix which should present the "right" priorities for choosing the order of items. At this

point, two issues related to equation (6.3) emerge; selection of the next Q values and

definition of rewards.

In the 0-1 MKP example, next item is selected according their Q values, i.e. the

item with the maximum Q value. However, by accepting the item with the maximum Q

value the algorithm may be stuck in local regions, and cannot explore other promising

areas. A precaution to remove this risk may be to select the next item randomly instead of

looking for the one with maximum Q value. The preliminary analysis of both approaches

showed that in selecting the next item, randomness strategy is superior to elitist strategy.

According to this result, the transition equation (6.3) is modified as presented in equation

(6.5). The pseudocode summarizing the Meta-RaPS Q process is developed in Figure 14.

Q(s„a.)<-(l -a) Q(s„a,)+ a r t + 1+ yrandomQ(s t + 1 ,a t + 1) (6 .5)
®t+i

Another issue in the transition equation is how to identify the rewards. In the 0-1

MKP example, rewards were simply accepted as the weights of items. If this approach is

used with the modified transition equation (6.5) the algorithm will be totally independent

from any other greedy rule. On the other hand, to increase the chance of better results,

DGR can also be applied in calculating rewards for this problem. These two approaches

form two versions of Meta-RaPS Q algorithm to solve 0-1 MKP; Meta-RaPS Q-W and

Meta-RaPS Q-G, respectively and will be discussed next.

116

While (Q Learning Matrix not converged)

Initialize Q Learning Matrix with zeros

Do for each episode

Calculate Q values for current episode by transition equation:

Q(s t ,a t) <- (1 -<x)Q(s t ,a t)+a r t + 1 + y random Q (s t + 1 , a t + 1)
L

End While

For iteration ^ I

Apply Meta-RaPS rules with priorities from Q Learning matrix to

produce ImprovedSolution

If ImprovedSolution > BestImprovedSolution then

Assign ImprovedSolution as BestImprovedSolution

Update Q Learning Matrix by accepting ImprovedSolution as an episode

End For

Report BestImprovedSolution

Figure 14. Meta-RaPS Q Pseudo Code

6.6 Meta-RaPS Q for Small and Medium 0-1 MKP Instances

As in the case of the Meta-RaPS EDA, the success of the Meta-RaPS Q algorithm

depends on the quality of the Q Learning matrix. The key element in determining this

quality is the reward in the Q transition equation (6.5). The weights of items, like in the

0-1 MKP example, can be used as the rewards to update the Q values of state-action

pairs, or they can be produced by employing a greedy rule. Depending on how the

rewards are accepted, Meta-RaPS Q will have two different versions: Meta-RaPS Q-W

where weights of items are accepted as rewards and Meta-RaPS Q-G where rewards are

generated using DGR. Table 30 summarizes the results of both algorithms for

small/medium 0-1 MKP problems.

117

Meta-RaPS Q-W could find the optimum values for 45 instances of 55 with the

average deviation percentages from optimum/best solutions for the CSs and ISs of

1.496% and 0.214%, respectively. The average time and iterations to solve the small and

medium instances are 747 and 2074 seconds respectively. The algorithm based on the

item weights found the optimum solutions for the instances 6.8 of 10 times on average.

Table 30. Meta-RaPS Q Solutions for Small/Medium 0-1 MKP Problems

Deviation% Iteration Time Optimum

Version IMean IBest CMean Number (Sec.) Frequency Instance

Meta-RaPS Q-W 0.214 0.089 1.496 2090 774.05 6.82 45

Meta-RaPS Q-G 0.045 0.003 0.596 2074 209.19 7.96 52

Average 0.130 0.046 1.046 2082 491.62 7.39 48.50

Std.Dev. 0.120 0.061 0.636 11 399.42 0.81 4.95

Using with DGR, the average deviations of the Meta-RaPS Q-G algorithm are

0.596% and 0.045% for the CSs and ISs, respectively. Meta-RaPS Q-G could reach the

optimum solutions of 52 small and medium instances; PETERSEN7, WEING7 and

WEISH18 were the instances not solved by the algorithm. The mean number of times

optimum solutions found was around 8 in 10 times for each instance. The average time to

solve instances was 209 seconds for the average of 2074 iterations.

Comparing the performances of both algorithms, it is obvious that Meta-RaPS Q-

G is superior to Meta-RaPS Q-W as it produces higher quality results in all aspects. As in

the case of EDA, training memory set by implementing a greedy rule produced better

results than using just the weights of items. Due to these facts, the Meta-RaPS Q-G

118

version is accepted as the main version of Meta-RaPS Q to apply for large size 0-1 MKP

intendances.

6.7 Meta-RaPS Q for Large 0-1 MKP Instances

With the parameter settings in Table 6 Meta-RaPS Q was run to solve large size

0-1 MKP instances. In Table 31, the Meta-RaPS Q algorithm obtained the optimum

values for 22, 10 and 6 instances of the 100 items and 5, 10 and 30 knapsacks,

respectively. The average optimum instance was 12.7 of 30 instances for the first three

sets. The overall average deviations from optimum/best solution found so far was 0.452%

in an average of 87 minutes and 4176 iterations. The overall average deviation percentage

for CSs was 1.17; not as low as in Meta-RaPS EDA. Meta-RaPS Q could reach the

optimum/best results in 2.4 of 10 replications. The best average performance of the Meta-

RaPS Q, i. e. the best average deviations for all instances was 0.273.

Table 31. Meta-RaPS Q Solution for Large 0-1 MKP Instances

Deviation% Iteration Time Optimum

Instance Set IMean IBest CMean Number (Min.) Frequency Instance

100x5 0.143 0.058 0.653 3440 32.79 4.97 22

100x10 0.493 0.281 1.261 4454 65.58 1.50 10

100x30 0.721 0.479 1.599 4634 163.80 0.60 6

Average 0.452 0.273 1.171 4176 87.39 2.36 12.67

Std.Dev. 0.291 0.211 0.479 644 68.17 2.31 8.33

119

CHAPTER 7

INCORPORATING PATH RELINKING INTO META-RAPS

In the EDA and Q based memory and learning mechanisms presented in previous

chapters, the first step was to create a memory set for the algorithm to learn the problem

structure. As the third approach to attempt gaining memory and learning, Path Relinking

(PR) will be employed in Meta-RaPS as a post optimization procedure. In this approach,

there will be no need for a memory set, and learning will take place only after producing

solutions by Meta-RaPS.

The approach is named Path Relinking because it generates a path between

solutions linked by series of moves during a search to incorporate attributes of the

guiding solution while recording the objective function values (Glover & Laguna, 1997).

In the PR algorithm a trajectory, or a path, is created between two solutions, called initial

and guide solutions, to create new solutions. While progressing, the initial solution

gradually transforms in the guide solution by incorporating the attributes of the guide

solution.

7.1 Literature Review

Path relinking was originally proposed by Glover (1996) as a way to explore

trajectories between elite solutions obtained by TS or Scatter Search (SS), and later

Laguna and Marti (1999) applied PR within GRASP. The PR became an attractive

approach applied as an intensification strategy in GRASP (Resende & Ribeiro, 2003), as

a post-optimization step (Deng and Bard, 2011; Ribeiro, Uchoa, & Werneck, 2002;

Villegas, et al., 2011), or as both intensification and post-optimization strategies

(Resende & Werneck, 2002).

In the literature, GRASP and PR applications are produced by researchers for

many optimization problems, such as scheduling (Alvarez-Valdes, et al., 2008, Arroyo, et

al., 2008, Bozejko, 2010), max-min diversity problem (Resende, et al., 2010), set

packing problem (Delorme, Gandibleux & Rodriguez, 2004), generalized quadratic

assignment problem (Mateus, Resende & Silva, 2011), multi-plant capacitated lot sizing

problem (Nascimento, Resende & Toledo, 2010) and set k-covering problem (Pessoa, et

al., 2012). Festa and Resende (2011) give an overview of GRASP and its enhancements

including the PR strategy.

In addition to GRASP, PR was first applied in GA to implement a progressive

crossover operation by Ribeiro and Vianna (2003). Ribeiroa and Vianna (2009) extended

their proposal and developed a better implementation. Andrade and Resende (2007)

showed that a GRASP with evolutionary PR finds solutions faster than a heuristic based

on GRASP with PR as well as one based on pure GRASP. The multiple-level warehouse

layout problem (Zhang & Lai, 2006) and the minimum tardiness permutation flowshop

problem (Vallada & Ruiz, 2010) are among other problems successfully solved by GAs

with PR.

Based on the adaptive memory and responsive strategy elements of SS and PR,

Yin, et al. (2010) created a combination of PSO and SS/PR to produce a Cyber Swarm

Algorithm that proves more effective than standard PSO. Applied to the challenge of

finding global minima for continuous nonlinear functions, the Cyber Swarm Algorithm

was able to obtain better solutions to a well known set of benchmark functions.

There are many other successful hybrid applications in which PR is used to add a

memory mechanism by integrating it into other algorithms, including TS (Armentano, et

al., 2011; Nasiri & Kianfar, 2012; Vogt, Poojari & Beasley, 2007), variable neighborhood

search (Wang & Tang, 2009), SS (Nasiri and Kianfar, 2011; Ranjbar, Reyck & Kianfar,

2009), ACO (Liu & Liu, 2011), and memetic algorithms (Jaszkiewicz & Zielniewicz,

2009).

Marti, Montes and El-Fallahi (2005) implemented TS methodology coupled with

PR for function approximation and obtained the best solutions in terms of quality. El-

Fallahi, Marti and Lasdon (2006) proposed a PR implementation to solve the neural

network training problem. Their experimentation showed that the proposed procedure can

compete with the best-known algorithms in terms of solution quality, consuming a

reasonable computational effort.

PR has been applied in connection with different metaheuristics as a combination

method, mainly applied to combinatorial optimization problems, but also in the context of

continuous optimization (Jaeggi, et al., 2008). A multiobjective combinatorial

optimization is another research field for the researchers who have applied the PR

approach (Beausoleil, Baldoquin & Montejo, 2008; Pacheco & Marti, 2006). Plateau,

Tachat and Tolla (2002) applied PR in combining the solutions encountered in their

hybrid search interior point methods and metaheuristics for 0-1 programming.

Recent PR approaches have been developed to solve the large-scale global

optimization (Duarte, Marti & Gortazar, 2011). Ribeiro and Resende (2012) reviewed PR

intensification methods for stochastic local search algorithms. Detailed explanations of

PR is presented by Glover (1999) and Glover, Laguna and Marti (2000). A survey

reporting on advanced PR strategies can be found in Resende and Ribeiro (2005).

7.2 Path Relinking Algorithm

From the standpoint of metaheuristic classification, it has been mentioned that

Scatter Search (SS) is an evolutionary algorithm that constructs solutions by combining

others. Features of SS are also captured in the PR algorithm. Both approaches originally

stem from strategies of combining decision rules and constraints in the context of integer

programming (Glover, Laguna & Marti, 2003). The basic idea behind the PR is to

reinterpret the linear combinations of points in the Euclidean space as paths between and

beyond solutions in the neighborhood (Talbi, 2009).

The approach is named PR because it generates a path between solutions linked

by a series of moves during a search to incorporate attributes of the guiding solution

while recording the objective function values (Glover & Laguna, 1997). The PR approach

generates new solutions by exploring trajectories connecting the initiating solution and

the guiding solution. While following the path from the initiating towards the guiding

solution the high-quality solutions are created by selecting moves with "good" attributes

contained in the guiding solution (Glover, Laguna & Marti, 2003). At each iteration, the

best move in terms of the objective function and decreasing the distance between the two

solutions is selected. This is repeated until the distance is equal to 0 at which point the

best solution found in the trajectory is returned by the algorithm.

PR is different from local search approaches in many ways: the path between

initial and guiding solutions is directed by the criterion of incorporating attributes of the

123

guiding solution, not by local attraction. This feature helps PR reach some solutions that

would not be found by a "locally myopic" search (Glover, Laguna & Marti, 2003). The

relinked path may also provide fertile starting points for creating neighborhoods which

may include high quality solutions.

Glover and Laguna (1997) suggested PR as an approach to integrate

intensification and diversification strategies in the context of TS. PR can be used to

diversify or intensify the search, depending on the path generation and the choice of the

initial and guiding solutions (Gendreau & Potvin, 2007). In PR, for each pair of initial

and guiding solutions there exist different alternatives in selecting the starting and the

target solutions:

• Forward: The worst of both solutions is used as the starting solution.

• Backward: The better of both solutions is used as the starting solution. Since

the starting solution's neighborhood is more explored than that of the target

solution, the backward strategy is, in general, better than the forward one.

• Backward and forward relinking: Two paths are constructed in parallel, using

alternatively both solutions as the starting and the target solutions.

• Mixed relinking: Two paths are constructed in parallel from both solutions

but the guiding solution is an intermediate solution at the same distance from

both solutions.

Besides these path forms, there are also multiparent path generation possibilities

in PR by considering the combined attributes of a set of guiding elite solutions. In the

multiparent path generation, proper weights are given to these attributes in order to

determine which directions are given higher priority. Building a set of elite solutions as

124

multiparents creates a constructive approach in creating new solutions in PR. In this case,

the initial solution begins as a partial solution or as a null solution, where some of the

components of the solutions, i. e. items in 0-1 MKP, are not yet assigned. The

constructive neighborhood structure allows the initial solution to move toward the

guiding solutions by a neighborhood path introducing components contained in the set of

guiding solutions based on their attractiveness (Glover, Laguna & Marti, 2003).

The PR approach can also utilize a powerful optimization technique, constraint

relaxation, to increase the possibility of obtaining high quality solutions by enlarging the

search space. Constraint relaxation as an attractive strategy that creates a larger search

space can be implemented by dropping some constraints and adding weighted penalties to

the objective function for the constraint violations. In the 0-1 MKP, the constraint

relaxation method can be applied to PR by allowing solutions exceeding the capacity of

one or more knapsacks. In this case, penalty weights can be determined systematically by

leading the search to cross the feasibility boundary of the search space. This technique is

known as strategic oscillation, introduced in Glover (1977) and used in several successful

TS algorithms. Strategic oscillation requires defining an oscillation, or feasibility

boundary, and when the algorithm reaches the feasibility boundary, it continues the

search beyond the boundary before turning around. Repeating this process creates an

oscillatory search pattern. It is possible to adjust the amplitude of the oscillation; e. g.

tight oscillations favor a more thorough search around the boundary (Gendreau & Potvin,

2007). This method, also known as the tunneling strategy, is protected against the

possibility of becoming "lost" in an infeasible region, since feasibility evidently must be

recovered when the guiding solution is reached (Glover, Laguna & Marti, 2003).

125

7.3 Meta-RaPS PR Algorithm

In the Meta-RaPS PR algorithm, the improved solution found at the current

iteration can be accepted as the initial solution, and the best improved solution found so

far as the guide solution. To follow the PR process, the initial and guide solutions are first

coded in a binary string. The positions containing the same numbers in the initial and

guide solutions are identified to keep their states and the numbers in the remaining

positions are changed in a systematic way to create the neighborhood. The neighbor with

the maximum profit is selected to build the path. At each step, the solutions become more

similar to the guide solution and more different from the initial solution. While

processing, the solution found is replaced with the best improved solution only if it is

better than the best improved solution.

For example, considering a 4-item 0-1 MKP problem, if items 3 and 4 are selected

for the initial solution, and items 1, 2 and 4 for the guide solution, they will be coded as

(0 0 1 1) and (1 1 0 1), respectively. Note that initial and guide solutions share only one

item with the same state at the same position. The states of items in the other positions

are switched from selected (1) to not selected (0), or not selected (0) to selected (1) to

obtain the following neighbors: (10 1 1), (0 1 1 1) and (0 0 0 1). The best neighbor, i.e.

the one with the maximum profit, is selected as the new initial solution, which is now

closer to the guide solution, having two items at the same position. This process is

followed until the initial and guide solutions are totally identical. Table 32 summarizes

the PR transforming process from the initial to guide solutions.

126

Table 32. Meta-RaPS PR Process

Initial Guide Neighbors

0 0 1 1 1 1 0 1 1 0 1 1 * 0 1 1 1 0 0 0 1

1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 *

1 0 0 1 1 1 0 1 1 1 0 1 *

1 1 0 1 1 1 0 1

The PR phase of the Meta-RaPS PR algorithm is not executed at the first iteration

because the best improved solution to serve as the guide solution is not constituted yet.

The Meta-RaPS PR pseudo code is shown in Figure 15.

For iteration ^ I

Apply Meta-RaPS rules to produce ImprovedSolution &

BestImprovedSolut ion

Assign ImprovedSolution as InitialSolution

Assign BestImprovedSolution as GuideSolution

While (InitialSolution =£ GuideSolution)

Create CandidateSolutions

Assign BestCandidateSolution as PathRelinkingSolution

If PathRelinkingSolution > BestImprovedSolution then

Assign PathRelinkingSolution as BestImprovedSolution

Assign PathRelinkingSolution as InitialSolution

End ffhile

End For

Report BestImprovedSolution

Figure 15. Meta-RaPS PR Pseudo Code

7.4 Meta-RaPS PR for Small and Medium 0-1 MKP Instances

In the construction phase of Meta-RaPS, a solution for the 0-1 MKP is built by

repeatedly adding feasible items to the current solution (partial solution) in the order

based on their priority rules until the stopping criterion is satisfied. As in the previous

chapters, there are two versions of Meta-RaPS PR depending on the greedy rule used.

While Meta-RaPS PR-G is uses DGR to obtain priority rules in selecting items, Meta-

RaPS PR-W is the independent version that considers the weights of items only. The

detailed results of both algorithms are summarized in Table 33.

Table 33. Meta-RaPS PR Results for Small/Medium 0-1 MKP Instances

Deviation% Iteration Time Optimum

Version IMean IBest CMean Number (Sec.) Frequency Instance

Meta-RaPS PR-W 0.132 0.048 1.884 1851 588.57 7.60 49

Meta-RaPS PR-G 0.001 0.000 1.282 480 47.93 9.76 55

Average 0.067 0.024 1.583 1166 318.25 8.68 52.00

Std.Dev. 0.093 0.034 0.426 969 382.29 1.53 4.24

Meta-RaPS PR-W could find the optimum values for 49 of 55 instances. Their

average deviation percentage from optimum/best solutions for the CSs and ISs are

1.884% and 0.132%, respectively. Meta-RaPS PR-W obtained the optimum solutions on

average 7.6 out of 10 times. The average time and iterations to solve the instances are 589

and 1,851, respectively.

On the other hand, the Meta-RaPS PR-G approach could solve all small and

medium instances, and found the optimum/best solutions (9.8 out of 10) run on average

128

for all instances. The average deviation percentages of CSs and ISs reached by the

proposed algorithm were 1.282% and 0.001%, respectively. Meta-RaPS PR-G obtained

these results in an average of 48 seconds and 480 iterations, respectively.

Because of the higher performance of Meta-RaPS PR-G over W version, it is

accepted as the main version of Meta-RaPS PR. To reveal the contribution of the PR to

Meta-RaPS, the number of optimum/best solutions found in the construction,

improvement and PR phases are tracked for each instance. Since it is observed in the

initial analysis that the role of PR is getting more important with the increasing number

of items and knapsacks, the instances are put in the order of size, which is defined here as

the product of the number of items and number of knapsacks.

10

9

S

4]

1

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Meta-RaPS Construction

Figure 16. The Number of Optimum Solutions Found in 10 Replicates of Meta-RaPS PR

Construction Phase for 55 Small/Medium Instances

129

Figure 16 shows the distribution of the number of optimum solutions found in the

construction phase. For the instances with lower size, Meta-RaPS could find optimum or

best solutions, and for the larger instances the chance of reaching to optimum or best

solutions is decreases. The distributions of the number of optimum/best solutions found

in the improvement and PR phases show the efficiency of the PR algorithm (Figure 17).

Especially for the larger instances, the role of PR in the proposed algorithm is clear; its

share of number of optimum or best solutions found in 10 runs for each instance

increased.

10

9

5

6

5

4

3
T

1

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 3" 39 41 43 45 47 49 51 53 55

• Meta-RaPS Improvement • Path Relinking

Figure 17. The Distribution of Best Solutions Found in 10 Replicates of Meta-RaPS PR

Improvement and PR phases for 55 Small/Medium Instances

To look closer the distribution of best solutions found in the improvement and PR

phases, their best solutions and trendlines found in 10 replicates were depicted in Figures

18a and b. respectively. As seen from the trendlines in these figures, increasing the size

130

of the instances makes decrease the share of the improvement phase in producing the best

solutions in 10 replicates; and increase the PR phases share. In these figures, the method

of polynomial trendlines (order 3) were used to observe the predictions since the

polynomial trendline produced larger R2 values than other methods did, such as linear,

logarithmic, or exponential trendlines.

Recall that besides the parameter of number of iterations (I), there is another

stopping criterion, which is when the deviation percentage is equal to 0. For the instances

with smaller size, Meta-RaPS can find optimum solutions, and stops the solution process

before the algorithm reaches the PR phase. This is the reason why the PR phase seems to

not produce optimal or best solutions for these instances. However, in solving large

instances, Meta-RaPS is expected to call the PR phase to obtain better results.

10

9

S

6

3
4

1

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Meta-RaPS Improvement - — — Poly. (Meta-RaPS Improvement) R:= 0.4*3

Figure 18a. Trendline of Best Solutions Found in 10 Replicates by Improvement

Phase of Meta-RaPS PR for 55 Small/Medium Instances

131

10 T

9

S

6

5

4

3

1

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Path Relinking Poly. (Path Relinking) R:= 0.4"3

Figure 18b. Trendline of Best Solutions Found in 10 Replicates by PR Phase of

Meta-RaPS PR for 55 Small/Medium Instances

7.5 Meta-RaPS PR for Large 0-1 MKP Instances

With the same parameter setting used in Meta-RaPS EDA and Q versions, Meta-

RaPS PR was run to solve the first three sets of large size 0-1 MKP instances. As shown

in Table 34, the overall average deviations from optimum/best solution found was

0.142% in an average of 21 minutes and 2,988 iterations. Meta-RaPS PR algorithm

obtained the optimum values for 28, 22 and 14 instances of the 100 items with 5, 10 and

30 knapsacks, respectively. The average optimum instance was 21.3 of 30 instances for

the first three sets. Meta-RaPS PR could reach the optimum/best results in 4.9 of 10

replications. The best average performance of the Meta-RaPS PR, i. e. the best average

deviations percentage, for all instances was 0.061, and the overall average deviation

percentage for CSs is 0.640.

132

Table 34. Meta-RaPS PR Solution for Large 0-1 MKP Instances

Deviation% Iteration Time Optimum

Instance Set IMean IBest CMean Number (Min.) Frequency Instance

100x5 0.031 0.008 0.353 2321 14.44 7.27 28

100x10 0.155 0.080 0.650 2819 27.32 5.17 22

100x30 0.252 0.095 0.917 3824 86. 17 2.17 14

Average 0.146 0.061 0.640 2988 20.88 4.87 21.33

Std.Dev. 0.111 0.047 0.282 766 9.11 2.56 7.02

133

CHAPTER 8

INCORPORATING ADAPTIVE PARAMETER TUNING INTO META-RAPS

Adaptive parameter setting is another form of learning in metaheuristics since it

requires the algorithm to memorize and learn the best parameters that could create high

quality solutions in the search history. Different from other memory and learning

approaches proposed in previous chapters, incorporating an adaptive parameter setting

mechanism into Meta-RaPS is thought as the next task to accomplish in the way of

creating a smart algorithm.

Although metaheuristics are found to be very effective and efficient for

optimization problems, they are sensitive to the values their parameters take and therefore

it is very important to run them with the appropriate parameter setting(s) to reach high

quality solutions. Parameter tuning is also critical to make the algorithm intensify or

diversify its search process. Balancing between intensification and diversification in the

search space is a key factor to reach fertile search areas and avoid premature convergence

(Wong, 2008).

Parameter tuning often requires either a deep knowledge of the problem structure,

or trial and error algorithms with long tuning experiments. There is no unique parameter

setting for metaheuristics as they are applied to solve different problems. There is

anecdotal evidence that in designing and testing of a new metaheuristic, about 10% of the

total time is allocated to development, and the remaining 90% of the time is spent on

tuning parameters (Belarmino & Laguna, 2006).

134

A systematic and simple way to determine parameters would be to increase

algorithmic efficiency (Battarra, et al., 2012). A powerful approach to tuning parameters

is by controlling them throughout the search process, which is generally called an

adaptive, reactive, or self-tuning metaheuristies. These metaheuristics utilize feedback

information obtained during the search to perform a learning process of the parameter

combination (Alabas-Uslub & Dengiz, 2011). Birattari (2009) reported that adaptive

parameter tuning approach is particularly appealing when solving one single instance,

typically large and complex.

8.1 Literature Review

Self-adaptive heuristics are achieved for evolutionary algorithms earlier than local

search based algorithms (Alabas-Uslub & Dengiz, 2011). The development of parameter

adaptation mechanisms in EAs began in 1967, when Reed, et al. (1967) learned to play

poker with an EA, and Rosenberg (1967) proposed to adapt the probability for applying

crossover. Weinberg (1970) and Mercer and Sampson (1978) first introduced meta-

evolutionary approaches where an outer EA mechanism controls the parameters of an

inner mechanism that solves the problem. The term self-adaptation is commonly

associated with the self-adaptation of mutative step sizes for Evolutionary Strategies (ES)

like those introduced by Rechenberg (1973) and by Schwefel (1974). After ES, Fogel, et

al. (1991) introduced self-adaptation to Evolutionary Programming (EP). Kramer (2010)

reported that for binary coded EAs, self-adaptation has not grown to a standard method,

only few theoretical investigations of self-adaptation exist; mostly on continuous search

135

domains and the analysis of mutation strengths in ES. According to Beyer and Schwefel

(2002), the analysis of EAs, including the mutation control part, is a difficult task.

The idea of considering GAs for tuning the parameters of the heuristics was first

introduced by Golden, et al. (1998) in their two-phase procedure. During the first phase,

the algorithm was trained on a small set of representative problem instances by

determining a parameter vector that guarantees a good performance. In the second phase,

the generated parameter vectors were linearly combined into an overall vector with the

weights of the linear combination determined by the genetic procedure, so that the best

overall performance is reached (Battarra, et al., 2012). Pepper, et al. (2002) use a similar

technique to set the parameter of an annealing based heuristic for the travelling salesman

problem (TSP), and Chandran, et al. (2003) fiirther analyze the possibility of applying a

genetic parametric search procedure by introducing a simpler single-stage procedure.

Kivijarvi, et al. (2003) proposed a self-adaptive GA for the clustering problem.

Their algorithm gave very high quality results for hard problem instances. Binkley and

Hagiwara (2007) introduced two different EA algorithms: a self-adaptive parallel

recombinative simulated annealing algorithm, and a self-adaptive GA. They informed

that the results were best in the published literature and the self-adaptive GA

outperformed the fixed parameter GAs on the larger problems. In their papers, Battarra,

et al. (2008, 2012) proposed a single-stage GA-based procedure for tuning the parametric

Clarke and Wright (CW) heuristic and the Esau and Williams (EW) heuristic. Birattari

(2009) adopts a machine learning perspective to the tuning problem of metaheuristics and

develops a GA for the tuning.

136

Castellani, et al. (2007) presented an optimization technique to automatically

select a set of control parameters for a Markov random field (MRF) based on the reactive

tabu search strategy. Prais and Ribeiro (2000) proposed a new procedure, Reactive

GRASP, in which the basic parameter that defines the restrictiveness of the candidate list

during the construction phase is self-adjusted according to the quality of the solutions

previously found. Their approach was robust and does not require calibration efforts. The

Reactive Search (RS) method was applied to GRASP algorithm (Gomes, et al., 2001;

Junior, et al., 2008; Usberti, et al., 2011). Hepdogan, et al. (2008) applied dynamic

parameter setting of Meta-RaPS based on both RS and GA, called a Non-Parametric

Based Genetic Algorithm (NPGA). NPGA compares parameter settings with each other

to determine if they are statistically better than each other by using non-parametric

methods. Comparing the two dynamic parameter setting techniques considered, they

reported that NPGA performed better than RS.

Ide and Yasuda (2005) proposed an adaptive search algorithm for PSO in both

continuous and discrete domains, in which the parameters are tuned to the problem

structure at every search point by updating of settings based on comprehension of the

agent's current state.

Favuzza, et al. (2006) have successfully shown that they have used dynamic

parameter tuning as a strategy to balance intensification and diversification in ACO.

Wong (2008) produced a review on researches related to parameter tuning as a strategy to

balance intensification and diversification in ACO. Anghinolfi, et al. (2008) proposed a

self-adaptive ACO algorithm that exploits a parameter adaptation mechanism to reduce

the requirement of a preliminary parameter tuning. They tested the proposed approach on

137

the single machine total tardiness scheduling problem with sequence-dependent setups,

and could improve the benchmark best known results. Tamilarasi (2010) presented an

ACO method to solve the job shop scheduling problems with step pheromone updating

strategy based on statistical analysis. The author reported that once the parameters are

properly tuned, the algorithm converges satisfactory.

Abraham (2004) proposed a framework for optimization of artificial neural

networks, where learning algorithm and its parameters are adapted according to the

problem. Ramos, et al. (2005) proposed using the logistic regression approach in tuning

the parameters of an EA. Logistic regression describes the relationship between the

categorical response variable and one or more continuous or categorical explanatory

variables. Although it requires additional computational effort to tune the parameters, the

new algorithm showed that when there is evidence of the goodness of fit of the model,

the technique can direct the parameter setting, and provide data to support conclusions

about the best policy to be adopted.

Alabas-Uslub and Dengiz (2011) developed another heuristic algorithm, named

self-adaptive local search (SALS), with a self-adaptive mechanism for solving the

classical vehicle routing problem allowing for the escape from the difficulty of parameter

optimization. The proposed heuristic had only one generic parameter, called the

acceptance parameter, calculated and updated self-adaptively throughout the search

process to improve the effectiveness of the algorithm using the response surface

information which comes from the problem and the performance measure of the

algorithm. Besides its simplicity, SALS also provided qualified solutions to well-known

benchmark problems from the VRP literature within reasonable amount of computation

138

times. The same approach was also applied for the multi-objective vehicle routing

problem (Alabas-Uslub, 2008) and flow-shop scheduling problem (Dengiz, et al., 2009).

Ries, et al. (2012) proposed an instance-specific method for parameter tuning, called

IPTS. IPTS created a link between instance characteristics and the decision maker's

preference with respect to the solution quality - computational time tradeoff, to

algorithm-specific parameter values.

There have also been researches about meta-learning approaches for parameter

setting. Chen, et al. (2002) used inductive meta-learning and clustering to tune

parameters and choose the algorithm. Cail, et al. (2006) proposed an automatic

parameter tuning method based on machine learning. Soares, et al. (2004) presented a

meta-learning approach to parameter setting that exploits information about past

performance of different settings. Sikora (2008) used a simple meta-learning algorithm to

learn the temperature parameter of the Softmax reinforcement-learning algorithm.

Eiben, et al. (1999) presented a study to classify parameter control methods for

EAs and survey various forms of control methods. De Jong (2007) gives a detailed

overview of parameter setting overviewing 30 years of research in this area. Kramer

(2010) produced an extensive survey and a textbook (2008) about evolutionary self-

adaptation of operators and strategy parameters. Birattari (2009) created another

comprehensive textbook on tuning metaheuristics in the machine learning perspective.

These successful applications of adaptive parameter tuning in metaheuristics

support our belief in creating a promising method in which the algorithm can adaptively

tune the parameters of Meta-RaPS. Therefore the approach used here will be focused on

the methods of adaptive parameter tuning.

139

8.2 Adaptive Parameter Tuning

Although it is accepted that appropriate parameter settings can lead a search in the

right direction, they require knowledge about the problem structure. For many black-box

optimization problems there is no knowledge about the search space. On the other hand,

the best parameter setting usually depends on the application area, size or input data of

the problem for each of the problem instances (Alabas-Uslub & Dengiz, 2011). In these

cases it would be very convenient if parameters of algorithms were tuned autonomously

for each problem.

Eiben, et al. (1999) presented two main types of parameter settings techniques for

evolutionary algorithms: parameters that have to be tuned before or controlled during the

run of the optimization algorithm. In their taxonomy, parameter tuning can be executed

by hand; design of experiments (DOE) or meta-evolution; and parameter control can be

reached by deterministic, adaptive and self-adaptive techniques. In the case of tuning by

hand, the efficiency of the parameter setting only depends on human experience; however

it may not be the optimal parameter setting. DOE requires a statistical analysis of

experiments, i. e. trial solutions executed with different parameter set by a detailed

experimental plan. In meta-evolutionary algorithms, also known as nested evolutionary

algorithms, an outer optimization algorithm tunes the parameters of an embedded

algorithm (Rechenberg, 1994).

Eiben, et al. (1999) called the change of parameters during the run as online

parameter control due to the fact that the conditions of the fitness landscape can change

during the optimization process (Kramer, 2010). In the deterministic parameter control,

parameters are changed depending on some fixed factors, e. g. the number of generations

140

in EAs. Adaptive parameter control methods use feedback from the search to determine

magnitude and direction of the parameter change under the rules defined by the

practitioner. An example for an adaptive control can be the 1/5-th success rule for the

mutation strengths in EA by Rechenberg (1973) where the step sizes are increased, if the

success ratio is higher than 1/5-th to allow faster progress and is decreased if the success

rate is lower than 1/5-th.

Self-adaptation is a well-known concept meaning that the algorithm is capable of

adapting itself totally autonomously. Self-adaptation is based on the theory that good

solutions more likely result from good parameter settings than from bad ones. These good

settings of parameters will have a high probability of being selected by the algorithm

while processing. According to Kramer (2010), a necessary condition for a successful

self-adaptation is the existence of a tight link between parameters and fitness; i.e., if the

quality of the search process heavily depends on a particular setting of parameters. Self-

adaptive parameters are also known as endogenous, i.e., evolvable, in contrast to

exogenous parameters, which are kept constant during the optimization run (Beyer &

Schwefel, 2002). Self-adaptation plays the role of the stochastic online control toward a

parameter-free optimization metaheuristic (Kramer, 2010).

The Reactive Search (RS) is another powerful method in setting parameters which

uses feedback from the metaheuristics. RS incorporates a history-based adaptive

procedure in the search to determine the values of parameters. This approach investigates

a variety of parameter settings while the algorithm is running and determines the

probabilities of selecting each parameter setting based on their fitness values, i. e. higher

probabilities for the parameters which lead to the best solutions.

141

The pioneering research in developing a self-adaptive mechanism for the local

search based metaheuristics created the reactive tabu search by Battiti and Tecchiolli

(1994). The most critical parameter in TS usually is the tabu list size which balances

between intensification and diversification strategies. Given the fixed size of the tabu list,

the search might be trapped in a cycle of length greater than the size list. In order to cope

with this drawback, the reactive tabu search dynamically adjusts the tabu list size by

memorizing the history of the search process to determine the probability of selecting

each parameter setting for future iterations.

Discovering the relationships between the parameters and the search trajectories

has a major impact in metaheuristics to reach the best solutions. The online parameter

tuning methods, particularly adaptive/self-adaptive methods, are among best candidates

that can make parameters evolve to their best settings. This fact encourages tuning the

parameters of Meta-RaPS adaptively.

8.3 Meta-RaPS Adaptive Parameter (AP) Algorithm

To tune the parameters online, i.e. change adaptively, Meta-RaPS algorithm needs

a mechanism to memorize and learn the effects of different parameter settings on the

solution process. This mechanism can be formed via a parameter memory matrix, similar

to the idea presented in EDA.

The parameter memory matrix for Meta-RaPS is created for the parameters

priority and restriction, containing 9 levels between 0.1 and 0.9 with increments of 0.1

for each parameter. The parameter improvement is accepted 0.1 according to the results

of D-Optimal design applied in Section 4.4. Thus, 81 (=9x9) different parameter

settings can be attempted in solving the 0-1 MKP instances. These parameter settings are

then applied in solving the instances and their solution values are recorded in the cells

representing the parameter settings of priority and restriction. Once the parameter

settings in the cells are assigned, the solutions can be generated randomly or by applying

a greedy rule in both the parameter memory matrix and the solution process. The Meta-

RaPS with online tuning, or adaptively changing parameters will be named a Meta-RaPS

AP (Adaptive Parameter).

The way of employing the parameter settings represented in the cells forms

different versions of Meta-RaPS AP. Each parameter setting can be selected randomly to

solve the instances, and in this case it cannot be guaranteed that the number of times each

cell selected is equally likely to be filled in. To prevent this, the algorithm can be pushed

to select each cell the same number of times. On the other hand, the best or average

solution values obtained by using the corresponding parameter settings can be used to

update the values in the cells of the parameter memory matrix for the sake of producing

different results. All these features have created four different versions of Meta-RaPS AP,

as shown in Table 35.

Table 35. Meta-RaPS AP-G Solutions for Small/Medium 0-1 MKP Instances

Update Method

Update Chance Best Value Average Value

Equal Version -1 Version - 2

Random Version - 3 Version - 4

143

Since the DGR-based versions of Meta-RaPS have created better solutions than

randomly generated versions in the previous chapters, the Meta-RaPS AP with DGR,

named as Meta-RaPS AP-G, was employed to specify the best approach in Table 20 in

forming the parameter memory matrix. Depending on the results, the version of Meta-

RaPS AP-R, where the parameter memory matrix and the solutions are produced

randomly, will be investigated with this best approach.

The results showing their performances in solving the small/medium 0-1 MKP

instances are summarized in Table 36. Version 3, where the parameter settings in cells

are applied randomly and each cell is updated by taking the best values, has created the

best solutions among all four versions. Table 37 presents the average values for the

parameters used in each version of Meta-RaPS AP-G.

Table 36. Meta-RaPS AP-G Solutions for Small/Medium 0-1 MKP Instances

Deviation% Iteration Time Optimum

Version IMean IBest CMean Number (Sec.) Frequency Instance

1 0.036 0.007 0.691 1410 321.72 8.25 52

2 0.036 0.008 1.702 1679 473.04 8.24 52

3 0.012 0.002 0.107 506 257.34 9.55 54

4 0.076 0.032 0.727 412 96.27 8.58 50

Average 0.040 0.012 0.807 1002 287.09 8.66 52.00

Std.Dev. 0.027 0.013 0.661 637 156.07 0.62 1.63

144

Table 37. Parameters of Meta-RaPS AP-G for Small/Medium 0-1 MKP Instances

Parameter
Versions

Priority Restriction

1 0.100 0.100

2 0.100 0.100

3 0.285 0.341

4 0.876 0.522

While (Parameter Memory Matrix not converged)

Initialize Parameter Memory Matrix with zeros

Select randomly a cell representing a parameter setting (p,r)

Generate a solution by Meta-RaPS using the parameter setting (p,r)

If GeneratedSolution(p,r) > ParameterMemorySolution(p,r) then

Assign GeneratedSolution(p,r) as ParameterMemorySolution(p,r)

End While

For iteration ^ I

Select best ParameterMemorySolution(p,r) in Parameter Memory Matrix

Accept (p,r) as parameter setting for current iteration

Apply Meta-RaPS rules to produce ImprovedSolution &

BestImprovedSolut ion

If ImprovedSolution > ParameterMemorySolution(p,r) then

Assign ImprovedSolution as ParameterMemorySolution(p,r)

End For

Report BestImprovedSolution

Figure 19. Meta-RaPS AP Pseudo Code

145

Since Version 3 could produced the best results among all four AP versions,

Meta-RaPS AP will be designed by creating a memory set for which the parameter

setting in each cell is applied randomly and updated by taking the best values of all

replications. The pseudo code of Meta-RaPS AP is presented in Figure 19.

8.4 Meta-RaPS AP for Small and Medium 0-1 MKP Instances

After the analysis to obtain the best algorithm in AP approach, Version 3 was

accepted as Meta-RaPS AP-G. To design the independent version of the Meta-RaPS AP,

i.e. without using any greedy rule, the proposed algorithm gives the priorities simply

based on their weights. This version is named Meta-RaPS AW, and applied to the

small/medium 0-1 MKP instances. The results of both AP algorithms are presented in

Table 38.

Table 38. Meta-RaPS AP Results for Small/Medium 0-1 MKP Instances

Deviation% Iteration Time Optimum

Version IMean IBest CMean Number (Sec.) Frequency Instance

Meta-RaPS AP-W 0.242 0.091 1.651 1979 637.29 1.91 46

Meta-RaPS AP-G 0.012 0.002 0.107 506 257.34 9.55 54

Average 0.127 0.047 0.879 1243 447.32 5.73 50.00

Std.Dev. 0.163 0.063 1.092 1042 268.67 5.40 5.66

Meta-RaPS AP-G could reach the optimum/best solutions for 54 of 55 instances.

PETERSEN6 is the only instance whose optimum value could not be obtained by the

algorithm. The mean deviation percentage of the constructed and improvement solutions

146

is 0.107 and 0.012, respectively. The average time needed to solve the instances is around

257 seconds, and its average iteration is 506. Meta-RaPS AP-W which does not use any

greedy rule, could reach the optimum solutions for only 46 instances, and its average

deviation and time are much higher than Meta-RaPS AP-G. Thus, Meta-RaPS AP-G

version was accepted as Meta-RaPS AP algorithm to apply in larger instances.

In other Meta-RaPS applications, the parameters are tuned before the solution

process begins, and the same settings are applied to all instances. However, in the AP

tuning versions of Meta-RaPS, the goal is to make the algorithm change the parameters

adaptively for each instance, and also in each iteration to reach best parameter settings for

the instance, in other words tune the parameters.

0.80 ;

0.70 i - - - - - — - - -

0.60

0.50

0.40

0.30

0.20

0.10

0.00
7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 1 3 5

Priority • Restriction

Figure 20. Trend of Parameters for Instances in Meta-RaPS AP-G

The changing process of the parameters priority and restriction can be observed

in Figure 20 created the Meta-RaPS AP-G. To be able to observe the trend of the

147

parameters depending on their number of items and knapsacks, the instances are ordered

to their instance difficulty as defined in the Meta-RaPS PR. Roughly speaking, it can be

argued that the values of the parameters priority and restriction increase with the number

of items and knapsacks of the instances.

8.5 Meta-RaPS AP for Large 0-1 MKP Instances

The proposed adaptive algorithm is also applied in large size 0-1 MKP instances,

and its observed performance is summarized in Table 39. The average deviation

percentage of the algorithm for the first three sets is 0.115 with the average number of

iterations of 2081. Meta-RaPS AP produced these results in average of 44 minutes,

respectively. On average, Meta-RaPS AP could find optimal solutions for 22 of 30

instances, in 5.6 of 10 replications.

Table 39. Meta-RaPS AP Solutions for Large 0-1 MKP Instances

Deviation% Iteration Time Optimum

Instance Set IMean IBest CMean Number (Min.) Frequency Instance

100x5 0.019 0.005 0.081 1329 25.34 7.90 28

100x10 0.098 0.050 0.501 2215 20.72 6.17 23

100x30 0.227 0.083 0.775 2698 84.70 2.67 15

Average 0.115 0.046 0.452 2081 43.59 5.59 22.00

Std.Dev. 0.105 0.039 0.350 694 35.68 2.67 6.56

148

The averages of parameters found by Meta-RaPS AP for each of three sets of

large instances are shown in Table 40. The average values of parameters priority and

restriction are fairly close in these sets.

Table 40. Parameters of Meta-RaPS AP for Large 0-1 MKP Instances

Parameter
Instance Set

Priority Restriction

100x5 0.579 0.641

100x10 0.607 0.626

100x30 0.610 0.641

Average 0.598 0.636

Std.Dev. 0.017 0.009

149

CHAPTER 9

REDESIGNING META-RAPS

Metaheuristics can be observed as the repetition of the two main phases;

generation of solutions and its improvement by local search (Ibaraki, et al., 2005). In the

first phase, solutions are produced based on the principles of the algorithm, by gradually

constructing or forming the whole solution at once. Most of the time, the initial solution

is not expected to include the attributes of a high quality solution, thus in the second

phase, the algorithm requires improving the initial solution by implementing various

types of local search techniques.

Although the best solutions of the algorithms are generated by their improvement

phase, there is usually a high computational cost of employing the local search. This

critical part of the local search is the computational burden that the practitioners should

accept a priori. For many applications, local search techniques consume more time than

generating the solutions. The criteria for selecting a local search technique may be the

expectation that the quality of improved solutions by local search will compensate for its

computational cost. Otherwise, metaheuristics would lose one of their most important

advantages which is the ability to find good solutions in an acceptable time frame.

The results of the proposed algorithms in the previous chapters also reflect this

fact. It can be easily observed that increasing the size of the instances requires more

computational time, and in the literature there are other larger instances not solved with

the proposed algorithms. It can be assumed that these algorithms do already have high

quality solutions, and now the next task will be to obtain them in a shorter time frame.

150

In the proposed algorithms the total costs come from three main factors: memory

and learning mechanisms, Meta-RaPS construction phase and improvement phase. Since

the aim of this study was to make Meta-RaPS intelligent by introducing memory and

learning mechanisms, this factor cannot be avoided. Meta-RaPS construction phase is

another factor needed to create initial solutions and thus cannot be left out. The third

factor, Meta-RaPS improvement phase, is the only one that can potentially be reduced or

eliminated. However, the qualities of the CSs created by the proposed algorithms are not

very good and they need to be improved. Such improvements should be made by the

Meta-RaPS PR version instead of local search. While in Meta-RaPS EDA, Q and AP

versions, memory and learning happen before running the algorithm by showing the right

way in constructing solutions, in the Meta-RaPS PR version, memory and learning begin

handling the algorithm after Meta-RaPS has constructed the initial solution. This

phenomenon acts like the improvement phase instead of using local search. In Chapter 7,

there was important evidence presented in Figures 17 and 18 that more optimum

solutions in the Meta-RaPS PR were found by PR than the local search phase when

increasing the size of instances. Both of these facts encourage the redesign Meta-RaPS by

replacing the local search (or improvement) phase with and the PR approach. In this new

Meta-RaPS, the constructed solutions will not be improved by local search techniques;

instead, they will gain the "good" attributes of the good solutions by learning.

9.1 Redesigning Meta-RaPS

In Meta-RaPS PR algorithm the basic form of PR was implemented, however, a

PR application in a metaheuristic without local search should be more sophisticated.

151

Based on the information given in Chapter 7, three factors can be accepted to design an

effective PR algorithm: feasibility of initial and guide solutions, direction of the path, and

selection of the initial solutions for the next path. Besides feasibility, infeasibility can

also be accepted for the initial and guide solutions, since the solutions will be eventually

feasible when PR is completed. The path can start from the CS and reach to the best

solution (BS) or from the BS to the CS. Selection of the initial solutions among the

candidates for the next path is the last issue, and can be done by taking the solution with

maximum value, randomly or applying a greedy rule.

These options create 12 (= 2 x 2 x 3) different alternatives of the PR approach. To

evaluate them, 8 instances whose average deviations from optimal/best solutions are

different from zero at least two times for all proposed algorithms are selected in Table 41.

For the greedy rule, the parameter priority is used to select the initial solution for the next

path, i. e. if the random number < priority then select the candidate solution as next initial

solution.

These PR alternatives are applied to solve the 8 instances in 10 replications, and

their results are summarized in Table 42. Among all alternatives, Feasible/BS-CS/Greedy

PR approach gives best results; however, Infeasible/BS-CS/Greedy PR is very close the

best alternative.

Table 43 presents the overall averages of solutions according to the options. The

greedy approach in PR gives again the best results, and the solutions obtained in both

directions are close to each other.

152

Table 41. Instances to Evaluate PR Alternatives

Name Items Knapsacks

1 HP2 35 4

2 PB2 34 4

3 PETERSEN6 39 5

4 PETERSEN7 50 5

5 WEING6 28 2

6 WEING7 105 2

7 WEING8 105 2

8 WEISH18 70 5

Table 42. Summary of Solutions by PR Alternatives

Feasibility Direction Criteria Dev.% Iteration
Time
(Sec.)

#Opt.
Rep.

Maximum 0.096 4223 3.18 5.25

CS to BS Random 0.078 2851 3.32 5.75

Feasible
Greedy 0.067 3202 2.37 7.13

Feasible
Maximum 0.041 1574 1.98 7.63

BS to CS Random 0.055 2212 13.64 6.88

Greedy 0.026 2262 2.09 8.25

Maximum 0.128 4324 3.49 4.88

CS to BS Random 0.068 2344 3.38 6.25

Infeasible
Greedy 0.042 2487 3.12 6.25

Infeasible
Maximum 0.285 3095 3.38 3.25

BS to CS Random 0.069 2371 9.48 6.13

Greedy 0.030 2616 2.71 7.13

Average 0.082 2797 4.34 6.23

Std. Dev. 0.070 813 3.53 1.35

153

Table 43. Overall Averages of Solutions According to PR Options

Criteria Dev.% Iteration
Time
(Sec.)

#Opt.
Rep.

Feasible 0.061 2721 4.42 6.81

Infeasible 0.104 2873 4.26 4.44

CS to BS 0.080 3239 3.14 5.92

BS to CS 0.084 2355 5.54 6.54

Maximum 0.137 3304 2.99 5.25

Random 0.068 2445 7.45 6.25

Greedy 0.041 2642 2.57 7.19

Average 0.082 2797 4.34 6.06

Std. Dev. 0.031 367 1.71 0.95

The analyses presented in Tables 42 and 43 indicates that accepting the next

initial solution by a greedy rule has the biggest impact on the solution quality. In

addition, selecting initial and guide solutions being feasible or infeasible and both

directions of the path have also some contributions that should be taken into

considerations. Under these circumstances, the new PR algorithm is designed to select the

next initial solution by a greedy rule without checking the feasibility of the candidate

solutions and its paths will have both directions, i. e. 2-way PR.

By utilizing all lessons learned from the previous chapters, redesigning Meta-

RaPS is completed by replacing its improvement phase with this PR approach, and

renamed as Meta-RaPS V2 (Version 2). The parameter improvemenfVo that decides to

perform the improvement phase is renamed as pathrelinking% which now decides to

perform the PR phase. The pseudo code of Meta-RaPS V2 is presented in Figure 21.

154

For i teration ^ I

While (feasible solution is not constructed)

Find priority value for each feasible activity

Find best priority value

If rnd() ^ priority% then

add item with best priority value to solution

Else create CandidateList from feasible activities with

priority values ^ Limit

Limit = MinimumPriority +

restriction% • (MaximumPriority - MinimumPriority)

Choose randomly an item from CandidateList and add to solution

End While

A = BestConstructedSolution • pathrelinking%

If ConstructedSolution ^ A then apply 2-Way Path Relinking

For the way from ConstructedSolution to BestSolution;

Assign ConstructedSolution as InitialSolution

Assign BestSolution as GuideSolution

Apply Path Relinking to produce BestSolution

For the way from BestSolution to ConstructedSolution;

Assign BestSolution as InitialSolution

Assign ConstructedSolution as GuideSolution

Apply Path Relinking to produce BestSolution

End For

Report BestSolution

Figure 21. Meta-RaPS V2 Pseudo Code

155

9.2 Meta-RaPS V2 for Small and Medium 0-1 MKP Instances

To be able to compare the performance of the new Meta-RaPS with the proposed

Meta-RaPS versions discussed previously and other algorithms in the literature, it will be

applied to both small/medium and large size 0-1 MKP instances. A lesson learned in this

research is that the proposed algorithms based on DGR create higher quality solutions

than based on greedy rule-free versions; thus, only DGR will be used to create priority

rules for the new Meta-RaPS.

Another lesson learned in this research is from the parameter setting area. Meta-

RaPS AP has proved how effective the adaptive parameter setting approach can be if

applied properly. Therefore, the feedback from the AP applications in Chapter 8 can be

used in setting the parameters of the new Meta-RaPS. The average of parameters for the

small/medium size instances obtained by the Meta-RaPS AP was presented in Table 37.

The overall average values of parameters found by Meta-RaPS AP will now be accepted

for the parameters setting of the new Meta-RaPS in Table 44. Table 45 shows the details

of the new algorithm for the small/medium 0-1 MKP instances.

Table 44. The New Parameter Setting of Meta-RaPS V2 for Small/Large 0-1 MKP

Instances

Parameter Value

Priority percentage (p) 0.29

Restriction percentage (r) 0.34

Path Relinking percentage (i) 0.10

Number of iterations (I) 10000

156

Table 45. Meta-RaPS V2 Results for Small/Medium 0-1 MKP Instances

Deviation% Iteration Time Optimum

Version IMean I Best CMean Number (Sec.) Frequency Instance

Meta-RaPS V2 0.010 0.000 0.938 416 0.32 9.86 55

9.3 Meta-RaPS V2 for Large 0-1 MKP Instances

As in the case of small/medium size instances, the average parameter settings

found by Meta-RaPS AP in Table 40 will be used as the new parameter setting for the

new Meta-RaPS to solve the large instances. Table 46 presents the parameter setting of

the new Meta-RaPS.

Table 46. The New Parameter Setting of Meta-RaPS V2 for Large Instances

Parameter Value

Priority percentage (p) 0.60

Restriction percentage (r) 0.65

Path Relinking percentage (i) 0.10

Number of iterations (I) 10000

With this parameter setting, Meta-RaPS V2 is applied to solve all large size 0-1

MKP instances due to its fast computation. Its solution summary is presented in Table 47.

The new algorithm could find optimum values for 26, 15 and 3 instances of the 100 items

and 5, 10 and 30 knapsacks, respectively, and the average optimum solution for 30

157

instances is 14.7. The average deviation from optimum/best solution is 0.211% in

average of 0.2 minutes and 2435 iterations. The overall average deviations percentage for

CSs is 0.35. Meta-RaPS V2 could find the average optimum/best solution 3.7 times in 10

replications. The results for the first three sets are parallel with the overall results for all

set of instances. The average deviations percentage from optimum/best solution reached

by Meta-RaPS V2 is 0.241% in an average of 3.5 minutes and 3,600 iterations. Its

average optimum solution is 6.2 in 30 instances, and the average optimum/best solution

was found 1.2 times in 10 replications.

Table 47. Meta-RaPS V2 Solution for Large 0-1 MKP Instances

Deviation% Iteration Time Optimum

Instance Set IMean IBest CMean Number (Min.) Frequency Instance

100x5 0.025 0.007 0.122 1802 0.05 6.63 26

100x10 0.188 0.126 0.350 2692 0.13 3.93 15

100x30 0.420 0.242 0.588 2812 0.39 0.47 3

Average 0.211 0.125 0.353 2435 0.19 3.67 14.67

Std.Dev. 0.199 0.118 0.233 552 0.18 3.09 11.50

250x5 0.081 0.036 0.171 4132 0.75 1.17 7

250x10 0.201 0.119 0.361 4275 1.34 0.17 3

250x30 0.487 0.354 0.764 4034 3.07 0.00 0

500x5 0.115 0.077 0.214 4403 3.93 0.07 2

500x10 0.194 0.132 0.329 4502 6.58 0.00 0

500x30 0.458 0.330 0.741 3818 15.51 0.00 0

Overall Average 0.241 0.158 0.404 3608 3.53 1.24 6.22

Overall Std.Dev. 0.171 0.124 0.239 943 4.99 2.34 8.83

158

As seen in the first three rows in Table 47, which represent the solutions of the

instance sets 100 items and 5,10 and 30 knapsacks, Meta-RaPS V2 without improvement

phase but with more sophisticated PR approach can produce promising results with much

lower computational time, comparing with Meta-RaPS PR with improvement phase and a

basic PR approach presented in Table 40.

159

CHAPTER 10

CONCLUSIONS

The proposed Meta-RaPS versions presented in the previous chapters attempt to

incorporate memory and learning into Meta-RaPS from different perspectives. While

Estimation of Distribution Algorithms (EDA) is a statistical learning-based approach, Q

Learning takes a machine learning approach. The common part shared by both

approaches is requiring a learning set that needs to be trained prior to solving the problem

by one of the algorithms. On the other hand, Path Relinking (PR) makes the algorithm

learn the "good" attributes by memorizing best solutions, and following them to reach

better solutions. This type of learning does not need any learning sets, and can be defined

as a post-optimization method. The last perspective of incorporating memory and

learning is about tuning parameters, which is vital for a metaheuristic's performance.

Thus, the last proposed version of Meta-RaPS has the ability of tuning parameters

adaptively.

10.1 Comparison of Meta-RaPS Versions for Small/Medium 0-1 MKP Instances

These proposed algorithms showed different performance levels when applied to

both small/medium and large size 0-1 Multidimensional Knapsack problems. For

small/medium size instances, the algorithms were tested with and without using a greedy

rule, i.e. Dynamic Greedy Rule (DGR). The purpose of such an effort was to understand

how the algorithms behave independently when there is no help from a greedy rule.

160

1.50

:.oo

1.50

1.00

0.50

0.00

I

t
|1

t l \
S i »
ii i
W I

X»-

!\

i
i

—0

II
ii
ii
11
11
11
11
i i
i i
« i
r r
» i

n
i *

i

* /
V/

1 3 5 " 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 9 5 1 5 3 5 5

Meta-RaPS EDA — — — Meta-RaPSQ

Figure 22a. Trends for Average Deviations% of Small/Medium 0-1 MKP Instances for

Meta-RaPS EDA and Meta-RaPS Q without Using DGR

.50

2.00

1.50

1.00

0.50

0.00

>

I
•

H
II
II
11
I I
I I
« ' i l
» 1 , 1
I 1/ ,

I

l
0
H

I,
I
I
I

i
I
n
H
it
I t
I i
i i
I l

. —-r-./ •
> I

I
«
n
m
I I
ii
11
i i
i i
r i
i i

I
M
I \

I »'\
I I A '

i x'

J
1 3 5 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Meta-RaPS PR Meta-RaPS AP

Figure 22b. Trends for Average Deviations% of Small/Medium 0-1 MKP Instances for

Meta-RaPS PR, Meta-RaPS AP and Meta-RaPS V2 without Using DGR

161

Even in this case, Meta-RaPS EDA could create good results with the average

percentage deviation of 0.016 and obtaining optimal solutions for 54 instances out of 55

instances. This phenomenon can also be observed from the trends for average

deviations% of small/medium 0-1 MKP instances shown in the Figures 22a and b. Using

DGR in the different versions of the proposed algorithms showed better performance than

those without DGR (see Table 49), and therefore, they were accepted as the true versions

of the proposed Meta-RaPS algorithms. Table 49 presents the comparison of these Meta-

RaPS versions with using DGR for small/medium 0-1 MKP instances. In terms of the

average deviation percentage, Meta-RaPS EDA and PR gave the best solutions where

both algorithms could solve all instances. Meta-RaPS Q gave the worst outcomes among

all five versions with the highest deviation percentage and number of iterations; it could

find the optimum solutions for only 52 instances. Meta-RaPS AP could produce rather

good results in all aspects, and reach the optimum solutions for 54 instances. Although

Meta-RaPS V2 does not have the best average percentage deviation, it could find the

optimum solutions for 55 instances at least once. However, the most important advantage

of this algorithm is that it is very fast, almost 400 times faster than the average solution

time of all proposed algorithms.

Trends for average deviations percentages of small/medium 0-1 MKP instances

for the proposed Meta-RaPS versions are shown in the Figures 23a and b. In these figures

the performances of the algorithms can be tracked instance by instance, and verified with

Table 48.

162

Table 48. Comparison of Meta-RaPS Versions for Small/Medium 0-1 MKP Instances

Using DGR

Deviation% Iteration Time Optimum

Version IMean I Best CMean Number (Sec.) Frequency Instance

Meta-RaPS EDA 0.001 0.000 0.107 421 120.09 9.84 55

Meta-RaPS Q 0.045 0.003 0.596 2074 209.19 7.96 52

Meta-RaPS PR 0.001 0.000 1.282 480 47.93 9.76 55

Meta-RaPS AP 0.012 0.002 0.107 506 257.34 9.55 54

Meta-RaPS V2 0.010 0.000 0.938 416 0.32 9.86 55

Average 0.014 0.001 0.606 779 126.97 9.39 54.20

Std.Dev. 0.018 0.001 0.516 725 107.34 0.81 1.30

After the comparisons of the proposed Meta-RaPS versions, Table 49 presents the

comparison of these Meta-RaPS versions to other algorithms in the literature for

small/medium 0-1 MKP instances. For these instances, TS methods (Glover &

Kochenberger, 1996; Hanafi, et al., 1996), GA (Chu & Beasley, 1998) and Fix+cut based

method (Osorio, et al., 2003) generated best results in the literature. The proposed Meta-

RaPS algorithms could create considerably good results in terms of the number of

optimal solutions and percentage deviations, and Meta-RaPS EDA and Meta-RaPS PR

reached better results than Meta-RaPS DGR, which represents the Meta-RaPS version

before memory and learning inclusion (Moraga, et al., 2005).

163

0 60 -

0.50 [

0.40 t

I
it
M
H

o.3o «!
11
i i

0.20 » I

/U I

- jf

A ! ! r< jl A
L1 f ! A H .

0 1 0 ' • ! I \ r r ; V < - • <

X * /'/si / » /* W 0.00 -*• rr- —g \ •« » I 1 1— .(X
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Meta-RaPS EDA — — — Meta-RaPS Q

Figure 23a. Trends for Average Deviations'^ of Small/Medium 0-1 MKP instances for

Meta-RaPS EDA and Meta-RaPS Q Using DGR

0.60 ; -

0.50 - •- - -

0.40 f - -

0.30 ; - - -

0:0 : . ,N
H I '

o i o ; » \ ^ i '
M * I- »

0.00
I »'* I'V .
i t . 4 , — — / v -r—r
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Meta-RaPS PR — — — Meta-RaPS AP Meta-RaPS Y2

Figure 23b. Trends for Average Deviations% of Small/Medium 0-1 MKP Instances for

Meta-RaPS PR, Meta-RaPS AP and Meta-RaPS V2 Using DGR

164

Table 49. Comparison of Meta-RaPS Versions to Other Algorithms in the Literature for

Small/Medium 0-1 MKP Instances (Adapted from Moraga, et al., 2005)

Algorithm
#Optimal

Algorithm
#Optimal

Algorithm
Solutions Dev.%

Meta-RaPS EDA 55/55 0.001

Meta-RaPS Q 52/55 0.045

Meta-RaPS PR 55/55 0.001

Meta-RaPS AP 54/55 0.012

Meta-RaPS V2 55/55 0.010

Meta-RaPS DGR 55/56 0.003

GRASP 52/56 0.023

SMA/TA (Hanafi, et al., 1996) 39/54 0.080

AGNES (Fre'ville and Plateau, 1994 as reported by Hanafi, et al.,

1996) 52/54 0.020

Tabu search REM (Dammeyer & Voss, 1993) 40/57 0.126

Tabu search STM (Dammeyer & Voss, 1993) 39/57 0.130

Tabu search L+STM (Dammeyer &Voss, 1993) 44/57 0.101

Tabu search (Glover & Kochenberger, 1996) 57/57 0.000

Tabu search (Lokketangen & Glover, 1998) 37/54 0.003

Tabu search IFTS/HFE (Hanafi, et al., 1996) 54/54 0.000

Genetic algorithm (Chu & Beasley, 1998) 55/55 0.000

Fix+cut based method (Osorio, et al., 2003) 55/55 0.000

Simulated annealing DETEXC (Drexel, 1988) 7/57 1.739

Simulated annealing PROEXC (Drexel, 1988) 23/57 0.239

Simulated annealing (Drexel, 1988 as implemented by Dammeyer & 31/57 0.328

Voss, 1993)

10.2 Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances

Altough the analysis for the small/medium size instances gave an idea about the

performance of the proposed algorithms, it is not enough to make a conclusion about

their qualities since the differences in the average percentage deviations are so small and

165

the instances solved are relatively easy. Therefore the proposed algorithms had to be

tested on large instances. Table 50 summarizes the comparison of Meta-RaPS versions

for large 0-1 MKP instances. For large size instances, all algorithms except Meta-RaPS Q

presented close performance, and the solution time advantage of Meta-RaPS V2 was still

remarkable with being around 200 times faster than the overall average solution time.

The details of this comparison can be found in Table 51. In Section 4.3 it was stated that

the large instances were created by accepting the tightness ratios of 0.25, 0.50 and 0.75

for each group of 10 instances in each set. Based on these tightness ratios, the trends of

average percentage deviations of large instances for Meta-RaPS algorithms are presented

in Figures 24a and b. As Pirkul (1987) pointed that, for the lower tightness ratios of the

instances, the hardness of the instances are increased and as a result, the algorithms

produced solutions with higher percentage deviations. In the case of higher tightness

ratios, all algorithms produced better results. This phenomenon is clearer in the case of

Meta-RaPS Q.

Table 50. Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances

Deviation% Iteration Time Optimum

Version IMean IBest CMean Number (Min.) Frequency Instance

Meta-RaPS EDA 0.142 0.084 0.540 1872 50.37 3.57 15.67

Meta-RaPS Q 0.452 0.273 1.171 4176 87.39 2.36 12.67

Meta-RaPS PR 0.146 0.061 0.640 2988 20.88 4.87 21.33

Meta-RaPS AP 0.115 0.046 0.452 2081 43.59 5.59 22.00

Meta-RaPS V2 0.211 0.125 0.353 2435 0.19 3.67 14.67

Average 0.213 0.118 0.631 2710 40.48 4.01 17.27

Std.Dev. 0.138 0.092 0.320 922 32.85 1.25 4.16

166

Table 51. Detailed Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances

Instance Set Deviation% Iteration Time Optimum

Version IMean IBest CMean Number (Min.) Frequency Instance

100x5

Meta-RaPS EDA 0.045 0.026 0.296 1389 16.19 5.17 20

Meta-RaPS Q 0.143 0.058 0.653 3440 19.67 4.97 22

Meta-RaPS PR 0.031 0.008 0.353 2321 14.44 7.27 28

Meta-RaPS AP 0.019 0.005 0.081 1329 25.34 7.90 28

Meta-RaPS V2 0.025 0.007 0.122 1802 0.05 6.63 26

Average 0.053 0.021 0.301 2056 15.14 6.39 24.80

Std.Dev. 0.051 0.022 0.228 869 9.41 1.23 3.63

100x10
Meta-RaPS EDA 0.136 0.078 0.519 1869 33.79 3.90 17

Meta-RaPS Q 0.493 0.281 1.261 4454 39.35 1.50 10

Meta-RaPS PR 0.155 0.080 0.650 2819 27.32 5.17 22

Meta-RaPS AP 0.098 0.050 0.501 2215 20.72 6.17 23

Meta-RaPS V2 0.188 0.126 0.350 2692 0.13 3.93 15

Average 0.214 0.123 0.656 2810 24.26 4.14 17.40

Std.Dev. 0.159 0.092 0.354 995 15.19 1.76 5.32

100x30

Meta-RaPS EDA 0.246 0.147 0.804 2357 101.13 1.63 10

Meta-RaPS Q 0.721 0.479 1.599 4634 98.28 0.60 6

Meta-RaPS PR 0.252 0.095 0.917 3824 86. 17 2.17 14

Meta-RaPS AP 0.227 0.083 0.775 2698 84.70 2.67 15

Meta-RaPS V2 0.420 0.242 0.588 2812 0.39 0.47 3

Average 0.373 0.209 0.937 3265 71.13 1.51 9.60

Std.Dev. 0.209 0.163 0.389 941 47.70 0.96 5.13

Overall Average 0.213 0.118 0.631 2710 34.39 4.01 17.27

Overall Std.Dev. 0.197 0.129 0.408 1009 34.94 2.42 7.79

167

1.00 T

0.80 -j

0.60 ;

0.40 f-------

0.20

o.oo

Figure 24a. Trends of Average Deviations% of Large Instances for Meta-RaPS EDA and

Meta-RaPS Q Based on Instance Tightness Ratios

0 40

25 50 "5

PR AP -< ---v;

5 50 "5

Figure 24b. Trends of Average Deviations% of Large Instances for Meta-RaPS PR,

Meta-RaPS AP and Meta-RaPS V2 Based on Instance Tightness Ratios

168

Along with the comparisons of the proposed algoritms presented until now, they

can also be compared in a more systematic way. In the literature, five major performance

criteria are described against which good metaheuristics can be measured: accuracy,

speed, simplicity, flexibility, and consistency (Cordeau, et al., 2002; Laporte, et al., 2000;

Wassan, 2006). To elaborate, a proposed algorithm can be measured according to these

performance criteria as follows:

1. Accuracy: How accurate the results are when applied to various problems. This

reflects the quality of the algorithm's results.

2. Speed: CPU time spent by the algorithms to solve instances,

3. Simplicity: The convenience of using the algorithm with the problems at hand,

4. Flexibility: The convenience of modifying the algorithms for different problems,

and

5. Consistency: Robustness of the algorithm with different instances of different

problems. In terms of computational efficiency and optimality, Ide and Yasuda

(2005) define robustness as the ability of an algorithm to withstand differences in

problem structures. The chance of achieving a poor solution should be a very low,

and the performance should not be sensitive to the parameters (Silver, 2004).

In this study's solution reports, the values for some of these criteria have already

been obtained, especially those that are quantitative in nature. Specifically, the

percentage deviation was recorded for accuracy, time for speed and standard deviation

for consistency for each proposed algorithm. Different from percentage deviation and

standard deviation which are already between 0 and 1, the values of time for each

algorithm were normalized in order to reach their scaled values in the same interval. For

169

the simplicity and flexibility criteria, the appropriate numerical values were given based

on the average labor hours spent for using (simplicity) and modifying {flexibility) the

algorithms when required to solve different type of problem. These labor hours can be

easily transformed into the scaled factors between 0 and 1 by taking their ratios in overall

total, as in Table 52.

Table 52. Creating Scaled Factors for Simplicity and Flexibility

Performance
Value

Meta-RaPS

Criteria Value
EDA Q PR AP V2

Simplicity Labor Hour 3 3.5 1 2 1.5

Scaled Factor 0.60 0.70 0.20 0.40 0.30

Flexibility Labor Hour 3.5 4 0.5 0.5 0.5

Scaled Factor 0.70 0.80 0.10 0.10 0.10

Although there are five performance criteria to measure the performance of the

metaheuristics, this does not mean that all performance criteria have the same level of

significance. One criterion might be more important than others for the users, and

therefore, weights can be assigned to each based on users' experience. The values of the

percentage deviation for accuracy, time for speed and standard deviation for consistency

were calculated from the runs. It is assumed in this research that the weights of simplicity

and flexibility as 15% in total.

In Table 53, the comparison of Meta-RaPS versions in terms of performance

criteria is presented. For the performance criteria, the lower values are always better. The

total weighted values for each proposed algorithm were calculated by multiplying the

170

values for the performance criteria by their weights and then summing up these weighted

values. As seen in Table 53, the minimum and maximum total weighted values belong to

Meta-RaPS PR and Meta-RaPS Q algorithms, respectively. Therefore, it can be argued

that Meta-RaPS PR has the best performance and Meta-RaPS Q has the worst

performance among the all proposed versions.

Table 53. Comparison of Meta-RaPS Versions in Terms of Performance Criteria

Performance
Definition Weight

Meta-RaPS

Criteria
Definition Weight

EDA Q PR AP V2

Accuracy Deviation% 0.50 0.15 0.45 0.15 0.12 0.21

Speed Time 0.20 0.25 0.43 0.10 0.22 0.00

Simplicity Scaled Factor (0-1) 0.05 0.60 0.70 0.20 0.40 0.30

Flexibility Scale Factor (0-1) 0.10 0.70 0.80 0.10 0.10 0.10

Consistency Standard Deviation 0.15 0.10 0.29 0.11 0.11 0.20

Total Weighted Values 1.00 0.24 0.47 0.13 0.15 0.16

To observe the effects of the given weights on the total weighted values for each

Meta-RaPS version, the sensitivities of the total weighted values for the first two largest

weights (deviation% and time), are analyzed in Figures 25 and 26. In this sensititity

analysis, while these weights are increasing/decreasing, their amount of change is equally

subtracted from/added to the weights of the other performance criteria. As can be seen in

these figures, selection of the best algorithm, Meta-RaPS PR, does not changed for large

intervals of the weights of deviation% and time. This means that the weights are fairly

robust in obtaining the total weighted values.

171

0.6

i

04 }

• r

Meta-RaPS Meta-RaPS Meta-RaPS Meta-RaPS Meta-RaPS
EDA Q PR AP v:

Figure 25. Sensitivity of Total Weighted Values for Different Weights of Percentage

Deviation

0.5

0.4

I
I
T

!
i

Meta-RaPS Meta-RaPS Meta-RaPS Meta-RaPS Meta-RaPS
EDA Q PR AP V2

Figure 26. Sensitivity of Total Weighted Values for Different Weights of Time

172

The comparison of the proposed Meta-RaPS algorithms to other algorithms in the

literature for large 0-1 MKP instances is presented in Table 54 in terms of percentage

deviation. Besides all the versions of Meta-RaPS, the Genetic Algorithm approaches of

Chu and Beasley (1998) and Haul and Voss (1997) denoted by GA-CB and GA-HV,

respectively were included in the comparison. Furthermore, the algorithms of Magazine

and Oguz (1984), Pirkul (1987), and Volgenant and Zoon (1990) denoted by MKP-P,

MKP-MO, MKP-VZ, respectively, as well as the Approximate Dynamic Programming

(ADP) method of Bertsimas and Demir (2002) were also included in the comparison. In

some cells of Table 54, there are no entries because Meta-RaPS EDA, Q, PR and AP

were applied to the sets of 100 items with 5, 10 and 30 knapsacks, and in ADP approach,

only the results for the sets of 250 and 500 items with 30 knapsacks were reported.

In the first three sets (100 items and 5, 10 and 30 knapsacks) all proposed Meta-

RaPS algorithms produced better results than the other algorithms in the literature. After

redesigning the Meta-RaPS by removing the improvement phase (local search) and

adding a more sophisticated Path Relinking approach, Meta-RaPS V2 was used to solve

all of the large instances. Although the approach of Bertsimas and Demir's (2002) shares

the best overall percentage deviation with Meta-RaPS V2 among the other algorithms, it

can be observed that Meta-RaPS V2 outperformed ADP if their results for the instance

sets of 250x30 and 500x30 are compared. For the large size 0-1 MKP instances, Moraga,

et al. (2005) reported that Meta-RaPS DGR run times ranged from 7 to 35 minutes per

problem, and average solution times for Chu and Beasley's (1998) Genetic Algorithm

ranged from 6 to 65 minutes on a Silicon Graphics Indigo workstation.

173

Table 54. Comparison of Meta-RaPS Versions to Other Algorithms for Large 0-1 MKP Instances (Adapted from Moraga, et al., 2005)

Meta-RaPS

Instance Set EDA Q PR AP MR2 DGR GA-CB GA-HV MKP-P MK-MO MKP-VZ ADP

100x5 0.05 0.14 0.03 0.02 0.03 0.60 0.59 0.72 0.95 8.49 7.63 N/A

100x10 0.14 0.49 0.16 0.10 0.19 1.17 0.94 1.26 2.12 10.79 10.65 N/A

100x30 0.25 0.72 0.25 0.23 0.42 2.23 1.69 2.14 4.85 11.93 11.11 N/A

Average 0.15 0.45 0.15 0.12 0.21 1.33 1.07 1.37 2.64 10.40 9.80 N/A

Std.Dev. 0.10 0.29 0.11 0.11 0.20 0.83 0.56 0.72 2.00 1.75 1.89 N/A

250x5 N/A N/A N/A N/A 0.08 0.17 0.14 0.36 0.31 5.14 4.61 N/A

250x10 N/A N/A N/A N/A 0.20 0.45 0.30 0.74 0.66 7.66 6.74 N/A

250x30 N/A N/A N/A N/A 0.49 1.38 0.68 1.36 2.02 8.89 7.81 0.97

500x5 N/A N/A N/A N/A 0.12 0.09 0.05 0.34 0.12 3.40 3.02 N/A

500x10 N/A N/A N/A N/A 0.19 0.20 0.14 0.64 0.29 6.05 4.99 N/A

500x30 N/A N/A N/A N/A 0.46 0.82 0.35 1.20 1.03 6.89 6.28 0.52

Overall Average N/A N/A N/A N/A 0.24 0.79 0.54 0.97 1.37 7.69 6.98 0.24

Overall Std.Dev. N/A N/A N/A N/A 0.17 0.70 0.52 0.58 1.49 2.69 2.68 0.17

174

The algorithm of Haul and Voss (1997) takes a very long time to solve large

instances, in some cases more than four hours on an Intel Pentium 100 MHz PC.

Bertsimas and Demir's (2002) reported an average solution time of 87 seconds on a Dell

Precision 410 machine. Other than the approach of Bertsimas and Demir's (2002), Meta-

RaPS V2 algorithm outperformed all other algorithms in terms of CPU with an average

solution time of 3.53 minutes (211 seconds).

10.3 Statistical Comparison of Meta-RaPS Versions

To begin the statistical comparison of the different Meta-RaPS versions, first, the

method of the one-way ANOVA is applied to understand if there is significant difference

among the proposed algorithms in terms of the means of Percentage Deviations and Time

for Meta-RaPS Versions. For the one-way ANOVA, the following hypotheses are

constructed:

Ho: Means ofpercentage deviations/time for Meta-RaPS versions are equal.

H j : A t l e a s t o n e o f t h e m e a n s o f p e r c e n t a g e d e v i a t i o n s / t i m e f o r M e t a - R a P S

versions is different.

First, the means of percentage deviations of the Meta-RaPS versions will be

evaluated for the set of 100 Items and 5 Knapsacks. One of the assumptions of the one­

way ANOVA is that the variances of the groups are similar. The Test of Homogeneity of

Variances in Table 54 shows the result of Levene's Test of Homogeneity of Variance,

which tests for similiar variances. If the significance value is greater than 0.05 then there

is an homogeneity of variances. Levene's F Statistic has a significance value of 0.00 and,

thus, the assumption of homogeneity of variance is not met. When there is a violation of

175

the assumption of homogeneity of variances, the significant difference between the

groups could still be determined by the Welch test in the Robust Tests of Equality of

Means (Table 55). Since the significance value of Welch test is 0.01, which is less than

0.05, then we can say that there is statistically significant difference between groups.

Table 55. ANOVA of Percentage Deviation for the Set of 100 Items and 5 Knapsacks

Test of Homogeneity of Variances

Deviation
Levene
Statistic dfl df2 Sid.

26.370 4 145 .000

ANOVA

Deviation
Sum of

Sauares df Mean Sauare F Sid.
Between Groups .315 4 .079 8.446 .000
Within Groups 1.353 145 .009
Total 1.668 149

Robust Tests of EquaWy of Means

Statistic' dfl df2 Sid.
Welch 3.627 4 70.958 .010

a. Asymptotically F distributed.

Because the null hypothesis (Ho: Means of Percentage Deviations for Meta-RaPS

Versions Are Equal) is rejected via the one-way ANOVA, the Tukey's multiple

comparison test is conducted as the next step. In this analysis, the Meta-RaPS EDA, Q,

PR, AP and V2 versions are coded as numbers from 1 to 5, respectively. According to

results in terms of percentage deviations shown in Table 56, only Meta-RaPS Q is

staisically different from the other versions, and there are no statistically significant

differences among Meta-RaPS EDA, PR, AP and V2 versions. The obtained results are

176

not different for other set of instances (100 items and 10, 30 knapsacks) solved by the

proposed algorithms, as shown in Tables 57 and 58.

Table 56. Tukey's Test of Percentage Deviation for the Set 100 Items and 5 Knapsacks

Deviation
TM9V H3P

95% Confide snce Interval

m Alnnrlthm r.ft Alnnrlthm
Mean

Difference fl-J] Std. Error Sla. Lower Bound UDDer Bound
1 2 -.09771" .02494 .001 -.1666 -0288

3 .01 374 .02494 .982 -.0552 .0826
4 .02600 .02494 .835 -.0429 .0949
5 .01967 .02494 .934 -.0492 .0886

2 1 .09771" .02494 001 .0288 .1666
3 .11144" .02494 .000 .0426 .1803
4 .12370" .02494 .000 .0548 .1926
5 .11738" .02494 .000 .0485 .1863

3 1 -.01374 .02494 .982 - 0826 0552
2 -.11144" .02494 .000 - 1803 -.0426
4 .01226 .02494 .988 -.0566 .0811
5 .00593 .02494 .999 -.0830 .0748

4 1 - 02600 .02494 .835 -.0949 .0429
2 -.12370" .02494 .000 -.1926 - 0548
3 -.01226 .02494 .988 -.0811 .0566
5 - 00633 .02494 .999 -.0752 .0626

5 1 -.01967 .02494 .934 -.0886 .0492
2 -.11738" .02494 .000 -.1863 -.0485
3 -.00593 .02494 .999 -.0748 .0630
4 .00633 .02494 .999 -.0626 0752

'.The mean difference is significant at the 0.05 level.

These outcomes were expected because our main focus was on integrating

memory and learning mechanisms into Meta-RaPS, and as specified in 4.6, the only

difference among all these proposed algorithms is how to produce the priorities for Meta-

RaPS to use in the solution process. In the original Meta-RaPS version, the algorithm

needs to apply some greedy rules to select the next item to add to the partial solution.

177

Table 57. Tukey's Test of Percentage Deviation for the Set 100 Items and 10 Knapsacks

Deviation

95% Confidence Interval

m Alnnrlttim
Mean

Difference fl-J) Std. Error Sia. Lower Bound UooerBound
1 2 -.35701" .07305 .000 -.5588 -.1552

3 -018B7 .07305 999 -.2205 .1831
4 .03794 .07305 985 -.1639 .2397
5 -.05220 .07305 .953 -.2540 .1496

2 1 .35701" .07305 .000 .1552 .5588
3 .33834" .07305 .000 .1365 .5401
4 .39495" .07305 .000 .1931 .5967
5 .30481" .07305 .000 .1030 .5066

3 1 .01867 .07305 .999 -.1831 .2205
2 -.33834" .07305 .000 -.5401 -.1365
4 .05660 .07305 .937 -.1452 .2584
5 -.03353 .07305 .991 -.2353 .1683

4 1 -.03794 .07305 .985 -.2397 .1639
2 - 39495" .07305 .000 -.5967 -.1931
3 -.05660 .07305 .937 -.2584 .1452
5 -.09013 .07305 .732 -.2919 .1117

5 1 .05220 .07305 .953 -.1496 .2540
2 -.30481" .07305 .000 -.5066 -.1030
3 .03353 .07305 .991 -.1683 .2353
4 .09013 .07305 .732 -.1117 .2919

*. The mean difference is significant at the 0.0S level.

Table 58. Tukey's Test for Percentage Deviation of the Set 100 Items and 30 Knapsacks
Deviation

95% Confidence interval

fh Alnnrlttim f.J} Alnnrlthm
Mean

Difference fl-J) Std. Error Sid. Lower Bound Uooer Bound
1 2 -.47429" .08847 .000 -.7187 -.2299

3 -.00518 .08847 1.000 -.2496 .2392
4 .01960 .08847 .999 -.2248 .2640
5 -.17399 .08847 .288 -.4184 .0704

2 1 .47429" .08847 .000 .2299 .7187
3 .46911" .08847 .000 .2247 .7135
4 .49389" .08847 .000 .2495 .7383
5 .30030" .08847 .008 .0559 .5447

3 1 .00518 .08847 1.000 -.2392 2496
2 -.46911" .08847 .000 -.7135 -.2247
4 .02478 .08847 .999 -.2196 2692
5 -.16881 .08847 .318 -.4132 .0756

4 1 -.01960 .08847 .999 -.2640 .2248
2 -.49389" .08847 .000 -.7383 -.2495
3 -.02478 .08847 .999 -.2692 .2196
5 -.19359 .08847 .190 -.4380 .0508

5 1 .17399 .08847 .288 -.0704 .4184
2 -.30030" .08847 .008 -.5447 -.0559
3 .16881 .08847 .318 -.0756 .4132
4 .19359 .08847 .190 -.0508 .4380

*. The mean difference is significant at the 0.05 level.

178

However, the proposed Meta-RaPS versions benefits from the intelligent

approaches to understand the structure of the problem and make intelligent decisions in

reaching high quality solutions. The main structure of the Meta-RaPS was kept the same

while designing the proposed versions of Meta-RaPS.

Even though the difference among the proposed algorithms is small, the

difference created by these algorithms in the solution quality is striking. When compared

to other approaches in the literature, all the Meta-RaPS versions could generate very

promising results, except the Meta-RaPS Q version. This is the reason why there are not

statistically significant differences among the Meta-RaPS EDA, PR, AP and V2 versions,

and only Meta-RaPS Q is different from the other versions.

The "time" factor will be the next focus to analyze the Meta-RaPS versions for

the set of 100 Items and 5 Knapsacks. Again the Levene's Statistics in Test of

Homogeneity of Variances shown in Table 59 is 0.00, which is less than 0.05, and the

assumption of homogeneity of variance is not met. Thus, the Welch test in the Robust

Tests of Equality of Means can be used to make a judgment. The significance value of

Welch test is 0.00, less than 0.05, and therefore it can be concluded that there are

statistically significant differences between the groups. The null hypothesis (Ho: Means

of Time for Meta-RaPS Versions Are Equal) is rejected, which means that at least one of

the algorithms is different.

To reveal the different Meta-RaPS versions in terms of time, the Tukey's multiple

comparison test was conducted again for the sets having the instances 100 items and 5,

10, 30 knapsacks. As presented in Tables 60-62, for the first set, Meta-RaPS EDA and

PR are different from both Meta-RaPS AP and V2; Meta-RaPS Q is different from the

179

Meta-RaPS V2; Meta-RaPS AP is different from the Meta-RaPS EDA, AP and V2; and

Meta-RaPS V2 is different from all other Meta-RaPS versions.

Table 59. ANOVA of Time for the Set of 100 Items and 5 Knapsacks

Test of Homogeneity of Variances

lima
Levene
Statistic dfl df2 Sid.

35.375 4 145 .000

ANOVA

Sum of
Sauares df Mean Sauare F Sid.

Between Groups 3.820E7 4 9550534.633 20.501 .000
Within Groups 6.755E7 145 465845.855
Total 1.057E8 149

Robust Tests of EquaHty of Means

Time

Statistic1 dfl df2 Sid.
Welch 114.786 4 58.002 .000

a. Asymptotically F distributed.

For the second set, Meta-RaPS EDA and Q are different from the versions of

Meta-RaPS AP and V2; and Meta-RaPS V2 is different from all of the other Meta-RaPS

versions. For the third and largest set, only Meta-RaPS V2 is different from all the other

Meta-RaPS versions.

180

Table 60. Tukey's Test for Time for the Set of 100 Items and 5 Knapsacks

Time
TmITCYHSP

95% Confidence Interval

m AInnrlthm f.n AInnrlthm
Mean

Difference fl-J) Std. Error Sio. Lower Bound UoDer Bound
1 2 -208.99806 176.22823 .759 -695.8120 277.8158

3 105.14770 176.22823 .975 -381.6662 591.9616
4 -548.84768* 176.22823 .019 -1035.6616 -62.0338
5 968.16225" 176.22823 .000 481.3483 1454.9762

2 1 208.99806 176.22823 .759 -277.8158 695.8120
3 314.14576 176.22823 .388 -172.6681 800.9597
4 -339.84962 176.22823 .307 -826.6635 146.9643
5 1177.16031" 176.22823 .000 690.3464 1663.9742

3 1 -105.14770 176.22823 .975 -591.9616 381.6662
2 -314.14576 176.22823 .388 -800.9597 172.6681

4 -653.99538" 176.22823 .003 -1140.8093 -167.1815
5 863.01455" 176.22823 .000 376.2006 1349.8285

4 1 548.84768" 176.22823 .019 62.0338 1035.6616
2 339.84962 176.22823 .307 -146.9643 826.6635
3 653.99538" 176.22823 .003 167.1815 1140.8093
5 1517.00993" 176.22823 .000 1030.1960 2003.8238

5 1 -968.16225" 176.22823 .000 -1454.9762 -481.3483
2 -1177.16031" 176.22823 .000 -1663.9742 -690.3464
3 -863.01455" 176.22823 .000 -1349.8285 -376.2006
4 -1517.00993" 176.22823 .000 -2003.8238 -1030.1960

* The mean difference is significant at the O.OS level.

In the aspect of solution time, the statistical analysis shows that there are

statistically significant differences between the Meta-RaPS versions. On the other hand,

the difference between the proposed algorithms in terms of percentage deviation was

small. These two criteria are not independent of each other and we need to consider both

of the percentage deviation and time simultaneously where the proposed algorithms

require different times to reach these percentage deviations, which are not much different

except for Meta-RaPS Q. This phenomenon shows that the proposed Meta-RaPS versions

employ different mechanisms in reaching these high quality solutions, and thus, it can be

propounded that they are different algorithms.

Table 61. Tukey's Test for Time for the Set of 100 Items and 10 Knapsacks

Time

95% Confide nee Interval

m Alanrlthm
Mean

Difference fl-Jl Std. Error Sid. Lower Bound UDDer Bound
1 2 -333.36614 273.02452 .739 -1087.5907 420.8184

3 388.15719 273.02452 .615 -366.0474 1142.3617

4 784.01010" 273.02452 .037 29.8056 1538.2147

5 2019.88132" 273.02452 .000 1265.6768 2774.0859

2 1 333.38614 273.02452 .739 -420.8184 1087.5907

3 721.54333 273.02452 068 -32.6612 1475.7479

4 1117.39624" 273.02452 .001 363.1917 1871.6008

5 2353.26746" 273.02452 .000 1599.0629 3107.4720

3 1 -388.15719 273.02452 .615 -1142.3617 366.0474

2 -721.54333 273.02452 .068 -1475 7479 32.6612

4 395.85291 273.02452 .597 -358.3516 1150.0575

5 1631.72413" 273.02452 .000 877.5196 2385.9287

4 1 -784.01010" 273.02452 .037 -1538.2147 -29.8056

2 -1117.39624" 273.02452 .001 -1871.6008 -363.1917

3 -395.85291 273.02452 .597 -1150.0575 358.3516

5 1235.87122" 273.02452 .000 481.6667 1990.0758

5 1 -2019.881 32" 273.02452 .000 -2774.0859 -1265.6768

2 -2353.26746" 273.02452 .000 -3107.4720 -1599.0629

3 -1631.72413" 273.02452 .000 -2385.9287 -877.5196
4 -1235.87122" 273.02452 .000 -1990.0758 -481.6667

*. The mean difference Is significant at the 0.05 level.

Table 62. Tukey's Test for Time for the Set of 100 Items and 30 Knapsacks

Time
TUK8VH8P

95% Confidence Interval

m AInnrlthm (. 11 AInnrlthm
Mean

Difference fl-Ji Std. Error Sid. Lower Bound Uooer Bound
1 2 170.82767 583.36805 .998 -1440.6716 1782.3270

3 897.68455 583.36805 .539 -713.8148 2509.1839

4 985.72061 583.36805 .444 -625.7787 2597.2199

5 6043.96004" 583.36805 .000 4432.4607 7655.4594

2 1 -170.82767 583.36805 .998 -1782.3270 1440.6716

3 726 85688 583.36805 .724 -884.6424 2338.3562

4 814.89295 583.36805 .631 -796.6064 2426.3923

5 5873.13237" 583.36805 .000 4261.6331 7484.6317
3 1 -897.68455 583.36805 .539 -2509.1839 713.8148

2 -726.85688 583.36805 .724 -2338.3562 884.6424

4 88.03607 583.36805 1.000 -1523.4632 1699.5354

5 5146.27549" 583.36805 .000 3534.7762 6757.7748

4 1 -985.72061 583.36805 .444 -2597.2199 625.7787

2 -814.89295 583.36805 .631 -2426.3923 796.6064

3 -88.03607 583.36805 1.000 -1699.5354 1523.4632
5 5058.23942" 583.36805 .000 3446.7401 6669.7387

5 1 -6043.96004" 583.36805 .000 -7655.4594 -4432.4607
2 -5873.13237" 583.36805 .000 -7484.6317 -4261.6331
3 -5146.27549" 583.36805 .000 -6757.7748 -3534.7762

4 -5058.23942" 583.36805 .000 -6669.7387 -3446.7401

* The mean difference is significant at the 0.05 level.

182

10.4 Comments on Meta-RaPS Versions

The proposed Meta-RaPS versions created by incorporating different memory and

learning mechanisms, i. e. EDA, Q Learning, PR and Adaptive Parameters, presented

various performance levels in solving 0-1 MKP instances. The proposed algorithms are

distinct and have different advantages and disadvantages over each other. First Meta-

RaPS EDA, could produce high quality results by employing the probabilistic model for

the problem after exploring the search space, dependency relationships between decision

variables, and other properties of the problem landscape. However, the memory matrix

that creates these advantages makes also the algorithm time consuming, in both forming

and updating the memory matrix. Another issue with the memory matrix is how to reach

a converged memory matrix that includes the "right" probabilities. This decision includes

determining the size of memory solution set, which means adding another parameter to

the Meta-RaPS parameters. Besides these factors, generating the memory matrix has

more difficulties when the size of the problem increases. In such cases, the size of

memory matrix should also increase requiring more computer memory and time in

forming and updating the memory matrix. These obstacles might be removed by applying

the appropriate methods such as function approximation methods, clustering and

regression models.

Among the proposed Meta-RaPS versions, the worst outcome was generated by

the version created with Q Learning. However, Meta-RaPS Q is still better than other

approaches in the literature presented in Table 53. The biggest advantage of this approach

is its simplicity to be applied to problems. Meta-RaPS Q shares also the disadvantages of

its memory matrix where forming and updating the memory matrix of Q Learning

183

becomes more difficult in terms of computer memory and solution time as the problem

size increases. Applying the proper methods mentioned in the case of EDA might help

overcome these barriers. To make the memory matrix converge is another problem to

deal with before an instance can be solved as it requires determining the size of memory

solution set, which will add another parameter to Meta-RaPS's parameters. In addition to

these parameters, the Q Learning algorithm has two additional parameters: learning and

discount factors.

The third Meta-RaPS version was created by incorporating the PR approach,

which is different from the Meta-RaPS EDA and Meta-RaPS Q in the way of applying its

memory and learning ability. In the previous versions of Meta-RaPS, the memory matrix

was first generated and trained so that the algorithm can successfully solve the problem

by utilizing the memory matrix. However, in Meta-RaPS PR, the algorithm does not need

a memory matrix, and therefore does not suffer any of these disadvantages presented

earlier. Memory and learning happens by remembering the attributes of best solutions

found in the solution process, and the current solution is evolved to a better solution by

accepting these attributes. This approach does not need any additional parameters, and

thus keeps the simplicity of Meta-RaPS.

While creating the fourth version, Meta-RaPS AP, the big impact of discovering

the relationships between the parameters and the search trajectories on reaching the best

solutions was the main motivation. This approach requires a parameter memory matrix as

in Meta-RaPS EDA and Meta-RaPS Q, however this matrix is independent from the size

of the problem, and only depends on the number of parameters focused on. This fact

184

makes the memory matrix converge quicker, and require less computational efforts than

Meta-RaPS EDA and Meta-RaPS Q.

In Meta-RaPS PR, the very basic form of PR was applied, and the new algorithm

produced very good results compared to other Meta-RaPS versions and other algorithms

in the literature. Even though this approach does not have the disadvantages of the Meta-

RaPS EDA and Q, it still requires high computational time with the increasing the

problem size due to the improvement phase, i.e. due to local search techniques. The

efficiency of PR approach encouraged us to redesign Meta-RaPS so that it can solve even

the largest problems in an acceptable time frame while keeping the quality of its solutions

and its design and implementation simplicity. By removing the improvement phase and

adding a more sophisticated PR approach, the last version was created, Meta-RaPS V2,

and reaching the goal of this dissertation.

As revealed by the experiences in creating the proposed algorithms in the

previous chapters, there are convincing reasons to employ memory and learning

mechanisms in metaheuristics, or intelligent algorithms, especially as the solution

environment is becoming so complex that human beings can no longer understand it.

Even if Meta-RaPS versions presented different performances on solving 0-1 MKP, they

could all show superior performance than other approaches in the literature. This fact

shows that incorporating memory and learning mechanisms into metaheuristics is a good

strategy that makes the algorithms more efficient.

In the optimization area, there are such efficient metaheuristics whose power

comes from their ability to memorize and learn in reaching high quality solutions for

large scale problems. With the ability of learning and memorizing the search history,

185

these algorithms can find good initial starting point(s), and then a local method is

employed to search for better solution from the initial starting point(s) (Panigrahi, et al.,

2011).

In conclusion, it can be declared that implementing memory and learning

mechanisms in a memoryless metaheuristic, like Meta-RaPS, can result in a significant

improvement to the metaheuristic's performance. While performing essential steps of

memory and learning mechanisms, i.e. generating and updating a memory matrix or

reaching the best solution in PR, the new algorithm might require more computational

efforts. However, there is always a cost in creating an intelligent algorithm that can

memorize and learn, which can be thought of as a small cost to pay to reach high quality

solutions.

Intelligence emerges in metaheuristics via memory and learning of algorithms.

Intelligent metaheuristics that can learn and memorize maintain a single candidate

solution or a population of solutions that provide the information acquired by the process,

and the basis for making future decisions. The use of prior knowledge created by the

adapted solutions can sometimes be interesting, innovative, and even competitive with

human expertise (Koza, et al., 2003). Memory and learning abilities are among the main

features that draw the line between human beings' excellence and other beings. The

addition of intelliegence to Meta-RaPS is the main contribution of this dissertation.

186

CHAPTER 11

RESEARCH CONTRIBUTION

This research was inspired by the idea of creating intelligent algorithms that can

learn the structure of optimization problems, memorize the search history and eventually

produce high quality solutions. To reach this objective, different memory and learning

approaches in the literature were presented to be integrated into Meta-RaPS, which is

currently classified as a memoryless metaheuristic. Therefore, the contributions of this

research are gathered around designing and implementing "intelligent" algorithms into

Meta-RaPS by incorporating memory and learning techniques.

The first contribution is the introduction of Estimation of Distribution Algorithms

(EDA) as a stochastic learning approach into Meta-RaPS. After investigating the EDA

applications in the literature, a different but more efficient EDA form for this study's

implementation was embedded into Meta-RaPS EDA. With EDA, the new algorithm

could memorize the solution process by means of its memory matrix and use this

information in making future decisions.

The second contribution is the utilization of a machine learning approach, named

Q Learning. As in the case of EDA, Q Learning was also analyzed to reach its best

performance for our application. This second version of Meta-RaPS with this new Q

Learning form, called Meta-RaPS Q, could understand the structure of problems, and

decide its next best step via a memory matrix to generate high quality solutions.

In the first two contributions, both of the proposed algorithms had separate

memory matrices that should be trained to be able to extract the priorities needed for the

187

solution process by Meta-RaPS. However, in the third contribution, a new Meta-RaPS

version that is intelligent in a very different way was implemented. In this proposed

algorithm, Path Relinking (PR) was integrated into Meta-RaPS as a post-optimization

method. The new Meta-RaPS PR algorithm, could learn the "good" attributes of the best

solutions, and track them to reach better solutions without requiring any memory matrix.

The fourth contribution is made in the parameter tuning area that plays a key role

in metaheuristics' performance. Tuning the parameters of the algorithm to their best

values can be another challenging learning problem. Thefore, in the fourth proposed

algorithm, Meta-RaPS with Adaptive Parameter (AP) has the ability to adaptively tune its

two important parameters by creating a parameter memory matrix. While proceeding,

Meta-RaPS AP could tune adaptively its parameters in each iteration, and with these best

parameter settings the new algorithm could generate high quality solutions.

The fifth and last contribution is redesigning Meta-RaPS into a more "intelligent"

metaheuristic as motivated by the successful memory and learning applications presented

in this research. Although these proposed approches produced promising solutions, they

still suffered from the high computational cost of the solution process. Together with the

facts that most of solution time was consumed by the improvement phase, i.e. the local

search algorithm within Meta-RaPS, and since PR did not require a memory matix and

thus needed relatively lower amount of time, the new Meta-RaPS was redesigned by

removing the improvement phase and integrating a more sophisticated PR approach. The

new design of Meta-RaPS is renamed as Meta-RaPS V2.

188

In summary, the contributions presented in this research show that memory and

learning mechanisms incorporated into a memoryless metaheuristic such as Meta-RaPS

can result in a significant improvement to the metaheuristic's performance.

In these contributions, the memory and learning approaches that were integrated

into Meta-RaPS were successfull at obtaining high quality solutions without affecting the

main principles of Meta-RaPS, and therefore, they all can be conveniently applied in

other population-based algorithms.

189

REFERENCES

Abraham, A. (2004) Meta-Learning Evolutionary Artificial Neural Networks,

Neurocomputing Journal 56 c, pp. 1-38.

Agapie, A. (2010) Estimation of Distribution Algorithms on Non-Separable Problems,

International Journal of Computer Mathematics, Vol. 87, No. 3, pp. 491-508.

Ahmadabadi, M.N. & Asadpour, M. (2002) Expertness Based Cooperative Q-Learning,

IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 32,

No. 1, pp. 66-76.

Ahn, C.W. & Ramakrishna, R.S. (2006) Clustering-Based Probabilistic Model Fitting in

Estimation of Distribution Algorithms, IEICE Trans. Inf. & Syst. Vol. E89-D. No.l,

pp. 381-383.

Ahuja, R.K., Ergun, O., Orlin, J.B. & Punnen A.P. (2002), A Survey of Very Large Scale

Neighborhood Search Techniques, Discrete Applied Mathematics, 123, pp. 75-102.

Al-Salem, A. (2004) Scheduling to Minimize Makespan on Unrelated Parallel Machines

with Sequence Dependent Setup Times, Engineering Journal of the University of

Qatar, Vol, 17, pp. 177-187.

Alabas-Uslub, C. (2008) A Self-Tuning Heuristic for A Multi-Objective Vehicle Routing

Problem, Journal of the Operational Research Society 59, pp. 988-996.

Alabas-Uslub, C. & Dengiz, B. (2011) A Self-Adaptive Local Search Algorithm for the

Classical Vehicle Routing Problem, Expert Systems with Applications, Vol. 38, pp.

8990-8998.

Alpaydin, E. (2004), Introduction to Machine Learning, MIT Press, Cambridge,

Massachusetts, London, England.

Alvarez-Valdes, R., Crespo, E., Tamarit, J.M. & Villa F. (2008) GRASP and Path

Relinking for Project Scheduling under Partially Renewable Resources, European

Journal of Operational Research, Vol. 189, pp. 1153-1170.

Anderson, J.R. (2000) Learning and Memory: An Integrated Approach. John Wiley &

Sons, New York.

Andrade, D.V. & Resende, M.G.C. (2007) GRASP with Evolutionary Path-Relinking,

AT&T Labs Research Technical Report TD-6XPTS7.

Andrecut, M. & Ali, M.K. (2001) Q Learning in the Minority Game, Physical Review E,

Vol. 64, 067103, pp. 1-4.

Anghinolfi, D., Boccalatte, A., Paolucci, M. & Vecchiola, C. (2008) Performance

Evaluation of an Adaptive Ant Colony Optimization Applied to Single Machine

Scheduling, SEAL 2008, Springer-Verlag Berlin Heidelberg, pp. 411-420.

Arcus, A.L. (1966), COMSOAL: A Computer Method Of Sequencing Operations For

Assembly Lines, The International Journal of Production Research, Vol.4, No. 4,

pp. 259-277.

Arin, A., Rabadi, G. & Unal, R. (2011) Comparative Studies on Design of Experiments

for Tuning Parameters in a Genetic Algorithm for a Scheduling Problem,

International Journal of Experimental Design and Process Optimisation, Vol. 2,

No.2, pp. 102-124.

191

Armentano, V.A., Shiguemoto, A.L. & Lekketangen, A. (2011) Tabu search with Path

Relinking for an Integrated Production-Distribution Problem, Computers &

Operations Research, v 38, n 8, pp.1199-209.

Arroyo, J.E.C., Santos, A.G., Silva, F.L.S., & Araujo A. F. (2008) A GRASP with Path

Relinking for the Single Machine Total Weighted Tardiness Problem, 8th

International Conference on Hybrid Intelligent Systems, pp. 726-731.

Balev, S., Yanev, N., Freville, A. & Andonov, R. (2008) A Dynamic Programming Based

Reduction Procedure for the Multidimensional 0-1 Knapsack Problem, European

Journal of Operational Research 186, pp. 63-76.

Baluja, S. & Davies, S. (1997) Using Optimal Dependency-Trees for Combinatorial

Optimization: Learning the Structure of the Search Space, Proceedings of the

International Conference on Machine Learning, pp. 30-38.

Baluja, S., Pomerleau, D., & Jochem, T. (1994) Towards Automated Artificial Evolution

for Computer-Generated Images, Connection Science, pp. 325-354.

Battarra, M., Golden, B.L. & Vigo, D. (2008) Tuning a Parametric Clarke-Wright

Heuristic via a Genetic Algorithm, J Opl Res Soc 59, pp. 1568-1572.

Battarra, M., Oncan, T., Altmel, I.K., Golden, B., Vigo, D. & Phillips E. (2012) An

Evolutionary Approach for Tuning Parametric Esau and Williams Heuristics,

Journal of the Operational Research Society 63, pp. 368-378.

Battiti, R., Brunato, M. & Mascia, F. (2008) Reactive Search and Intelligent

Optimization, Springer, New York, NY.

Battiti, R. & Tecchiolli, G. (1994) The Reactive Tabu Search, ORSA Journal on

Computing, Vol. 6, No. 2, pp. 126-140.

192

Battiti R. & Tecchiolli G. (1995,) Local Search with Memory: Benchmarking RTS, 0R-

Spektrum 17, pp. 67-86.

Bean, J.C. (1994) Genetic Algorithms and Random Keys for Sequencing and

Optimization, ORSA Journal on Computing 6, pp. 154-160.

Beasley, J.E. (1990) OR-Library: Distributing Test Problems by Electronic Mail, Journal

of the Operational Journal Society, 41, pp. 170-181.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

Beausoleil, R.P., Baldoquin, G. & Montejo, R.A. (2008) Multi-Start and Path Relinking

Methods to Deal with Multiobjective Knapsack Problems, Ann Oper Res 157, pp.

105-133.

Belarmino, A. & Laguna, M. (2006) Fine-Tuning of Algorithms Using Fractional

Experimental Designs and Local Search, Operations Research, Vol. 54, No. 1, pp.

99-114.

Bellman, R. (1957) Dynamic Programming, Princeton University Press, Princeton, NJ.

Beni, G. (1988) The Concept of Cellular Robotic System, Proceedings IEEE Int. Symp.

on Intelligent Control, Los Alamitos, CA, pp. 57-62.

Beni, G. & Wang, J. (1989) Swarm Intelligence, Proceedings Seventh Annual Meeting of

the Robotics Society of Japan, pp. 425-428.

Bertsimas, D. & Demir, R. (2002) An Approximate Dynamic Programming Approach to

Multidimensional Knapsack Problem, Management Science, 48(4), pp. 550-565.

Beyer, H.G. & Schwefel, H.P. (2002) Evolution Strategies - A Comprehensive

Introduction, Nat Comput 1, pp. 3-52.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Bhatnagara, S. & Babu, M.K. (2008) New Algorithms of the Q-

Learning Type, Automatica 44, pp. 1111-1119.

Binkley, K.J. & Hagiwara, M. (2007) Applying Self-Adaptive Evolutionary Algorithms to

Two-Dimensional Packing Problems Using A Four Corners' Heuristic, European

Journal of Operational Research 183, pp. 1230-1248.

Birattari, M. (2009) Tuning Metaheuristics: A Machine Learning Perspective, Studies in

Computational Intelligence, Volume 197, Springer-Verlag Berlin Heidelberg.

Blum, C. & Li, X. (2008) Swarm Intelligence in Optimization, in: Blum, C. & Merkle, D.

(eds.) Swarm Intelligence: Introduction and Applications, Springer-Verlag Berlin

Heidelberg.

Bosman, P.A.N. & Grahl, J. (2008) Matching Inductive Search Bias and Problem

Structure in Continuous Estimation-Of-Distribution Algorithms, European Journal

of Operational Research 185, pp. 1246-1264.

Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999) Swarm Intelligence: From Natural to

Artificial Systems, Sante Fe Institute, Studies in the Sciences of Complexity,

Oxford University Press, New York, Oxford.

Bonarini, A., Lazaric, A., Montrone, F. & Restelli, M. (2009) Reinforcement Distribution

in Fuzzy Q-Learning, Fuzzy Sets and Systems 160, pp. 1420-1443.

Bookstein, A., Kulyukin, V.A. & Raita, T. (2002) Generalized Hamming Distance,

Information Retrieval, 5, pp. 353-375.

Boussier, S., Vasquez, M., Vimont, Y., Hanafi, S. & Michelon, P. (2010) A Multi-Level

Search Strategy for The 0-1 Multidimensional Knapsack Problem, Discrete Applied

Mathematics 158, pp. 97-109.

Boyer, V., Elkihel, M. & El Baz, D. (2009) Heuristics for the 0-1 Multidimensional

Knapsack Problem, European Journal of Operational Research 199, pp. 658-664.

Box, G.E.P. & Wilson, K.G. (1951) On the Experimental Attainment of Optimum

Conditions, Journal of the Royal Statistical Society, B, Vol. 13, pp. 1-45.

Box, G.E.P., Hunter, W.G. & Hunter, J.S. (1978) Statistics for Experimenters: An

Introduction to Design, Data Analysis, and Model Building, John Wiley & Sons.

Box, J.M. & Drapper, N.R. (1974) On Minimum Point Second Order Designs,

Technometrics, 16, pp. 613-616.

Bozejko, W. (2010) Parallel Path Relinking Method for the Single Machine Total

Weighted Tardiness Problem with Sequence-Dependent Setups, Journal of

Intelligent Manufacturing, Vol. 21, No. 6, pp. 777-785.

Cail, X., Sowmya, A. & Trinder, J. (2006) Learning Parameter Tuning for Object

Extraction, in: Narayanan, et al. (eds.) ACCV 2006, LNCS 3851, pp. 868-877,

Springer-Verlag Berlin Heidelberg.

Cairon, P.V. & Dorigo, M. (1997) Training and Delayed Reinforcements in Q-Learning

Agents, International Journal of Intelligent Systems, Vol. 12, pp. 695-724.

Castellani, U., Fusiello A., Gherardi, R. & Murino, V. (2007) Automatic Selection of

MRF Control Parameters by Reactive Tabu Search, Image and Vision Computing

25, pp. 1824-1832.

Castro, D. D. & Mannor, S. (2010) Adaptive Bases for Q-Learning, 49th IEEE

Conference on Decision and Control, Atlanta, GA, USA.

Chance, P. (2008) Learning and Behavior: Active Learning, Belmont, CA.

Chandran, B, Golden, B.L. & Wasil, E. (2003) A Computational Study of Three Demon

Algorithm Variants for Solving the Traveling Salesman Problem, in: Bhargava,

H.K. (ed.) Computational Modeling and Problem Solving in the Networked World,

Kluwer Academic Publisher: NY, pp. 155-175.

Chen, A., Donovan, G., Sowmya, A. & Trinder J. (2002) Inductive Clustering: Automatic

Low Level Segmentation in High Resolution Images, in: ISPRS Photogrammet,

Comput. Vision Volume A., Graz, Austria.

Chen, C., Li, H.-X. & Dong, D. (2008) Hybrid Control for Robot Navigation - A

Hierarchical Q-Learning Algorithm, IEEE Robotics & Automation Magazine,

June, pp. 37-47.

Chen, S.-H., Chen, M.-C., Chang, P.-C., Zhang, Q. & Chen, Y.-M. (2010) Guidelines for

Developing Effective Estimation of Distribution Algorithms in Solving Single

Machine Scheduling Problems, Expert Systems with Applications, Vol. 37, pp.

6441-6451

Chen, T., Tang, K., Chen, G. & Yao, X. (2010) Analysis of Computational Time of

Simple Estimation of Distribution Algorithms, IEEE Transactions on Evolutionary

Computation, Vol. 14, No. 1, pp. 1-22.

Chiang, W. & Russell, R.A. (1997) A Reactive Tabu Search Metaheuristic for the Vehicle

Routing Problem with Time Windows, University of Tulsa, INFORMS Journal on

Computing, Vol.9, No.4, pp. 417-430.

196

Chiang, C.-W., Huang, Y.-Q., Lu, G.-Q. & Lin, S.-S. (2011) Ant-inspired Search

Techniques for Solving the Zero-one Knapsack Problem with Multiple Constraints,

International Journal of Advancements in Computing Technology, Volume 3,

Number 4, pp. 242-255.

Choi, J., Realff, M.J. & Lee, J.H. (2007) A Q-Learning-Based Method Applied to

Stochastic Resource Constrained Project Scheduling with New Project Arrivals,

Int. J. Robust and Nonlinear Control, 17, pp. 1214-1231.

Chu, P.C. & Beasley, J.E. (1998) A Genetic Algorithm for the Multidimensional

Knapsack Problem, Journal of Heuristics, Vol. 4, pp. 63-86.

Clausen, C. & Wechsler, H. (2000) Quad-Q-Learning, IEEE Transactions on Neural

Networks, Vol. 11, No. 2, pp. 279-294.

Cleary, R. & O'Neill, M. (2005) An Attribute Grammar Decoder for the 01

Multiconstrained Knapsack Problem, LNCS 3448, pp. 34-45.

Cordeau, J.F., Gendreau, M., Laporte, G., Potvin, J.Y. & Semet, F. (2002) A Guide to

Vehicle Routing Heuristics, Journal of the Operational Research Society 53, pp.

512-522.

Cotta, C. & Troya, J.M. (1998) A Hybrid Genetic Algorithm for the 0-1 Multiple

Knapsack Problem, in: Artificial NN and GAs, Vol. 3. Springer, Heidelberg, pp

251-255.

Dammeyer, F. & Voss, S. (1993) Dynamic Tabu List Management Using the Reverse

Elimination Method, Annals of Operations Research, Vol. 41, pp. 31-46.

Daniel, C. (1994) Factorial One-Factor-at-a-Time Experiments, The American

Statistician, Vol. 48, No. 2, pp. 132-135.

De Bonet, J.S., Isbell, C.L. & Viola, P. (1997) MIMIC: Finding Optima by Estimating

Probability Densities, Advances in Neural Information Processing Systems, Vol. 9,

pp. 424-431.

De Jong, K. (2007) Parameter Setting in EAs: A 30 Year Perspective, in: Parameter

Setting in Evolutionary Algorithms, Studies in Computational Intelligence,

Springer, pp. 1-18.

Delorme, X., Gandibleux, X. & Rodriguez, J. (2004) GRASP for Set Packing Problems,

European Journal of Operational Research, Vol. 153, pp. 564-580.

Deneubourg, J.-L., Goss, S., Franks, N.R. & Pasteels, J.M. (1989) The Blind Leading the

Blind: Modeling Chemically Mediated Army Ant Raid Patterns, J. Insect

Behav.,Vol. 2, pp. 719-725

Deng, Y. & Bard, J.F. (2011) A Reactive GRASP with Path Relinking for Capacitated

Clustering, J Heuristics, Vol. 17, pp. 119-152.

DePuy, G.W., Moraga, R.J. & Whitehouse, G.E. (2005) Meta-RaPS: A Simple and

Effective Approach for Solving the Traveling Salesman Problem, Transportation

Research Part E: Logistics and Transportation Review, Vol. 41, No. 2, pp. 115-130.

DePuy, G.W. & Whitehouse, G.E. (2000) Applying the COMSOAL Computer Heuristic

to the Constrained Resource Allocation Problem, Computers & Industrial

Engineering, Vol. 38, pp. 413-422.

DePuy, G.W. & Whitehouse, G.E. (2001) A Simple and Effective Heuristic for the

Multiple Resource Allocation Problem, International Journal of Production

Research, Vol. 32, No. 4, pp. 24-31.

198

DePuy, G.W. & Whitehouse, G.E. (2001) A Simple and Effective Heuristic for the

Resource Constrained Project Scheduling Problem, International Journal of

Production Research, Vol. 39, No. 14, pp. 3275-3287.

DePuy, G.W., Whitehouse, G.E. & Moraga, R.J. (2001) Meta-RaPS: A Simple and

Efficient Approach for Solving Combinatorial Problems, 29th International

Conference on Computers and Industrial Engineering, November 1-3, Montreal,

Canada, pp. 644-649.

Ding, N., Zhou, S.D. & Sun, Z.Q. (2008) Histogram-Based Estimation of Distribution

Algorithm: A Competent Method for Continuous Optimization, Journal of

Computer Science and Technology, Vol. 23, No. 1, pp. 35-43.

Dorigo, M. (1992) Optimization, Learning and Natural Algorithms, Ph.D. Dissertation,

Politecnico di Milano, Italy.

Dorigo, M. & Stiitzle T. (2004) Ant Colony Optimization, MIT Press, Massachusetts.

Dreo, J., Aumasson, J.-P., Tfaili, W. & Siarry, P. (2007) Adaptive Learning Search, A

New Tool to Help Comprehending Metaheuristics, International Journal on

Artificial Intelligence Tools, Vol. 16, No. 3.

Dr6o, J., P6trowski, A., Siarry, P. & Taillard, E. (2006) Metaheuristics for Hard

Optimization, Springer, Berlin, Heidelberg.

Drexl, A. (1988) A Simulating Annealing Approach to Multiconstraint Zero-One

Knapsack Problem, Computing, Vol. 40, pp. 1-8.

Duarte, A., Marti, R. & Gortazar, F. (2011) Path Relinking for Large-Scale Global

Optimization, Soft Computing, Vol. 15, No. 11, pp. 2257-2273.

199

Eiben, A.E., Hinterding, R., & Michalewicz, Z. (1999) Parameter Control in

Evolutionary Algorithms, IEEE Transactions on Evolutionary Computation, Vol. 3,

No. 2, pp. 124-141.

Eiben, A.E. & Smith, J.E. (2003) Introduction to Evolutionary Computing, Springer.

El-Fallahi, A., Marti, R. & Lasdon, L. (2006) Path Relinking and GRG for Artificial

Neural Networks, European Journal of Operational Research, Vol. 169, pp. 508-

519.

Engelbrecht, A.P. (2007) Computational Intelligence: An Introduction, John Wiley &

Sons, second edition.

Er, M.J. & Deng, C. (2004) Online Tuning of Fuzzy Inference Systems Using Dynamic

Fuzzy Q-Learning, IEEE Transactions on Systems, Man, and Cybernetics-Part B:

Cybernetics, Vol. 34, No. 3, pp. 1478-1489.

Favuzza, S., Graditi, G. & Sanseverino, E.R. (2006) Adaptive and Dynamic Ant Colony

Search Algorithm for Optimal Distribution Systems Reinforcement Strategy,

Applied Intelligence, Vol. 24, pp. 31-42.

Festa, P. & Resende, M.G.C. (2011) GRASP: Basic Components and Enhancements,

Telecommun Syst, Vol. 46, pp. 253-271.

Feo, T.A. & Resende, M.G.C. (1989) A Probabilistic Heuristic for a Computationally

Difficult Set Covering Problem, Operations Research Letters, Vol. 8, pp. 67-71.

Figlah, N., Ozkale, C., Engin, O. & Figlalt, A. (2009) Investigation of Ant System

Parameter Interactions by Using Design of Experiments for Job-Shop Scheduling

Problems, Computers & Industrial Engineering, Vol. 56, pp. 538-559.

Fleszar, K. & Hindi, K.S. (2009) Fast, Effective Heuristics for the 0-1 Multi-Dimensional

Knapsack Problem, Computers & Operations Research, Vol. 36, pp. 1602-1607.

Fogel, D.B. (1995) Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence, IEEE Press, Piscataway, NJ.

Fogel, D.B., Fogel, L.J. & Atma, J.W. (1991) Meta-Evolutionary Programming, in:

Proceedings of 25th Conference on Signals, Systems & Computers, pp. 540-545.

Fogel, L.J., Owens, A. J. & Walsh, M.J. (1966) Artificial Intelligence through Simulated

Evolution, Wiley.

Fogel, L.J. (1962) Toward Inductive Inference Automata, in Proceedings of the

International Federation for Information Processing Congress, Munich, pp. 395-

399.

Freville, A. (2004) The Multidimensional 0-1 Knapsack Problem: An Overview,

European Journal of Operational Research, Vol. 155, pp. 1-21.

Freville, A. & Hanafi S. (1998) An Efficient Tabu Search Approach for the 0-1

Multidimensional Knapsack Problem, European Journal of Operational Research,

Vol. 106, pp. 659-675.

Freville, A. & Hanafi, S. (2005) The Multidimensional 0-1 Knapsack Problem - Bounds

and Computational Aspects, Ann. Oper. Res., Vol. 139, pp. 195-227.

Freville, A. & Plateau, G. (1990) Hard 0-1 Multiknapsack Test Problems for Size

Reduction Methods, Investigation Operativa, Vol. 1, pp. 251-270.

Freville, A. & Plateau, G. (1994) An Efficient Preprocessing Procedure for the

Multidimensional 0-1 Knapsack Problem, Discrete Applied Mathematics, Vol. 49,

pp. 189-212.

Fuchida, T., Aung, K.T. & Sakuragi, A. (2010) A Study of Q-Learning Considering

Negative Rewards, Artif. Life Robotics, Vol. 15, pp. 351-354.

Gabrel, V., Knippel, A. & Minoux, M. (1999) Exact Solutions of Multicommodity

Network Optimization Problems with General Step Cost Functions, Oper. Res.

Lett., Vol. 25, pp. 15-23.

Gallardo, J.E., Cotta, C. & Fernandez, A.J. (2007) On the Hybridization of Memetic

Algorithms With Branch-and-Bound Techniques, IEEE Transactions on Systems,

Man, and Cybernetics-Part B: Cybernetics, Vol. 37, No. 1, pp. 77-83.

Gallardom J.E., Cottam C., & Fernandez, A.J. (2009) Exact, Metaheuristic, and Hybrid

Approaches to Multidimensional Knapsack Problems: Optimization Techniques for

Solving Complex Problems, John Wiley & Sons, Hoboken, New Jersey.

Gendreau, M. & Potvin, J.-Y. (2005) Tabu Search, in: Burke, E.K. & Kendall, G. (eds.)

Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques, Springer, New York, NY.

Gendreau, M. & Potvin, J.-Y. (2007) Metaheuristics: A Canadian Perspective,

CIRRELT-2007-60, Canada.

Gao, Y. & Culberson, J. (2005) Space Complexity of Estimation of Distribution

Algorithms, Evolutionary Computation, Vol. 13, No. 1, pp. 125-143.

Garcia, C. & Rabadi, G. (2011) A Meta-RaPS Algorithm for Spatial Scheduling with

Release Times, Int. J. Planning and Scheduling, Vol. 1, Nos. 1/2, pp. 19-31.

Garey, M.R. & Johnson, D. J. (1979) Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, San Francisco.

Gavish, B. & Pirkul, H. (1982) Allocation of Databases and Processors, in: Akola, J.

(ed.) A Distributed Data Processing, Management of Distributed Data Processing,

North-Holland, Amsterdam, pp. 215-231.

Gavish, B. & Pirkul, H. (1985) Efficient Algorithms for Solving Multi-Constraint Zero-

One Knapsack Problems to Optimality, Mathematical Programming, Vol. 31, pp.

78-105.

Gilmore, P. & Gomory, R. (1966) The Theory and Computation Of Knapsack Functions,

Operations Research, Vol. 14, pp. 1045-1074.

Glover, F. (1977) Heuristics for Integer Programming Using Surrogate Constraints,

Decision Sciences, Vol. 8, pp. 156-166.

Glover, F. (1989) Tabu Search: Part I, ORSA Journal on Computing, Vol. 1, No. 3, pp.

190-206.

Glover, F. (1996) Tabu Search and Adaptive Memory Programing - Advances,

Applications and Challenges, in: Barr, R.S., Helgason, R.V. & Kennington, J.L.

(eds.) Interfaces in Computer Science and Operations Research, Kluwer.

Glover, F. & Kochenberger, G. (1996) Critical Event Tabu Search for Multidimentional

Knapsack Problems, in: Osman, I.H. & Kelly, J.P. (eds.) Meta-heuristics: Theory

and applications, Dordecht Kluwer Academics Publishers, pp. 407-427.

Glover, F. & Laguna, M. (1993) Tabu Search, in: Reeves, C.R. (ed.) Modern Heuristic

Techniques for Combinatorial Problems, Blackwell Publishing, Oxford, pp. 70-150.

Glover ,F. & Laguna, M. (1997) Tabu Search, Kluwer Academic Publishers, Boston.

Glover, F., Laguna, M. & Marti, R. (2000) Fundamentals of Scatter Search and Path

Relinking, Control and Cybernetics, Vol. 29, No. 3, pp. 653-684.

Glover, F., Laguna, M. & Marti, R. (2003) Scatter Search and Path Linking, in: Glover F.

& Kochenberger, G.A. (eds.) Handbook of Metaheuristics, Kluwer Academic

Publishers.

Goldberg, D.E. (2002) The Design of Innovation: Lessons from and for Competent

Genetic Algorithms, Kluwer.

Golden, B.L., Pepper, J. & Vossen, T. (1998) Using Genetic Algorithms for Setting

Parameter Values in Heuristic Search, in: Dagli, C., Akay, A., Buczak, M., Ersoy,

O. & Fernandez, B. (eds.) Intelligent Engineering System through Artificial Neural

Networks. Vol. 8, ASME Press: NY, pp 239-245.

Gomes, F.C., Pardalos, P., Oliveira, C.S. & Resende, M.G.C.(2001) Reactive GRASP

with Path Relinking for Channel Assignment in Mobile Phone Networks,

Proceedings of the 5th International Workshop on Discrete Algorithms and Methods

for Mobile Computing and Communications, pp. 60-67.

Gosavi, A (2009) Reinforcement Learning: A Tutorial Survey and Recent Advances,

INFORMS Journal on Computing, Vol. 21, No. 2, pp. 178-192.

Gosavi, A (2009) On Step Sizes, Stochastic Shortest Paths, and Survival Probabilities in

Reinforcement Learning, Conference Proceedings of the Winter Simulation

Conference.

Gong, Q., Zhou, Y. & Luo, Q. (2011) Hybrid Artificial Glowworm Swarm Optimization

Algorithm for Solving Multi-dimensional Knapsack Problem, Procedia Engineering

Vol. 15, pp. 2880-2884.

Grahl, J. (2007) Estimation of Distribution Algorithms in Logistics: Analysis, Design, and

Application, Ph.D. Dissertation, Mannheim University, Dortmund.

Grasse, P.-P. (1984) Termitologia, Tome II, Fondation des Societes, Construction, Paris,

Masson.

Grasse, P.-P. (1959) La Reconstruction du Nid et les Coordinations Inter-Individuelles

chez Bellicositerm, et Natalensis et Cubitermes sp, La theorie de la Stigmergie:

Essai ^interpretation du Comportement des Termites Constructeurs, Insect. Soc.,

Vol, 6, pp. 41-80.

Guo, M., Liu, Y. & Malec, J. (2004) A New Q-Learning Algorithm Based on the

Metropolis Criterion, IEEE Transactions on Systems, Man, and Cybernetics-Part

B: Cybernetics, Vol. 34, No. 5, pp. 214-2143.

Hackwood, S. & Beni, G. (1992) Self-Organization of Sensors for Swarm Intelligence, in

Proceedings IEEE 1992 International Conference on Robotics and Automation,

IEEE Computer Society Press, Los Alamitos, CA, pp. 819-829.

Hagen, T.S. & Krose, B. (2003) Neural Q-Learning, Neural Comput & Applic, Vol. 12,

pp. 81-88.

Haken, H. (1983) Synergetics, Berlin, Springer-Verlag.

Handa, H. (2007) The Effectiveness of Mutation Operation in the Case of Estimation of

Distribution Algorithms, BioSystems, Vol. 87, pp. 243-251.

Hanafi, S. & Freville, A. (1998) An Efficient Tabu Search Approach for the 0-1

Multidimensional Knapsack Problem, Eur. J. Oper. Res., Vol. 106, pp. 659-675.

Hanafi, S., Freville, A., & El Abdellaqui, A. (1996) Comparison of Heuristics for the 0-1

Multidimensional Knapsack Problem, in: Osman, I.H. & Kelly, J.P. (eds.) Meta-

heuristics: Theory and Applications, Dordecht: Kluwer Academics Publishers, pp.

449-465.

Harik, G.R., Lobo, F.G. & Goldberg, D.E. (1997) The Compact Genetic Algorithm,

IlliGAL Report No. 97006, University of Illinois at Urbana-Champaign, Illinois

Genetic Algorithms Laboratory, Urbana, IL.

Haul, C. & Voss, S. (1997) Using Surrogate Constraints in Genetic Algorithms for

Solving Multidimensional Knapsack Problems, in: Woodruff, D.L. (ed.) Advances

in Computational and Stochastic Optimization, Logic Programming, and Heuristic

Search, Interfaces in Computer Science and Operation Research, Dordecht Kluwer

Academic Publishers, pp. 235-251.

Hauschild, M. & Pelikan, M. (2011) An Introduction and Survey of Estimation of

Distribution Algorithms, Swarm and Evolutionary Computation, Vol. 1, pp. 111-

128.

Hembecker, F., Lopes, H.S. & Godoy, Jr.W. (2007) Particle Swarm Optimization for the

Multidimensional Knapsack Problem, LNCS Adapt Nat Comput Algorithms, Vol.

4431, pp. 358-365.

Hepdogan, S., Moraga, R.J., DePuy, G.W. & Whitehouse, G.E. (2008) Nonparametric

Comparison of Two Dynamic Parameter Setting Methods in a Meta-Heuristic

Approach, Systemics, Cybernetics and Informatics, Vol. 5, No. 5, pp. 46-52.

Hepdogan, S., Moraga, R.J., DePuy, G.W. & Whitehouse, G.E. (2009) A Meta-RaPS For

The Early/Tardy Single Machine Scheduling Problem, International Journal of

Production Research, Vol. 47, No. 7, pp. 1717-1732.

He, Y., Qiu, Y. & Liu, G. (2006) A Tabu Search Approach with Double Tabu-List for

Multidimensional Knapsack Problems, IJCSNS International Journal of Computer

Science and Network Security, Vol.6, No.5A, pp. 87-92.

Hill, R.R., Cho, Y.K. & Moore, J.T. (2012) Problem Reduction Heuristic for the 0-1

Multidimensional Knapsack Problem, Computers & Operations Research, Vol. 39,

pp. 19-26.

Hirashima, Y., Iiguni, Y., Inoue, A. & Masuda, S. (1999) Q-Leaming Algorithm Using

an Adaptive-Sized Q-Table, Proceedings of the 38th Conference on Decision &

Control, Phoenix, Arizona USA.

Holland, J.H. (1962) Outline for a Logical Theory of Adaptive Systems, Journal of the

ACM, Vol. 3, pp. 297-314.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, MI.

Hongcheng, L., Liang, G. & Quanke, P. (2011) A Hybrid Particle Swarm Optimization

with Estimation of Distribution Algorithm for Solving Permutation Flowshop

Scheduling Problem, Expert Systems with Applications, Vol. 38, No. 4, pp. 4348-

60.

Huang, X., Jia, P. & Liu, B. (2010) Controlling Chaos by an Improved Estimation of

Distribution Algorithm, Mathematical and Computational Applications, Vol. 15,

No. 5 SPEC.ISSUE, pp. 866-871.

Hwang, K.-S., Lin, H.-Y., Hsu, Y.-P. & Yu, H.-H. (2011) Self-Organizing State

Aggregation for Architecture Design of Q-Learning, Information Sciences, Vol.

181, pp. 2813-2822

Ibaraki, T., Nonobe, K. & Yagiura, M. (2005) Metaheuristics: Progress as Real Problem

Solvers, Springer Science+Business Media, Inc., USA.

207

Ide, A. & Yasuda, K. (2005) A Basic Study of Adaptive Particle Swarm Optimization,

Electrical Engineering in Japan, Vol. 151, No. 3, pp. 41-49.

Jaakkola, T., Jordan, M.I. & Singh, S.P. (1994) On the convergence of Stochastic

Iterative Dynamic Programming Algorithms, Neural Computation, Vol. 6, pp.

1185-1201.

Jaeggi, D.M., Parks, G.T., Kipouros, T. & Clarkson, P.J. (2008) The Development of a

Multi-Objective Tabu Search Algorithm for Continuous Optimisation Problems,

European Journal of Operational Research, Vol. 185, No. 3, pp.1192-212.

James, R.J.W. & Nakagama, Y. (2005) Enumeration Methods for Repeatedly Solving

Multidimensional Knapsack Sub-problems, IEICE Trans. Inf.&Syst, Vol. E88-D,

pp. 2329-2340.

Jarboui, B., Eddaly, M. & Siarry, P. (2009) An Estimation of Distribution Algorithm for

Minimizing the Total Flowtime in Permutation Flowshop Scheduling Problems,

Computers & Operations Research, Vol. 36, No. 9, pp. 2638-2646.

Jaszkiewicz, A. & Zielniewicz, P. (2009) Pareto Memetic Algorithm with Path Relinking

for Bi-Objective Traveling Salesperson Problem, European Journal of Operational

Research, Vol. 193, No. 3, pp. 885-890.

Jeon, S.M., Kim, K.H. & Kopfer, H. (2011) Routing Automated Guided Vehicles in

Container Terminals through the Q-Learning Technique, Logist. Res., Vol. 3, pp.

19-27.

Jiang, S., Ziver, A.K., Carter, J.N., Pain, C.C., Goddard, A. J. H., Franklin, S. & Phillips,

H.J. (2006) Estimation of Distribution Algorithms for Nuclear Reactor Fuel

Management Optimisation, Annals of Nuclear Energy, Vol. 33, pp. 1039-1057.

Juang, C.-F. & Lu, C.-M. (2009) Ant Colony Optimization Incorporated with Fuzzy Q-

Learning for Reinforcement Fuzzy Control, IEEE Transactions on Systems, Man,

and Cybernetics-Part A: Systems and Humans, Vol. 39, No. 3, pp. 597-608.

J'unior, F.C.D.L., Melo, J.D.D. & Neto, A.D.D. (2008) Using the Q-learning Algorithm

in the Constructive Phase of the GRASP and Reactive GRASP Metaheuristics,

International Joint Conference on Neural Networks (IJCNN 2008), pp. 4169-4176.

Kaelbling, L.P., Littman, M.L. & Moore, A.W. (1996) Reinforcement Learning: A

Survey, Journal of Artificial Intelligence Research, Vol. 4, pp. 237-285.

Kamali, K., Jiang, L.J. & Yen, J. (2007) Q-Learning and Genetic Algorithms to Improve

the Efficiency of Weight Adjustments for Optimal Control and Design Problems,

Transactions of the ASME, Vol. 7, December, pp. 302-308.

Kaplan, S., Arin, A. & Rabadi, G. (2010) Meta-RaPS Algorithm for the Aerial Refueling

Scheduling Problem, International Conference of Modeling and Simulation

(MODSIM), Virginia, USA.

Kaplan, S. & Rabadi, G. (in press) A Simulated Annealing and Meta-RaPS Algorithms for

the Aerial Refueling Scheduling Problem with Due Date-to-Deadline Windows and

Release Time, Engineering Optimization.

Kato, K. & Sakawa, M. (2003) Genetic Algorithms with Decomposition Procedures for

Multidimensional 0-1 Knapsack Problems with Block Angular Structures, IEEE

Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, Vol. 33, No.

3, pp. 410-419.

Kazdin, A.E. (2000) Encyclopedia of Psychology, Oxford University Press, USA.

Kellerer, H., Pferschy, U. & Pisinger, D. (2004) Knapsack Problems, Springer.

Kennedy, J., Eberhart, R.C. & Shi, Y. (2001) Swarm Intelligence: Collective, Adaptive,

Morgan Kaufmann, San Francisco, CA.

Kesner, R.P. (1998) Neurobiology of Learning and Memory, in: Martinez, Jr.J.L. &

Kesner, R.P. (eds.) Neurobiological Views of Memory, Academic Press, California.

Khuri, S., Back, T. & Heitkotter, J. (199A) The Zero/One Multiple Knapsack Problem

and Genetic Algorithms, Proceedings of the ACMsymposium of Applied Comp, pp.

188-193.

Kivijarvi, J., Franti, P. & Nevalainen, O. (2003) Self-Adaptive Genetic Algorithm for

Clustering, Journal of Heuristics, Vol. 9, pp. 113-129.

Klopf, A.H. (1972) Brain Function and Adaptive Systems - A Heterostatic Theory,

Technical Report AFCRL - 72 - 0164, Air Force Cambridge Research

Laboratories, Bedford, MA.

Kong, M. (2007) A New Ant Colony Optimization Algorithm for the Multidimensional

Knapsack Problem, Computers and Operations Research,

doi: 10.1016/j .cor.2006.12.029.

Koza, J.R. (1992) Genetic Programming, MIT Press, Cambridge, MA.

Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J. & Lanza, G. (2003)

Genetic Programming IV: Routine Human-Competitive Machine Intelligence,

Springer.

Kramer, O. (2008) Self-Adaptive Heuristics for Evolutionary Computation, Studies in

Computational Intelligence, Vol. 147, Springer-Verlag Berlin Heidelberg.

Kramer, O. (2010) Evolutionary Self-Adaptation: A Survey of Operators and Strategy

Parameters, Evol. Intel., Vol. 3, pp. 51-65.

Kramer, 0., Gloger, B. & Goebels, A. (2007) An Experimental Analysis of Evolution

Strategies and Particle Swarm Optimisers using Design of Experiments,

GECCO'07, pp. 674-481.

Laguna, M. & Marti, R. (1999) GRASP And Path Relinking for the 2-Layer Straight Line

Crossing Minimization, INFORMS Journal on Computing, Vol. 11, pp. 44-52.

Lan, G. & DePuy, G.W. (2006) On the Effectiveness of Incorporating Randomness and

Memory into A Multi-Start Metaheuristic with Application to the Set Covering

Problem, Computers & Industrial Engineering, Vol. 51, pp. 362-374.

Lan, G., DePuy, G.W. & Whitehouse, G.E. (2007) An Effective and Simple Heuristic for

the Set Covering Problem, European Journal of Operational Research, Vol. 176, pp.

1387-1403

Langdon, W. B. & Poli, R. (2002) Foundations of Genetic Programming, Springer,

Berlin.

Langlois, M. & Sloan, R.H. (2010) Reinforcement Learning via Approximation of the Q-

Function, Journal of Experimental & Theoretical Artificial Intelligence, Vol. 22,

No. 3, pp. 219-235.

Laporte, G., Gendreau M., Potvin J.Y. & Semet F. (2000) Classical and Modern

Heuristics for the Vehicle Routing Problem, Int Trans Opl Res, Vol. 1, pp. 285-300.

Lee, J.W., Park, J., O, J., Lee, J. & Hong, E. (2007) A Multiagent Approach to Q-

Learning for Daily Stock Trading, IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, Vol. 37, No. 6, pp. 864-877.

211

Li, G., Li, M., Azarm, S., A1 Hashimi, S., A1 Ameri, T. & A1 Qasas, N. (2009) Improving

Multi-Objective Genetic Algorithms with Adaptive Design of Experiments and

Online Metamodeling, Struct Multidisc Optim, Vol. 37, pp. 447-461.

Lin, L., Xie, H., Zhang, D. & Shen, L. (2010) Supervised Neural Qlearning based

Motion Control for Bionic Underwater Robots, Journal of Bionic Engineering, Vol.

7 Suppl., pp. 177-184.

Lima, F.C., Lobo, G.F., Pelikan, M. & Goldberg, D.E. (2011) Model Accuracy in the

Bayesian Optimization Algorithm, Soft Comput, Vol. 15, pp. 1351-1371.

Lima, F.C., Melo, J.D. & Neto, A.D.D. (2007) Proposal for Improvement of GRASP

Metaheuristic and Genetic Algorithm Using the Q-Learning Algorithm, Seventh

International Conference on Intelligent Systems Design and Applications, IEEE

Computer Society, pp. 465-470.

Liu, Y.-F. & Liu, S.-Y. (2011) A Hybrid Discrete Artificial Bee Colony Algorithm for

Permutation Flowshop Scheduling Problem, Appl. Soft Comput. J.,

doi: 10.1016/j .asoc.2011.10.024

Lokketangen, A., & Glover, F. (1998) Solving Zero-One Mixed Integer Programming

Problems Using Tabu Search, European Journal of Operations Research, Vol. 106,

pp. 624-658.

Lorie, J.H. & Savage, L.J. (1955) Three Problems in Capital Rationing, J. Bus., Vol. 28,

pp. 229-239.

Lozano, J.A., Larrafiaga, P., Inz, I. & Bengoetxea, E. (2006) Evolutionary Computation:

Towards a New Advances in the Estimation of Distribution Algorithms, Springer-

Verlag Berlin Heidelberg.

212

Magazine, M.J. & Oguz, O. (1984) A Heuristic Algorithm for the Multidimensional Zero-

One Knapsack Problem, European Journal of Operational Research, Vol. 16, pp.

319-326.

Manne, A.S. & Markowitz, H.M. (1957) On the Solution of Discrete Programming

Problems, Econometrica, Vol. 25, pp. 84-110.

Martello, S. & Toth, P. (1990) Knapsack Problems: Algorithms and Computer

Implementations, John Wiley & Sons, New York

Martello, S., Pisinger, D. & Toth, P. (1999) Dynamic Programming and Strong Bounds

for the 0-1 Knapsack Problem, Management Science, Vol. 45, pp. 414-424.

Martello, S., Pisinger, D. & Toth, P. (2000) New Trends in Exact Algorithms for the 0-1

Knapsack Problem, European Journal of Operational Research, Vol.123, No.2, pp.

325-332.

Martello, S. & Toth, P. (1988) A New Algorithm for the 0-1 Knapsack Problem,

Management Science, Vol. 34, pp. 633-644.

Mateus, G.R., Resende, M.G.C. & Silv,a R.M.A. (2011) GRASP with Path-Relinking for

the Generalized Quadratic Assignment Problem, Journal of Heuristics, Vol. 17, No.

5, pp. 527-565.

Maoguo, G., Licheng, J., Wenping, M. & Shuiping, G. (2007) Solving Multidimensional

Knapsack Problems By An Immune-Inspired Algorithm, Evolutionary Computation,

CEC 2007, pp. 3385-3391.

Martello, S. & Toth, P. (1990) Knapsack problems: Algorithms and Computer

Implementations, John Wiley & Sons, Chichester, England.

Marti, L., Garca, J., Berlanga, A., Coello, C.A. & Molina, J.M. (2011) MB-GNG:

Addressing Drawbacks in Multi-Objective Optimization Estimation of Distribution

Algorithms, Operations Research Letters, Vol. 39, No. 2, pp. 150-154.

Marti, R., Montes, F. & El-Fallahi, A. (2005) Approximating Unknown Mappings: An

Experimental Evaluation, Journal of Heuristics, Vol. 11, pp. 219-232.

Meier, H., Christofides, N. & Saikin, G. (2001) Capital Budgeting Under Uncertainty -

An Integrated Approach Using Contingent Claims Analysis and Integer

Programming, Oper. Res., Vol. 49, pp. 196-206.

Mercer, R.E. & Sampson, J.R. (1978) Adaptive Search Using A Reproductive Metaplan,

Kybernetes, Vol. 7, pp. 215-228.

Merkle, D. & Middendorf, M. (2005) Swarm Intelligence, in: Burke, E.K. & Kendall, G.

(eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision

Support Techniques, Springer, New York, NY.

Milldn, J.D.R., Posenato D. & Dedieu E. (2002) Continuous-Action Q-Learning, Machine

Learning, Vol. 49, pp. 247-265,

Miquelez, T., Bengoetxea, E., Mendiburu, A. & Larrafiaga, P. (2007) Combining

Bayesian Classfiers and Estimation of Distribution Algorithms for Optimization in

Continuous Domains, Connection Science, Vol. 19, No. 4, pp. 297-319.

Mitchell, T.M. (1997) Machine Learning, McGraw-Hill, New York

Monekosso, N. & Remagnino, P. (2004) The Analysis and Performance Evaluation of

the Pheromone-Q-Learning Algorithm, Expert Systems, Vol. 21, No. 2, pp. 80-91.

Montgomery, D.C. & Runger, G.C. (2003), Applied Statistics Applied Statistics for

Engineers, Third Edition, John Wiley & Sons, Inc., New York, NY.

214

Moraga, R.J. (2002) Meta-RaPS: An Effective Solution Approach for Combinatorial

Problems, Ph.D. Dissertation, University of Central Florida, Orlando, FL.

Moraga, R.J. (2009) Meta-RaPS: Optimization Methods Class Notes, Northern Illinois

University, IL.

Moraga, R.J., DePuy G.W. & Whitehouse G.E. (2005) Meta-RaPS Approach For The 0-1

Multidimensional Knapsack Problem, Computers & Industrial Engineering, No. 48,

pp. 83-96.

Moraga, R.J., DePuy, G.W. & Whitehouse, G.E. (2006) Metaheuristics: A Solution

Methodology for Optimization Problems, Handbook of Industrial and Systems

Engineering, CRC Press, New York.

Mumford, C.L. & Jain, L.C. (2009) Computational Intelligence: Collaboration, Fusion

and Emergence, Springer-Verlag Berlin Heidelberg,

Miihlenbein, H. (2008) Convergence of Estimation of Distribution Algorithms for Finite

Samples, Technical Report, Fraunhofer Institut Autonomous intelligent Systems,

Sankt Augustin.

Miihlenbein, H. & Mahnig, T. (1999) FDA - A Scalable Evolutionary Algorithm for the

Optimization of Additively Decomposed Functions, Evolutionary Computation,

Vol. 7, pp. 353-376.

Miihlenbein, H., Mahnig, T. & Ochoa, A. (1999) Schemata, Distributions and Graphical

Models in Evolutionary Optimization, Journal of Heuristics, Vol, 5, No. 2, pp. 213-

247.

215

Muhlenbein, H. & PaaB, G.H. (1996) From Recombination of Genes to the Estimation of

Distributions I. Binary Parameters, in: Eiben, A., Back, T., Shoenauer, M. &

Schwefel, H. (eds.) Parallel Problem Solving from Nature, Springer Verlag, Berlin,

pp. 178-187.

Nascimento, M.C.V., Resende, M.G.C. & Toledo, F.M.B. (2010) GRASP Heuristic with

Path-Relinking for the Multi-Plant Capacitated Lot Sizing Problem, European

Journal of Operational Research, Vol. 200, No. 3, pp.747-54.

Nasiri, M.M. & Kianfar, F. (2011) A Hybrid Scatter Search for the Partial Job Shop

Scheduling Problem, Int J Adv Manuf Technol., Vol. 52, pp. 1031-1038.

Nasiri, M.M. & Kianfar, F. (2012) A Guided Tabu Search/Path Relinking Algorithm for

the Job Shop Problem, Int J Adv Manuf Technol., Vol. 58, pp. 1105-1113.

Nicolis, G. & Prigogine, I. (1977) Self-Organization in Non-Equilibrium Systems, Wiley

& Sons, New York, NY.

Nie, J. & Haykin, S. (1999) A Q-Leaming-Based Dynamic Channel Assignment

Technique for Mobile Communication Systems, IEEE Transactions on Vehicular

Technology, Vol. 48, No. 5, pp. 1676-1687.

Ollington, R.B. & Vamplew, P.W. (2005) Concurrent Q-Learning: Reinforcement

Learning for Dynamic Goals and Environments, International Journal of Intelligent

Systems, Vol. 20, pp. 1037-1052.

Ormrod, J.E. (2008) Human Learning, Pearson Education, Inc., New York.

Osorio, M.A., Glover, F. & Hammer, P. (2003) Cutting and Surrogate Constraint

Analysis for Improved Multidimensional Knapsack Solutions, Annals of Operations

Research, Vol. 117, pp. 71-93.

216

Osorio, M.A. & Cuaya, G. (2005) Hard Problem Generation for MKP, Revista

Investigacion Operacional, Vol. 26, No 3, pp. 212-218.

Pacheco, J. & Marti, R. (2006) Tabu Search for A Multi-Objective Routing Problem,

Journal of the Operational Research Society, Vol. 57, pp. 29-37.

Panigrahi, B.K., Shi, Y. & Lim, M.-H. (2011) Handbook of Swarm Intelligence:

Concepts, Principles and Applications, Springer-Verlag Berlin Heidelberg.

Park, K.-H., Kim, Y.-J. & Kim, J.-H. (2001) Modular Q-Learning Based Multi-Agent

Cooperation for Robot Soccer, Robotics and Autonomous Systems, Vol. 35, pp.

109-122.

Patricio, M.A., Garcia, J., Berlanga, A. & Molina, J. M. (2009) Visual Data Association

for Real-Time Video Tracking Using Genetic and Estimation of Distribution

Algorithms, International Journal of Imaging Systems and Technology, Vol. 19,

No. 3, pp. 199-207.

Pedrycz, W. (1997) Computational Intelligence: An Introduction, CRC Press.

Pelikan, M., Goldberg, D.E. & Cantu-Paz E. (2000) Linkage Problem, Distribution

Estimation, and Bayesian Networks, Evolutionary Computation, Vol. 8, pp. 311-

341.

Pelikan, M., Goldberg, D.E. & Lobo, F. (2002) A Survey of Optimization by Building and

Using Probabilistic Models, Computational Optimization and Applications, Vol.

21, pp. 5-20.

Pelikan, M. & Muhlenbein, H. (1999) The Bivariate Marginal Distribution Algorithm, in:

Roy, R., Furuhashi, T. & Chawdhry, P. K., (eds.) Advances in Soft Computing -

Engineering Design and Manufacturing, pp. 521-535, Springer-Verlag, London.

Pelikan, M., Tsutsui, S. & Kalapala, R. (2007) Dependency Trees, Permutations, and

Quadratic Assignment Problem, Proceedings of the 9th Annual Conference on

Genetic and Evolutionary Computation, GECCO'07, ACM, New York, NY, USA,

pp. 629-629.

Pepper, J., Golden, B. & Wasil, E. (2002) Solving the Traveling Salesman Problem with

Annealing-Based Heuristics: A Computational Study, IEEE Trans Syst Man

Cybern., Vol. A 32, pp. 72-77.

Pessoa, L.S., Resende, M.G.C. & Ribeiro, C.C. (2012) A Hybrid Lagrangean Heuristic

With Grasp and Path-Relinking for Set K-Covering, Computers and Operations

Research, doi: 10.1016/j .cor.2011.11.018.

Petersen, C.C. (1967) Computational Experience with Variants of the Balas Algorithm

Applied to the Selection of R&D Projects, Management Science, Vol. 13, No. 9, pp.

736-750.

Pirkul, H. (1987) A Heuristic Solution Procedure for the Multiconstraint Zero-One

Knapsack Problem, Naval Research Logistics, Vol. 34, pp. 161-172.

Pisinger, D. (1995) Algorithms for Knapsack Problems, Ph.D. Dissertation, DIKU,

University of Copenhagen, Report 95/1.

Pisinger, D. (1995) An Expanding-Core Algorithm for the Exact 0-1 Knapsack Problem,

European Journal of Operational Research, Vol. 87, pp. 175-187.

Pisinger, D. (1997) A Minimal Algorithm for the 0-1 Knapsack Problem, Operations

Research, Vol. 45, pp. 758-767.

Plateau, A., Tachat, D. & Tolla, P. (2002) A Hybrid Search Combining Interior Point

Methods and Metaheuristics for 0-1 Programming, Intl. Trans, in Op. Res., Vol. 9,

pp. 731-746.

Prais, M. & Ribeiro, C.C. (2000) Reactive GRASP: An Application to a Matrix

Decomposition Problem in TDMA Traffic Assignment, INFORMS Journal on

Computing, Vol. 12, No. 3, pp. 164-176.

Qingfu, Z., Aimin, Z. & Yaochu, J. (2008) RM-MEDA: A Regularity Model-Based

Multiobjective Estimation of Distribution Algorithm, IEEE Transactions on

Evolutionary Computation, Vol. 12, No. 1, pp. 41-63.

Qiang, L. & Xin, Y. (2005) Clustering and Learning Gaussian Distribution for

Continuous Optimization, IEEE Transactions on Systems, Man, and Cybernetics-

Part C: Applications and Reviews, Vol. 35, No. 2, pp. 195-204.

Rabadi, G., Moraga, R. & Al-Salem, A. (2006) Heuristics for the Unrelated Parallel

Machine Scheduling Problem with Setup Times, Journal of Intelligent

Manufacturing, Vol. 17, pp. 85-97.

Ramos, I.C.O., Goldbarg, M.C., Goldbarg, E.G. & Neto, A.D.D. (2005) Logistic

Regression for Parameter Tuning on an Evolutionary Algorithm, IEEE, pp. 1061-

1068.

Ranjbar, M., Reyck, B.D. & Kianfar, F. (2009) A Hybrid Scatter Search for the Discrete

Time/Resource Trade-Off Problem in Project Scheduling, European Journal of

Operational Research, Vol. 193, pp. 35-48.

219

Rechenberg, I. (1965) Cybernetic Solution Path of an Experimental Problem, Technical

Report, Royal Aircraft Establishment Library Translation No. 1112, Farnborough,

UK.

Rechenberg, I. (1973) Evolutionsstrategie: Optimierung Technischer Systeme nach

Prinzipien der biologischen Evolution, Frommann-Holzboog, Stuttgart.

Rechenberg, I. (1994) Evolutionsstrategie '94, Frommann-Holzboog, Stuttgart.

Reed, J., Toombs, R. & Barricelli, N.A. (1967) Simulation of Biological Evolution and

Machine Learning: I. Selection of Self-Reproducing Numeric Patterns by Data

Processing Machines, Effects of Hereditary Control, Mutation Type and Crossing,

J Theor Biol, Vol. 17, pp. 319-342.

Resende, M.G.C. & Ribeiro, C.C. (2002) Greedy Randomized Adaptive Search

Procedures, in: Glover, F. & Kochenberger, G. (eds.) State-of-the-Art Handbook of

Metaheuristics, Kluwer Academic Publishers, New York, pp. 219-249.

Resende, M.G.C. & Ribeiro, C.C. (2003) GRASP with Path-Relinking for Private Virtual

Circuit Routing, Networks, Vol. 41, pp. 104-114.

Resende, M.G.C. & Ribeiro, C.C. (2003) Greedy Randomized Adaptive Search

Procedures, in: Glover, F. & Kochenberger, G.A. (eds.) Handbook of

Metaheuristics, Kluwer Academic Publishers, New York.

Resende, M.G.C. & Ribeiro, C.C. (2005) GRASP with Path-Relinking: Recent Advances

and Applications, in: Ibaraki T., Nonobe, K. & Yagiura, M. (eds.) Metaheuristics:

Progress as Real Problem Solvers, Springer, Berlin, pp. 29-63.

Resende, M.G.C., Marti, R., Gallego, M. & Duarte, A. (2010) GRASP and Path

Relinking for the Max-Min Diversity Problem, Computers & Operations Research,

Vol. 37, No. 3, pp. 498-508.

Resende, M.G.C. & Werneck, R.F. (2002) A GRASP with Path-Relinking for the P-

Median Problem, Technical Report, AT&T Labs Research, Florham Park, NJ.

Ribeiro, C.C & Resende, M.G.C. (2012) Path-Relinking Intensification Methods for

Stochastic Local Search Algorithms, J Heuristics, Vol. 18, pp. 193-214.

Ribeiro, C.C., Uchoa, E. & Werneck, R.F. (2002) A Hybrid GRASP with Perturbations

for the Steiner Problem in Graphs, INFORMS Journal on Computing, Vol. 14, pp.

228-246.

Ribeiro, C.C. & Vianna, D.S. (2003) A Genetic Algorithm for the Phytogeny Problem

Using An Optimized Crossover Strategy Based on Path-Relinking, in: Anais do II

Workshop Brasileiro de Bioinformatica, Editora Universo, Macae, pp. 97-102.

Ribeiro, C.C. & Vianna, D.S. (2009) A Hybrid Genetic Algorithm for the Phylogeny

Problem Using Path-Relinking as a Progressive Crossover Strategy, International

Transactions in Operational Research, Vol. 16, No. 5, pp. 641-57.

Ries, J., Beullens, P. & Salt, D. (2012) Instance-Specific Multi-Objective Parameter

Tuning Based on Fuzzy Logic, European Journal of Operational Research, Vol. 218,

pp. 305-315

Rochat, Y. & Taillard, E. (1995) Probabilistic Diversification and Intensification in Local

Search for Vehicle Routing, Journal of Heuristics, Vol. 1, No. 1, pp. 147-167.

Rosenberg, R.S. (1967) Simulation of Genetic Populations with Biochemical Properties,

Ph.D. Dissertation, University of Michigan.

221

Rummery, G.A. & Niranjan, M. (1994) On-Line Q-Learning Using Connectionist

Systems, Technical Report CUED/F-INFENG-TR 166, Engineering Department,

Cambridge University.

S&ez, Y. (2009) Optimization Using Genetic Algorithms with Micropopulations, in: Alba,

E., Blum, C., Isasi, P., Leon, C. & Gomez, J. A. (eds.) Optimization Techniques for

Solving Complex Problems, John Wiley & Sons Inc., New Jersey.

Samuel, L. (1959) Some Studies in Machine Learning Using the Game of Checkers, IBM

Journal on Research and Development, Vol. 3, pp. 211-229, reprinted in

Feigenbaum, E.A. & Feldman J. (eds.) (1963) Computers and Thought, McGraw-

Hill, New York, pp. 71-105.

Santana, R., Larrafiaga, P. & Lozano, J.A. (2008) Adaptive Estimation of Distribution

Algorithms, in: Cotta, C., Sevaux, M. & Sorensen, K. (eds.) Adaptive and

Multilevel Metaheuristics, Springer, Berlin, pp. 177-197.

Sagarna, R. & Lozano, J. (2005) On the Performance of Estimation of Distribution

Algorithms Applied to Software Testing, Appl Artif Intell. Vol, 19, No. 5, pp. 457-

89.

Santana, R. (2005) Estimation of Distribution Algorithms with Kikuchi Approximations,

Evolutionary Computation, Vol. 13, No. 1, pp. 67-97.

SAS Institute Inc (2007) JMP, Design of Experiments Guide, SAS, Cary, North Carolina.

Santana, R., Larrafiaga, P. & Lozano, J.A. (2008) Combining Variable Neighborhood

Search and Estimation of Distribution Algorithms in the Protein Side Chain

Placement Problem, Journal of Heuristics, Vol. 14, No. 5, pp. 519-547.

Sarin, S., Karwan, M. & Rardin, R. (1988) Surrogate Duality in a Branch-And-Bound

Procedure for Integer Programming, European Journal of Operational Research,

Vol. 33, pp. 326-333.

Sastry, K., Pelikan, M. & Goldberg, D.E. (2006) Efficiency Enhancement of Estimation of

Distribution Algorithms, in: Pelikan, M., Sastry, K. & Cantu-Paz, E. (eds.) Scalable

Optimization via Probabilistic Modeling: From Algorithms to Applications,

Springer, New York, pp. 161-185.

Schwefel, H.-P. (1965) Kybernetische Evolution als Strategie der Experimentellen

Forschung in der Strdmungstechnik, Technical Report, Diplomarbeit Hermann

Fottinger Institut fur Stromungstechnik, Technische Universitat, Berlin, Germany.

Schwefel, H.-P. (1974) Adaptive Mechanismen in der Biologischen Evolution und ihr

Einflus auf die Evolutionsgeschwindigkeit, Interner Bericht der Arbeitsgruppe

Bionik und Evolutionstechnik am Institut fnr Mess- und Regelungstechnik, TU

Berlin.

Shakya, S. & McCall, J. (2007) Optimization by Estimation of Distribution with DEUM

Framework Based on Markov Random Fields, International Journal of Automation

and Computing, Vol 4, No. 3, pp. 262-272.

Shakya, S. & Santana, R. (2008) An EDA Based on Local Markov Property and Gibbs

Sampling, Proceedings of the 10th Annual Conference on Genetic and Evolutionary

Computation, GECCO'08, ACM, New York, NY, pp. 475-476.

Senyu, S. & Toyada, Y. (1967) An Approach to Linear Programming with 0-1 Variables,

Management Science, Vol. 15, pp. B196-B207.

Shih, W. (1979) A Branch & Bound Method for the Multi-Constraint Zero-One Knapsack

Problem, Journal of Operational Research Society, Vol. 30, pp. 369-378.

Sikora, R.T. (2008) Meta-Learning Optimal Parameter Values in Non-Stationary

Environments, Knowledge-Based Systems, Vol. 21, pp. 800-806.

Silver, E. (2004) An Overview of Heuristic Solution Methods, Journal of the Operational

Research Society, Vol. 55, pp. 936-956.

Sima, U. and Gtilsen, E. (2005) Improvements to Penalty Based Evolutionary Algorithms

for the Multidimensional Knapsack Problem Using A Gene-Based Adaptive

Mutation Approach, GECCO 2005, pp. 1257-1264.

Soares, C., Brazdil, P. and Kuba, P. (2004) A Meta-Learning Approach to Select the

Kernel Width in Support Vector Regression, Machine Learning 54 (3), pp. 195-209.

Su, Z.-P., Jiang, J.-G., Liang, C. Y. and Zhang, G. F. (2011) Path Selection in Disaster

Response Management Based on Q-Learning, International Journal of Automation

& Computing 8(1), pp. 100-106.

Sutton, R.S. (1984) Temporal Credit Assignment in Reinforcement Learning,

Unpublished Ph.D. Dissertation, University of Massachusetts, Amherst.

Sutton, R.S. (1988) Learning to Predict by the Method of Temporal Differences, Machine

Learning, Vol. 3, pp. 9-44.

Sutton, R.S. (1996) Generalization in Reinforcement Learning: Successful Examples

Using Sparse Coarse Coding, in Touretzky, D. S., Mozer, M. C. & Hasselmo, M.

E. (eds.) Advances in Neural Information Pocessing Systems, Proceedings of the

1995 Conference, MIT Press, Cambridge, MA, pp. 1038-1044.

Sutton, R.S. & Barto, A. G. (1998) Reinforcement Learning: An Introduction, MIT Press,

Cambridge, MA.

Taillard, E.D., Gambardella, L.M., Gendreau, M. & Potvin, J.Y. (2001) Adaptive Memory

Programming, A Unifed View of Metaheuristics, European Journal of Operational

Research, Vol. 135, pp. 1-16.

Talbi, E.G. (2009) Metaheuristics, From Design To Implementation, University of Lille,

John Wiley & Sons, Inc., New Jersey.

Tamilarasi, A. (2010) Tunings of Parameters and Pheromone Update Strategy in Ant

Colony Optimization, Journal of Advanced Manufacturing Systems, Vol. 9, No. 1,

pp. 73-83.

Thesen, A. (1973) Scheduling of Computer Programs in a Multiprogramming

Environment, BIT, Vol. 13, pp. 208-216.

Tesauro, G. & Kephart, J.O. (2002) Pricing in Agent Economies Using Multi-Agent Q-

Learning, Autonomous Agents and Multi-Agent Systems, Vol. 5, pp. 289-304.

Torre, A.L., Pe~na, J.-M., Muelasa, S. & Freitas, A.A. (2010) Learning Hybridization

Strategies in Evolutionary Algorithms, Intelligent Data Analysis, Vol. 14, pp. 333-

354.

Tsitsiklis, J.N. (1994) Asynchronous Stochastic Approximation and Q-Learning, Machine

Learning, Vol. 16, pp. 185-202.

Tsutsui, S. (2002) Probabilistic Model-Building Genetic Algorithms in Permutation

Representation Domain Using Edge Histogram, Proceedings of the 7th Int. Conf. on

Parallel Problem Solving from Nature, PPSN VII, Springer-Velag, pp. 224-233

Usberti, F.L., Franca, P.M. & Franfa, A.L.M. (2011) GRASP with Evolutionary Path-

Relinking for the Capacitated Arc Routing Problem, Computers and Operations

Research, doi: 10.1016/j .cor.2011.10.014.

Uwe, A. & Jingpeng, L. (2007) An Estimation of Distribution Algorithm for Nurse

Scheduling, Ann Oper Res., Vol. 155, pp. 289-309.

Valasek, J., Doebbler, J., Tandale, M.D. & Meade, A.J. (2008) Improved Adaptive-

Reinforcement Learning Control for Morphing Unmanned Air Vehicles, IEEE

Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 38, No.

4, pp. 1014-1020.

Vallada, E. & Ruiz, R. (2010) Genetic Algorithms with Path Relinking for the Minimum

Tardiness Permutation Flowshop Problem, Omega, Vol. 38, No. 1-2, pp.57-67.

Vasquez, M. & Hao, J.K. (2001) A Logic-Constrained Knapsack Formulation and a

Tabu Algorithm for the Daily Photograph Scheduling of An Earth Observation

Satellite, Comput. Optim. Appl., Vol. 20, pp. 137-157.

Vasquez, M. & Hao, J.K. (2001) Une Approche Hybride Pour Le Sac a Dos

Multidimensionnel En Variables 0-1, RAIRO Operations Research, Vol. 35, pp.

415-438.

Vasquez, M. & Vimont, Y. (2005) Improved Results on the 0-1 Multidimensional

Knapsack Problem, European Journal of Operational Research, Vol. 165, pp. 70-

81.

Villegas, J.G., Prins, C., Prodhon, C., Medaglia, A.L. & Velasco, N. (2011) A Grasp with

Evolutionary Path Relinking for the Truck and Trailer Routing Problem,

Computers & Operations Research, Vol. 38, pp. 1319-1334.

226

Vimont, Y., Boussier, S. & Vasquez, M. (2008) Reduced Costs Propagation in an

Efficient Implicit Enumeration for the 01 Multidimensional Knapsack Problem, J.

Comb. Optim., Vol. 15, pp. 165-178.

Vogt, L., Poojari, C.A. & Beasley, J.E. (2007) A Tabu Search Algorithm for the Single

Vehicle Routing Allocation Problem, Journal of the Operational Research Society,

Vol. 58, pp. 467-480.

Volgenant, A. & Zoon, J. A. (1990) An Improved Heuristic for the Multidimensional 0-1

Knapsack Problems, Journal of the Operational Research Society, Vol. 41, pp. 963-

970.

Wang, X. & Tang, L. (2009) A Population-Based Variable Neighborhood Search for the

Single Machine Total Weighted Tardiness Problem, Computers & Operations

Research, Vol. 36, pp. 2105-2110.

Wanga, Y.-C. & Ushera, J.M. (2004) Learning Policies for Single Machine Job

Dispatching, Robotics and Computer-Integrated Manufacturing, Vol. 20, pp. 553-

562.

Wang, B., Wang, J., Song, X & Liu, F. (2009) Q-Learning-Based Adaptive Waveform

Selection in Cognitive Radar, Int. J. Communications, Network and System

Sciences, Vol. 7, pp. 669-674.

Wang, J., Kuang, Z., Xu, X. & Zhou, Y. (2009) Discrete Particle Swarm Optimization

Based on Estimation of Distribution for Polygonal Approximation Problems,

Expert Systems with Applications, Vol. 36, pp. 9398-9408.

Wang, L. & Fang, C. (2012) An Effective Estimation of Distribution Algorithm for the

Multi-Mode Resource-Constrained Project Scheduling Problem, Computers &

Operations Research, Vol. 39, pp. 449-460.

Wang, Y. & Silva, C.W. (2010) Sequential Q-Learning with Kalman Filtering for

Multirobot Cooperative Transportation, IEEE/ASME Transactions on

Mechatronics, Vol. 15, No. 2, pp. 261-268.

Wassan, N. (2006) A Reactive Tabu Search For The Vehicle Routing Problem, Journal of

the Operational Research Society, Vol. 57, pp. 111-116.

Wassan, N. (2007) Reactive Tabu Adaptive Memory Programming Search for the Vehicle

Routing Problem With Backhauls, Journal of the Operational Research Society,

Vol. 58, pp. 1630-1641.

Watkins, C.J.C.H. (1989) Learning from Delayed Reward, Ph.D. Dissertation, Cambridge

University.

Watkins, C.J.C.H. & Dayan, P. (1992) Q-Learning, Machine Learning, Vol. 8, pp. 279-

292.

Webster's New Universal Unbridged Dictionary (1996) Random House Value

Publishing, Inc., New York, NY.

Weinberg, R. (1970) Computer Simulation of a Living Cell, Ph.D. Dissertation,

University of Michigan.

Weingartner, H.M. & Ness, D.N. (1967) Methods for the Solution of the Multi-

Dimensional 0/1 Knapsack Problem, Operations Research, Vol., pp. 83-103.

Wiering, M, Schmidhuber, J. & Elvezia, I.C. (1998) Fast Online Q(X), Machine Learnin,

Vol. 33, pp. 105-115.

228

Wilbaut, C. & Hanafi, S. (2008) A Survey of Effective Heuristics and their Application to

a Variety of Knapsack Problems, IMA Journal of Management Mathematics, Vol.

19, pp. 227-244.

Wilbaut, C. & Hanafi, S. (2009) New Convergent Heuristics for 0-1 Mixed Integer

Programming, European Journal of Operational Research, Vol. 195, pp. 62-74.

Wilbaut, C., Hanafi, S. & Salhi, S. (2008) A Survey of Effective Heuristics and their

Application to a Variety of Knapsack Problems, IMA Journal of Management

Mathematics, Vol. 19, pp. 227-244.

Wilbaut, C., Salhi, S. & Hanafi, S. (2009) An Iterative Variable-Based Fixation Heuristic

for the 0-1 Multidimensional Knapsack Problem, European Journal of Operational

Research, Vol. 199, pp. 339-348.

Wolpert, D.H. & Macready, W.G. (1997) No Free Lunch Theorems for Optimization,

IEEE Transactions on Evolutionary Computation, Vol, 1, No. 1, pp. 67-82.

Wong, K.Y.K. (2008) Parameter Tuning for Ant Colony Optimization: A Review,

Proceedings of the International Conference on Computer and Communication

Engineering, May 13-15, Kuala Lumpur, Malaysia.

Xiao, J., Yan, Y. & Zhang, J. (2009) HPBIL: A Histogram-Based EDA for Continuous

Optimization, Applied Mathematics and Computation, Vol. 215, No. 3, pp. 973-

982.

Yang, X.-S. (2010) Engineering Optimization: An Introduction with Metaheuristic

Applications, John Wiley & Sons, Inc., Hooboken, New Jersey.

Yao, X. & Liu, Y. (2005) Machine Learning, in: Burke, E.K. & Kendall, G. (eds.) Search

Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, Springer, New York, NY.

Yin, P.-Y., Glover, F., Laguna, M. & Zhu, J.-X. (2010) Cyber Swarm Algorithms -

Improving Particle Swarm Optimization Using Adaptive Memory Strategies,

European Journal of Operational Research, Vol. 201, pp. 377-389.

Yuan, B., Orlowska, M. & Sadiq, S. (2008) Extending a Class of Continuous Estimation

of Distribution Algorithms to Dynamic Problems, Optimization Letters, Vol. 2, pp.

433-443.

Zhang, G.Q. & Lai, K.K. (2006) Combining Path Relinking and Genetic Algorithms for

the Multiple-Level Warehouse Layout Problem, European Journal of Operational

Research, Vol. 169, pp. 413-425.

Zhang, Q., Sun, J., Tsang, E. & Ford, J. (2003) Combination of Guided Local Search and

Estimation of Distribution Algorithm for Solving Quadratic Assignment Problem,

Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary

Computation Conference, pp. 42-48.

Zhang, Q., Sun, J., Tsang, E. & Ford, J. (2006) Estimation of Distribution Algorithm with

2-Opt Local Search for the Quadratic Assignment Problem, in: Lozano J.A.,

Larranaga P. & Inza I. (eds.) Towards a New Evolutionary Computation, Advances

in the Estimation of Distribution Algorithms, Springer-Verlag, Berlin Heidelberg.

Zhang, Q., Zhou, A. & Jin, Y. (2008) RM-MEDA: A Regularity Model-Based

Multiobjective Estimation of Distribution Algorithm, IEEE Transactions on

Evolutionary Computation, Vol. 12, No. 1, pp. 41-63.

230

Zhang, Y. & Bhattacharyyaz, S. (2007) Effectiveness of Q-Learning as a Tool For

Calibrating Agent-Based Supply Network Models, Enterprise Information Systems,

Vol. 1, No. 2, pp. 217-233.

Zhang, Z., Zheng, L. & Weng, M.X. (2007) Dynamic Parallel Machine Scheduling with

Mean Weighted Tardiness Objective by Q-Learning, Int J Adv Manuf Technol,

Vol. 34, pp. 968-980.

Zhou, Y. & Wang, J. (2010) Neural Network Combined with Estimation of Distribution

for Max-Cut Problem, ICIC Express Letters, Vol. 4, No. 4, pp. 1161-1166

Zhong, X., Ding, J., Li, W. & Zhang, Y. (2008) Robust Airfoil Optimization with Multi-

Objective Estimation of Distribution Algorithm, Chinese Journal of Aeronautics,

Vol. 21, No. 4, pp. 289-295.

231

VITA

Arif Arin

Engineering Management and Systems Engineering Department

Norfolk, VA 23529

Arif Arin received his Bachelor's Degree in Industrial Engineering from the

Turkish Air Force Academy, Turkey in 1995 and his Master of Science Degree in

Systems Engineering from Air Force Institute of Technology (AFIT), USA, in 2002. He

taught an Operations Research course at Izmir Economy University, and a Computer

Technologies course at the Turkish Air Force Noncommissioned Officer Vocational

College, Turkey. He is an IEEE member. His research interests include optimization

methods, metaheuristics, machine learning, scheduling and design of experiments.

	Incorporating Memory and Learning Mechanisms Into Meta-RaPS
	Recommended Citation

	tmp.1552565128.pdf._ZYJW

