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ABSTRACT 

INCORPORATING MEMORY AND LEARNING MECHANISMS 
INTO META-RAPS 

Arif Arin 
Old Dominion University, 2012 

Director: Dr. Ghaith Rabadi 

Due to the rapid increase of dimensions and complexity of real life problems, it 

has become more difficult to find optimal solutions using only exact mathematical 

methods. The need to find near-optimal solutions in an acceptable amount of time is a 

challeng when developping more sophisticated approaches. A proper answer to this 

challenge can be through the implementation of metaheuristic approaches. However, a 

more powerful answer might be reached by incorporating intelligence into 

metaheuristics. 

Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic 

that creates high quality solutions for discrete optimization problems. It is proposed that 

incorporating memory and learning mechanisms into Meta-RaPS, which is currently 

classified as a memoryless metaheuristic, can help the algorithm produce higher quality 

results. 

The proposed Meta-RaPS versions were created by taking different perspectives 

of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a 

stochastic learning technique that creates a probability distribution for each decision 

variable to generate new solutions. The second Meta-RaPS version was developed by 

utilizing a machine learning algorithm, Q Learning, which has beeen successfully applied 

to optimization problems whose output is a sequence of actions. In the third Meta-RaPS 



version, Path Relinking (PR) was implemented as a post-optimization method in which 

the new algorithm learns the "good" attributes by memorizing best solutions, and follows 

them to reach better solutions. The fourth proposed version of Meta-RaPS presented 

another form of learning with its ability to adaptively tune parameters. The efficiency of 

these approaches motivated us to redesign Meta-RaPS by removing the improvement 

phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS 

could solve even the largest problems in much less time while keeping up the quality of 

its solutions. 

To evaluate their performance, all introduced versions were tested using the 0-1 

Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, 

Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best 

and worst performance, respectively. On the other hand, they could all show superior 

performance than other approaches to the 0-1 MKP in the literature. 
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CHAPTER 1 

INTRODUCTION 

"fy ate are (a euAieoc ne&dU tceex iejpne accomfcliA&ed, 

we mutt expect fo employ met&od* newt tyone attempted. 

Sit "ptOMeU SOCOK 

In our constantly changing environment, we always adapt ourselves to different 

situations that we encounter in life. Instead of "hardwiring" (Alpaydin, 2004) all types of 

behavior into us, we learn the best strategies in certain cases and store them in our brain 

to call when similar situations arise again. 

Learning, according to Fogel (1995), is an intelligent process in which the basic 

unit of mutability is the idea. "Good" adaptive ideas are maintained, much as good genes 

increase in a population, while poor ideas are forgotten. In insect societies, this only 

requires the evaporation of pheromone trails; in humans it requires time for actual 

forgetting (Kennedy, et al., 2001). In a similar manner, memory and learning mechanisms 

in metaheuristics can learn and remember "good" ideas related to the search process to 

make it possible to create high quality solutions for optimization problems by utilizing 

this information. In the problem solving arena, the definition of intelligence emerges in 

metaheuristics via memory and learning. Many successful metaheuristics employ 

"intelligent" procedures to obtain high quality solutions for optimization problems. 
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1.1 Metaheuristics 

With the growing complexity of today's large scale problems, it has become more 

difficult to find optimal solutions using only exact mathematical methods. Due to 

computational efficiency concerns, the need to find near-optimal solutions in an 

acceptable amount of time requires using heuristic approaches. Birattari (2009) defines a 

heuristic as "a generic algorithmic template that can be used for finding high quality 

solutions of hard combinatorial optimization problems" (page VII). Heuristic approaches 

have already proved themselves in many large scale optimization problems by offering 

near-optimal solutions where it is difficult to find optimal solutions by other approaches. 

In theory, there is a chance to find the optimum solution by implementing 

heuristic methods. However, often being trapped in local optima can move the heuristics 

away from the optimum solution. Metaheuristics or "modern heuristics" confront this 

challenge by adding strategies and mechanisms to avoid local optima to the construction 

and local search mechanisms already existing in heuristics (Moraga, 2009). Glover & 

Laguna (1997) define metaheuristics as "a master strategy that guides and modifies other 

heuristics to produce solutions beyond those that are normally generated in a quest for 

local optimality" (page 17). 

Glover & Laguna (1997) introduced a classification method for metaheuristics 

depending on three design choices: the use of adaptive memory, the type of neighborhood 

exploration used, and the number of current solutions carried from one iteration to the 

next. The metaheuristic classification notation can be illustrated in the form a|b|c. If the 

metaheuristic has adaptive memory, the first letter, a, will be A, and M if the method is 

memoryless. Depending on the neighborhood mechanism, the second letter, b, will be N 
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for somehow systematic neighborhood search, and S for using random sampling. The 

third letter, c, can be 1 for a single-solution approach or P for a population-based 

approach with population size of P. The classification method for metaheuristics is 

summarized in Table 1. 

Table 1. Classification Method for Metaheuristics 

a b c 

Use of Adaptive 

Memory 
Type of Neighborhood 

Number of Solutions 

Carried at Iterations 

A M N S 1 P 

Adaptive 
Memoryless 

Memory 

Systematic 
Random 

Neighborhood 
Sampling 

Search 

Single Population 

Solution Size of P 

1.2 Meta-RaPS as a Memoryless Metaheuristic 

Besides exact mathematical methods, metaheuristics methods are quite promising 

approaches in solving optimization problems especially in terms of their results, the size 

of the problem dealt with and computational effort consumed. Although, as a 

metaheuristic, Meta-heuristic for Randomized Priority Search (Meta-RaPS) has been 

generating very promising solutions when applied to optimization problems, Meta-RaPS 

is currently classified as a memoryless metaheuristic. The reason for this classification is 

that there is no memory mechanism in Meta-RaPS to memorize the information created 

in the solution process, nor a learning mechanism to learn the structure of this process in 

making future decisions. 
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In many cases it has been observed that, memory and learning mechanisms 

increase the effectiveness of the solution process, and as a result, the solution quality. 

Therefore, by incorporating some memory and learning tools into Meta-RaPS, the 

algorithm is expected to use this information in creating higher quality solutions. To 

reach this goal, four algorithms from different fields are selected: Estimation of 

Distribution Algorithms (EDA) as a stochastic approach and Q learning as a machine 

learning approach are the first two algorithms to offer their memory and learning abilities 

to Meta-RaPS. The third algorithm is Path Relinking (PR), a post-optimization method 

that learns the "good" attributes of the best solutions, and follows them to reach better 

solutions. The fourth algorithm is selected from Adaptive Parameter (AP) tuning area that 

plays a key role in a metaheuristic's performance. The ultimate goal of this research is to 

redesign Meta-RaPS to become more "intelligent" with the ability to memorize and learn 

in order to reach higher quality solutions more efficiently by removing the improvement 

phase in Meta-RaPS if possible. 

The proposed algorithms share a common characteristic of employing some 

memory and learning mechanisms in their search spaces. To evaluate the performance of 

the proposed algorithms, the 0-1 Multidimensional Knapsack Problem (MKP), which is a 

special case of the general linear 0-1 integer programming problem with nonnegative 

coefficients, will be used as testbed. 
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CHAPTER 2 

META-RAPS AND 0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM 

The two main actors having constant roles in each process of incorporating 

memory and learning mechanisms are Meta-RaPS (Metaheuristic for Randomized 

Priority Search) and the 0-1 Multidimensional Knapsack Problem (MKP). As a 

memoryless metaheuristic, various intelligent versions of Meta-RaPS will be proposed 

and the 0-1 MKP will be used as their testbad in the applications that will be presented in 

this research. 

2.1 Meta-RaPS, a Simple and Powerful Metaheuristic 

Meta-RaPS is one of the randomized search metaheuristics, and stands for "Meta­

heuristic for Randomized Priority Search". Moraga, et al. (2006) defines Meta-RaPS as 

"generic, high level search procedures that introduce randomness to a construction 

heuristic as a device to avoid getting trapped at a local optimal solution" Page (10-8). 

Meta-RaPS combines the mechanisms of priority rules, randomness, and sampling. 

Meta-RaPS is currently classified as a memoryless metaheuristic and can benefit 

from existing memory and learning mechanisms to increase its effectiveness. 

2.1.2 Literature Review 

Meta-RaPS produced high quality solutions when applied to discrete optimization 

problems, such as the Resource Constrained Project Scheduling Problem (DePuy & 

Whitehouse, 2001) and the Vehicle Routing Problem (Moraga, 2002). 
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DePuy, et al. (2005) aimed to develop a simple method to find good solutions to 

traveling salesman problems (TSP). The Meta-RaPS approach was introduced as a 

method of incorporating randomness in established TSP priority schemes. The Meta-

RaPS approach outperformed most other solution methodologies in terms of percent 

difference from optimal. Additionally, an industry case study that incorporates Meta-

RaPS TSP in a large truck route assignment model is presented. The company estimates a 

more than 50% reduction in engineering time and over $2.5 million annual savings in 

transportation costs using the automated Meta-RaPS TSP tool compared to their current 

method. 

Moraga, et al. (2005) presented Meta-RaPS approach for the 0-1 

Multidimensional Knapsack Problem (0-1 MKP). The Meta-RaPS incorporated with a 

greedy algorithm called the Dynamic Greedy Rule (DGR) outperformed many other 

solution methodologies, such as simulated annealing, tabu search, genetic algorithms, and 

0-1 MKP heuristics, in terms of differences from the optimal value and number of 

optimal solutions obtained. They also noted that the performance of Meta-RaPS DGR 

was not quite as good as that of Chu and Beasley's (1998) genetic algorithm or Bertsimas 

and Demir's (2002) approximate dynamic programming for the largest problem sizes, 

and further investigation can be done to improve the solution quality for these large 

problems. 

Rabadi, et al. (2006) introduced Meta-RaPS for the unrelated parallel machine 

scheduling problem (PMSP) with machine-dependent and sequence-dependent setup 

times to minimize the makespan. According to the results, Meta-RaPS found all optimal 
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solutions for small problems and for larger problems it outperformed the solutions 

obtained by the existing heuristic the Partitioning Heuristic by Al-Salem (2004). 

The Set Covering Problem (SCP) was another optimization problem selected as 

the application for Meta-RaPS where it is found that these randomization methods work 

well (Lan & DePuy, 2006; Lan, DePuy & Whitehouse, 2007). Lan, DePuy & Whitehouse 

(2007) developed an effective heuristic to solve the set covering problem (SCP) by 

applying Meta-RaPS. In addition to basic principles of Meta-RaPS, they penalized the 

worst columns if the solution searching space is highly condensed to enhance the 

performance of the basic Meta-RaPS. They reported this algorithm was the best in 

solution quality among all the heuristic algorithms available in the literature for solving 

the test instances in the OR Library. 

Hepdogan, et al. (2009) applied Meta-RaPS algorithm to the early/tardy single 

machine scheduling problem with common due date and sequence-dependent setup times 

(ETP). In this case, the Smallest Adjusted Processing Time (SAPT) rule is modified by 

Meta-RaPS with its ability of randomness. When comparing Meta-RaPS ETP with a 

simulated annealing (SA) and a hybrid approach Smallest Adjusted Processing Time -

SA (SAPT-SA) technique, they observed that Meta-RaPS produced better solutions in 

terms of percent difference from optimal and in computation time. 

Kaplan, et al. (2010) used Meta-RaPS approach to solve the Aerial Refueling 

Scheduling Problem (ARSP), a real world problem that requires high quality solutions in 

an acceptable time frame. ARSP can be defined as determining the refueling completion 

times for each fighter aircraft wing (job) on multiple tankers (machines) and therefore 

can be modeled as a parallel machine scheduling with release times and due dates to 



8 

minimize the total weighted tardiness. In their study, Meta-RaPS showed to be a 

promising metaheuristic with its simplicity and effectiveness to find high quality 

solutions for the ARSP. Kaplan and Rabadi (forthcoming) also presented a Simulated 

Annealing and Meta-RaPS algorithm for the ARSP with due date-to-deadline windows 

and release time. 

Garcia and Rabadi (2011) developed a new algorithm based on Meta-RaPS for 

solving the parallel multiple-area spatial scheduling problem with release times. Meta-

RaPS presented better performance on a set of highly diverse benchmark problems when 

compared to the results obtained by a MIP model solved with CPLEX; it was very 

effective and in most cases tied or outperformed CPLEX requiring less than 20% of the 

computational time used by CPLEX. 

Different from other authors, Hepdogan, et al. (2008) investigated the problem of 

setting parameters using Meta-RaPS. They presented two different dynamic parameter 

setting methods, Nonparametric Genetic Algorithms (NPGA) and Reactive Search (RS), 

for Meta-RaPS while a solution is being found. These parameter setting methods were 

used to set the parameters of Meta-RaPS to solve 0-1 MKP and ETP. 

2.1.3 Meta-RaPS - Related Algorithms 

Meta-RaPS is based on the "Computer Method of Sequencing Operations for 

Assembly Lines" (COMSOAL). Meta-RaPS, however, is a general form of GRASP 

(greedy randomized adaptive search procedure) which is a greedy metaheuristic to solve 

combinatorial optimization problems. In the following sections both algorithms are 

discussed due to their relevance to the Meta-RaPS. 
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2.1.3.1 COMSOAL 

Meta-RaPS is based on the COMSOAL, which is an iterative computer heuristic 

introduced by Arcus (1966) for balancing large complex machine-paced assembly lines. 

COMSOAL originated in an industrial operations research project and was in use at some 

factories of the Chrysler Corporation in an early form (Arcus, 1966). 

COMSOAL generates a list of activities (candidate list) to be scheduled next. In 

order to be selected for the candidate list, an activity must have all its predecessor 

activities completed and there must be enough resources available to perform the activity. 

The next activity is selected randomly to be scheduled from this candidate list. This 

iterative process continues until all activities have been scheduled and a feasible schedule 

is obtained. After several iterations of this procedure the best solution found is reported 

(DePuy & Whitehouse, 2000). 

DePuy and Whitehouse (2000) discussed the adaptation of the COMSOAL 

approach to the resource allocation problem as well as a designed experiment used to 

investigate the appropriateness of COMSOAL for a known set of resource allocation test 

problems. DePuy and Whitehouse (2001) modified COMSOAL to the resource 

constrained project scheduling problem (RCPSP). The Modified COMSOAL was using 

priority schemes intermittently with a random selection technique, and outperformed the 

other heuristics in terms of the average and maximum percentage difference from 

optimal. 

According to DePuy, et al. (2001), although the modified versions of COMSOAL 

keep the fundamental ideas of Arcus (1966), in practice, the created versions of 
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COMSOAL differ considerably from the original one, thus leading to the development of 

Meta-RaPS. 

2.1.3.2 GRASP 

GRASP is an iterative greedy heuristic introduced by Feo and Resende (1989) to 

solve combinatorial optimization problems. The GRASP algorithm consists of two 

phases: construction and local search. The feasible solutions constructed in the first phase 

are not guaranteed to be locally optimal. Usually a local search is performed to attempt to 

improve each constructed solution in the second phase. 

In the construction phase of GRASP, the next components or activities are 

selected according to their greedy evaluation function which calculates their incremental 

cost if they are incorporated with the current components in the partial solution. The best 

components or activities, i.e., the ones with the minimum incremental costs, are collected 

to create the restricted candidate list (RCL) from which the components or activities are 

chosen randomly to incorporate. While the first phenomenon indicates greedy attributes, 

the latter shows probabilistic attribute of the algorithm. After incorporating the 

components or activities in the partial solution, the RCL is updated by calculating the 

new incremental costs of the components or activities left in the process which points out 

the adaptive attribute of the GRASP (Resende & Ribeiro, 2003). Because the solution 

generated in the construction phase is not usually optimal, the local search phase becomes 

part of the solution process to improve the solutions. Besides local searches, any single-

solution heuristic can also be employed as an improvement means for GRASP (Talbi, 

2009). 
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The main parameters for GRASP are related to the stopping criterion and the 

quality of the solutions in the RCL. Increasing the number of the iterations will also 

increase the probability of reaching better solutions but consuming more computer time; 

on the other hand, the second parameter will help improve the quality of the best 

solutions in the RCL. One of the approaches to reach the latter goal is value-based criteria 

by using a threshold parameter a 6 [0, 1] which controls the greediness and the 

randomness in the search process. If c(a) is the incremental cost when the component or 

activity a is incorporated in the current partial solution; and cmm and cmax are denoted as 

the smallest and the largest incremental costs, respectively, the RCL can be formed from 

the component or activity a associated with c(a) selected as in (2.1): 

c(a) e [cmin, cm,n + a(cmax - cmin)]. (2.1) 

The parameter a for GRASP specifies the balance between intensification using 

more greediness attribute and diversification using more randomness attribute. For the 

case of a = 0 GRASP runs as a greedy algorithm, and for the case a = 1 GRASP runs as a 

random algorithm. 

Although GRASP generates solutions by introducing randomness to a greedy 

heuristic like Meta-RaPS, it does not implement any probabilistic priority to the best 

solutions (Hepdogan, et al., 2009). The iterations in GRASP algorithm are totally 

independent, and there is no search memory. GRASP is classified as M|S|1. 

2.1.4 Meta-RaPS Algorithm 

Like GRASP, Meta-RaPS is a two-phase metaheuristic: a constructive phase to 

create feasible solutions and an improvement phase to improve them. In the constructive 
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phase, a solution is built by repeatedly adding feasible components or activities to the 

current solution in an order that is based on their priority rules until the stopping criterion 

is satisfied. Generally, solutions obtained by implementing only constructive algorithms 

can reach mostly local optima, which can be avoided in Meta-RaPS by employing 

randomness in the constructive phase. 

Meta-RaPS uses four parameters: number of iterations (I), the priority percentage 

(p%), the restriction percentage (r%), and the improvement percentage (i%). Meta-RaPS 

does not select the component or activity with the best priority value in every iteration, 

nor does it select the one with the lowest incremental cost. Instead, the algorithm may 

randomly accept an activity or component with a good priority value, but not necessarily 

the best one. The parameter p% is used to decide the percentage of time a component or 

activity with the best priority value will be added to the current partial solution, and 

100% - p% of the time it will be randomly selected from a candidate list (CL) containing 

"good" components or activities. The CL is created by including items whose priority 

values are within r% of the best priority value. The CL is therefore created using 

equations (2.2) and (2.3) where Pb is the component or activity with the best priority 

value and F is the set of feasible components or activities (Lan, et al., 2007): 

C L  =  { i :  i  e  F  a n d  P i  <  P b  •  ( 1  +  r % ) }  f o r  m i n i m i z a t i o n .  ( 2 . 2 )  

C L  =  { i :  i  6  F  a n d  P i  >  P b  •  ( 1  -  r % ) }  f o r  m a x i m i z a t i o n .  ( 2 . 3 )  

In the construction phase, the level of the randomness is adjusted by controlling 

the values of the parameters p% and r% where smaller values of p% and larger values of 

r% will randomize the search more. The construction phase of Meta-RaPS is completed 

when a feasible solution is produced. 
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The improvement phase is performed if the feasible solutions generated in the 

construction phase are within i% of the best unimproved solution value from the 

preceding iterations. For the feasible solution to be improved in this phase, it must be 

determined whether its objective function value Z satisfies the requirements in (2.4) and 

(2.5) where Z* is the solution with the best objective function value obtained in the 

construction phase (Lan, et al., 2007). Meta-RaPS pseudocode is shown in Figure 1. 

Z < Z* • (1 + i%) for minimization. (2.4) 

Z < Z* • (1 - i%) for maximization. (2.5) 

The quality of the solution created by Meta-RaPS is heavily dependent to its 

parameters, especially the number of iterations and the improvement percentage. 

However, increasing the values of these parameters will also increase the need for more 

computational time (Hepdogan, et al., 2009). 

Meta-RaPS can be compared with COMSOAL and GRASP depending on the 

values of the parameters in Meta-RaPS. While using 0 for the priority percentage, an 

infinitely large restriction percentage, and 0 for the improvement percentage will imitate 

COMSOAL; 0 for the priority percentage and 100 for the improvement percentage will 

simulate GRASP (Moraga, et al., 2005). Because, in Meta-RaPS these three parameters 

can take different values other than 0 and 100%, it exhibits much more flexibility over 

COMSOAL and GRASP. 

Meta-RaPS procedure is simple and effective procedure with only two main 

parameters to be set. The simple nature of Meta-RaPS coupled with its ability to generate 

high quality solutions, makes Meta-RaPS a good metaheuristic method for combinatorial 

optimization problems (Hepdogan, et al., 2009). 
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For i teration ^ I 

While (feasible solution is not constructed) 

Find priority value for each feasible activity 

Find best priority value 

If rndO ^ priority^ then 

add item with best priority value to solution 

Else create CandidateList from feasible activities with 

priority values ^ Limit 

Limit = MinimumPriority + 

restriction* • (MaximumPriority -  MinimumPriority) 

Choose randomly an item from CandidateList and add to solution 

End While 

A = BestConstructedSolution • improvement* 

If ConstructedSolution ^ A then improve 

If ImprovedSolution > BestImprovedSolution then 

Assign ImprovedSolution as BestImprovedSolution 

End For 

Report BestImprovedSolution 

Figure 1. Meta-RaPS Pseudo Code 

DePuy, et al. (2001) expressed the advantages of the Meta-RaPS over other 

metaheuristics. According to them; 

• Run times for Meta-RaPS are not significantly affected by the size of the 

problem, 

• Meta-RaPS is easy to understand and to implement (i.e. write computer 

code), 
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• Meta-RaPS generates a feasible solution at every iteration. 

Many real world optimization problems require a deep understanding of 

mathematical and computer programming. In this aspect, since it is easy to understand 

and to put into application, and it can create good results in a reasonable amount of time, 

Meta-RaPS should be particularly attractive to industrial practitioners too (Moraga, et al., 

2005). 

2.2 0-1 Multidimensional Knapsack Problem 

The multidimensional 0-1 knapsack problem (0-1 MKP) is a special case of 

general linear 0-1 programs. The MKP can be considered as a subproblem of other 

optimization problems as the multidemand multidimensional knapsack problem (Wilbaut 

& Hanafi, 2008). In the literature there are different names used for the MKP: tri­

dimensional knapsack, problem, multidimensional knapsack problem, multiknapsack 

problem, multiconstraint 0-1 knapsack problem (Freville, 2004). The name 

multidimensional 0-1 knapsack problem that will be used here was mentioned first by 

Weingartner and Ness (1967). The MKP is often used as a platform to evaluate new 

metaheuristics and will therefore be used in this research to evaluate the effectiveness of 

the proposed methods. 

2.2.1 Literature Review 

The first applications of 0-1 MKP had been presented by Lorie and Savage (1955) 

and by Manne and Markowitz (1957) as a capital budgeting model. To solve the 0-1 

MKP, both exact and approximation algorithms have been used. Exact algorithm includes 
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enumeration method, graph theoretic approach and dynamic programming (Martello, et 

al., 2000). The development of exact algorithms began at the same time for both the KP 

and MKP and included dynamic programming, branch-and-bound network approach, 

hybridization of dynamic programming and branch-and-bound, special enumeration 

technique and reduction schemes (Freville, 2004). 

Exact methods for 0-1 MKP are based on dynamic programming (Gilmore & 

Gomory, 1966; Martello, Pisinger & Toth, 1999; Pisinger, 1997; Weingartner & Ness, 

1967), and in branch-and-bound techniques (Gavish & Pirkul, 1985; Martello and Toth, 

1988; Pisinger, 1995; Sarin, Karwan & Rardin, 1988; Shih, 1979). Balev, et al. (2008) 

presented a new dynamic programming based approach to the 0-1 MKP where they used 

sparse data representation, which decreases memory and time requirements. Meier, 

Christofides and Salkin (2001) proposed a realistic approach that uses this problem as a 

subproblem coupled with generalized upper bound constraints. Boussier, et al. (2010) 

proposed an exact method based on a multi-level search strategy for solving the 0-1 MKP 

which combines Resolution Search, a Branch and Bound, and a Depth First Search 

algorithm that exploit efficiently both the reduced costs and the fixed number of item 

constraints. 

Even when recent advances of methods such as branch-and-cut have made the 

solution of middle size MKP instances possible, increasing the number of constraints 

makes approximation algorithms necessary. Fleszar and Hindi (2009) presented the 

heuristics appropriately chosen deterministic or randomly generated constraints imposed 

on the linear relaxation can be used to partition the solution space effectively, leading to 

good solutions for 0-1 MKP. The method of Boyer, Elkihel and El Baz (2009) solved the 
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0-1 MKP with two heuristics. The first heuristic using surrogate relaxation was solved via 

a modified dynamic-programming algorithm to provide a feasible solution, and a second 

heuristic was used to improve the bound obtained by exploring some nodes rejected by 

the modified dynamic-programming algorithm. 

James and Nakagama (2005) decomposed the 0-1 MKP into two parts by 

applying enumeration methods to decrease memory requirement to solve large instances. 

Wilbaut and Hanafi (2009) presented several convergent algorithms to solve a series of 

small sub-problems generated by exploiting information obtained from a series of 

relaxations. Hill, et al. (2012) introduced new problem-size reduction heuristics for the 0-

1 MKP. Their heuristics are based on solving a relaxed version of the problem, using the 

dual variables to formulate a Lagrangian relaxation of the original problem, and then 

solving an estimated core problem to achieve a heuristic solution to the original problem. 

Tabu search approaches proposed by Glover and Kochenberger (1996) and Hanafi 

and Fr^ville (1998) alternated between constructive and destructive phases and allowed 

the visit of infeasible solutions during the search. The tabu search approach of Hanafi and 

Freville (1998) was based on strategic oscillation and surrogate constraint information 

that provides a balance between intensification and diversification strategies. The 

algorithm of Vasquez and Vimont (2005) combines Linear Programming with an 

efficient tabu search. He, et al. (2006) proposed a Tabu Search method based on a Double 

Tabu-List inspired by the conclusion of the cognitive psychology about the human 

memory system. 

The genetic algorithms of Chu and Beasley (1998) and Haul and Vo (1998) 

obtained good lower bounds for this problem. Haul and Vo (1998) introduced surrogate 
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relaxations into their genetic algorithm to enhance the process. Khuri, et al. (1994) used a 

genetic algorithm for solving 0-1 MKP, while Cotta and Troya (1998) combined a 

constructive heuristic for initialization and a local search method with a genetic 

algorithm. Kato and Sakawa (2003) introduced the genetic algorithm with decomposition 

procedures as an approximate solution method for large scale 0-1 MKP utilizing with 

block angular structures. Cleary and O'Neill (2005) employed grammatical evolution 

(GE) using different representation schemes. 

Moraga, et al. (2005) have applied Meta-RaPS on the 0-1 MKP. The quality of 

their solutions was close to the one obtained by Chu and Beasley (1998) while using a 

reasonable computational effort. Hembecker, et al. (2007) applied particle swarm 

optimization (PSO) for solving 0-1 MKP. Gong, Zhou and Luo (2011) proposed a hybrid 

artificially glowworm swarm optimization algorithm that utilizes two important 

strategies, how to select the item based on its unit volume value and the binary 

glowworm swarm optimization algorithm. In addition to the ant-based approach of Kong 

(2007), Chiang, et al. (2011) also proposed a novel ant-inspired constructive algorithm, 

AST-MKP, which adopted a constructive graph for leading artificial ants in making 

decisions to select effective solution components. Gallardo, et al. (2007) introduced a 

hybrid model that combines branch-and-bound and memetic algorithms for the 0-1 MKP. 

Wilbaut, et al. (2009) proposed new iterative heuristics with variable fixation to reduce 0-

1 MKP until it becomes sufficiently small to be solved with an exact method in a 

reasonable CPU time. Other than these approaches, several metaheuristics have been 

developed including Differential Evolution (Sima & GUlsen, 2005), Simulated Annealing 



(Drexl, 1988) and Immune Inspired Algorithm (Maoguo, et al., 2007) focusing on the 0-1 

MKP. 

The 0-1 MKP has wide range of real-world application areas, such as capital 

budgeting, allocating processors and databases in distributed computer systems (Gavish 

& Pirkul, 1985). Cutting stock (Gilmore & Gomory, 1966) and loading problems 

(Bellman, 1957; Shih, 1979) are also known applications. The MKP has also recently 

been used to model the daily management of a satellite like SPOT (Vasquez & Hao, 

2001), the resource allocation in distributed data processing (Gavish & Pirkul, 1982) and 

the planning of data-processing programs (Thesen, 1973). The MKP has also been used 

as a subproblem for solving a multicommodity network optimization problem (Gabrel, 

Knippel & Minoux, 1999). 

Most of the best-known solutions for the instances in the OR Library (Beasley 

1990) were obtained by Vasquez and Hao (2001) and Vasquez and Vimont (2005). 

Vimont, Boussier and Vasquez (2008) obtained several new optimal solutions on hard 

instances of the OR Library with their implicit enumeration algorithm based on a reduced 

costs analysis which tends to fix non-basic variables to their exact values. 

Pisinger (1995) investigated knapsack problems in general and their 

categorizations. Chu and Beasley (1998) classified the 0-1 MKP approaches into exact 

algorithms and heuristic algorithms. Wilbaut and Hanafi (2008) presented a family of 

knapsack problems with their applications and reviewed appropriate techniques 

successful in solving these problems. An extensive survey on MKPs can be found in 

Freville (2004) and Fr^ville and Hanafi (2005). The books by Kellerer, Pferschy and 

Pisinger (2004) and Martello and Toth (1990) provide interesting reviews and useful 
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references. Wilbaut, et al. (2008) produced a survey paper with an emphasis to effective 

heuristics and their applications. 

2.2.2 Definition of the 0-1 Multidimensional Knapsack Problem 

The 0-1 MKP is the generalized form of the classical knapsack problem (KP). In 

KP there is a knapsack with an upper weight limit b, a set of n items with different profits 

Cj and weights a, per item j. The problem is to select the items from the set such that the 

total profit of the selected items is maximized without exceeding the upper weight limit 

of the knapsack. If m knapsacks exist, the problem becomes the MKP in which each 

knapsack has a different upper weight limit b„ and an item j has a different weight atJ for 

each knapsack /. The objective is to find a set of items with maximal profit such that the 

capacity of each knapsack is not exceeded (Gallardo, et al., 2009). The 0-1 MKP can be 

formulated as in the equations (2.6 - 2.8): 

n 

Maximize Y.cjxj ' (2.6) 
;=! 

n 

Subjectto <6,, i= 1, ...,m;j= 1, ...,n. (2.7) 
y=i 

Xje {0,1}, j = 1,..., n (2.8) 

where x is a vector of binary variables such that Xj = 1 if item j is selected, and Xj = 0 

otherwise. The 0-1 MKP can be accepted as a special case of the general linear 0-1 

integer programming problem with nonnegative coefficients. In the literature it is 

assumed that profits, weights and capacities are positive integers. However they can be 

easily extended to the case of real values (Martello & Toth, 1990). 



The MKP is an NP-hard problem (Garey & Johnson, 1979) and the number of 

constraints increases its difficulty. Although the classical KP is weakly NP-hard, the 

MKP is much more difficult even for m = 2. According to Wilbaut, et al. (2008), the 0-1 

MKP instances with 500 variables and 30 constraints cannot be solved optimally within a 

reasonable amount of computing time and memory requirement. 
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CHAPTER 3 

MEMORY AND LEARNING IN METAHEURISTICS 

One of the most important effects of improvement in modern sciences and 

technologies is understanding and modeling real life problems realistically and in more 

detail. The natural outcome of this fact is the rapid increase of problem dimensions and 

complexity, which challenges us to develop more sophisticated approaches. A powerful 

answer to this challenge can be based on solving problems by incorporating intelligence 

in the proposed solution methods. Intelligence can be defined as the ability to make the 

right decisions given a set of inputs and a variety of possible actions. In the problem 

solving arena, this is transformed into the term "artificial intelligence", or AI, that 

emerges by systematizing intellectual tasks relevant to human intellectual activity. AI 

employs intelligent procedures to understand and to create intelligent entities (Yang, 

2010). 

Computational Intelligence (CI) is a modern name for the subfield of AI (also 

named scruffy or soft) techniques. CI has a similar meaning to the well-known phrase AI, 

although CI is perceived more as a "bottom up" approach from which intelligent behavior 

can emerge, whereas AI tends to be studied from the top down, and derive from 

pondering upon the meaning of intelligence (Mumford & Jain, 2009). CI involves 

approaches based on strategy and outcome, and includes adaptive and intelligence 

systems, e.g. evolutionary computation, swarm intelligence (particle swarm and ant 

colony optimization) (Engelbrecht, 2007; Pedrycz, 1997). 
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Metaheuri sties can be viewed as another name for the strategy-outcome 

perspective of scruffy AI. Metaheuristics or "modern heuristics" confront this challenge 

by adding strategies and mechanisms to existing construction and local search 

mechanisms in heuristics to avoid local optima (Moraga, 2009). A procedure in a 

metaheuristic is considered black box in that little (if any) prior knowledge needs to be 

known about it by the metaheuristic, and as such it may be replaced with a different 

procedure. 

3.1 Concepts of Memory and Learning 

There are substantial relationships between the term intelligence and the terms 

memory and learning. Intelligence is the ability that requires information captured by 

learning and stored in memory to make correct decisions in solving problems. The level 

of intelligence depends on the efficiency of learning activities and the capacity of 

memory; thus enhancing intelligence will then mean enhancing both memory and 

learning. Most researchers accept intelligence as an umbrella that covers the intellectual 

activities. 

Webster's Dictionary (1996) defines memory as "the act or fact of retaining and 

recalling impressions, facts, etc."; and learning as "knowledge acquired by systematic 

study or by trial and error". Based on these definitions, we can see that the concepts of 

learning and memory are closely related. Furthermore, learning can be thought of as the 

acquisition of skill or knowledge, while memory as the expression of what you have 

acquired. Another factor that can be used in defining these two concepts is the rate at 

which the two processes occur: If the new skill or knowledge is gained slowly, that is 
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considered learning, but if the gain happens instantly, it is then considered creating 

memory (Kazdin, 2000). 

The structure of memory is central to one's knowledge of the past, interpretation 

of the present, and prediction of the fiiture (Kesner, 1998). Memory related to the past 

can be employed to create predictive models in the present, and therefore can guide 

current thoughts, decisions, and actions. Learning lets human beings have a greater 

degree of flexibility and adaptability than any other species. 

Due to significant advancement in neuroscience, the concepts of memory and 

learning have undergone enormous changes over the last decade. In cognitive 

psychology, types of memory can be classified in a number of ways, depending on the 

criterion used. With duration as the criterion, it is divided into three functions for storage: 

sensory, short-term, and long-term (Anderson, 2000). Sensory memory takes the 

information provided by the senses and retains it accurately but very briefly. It is often 

considered part of the process of perception, and essential for storing information in 

short-term memory. The short-term memory temporarily records the succession of 

events, and determines what information moves from sensory memory to short-term 

memory. This information will quickly disappear forever unless we make a conscious 

effort to retain it. Sensory memory is a necessary step for short-term memory, and short-

term memory is a necessary step toward the next stage of retention, long-term memory. 

Long-term memory is relatively permanent storage with information stored on the basis 

of meaning and importance. According to Anderson (2000), its capacity seems unlimited; 

however it sometimes distorts the facts, and tends to become less reliable as time goes by. 



Based on the distinctions related to memory structure, learning can be accepted as a long-

term change in mental representations or associations as a result of experience (Ormrod, 

2008). If learning is a change in behavior, it can then be measured by observing the 

changes in behavior. The most common ways of measuring learning are recording the 

reduction in errors, the changes in the form and/or intensity of the behavior, the change in 

the speed with which a behavior is performed, and the change in the rate or frequency at 

which a behavior occurs (Chance, 2008). 

Since memory stores and retrieves the information that is learned, it is then an 

essential component to all learning activities. Memory is nothing more than the record 

left by a learning process, and thus, memory depends on learning. But learning also 

depends on memory because the knowledge stored in memory provides the framework to 

new knowledge. 

3.2 Memory and Learning in Metaheuristics 

Alan Turing, known as the founder of artificial intelligence, was probably the first 

to use heuristic algorithms during the Second World War in breaking German Enigma 

ciphers via his cryptanalytic electromechanical machine, the Bombe. The Bombe used an 

algorithm to search for the correct setting coded in an Enigma message among about 1022 

potential combinations. Turing named his search method as heuristic search, as was 

expected to work most of the time, but there was no guarantee to find the correct 

solution; it was a great success, nevertheless (Yang, 2010). 

The mechanisms of memory and learning in algorithms store various information 

related to search history so that the algorithm can reach high quality solutions. Learning 
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takes place when the problem at hand is not well known at the beginning, and its 

structure becomes clearer and clearer when more experience with the problem is gained. 

Online learning is the type of learning in which an algorithm uses task-dependent local 

properties for a problem instance while it is solving that instance to determine the 

appropriate level trade-off between diversification and intensification (Yang, 2010). 

Different memory and learning structures have been used in different metaheuristics, as 

shown in Table 2 in which only Tabu Search (TS) is a single-solution metaheuristic and 

the rest are population-based metaheuristics. 

Table 2. Memory Structures in Some Metaheuristics (Adapted from Talbi, 2009) 

Metaheuristics Search Memory 

Tabu search Tabu list 

Evolutionary algorithms Population of individuals 

Scatter search Population of solutions 

Path relinking Population of solutions 

Ant colony optimization Pheromone matrix 

Particle swarm optimization Population of particles 

Estimation of distribution algorithms Probabilistic learning model 

The memory and learning structures can be described in the best way by taking 

TS algorithm as a baseline. In the memory and learning structures of TS, four main 

aspects are defined; recency, frequency, quality, and influence. The recency-based 
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memory keeps track of the attributes of the solutions found in the search process which 

have changed in the recent past. Attributes found in the solutions visited recently are 

defined as tabu-active which are called tabu in TS. 

While the aspect of recency can be accepted as a short term memory 

implementation, the aspect of frequency deals with the long term TS strategies. The 

frequency-based memory consists of mainly two ratios: transition frequencies, which 

record how often the attributes are changed, and residence frequencies, which record how 

often the attributes are component of solutions produced. In scheduling for example, the 

number of times job j has been moved to an earlier position in the sequence can be an 

example for transition frequencies, and the sum of tardiness of job j when it occupies 

position Pj can be an example for residence frequencies (Glover & Laguna, 1997). The 

quality-based memory discovers the common elements in good solutions, or the paths 

that lead to good solutions. In these mechanisms some penalties can also be applied to 

move away from poor solutions. The last aspect of influence-based memory considers the 

effects of the decisions made in the solution process on both the quality and the structure. 

The quality aspect can be accepted as a special case of the influence aspect. 

Intensification and diversification are two important strategies for the memory 

structure. According to Rochat and Taillard (1995), "diversification drives the search to 

examine new regions, and intensification focuses more intently on regions previously 

found to be good" Intensification strategies modify the algorithm to search the promising 

regions more thoroughly based on high quality solution features found in the search 

process, or by modifying choice rules to favor the inclusion of attributes of these 

solutions. These strategies focus on inspecting the neighborhood of elite solutions by 
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incorporating their good attributes into new solutions. On the other hand, diversification 

strategies encourage the algorithm to explore new regions and mainly utilize long term 

memory mechanisms. Local search optimization methods often rely on diversification 

strategies to reach better solutions. Diversification strategies help prevent cycling of the 

search process, and give more robustness to the algorithm. 

The more sophisticated version of a tabu search includes longer term memory 

with associated intensification and diversification strategies. Glover and Laguna (1997) 

define this approach as Adaptive Memory Programming (AMP) because it is based on 

exploiting the strategic memory components. Taillard, et al. (2001) sketch the following 

algorithm of AMP based on the common features of the methods that use these strategic 

memory components: 

1. Initialize memory. 

2. Until the stopping criteria are met, do: 

a. Generate a temporary solution s using data stored in the memory; 

b. Improve 5 by implementing local search, 5and 

c. Update the memory using data brought by j '. 

Based on the AMP approach, Dreo et al. (2007) present Adaptive Learning Search 

(ALS) emphasizing that the memorized data are not only raw input, but provide 

information on the distribution and, thus, on the solutions. The algorithm for ALS 

consists of the following steps: 

1. Initialize a sample. 

2. Until the stopping criteria is met, do: 

a. Sampling: either explicit, implicit or direct; 



29 

b. Learning: the algorithm extracts information from the sample; 

c. Diversification: it searches for new solutions; 

d. Intensification: it searches to improve the existing sample; and 

e. Replace the previous sample with the new one. 

The main difficulty for metaheuristic search is the issue of balancing the 

intensification and diversification strategies. The search process can easily converge 

toward a local optimum and to diversify the search process, or to visit the solutions with 

different attributes, requires increasing the number of moves or components that are 

labeled as undesirable. For TS, the discussion then turns into finding the optimum tabu 

list size. Indeed, the reactive TS is designed to automatically adapt the tabu list size 

(Battiti & Tecchiolli, 1994). 

The term reactive search supports the integration of learning techniques into 

metaheuristic search to solve complex optimization problems. The word reactive here 

describes an immediate response to events during the search through an internal feedback 

loop for online adaptation. The knowledge related to the search history is utilized for 

adaptation in an automatic manner. The algorithm keeps the ability to respond to different 

situations during the search process, but the adaptation is automated, and executed while 

the algorithm runs on a single instance reflecting on its past experience. Intelligent 

optimization refers to a more extended area of research, including online and offline 

schemes based on the use of memory, adaptation, and incremental development of 

models, experimental algorithmics applied to optimization, intelligent tuning, and design 

of metaheuristics (Battiti, Brunato & Mascia, 2008). 



3.3 Metaheuristics with Memory and Learning 

Memory and learning in metaheuristics represent the information extracted and 

stored during the search for better solutions. The content of these mechanisms varies 

from a metaheuristic to another (Table 2). While tabu list represents memory in TS, in 

most of the metaheuristics such as evolutionary algorithms and scatter search, the search 

memory is limited to the population of solutions. In Ant Colonies Optimization (ACO), 

the pheromone matrix is the main component of the search memory, whereas in 

Estimation Distribution Algorithms, it is a probabilistic learning model that composes the 

search memory. 

Of the algorithms in Table 2, Estimation Distribution Algorithms and Path 

Relinking proposed to be incorporated into Meta-RaPS will be discussed in detail in the 

following chapters with Q learning algorithm from machine learning area and algorithms 

with adaptive parameter tuning. 

3.3.1 Tabu Search 

Tabu Search (TS) algorithms, introduced by Glover (1989), are one of the most 

common single-solution based metaheuristics that improve a single solution. The major 

property of this approach emerges from storing information related to the search process, 

which is called memory. A TS can be classified either as A|N|1 or A|N|P. The reason 

behind this classification is that TS employs adaptive memory using a neighborhood 

search and it moves from one current solution to the next after every iteration. 

A TS begins with local or neighborhood search and generally the whole 

neighborhood is explored deterministically and the best solution found in the 
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neighborhood is selected as the new current solution. According to Talbi (2009), a TS 

may be considered as a dynamic transformation of the neighborhood; however, this 

mechanism may create cycles, which in order to be avoided, the TS "memorizes" the 

recent search trajectory by means of a tabu list. Usually, a tabu list consists of a constant 

number of solutions or attributes of the moves, which are updated at each iteration of the 

search process. Besides the tabu list, there is another mechanism called the aspiration 

criteria, to accept a solution that is "good" even though it is in the tabu list. A common 

aspiration criterion is if a solution is better than the best solution so far. 

Due to the fact that a tabu list generally contains the information of recent 

solutions or moves, it can be classified as a short-term memory. Along with the short-

term memory, in a TS there are medium-term and long-term memory mechanisms to 

apply for different purposes. While the medium-term memory, or intensification memory, 

stores the elite solutions and gives priorities to their attributes, the long-term or 

diversification memory, keeps the information of the visited solutions to use in exploring 

unvisited regions in the solution space. 

3.3.1.1 Reactive Tabu Search 

As a design parameter, the size of the tabu list plays a very important role in 

reaching high-quality solutions. Increasing the size of the tabu list can prevent cycles; 

however it can constrain the search process in a certain region, too. To handle this trade­

off, various methods are developed in the literature. During the search process, the robust 

tabu approach chooses randomly different tabu list sizes from a specified range, and the 

deterministic tabu approach picks tabu list sizes that are previously assigned. A common 



feature of these methods is that they require a fixed range determined before the start of 

the search process (Wassan, 2007). These facts brought Battiti and Tecchiolli (1994) to 

the more sophisticated version of the TS, a reactive tabu search in which the size of the 

tabu list dynamically, or reactively, adapts as the search progresses. They created an 

analogy between the evolution of the search process in combinatorial optimization and 

the theory of dynamic systems. According to the authors, similar to a dynamic system, 

three cases should be avoided in the search process: local minima, limit cycles, and 

chaotic attractors. Local minima are attractors of the system dynamics, and they are fixed 

points until the system is enforced by some phenomena to leave the local optimum and 

continue the search process. Limit cycles, or closed orbits, denote the case of visiting 

solutions previously found in the search process. Even in the absence of local minima and 

limit cycles, the solution space can be narrowed or deformed, and the search process can 

visit only parts of the solution space due to the chaotic attractors (Chiang & Russell, 

1997). Battiti and Tecchiolli (1994) used the term chaotic attractor as an example of a 

dynamic behavior that could affect the search process. In their study, chaotic attractors 

are identified "by a contraction of the areas, so that trajectories starting with different 

initial conditions will be compressed in a limited part of the solution space, and by a 

sensitive dependence upon the initial conditions, so that different trajectories will 

diverge". They suggested that for an effective and efficient search process, preventing 

limit cycles is not enough, and the chaotic-like attractors should be removed too. 

According to Glover and Laguna (1993), avoiding cycles is not the ultimate 

purpose of the search process; another purpose is to continue the exploration of new 

solution regions. To reach these goals, reactive tabu search implements two mechanisms: 
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first is adapting the size of tabu list (tabu tenure) throughout the search process depending 

on the repetitions of the solutions. The algorithm stores the information related to the 

solutions visited during the search process to control the repetitions and the interval 

between visits. The mechanism increases the size of tabu list when the number of 

repetitions exceeds a certain threshold, and vice versa. The second mechanism is an 

escape or diversification strategy, to take the search process out from its current region 

randomly if it repeats itself excessively (Wassan, 2006), or in other words, when there is 

evidence for chaotic attractors in the search space. 

While adapting the size of the tabu list, intensification strategies are also 

employed to deeply search the area that gives good or elite solutions. Reactive tabu 

search algorithms aim to balance the intensification and diversification functions to 

control and run the search process fluently. As in the basic tabu search, in addition to the 

tabu list, the aspiration criteria also help prevent getting trapped at a local optimal 

solution. 

3.3.2 Evolutionary Algorithms 

The works of Mendel on the heredity from parents to offspring, and Darwin's 

theory of evolution presented in his famous book On the Origin of Species from the 19th 

century have inspired computer scientists in designing evolutionary algorithms (EAs) in 

the 1980s. Since then different approaches have evolved independently in the 

evolutionary algorithms area: Genetic algorithms, mainly developed by Holland (1962; 

1975); evolution strategies, developed by Rechenberg (1965; 1973) and Schwefel (1965); 
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evolutionary programming by Fogel (1962; 1966) and genetic programming proposed by 

Koza (1992). Each of these approaches is inspired by the principles of natural evolution. 

Genetic Algorithms (GA) are generally associated with binary representations; 

however, other types of representations can also be employed in different versions of 

GAs. The GA usually implements a crossover operator to two solutions having a "good" 

fitness values, and a mutation operator to modify the individual solution to create 

diversity. The replacement, or survivor selection, is performed by replacing the parents 

systematically with offspring. The basic crossover operator is based on a n-point or 

uniform crossover while the mutation is bit flipping. Probabilities are applied to both of 

the crossover and mutation operators. 

Evolution Strategies (ES) are mostly applied to continuous optimization where the 

problem representations are based on real-valued vectors. ES usually use an elitist 

replacement strategy, and a normally (Gaussian) distributed mutation, while crossover is 

rarely used. An individual is composed of the problem's decision variables as well as 

some search parameters in order to evolve both the solution and the strategy parameters 

(e.g., mutation step size) at the same time. Their main advantage is their efficiency in 

terms of time complexity (Talbi, 2009). 

Evolutionary programming (EP) mainly uses mutation, but not recombination or 

crossover. Traditional EP algorithms have been developed to evolve finite state machines 

to solve time series prediction problems and more generally to evolve learning machines 

(Fogel, 1966). Contemporary EP algorithms have later been applied to solving 

continuous optimization problems using real-valued representations. They use normally 

distributed mutations and self-adaptation principle of the parameters as in ESs. The 
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parent selection operator is deterministic, while the replacement operator is probabilistic 

and is based on a stochastic tournament selection (Eiben, 2003). EP is less used than the 

other approaches of EAs because of its similarity to ES. 

Genetic programming (GP) expands the scope of the generic model of learning to 

the space of programs. Its main distinction from other EAs approaches is that the 

evolving individuals are themselves programs (nonlinear representation based on trees) 

instead of fixed length strings from a limited alphabet of symbols (linear representation). 

In GP, the parent selection is based on fitness proportions and the survivor selection is a 

generational replacement. The crossover operator is based on subtrees exchange and the 

mutation is based on random change in the tree. One of the main problems in GP is the 

uncontrolled growth of trees, which is called bloat. Theory of GP is less developed than 

in evolution strategies and genetic algorithms (Langdon & Poli, 2002) and it is widely 

applied in machine learning and data mining tasks such as prediction and classification. 

In EAs, the population is usually generated randomly. Every individual in the 

population is an encoded version of a solution that is called chromosome while the 

decision variables within a solution (chromosome) are genes. The possible values of 

variables (genes) are the alleles and the position of an element (gene) within a 

chromosome is called locus. An objective function stands for a fitness value which shows 

the ability of an individual or a solution to survive in its environment. At each step, 

individuals are selected to form parents depending on their fitness value; individuals with 

better fitness are selected with a higher probability. The selection mechanism will lead 

the population to better solutions. However, individuals not having "good" fitness are not 

discarded immediately since they may have useful genetic material for future operations. 
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The selection process is executed by assigning a strategy, e.g. roulette wheel selection, 

tournament selection, stochastic universal sampling, or rank-based selection. 

The selected individuals are then reproduced using variation operators (e.g., 

crossover, mutation) to generate new offspring. Finally, a replacement mechanism is 

applied to select which individuals (parents and offspring) of the population will survive 

to the new generation. Mutation operators are unary operators acting on a single 

individual representing small changes to selected individuals of the population. The 

probability Pm defines the mutation probability for each element (gene) of the 

representation. In general, small values are recommended for this probability 

(Pm € [0.001, 0.01]). Some strategies initialize the mutation probability to 1/k where k is 

the number of decision variables, meaning that only one variable is mutated. The role of 

crossover operators is to pass down some characteristics of the two parents to generate 

the offspring. Unlike unary operators such as mutation, the crossover operator is binary 

and sometimes «-ary. The crossover probability Pc represents the proportion of parents on 

which a crossover operator will act. Common values for crossover probability are 

typically selected in the interval [0.45, 0.95]. 

The population size is another important parameter for EAs and usually larger 

population sizes have greater chances of converging to better or optimal solutions. While 

the sampling errors become more important in smaller populations, the time complexity 

of EAs grows linearly with the size of the population. A proper level of population size 

between the quality of the obtained solutions and the search time must be determined. In 

practice, a population size between 20 and 100 is usually considered typical. 
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3.3.3 Scatter Search 

The concept of scatter search (SS), first proposed by Glover (1977), is a 

deterministic algorithm applied to both combinatorial and continuous optimization 

problems. SS is a population metaheuristic that recombines solutions selected from a 

reference set to build others, and from this point of view, it can be seen as an 

evolutionary algorithm (Glover, Laguna & Marti, 2003). SS creates the reference set by 

selecting "good" solutions from the population obtained in the previous search process. 

The selected solutions from the reference are combined to provide starting solutions to an 

improvement procedure, and the reference set is updated to incorporate both high-quality 

and diversified solutions. The diversity can be measured by taking the minimum 

Hamming distance from a solution to any solution selected for the reference set. The set 

of solutions is evolved by the use of recombination of solutions and applying some local 

search algorithms. 

SS is designed by integrating of five methods: 

• A Diversification Generation Method to generate a set of diverse initial 

solutions in order to diversify the search by selecting high-quality solutions. 

• An Improvement Method to transform a trial solution into one or more 

enhanced trial solutions, in general, by applying a local search procedure. 

• A Reference Set Update Method to create a reference set from the "best" 

solutions by keeping both diverse and high-quality solutions. 

• A Subset Generation Method to operate on the reference set, to produce a 

subset of its solutions as a basis for creating combined solutions. This method 

is similar to the selection operator in EAs with the differences being, first, the 
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SS uses a deterministic operator, whereas in EAs, it is generally a stochastic 

operator; second, the size of the reference set in SS is much smaller than the 

size of the population in EAs (Talbi, 2009). 

• A Solution Combination Method to transform a given subset of solutions 

produced by the Subset Generation Method into one or more combined 

solutions. The combination method can be seen as the crossover operator in 

EAs where more than two individuals are recombined. 

3.3.4 Swarm Intelligence 

In the field of optimization there are some promising algorithms inspired by the 

behavior of some species such as ants, birds, fish, bees, etc. These types of algorithms are 

called swarm intelligence algorithms. The expression "swarm intelligence" was first used 

by Beni, Hackwood, and Wang (Beni, 1988; Beni & Wang, 1989; Hackwood & Beni, 

1992) in the context of cellular robotic systems. Swarm intelligence is defined as a field 

of computer science which is focused on the efficient computational methods for solving 

problems in a way that is inspired by the behavior of real swarms or insect colonies 

(Bonabeau, Dorigo & Theraulaz, 1999: Kennedy, Eberhart & Shi, 2001). The main 

characteristics of (artificial) swarm intelligence algorithms are that the particles, or 

species, are simple and nonsophisticated agents; they cooperate by an indirect 

communication instrument; and they move in the decision space of the optimization 

problem (Ahuja, et al., 2002). 

Indeed, the behavior of real species is complex; they can process a lot of sensory 

inputs, which means a large amount of information. However, the complexity of the 
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species is still not sufficient to describe what these social colonies can do. This issue of 

how to connect individual behavior with collective performance can be explained by 

using self-organization (SO) concept, and in reality, the activities of social species are 

self-organized. SO theories originally developed in the context of physics and chemistry 

but have been extended to social insects to show that complex collective behavior may 

emerge from interactions among individuals that exhibit simple behavior (Haken, 1983; 

Nicolis & Prigogine, 1977). Recent research shows that SO is a major component of a 

wide range of collective phenomena in social species (Deneubourg, et al., 1989). The 

modeling of social species by means of SO can help design artificial distributed problem-

solving devices that self-organize to solve problems, or in other words swarm-intelligent 

systems. SO is based on four elements (Bonabeau, Dorigo & Theraulaz, 1999). 

• Positive feedback (amplification) promotes the creation of structures. For 

instance, recruitment to a food source is a positive feedback that relies on trail 

laying and trail following in some species like ants. 

• Negative feedback counterbalances positive feedback and helps stabilize the 

collective pattern; it may take the form of saturation, exhaustion, or competition. 

• Amplification of fluctuations (random walks, errors, random task-switching, etc.). 

Not only do structures emerge despite randomness, but randomness is often 

crucial since it enables the discovery of new solutions, and fluctuations can act as 

seeds from which structures nucleate and grow. 

• Multiple interactions. A single individual can generate a self-organized structure, 

however, SO generally requires a minimal density of mutually tolerant 
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individuals. Moreover, individuals should be able to make use of the results of 

their own activities as well as of others'. 

SO in social insects often requires interactions among insects and such 

interactions can be direct or indirect. Indirect interactions are more subtle however; two 

individuals interact indirectly when one of them modifies the environment and the other 

responds to the new environment at a later time. This type of interaction is an example of 

stigmergy, which was introduced by Grasse (1959; 1984) and is considered the second 

most important theoretical concept of swarm intelligence after self-organization. 

Stigmergy (from the Greek stigma: sting, and ergon: work) does not describe how species 

coordinate their activities, however, it does provide a general mechanism that relates 

individual and colony-level behaviors: individual behavior modifies the environment, 

which in turn modifies the behavior of other individuals. 

The most successful swarm intelligence inspired optimization algorithms are ant 

colony and particle swarm optimization. Besides the wide range of applications of swarm 

intelligence in the literature, hybrid techniques in which swarm intelligence algorithms 

work with other metaheuristics can also be a promising concept to make use of both the 

intelligence of swarms and the efficiency of metaheuristics. 

3.3.5 Ant Colony Optimization 

Ant colony optimization (ACO) is one of the most successful swarm intelligence 

algorithms. The possibility of "forming of communication by means of modifications of 

the environment" is defined as stigmergy, which is one of the basic concepts for the ACO 

(Dreo et al, 2006). 
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The ACO aims to imitate the real ants as multiagent systems to solve optimization 

problems and was first proposed by Dorigo (1992). Even though real ants cannot see 

well, they can find the shortest path between two points. In this process they are using a 

very simple and yet powerful mechanism; a chemical trail called a pheromone. The ants 

follow their routes according to the amount of pheromone; the larger the amount of the 

pheromone on a route, the larger the probability of being selected by the ants. However 

the pheromone is a volatile substance and it decreases over time. In the beginning of the 

process, the probabilities of selecting the routes by ants are equal, but since the shorter 

routes need less time to travel, they will emerge with higher rates of selection due to 

higher amounts of pheromone. This process, supported by the evaporation mechanism, 

will end up with finding the shortest path. The pheromone trail, in essence, represents the 

long term memory of the entire system and where information related to the process is 

stored (Dorigo & Stiitzle, 2004). 

ACO is composed of two main steps: construction of solutions and updating the 

pheromone. In the first step solutions are constructed by adding solution components to 

partial solutions according to the probabilistic transition rule in equation (3.1): 

'  E m W  ( 3 I >  
leN-

where Ty is pheromone desirability, rjy is heuristic desirability, a is ratio of pheromone 

desirability (0 < a < 1), and p is ratio of heuristic desirability (0 < P < 1) for selecting 

component j after the component /. By using this probabilistic transition the construction 

algorithm takes into account both the amount of pheromone and problem-dependent 

heuristic information. 



In the second step the amount of pheromone is updated in two phases: 

evaporation phase and reinforcement phase. In the evaporation phase the pheromone trail 

is reduced by a fixed ratio q (0 < q < 1) for all components in the decision space by 

applying equation (3.2). This evaporation process protects all ants from a premature 

convergence toward good solutions and encourages diversifying the search space. 

tij = (l-q)tij (3.2) 

In the reinforcement phase, the amount of the pheromone is updated according to 

solutions generated by using two main strategies: online and offline updates. In the case 

of online updating, the pheromone trail is updated by an ant either at each step of the 

solution construction (step-by-step updating) or after a complete solution is generated 

(delayed updating). The offline updating is more popular where the updating process is 

applied only after all ants generate a complete solution. In this approach different 

strategies can be performed including quality-dependent, rank-based, elitist solution, 

best-worst, moving average, and minimum pheromone values update (Merkle & 

Middendorf, 2005). 

The selection of the of ACO parameters plays a critical role in the search process. 

Therefore, a good trade-off between the ratios of the pheromone desirability (or 

intensity), and heuristic desirability (or visibility) must be found to balance intensification 

and diversification. If the ratio of pheromone desirability is equal to 0, the ACO 

algorithm will act like a stochastic greedy algorithm, and if the ratio of heuristic 

desirability is equal to 0, only the pheromone trails will guide the search. 
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ACO can be classified as a construction and population-based metaheuristic, 

which although has been created mainly to solve discrete optimization problems, it has 

been extended to deal with continuous optimization problems. 

3.3.6 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic population-based metaheuristic 

inspired by swarm intelligence. PSO simulates the social behavior of natural organisms, 

e.g. bird flocking or fish schooling, in search of food. Among these organisms, or the 

swarm, a dynamic behavior in relatively complex displacements can be observed, where 

the individuals have access to limited information, like their closest neighbors' positions 

and speed (Dreo, et al, 2006). Each individual uses the local information regarding this 

displacement to decide on its own displacement. In other words, a coordinated behavior 

using local movements emerges without any central control. 

In PSO algorithms, each individual particle of a swarm represents a potential 

solution in a multidimensional search space. The particles start searching randomly for 

the optimal solution of a given objective function by moving through the search space. 

The objective function measures the quality or amount of food at each place and the 

particle swarm searches for the place with the best or most food (Merkle & Middendorf, 

2005). The position of each particle is adjusted according to its velocity (i.e., rate of 

change) and the difference between its current positions, the best position found by its 

neighbors, and the best position it has found so far. As the model is iterated, the swarm 

focuses more and more on an area of the search space containing high-quality solutions 

(Blum & Li, 2008). 



The individual particle is represented by the vector x*, which has its own position 

and velocity. Each particle adjusts its position according to the global optimum with 

respect to two factors: the best position visited by itself (pbesti) denoted by the vector pb 

and the best position visited by the whole swarm (gbest) denoted by the vector gj. The 

vector (pi - Xj) shows the difference between the current position of the particle i and the 

best position of its neighborhood. The neighborhood, which must be defined for each 

particle, describes the social influence between the particles in the swarm. To define a 

neighborhood, two methods are traditionally used: the global best method and the local 

best method. In the global best method, the neighborhood is defined as the whole 

population of particles, whereas in the local best method, the neighborhood of a particle 

is the set of directly connected particles, in which case, the neighborhood may be empty 

and the particles isolated. A particle is composed of three vectors: the x-vector for its 

current position, the p-vector for the location of the best solution found so far by the 

particle and the v-vector for the direction of the particle to travel in the search space. In 

each iteration, the movement of the particle can be given by equation (3.3): 

Xj(t) = Xi(t-l) +Vj(t) (3.3) 

Updating of the particles' positions is dependent on the direction of their 

movement, their speed, the best preceding position p, and the best position pg among the 

neighbors as shown in the equation (3.4): 

Vi(t) = v<t - 1) + piai x (pi - Xj(t - 1)) + p2 a2 x (pg - Xj(t - 1)) (3.4) 

where pi and p2 are random variables in the range [0, 1], and cti and 0.2 represent the 

learning factors. The parameter ai is the cognitive learning factor that decides the level 

that a particle has toward its own success, and the parameter 0.2 is the social learning 
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factor that reflects the level of attraction that a particle has toward the success of its 

neighbors. Socio-psychology suggests that the movements of the individuals are 

influenced by their last behavior and that of their neighbors who are closely placed in the 

social network and not necessarily in space. 

To control the balance between intensification and diversification of the search 

space, a weight w, called inertia, is generally added to the velocity update procedure, as 

in equation (3.5): 

Vj(t) = w x Vj(t - 1) + pi x (ps - X|(t - 1)) + p2 x (pg - Xj(t - 1)) (3.5) 

A large inertia weight encourages diversification of the search, and a smaller 

inertia weight encourages intensification of the search in the current region. According to 

the new velocity, each particle updates its position in the solution space was given in 

equation (3.3). 

After these updates each particle will update the best local solution, pi = Xi 

if (xi) < pbesti, and the best global solution of the swarm, gj = Xj if (Xj) < gbest- As such, a 

particle changes its position after each iteration according to its own and to its neighbors' 

positions. 

Unlike ACO algorithms, PSO has been successfully designed originally for 

continuous optimization problems; however, by employing velocity models, PSO can be 

applied to discrete optimization problems also. Velocity models for discrete optimization 

problems are inspired from mutation and crossover operators in EAs. The velocity 

models may be real valued, stochastic, or based on a list of moves. In stochastic velocity 

models for binary encodings, the velocity is associated with the probability for each 

binary dimension to take value of 1. 
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CHAPTER 4 

METHODOLOGY 

In the process of incorporating memory and learning mechanisms into Meta-

RaPS, four of the proposed approaches, EDA, Q learning, Path Relinking, and adaptive 

parameter tuning, will be investigated throughly and designed to create its own main 

version of Meta-RaPS. For each of these main versions, two versions will be introduced 

depending on how solutions are generated for their memory mechanisms: randomly (or 

simply using the weights of items) and using a greedy rule. Although the first type is not 

expected to produce high quality solutions, it may give an idea about the pure 

contribution of memory and learning ability to an independent algorithm, i. e. not getting 

any help from a greedy rule. And the main idea for the second type is to guarantee 

obtaining high quality solutions by applying a greedy rule. 

After completing these four proposed algorithms, the Meta-RaPS was redesigned 

as the fifth algorithm by utilizing all the lessons learned from the efforts of incorporating 

the memory and learning mechanisms. All these proposed algorithms were evaluated and 

reported by following the same method. 

4.1 Performance Comparison of the Proposed Algorithms 

Due to the existence of strong randomness component in the proposed Meta-RaPS 

versions were run 10 times for each instance and the average will be taken for all runs. 

After completing the solution process, the performance of each algorithm will be reported 

in terms of solution quality, or percentage deviation, number of iterations, CPU time, and 
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frequency of reaching optimum/best solutions. The percentage deviations were calculated 

using equation (4.1): 

f(S,)-f(S)xlOO (4 I) 
f(s«) ' 

where s is the solution found in the current method and s* is the optimum solution/best 

solution. The percentage deviations were calculated not only for the average of best 

improved solutions (IMean), but also for the best of the best improved solutions found in 

10 runs (IBest) and for the average of constructed solutions (CMean). While IMean 

shows the mean performance of the algorithm, IBest may give an idea about the limits of 

the algorithm. CMean helped evaluate the quality of the initial solutions produced by 

using the priorities of memory and learning mechanisms since the improvement phase is 

same for all algorithms. 

In terms of the frequency of reaching optimum/best solutions, the number of 

times the algorithm has found the optimum/best solutions in 10 runs were given under the 

heading of Optimum Frequency. The heading "Optimum Instance" shows the number of 

instances solved optimally/with best solutions by the algorithm. To finish the report, the 

averages and standard deviations for these metrics were calculated. 

Comparison of the proposed Meta-RaPS algorithms were implemented in the 

following aspects: 

• Between versions of proposed Meta-RaPS algorithms, 

• Before and after memory and learning inclusion into Meta-RaPS, and 

• With other applications in the literature applied to solve 0-1 MKP. 

For the second aspect, the solutions of the proposed algorithms were compared 

with the results of the original versions of Meta-RaPS by Moraga et al. (2005). 
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4.2 Stopping criteria 

Stopping criteria for the proposed algorithms are: 

• To run the algorithms 10,000 iterations for small, medium and large size 

instances, 

• Or, to stop whenever the deviation% of the solution from the optimal/best found 

solution becomes 0, whichever comes first. 

Although the small and medium size instances do not need 10,000 iterations for 

their solution process, this number of iterations is accepted only to be consistent with the 

number of iterations selected by Moraga, et al. (2005) in their Meta-RaPS approach. 

4.3 0-1 MKP Instances 

To test and compare the performance of the proposed algorithms, they will be 

applied in 0-1 MKP test instances in the literature. The standard library of 55 small and 

medium size 0-1 MKP test instances in the literature developed by Petersen (1967), 

Weingartner and Ness (1967), Shih (1979) and Freville and Plateau (1990) were solved 

by proposed versions of Meta-RaPS. Details of small and medium size 0-1 MKP 

problems are shown in Table 3. 

For large size 0-1 MKP test instances, 270 test instances generated by Chu and 

Beasley (1998) were used. These 0-1 MKP test instances are created by accepting the 

tightness ratios of 0.25, 0.50 and 0.75 for each group of 10 instances in the set, 

respectively. The tightness ratio a is defined as the ratio between the constraint value and 

the sum of the corresponding weights (4.2). 
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Table 3. Small and Medium Size 0-1 MKP Test Instances 

Name Item Knapsack # Name Item Knap 

HP1 28 4 29 WEISH04 30 5 

HP2 35 4 30 WEISH05 30 5 

PB1 27 4 31 WEISH06 40 5 

PB2 34 4 32 WEISH07 40 5 

PB4 29 2 33 WEISH08 40 5 

PB5 20 10 34 WEISH09 40 5 

PB6 40 30 35 WEISH10 50 5 

PB7 37 30 36 WEISH11 50 5 

PETERSEN1 10 6 37 WEISH12 50 5 

PETERSEN2 10 10 38 WEISH13 50 5 

PETERSEN3 15 10 39 WEISH14 60 5 

PETERSEN4 20 10 40 WEISH15 60 5 

PETERSEN5 28 10 41 WEISH16 60 5 

PETERS EN6 39 5 42 WEISH17 60 5 

PETERSEN7 50 5 43 WEISH18 70 5 

SENTOl 60 30 44 WEISH19 70 5 

SENT02 60 30 45 WEISH20 70 5 

WEING1 28 2 46 WEISH21 70 5 

WE1NG2 28 2 47 WEISH22 80 5 

WEING3 28 2 48 WEISH23 80 5 

WEING4 28 2 49 WEISH24 80 5 

WEING5 28 2 50 WEISH25 80 5 

WEING6 28 2 51 WEISH26 90 5 

WEING7 105 2 52 WEISH27 90 5 

WEING8 105 2 53 WEISH28 90 5 

WEISH01 30 5 54 WEISH29 90 5 

WEISH02 30 5 55 WEISH30 90 5 

WEISH03 30 5 



50 

ff = —-i—e {0.25,0.5,0.75} 

Is (4'2) 
j=i 

Resource consumptions a,y are random numbers assigned between (0, 1,000), and 

profits are correlated to the weigths Cj are are generated via equation (4.3): 

JH, a 
Cj = V—+(500r)e {0.25,0.5,0.75} (4.3) 

where m is the number of knapsacks and r, is a random number generated from (0, 1]. 

Using the gap, i. e. the relative distance between the best integer value found in the 

branch and bound and the LP value of the best unexplored node in the three (Osorio & 

Cuaya, 2005), as a measure of hardness, Pirkul (1987) concluded that the gap increases as 

the constraints become tighter, if the number of variables and constraints are constant. 

Distribution of large size 0-1 MKP problems in terms of item and knapsack is 

summarized in Table 4. Besides best/optimal solutions found for these test problems, the 

LP relaxation values for these large size test problems are also available in the OR-

Library (Beasley, 1990). 

Table 4. Large Size 0-1 MKP Test Instances 

Knapsack 

Item 5 10 30 

"TOO 30 30 30 

250 30 30 30 

500 30 30 30 

Total 270 
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Two versions of the four proposed algorithms will be first employed to solve the 

small and medium size instances. Depending on their performances, one of these two 

versions will be selected as its main version of Meta-RaPS to solve first three sets of 

large size instances presented in the first row in Table 4. In the case of redesigning Meta-

RaPS, all small, medium, and large 0-1 MKP instances will be solved. 

4.4 Tuning Parameters 

The values of the parameters for the metaheuristics have significant impact on 

both the solution process and solution quality. To obtain the best results, the issue of 

"finding the best parameter setting" for metaheuristics becomes an optimization problem 

by itself. There is no universal set of parameter for a certain metaheuristic to be applied 

to different problems. In fact, for different problems, there are different optimal 

selections (Wolpert & Macready, 1997). 

In setting the parameters of the algorithms, two main forms are defined: 

parameter tuning and parameter control (Eiben, Hinterding & Michalewicz, 1999). In 

parameter tuning, or offline tuning, parameters are set a priori. In the case of parameter 

control, or online tuning, initial values for the parameters are assigned and changed 

during the search process. 

One-Factor-At-a-Time (OFAT) and Design of Experiments (DOE) approaches are 

offline parameter tuning methods used to find the best parameter setting in the literature 

(Daniel, 1994). Unlike DOE, OF AT neglects the interactions between the parameters that 

might change the whole solution process and quality. Particularly, in terms of the 

interactions, DOE methods are promising approaches and can be employed to tune the 
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parameters more effectively. There have been many studies to tune the parameters of 

metaheuri sties by means of DOE (e.g, Figlali, et al., 2009; Kramer, Gloger and Goebels, 

2007; Li et al., 2009). 

4.4.1 Design of Experiments (DOE) 

To finetune the Meta-RaPS parameters in the most effective way, DOE offers 2-

level (2k) full factorial, orthogonal array, central composite and D-optimal design 

methods. 2-Level (2k) full factorial design generated by using the Yates algorithm (Box, 

Hunter & Hunter, 1978) is one of the most widely used DOE tools where k is the number 

of factors. One drawback of 2k full factorial design is the rapid increase of the number of 

experiments as the number of factors increases. The fact that effects of 3 or higher 

interactions tend to be insignificant, and therefore may be ignored, bring us to a fractional 

factorial design type named orthogonal array (OA) design where only main factors and 

the 2-factor interactions are considered. 

In 2k full factorial and OA designs, it is assumed that the relationship between the 

2-level factors is linear. It is possible to increase the number of levels to 3 to capture the 

nonlinearity, however, it would be a bit controversial and none of the rules for the 2-

levels would apply in those designs. Also, this would not be the best candidate for 

continuous factors like parameters used in metaheuristics. A better approach to cope with 

the nonlinearity and continuous factors could be Response Surface Methods (RSM) using 

Central Composite Design (CCD) developed by Box and Wilson (Box & Wilson, 1951). 

After implementing multiple DOE methods to a GA parameter setting, it was 

observed that, D-optimal design is the most effective DOE methods in terms of tuning 



53 

parameter settings (Arin, Rabadi & Unal, 2011). This study encourages the application of 

a D-optimal design in tuning the parameters of the Meta-RaPS' proposed versions. 

4.4.2 D-Optimal Design 

CCD is quite an efficient design especially due to adding the second-order 

nonlinearity; however, in some cases it may not be enough to understand the relationships 

between factors, and also, the number of experiments must be kept to an absolute 

minimum. If a design has an absolute minimum number of experiments, such design is 

called "saturated design". Saturated designs are constructed by applied D-optimality 

criterion. Creating a D-optimal design begins with the estimator of simple linear 

regression in equation (4.4): 

Y=b 0  + £b ,x  ( 4 . 4 )  

where bo is the intercept, bj are the slopes. If this equation is written in matrix form, we 

will have (4.5): 

Y = XB+e (4.5) 

The set of design B can be estimated in the form given in (4.6) by applying the Least 

Square Regression method. 

B = (XTX)-'XTY (4.6) 

A statistical measure of accuracy of B is the variance-covariance matrix in (4.7): 

V(B)=ct2(XtX)"1 (4.7) 

where a2 is the variance of the error. V(B) is a function of (XTX)"' and to increase the 

accuracy, (XTX)"' should be minimized. Statistically, minimizing (XTX)"' is equal to 
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maximizing the determinant of (XTX). "D" in the term "D-optimal" comes from the first 

letter of the word "determinant" where the D-optimal design seeks to maximize |X X|. 

The minimum number of experiments for D-optimal design is calculated as 

(n+l)(n+2)/2 where n is number of factors. To obtain more accurate results, D-optimal 

designs can be augmented by adding more experiments. D-optimal design with k = 3 is 

created by augmenting the design by two experiments in Table 5. 

Table 5. D-Optimal Design with k = 3 

Experiment A B C AB AC BC A2 B2 C2 

1 -1 -1 -1 1 1 1 1 1 1 

2 -1 -1 1 1 -1 -1 1 1 1 

3 -1 0 0 0 1 

4 -1 1 -1 1 -1 1 1 1 

5 -1 1 1 -1 -1 1 1 1 1 

6 0 -1 0 0 0 0 1 0 

7 0 1 0 0 0 0 0 1 

8 1 -1 -1 1 1 1 1 

9 1 -1 1 -1 1 -1 1 1 1 

10 1 1 -1 1 -1 -1 1 1 1 

11 1 1 0 1 0 0 1 1 0 

12 1 1 1 1 1 1 1 1 1 

Besides the advantages mentioned before, if some experiments are infeasible, D-

optimal designs can still be used by extracting these experiments from the design. Some 

of the interesting features of D-optimal designs, unlike the previous DOE methods, that 
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they are not orthogonal, and there are no degrees of freedom to test the accuracy of the 

model. There are some heuristics (Box & Drapper, 1974), and software (SAS Institute, 

2007) available to come up with a design that maximizes |X X|. 

In applying D-optimal design, the first step is coding the parameters (priority as 

factor A, restriction as factor B, improvement as factor C) in lower, medium, and upper 

levels (-1,0,1). In each experiment, the factors, or parameters, are set and run according 

to the first three columns in the design shown in Table 6. After the solutions from the 

experiments are obtained, the results are analyzed by implementing regression analysis 

and its mathematical model is derived. The model can then be solved by a linear 

programming solver, such as MS Excel, to minimize the objective function, which is 

percentage deviation from optimum/best solution found. The parameter setting by D-

Optimal is found after coding back these findings to their real values. 

By applying the D-optimal design the parameter settings are tuned for the first 

three Meta-RaPS algorithms presented in Table 6 for small/medium and large size 0-1 

MKP instances. 

Table 6. Parameters of the Proposed Meta-RaPS Algorithms for 0-1 MKP Instances 

Values 
Parameter 

Small/Medium 0-1 MKP Large 0-1 MKP 

Priority (p) 04 05 

Restriction (r) 0.2 0.5 

Improvement (i) 0.1 0.1 

Number of iterations (I) 10000 10000 
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These parameter settings were used only for the versions of Meta-RaPS EDA, 

Meta-RaPS Q and Meta-RaPS PR as offline parameter tuning. In the Meta-RaPS AP 

version, parameters were tuned online, i.e. adaptively changed with the solution process. 

In the redesigned version of Meta-RaPS, the parameters found adaptively in the Meta-

RaPS AP were used. 

4.5 Statistical Comparison 

In the statistical comparison of the proposed algorithms, the first step is to 

determine whether there are any significant differences between the means of the Meta-

RaPS versions in terms of percentage deviation and computational time. Since more than 

two algorithms are proposed, it is inappropriate to employ a t-test which compares the 

pairs. In this case, the way to evaluate whether or not the difference between the 

algorithms is statistically significant is using a one-way analysis of variance (ANOVA). 

The one-way ANOVA applies the F-test to determine whether there is a significant 

difference among treatment means. When the null hypothesis (Ho: "Means of Percentage 

Deviations/Time for Meta-RaPS Versions Are Equal") is rejected via the one-way 

ANOVA, this shows that some of the treatment or factor level means are different but 

does not identify which ones are different. To determine which specific algorithms differ 

from each other, a post-hoc Multiple Comparisons Test is needed. Tukey's multiple 

comparison test is one of several tests that can be used to determine which means 

amongst a set of means differ from the rest. Tukey's multiple comparison test is also 

called Tukey's HSD (honestly significant difference) test. The test compares the 

difference between each pair of means with appropriate adjustment for the multiple 
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testing. The Tukey multiple comparison test, like the t-test and ANOVA, assumes that the 

data from the different groups come from populations where the observations have a 

normal distribution and the standard deviation is the same for each group (Montgomery 

& Runger, 2003). In the one-way ANOVA analysis, the significance level is accepted as 

0.05. 

4.6 Conditions for the Comparison 

All of the proposed Meta-RaPS algorithms are implemented in C++. The 

small/medium instances are solved on the Intel i5 CPU 2.27 GHz PC and the large 

instances are solved on the Intel(R) Xeon(R) CPU E5690 3.47 GHz workstation. Since 

there are many parts in the proposed algorithm in which randomness plays a very 

important role, all of the proposed algorithms solved each instance 10 times, and their 

mean and standard deviations were calculated for analysis. 

The proposed algorithms were created by incorporating different memory and 

learning mechanisms into Meta-RaPS. In other words, the only difference among all the 

proposed algorithms is the learning and memory mechanisms, while the Meta-RaPS 

approach keeps its main structure the same. By following this approach, the efficiency of 

different memory and learning mechanisms were compared in a fair way as shown in the 

following chapters. 
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CHAPTER 5 

INCORPORATING ESTIMATION OF DISTRIBUTION ALGORITHMS INTO 

META-RAPS 

In demonstrating the contribution of memory and learning into metaheuristics, 

Estimation of Distribution Algorithms (EDA) is the first method incorporated as a 

memory and learning mechanism into the Meta-RaPS. EDA is a recent stochastic 

optimization technique that explores the space of candidate solutions by sampling an 

explicit probabilistic model constructed from promising solutions found so far (Hauschild 

& Pelikan, 2011). EDA estimates the probability distribution for each decision variable 

and with the help of this distribution it generates new solutions. These new solutions will 

then replace the old population according to given rules. This process iterates until 

termination criteria are met. 

5.1 Literature Review 

The term EDA was first introduced by Miihlenbein and PaaB (1996) in their 

seminal work. They revealed that selecting individuals (i.e. solutions) by means of the 

estimation of their probability distribution was one way to create more efficient 

Evolutionary Algorithms (EAs). Later, Miihlenbein, et al. (1999) identified the 

factorization of the probability distribution according to a probability model, as a 

practical method that permits the computation of estimations which have been the core of 

what mostly known as EDAs (Santana, 2005). Since then, the growing interest in EDAs 

constituted a discipline in evolutionary computation. 
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Usually, the probabilistic model as well as the learning and sampling methods 

employed in EDAs are static. Santana, et al. (2008) presented a general framework for 

introducing adaptation in EDAs. Gao and Culberson (2005) identified criteria that 

characterize the space complexity of two typical implementation schemes of EDAs - the 

factorized distribution algorithm and Bayesian network-based algorithm. Chen, et al. 

(2010) investigated the computational time complexity of a simple EDA, the univariate 

marginal distribution algorithm (UMDA), in order to gain more insight into EDAs 

complexity. 

Santana (2005) proposed a new probability model based on what in statistical 

physics is known as the Kikuchi approximation. Shakya and McCall (2007) presented a 

Markov random field (MRF) approach to estimating and sampling the probability 

distribution in populations of solutions. Handa (2007) incorporated mutation operators: a 

bitwise mutation operator and a mutation operator into EDA in order to maintain 

diversities in populations. Lima, et al. (2011) investigated the relationship between the 

probabilistic models learned by the Bayesian optimization algorithm (BOA) and the 

underlying problem structure. 

In the literature there are different EDA designs developed for continuous 

optimization (Bosman & Grahl, 2008; Ding et al., 2008; Miquelez, et al., 2007; Xiao, et 

al., 2009), dynamic optimization problems (Yuan, et al., 2008), clustering (Ahn & 

Ramakrishna, 2006; Qiang & Xin, 2005), non-separable problems (Agapie, 2010) and 

polygonal approximation problems which is important especially in the area of pattern 

recognition (Wang, et al., 2009). Besides multiobjective EDA applications (Marti, et al., 

2011; Qingfu, et al., 2008; Zhang, et al., 2008), EDA created high quality solutions when 
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hybridized with algorithms such as Particle Swarm Optimization (Hongcheng, et al., 

2011), memetic algorithms (Huang, et al., 2010), neural networks (Zhou & Wang, 2010) 

and variable neighborhood search (Santana, et al., 2008). Quadratic assignment problem 

(Zhang, et al., 2003), software testing (Sagama & Lozano, 2005), robust airfoil 

optimization (Zhong, et al., 2008), nuclear reactor fuel management optimisation (Jiang, 

et al., 2006) and real-time video tracking (Patricio, et al., 2009) are applications of EDA. 

EDAs have also been used with permutation type optimization problems 

including scheduling problems such as nurse scheduling (Uwe & Jingpeng, 2007), 

flowshop scheduling (Jarboui, Eddaly & Siarry, 2009), job shop scheduling (Zhang, 

2011) and project scheduling (Wang & Fang, 2012). Chen, et al. (2010) produced 

guidelines for designing EDAs in solving single machine scheduling problems. 

Extensive information about EDA can be found in Pelikan, Goldberg and Lobo 

(2002), Lozano, et al. (2006), and Sastry, et al. (2006). Very recently, Hauschild and 

Pelikan (2011) introduced a research on the introduction and survey of EDA. 

5.2 Estimation of Distribution Algorithms 

EDA is one of the recent optimization techniques that belongs to the class of the 

population-based metaheuristics. EDA is based on the idea that the probability 

distribution created from promising solutions would keep giving higher probability to 

high quality solutions and approach the optimum. These new solutions are then used in 

updating the probability distribution by replacing the old population in terms of some 

criteria such as the fitness function or diversity which can be defined as the measure of 

distinctness among the solutions. The important aspect in EDA is that the probability 

distribution should not perfectly represent the population of promising solutions, but 
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rather capture the features of candidate solutions that make them better than other 

candidate solutions (Hauschild & Pelikan, 2011). EDA have been specifically designed 

for black box optimization (BBO) problems in which objective functions are not given in 

a closed analytical form (Grahl, 2007). In a BBO, the structure of an optimization 

problem is hidden from the optimization process and the only information that can be 

exploited is a quality measure that is assigned to candidate solutions. 

EDA is an outgrowth of EAs where statistical information is obtained from the 

population to form a new population and the Darwinian operators are replaced by 

probability distributions. However, the main difference between most EAs and EDAs is 

that the probability distribution used in EDAs to generate new candidate solutions is 

defined explicitly whereas the distribution in most EAs is defined implicitly (Hauschild 

& Pelikan, 2011). 

The main step in EDA is estimating the probability distribution P(x) which 

assigns to items the probability of being selected in each position. If the optimization 

problem is represented by a bit vector, the distribution is represented by a single vector of 

n probability elements P = (pi, p2, pn). Each element of this probability vector stands 

for the probability of being included in the solution, i.e. 1 if selected, 0 otherwise with 

probability of 1 - pn. Assuming that the population size is large enough to ensure reliable 

convergence, the EDA based on the probability vector provides an efficient and reliable 

approach to solving many optimization problems (Goldberg, 2002). 

While creating new populations, EDA implements a probabilistic learning model 

that is used as memory. If the probabilistic learning model can capture the important 
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features of promising solutions and create new solutions based on these features, then the 

EDA should be able to quickly converge to the optimum (Miihlenbein & Mahnig, 1999). 

The learning model is a key element in EDA, thus EDAs are usually classified by 

the type of learning model. Since the interactions between the decision variables are very 

important in learning models, EDA takes into account the level of variable interactions in 

the probabilistic model. The assumption that decision variables of the problem are 

independent will often prevent convergence to the optimum when their interactions are 

strong. In terms of the interactions, EDA can be classified as univariate, bivariate, and 

multivariate EDAs. 

In the class of univariate EDAs, no interactions between the decision variables are 

considered in the generation of the probabilistic model. Mathematically, a univariate 

model decomposes the probability of a candidate solution (X]5 X2, . . . , Xn) into the 

product of probabilities of individual variables as in (5.1): 

P (X l ,X J , . . . ,Xj  =  nP<Xi) (51) 
i=l 

where p(Xj) is the probability of variable Xj, and p(Xi, X2,..., Xn) is the probability of 

the candidate solution (Xi, X2, . . . , Xn). One of the most known univariate EDAs is 

Population-Based Incremental Learning (PBIL) which is the first EDA strategy applied to 

solve optimization problems (Baluja, et al., 1994). On the contrary to the EDAs keeping a 

population of candidate solutions, incremental EDAs fully replace the population with the 

probabilistic model. In PBIL, after generating new solutions, the best solution or the set 

of best solutions, is selected to create the probability distribution of best solutions, Pbest = 

(Pibest, P2best, pnbest), which will be used to update the probability distribution of 

solutions, P = (pi, P2,..., pn), by using the rule in equation (5.2) (Saez, 2009): 



Pi = (1 - a) pi + a pibest- (5.2) 

where a is the learning factor. A smaller learning factor implies a diversifying search 

process and a higher learning factor means an intensifying search process. According to 

Saez (2009), the mutation operator plays also an important role during the search process 

to guarantee convergence, avoiding local optima, and maintaining the diversity through 

the iterations. The mutation operator in PBIL algorithms can be applied at two levels: 

solution vector or probability matrix to maintain genetic diversity. Besides the genetic 

algorithm operators, local search algorithms can also be implemented in EDA to enhance 

the solution quality (Zhang, et al., 2006). Besides PBIL, the univariate marginal 

distribution algorithm (UMDA) (Mtihlenbein & PaaB, 1996) and the compact genetic 

algorithm (cGA) (Harik, et al., 1997) are other univariate type of EDAs. 

In the bivariate EDAs, or tree-based models, there are interactions between two 

decision variables and the conditional probability of a variable may only depend on the 

other variable. The mutual-information-maximizing input clustering (MIMIC) is in the 

class of bivariate EDAs, and uses a chain distribution to model interactions between 

variables (De Bonet, et al., 1997). In MIMIC, given a permutation of the n variables in a 

problem, rc = ii, i2,.. ., in, the probability distribution of p(X|, X2,.. ., Xn) is formed as 

in (5.3); 

p„(X)  =  pfX.JXjpfX,  |X j  . . . p (x , jx jp(xj (5.3) 

where p(Xf, |X^Jis the conditional probability of Xj given . Candidate solutions 

are generated by sampling this probability distribution. To improve the expressiveness of 

the probabilistic models compared to MIMIC, Baluja and Davies (1997) used 

dependency trees to model promising solutions. The other bivariate EDA is the bivariate 
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marginal distribution algorithm (BMDA) that constructs a model based on a set of 

mutually independent trees (a forest) (Pelikan & Miihlenbein, 1999). 

Multivariate EDAs define the probabilistic model considering the interactions 

among more than two decision variables. While univariate and bivariate models provide 

EDAs with the ability to identify the characteristics of sampling population, they are 

often not enough to solve problems with highly overlapping interactions between 

variables. One way to describe multivariate interactions in the multivariate EDA is by 

using the concept of Bayesian network. A Bayesian network is an acyclic directed graph 

with one node per variable, where an edge between nodes represents a conditional 

dependency (Hauschild and Pelikan, 2011). A Bayesian network with n nodes encodes a 

joint probability distribution of n random variables Xi, X2,..., Xn (5.4): 

p (X„ X„ . . . , X „ )  =  nP(X, |e,) (5.4) 
i=l 

where 0j is the set of variables from which there exists an edge into Xj, and p(Xi | 0,) is the 

conditional probability of Xj given 0j. New candidate solutions are generated by sampling 

the probability distribution. 

Another way to encode multivariate interactions is via Markov networks. The 

difference between Markov networks and Bayesian networks is the use of undirected 

connections between variables for Markov networks. A Markov network may sometimes 

be considerably less complex than a Bayesian network, at least with respect to the 

number of edges (MUhlenbein, 2008); however, sampling in Markov networks is more 

difficult than in Bayesian networks. Following these two approaches, the Bayesian 

optimization algorithm (BOA) (Pelikan, et al., 2000) and the Markovianity-based 



optimization algorithm (MOA) (Shakya & Santana, 2008) are developed for multivariate 

EDAs. 

If the interactions between the variables in the optimization problem are not 

significant, univariate and bivariate EDAs will give better results; however if higher 

order interactions between the variables emerge, multivariate EDAs should be used to 

improve the solutions. However, it should be taken into consideration that using more 

expressive models implies that the solution process will be more computationally 

expensive. 

The 0-1 Multidimensional Knapsack Problem can be modeled by using the EDA 

variants presented until now. In the 0-1 MKP, the order, or permutation, is not important; 

only the item selection decision is important for the solution. Therefore, these algorithms 

are not directly applicable to problems where candidate solutions are represented by 

permutations such as the quadratic assignment problems, traveling salesman problems 

and other scheduling problems. These types of problems often contain two specific types 

of features or constraints: the absolute position of a symbol in a string and the relative 

ordering of specific symbols (Hauschild & Pelikan, 2011). To deal with this type of 

problems researches developed EDA-based algorithms, e.g. random key encoding (Bean, 

1994), the dependency-tree EDA (dtEDA) (Pelikan, et al., 2007) and the edge histogram 

based sampling algorithm (EHBSA) (Tsutsui, 2002). 

There are some features that distinguish EDA as a stochastic optimization 

algorithm from other metaheuristics. According to Hauschild and Pelikan (2011), one of 

the biggest advantages of EDAs over other metaheuristics is their ability to adapt their 

operators to the structure of the problem, instead of using fixed operators to explore the 
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search space, dependency relationships between decision variables, or other important 

properties of the problem landscape, by means of utilizing probabilistic models. On the 

other hand, developing explicit probabilistic models in EDA is often more time 

consuming than using operators in implicit models, such as tournament selection and 

crossover in EAs. It is also difficult to learn an adequate probabilistic model for the 

problem; and it may cause creating ineffective algorithms to search the problem space. 

5.3 A Representative Example of 0-1 MKP 

Suppose there are three knapsacks with upper weight limits of 82, 65, and 51, 

respectively. A decision maker has to select a set of items from 8 items with different 

profits and different weights such that the total profit is maximized without exceeding the 

upper weight limit of each knapsack. Data for the 0-1 MKP example is summarized in 

Table 7. 

The 0-1 MKP can be coded as a general linear 0-1 integer programming problem 

with nonnegative coefficients, as in equations (5.5 - 5.9). 

Maximize 9xi + 5x2 + 19x3 + IOX4 + 17xs + 1lx$ + I6X7 + 6xg (5.5) 

Subject to 19xi + 14x2 + 13x3 + 9x4 + 15xs + 27x6 + 25x7 + 18xg < 82 (5.6) 

20xi + 13x2 + 6x3 + 10x4 + 4x5 + 18x6 + 27x7 + 5xg < 65 (5.7) 

3xi + 2x2+ 5x3+11x4+14x5 + 23x6+ 6x7+13x8 <51 (5.8) 

Xi e {0,1}, i = 1,..., 8 (5.9) 
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Table 7. 0-1 MKP Example 

Constraints 

Item Profit 1 2 3 

1 9 19 20 3 

2 5 14 13 2 

3 19 13 6 5 

4 10 9 10 11 

5 17 15 4 14 

6 11 27 18 23 

7 16 25 27 6 

8 6 18 5 13 

Upper Weight Limits: 82 65 51 

After this example is solved optimally, items 3,4, 5, 7 and 8 will be selected with 

an optimum profit of 68. 

5.4 Meta-RaPS Dynamic Greedy Rule (DGR) Solution for 0-1 MKP 

In this section, the 0-1 MSP example will be solved first by using Meta-RaPS 

before incorporating a memory mechanism. Meta-RaPS is a two-phase metaheuristic: a 

constructive phase to create feasible solutions and an improvement phase to improve 

them. In solving the MKP example with Meta-RaPS, the Dynamic Greedy Rule (DGR) 

will be used as a priority rule in determining the priorities or order of the items between 

them (Moraga, et.al, 2005). In this rule, a penalty factor for each item is calculated 

according to equation (5.10): 
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™ a 
wi=LiT7V'fori = 1'(5.10) 

J=1 Dj-CWj 

where ay is the coefficients of item i in constraint j, bj is the amount of resource for each 

constraint j, and CWj is the amount of resource j consumed by the items so far; i.e., in the 

partial solutions. To determine the priority of an item /, its profit Cj is divided by its 

penalty factor, i.e. c,/w,. The item with maximum Cj/w, has the highest priority in the 

solution process. Because the penalty factors change after each iteration in the 

construction process, the priorities of the items are updated after each item is added to the 

partial solution. For example, in the beginning of the process, the priority of item 3 is 

obtained after the calculations given in equations (5.11-5.12): 

a3i a,, a„ 13 6 5 A _ _ w, = V — = —— + —-—I -— = K H = 0.35. (5 1 n 
3 jTf bj — CWj b, -0 b2 -0 b3 -0 82-0 65-0 51-0 K > 

c 19 
pr io r i ty 3  = —= —— = 54 .5 .  (5 .12)  

w3 0.34 v ' 

Since in the construction phase of the Meta-RaPS the items are added to the 

partial solutions, and their order is not important (5.13), the initial priority matrix in 

Table 8 is created by adding the priority of item i to the priority of item j if item i is 

selected after j was included in the (partial) solution (5.14);. 

priorityij = priority^ (5.13) 

priority jj = priority; + priorityj (5.14) 

Meta-RaPS does not select every time the item with the best priority value. The 

algorithm may accept one with good (not necessarily the best) priority value based on a 

randomized approach. The priority percentage (p%) is employed to decide the percentage 

of time the item with the best priority value will be added to the current partial solution, 
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and (l-p)% of the time an item with a good priority value is randomly selected from a 

candidate list (CL) that contains items with "good" priorities. 

Table 8. The Initial Priority Matrix 

Item 1 2 3 4 5 6 7 8 

1 - 27.2 69.5 35.9 47.8 25.4 34.1 25.9 

2 27.2 - 66.7 33.1 45.0 22.6 31.3 23.1 

3 69.5 66.7 - 75.3 87.2 64.9 73.6 65.3 

4 35.9 33.1 75.3 - 53.6 31.3 40.0 31.7 

5 47.8 45.0 87.2 53.6 - 43.2 51.9 43.6 

6 25.4 22.6 64.9 31.3 43.2 - 29.5 21.3 

7 34.1 31.3 73.6 40.0 51.9 29.5 30.0 

8 25.9 23.1 65.3 31.7 43.6 21.3 30.0 -

Table 9. The Meta-RaPS Parameters for the 0-1 MKP Example 

Parameter Value 

Priority percentage (p) 0.6 

Restriction percentage (r) 0.2 

Improvement percentage (i) 0.7 

Number of iterations (I) 10 
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The parameters used in the Meta-RaPS are as given in Table 9. The CL is created 

for maximization problems by including the ones whose priority values are higher than 

the lower limit found by equation (5.15): 

Lower Limit = Minimum Priority + 

(Maximum Priority - Minimum Priority) • (r%). (5.15) 

Checking the feasibility of the (partial) solution in each step of every iteration is 

very important. That is, the items with the highest priorities and those in the CL must 

ensure that the (partial) solutions are feasible (i.e., within the limits of the constraints) if 

added to the (partial) solution. 

Meta-RaPS starts by selecting an item randomly as the first item in the partial 

solution. Because the selected item consumes some of the resources, the priorities in the 

priority matrix should be updated after each item is added to the partial solution. If, for 

example, item 5 is selected in the beginning, the updated priorities according to equations 

(6.10 - 6.13) would be as in Table 10a. 

Maximum and minimum priorities of row 5 in Table 6a are 69.9 and 33.8, 

respectively. If the random number created is smaller than or equal to p%, the item with 

maximum priority is chosen; otherwise, another item is selected randomly from the CL. 

Since lower limit [= 33.8 + (69.9 - 33.8) • (0.2)], calculated by using equation (5.14), is 

equal to 41.02, CL is created by accepting items 4 and 7 whose priorities are larger than 

lower limit, 42.2 and 41.8 respectively. In the 1st step of iteration 1, because the random 

number happened to be 0.76 which is greater than p = 0.60, an item from the CL is 

selected randomly which is for now item 7 as shown in Table 10b. 
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Table 10a. The Updated Priorities after Selecting Item 5 

Item 1 2 3 4 5 6 7 8 

1 - 23.5 57.4 29.8 38.5 21.3 29.4 21.5 

2 23.5 - 54.9 27.3 36.0 18.8 26.9 19.0 

3 57.4 54.9 - 61.2 69.9 52.8 60.8 53.0 

4 29.8 27.3 61.2 - 42.2 25.1 33.2 25.3 

5 38.5 36.0 69.9 42.2 - 33.8 41.8 34.0 

6 21.3 18.8 52.8 25.1 33.8 - 24.7 16.9 

7 29.4 26.9 60.8 33.2 41.8 24.7 - 24.9 

8 21.5 19.0 53.0 25.3 34.0 16.9 24.9 -

Table 10b. The 1st Step in Iteration 1 of Meta-RaPS 

Max 
Item 

Priority 

Min 

Priority 

Lower 

Limit 

Max 

Item 

Candidate 

List 

Random 

Number 
P Decision Profit 

5 69.9 33.8 41.0 3 4, 7 0.76 >0.60 Select 7 17 

After item 7 is added to the partial solution, the priority matrix is again updated, 

and the column and row of item 5 are deleted. The updated priority matrix for this step is 

given in Tables 1 la and b. 
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Table 1 la. The Updated Priorities after Selecting Item 7 

Item 1 2 3 4 5 6 7 8 

1 - 14.3 37.3 19.5 13.7 18.0 13.9 

2 14.3 - 35.8 18.0 12.2 16.5 12.4 

3 37.3 35.8 - 40.9 35.1 39.5 35.4 

4 19.5 18.0 40.9 - 17.3 21.7 17.6 

5 

6 13.7 12.2 35.1 17.3 - 15.9 11.8 

7 18.0 16.5 39.5 21.7 15.9 - 16.1 

8 13.9 12.4 35.4 17.6 11.8 16.1 -

Table 1 lb. The 2nd Step in Iteration 1 of Meta-RaPS 

Item 
Max 

Priority 

Min 

Priority 

Lower 

Limit 

Max 

Item 

Candidate 

List 

Random 

Number 
p Decision Profit 

5 69.9 33.8 41.0 3 4,7 0.76 >0.60 Select 7 17 

7 39.5 15.9 20.6 3 4 0.28 <0.60 Select 3 16 

This process is followed until there are no items left without affecting the 

feasibility of the partial solution. After adding item 3 to the partial solution, it can be seen 

from the report in Table 12 that item 4 has the highest priority, and there are no items in 

the CL. However, accepting item 4 makes the partial solution infeasible, and therefore 

cannot be selected. Because the other items (2, 6, and 8) give the same result, the first 



iteration of the algorithm stops. The constructed solution in the first iteration is (5, 7, 3, 

and 1) and the total profit is 61. The construction phase of Meta-RaPS continues in this 

fashion until the number of iterations or any other stopping criterion is met. 

Table 12. Report for the Construction Phase in Iteration 1 of Meta-RaPS DGR 

Max Min Lower Max Candidate Random 
Item p Decision Profit 

Priority Priority Limit Item List Number 

5 69.9 33.8 41.0 3 4,7 0.76 >0.60 Select 7 17 

7 39.5 15.9 20.6 3 4 0.28 <0.60 Select 3 16 

3 31.4 26.7 27.6 4 1 0.83 >0.60 Select 1 19 

1 5.79 3.59 5.13 4 - - - Stop 9 

Total: 61 

The improvement phase of Meta-RaPS is performed only if the feasible solutions 

generated in the construction phase are within i% of the best unimproved solution value 

from the preceding iterations (Moraga, et al., 2006). To decide whether to perform the 

improvement phase after the construction phase for maximization problems or not, the 

value of A in equation (5.16) is calculated; 

A = WCS + (BCS - WCS) • (i%) (5.16) 

where WCS and BCS stand for Worst Constructed Solution and Best Constructed 

Solution, respectively (Moraga, 2009). If the current solution (CS) is smaller than or 

equal to the A-value, the improvement phase will be executed. At the end of the 

construction phase for iteration 4, the data collected in this process is summarized in the 
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Table 13 which shows that an improvement phase is required for iterations 2 and 3. As an 

example for the improvement phase iteration 3 is selected where the minimum solution 

value is obtained in the construction phase. 

Table 13. Decision for Improvement Phase in Iteration 1 of Meta-RaPS DGR 

Iteration CS BCS WCS A CS vs. A Decision 

i 61 

2 60 61 60 60.7 CS<A Improve 

3 56 61 56 59.5 CS<A Improve 

4 61 61 56 59.5 CS > A Not Improve 

In the improvement phase two different algorithms will be employed: 2-opt and 

insertion algorithms. In the 2-opt algorithm, the item in the solution is replaced with an 

item that is not in the solution in a systematic way. To follow this process, the solution is 

first coded in a binary string, i.e. the solution (5, 7, 3, 1) is coded as (1 0 1 0 1 0 1 0), and 

the l's are replaced with 0's. As it can be seen in Figure 2, the better solution is reached 

by applying the 2-opt algorithm to CS. The improved solution (IS) is generated from (5, 

7, 3, 1) with the objective function value of 61 to (5, 7, 3, 6) with objective function value 

of 63 by replacing items 1 and 6(1 <-* 6). 

Item f(x) F/NF 

CS 

IS ©. " 
i : 

I 
1 • 

0 

0 

i © 

j-.jh 

o 

0 

61 

63 

Figure 2. Replacing Items in 2-Opt Algorithm 
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In the other improvement algorithm, insertion, the selected item is inserted to the 

right or to the left of another item in the solution and items between the old and new 

places of inserted item are shifted towards the old place of the inserted item in the same 

order (Arroyo et al., 2008). Other items remain in their positions. In Figure 3, item 7 is 

inserted to the left of item 4, and items 4 - 6 are shifted towards the old place of item 7. 

Items 1,2,3 and 8 keep their positions. 

Item 1 2 3 4 5 6 7 8 f(x) F/NF 

1 1 0 (0) 

(0 )  1 1 0 

Figure 3. Insertion Items to the Left 

Although the Meta-RaPS algorithm does not require the improvement phase for 

iteration 4 in Table 11, it was carried out for investigation purposes. The effect of the 

improvement phase can be observed as percentages of increase in the solution objective 

function values. The optimum value is reached only after applying both algorithms in the 

improvement phase. Table 14 summarizes the solution report of the 0-1 MKP example by 

Meta-RaPS for which it could find the optimum value at the 4th iteration. 
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Table 14. The Meta-RaPS DGR Solution Report of the 0-1 MKP Example 

Construction Improvement Phase 
Iteration 

Phase 2-opt Increase% Insertion Increase% 

1 61 

2 60 67 11.7 

3 56 61 8.9 

4 61 63 3.3 68* 7.4 

5.5 Meta-RaPS EDA Solution for 0-1 MKP 

EDA implements a probabilistic learning model as a memory mechanism where it 

estimates the probability distribution for each decision variable to generate new candidate 

solutions that replace the old population according to some criteria. This process iterates 

until termination criteria are met. To be able to create the distribution of the solutions for 

Meta-RaPS EDA algorithm for the 0-1 MKP example, first a memory set of five feasible 

solutions (SI - S5) in Table 15 is generated randomly. 

The probability of an item being selected in solutions for this set, P(i), is 

calculated as in equation (5.17). 

#item i in solutions 
P(item i) = ; : (5.17) 

#solutions in memory set 

For example, if item 1 is found four times in five solutions then P(item 1) = 4 / 5 = 0.8. 
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Table 15. The Random Solution Set and Related Information 

f(x) 
Item 1 2 3 4 5 6 7 8 f(x) 

f(x) 
f(x) 

Ratio 

SI 0 0 1 1 0 1 1 0 56 0.21 

S2 1 1 1 1 1 0 0 0 60 0.23 

S3 1 1 1 1 0 0 0 1 49 0.19 

S4 1 1 0 1 1 0 0 1 47 0.18 

S5 1 1 0 0 1 0 1 0 47 0.18 

P(i) 0.8 0.8 0.6 0.8 0.6 0.2 0.4 0.4 1259 1.00 

wP(i) 0.156 0.156 0.127 0.164 0.119 0.043 0.080 0.074 

To include the effect of their objective function values into the process as 

"weights", the ratio of the objective function value to the total objective function value of 

solutions in the memory set is calculated for each solution. For example, the objective 

function value of SI is 56 and equal to 21% of the total objective function value for all 

solutions in the memory set which is 259. The contribution of each item to the solution 

process can be found by taking the mean of ratios of the objective function values for the 

solutions in which the item is selected. Item 1 is found in solutions 2, 3, 4 and 5, and their 

ratios are 0.23, 0.19, 0.18 and 0.18, respectively. The contribution of item 1 is the mean 

of these ratios, which is 0.195. If this contribution is multiplied by P(i), the probability of 

being selected for item 1, then the (weighted) P(i) is obtained, as Wjtem iP(item 1) = 0.8 • 

0.195 = 0.156. 

Next step is obtaining the level of interactions between items, e.g. conditional 

probabilities. The conditional probability, P(item i | item j), which is the probability of 
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selecting item i given that item j has already been selected in the solution set, is computed 

for each item by using equation (5.18). 

P(item i f| item j) 
P(item 11 item j) = — . (5.18) 

P(itemj) 

For example, assuming item 1 is already selected, the probability of selecting item 

3 as the next item for the partial solution is calculated as in (5.19): 

# times both item 3 and item 1 selected (in S2 and S3) 2 
P(item 3 item l) = - - = - = 0.5 (5 19) 

# times item 1 selected (in S2, S3, S4, S5) 4 

After obtaining the conditional probabilities for all pairs of items, the conditional 

probability matrix in Table 16 is formed. 

Table 16. The Conditional Probability Matrix 

Item 1 2 3 4 5 6 7 8 

1 - 1.00 0.50 0.75 0.75 0.00 0.25 0.50 

2 1.00 - 0.50 0.75 0.75 0.00 0.25 0.50 

3 0.67 0.67 - 1.00 0.33 0.33 0.33 0.33 

4 0.75 0.75 1.00 - 0.50 0.25 0.25 0.50 

5 1.00 1.00 0.33 0.67 - 0.00 0.33 0.33 

6 0.00 0.00 1.00 1.00 0.00 - 1.00 0.00 

7 0.50 0.50 0.50 0.50 0.50 0.50 - 0.00 

8 1.00 1.00 0.50 1.00 0.50 0.00 0.00 -

To transform these two probabilities into an estimation of distribution for items in 

the memory set, the probability of selecting item / given that item j has been already 
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selected is multiplied by the probability of selecting item z, i.e. P(item i | item j) • wP(item 

i). For example, to find 0.064 in Table 17, meaning that is the information within the 

estimation of distribution for item 3 after item 1 is selected, the probability of selecting 

item 3 given that item 1 has been selected (= 0.50) is multiplied by the probability of 

selecting item 3 (= 0.127). 

Table 17. The Probabilistic Priority Matrix 

Item 1 2 3 4 5 6 7 8 

1 - 0.157 0.064 0.123 0.089 0.000 0.020 0.037 

2 0.157 - 0.064 0.123 0.089 0.000 0.020 0.037 

3 0.105 0.105 - 0.164 0.039 0.014 0.026 0.024 

4 0.118 0.118 0.127 - 0.059 0.011 0.020 0.037 

5 0.157 0.157 0.042 0.110 0.000 0.026 0.024 

6 0.000 0.000 0.127 0.164 0.000 - 0.080 0.000 

7 0.078 0.078 0.064 0.082 0.059 0.022 - 0.000 

8 0.157 0.157 0.064 0.164 0.059 0.000 0.000 -

The probabilities in Table 14 constitute the probabilistic priority matrix that will 

serve as the priority matrix in Meta-RaPS EDA, similar to the DGR values for Meta-

RaPS DGR. Progressing in the same fashion with Meta-RaPS DGR and using the same 

parameters used in Meta-RaPS, the solution (5, 3,4, 8, and 1) with the total profit of 61 is 
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obtained at the end of the construction phase in iteration 1 of Meta-RaPS EDA. The 

detailed report for the last step in iteration 1 is given in Table 18. 

As in Meta-RaPS DGR, the current solutions are improved whenever CS is 

smaller than or equal to the A-value calculated using equation (5.15) as shown in Table 

19. 

Table 18. Report for the Construction Phase in Iteration 1 of Meta-RaPS EDA 

Item 
Max 

Priority 

Min 

Priority 

Lower 

Limit 

Max 

Item 

Candidate 

List 

Random 

Number 
P Decision Profit 

5 0.157 0.000 0.031 1,2 3 0.76 >0.60 Select 3 17 

3 0.164 0.014 0.044 4 1,2 0.28 <0.60 Select 4 19 

4 0.118 0.011 0.032 1,2 8 0.83 >0.60 Select 8 10 

8 0.157 0.000 0.031 1,2 - 0.58 <0.60 Select 1 6 

1 All NF 9 

Total 61 

Table 19. Decision Phase for Improvement in Iteration 1 of Meta-RaPS EDA 

Iteration CS BCS WCS A CS vs. A Decision 
. -

2 56 61 56 59.5 CS<A Improve 

3 56 61 56 59.5 CS<A Improve 

4 56 61 56 59.5 CS<A Improve 
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The improvement algorithms are applied to the CSs when the decision is 

"improve". After using the two improvement algorithms demonstrated earlier in Meta-

RaPS DGR, Meta-RaPS EDA algorithm could find the optimum value for the 0-1 MKP 

example in three iterations. Table 20 summarizes the solution report at the end of 4 

iterations. 

Table 20. Meta-RaPS EDA Solution Report of the 0-1 MKP Example 

Iteration 
Construction Improvement Phase 

Iteration 
Phase 2-opt Increase% Insertion Increase% 

1 61 68* 11.5 -

2 56 68* 21.4 -

3 56 58 3.6 68* 17.2 

4 56 61 8.9 - -

After the improvement phase at the end of each iteration of the algorithm, the 

Meta-RaPS EDA memory matrix is updated by replacing the solution found in the 

current iteration with the solution in the memory matrix. In other words, the memory set 

will be updated via information obtained after the iterations are completed. The updated 

probabilistic priority matrix after iteration 1 is shown in Table 21. To memorize and learn 

the problem structure, Meta-RaPS will need more iterations to converge the probabilistic 

priority matrix. Only then the Meta-RaPS EDA can have accurate probabilistic priorities 

to select items in the solution process. Table 22 presents the updated probabilistic priority 

matrix after 10,000 iterations that helps the algorithm find the optimum solution. 
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Table 21. The Updated Probabilistic Priority Matrix after Iteration 1 

Item 1 2 3 4 5 6 7 8 

- 0.111 0.112 0.112 0.084 0.000 0.040 0.028 

2 0.111 - 0.112 0.112 0.084 0.000 0.040 0.028 

3 0.056 0.056 - 0.166 0.063 0.010 0.061 0.042 

4 0.056 0.056 0.166 - 0.063 0.010 0.061 0.042 

5 0.037 0.075 0.112 0.112 - 0.000 0.040 0.028 

6 0.000 0.000 0.166 0.166 0.000 - 0.122 0.000 

7 0.037 0.037 0.055 0.112 0.084 0.013 - 0.028 

8 0.056 0.056 0.166 0.166 0.063 0.000 0.061 

Table 22. The Updated Probabilistic Priority Matrix after Iteration 10,000 

Item 1 2 3 4 5 6 7 8 

__ _ 0.007 0.004 0.014 0.007 0.003 0.006 0.009 

2 0.005 - 0.007 0.014 0.009 0.003 0.006 0.007 

3 0.004 0.010 - 0.013 0.007 0.003 0.007 0.008 

4 0.007 0.009 0.006 - 0.008 0.002 0.007 0.008 

5 0.006 0.010 0.005 0.014 - 0.002 0.008 0.008 

6 0.006 0.010 0.006 0.010 0.005 - 0.003 0.004 

7 0.005 0.007 0.006 0.013 0.009 0.001 - 0.009 

8 0.008 0.007 0.006 0.014 0.008 0.001 0.008 
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5.6 Comparison of Meta-RaPS with EDA and DGR for 0-1 MKP Example 

Because of the memoryless nature of Meta-RaPS DGR, it begins every iteration 

from the same point, and has no information about the search history. However, in the 

case of Meta-RaPS EDA, the probabilistic priority matrix serves as a memory and 

learning mechanism that is updated at every iteration until it converges to its optimum 

values as iterations proceed. If the items in the probabilistic priority matrix for the 0-1 

MKP problem are tracked, it can be easily observed from Figures 4 and 5 that the means 

of the probabilistic priorities of items in the optimum solution are increasing while other 

items' means of the probabilistic priorities are decreasing. This observation shows that 

algorithm memorizes the items with "good" attributes and selects them with higher 

probabilities, and learns the search space by upgrading the memory matrix after each 

iteration. 

o . i s  :  
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Figure 4. Trend of Probabilistic Priorities of Items Selected in the Optimal Solution 
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Figure 5. Trend of Probabilistic Priorities of Items Not Selected in the Optimal Solution 

Meta-RaPS highly depends on the parameters that are used in the search process. 

The results obtained in both algorithms could be very different for other choice of 

parameters. Due to this concern, the same parameter values and also the same random 

numbers were used for both Meta-RaPS DGR and Meta-RaPS EDA algorithms to be able 

to compare the performance of each. As a second precaution, all iterations of both 

algorithms started with the same items for the same reason. 

5.7 Meta-RaPS EDA Algorithm 

The previous small example presents the role of memory and learning in 

improving the efficiency of the search process in Meta-RaPS EDA. Because of the 

probabilistic nature of Meta-RaPS EDA algorithm, the trend for convergence and 

accuracy of the probabilistic priority matrix is expected to increase with the size of the 



instances. The pseudocode of Meta-RaPS EDA in Figure 6 was developed based on the 

pseudocode of Meta-RaPS in Figure 1. 

The core concept of Meta-RaPS EDA is creating probabilities that will serve as 

priorities in assigning each item to the (partial) solution. The memory matrix is formed 

by obtaining feasible solutions, and the quality of this matrix is significant in terms of 

"right" priorities of items. The first step of calculating these priorities is finding the 

average number of times of each items selected for the solutions in the memory matrix 

which gives the probability of being in the solution (equation (5.17)). 

On the other hand, the goal of solving the 0-1 MKP is to reach the highest profit 

by selecting appropriate items whose total resource consumptions are under the limit of 

each knapsack. This fact implies that there should be strong interactions between items 

since selecting an item affects the selection of other items, which means that the 

conditional probabilities between items is meaningful as was given in equation (5.18). 

Although each of these probabilities carries valuable information, combining 

these probabilities can have more information for the search process. In addition, 

including the average value of solutions having item / into the probabilistic model as 

"weight" will empower the probabilistic priority of each item. Based on these factors, the 

probabilistic model for Meta-RaPS EDA to solve 0-1 MKP can be shown in (5.20); 
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While (not reached to Memory Matrix size) 

Generate initial solution 

Accept promising solution to Memory Matrix 

End While 

Build Probabilistic Priority Matrix from Memory Matrix 

For i teration ^ I 

Apply Meta-RaPS rules with priorities from Probabilistic Priority 

Matrix to produce ImprovedSolution 

If ImprovedSolution > BestImprovedSolution then 

Assign ImprovedSolution as BestImprovedSolution 

If ImprovedSolution > WorstSolution in Memory Matrix then 

Replace ImprovedSolution with WorstSolution in Memory Matrix 

Update Probabilistic Priority Matrix 

End For 

Report BestImprovedSolution 

Figure 6. Meta-RaPS EDA Pseudo Code 

n 
,  fo r /=  1 .  

p (x , )H  (5.20) 

• w x P(X i )P (X j  |X j ) ,  fo r  i > j , j =  1,2, ...,n, i  =  2 ,  . . . , n .  

where / and j are the selection orders, P(Xj) is the probability of item X in the selection 

order i and wx is the weight of item X for the memory set. The algorithm starts randomly 

assigning the first item since the conditional part of probabilities does not take place yet. 



With the beginning of selecting the second item, the algorithm employs Meta-RaPS rules 

with priorities given by the probabilistic model. 

In addition to memory, learning is the other important part of a "smart" algorithm. 

While memory is created from the memory set, learning happens mainly by updating the 

memory set. Updating activities make it possible for the algorithm to learn the structure 

of the problem and decide new directions in the search space. There are different criteria 

to update the memory set, i.e. replacing new solution with a solution in the memory set. 

The new solution can be replaced with a solution in the memory set selected randomly; 

or, replacing the solutions can take place only if the objective function value of the new 

item is greater than the worst objective function value of any solution in the memory set. 

Diversity is another way to update the memory set. Diversification in the search 

space is an important aspect for the solution process in metaheuristics. The level of 

diversity between solutions can be found by using hamming distance concept. The 

hamming distance is often used to quantify the extent to which two-bit strings of the 

same dimension differ (Bookstein, et al. 2002). The diversity between the constructed 

solution (in Table 11) and the optimum solution for the 0-1 MKP example is calculated 

as in Table 23. The diversity levels of the new solution and solutions in the memory set 

can be calculated, and the solution with highest diversity can be selected to replace the 

existing solutions. 

Updating the memory set in Meta-RaPS EDA algorithm is a critical process in 

integrating learning into the algorithm. Since the small and medium 0-1 MKP instances 

can be solved quickly, it is important to analyze the memory updating process especially 

for large size instances. 
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Table 23. Diversity Calculation between Solutions 

Item 1 2 3 4 5 6 7 8 

Constructed Solution 10 10 10 10 

Optimum Solution 0 0 1 1 1 0 0 1 

D i f f e r e n c e  + . _  +  _ _  +  +  

Diversity 4 

For this analysis, 1st (01100x5), 6th (06 100x5) and 22nd (22 100x5) instances 

from the set of the instances with 100 items and 5 knapsacks are selected randomly and 

the algorithm is run for 1,000 iterations. To update the memory set after each iteration, 

the solution in the memory set that will be replaced with the new solution can be selected 

by four different methods. First, the solution having the minimum value in the memory 

set can be chosen; secondly, the selection of the solution can be made randomly from the 

memory set. Third method is to choose the solution with the maximum diversity in the 

memory set, and last method is applying one of these three methods randomly, named as 

"All". Figure 7a shows deviations% and Figure 7b shows number of iterations of the 

three instances after updating memory matrix by each of these methods. 
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Figure 7a. Deviations% for the Selected Instances after Updating the Memory Matrix by 
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Figure 7b. Number of Iterations for the Selected Instances after Updating Memory Matrix 

by Four Methods 
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To update the memory matrix, in terms of deviations%, the first and fourth 

methods turned out to be better than the other methods, and the third method (selection 

the solution with the diversity), was found to be the worst method in this analysis. On the 

other hand, from the figure on number of iterations, it seems that diversity makes the 

algorithm faster. Fine tuning the update method requires also deeper understanding of the 

behavior of each method as iterations proceeding. The same instances were solved by 

changing the updating methods for different number of iterations ranging between 25 and 

1000, and the mean deviations% are presented in Figure 8. 
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Figure 8. Mean Deviations'^ after Updating Memory Matrix by Four Methods for 

Different Number of Iterations 

The fourth method, i.e., randomly selecting from the update methods with 

minimum value, random and maximum diversity, behaves like the regression of the first 

three methods, and seems to benefit from the advantages of each method in terms of 



mean deviations'^ of the instances. Therefore, in order to exploit all the opportunities 

created by these three methods, the fourth method (randomly selecting among the three 

methods) is selected as a mechanism to update the memory matrix. 

The last issue in Meta-RaPS EDA is deciding the size of memory set. This is a 

tradeoff between size of memory set and iteration number which, in most cases, may be 

interpreted as computational processing time to achieve fast converging and better results 

versus computational complexity and cost. Finding the best size for the memory set 

actually adds another parameter, i.e. size of memory set, for the algorithm to deal with. 

To tune this parameter, 4 instances are solved with different memory set sizes (25, 50, 75, 

100 and 125 solutions) and recorded the number of iterations and time used in each 

process. To be able to compare the required number of iterations in the same scale, their 

values are divided by the mean values of different memory sizes for the same instance, 

and the normalized values of the number of iteration are analyzed. To be consistent, the 

instances with same or close number of items are selected. In Figures 9a and b the 

normalized values for each instance and their means are respectively shown for memory 

sizes between 25 and 125 solutions. From these figures, the most effective memory size 

is determined as 75 in terms of iteration number. After investigating these figures, the 

size of memory set for the instances with number of items 30 turns out to be 75, which is 

approximately 2.5 times larger than number of items. The ratio of memory size to number 

of items can be accepted as a parameter to be tuned before the solution process, and in 

this case, this parameter is 2.5. It is also observed that, to obtain "good" memory set, i.e. 

reflecting the structure of the problem, the algorithm should run 4 times the size of 

memory set, and then solutions in the memory set are selected from these solutions. 
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Figure 9b. Trends of Means for Normalized Number of Iterations Required for Different 

Memory Set Sizes 

After completing formalization of the proposed algorithm, Meta-RaPS EDA can 

be applied to 0-1 MKPs existing in the literature to further evaluate its performance over 



the small, medium and large instances to ensure more robust conclusions; however, the 

same approach can be followed. 

5.8 Meta-RaPS EDA for Small and Medium 0-1 MKP Instances 

One of the critical aspects of Meta-RaPS EDA is the way the population is 

created, i.e. the memory set. The solutions in the memory set that form the probability 

matrix can be generated randomly or by following a greedy rule. Depending on the way 

the memory matrix is created, Meta-RaPS EDA will have two different versions; Meta-

RaPS EDA-R and Meta-RaPS EDA-G. 

In the Meta-RaPS EDA-R version, the solutions assigned to the memory matrix 

are generated totally randomly, and the probabilistic model is produced based on this 

memory matrix. For the Meta-RaPS EDA-G version, the solutions to form the memory 

matrix are generated by employing a greedy rule, in this case DGR. With the help of the 

probabilistic priorities produced from these memory matrices, both versions will be used 

to solve small and medium 0-1 MKP instances. The parameter settings for small/medium 

size instances reported in Table 6 was used for both versions of Meta-RaPS EDA, and 

comparison of their performances is presented in Table 24. IMean and IBest refer the 

mean and best values of the Improved Solution (IS), respectively, and CBest refers the 

mean value of the Constructed Solution (CS). Observing the quality of the CSs is 

important in measuring the effectiveness of the way solutions are created and assigned in 

the memory matrix. 

Meta-RaPS EDA-R could find the optimum values for 54 out of 55 instances 

previously mentioned in Section 4.3, and WEING7 is the instance that could not be 



solved optimally. Its average deviations% from optimum/best solutions found for the CSs 

and ISs are 1.447% and 0.016%, respectively. The algorithm found the optimum 

solutions around 9.2 of 10 times on the average of all instances. The average time to 

solve the small and medium instances was 286.8 seconds on the average of 1199 

iterations. 

Table 24. Meta-RaPS EDA-R and G Solutions 

Deviation % Iteration Time Optimum 

Version IMean IBest CMean Number (Sec.) Frequency Instance 

Meta-RaPS EDA-R 0.016 0.000 1.447 1199 286.83 9.18 54 

Meta-RaPS EDA-G 0.001 0.000 0.107 421 120.09 9.84 55 

Average 0.009 0.000 0.777 810 203.46 9.51 54.50 

Std.Dev. 0.011 0.000 0.948 550 117.90 0.47 0.70 

On the other hand, the average deviation percentages for the Meta-RaPS EDA-G 

algorithm are 0.107% and 0.001% for the CSs and ISs, respectively. Meta-RaPS EDA-G 

could find optimum solutions for all small and medium instances, and the mean number 

of times optimum solutions were found was 9.8 in 10 times for each instance. The 

average time to solve the instances was 120 seconds on the average of 421 iterations. 

When comparing the Meta-RaPS EDA-R and Meta-RaPS EDA-G, it is clear that 

Meta-RaPS EDA-G produced higher quality solutions in both the IS and CS aspects in 

lower amount of time than Meta-RaPS EDA-R. It could also find optimum/best solutions 

for all the small and medium size instances in much shorter time. The standard deviations 

of the instances' statistics are low for both versions of the Meta-RaPS EDA algorithm, as 

a sign of being robustness. 



These results show that Meta-RaPS EDA-G algorithm is superior to Meta-RaPS 

EDA-R, in other words, training memory set formed by implementing a greedy rule 

produces better results than one generated randomly. Therefore, from this point, the 

Meta-RaPS EDA-G version is accepted as the main version of Meta-RaPS EDA, and will 

be used to solve large size 0-1 MKP intendances. 

5.9 Meta-RaPS EDA for Large 0-1 MKP Instances 

With the parameter setting for large instances in Table 6, Meta-RaPS EDA was 

applied to solve large size 0-1 MKP instances. Detailed solution summary for the first 

three sets of instances is presented in Table 22. The proposed algorithm could find 

optimum values for 20, 17 and 10 instances of the 100 items and 5, 10 and 30 knapsacks, 

respectively, with an average of optimum instances of 15.7 out of 30 instances. The 

overall average deviations% from optimum/best solution found was 0.142% in an 

average of 50 minutes and 1872 iterations. The overall average deviations% for CSs was 

also low, 0.54. Meta-RaPS EDA was also successful at finding optimum/best results in 

3.6 of 10 replications as defined in section 4.1. The best average performance of the 

algorithm, i. e. the best average deviations%, for all instances was 0.084 as shown in 

Table 25. 



Table 25. Meta-RaPS EDA Solution for Large 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Instance Set IMean IBest CMean Number (Min.) Frequency Instance 

100x5 0.045 0.026 0.296 1389 16.19 5.17 20 

100x10 0.136 0.078 0.519 1869 33.79 3.90 17 

100x30 0.246 0.147 0.804 2357 101.13 1.63 10 

Average 0.142 0.084 0.540 1872 50.37 3.57 15.67 

Std.Dev. 0.101 0.061 0.255 484 44.83 1.79 5.13 
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CHAPTER 6 

INCORPORATING Q LEARNING INTO META-RAPS 

The second method in adding memory and learning to Meta-RaPS is selected 

from the machine learning area. Machine learning implements the theory of statistics in 

building mathematical models of the system by obtaining information from inputs. This 

is a two-phase process; first is the training phase in which efficient algorithms are used to 

solve the optimization problem as well as store and process the information derived. In 

the second phase, new solutions are generated by using the learned model of the problem. 

Machine learning approaches can be successfully applied in optimization 

problems whose output is a sequence of actions, or an optimum policy. Selection of the 

best actions in intermediate states will not mostly lead to the optimum policy. This type 

of applications defines the scope of a well known machine learning algorithm known as 

Q Learning. The Q function is the learned action-value and is defined as the maximum 

expected, discounted, cumulative reward the decision maker can achieve by following the 

selected policy. In a Q Learning algorithm, models of the agent or the environment are 

not required (Monekosso & Remagnino, 2004). 

6.1 Literature Review 

After Q Learning was introduced by Watkins (1989), many successful 

applications were presented by researchers in the literature. Cairon and Dorigo (1997) 

investigated the integration of immediate reinforcements with standard delayed 



reinforcements in which reinforcements assigned only when the agent-environment 

relationship reaches a peculiar state, such as when the agent reaches a target. 

The complexity the update process in Q Learning based on lookup tables is 

bounded by the size of the state-action space. To deal with this issue, Wiering, et al. 

(1998) created a faster algorithm based on the observation that Q-value updates may be 

postponed until they are needed. In their Q Learning algorithm, Hirashima, et al. (1999) 

used an adaptive-sized Q-table based on the Memory Based Learning (MBL). By using 

the generalization property of the MBL system, the learning effect for a Q-value could be 

spread to adjacent Q-values, and therefore the number of trial and error actions could be 

reduced. 

The balance between exploration and exploitation is one of the key problems of 

action selection in Q Learning. Guo, et al. (2004) introduced the Metropolis criterion of 

Simulated Annealing (SA) algorithm in order to balance exploration and exploitation of 

Q Learning. 

Inspired by the idea that, by using other agents' experiences and knowledge, a 

learning agent may learn faster, make fewer mistakes, and create some rules for unseen 

situations, Ahmadabadi and Asadpour (2002) introduced some criteria to measure the 

expertness of the learning agents, and a new cooperative learning method called weighted 

strategy sharing (WSS) in which each agent measures the expertness of its teammates and 

assigns a weight to their knowledge and learns from them accordingly. 

Conventional Q Learning techniques are goal dependent; when the reward 

conditions change, previous learning interferes with the new task that is being learned, 

resulting in very poor performance. Ollington and Vamplew (2005) presented a new Q 
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Learning algorithm where the rewards and the environment may change. The algorithm is 

reward independent, allowing the mechanics of the environment to be learned 

independently of the task. On the other hand, Fuchida, et al. (2010) proposed a method to 

propagate negative rewards by taking the absolute value of the next state. 

Tesauro and Kephart (2002) investigated a Q Learning utilized by adaptive 

software agents to make economic decisions such as setting prices in a competitive 

marketplace. Lee, et al. (2007) employed the Q Learning approach in portfolio 

management for trading in the stock market. Andrecut and Ali (2001) presented a 

numerical investigation of the minority game model used to study the competitive 

interaction of complex adaptive agents in a socioeconomic environment, where the 

dynamics of the agents is described by the Q Learning algorithm. Zhang and 

Bhattacharyyaz (2007) produced a Q Learning-based method for supply network agents 

to search for 'optimal' values of a parameter in their operating policies simultaneously 

and independently. Jeon, et al. (2011) suggested a routing method for automated guided 

vehicles in port terminals that uses the Q Learning technique to estimate the waiting 

times of each vehicle. 

There are also studies of the Q Learning algorithm for continuous domains. In the 

Q Learning algorithm of Millan et al. (2002), the results in robotics domains showed the 

superiority of the continuous-action Q Learning over the standard discrete-action version 

in terms of both asymptotic performance and speed of learning. Hagen and Krose (2003) 

produced a Neural Q Learning algorithm as a continuous state-action space equivalent of 

the discrete state-action space Q Learning. Er and Deng (2004) presented a dynamic 

fuzzy Q Learning (DFQL) method capable of tuning fuzzy inference systems online to 
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calculate actions and Q-fiinctions to deal with continuous-valued states and actions. A 

reinforcement distribution method for fuzzy Q Learning to learn a set of fuzzy rules by 

reinforcement (Bonarini, et al., 2009) and design of fiizzy controllers by ACO 

incorporated with fuzzy-Q Learning, called ACO-FQ, (Juang & Lu, 2009) are other 

fiizzy-based Q Learning approaches. 

Among the hybrid applications of Q Learning, Monekosso and Remagnino (2004) 

combined the standard Q Learning technique with a synthetic pheromone introducing a 

belief factor into the update equation, named the pheromone-Q Learning (Phe-Q) 

algorithm. Lima, et al. (2007) used the Q Learning algorithm for the constructive phase 

of GRASP and as generator of the initial population for the GA which was applied to the 

symmetrical traveling salesman problem. Torre, et al. (2010) offered Q Learning as a 

mechanism to control how the different evolutionary approaches contribute to the overall 

search process. 

In order to cope with the size of the spaces in Q Learning, various strong 

approaches to the state and action value function might be needed. Clausen and Wechsler 

(2000) developed the theory of quad-Q Learning which is applicable to problems that can 

be solved by "divide and conquer" techniques where the environment was viewed as a 

hierarchy of states where lower level states are the children of higher level states, and the 

objective was to maximize the sum of rewards obtained from each of the environments. 

Castro and Mannor (2010) generalized the classical Q Learning algorithm to an algorithm 

where the basis of the linear function approximation change dynamically while 

interacting with the environment. While Bhatnagara and Babu (2008) offered using the 

two-timescale stochastic approximation methodology in updating Q-values, Langlois and 
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Sloan (2010) presented a function approximation approach to Reinforcement Learning 

(RL) via Q function for the Blocks World problem, and they obtained similar learning 

accuracies with traditional RL, but with better running times. In Hwang et al.'s algorithm 

(2011), an adaptive resonance method is employed as a cluster to classify input vectors 

and the results are sent to the Q Learning in order to learn how to implement the optimum 

actions. 

Wang and Silva (2010) presented a Q Learning algorithm with Kalman filtering 

for decision making in multirobot cooperation where Kalman filter was employed to 

update Q-values instead of observed rewards. They observed that the algorithm had better 

performance than the conventional single-agent Q Learning or the team Q Learning in the 

multirobot domain. 

In addition to the applications mentioned before, many other interesting 

applications were created based on Q Learning, such as channel assignment in mobile 

communication systems (Nie & Haykin, 1999), multi-agent cooperation for robot soccer 

(Park, et al., 2001), weightings for optimal control and design problems (Kamali, et al., 

2007), robot navigation (Chen, et al., 2008), morphing Unmanned Air Vehicles (Valasek, 

et al., 2008), adaptive waveform selection in cognitive radar (Wang, et al., 2009), motion 

control for bionic underwater robots (Lin, et al., 2010) and path selection in disaster 

response management (Sul, et al., 2011). Learning policies for single machine job 

dispatching (Wanga & Ushera, 2004), dynamic parallel machine scheduling with mean 

weighted tardiness (Zhang, et al., 2007) and stochastic resource constrained project 

scheduling with new project arrivals (Choi, et al., 2007) are some of the Q Learning 

solution approaches presented in the scheduling area. 
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A comprehensive tutorial is produced by Kealbling, et al. (1996) and more 

information about the Q Learning algorithm can be found in Watkins (1989), Watkins 

and Dayan (1992) and in the textbooks by Mitchell (1997), Sutton and Barto (1998) and 

Alpaydin (2004). 

6.2 Temporal Difference Algorithm - Introduction to Q Learning 

Based on available feedback, machine learning can be classified as supervised, 

unsupervised and reinforcement learning. In supervised learning, correct values are 

provided by a supervisor; however, in unsupervised learning, there are only input data 

and no supervisor. The goal is to obtain the regularities in the input which is defined as 

density estimation in statistics. Clustering is a method for density estimation. In RL, 

unlike supervised leaning, the machine is not told which actions to take but has to 

discover which actions yield the most reward (Yao & Liu, 2005). The modern science of 

RL has emerged from a synthesis of notions from four different fields: classical Dynamic 

Programming (DP), Artificial Intelligence (AI), stochastic approximation, and function 

approximation (Gosavi, 2009). What RL algorithm does is evaluating the goodness of 

policies' and learning from the good action sequences to create a policy. Trial-and-error 

search and delayed reward are the two most important unique characteristics of RL (Yao 

& Liu, 2005). 

The RL process creates a sequence of actions; it indeed applies a Markov decision 

process (MDP) to model the agent. However, there is a significant difference between 

these two cases. While in MDP the sequence of signals is produced by an external 

process, in the RL algorithm the agent itself generates the sequence of actions (Alpaydin, 



103 

2004). A more realistic approach would be to explore the environment and use this 

information for updating the current state. These types of RL algorithms are defined as 

Temporal Difference (TD) algorithms (Sutton, 1988). In TD we look at the difference 

between the current estimate of the value of a state and the discounted value of the next 

state and the reward. TD approach is historically based on animal learning psychology 

and artificial intelligence (Klopf 1972; Samuel, 1959). 

A TD algorithm is a combination of Monte Carlo (MC) and dynamic 

programming (DP) ideas. TD methods can learn directly from the experience without a 

model of the environment's dynamics like MC methods, and, like DP, TD can update the 

estimated values based on other learned values, without waiting for a final outcome. The 

relationship between TD, DP, and MC methods is the recurring concept of RL (Sutton & 

Barto, 1998). TD updates the estimates of the value function V* for a given policy ti. The 

simplest TD method, known as TD(0), is presented in equation (6.1); 

V(st) «- V(st) + a [rt+1 + y V(st+I) - V(st)] (6.1) 

where rt+i is the actual return at time (t+1), a is step-size, or learning parameter and y is 

the discount parameter. Note that the definition of an optimal policy in equation (6.1) is 

inspired by considering Bellman's equation (6.2), which forms the foundation for many 

dynamic programming approaches to solving MDPs. 

(Vs e S)V * (s) = E[r(s, rc(s))+yV * (5(s, tt(s)))] (6.2) 

Bellman (1957) showed that the optimal policy %* satisfies the equation (6.2) and 

that any policy % satisfying this equation is an optimal policy. The main contribution of 

Bellman's work was to show that the computational burden of an MDP could be 

dramatically reduced via DP (Gosavi, 2009). 
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Unlike MC, TD will not wait until the end of the episode to determine V(st), 

instead, it just needs to wait only until the next time step. This feature is the most obvious 

advantage of TD methods over MC methods. In practice, TD has usually been found to 

converge faster than constant-a MC methods on stochastic problems (Sutton & Barto, 

1998). 

Different from DP, TD does not need a model of the environment, reward and 

next-state probability distributions. If all the rewards and next-state probability 

distributions are known, DP could be used instead of the RL algorithm. However, 

obtaining this information can be very costly and seldom possible. According to 

Alpaydin (2004), the RL has two advantages over classical DP: first, while learning, it 

can intensify the important parts of the search space and ignore the other parts; and 

second, it can implement function approximation methods to model the problem and 

learn faster. Q Learning may be accepted as stochastic approximations to DP (Jaakkola, 

etal., 1994). 

In complex problems with several governing random variables, it is usually 

difficult to compute the values of the transition probabilities. This phenomenon is called 

the curse of modeling. In problems with large dimensions, storing or managing these 

values becomes challenging. This is called the curse of dimensionality. DP breaks down 

on problems which suffer from any one of these curses because it requires all these 

values. RL can generate near-optimal solutions by making inroads into problems that 

suffer from any of these curses and cannot be solved by DP (Gosavi, 2009). 

When the feedback used is from one state transition of the MC, the algorithm is 

named a TD(0) algorithm, as in equation (6.1). When the feedback is from multiple 
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transitions, the algorithm is then referred to as a TD(X) algorithm. In TD(X), we have that 

feedback = r, + Xri+i + X2ri+2 +•» ; where n is the immediate reward received in the ith 

iteration. The Q Learning algorithm is derived from the definition of Q values and TD(0) 

algorithm (Gosavi, 2009). 

6.3 Q Learning 

TD focuses on the tansitions from state to state and the learned values of states. If 

instead, the tansitions from state-action pair to state-action pair are considered, their 

learned values will bring us to the Q Learning algorithm; one of the most important 

breakthroughs in RL (Sutton & Barto, 1998). In Q Learning algorithm, the learned 

action-value function, Q, directly approximates Q*, the optimal action-value function. On 

the other hand, TD algorithms learn by iteratively reducing the differences between the 

estimated values produced by the agent at different times. In this sense, Q Learning is a 

special case of a general class of TD algorithms (Mitchell, 1997). 

In the Q Learning algorithm, the value of evaluation function Q(s, a) is defined as 

the maximum discounted cumulative reward that can be achieved starting from state s 

and applying action a as the first action. The Q value is the reward received immediately 

after selecting action a from state s, plus the value, discounted by y, of following the 

optimal policy. If the agent learns the Q function, it will be able to select the action that 

maximizes Q(s, a) among available actions in its current state. 

In the terminology of the Q Learning algorithm, the decision maker is called 

"agent". There are several possible "states" for the agent to move from one to another. 

The "environment" is the current state in which the agent interacts and makes decisions. 
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The agent has a set of possible, or feasible, actions that affect both the "reward" and the 

next state. Once an action is taken, the state will be changed. For each action the agent 

receives feedback, called the "reward". The rewards are delayed, and required for the 

agent to learn the system. To solve the optimization problem the agent learns the best 

course of actions that have the maximum cumulative reward. The sequence of actions 

from the first state to the terminal state is called episode. 

Q(s„a t)<-(l-a) Q(s t ,a t)+ a rt+1 + YmaxQ(s t + 1 ,a t + 1)  
at+l 

(6.3) 

In the Q Learning transition, equation (6.3), Q(st, at) is nominated as the 

cumulative quality or reward of action taken in state s for time t. rt+i is the reward 

received when the action a is taken at time (t + 1). Q(st+i, at+i) is the value for the next 

state, and has a higher chance of being correct. If st+i is terminal, then Q(st+i, at+i) is 

defined as zero, a is the learning factor, 0 < a <1, which is gradually decreased in time 

to converge. It has been shown that as a is gradually decreased in time for convergence, 

this algorithm converges to the optimal Q* values (Watkins & Dayan, 1992). More 

general convergence results were proved later by Jaakkola, et al. (1994) and Tsitsiklis 

(1994). 

The learning factor a is a function of the number of iterations. Let a' denote the 

main learning rate in the i1*1 iteration. Some commonly used examples for step-sizes are: 

a' = a/(b + i) where for instance a and b are constants and log(i) = i (Gosavi, 2009). 

Besides the learning factor, Q values for the next state, i.e. Q(at+i,  St+i),  are 

discounted by a discount factor y, where 0 < y < 1, since these Q values will happen in 

the next step, in other words, in the future (Junior et al., 2008). The discount concept 
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essentially measures the present value of the sum of the rewards earned in the future over 

an infinite time, where y is used to discount money's value horizon, in equation (6.4): 

where n is the rate of interest. The right part of the equation is raised to the power 1 

because in the MDP the time duration of each transition is fixed at 1. If y = 0, only the 

immediate reward is considered. As y approaches 1, future rewards are given greater 

emphasis relative to the immediate reward. 

After discounting, if we add it to the immediate reward [rt+i + y max Q(st+i, at+i)] 

then this term can be accepted as an estimated value of the action in the next step which 

is called backup because it can be viewed as "backing it up" to revise the estimate for the 

value of a current action (Alpaydin, 2004). 

In the process of Q Learning algorithm, all Q values are stored in a lookup table, 

and initially all Q(st, a,) = 0 for all actions. Assuming all Q values are initialized to zero, 

Q Learning has two general properties that hold for any deterministic MDP (Mitchell, 

1997). First, the Q values never decrease during training, and second, throughout the 

training process every Q value will remain in the interval between zero and its true Q 

value. 

A Q Learning algorithm can be proven to converge to their optimal Q values 

when the estimated Q values for each state-action pair are represented by a lookup table 

with a distinct entry for each state-action pair. The key idea of the proof of convergence 

of Q Learning is that the table entry Q(s, a) with the largest error must have its error 

reduced by a factor of y whenever it is updated. The reason is that its new value depends 

only in part on error-prone Q estimates, with the remainder depending on the error-free 

(6.4) 



108 

observed immediate reward r. According to convergence theorem of Q Learning for 

deterministic MDP with bounded rewards, \r(s, a)\ < c for all s, a, first consider that the Q 

Learning agent uses the training rule of equation (6.3), initializes the look-up table Q(s, a) 

to arbitrary finite values, and uses a discount factor y such that 0 < y < 1, for the nth 

update. If each state-action pair is visited infinitely often, the estimates of Q„(s, a) 

converges to the real values of Q(s, a) as n —* oo, for all s, a (Mitchell, 1997). 

The most constraining assumption in Q Learning is that the Q function is 

represented as a lookup table with a discrete entry for every state-action pair. However, 

there are a number of problems with this lookup table approach (Alpaydin, 2004): 

• Increasing the numbers of states and actions makes the size of lookup table quite 

larger. 

• Instead of discrete entries for state-action pair, states and actions may be 

continuous. 

• When the search space is large, more episodes may be needed to fill the entries of 

the lookup table with acceptable accuracy. 

To be able to overcome these problems in Q Learning, other practical algorithms 

are often combined with the Q Learning training rules, such as regression models, 

function approximation methods, artificial neural networks and clustering. In practice, a 

number of successful RL systems have been developed by incorporating such algorithms 

in place of the lookup table (Mitchell, 1997). 

Updating Q(st, at) values in the lookup table can be carried out in two ways; off-

policy and on-policy. In off-policy control, the policy being evaluated to update the Q 

values can change in every iteration. In on-policy control, a unique policy is evaluated for 
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some time during the learning (Gosavi, 2009). On-policy updating version of the Q 

Learning algorithm is called SARSA. The term comes from the initial letters of State, 

Action, Reward, State, and Action (Battiti, et al., 2008). The SARSA algorithm was first 

introduced by Rummery and Niranjan (1994), who called it modified Q Learning. The 

name "SARSA" was used first by Sutton (1996). 

Q Learning methods are the most widely used RL methods, probably due to their 

great simplicity. They can benefit from the experience generated from interaction with an 

environment, and be applied with a minimal amount of computation (Sutton & Barto, 

1998). The novel aspect of Q Learning is that it assumes the agent must move about the 

real world and observe the consequences. The primary concern is usually the number of 

real-world actions that the agent must perform to converge to an acceptable policy, rather 

than the number of computational cycles it must expend (Mitchell, 1997). 

6.4 Meta-RaPS Q Solution for 0-1 MKP Example 

To demonstrate how the Meta-RaPS Q Learning algorithm works, it was applied 

to the 0-1 MKP example in Section 6.3. In this algorithm, the agent, i.e., decision maker, 

will select the next item to add to the partial solution as an action in the current state. The 

decision of agent depends on the current and next states as well as the rewards, i.e. 

weights or priorities, of the feasible items. After one selection, the agent moves to the 

next state to take another action (selecting another item), until the current episode, i.e. the 

constructed solution, is completed. For this example, learning factor a and discount factor 

y are assumed to be 0.7 and 0.1, respectively. 
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To begin the algorithm, first the lookup table for the Q Learning matrix is created 

and initialized with zeros, i.e. Q(st, at) = 0, for all actions and all states. While 

progressing, the Q(st, at) values will be stored in this matrix. The Q Learning matrix after 

1000 episodes presented in Table 26 will be used to explain the updating operations of Q 

values by equation (6.3). Note that in the Q Learning matrix, some cells are filled with 

zeros since it is not possible to select an item in every state to reach optimal solutions for 

0-1 MKPs, i.e. not all items can be accepted in the solution set due to feasibility concerns. 

However, for permutation problems, such as scheduling problems where the goal is to 

create optimum ordering of jobs, in each state a job would be selected and therefore the 

matrix would be filled with numbers other than zeros. 

Table 26. The Q Learning Matrix after 1000 Episodes for 0-1 MKP Example 

Q(s», at) 1 2 3 4 5 6 7 8 

1 39.496 24.242 64.365 35.355 36.908 14.828 25.164 18.336 

2 13.030 14.451 44.368 20.676 25.461 17.164 20.275 14.687 

3 9.014 6.929 25.214 19.539 15.563 7.454 9.474 5.991 

4 9.196 4.197 17.963 5.319 9.240 0.000 4.459 6.665 

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 7.047 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

The process begins randomly by selecting an item for the first or current state, and 

another item as the next feasible item for the next action. If in the current state, t = 1, the 
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selected item is 6, the value of Q(l, 6) is calculated by using equation (6.3) based on all 

feasible actions after item 6 in Figure 10, and the Q Learning matrix is updated by 

replacing new Q(l, 6) with the previous one, as in the Table 27. In this calculation, rt+i is 

19, the weight of item 3 that has the maximum Q value in state t + 1. 

Q(l,6) = (1 - 0.7) • Q(l, 6) + 0.7 • [r2 + 0.1 • max{Q(2, 1), Q(2, 2), Q(2, 3), Q(2,4), 

Q(2, 5), Q(2, 7), Q(2, 8)}] 

= 0.3 • 14.828 + 0.7 • [19 + 0.1 max{ 13.030, 14.451,44.368,20.676, 

25.461,20.275,14.687)}] 

= 20.860 

Figure 10. Calculating Q Value for t = 1 

Table 27. The Updated Q Learning Matrix after t = 1 

Q(s», a,) 1 2 3 4 5 6 7 8 

1 39.496 24.242 64.365 35.355 36.908 20.860 25.164 18.336 

2 13.030 14.451 44.368 20.676 25.461 17.164 20.275 14.687 

3 9.014 6.929 25.214 19.539 15.563 7.454 9.474 5.991 

4 9.196 4.197 17.963 5.319 9.240 0.000 4.459 6.665 

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 7.047 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Once item 6 is assigned, the next item is chosen in state 2 among the feasible 

unassigned items, i.e., we seek the value of Q(2, 3) to update the Q Learning matrix. 

Again, after following calculations carried out according to equation (6.3) in Figure 11, 

where rt+2 is the weight of the item 4, whose Q value in state t + 2 is maximum, the new 

value of Q(2, 3) is replaced with the former value in the Q Learning matrix, as in the 

Table 28. 

Q(2,3)= (1 - 0.7) • Q(2, 3) + 0.7 • [r3 + 0.1 • max{Q(3, 1), Q(3,2), Q(3,4), Q(3, 5), 

Q(3,7), Q(3, 8)}] 

= 0.3 • 44.368 + 0.7 • [10 + 0.1 • max{9.014, 6.929, 19.539, 15.563, 

9.474,5.991}] 

= 21.678 

Figure 11. Calculating Q Value for t = 2 

Table 28. The Updated Q Learning Matrix after t = 2 

Q(st, at) 1 2 3 4 5 6 7 8 

1 39.496 24.242 64.365 35.355 36.908 20.860 25.164 18.336 

2 13.030 14.451 21.678 20.676 25.461 17.164 20.275 14.687 

3 9.014 6.929 25.214 19.539 15.563 7.454 9.474 5.991 

4 9.196 4.197 17.963 5.319 9.240 0.000 4.459 6.665 

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 7.047 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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After selecting item 4, in state 3 we update the value of Q(3, 4) by assigning an 

item so that the solution remains feasible. In this case, only adding one of the items 1, 2 

and 7 keeps the solution feasible (Figure 12). 

Q(3, 4)= (1 - 0.7) • Q(2, 3) + 0.7 • [r4 + 0.1 • max{Q(4, 1), Q(4,2), Q(4, 7)}] 

= 0.3 • 19.539 + 0.7 • [9 + 0.1 • max{9.196, 4.197, 4.459}] 

= 12.805 

Figure 12. Calculating Q Value for t = 3 

Item 1 is the last feasible item added for the solution in this episode. Although 

there will not be any item to select for the next state, we can calculate the value of the last 

state-action pair, Q(4,1) in Figure 13: 

Q(4, 1)= (1 - 0.7) • Q(4, 1) + 0.7 • [r5 + 0.1 • 0] 

= 0.3 • 9.196 

= 2.756 

Figure 13. Calculating Q Value for t = 4 
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After assigning items 6, 3, 4 and 1 there are no other feasible items to add to the 

solution, thus the algorithm is stopped for this episode. Table 29 presents the Q Learning 

matrix after 1,001 episodes. 

Table 29. The Q Learning Matrix after 1001 Episodes for 0-1 MKP Example 

Q(s«, at) 1 2 3 4 5 6 7 8 

1 39.496 24.242 64.365 35.355 36.908 20.860 25.164 18.336 

2 13.030 14.451 21.678 20.676 25.461 17.164 20.275 14.687 

3 9.014 6.929 25.214 12.805 15.563 7.454 9.474 5.991 

4 2.756 4.197 17.963 5.319 9.240 0.000 4.459 6.665 

5 0.000 9.161 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

In the Meta-RaPS Q Learning algorithm, the converged Q Learning matrix is used 

as the probabilistic priority matrix for Table 22, created for the Meta-RaPS EDA 

algorithm in Chapter 5, to determine the priorities of each item in partial solutions, and 

the process Meta-RaPS followed in assigning new items. After each iteration, the Q 

Learning matrix is updated by accepting the improved solution as an episode of Q values 

for selected items and their states. 
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6.5 Meta-RaPS Q Algorithm 

The Q Learning matrix is the memory and learning mechanism that provides the 

priorities necessary to select the items by Meta-RaPS. Since this mechanism draws its 

strength from the transition equation (6.3), this equation has a key role in obtaining a 

matrix which should present the "right" priorities for choosing the order of items. At this 

point, two issues related to equation (6.3) emerge; selection of the next Q values and 

definition of rewards. 

In the 0-1 MKP example, next item is selected according their Q values, i.e. the 

item with the maximum Q value. However, by accepting the item with the maximum Q 

value the algorithm may be stuck in local regions, and cannot explore other promising 

areas. A precaution to remove this risk may be to select the next item randomly instead of 

looking for the one with maximum Q value. The preliminary analysis of both approaches 

showed that in selecting the next item, randomness strategy is superior to elitist strategy. 

According to this result, the transition equation (6.3) is modified as presented in equation 

(6.5). The pseudocode summarizing the Meta-RaPS Q process is developed in Figure 14. 

Q(s„a.)<-( l -a)  Q(s„a,)+ a  r t + 1+ yrandomQ(s t + 1 ,a t + 1 )  (6 .5)  
®t+i 

Another issue in the transition equation is how to identify the rewards. In the 0-1 

MKP example, rewards were simply accepted as the weights of items. If this approach is 

used with the modified transition equation (6.5) the algorithm will be totally independent 

from any other greedy rule. On the other hand, to increase the chance of better results, 

DGR can also be applied in calculating rewards for this problem. These two approaches 

form two versions of Meta-RaPS Q algorithm to solve 0-1 MKP; Meta-RaPS Q-W and 

Meta-RaPS Q-G, respectively and will be discussed next. 



116 

While (Q Learning Matrix not converged) 

Initialize Q Learning Matrix with zeros 

Do for each episode 

Calculate Q values for current episode by transition equation: 

Q(s t ,a t )  <-  (1  -<x)Q(s t ,a t )+a r t + 1  + y random Q (s t + 1 ,  a t + 1 )  
L 

End While 

For iteration ^ I 

Apply Meta-RaPS rules with priorities from Q Learning matrix to 

produce ImprovedSolution 

If ImprovedSolution > BestImprovedSolution then 

Assign ImprovedSolution as BestImprovedSolution 

Update Q Learning Matrix by accepting ImprovedSolution as an episode 

End For 

Report BestImprovedSolution 

Figure 14. Meta-RaPS Q Pseudo Code 

6.6 Meta-RaPS Q for Small and Medium 0-1 MKP Instances 

As in the case of the Meta-RaPS EDA, the success of the Meta-RaPS Q algorithm 

depends on the quality of the Q Learning matrix. The key element in determining this 

quality is the reward in the Q transition equation (6.5). The weights of items, like in the 

0-1 MKP example, can be used as the rewards to update the Q values of state-action 

pairs, or they can be produced by employing a greedy rule. Depending on how the 

rewards are accepted, Meta-RaPS Q will have two different versions: Meta-RaPS Q-W 

where weights of items are accepted as rewards and Meta-RaPS Q-G where rewards are 

generated using DGR. Table 30 summarizes the results of both algorithms for 

small/medium 0-1 MKP problems. 
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Meta-RaPS Q-W could find the optimum values for 45 instances of 55 with the 

average deviation percentages from optimum/best solutions for the CSs and ISs of 

1.496% and 0.214%, respectively. The average time and iterations to solve the small and 

medium instances are 747 and 2074 seconds respectively. The algorithm based on the 

item weights found the optimum solutions for the instances 6.8 of 10 times on average. 

Table 30. Meta-RaPS Q Solutions for Small/Medium 0-1 MKP Problems 

Deviation% Iteration Time Optimum 

Version IMean IBest CMean Number (Sec.) Frequency Instance 

Meta-RaPS Q-W 0.214 0.089 1.496 2090 774.05 6.82 45 

Meta-RaPS Q-G 0.045 0.003 0.596 2074 209.19 7.96 52 

Average 0.130 0.046 1.046 2082 491.62 7.39 48.50 

Std.Dev. 0.120 0.061 0.636 11 399.42 0.81 4.95 

Using with DGR, the average deviations of the Meta-RaPS Q-G algorithm are 

0.596% and 0.045% for the CSs and ISs, respectively. Meta-RaPS Q-G could reach the 

optimum solutions of 52 small and medium instances; PETERSEN7, WEING7 and 

WEISH18 were the instances not solved by the algorithm. The mean number of times 

optimum solutions found was around 8 in 10 times for each instance. The average time to 

solve instances was 209 seconds for the average of 2074 iterations. 

Comparing the performances of both algorithms, it is obvious that Meta-RaPS Q-

G is superior to Meta-RaPS Q-W as it produces higher quality results in all aspects. As in 

the case of EDA, training memory set by implementing a greedy rule produced better 

results than using just the weights of items. Due to these facts, the Meta-RaPS Q-G 
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version is accepted as the main version of Meta-RaPS Q to apply for large size 0-1 MKP 

intendances. 

6.7 Meta-RaPS Q for Large 0-1 MKP Instances 

With the parameter settings in Table 6 Meta-RaPS Q was run to solve large size 

0-1 MKP instances. In Table 31, the Meta-RaPS Q algorithm obtained the optimum 

values for 22, 10 and 6 instances of the 100 items and 5, 10 and 30 knapsacks, 

respectively. The average optimum instance was 12.7 of 30 instances for the first three 

sets. The overall average deviations from optimum/best solution found so far was 0.452% 

in an average of 87 minutes and 4176 iterations. The overall average deviation percentage 

for CSs was 1.17; not as low as in Meta-RaPS EDA. Meta-RaPS Q could reach the 

optimum/best results in 2.4 of 10 replications. The best average performance of the Meta-

RaPS Q, i. e. the best average deviations for all instances was 0.273. 

Table 31. Meta-RaPS Q Solution for Large 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Instance Set IMean IBest CMean Number (Min.) Frequency Instance 

100x5 0.143 0.058 0.653 3440 32.79 4.97 22 

100x10 0.493 0.281 1.261 4454 65.58 1.50 10 

100x30 0.721 0.479 1.599 4634 163.80 0.60 6 

Average 0.452 0.273 1.171 4176 87.39 2.36 12.67 

Std.Dev. 0.291 0.211 0.479 644 68.17 2.31 8.33 
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CHAPTER 7 

INCORPORATING PATH RELINKING INTO META-RAPS 

In the EDA and Q based memory and learning mechanisms presented in previous 

chapters, the first step was to create a memory set for the algorithm to learn the problem 

structure. As the third approach to attempt gaining memory and learning, Path Relinking 

(PR) will be employed in Meta-RaPS as a post optimization procedure. In this approach, 

there will be no need for a memory set, and learning will take place only after producing 

solutions by Meta-RaPS. 

The approach is named Path Relinking because it generates a path between 

solutions linked by series of moves during a search to incorporate attributes of the 

guiding solution while recording the objective function values (Glover & Laguna, 1997). 

In the PR algorithm a trajectory, or a path, is created between two solutions, called initial 

and guide solutions, to create new solutions. While progressing, the initial solution 

gradually transforms in the guide solution by incorporating the attributes of the guide 

solution. 

7.1 Literature Review 

Path relinking was originally proposed by Glover (1996) as a way to explore 

trajectories between elite solutions obtained by TS or Scatter Search (SS), and later 

Laguna and Marti (1999) applied PR within GRASP. The PR became an attractive 

approach applied as an intensification strategy in GRASP (Resende & Ribeiro, 2003), as 

a post-optimization step (Deng and Bard, 2011; Ribeiro, Uchoa, & Werneck, 2002; 



Villegas, et al., 2011), or as both intensification and post-optimization strategies 

(Resende & Werneck, 2002). 

In the literature, GRASP and PR applications are produced by researchers for 

many optimization problems, such as scheduling (Alvarez-Valdes, et al., 2008, Arroyo, et 

al., 2008, Bozejko, 2010), max-min diversity problem (Resende, et al., 2010), set 

packing problem (Delorme, Gandibleux & Rodriguez, 2004), generalized quadratic 

assignment problem (Mateus, Resende & Silva, 2011), multi-plant capacitated lot sizing 

problem (Nascimento, Resende & Toledo, 2010) and set k-covering problem (Pessoa, et 

al., 2012). Festa and Resende (2011) give an overview of GRASP and its enhancements 

including the PR strategy. 

In addition to GRASP, PR was first applied in GA to implement a progressive 

crossover operation by Ribeiro and Vianna (2003). Ribeiroa and Vianna (2009) extended 

their proposal and developed a better implementation. Andrade and Resende (2007) 

showed that a GRASP with evolutionary PR finds solutions faster than a heuristic based 

on GRASP with PR as well as one based on pure GRASP. The multiple-level warehouse 

layout problem (Zhang & Lai, 2006) and the minimum tardiness permutation flowshop 

problem (Vallada & Ruiz, 2010) are among other problems successfully solved by GAs 

with PR. 

Based on the adaptive memory and responsive strategy elements of SS and PR, 

Yin, et al. (2010) created a combination of PSO and SS/PR to produce a Cyber Swarm 

Algorithm that proves more effective than standard PSO. Applied to the challenge of 

finding global minima for continuous nonlinear functions, the Cyber Swarm Algorithm 

was able to obtain better solutions to a well known set of benchmark functions. 



There are many other successful hybrid applications in which PR is used to add a 

memory mechanism by integrating it into other algorithms, including TS (Armentano, et 

al., 2011; Nasiri & Kianfar, 2012; Vogt, Poojari & Beasley, 2007), variable neighborhood 

search (Wang & Tang, 2009), SS (Nasiri and Kianfar, 2011; Ranjbar, Reyck & Kianfar, 

2009), ACO (Liu & Liu, 2011), and memetic algorithms (Jaszkiewicz & Zielniewicz, 

2009). 

Marti, Montes and El-Fallahi (2005) implemented TS methodology coupled with 

PR for function approximation and obtained the best solutions in terms of quality. El-

Fallahi, Marti and Lasdon (2006) proposed a PR implementation to solve the neural 

network training problem. Their experimentation showed that the proposed procedure can 

compete with the best-known algorithms in terms of solution quality, consuming a 

reasonable computational effort. 

PR has been applied in connection with different metaheuristics as a combination 

method, mainly applied to combinatorial optimization problems, but also in the context of 

continuous optimization (Jaeggi, et al., 2008). A multiobjective combinatorial 

optimization is another research field for the researchers who have applied the PR 

approach (Beausoleil, Baldoquin & Montejo, 2008; Pacheco & Marti, 2006). Plateau, 

Tachat and Tolla (2002) applied PR in combining the solutions encountered in their 

hybrid search interior point methods and metaheuristics for 0-1 programming. 

Recent PR approaches have been developed to solve the large-scale global 

optimization (Duarte, Marti & Gortazar, 2011). Ribeiro and Resende (2012) reviewed PR 

intensification methods for stochastic local search algorithms. Detailed explanations of 



PR is presented by Glover (1999) and Glover, Laguna and Marti (2000). A survey 

reporting on advanced PR strategies can be found in Resende and Ribeiro (2005). 

7.2 Path Relinking Algorithm 

From the standpoint of metaheuristic classification, it has been mentioned that 

Scatter Search (SS) is an evolutionary algorithm that constructs solutions by combining 

others. Features of SS are also captured in the PR algorithm. Both approaches originally 

stem from strategies of combining decision rules and constraints in the context of integer 

programming (Glover, Laguna & Marti, 2003). The basic idea behind the PR is to 

reinterpret the linear combinations of points in the Euclidean space as paths between and 

beyond solutions in the neighborhood (Talbi, 2009). 

The approach is named PR because it generates a path between solutions linked 

by a series of moves during a search to incorporate attributes of the guiding solution 

while recording the objective function values (Glover & Laguna, 1997). The PR approach 

generates new solutions by exploring trajectories connecting the initiating solution and 

the guiding solution. While following the path from the initiating towards the guiding 

solution the high-quality solutions are created by selecting moves with "good" attributes 

contained in the guiding solution (Glover, Laguna & Marti, 2003). At each iteration, the 

best move in terms of the objective function and decreasing the distance between the two 

solutions is selected. This is repeated until the distance is equal to 0 at which point the 

best solution found in the trajectory is returned by the algorithm. 

PR is different from local search approaches in many ways: the path between 

initial and guiding solutions is directed by the criterion of incorporating attributes of the 
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guiding solution, not by local attraction. This feature helps PR reach some solutions that 

would not be found by a "locally myopic" search (Glover, Laguna & Marti, 2003). The 

relinked path may also provide fertile starting points for creating neighborhoods which 

may include high quality solutions. 

Glover and Laguna (1997) suggested PR as an approach to integrate 

intensification and diversification strategies in the context of TS. PR can be used to 

diversify or intensify the search, depending on the path generation and the choice of the 

initial and guiding solutions (Gendreau & Potvin, 2007). In PR, for each pair of initial 

and guiding solutions there exist different alternatives in selecting the starting and the 

target solutions: 

• Forward: The worst of both solutions is used as the starting solution. 

• Backward: The better of both solutions is used as the starting solution. Since 

the starting solution's neighborhood is more explored than that of the target 

solution, the backward strategy is, in general, better than the forward one. 

• Backward and forward relinking: Two paths are constructed in parallel, using 

alternatively both solutions as the starting and the target solutions. 

• Mixed relinking: Two paths are constructed in parallel from both solutions 

but the guiding solution is an intermediate solution at the same distance from 

both solutions. 

Besides these path forms, there are also multiparent path generation possibilities 

in PR by considering the combined attributes of a set of guiding elite solutions. In the 

multiparent path generation, proper weights are given to these attributes in order to 

determine which directions are given higher priority. Building a set of elite solutions as 
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multiparents creates a constructive approach in creating new solutions in PR. In this case, 

the initial solution begins as a partial solution or as a null solution, where some of the 

components of the solutions, i. e. items in 0-1 MKP, are not yet assigned. The 

constructive neighborhood structure allows the initial solution to move toward the 

guiding solutions by a neighborhood path introducing components contained in the set of 

guiding solutions based on their attractiveness (Glover, Laguna & Marti, 2003). 

The PR approach can also utilize a powerful optimization technique, constraint 

relaxation, to increase the possibility of obtaining high quality solutions by enlarging the 

search space. Constraint relaxation as an attractive strategy that creates a larger search 

space can be implemented by dropping some constraints and adding weighted penalties to 

the objective function for the constraint violations. In the 0-1 MKP, the constraint 

relaxation method can be applied to PR by allowing solutions exceeding the capacity of 

one or more knapsacks. In this case, penalty weights can be determined systematically by 

leading the search to cross the feasibility boundary of the search space. This technique is 

known as strategic oscillation, introduced in Glover (1977) and used in several successful 

TS algorithms. Strategic oscillation requires defining an oscillation, or feasibility 

boundary, and when the algorithm reaches the feasibility boundary, it continues the 

search beyond the boundary before turning around. Repeating this process creates an 

oscillatory search pattern. It is possible to adjust the amplitude of the oscillation; e. g. 

tight oscillations favor a more thorough search around the boundary (Gendreau & Potvin, 

2007). This method, also known as the tunneling strategy, is protected against the 

possibility of becoming "lost" in an infeasible region, since feasibility evidently must be 

recovered when the guiding solution is reached (Glover, Laguna & Marti, 2003). 
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7.3 Meta-RaPS PR Algorithm 

In the Meta-RaPS PR algorithm, the improved solution found at the current 

iteration can be accepted as the initial solution, and the best improved solution found so 

far as the guide solution. To follow the PR process, the initial and guide solutions are first 

coded in a binary string. The positions containing the same numbers in the initial and 

guide solutions are identified to keep their states and the numbers in the remaining 

positions are changed in a systematic way to create the neighborhood. The neighbor with 

the maximum profit is selected to build the path. At each step, the solutions become more 

similar to the guide solution and more different from the initial solution. While 

processing, the solution found is replaced with the best improved solution only if it is 

better than the best improved solution. 

For example, considering a 4-item 0-1 MKP problem, if items 3 and 4 are selected 

for the initial solution, and items 1, 2 and 4 for the guide solution, they will be coded as 

(0 0 1 1) and (1 1 0 1), respectively. Note that initial and guide solutions share only one 

item with the same state at the same position. The states of items in the other positions 

are switched from selected (1) to not selected (0), or not selected (0) to selected (1) to 

obtain the following neighbors: (10 1 1), (0 1 1 1) and (0 0 0 1). The best neighbor, i.e. 

the one with the maximum profit, is selected as the new initial solution, which is now 

closer to the guide solution, having two items at the same position. This process is 

followed until the initial and guide solutions are totally identical. Table 32 summarizes 

the PR transforming process from the initial to guide solutions. 
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Table 32. Meta-RaPS PR Process 

Initial Guide Neighbors 

0 0  1 1  1 1 0 1  1 0  1 1 *  0  1 1 1  0 0 0  1  

1 0  1 1  1 1 0 1  1 1 1 1  1 0 0  1 *  

1 0 0 1  1 1 0 1  1 1 0 1 *  

1 1 0 1  1 1 0 1  

The PR phase of the Meta-RaPS PR algorithm is not executed at the first iteration 

because the best improved solution to serve as the guide solution is not constituted yet. 

The Meta-RaPS PR pseudo code is shown in Figure 15. 

For iteration ^ I 

Apply Meta-RaPS rules to produce ImprovedSolution & 

BestImprovedSolut ion 

Assign ImprovedSolution as InitialSolution 

Assign BestImprovedSolution as GuideSolution 

While (InitialSolution =£ GuideSolution) 

Create CandidateSolutions 

Assign BestCandidateSolution as PathRelinkingSolution 

If PathRelinkingSolution > BestImprovedSolution then 

Assign PathRelinkingSolution as BestImprovedSolution 

Assign PathRelinkingSolution as InitialSolution 

End ffhile 

End For 

Report BestImprovedSolution 

Figure 15. Meta-RaPS PR Pseudo Code 



7.4 Meta-RaPS PR for Small and Medium 0-1 MKP Instances 

In the construction phase of Meta-RaPS, a solution for the 0-1 MKP is built by 

repeatedly adding feasible items to the current solution (partial solution) in the order 

based on their priority rules until the stopping criterion is satisfied. As in the previous 

chapters, there are two versions of Meta-RaPS PR depending on the greedy rule used. 

While Meta-RaPS PR-G is uses DGR to obtain priority rules in selecting items, Meta-

RaPS PR-W is the independent version that considers the weights of items only. The 

detailed results of both algorithms are summarized in Table 33. 

Table 33. Meta-RaPS PR Results for Small/Medium 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Version IMean IBest CMean Number (Sec.) Frequency Instance 

Meta-RaPS PR-W 0.132 0.048 1.884 1851 588.57 7.60 49 

Meta-RaPS PR-G 0.001 0.000 1.282 480 47.93 9.76 55 

Average 0.067 0.024 1.583 1166 318.25 8.68 52.00 

Std.Dev. 0.093 0.034 0.426 969 382.29 1.53 4.24 

Meta-RaPS PR-W could find the optimum values for 49 of 55 instances. Their 

average deviation percentage from optimum/best solutions for the CSs and ISs are 

1.884% and 0.132%, respectively. Meta-RaPS PR-W obtained the optimum solutions on 

average 7.6 out of 10 times. The average time and iterations to solve the instances are 589 

and 1,851, respectively. 

On the other hand, the Meta-RaPS PR-G approach could solve all small and 

medium instances, and found the optimum/best solutions (9.8 out of 10) run on average 
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for all instances. The average deviation percentages of CSs and ISs reached by the 

proposed algorithm were 1.282% and 0.001%, respectively. Meta-RaPS PR-G obtained 

these results in an average of 48 seconds and 480 iterations, respectively. 

Because of the higher performance of Meta-RaPS PR-G over W version, it is 

accepted as the main version of Meta-RaPS PR. To reveal the contribution of the PR to 

Meta-RaPS, the number of optimum/best solutions found in the construction, 

improvement and PR phases are tracked for each instance. Since it is observed in the 

initial analysis that the role of PR is getting more important with the increasing number 

of items and knapsacks, the instances are put in the order of size, which is defined here as 

the product of the number of items and number of knapsacks. 
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Figure 16. The Number of Optimum Solutions Found in 10 Replicates of Meta-RaPS PR 

Construction Phase for 55 Small/Medium Instances 
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Figure 16 shows the distribution of the number of optimum solutions found in the 

construction phase. For the instances with lower size, Meta-RaPS could find optimum or 

best solutions, and for the larger instances the chance of reaching to optimum or best 

solutions is decreases. The distributions of the number of optimum/best solutions found 

in the improvement and PR phases show the efficiency of the PR algorithm (Figure 17). 

Especially for the larger instances, the role of PR in the proposed algorithm is clear; its 

share of number of optimum or best solutions found in 10 runs for each instance 

increased. 
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Figure 17. The Distribution of Best Solutions Found in 10 Replicates of Meta-RaPS PR 

Improvement and PR phases for 55 Small/Medium Instances 

To look closer the distribution of best solutions found in the improvement and PR 

phases, their best solutions and trendlines found in 10 replicates were depicted in Figures 

18a and b. respectively. As seen from the trendlines in these figures, increasing the size 
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of the instances makes decrease the share of the improvement phase in producing the best 

solutions in 10 replicates; and increase the PR phases share. In these figures, the method 

of polynomial trendlines (order 3) were used to observe the predictions since the 

polynomial trendline produced larger R2 values than other methods did, such as linear, 

logarithmic, or exponential trendlines. 

Recall that besides the parameter of number of iterations (I), there is another 

stopping criterion, which is when the deviation percentage is equal to 0. For the instances 

with smaller size, Meta-RaPS can find optimum solutions, and stops the solution process 

before the algorithm reaches the PR phase. This is the reason why the PR phase seems to 

not produce optimal or best solutions for these instances. However, in solving large 

instances, Meta-RaPS is expected to call the PR phase to obtain better results. 
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Figure 18a. Trendline of Best Solutions Found in 10 Replicates by Improvement 

Phase of Meta-RaPS PR for 55 Small/Medium Instances 
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Figure 18b. Trendline of Best Solutions Found in 10 Replicates by PR Phase of 

Meta-RaPS PR for 55 Small/Medium Instances 

7.5 Meta-RaPS PR for Large 0-1 MKP Instances 

With the same parameter setting used in Meta-RaPS EDA and Q versions, Meta-

RaPS PR was run to solve the first three sets of large size 0-1 MKP instances. As shown 

in Table 34, the overall average deviations from optimum/best solution found was 

0.142% in an average of 21 minutes and 2,988 iterations. Meta-RaPS PR algorithm 

obtained the optimum values for 28, 22 and 14 instances of the 100 items with 5, 10 and 

30 knapsacks, respectively. The average optimum instance was 21.3 of 30 instances for 

the first three sets. Meta-RaPS PR could reach the optimum/best results in 4.9 of 10 

replications. The best average performance of the Meta-RaPS PR, i. e. the best average 

deviations percentage, for all instances was 0.061, and the overall average deviation 

percentage for CSs is 0.640. 
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Table 34. Meta-RaPS PR Solution for Large 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Instance Set IMean IBest CMean Number (Min.) Frequency Instance 

100x5 0.031 0.008 0.353 2321 14.44 7.27 28 

100x10 0.155 0.080 0.650 2819 27.32 5.17 22 

100x30 0.252 0.095 0.917 3824 86. 17 2.17 14 

Average 0.146 0.061 0.640 2988 20.88 4.87 21.33 

Std.Dev. 0.111 0.047 0.282 766 9.11 2.56 7.02 
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CHAPTER 8 

INCORPORATING ADAPTIVE PARAMETER TUNING INTO META-RAPS 

Adaptive parameter setting is another form of learning in metaheuristics since it 

requires the algorithm to memorize and learn the best parameters that could create high 

quality solutions in the search history. Different from other memory and learning 

approaches proposed in previous chapters, incorporating an adaptive parameter setting 

mechanism into Meta-RaPS is thought as the next task to accomplish in the way of 

creating a smart algorithm. 

Although metaheuristics are found to be very effective and efficient for 

optimization problems, they are sensitive to the values their parameters take and therefore 

it is very important to run them with the appropriate parameter setting(s) to reach high 

quality solutions. Parameter tuning is also critical to make the algorithm intensify or 

diversify its search process. Balancing between intensification and diversification in the 

search space is a key factor to reach fertile search areas and avoid premature convergence 

(Wong, 2008). 

Parameter tuning often requires either a deep knowledge of the problem structure, 

or trial and error algorithms with long tuning experiments. There is no unique parameter 

setting for metaheuristics as they are applied to solve different problems. There is 

anecdotal evidence that in designing and testing of a new metaheuristic, about 10% of the 

total time is allocated to development, and the remaining 90% of the time is spent on 

tuning parameters (Belarmino & Laguna, 2006). 
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A systematic and simple way to determine parameters would be to increase 

algorithmic efficiency (Battarra, et al., 2012). A powerful approach to tuning parameters 

is by controlling them throughout the search process, which is generally called an 

adaptive, reactive, or self-tuning metaheuristies. These metaheuristics utilize feedback 

information obtained during the search to perform a learning process of the parameter 

combination (Alabas-Uslub & Dengiz, 2011). Birattari (2009) reported that adaptive 

parameter tuning approach is particularly appealing when solving one single instance, 

typically large and complex. 

8.1 Literature Review 

Self-adaptive heuristics are achieved for evolutionary algorithms earlier than local 

search based algorithms (Alabas-Uslub & Dengiz, 2011). The development of parameter 

adaptation mechanisms in EAs began in 1967, when Reed, et al. (1967) learned to play 

poker with an EA, and Rosenberg (1967) proposed to adapt the probability for applying 

crossover. Weinberg (1970) and Mercer and Sampson (1978) first introduced meta-

evolutionary approaches where an outer EA mechanism controls the parameters of an 

inner mechanism that solves the problem. The term self-adaptation is commonly 

associated with the self-adaptation of mutative step sizes for Evolutionary Strategies (ES) 

like those introduced by Rechenberg (1973) and by Schwefel (1974). After ES, Fogel, et 

al. (1991) introduced self-adaptation to Evolutionary Programming (EP). Kramer (2010) 

reported that for binary coded EAs, self-adaptation has not grown to a standard method, 

only few theoretical investigations of self-adaptation exist; mostly on continuous search 
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domains and the analysis of mutation strengths in ES. According to Beyer and Schwefel 

(2002), the analysis of EAs, including the mutation control part, is a difficult task. 

The idea of considering GAs for tuning the parameters of the heuristics was first 

introduced by Golden, et al. (1998) in their two-phase procedure. During the first phase, 

the algorithm was trained on a small set of representative problem instances by 

determining a parameter vector that guarantees a good performance. In the second phase, 

the generated parameter vectors were linearly combined into an overall vector with the 

weights of the linear combination determined by the genetic procedure, so that the best 

overall performance is reached (Battarra, et al., 2012). Pepper, et al. (2002) use a similar 

technique to set the parameter of an annealing based heuristic for the travelling salesman 

problem (TSP), and Chandran, et al. (2003) fiirther analyze the possibility of applying a 

genetic parametric search procedure by introducing a simpler single-stage procedure. 

Kivijarvi, et al. (2003) proposed a self-adaptive GA for the clustering problem. 

Their algorithm gave very high quality results for hard problem instances. Binkley and 

Hagiwara (2007) introduced two different EA algorithms: a self-adaptive parallel 

recombinative simulated annealing algorithm, and a self-adaptive GA. They informed 

that the results were best in the published literature and the self-adaptive GA 

outperformed the fixed parameter GAs on the larger problems. In their papers, Battarra, 

et al. (2008, 2012) proposed a single-stage GA-based procedure for tuning the parametric 

Clarke and Wright (CW) heuristic and the Esau and Williams (EW) heuristic. Birattari 

(2009) adopts a machine learning perspective to the tuning problem of metaheuristics and 

develops a GA for the tuning. 
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Castellani, et al. (2007) presented an optimization technique to automatically 

select a set of control parameters for a Markov random field (MRF) based on the reactive 

tabu search strategy. Prais and Ribeiro (2000) proposed a new procedure, Reactive 

GRASP, in which the basic parameter that defines the restrictiveness of the candidate list 

during the construction phase is self-adjusted according to the quality of the solutions 

previously found. Their approach was robust and does not require calibration efforts. The 

Reactive Search (RS) method was applied to GRASP algorithm (Gomes, et al., 2001; 

Junior, et al., 2008; Usberti, et al., 2011). Hepdogan, et al. (2008) applied dynamic 

parameter setting of Meta-RaPS based on both RS and GA, called a Non-Parametric 

Based Genetic Algorithm (NPGA). NPGA compares parameter settings with each other 

to determine if they are statistically better than each other by using non-parametric 

methods. Comparing the two dynamic parameter setting techniques considered, they 

reported that NPGA performed better than RS. 

Ide and Yasuda (2005) proposed an adaptive search algorithm for PSO in both 

continuous and discrete domains, in which the parameters are tuned to the problem 

structure at every search point by updating of settings based on comprehension of the 

agent's current state. 

Favuzza, et al. (2006) have successfully shown that they have used dynamic 

parameter tuning as a strategy to balance intensification and diversification in ACO. 

Wong (2008) produced a review on researches related to parameter tuning as a strategy to 

balance intensification and diversification in ACO. Anghinolfi, et al. (2008) proposed a 

self-adaptive ACO algorithm that exploits a parameter adaptation mechanism to reduce 

the requirement of a preliminary parameter tuning. They tested the proposed approach on 
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the single machine total tardiness scheduling problem with sequence-dependent setups, 

and could improve the benchmark best known results. Tamilarasi (2010) presented an 

ACO method to solve the job shop scheduling problems with step pheromone updating 

strategy based on statistical analysis. The author reported that once the parameters are 

properly tuned, the algorithm converges satisfactory. 

Abraham (2004) proposed a framework for optimization of artificial neural 

networks, where learning algorithm and its parameters are adapted according to the 

problem. Ramos, et al. (2005) proposed using the logistic regression approach in tuning 

the parameters of an EA. Logistic regression describes the relationship between the 

categorical response variable and one or more continuous or categorical explanatory 

variables. Although it requires additional computational effort to tune the parameters, the 

new algorithm showed that when there is evidence of the goodness of fit of the model, 

the technique can direct the parameter setting, and provide data to support conclusions 

about the best policy to be adopted. 

Alabas-Uslub and Dengiz (2011) developed another heuristic algorithm, named 

self-adaptive local search (SALS), with a self-adaptive mechanism for solving the 

classical vehicle routing problem allowing for the escape from the difficulty of parameter 

optimization. The proposed heuristic had only one generic parameter, called the 

acceptance parameter, calculated and updated self-adaptively throughout the search 

process to improve the effectiveness of the algorithm using the response surface 

information which comes from the problem and the performance measure of the 

algorithm. Besides its simplicity, SALS also provided qualified solutions to well-known 

benchmark problems from the VRP literature within reasonable amount of computation 
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times. The same approach was also applied for the multi-objective vehicle routing 

problem (Alabas-Uslub, 2008) and flow-shop scheduling problem (Dengiz, et al., 2009). 

Ries, et al. (2012) proposed an instance-specific method for parameter tuning, called 

IPTS. IPTS created a link between instance characteristics and the decision maker's 

preference with respect to the solution quality - computational time tradeoff, to 

algorithm-specific parameter values. 

There have also been researches about meta-learning approaches for parameter 

setting. Chen, et al. (2002) used inductive meta-learning and clustering to tune 

parameters and choose the algorithm. Cail, et al. (2006) proposed an automatic 

parameter tuning method based on machine learning. Soares, et al. (2004) presented a 

meta-learning approach to parameter setting that exploits information about past 

performance of different settings. Sikora (2008) used a simple meta-learning algorithm to 

learn the temperature parameter of the Softmax reinforcement-learning algorithm. 

Eiben, et al. (1999) presented a study to classify parameter control methods for 

EAs and survey various forms of control methods. De Jong (2007) gives a detailed 

overview of parameter setting overviewing 30 years of research in this area. Kramer 

(2010) produced an extensive survey and a textbook (2008) about evolutionary self-

adaptation of operators and strategy parameters. Birattari (2009) created another 

comprehensive textbook on tuning metaheuristics in the machine learning perspective. 

These successful applications of adaptive parameter tuning in metaheuristics 

support our belief in creating a promising method in which the algorithm can adaptively 

tune the parameters of Meta-RaPS. Therefore the approach used here will be focused on 

the methods of adaptive parameter tuning. 
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8.2 Adaptive Parameter Tuning 

Although it is accepted that appropriate parameter settings can lead a search in the 

right direction, they require knowledge about the problem structure. For many black-box 

optimization problems there is no knowledge about the search space. On the other hand, 

the best parameter setting usually depends on the application area, size or input data of 

the problem for each of the problem instances (Alabas-Uslub & Dengiz, 2011). In these 

cases it would be very convenient if parameters of algorithms were tuned autonomously 

for each problem. 

Eiben, et al. (1999) presented two main types of parameter settings techniques for 

evolutionary algorithms: parameters that have to be tuned before or controlled during the 

run of the optimization algorithm. In their taxonomy, parameter tuning can be executed 

by hand; design of experiments (DOE) or meta-evolution; and parameter control can be 

reached by deterministic, adaptive and self-adaptive techniques. In the case of tuning by 

hand, the efficiency of the parameter setting only depends on human experience; however 

it may not be the optimal parameter setting. DOE requires a statistical analysis of 

experiments, i. e. trial solutions executed with different parameter set by a detailed 

experimental plan. In meta-evolutionary algorithms, also known as nested evolutionary 

algorithms, an outer optimization algorithm tunes the parameters of an embedded 

algorithm (Rechenberg, 1994). 

Eiben, et al. (1999) called the change of parameters during the run as online 

parameter control due to the fact that the conditions of the fitness landscape can change 

during the optimization process (Kramer, 2010). In the deterministic parameter control, 

parameters are changed depending on some fixed factors, e. g. the number of generations 
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in EAs. Adaptive parameter control methods use feedback from the search to determine 

magnitude and direction of the parameter change under the rules defined by the 

practitioner. An example for an adaptive control can be the 1/5-th success rule for the 

mutation strengths in EA by Rechenberg (1973) where the step sizes are increased, if the 

success ratio is higher than 1/5-th to allow faster progress and is decreased if the success 

rate is lower than 1/5-th. 

Self-adaptation is a well-known concept meaning that the algorithm is capable of 

adapting itself totally autonomously. Self-adaptation is based on the theory that good 

solutions more likely result from good parameter settings than from bad ones. These good 

settings of parameters will have a high probability of being selected by the algorithm 

while processing. According to Kramer (2010), a necessary condition for a successful 

self-adaptation is the existence of a tight link between parameters and fitness; i.e., if the 

quality of the search process heavily depends on a particular setting of parameters. Self-

adaptive parameters are also known as endogenous, i.e., evolvable, in contrast to 

exogenous parameters, which are kept constant during the optimization run (Beyer & 

Schwefel, 2002). Self-adaptation plays the role of the stochastic online control toward a 

parameter-free optimization metaheuristic (Kramer, 2010). 

The Reactive Search (RS) is another powerful method in setting parameters which 

uses feedback from the metaheuristics. RS incorporates a history-based adaptive 

procedure in the search to determine the values of parameters. This approach investigates 

a variety of parameter settings while the algorithm is running and determines the 

probabilities of selecting each parameter setting based on their fitness values, i. e. higher 

probabilities for the parameters which lead to the best solutions. 
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The pioneering research in developing a self-adaptive mechanism for the local 

search based metaheuristics created the reactive tabu search by Battiti and Tecchiolli 

(1994). The most critical parameter in TS usually is the tabu list size which balances 

between intensification and diversification strategies. Given the fixed size of the tabu list, 

the search might be trapped in a cycle of length greater than the size list. In order to cope 

with this drawback, the reactive tabu search dynamically adjusts the tabu list size by 

memorizing the history of the search process to determine the probability of selecting 

each parameter setting for future iterations. 

Discovering the relationships between the parameters and the search trajectories 

has a major impact in metaheuristics to reach the best solutions. The online parameter 

tuning methods, particularly adaptive/self-adaptive methods, are among best candidates 

that can make parameters evolve to their best settings. This fact encourages tuning the 

parameters of Meta-RaPS adaptively. 

8.3 Meta-RaPS Adaptive Parameter (AP) Algorithm 

To tune the parameters online, i.e. change adaptively, Meta-RaPS algorithm needs 

a mechanism to memorize and learn the effects of different parameter settings on the 

solution process. This mechanism can be formed via a parameter memory matrix, similar 

to the idea presented in EDA. 

The parameter memory matrix for Meta-RaPS is created for the parameters 

priority and restriction, containing 9 levels between 0.1 and 0.9 with increments of 0.1 

for each parameter. The parameter improvement is accepted 0.1 according to the results 

of D-Optimal design applied in Section 4.4. Thus, 81 (=9x9) different parameter 



settings can be attempted in solving the 0-1 MKP instances. These parameter settings are 

then applied in solving the instances and their solution values are recorded in the cells 

representing the parameter settings of priority and restriction. Once the parameter 

settings in the cells are assigned, the solutions can be generated randomly or by applying 

a greedy rule in both the parameter memory matrix and the solution process. The Meta-

RaPS with online tuning, or adaptively changing parameters will be named a Meta-RaPS 

AP (Adaptive Parameter). 

The way of employing the parameter settings represented in the cells forms 

different versions of Meta-RaPS AP. Each parameter setting can be selected randomly to 

solve the instances, and in this case it cannot be guaranteed that the number of times each 

cell selected is equally likely to be filled in. To prevent this, the algorithm can be pushed 

to select each cell the same number of times. On the other hand, the best or average 

solution values obtained by using the corresponding parameter settings can be used to 

update the values in the cells of the parameter memory matrix for the sake of producing 

different results. All these features have created four different versions of Meta-RaPS AP, 

as shown in Table 35. 

Table 35. Meta-RaPS AP-G Solutions for Small/Medium 0-1 MKP Instances 

Update Method 

Update Chance Best Value Average Value 

Equal Version -1 Version - 2 

Random Version - 3 Version - 4 
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Since the DGR-based versions of Meta-RaPS have created better solutions than 

randomly generated versions in the previous chapters, the Meta-RaPS AP with DGR, 

named as Meta-RaPS AP-G, was employed to specify the best approach in Table 20 in 

forming the parameter memory matrix. Depending on the results, the version of Meta-

RaPS AP-R, where the parameter memory matrix and the solutions are produced 

randomly, will be investigated with this best approach. 

The results showing their performances in solving the small/medium 0-1 MKP 

instances are summarized in Table 36. Version 3, where the parameter settings in cells 

are applied randomly and each cell is updated by taking the best values, has created the 

best solutions among all four versions. Table 37 presents the average values for the 

parameters used in each version of Meta-RaPS AP-G. 

Table 36. Meta-RaPS AP-G Solutions for Small/Medium 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Version IMean IBest CMean Number (Sec.) Frequency Instance 

1 0.036 0.007 0.691 1410 321.72 8.25 52 

2 0.036 0.008 1.702 1679 473.04 8.24 52 

3 0.012 0.002 0.107 506 257.34 9.55 54 

4 0.076 0.032 0.727 412 96.27 8.58 50 

Average 0.040 0.012 0.807 1002 287.09 8.66 52.00 

Std.Dev. 0.027 0.013 0.661 637 156.07 0.62 1.63 
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Table 37. Parameters of Meta-RaPS AP-G for Small/Medium 0-1 MKP Instances 

Parameter 
Versions 

Priority Restriction 

1 0.100 0.100 

2 0.100 0.100 

3 0.285 0.341 

4 0.876 0.522 

While (Parameter Memory Matrix not converged) 

Initialize Parameter Memory Matrix with zeros 

Select randomly a cell representing a parameter setting (p,r) 

Generate a solution by Meta-RaPS using the parameter setting (p,r) 

If GeneratedSolution(p,r) > ParameterMemorySolution(p,r) then 

Assign GeneratedSolution(p,r) as ParameterMemorySolution(p,r) 

End While 

For iteration ^ I 

Select best ParameterMemorySolution(p,r) in Parameter Memory Matrix 

Accept (p,r) as parameter setting for current iteration 

Apply Meta-RaPS rules to produce ImprovedSolution & 

BestImprovedSolut ion 

If ImprovedSolution > ParameterMemorySolution(p,r) then 

Assign ImprovedSolution as ParameterMemorySolution(p,r) 

End For 

Report BestImprovedSolution 

Figure 19. Meta-RaPS AP Pseudo Code 
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Since Version 3 could produced the best results among all four AP versions, 

Meta-RaPS AP will be designed by creating a memory set for which the parameter 

setting in each cell is applied randomly and updated by taking the best values of all 

replications. The pseudo code of Meta-RaPS AP is presented in Figure 19. 

8.4 Meta-RaPS AP for Small and Medium 0-1 MKP Instances 

After the analysis to obtain the best algorithm in AP approach, Version 3 was 

accepted as Meta-RaPS AP-G. To design the independent version of the Meta-RaPS AP, 

i.e. without using any greedy rule, the proposed algorithm gives the priorities simply 

based on their weights. This version is named Meta-RaPS AW, and applied to the 

small/medium 0-1 MKP instances. The results of both AP algorithms are presented in 

Table 38. 

Table 38. Meta-RaPS AP Results for Small/Medium 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Version IMean IBest CMean Number (Sec.) Frequency Instance 

Meta-RaPS AP-W 0.242 0.091 1.651 1979 637.29 1.91 46 

Meta-RaPS AP-G 0.012 0.002 0.107 506 257.34 9.55 54 

Average 0.127 0.047 0.879 1243 447.32 5.73 50.00 

Std.Dev. 0.163 0.063 1.092 1042 268.67 5.40 5.66 

Meta-RaPS AP-G could reach the optimum/best solutions for 54 of 55 instances. 

PETERSEN6 is the only instance whose optimum value could not be obtained by the 

algorithm. The mean deviation percentage of the constructed and improvement solutions 
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is 0.107 and 0.012, respectively. The average time needed to solve the instances is around 

257 seconds, and its average iteration is 506. Meta-RaPS AP-W which does not use any 

greedy rule, could reach the optimum solutions for only 46 instances, and its average 

deviation and time are much higher than Meta-RaPS AP-G. Thus, Meta-RaPS AP-G 

version was accepted as Meta-RaPS AP algorithm to apply in larger instances. 

In other Meta-RaPS applications, the parameters are tuned before the solution 

process begins, and the same settings are applied to all instances. However, in the AP 

tuning versions of Meta-RaPS, the goal is to make the algorithm change the parameters 

adaptively for each instance, and also in each iteration to reach best parameter settings for 

the instance, in other words tune the parameters. 
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Figure 20. Trend of Parameters for Instances in Meta-RaPS AP-G 

The changing process of the parameters priority and restriction can be observed 

in Figure 20 created the Meta-RaPS AP-G. To be able to observe the trend of the 
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parameters depending on their number of items and knapsacks, the instances are ordered 

to their instance difficulty as defined in the Meta-RaPS PR. Roughly speaking, it can be 

argued that the values of the parameters priority and restriction increase with the number 

of items and knapsacks of the instances. 

8.5 Meta-RaPS AP for Large 0-1 MKP Instances 

The proposed adaptive algorithm is also applied in large size 0-1 MKP instances, 

and its observed performance is summarized in Table 39. The average deviation 

percentage of the algorithm for the first three sets is 0.115 with the average number of 

iterations of 2081. Meta-RaPS AP produced these results in average of 44 minutes, 

respectively. On average, Meta-RaPS AP could find optimal solutions for 22 of 30 

instances, in 5.6 of 10 replications. 

Table 39. Meta-RaPS AP Solutions for Large 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Instance Set IMean IBest CMean Number (Min.) Frequency Instance 

100x5 0.019 0.005 0.081 1329 25.34 7.90 28 

100x10 0.098 0.050 0.501 2215 20.72 6.17 23 

100x30 0.227 0.083 0.775 2698 84.70 2.67 15 

Average 0.115 0.046 0.452 2081 43.59 5.59 22.00 

Std.Dev. 0.105 0.039 0.350 694 35.68 2.67 6.56 
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The averages of parameters found by Meta-RaPS AP for each of three sets of 

large instances are shown in Table 40. The average values of parameters priority and 

restriction are fairly close in these sets. 

Table 40. Parameters of Meta-RaPS AP for Large 0-1 MKP Instances 

Parameter 
Instance Set 

Priority Restriction 

100x5 0.579 0.641 

100x10 0.607 0.626 

100x30 0.610 0.641 

Average 0.598 0.636 

Std.Dev. 0.017 0.009 
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CHAPTER 9 

REDESIGNING META-RAPS 

Metaheuristics can be observed as the repetition of the two main phases; 

generation of solutions and its improvement by local search (Ibaraki, et al., 2005). In the 

first phase, solutions are produced based on the principles of the algorithm, by gradually 

constructing or forming the whole solution at once. Most of the time, the initial solution 

is not expected to include the attributes of a high quality solution, thus in the second 

phase, the algorithm requires improving the initial solution by implementing various 

types of local search techniques. 

Although the best solutions of the algorithms are generated by their improvement 

phase, there is usually a high computational cost of employing the local search. This 

critical part of the local search is the computational burden that the practitioners should 

accept a priori. For many applications, local search techniques consume more time than 

generating the solutions. The criteria for selecting a local search technique may be the 

expectation that the quality of improved solutions by local search will compensate for its 

computational cost. Otherwise, metaheuristics would lose one of their most important 

advantages which is the ability to find good solutions in an acceptable time frame. 

The results of the proposed algorithms in the previous chapters also reflect this 

fact. It can be easily observed that increasing the size of the instances requires more 

computational time, and in the literature there are other larger instances not solved with 

the proposed algorithms. It can be assumed that these algorithms do already have high 

quality solutions, and now the next task will be to obtain them in a shorter time frame. 
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In the proposed algorithms the total costs come from three main factors: memory 

and learning mechanisms, Meta-RaPS construction phase and improvement phase. Since 

the aim of this study was to make Meta-RaPS intelligent by introducing memory and 

learning mechanisms, this factor cannot be avoided. Meta-RaPS construction phase is 

another factor needed to create initial solutions and thus cannot be left out. The third 

factor, Meta-RaPS improvement phase, is the only one that can potentially be reduced or 

eliminated. However, the qualities of the CSs created by the proposed algorithms are not 

very good and they need to be improved. Such improvements should be made by the 

Meta-RaPS PR version instead of local search. While in Meta-RaPS EDA, Q and AP 

versions, memory and learning happen before running the algorithm by showing the right 

way in constructing solutions, in the Meta-RaPS PR version, memory and learning begin 

handling the algorithm after Meta-RaPS has constructed the initial solution. This 

phenomenon acts like the improvement phase instead of using local search. In Chapter 7, 

there was important evidence presented in Figures 17 and 18 that more optimum 

solutions in the Meta-RaPS PR were found by PR than the local search phase when 

increasing the size of instances. Both of these facts encourage the redesign Meta-RaPS by 

replacing the local search (or improvement) phase with and the PR approach. In this new 

Meta-RaPS, the constructed solutions will not be improved by local search techniques; 

instead, they will gain the "good" attributes of the good solutions by learning. 

9.1 Redesigning Meta-RaPS 

In Meta-RaPS PR algorithm the basic form of PR was implemented, however, a 

PR application in a metaheuristic without local search should be more sophisticated. 
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Based on the information given in Chapter 7, three factors can be accepted to design an 

effective PR algorithm: feasibility of initial and guide solutions, direction of the path, and 

selection of the initial solutions for the next path. Besides feasibility, infeasibility can 

also be accepted for the initial and guide solutions, since the solutions will be eventually 

feasible when PR is completed. The path can start from the CS and reach to the best 

solution (BS) or from the BS to the CS. Selection of the initial solutions among the 

candidates for the next path is the last issue, and can be done by taking the solution with 

maximum value, randomly or applying a greedy rule. 

These options create 12 (= 2 x 2 x 3) different alternatives of the PR approach. To 

evaluate them, 8 instances whose average deviations from optimal/best solutions are 

different from zero at least two times for all proposed algorithms are selected in Table 41. 

For the greedy rule, the parameter priority is used to select the initial solution for the next 

path, i. e. if the random number < priority then select the candidate solution as next initial 

solution. 

These PR alternatives are applied to solve the 8 instances in 10 replications, and 

their results are summarized in Table 42. Among all alternatives, Feasible/BS-CS/Greedy 

PR approach gives best results; however, Infeasible/BS-CS/Greedy PR is very close the 

best alternative. 

Table 43 presents the overall averages of solutions according to the options. The 

greedy approach in PR gives again the best results, and the solutions obtained in both 

directions are close to each other. 
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Table 41. Instances to Evaluate PR Alternatives 

# Name Items Knapsacks 

1 HP2 35 4 

2 PB2 34 4 

3 PETERSEN6 39 5 

4 PETERSEN7 50 5 

5 WEING6 28 2 

6 WEING7 105 2 

7 WEING8 105 2 

8 WEISH18 70 5 

Table 42. Summary of Solutions by PR Alternatives 

Feasibility Direction Criteria Dev.% Iteration 
Time 
(Sec.) 

#Opt. 
Rep. 

Maximum 0.096 4223 3.18 5.25 

CS to BS Random 0.078 2851 3.32 5.75 

Feasible 
Greedy 0.067 3202 2.37 7.13 

Feasible 
Maximum 0.041 1574 1.98 7.63 

BS to CS Random 0.055 2212 13.64 6.88 

Greedy 0.026 2262 2.09 8.25 

Maximum 0.128 4324 3.49 4.88 

CS to BS Random 0.068 2344 3.38 6.25 

Infeasible 
Greedy 0.042 2487 3.12 6.25 

Infeasible 
Maximum 0.285 3095 3.38 3.25 

BS to CS Random 0.069 2371 9.48 6.13 

Greedy 0.030 2616 2.71 7.13 

Average 0.082 2797 4.34 6.23 

Std. Dev. 0.070 813 3.53 1.35 
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Table 43. Overall Averages of Solutions According to PR Options 

Criteria Dev.% Iteration 
Time 
(Sec.) 

#Opt. 
Rep. 

Feasible 0.061 2721 4.42 6.81 

Infeasible 0.104 2873 4.26 4.44 

CS to BS 0.080 3239 3.14 5.92 

BS to CS 0.084 2355 5.54 6.54 

Maximum 0.137 3304 2.99 5.25 

Random 0.068 2445 7.45 6.25 

Greedy 0.041 2642 2.57 7.19 

Average 0.082 2797 4.34 6.06 

Std. Dev. 0.031 367 1.71 0.95 

The analyses presented in Tables 42 and 43 indicates that accepting the next 

initial solution by a greedy rule has the biggest impact on the solution quality. In 

addition, selecting initial and guide solutions being feasible or infeasible and both 

directions of the path have also some contributions that should be taken into 

considerations. Under these circumstances, the new PR algorithm is designed to select the 

next initial solution by a greedy rule without checking the feasibility of the candidate 

solutions and its paths will have both directions, i. e. 2-way PR. 

By utilizing all lessons learned from the previous chapters, redesigning Meta-

RaPS is completed by replacing its improvement phase with this PR approach, and 

renamed as Meta-RaPS V2 (Version 2). The parameter improvemenfVo that decides to 

perform the improvement phase is renamed as pathrelinking% which now decides to 

perform the PR phase. The pseudo code of Meta-RaPS V2 is presented in Figure 21. 
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For i teration ^ I 

While (feasible solution is not constructed) 

Find priority value for each feasible activity 

Find best priority value 

If rnd() ^ priority% then 

add item with best priority value to solution 

Else create CandidateList from feasible activities with 

priority values ^ Limit 

Limit = MinimumPriority + 

restriction% • (MaximumPriority -  MinimumPriority) 

Choose randomly an item from CandidateList and add to solution 

End While 

A = BestConstructedSolution • pathrelinking% 

If ConstructedSolution ^ A then apply 2-Way Path Relinking 

For the way from ConstructedSolution to BestSolution; 

Assign ConstructedSolution as InitialSolution 

Assign BestSolution as GuideSolution 

Apply Path Relinking to produce BestSolution 

For the way from BestSolution to ConstructedSolution; 

Assign BestSolution as InitialSolution 

Assign ConstructedSolution as GuideSolution 

Apply Path Relinking to produce BestSolution 

End For 

Report BestSolution 

Figure 21. Meta-RaPS V2 Pseudo Code 
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9.2 Meta-RaPS V2 for Small and Medium 0-1 MKP Instances 

To be able to compare the performance of the new Meta-RaPS with the proposed 

Meta-RaPS versions discussed previously and other algorithms in the literature, it will be 

applied to both small/medium and large size 0-1 MKP instances. A lesson learned in this 

research is that the proposed algorithms based on DGR create higher quality solutions 

than based on greedy rule-free versions; thus, only DGR will be used to create priority 

rules for the new Meta-RaPS. 

Another lesson learned in this research is from the parameter setting area. Meta-

RaPS AP has proved how effective the adaptive parameter setting approach can be if 

applied properly. Therefore, the feedback from the AP applications in Chapter 8 can be 

used in setting the parameters of the new Meta-RaPS. The average of parameters for the 

small/medium size instances obtained by the Meta-RaPS AP was presented in Table 37. 

The overall average values of parameters found by Meta-RaPS AP will now be accepted 

for the parameters setting of the new Meta-RaPS in Table 44. Table 45 shows the details 

of the new algorithm for the small/medium 0-1 MKP instances. 

Table 44. The New Parameter Setting of Meta-RaPS V2 for Small/Large 0-1 MKP 

Instances 

Parameter Value 

Priority percentage (p) 0.29 

Restriction percentage (r) 0.34 

Path Relinking percentage (i) 0.10 

Number of iterations (I) 10000 
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Table 45. Meta-RaPS V2 Results for Small/Medium 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Version IMean I Best CMean Number (Sec.) Frequency Instance 

Meta-RaPS V2 0.010 0.000 0.938 416 0.32 9.86 55 

9.3 Meta-RaPS V2 for Large 0-1 MKP Instances 

As in the case of small/medium size instances, the average parameter settings 

found by Meta-RaPS AP in Table 40 will be used as the new parameter setting for the 

new Meta-RaPS to solve the large instances. Table 46 presents the parameter setting of 

the new Meta-RaPS. 

Table 46. The New Parameter Setting of Meta-RaPS V2 for Large Instances 

Parameter Value 

Priority percentage (p) 0.60 

Restriction percentage (r) 0.65 

Path Relinking percentage (i) 0.10 

Number of iterations (I) 10000 

With this parameter setting, Meta-RaPS V2 is applied to solve all large size 0-1 

MKP instances due to its fast computation. Its solution summary is presented in Table 47. 

The new algorithm could find optimum values for 26, 15 and 3 instances of the 100 items 

and 5, 10 and 30 knapsacks, respectively, and the average optimum solution for 30 
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instances is 14.7. The average deviation from optimum/best solution is 0.211% in 

average of 0.2 minutes and 2435 iterations. The overall average deviations percentage for 

CSs is 0.35. Meta-RaPS V2 could find the average optimum/best solution 3.7 times in 10 

replications. The results for the first three sets are parallel with the overall results for all 

set of instances. The average deviations percentage from optimum/best solution reached 

by Meta-RaPS V2 is 0.241% in an average of 3.5 minutes and 3,600 iterations. Its 

average optimum solution is 6.2 in 30 instances, and the average optimum/best solution 

was found 1.2 times in 10 replications. 

Table 47. Meta-RaPS V2 Solution for Large 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Instance Set IMean IBest CMean Number (Min.) Frequency Instance 

100x5 0.025 0.007 0.122 1802 0.05 6.63 26 

100x10 0.188 0.126 0.350 2692 0.13 3.93 15 

100x30 0.420 0.242 0.588 2812 0.39 0.47 3 

Average 0.211 0.125 0.353 2435 0.19 3.67 14.67 

Std.Dev. 0.199 0.118 0.233 552 0.18 3.09 11.50 

250x5 0.081 0.036 0.171 4132 0.75 1.17 7 

250x10 0.201 0.119 0.361 4275 1.34 0.17 3 

250x30 0.487 0.354 0.764 4034 3.07 0.00 0 

500x5 0.115 0.077 0.214 4403 3.93 0.07 2 

500x10 0.194 0.132 0.329 4502 6.58 0.00 0 

500x30 0.458 0.330 0.741 3818 15.51 0.00 0 

Overall Average 0.241 0.158 0.404 3608 3.53 1.24 6.22 

Overall Std.Dev. 0.171 0.124 0.239 943 4.99 2.34 8.83 
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As seen in the first three rows in Table 47, which represent the solutions of the 

instance sets 100 items and 5,10 and 30 knapsacks, Meta-RaPS V2 without improvement 

phase but with more sophisticated PR approach can produce promising results with much 

lower computational time, comparing with Meta-RaPS PR with improvement phase and a 

basic PR approach presented in Table 40. 
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CHAPTER 10 

CONCLUSIONS 

The proposed Meta-RaPS versions presented in the previous chapters attempt to 

incorporate memory and learning into Meta-RaPS from different perspectives. While 

Estimation of Distribution Algorithms (EDA) is a statistical learning-based approach, Q 

Learning takes a machine learning approach. The common part shared by both 

approaches is requiring a learning set that needs to be trained prior to solving the problem 

by one of the algorithms. On the other hand, Path Relinking (PR) makes the algorithm 

learn the "good" attributes by memorizing best solutions, and following them to reach 

better solutions. This type of learning does not need any learning sets, and can be defined 

as a post-optimization method. The last perspective of incorporating memory and 

learning is about tuning parameters, which is vital for a metaheuristic's performance. 

Thus, the last proposed version of Meta-RaPS has the ability of tuning parameters 

adaptively. 

10.1 Comparison of Meta-RaPS Versions for Small/Medium 0-1 MKP Instances 

These proposed algorithms showed different performance levels when applied to 

both small/medium and large size 0-1 Multidimensional Knapsack problems. For 

small/medium size instances, the algorithms were tested with and without using a greedy 

rule, i.e. Dynamic Greedy Rule (DGR). The purpose of such an effort was to understand 

how the algorithms behave independently when there is no help from a greedy rule. 
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Even in this case, Meta-RaPS EDA could create good results with the average 

percentage deviation of 0.016 and obtaining optimal solutions for 54 instances out of 55 

instances. This phenomenon can also be observed from the trends for average 

deviations% of small/medium 0-1 MKP instances shown in the Figures 22a and b. Using 

DGR in the different versions of the proposed algorithms showed better performance than 

those without DGR (see Table 49), and therefore, they were accepted as the true versions 

of the proposed Meta-RaPS algorithms. Table 49 presents the comparison of these Meta-

RaPS versions with using DGR for small/medium 0-1 MKP instances. In terms of the 

average deviation percentage, Meta-RaPS EDA and PR gave the best solutions where 

both algorithms could solve all instances. Meta-RaPS Q gave the worst outcomes among 

all five versions with the highest deviation percentage and number of iterations; it could 

find the optimum solutions for only 52 instances. Meta-RaPS AP could produce rather 

good results in all aspects, and reach the optimum solutions for 54 instances. Although 

Meta-RaPS V2 does not have the best average percentage deviation, it could find the 

optimum solutions for 55 instances at least once. However, the most important advantage 

of this algorithm is that it is very fast, almost 400 times faster than the average solution 

time of all proposed algorithms. 

Trends for average deviations percentages of small/medium 0-1 MKP instances 

for the proposed Meta-RaPS versions are shown in the Figures 23a and b. In these figures 

the performances of the algorithms can be tracked instance by instance, and verified with 

Table 48. 
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Table 48. Comparison of Meta-RaPS Versions for Small/Medium 0-1 MKP Instances 

Using DGR 

Deviation% Iteration Time Optimum 

Version IMean I Best CMean Number (Sec.) Frequency Instance 

Meta-RaPS EDA 0.001 0.000 0.107 421 120.09 9.84 55 

Meta-RaPS Q 0.045 0.003 0.596 2074 209.19 7.96 52 

Meta-RaPS PR 0.001 0.000 1.282 480 47.93 9.76 55 

Meta-RaPS AP 0.012 0.002 0.107 506 257.34 9.55 54 

Meta-RaPS V2 0.010 0.000 0.938 416 0.32 9.86 55 

Average 0.014 0.001 0.606 779 126.97 9.39 54.20 

Std.Dev. 0.018 0.001 0.516 725 107.34 0.81 1.30 

After the comparisons of the proposed Meta-RaPS versions, Table 49 presents the 

comparison of these Meta-RaPS versions to other algorithms in the literature for 

small/medium 0-1 MKP instances. For these instances, TS methods (Glover & 

Kochenberger, 1996; Hanafi, et al., 1996), GA (Chu & Beasley, 1998) and Fix+cut based 

method (Osorio, et al., 2003) generated best results in the literature. The proposed Meta-

RaPS algorithms could create considerably good results in terms of the number of 

optimal solutions and percentage deviations, and Meta-RaPS EDA and Meta-RaPS PR 

reached better results than Meta-RaPS DGR, which represents the Meta-RaPS version 

before memory and learning inclusion (Moraga, et al., 2005). 
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Table 49. Comparison of Meta-RaPS Versions to Other Algorithms in the Literature for 

Small/Medium 0-1 MKP Instances (Adapted from Moraga, et al., 2005) 

Algorithm 
#Optimal 

Algorithm 
#Optimal 

Algorithm 
Solutions Dev.% 

Meta-RaPS EDA 55/55 0.001 

Meta-RaPS Q 52/55 0.045 

Meta-RaPS PR 55/55 0.001 

Meta-RaPS AP 54/55 0.012 

Meta-RaPS V2 55/55 0.010 

Meta-RaPS DGR 55/56 0.003 

GRASP 52/56 0.023 

SMA/TA (Hanafi, et al., 1996) 39/54 0.080 

AGNES (Fre'ville and Plateau, 1994 as reported by Hanafi, et al., 

1996) 52/54 0.020 

Tabu search REM (Dammeyer & Voss, 1993) 40/57 0.126 

Tabu search STM (Dammeyer & Voss, 1993) 39/57 0.130 

Tabu search L+STM (Dammeyer &Voss, 1993) 44/57 0.101 

Tabu search (Glover & Kochenberger, 1996) 57/57 0.000 

Tabu search (Lokketangen & Glover, 1998) 37/54 0.003 

Tabu search IFTS/HFE (Hanafi, et al., 1996) 54/54 0.000 

Genetic algorithm (Chu & Beasley, 1998) 55/55 0.000 

Fix+cut based method (Osorio, et al., 2003) 55/55 0.000 

Simulated annealing DETEXC (Drexel, 1988) 7/57 1.739 

Simulated annealing PROEXC (Drexel, 1988) 23/57 0.239 

Simulated annealing (Drexel, 1988 as implemented by Dammeyer & 31/57 0.328 

Voss, 1993) 

10.2 Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances 

Altough the analysis for the small/medium size instances gave an idea about the 

performance of the proposed algorithms, it is not enough to make a conclusion about 

their qualities since the differences in the average percentage deviations are so small and 
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the instances solved are relatively easy. Therefore the proposed algorithms had to be 

tested on large instances. Table 50 summarizes the comparison of Meta-RaPS versions 

for large 0-1 MKP instances. For large size instances, all algorithms except Meta-RaPS Q 

presented close performance, and the solution time advantage of Meta-RaPS V2 was still 

remarkable with being around 200 times faster than the overall average solution time. 

The details of this comparison can be found in Table 51. In Section 4.3 it was stated that 

the large instances were created by accepting the tightness ratios of 0.25, 0.50 and 0.75 

for each group of 10 instances in each set. Based on these tightness ratios, the trends of 

average percentage deviations of large instances for Meta-RaPS algorithms are presented 

in Figures 24a and b. As Pirkul (1987) pointed that, for the lower tightness ratios of the 

instances, the hardness of the instances are increased and as a result, the algorithms 

produced solutions with higher percentage deviations. In the case of higher tightness 

ratios, all algorithms produced better results. This phenomenon is clearer in the case of 

Meta-RaPS Q. 

Table 50. Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances 

Deviation% Iteration Time Optimum 

Version IMean IBest CMean Number (Min.) Frequency Instance 

Meta-RaPS EDA 0.142 0.084 0.540 1872 50.37 3.57 15.67 

Meta-RaPS Q 0.452 0.273 1.171 4176 87.39 2.36 12.67 

Meta-RaPS PR 0.146 0.061 0.640 2988 20.88 4.87 21.33 

Meta-RaPS AP 0.115 0.046 0.452 2081 43.59 5.59 22.00 

Meta-RaPS V2 0.211 0.125 0.353 2435 0.19 3.67 14.67 

Average 0.213 0.118 0.631 2710 40.48 4.01 17.27 

Std.Dev. 0.138 0.092 0.320 922 32.85 1.25 4.16 
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Table 51. Detailed Comparison of Meta-RaPS Versions for Large 0-1 MKP Instances 

Instance Set Deviation% Iteration Time Optimum 

Version IMean IBest CMean Number (Min.) Frequency Instance 

100x5 

Meta-RaPS EDA 0.045 0.026 0.296 1389 16.19 5.17 20 

Meta-RaPS Q 0.143 0.058 0.653 3440 19.67 4.97 22 

Meta-RaPS PR 0.031 0.008 0.353 2321 14.44 7.27 28 

Meta-RaPS AP 0.019 0.005 0.081 1329 25.34 7.90 28 

Meta-RaPS V2 0.025 0.007 0.122 1802 0.05 6.63 26 

Average 0.053 0.021 0.301 2056 15.14 6.39 24.80 

Std.Dev. 0.051 0.022 0.228 869 9.41 1.23 3.63 

100x10 
Meta-RaPS EDA 0.136 0.078 0.519 1869 33.79 3.90 17 

Meta-RaPS Q 0.493 0.281 1.261 4454 39.35 1.50 10 

Meta-RaPS PR 0.155 0.080 0.650 2819 27.32 5.17 22 

Meta-RaPS AP 0.098 0.050 0.501 2215 20.72 6.17 23 

Meta-RaPS V2 0.188 0.126 0.350 2692 0.13 3.93 15 

Average 0.214 0.123 0.656 2810 24.26 4.14 17.40 

Std.Dev. 0.159 0.092 0.354 995 15.19 1.76 5.32 

100x30 

Meta-RaPS EDA 0.246 0.147 0.804 2357 101.13 1.63 10 

Meta-RaPS Q 0.721 0.479 1.599 4634 98.28 0.60 6 

Meta-RaPS PR 0.252 0.095 0.917 3824 86. 17 2.17 14 

Meta-RaPS AP 0.227 0.083 0.775 2698 84.70 2.67 15 

Meta-RaPS V2 0.420 0.242 0.588 2812 0.39 0.47 3 

Average 0.373 0.209 0.937 3265 71.13 1.51 9.60 

Std.Dev. 0.209 0.163 0.389 941 47.70 0.96 5.13 

Overall Average 0.213 0.118 0.631 2710 34.39 4.01 17.27 

Overall Std.Dev. 0.197 0.129 0.408 1009 34.94 2.42 7.79 
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Along with the comparisons of the proposed algoritms presented until now, they 

can also be compared in a more systematic way. In the literature, five major performance 

criteria are described against which good metaheuristics can be measured: accuracy, 

speed, simplicity, flexibility, and consistency (Cordeau, et al., 2002; Laporte, et al., 2000; 

Wassan, 2006). To elaborate, a proposed algorithm can be measured according to these 

performance criteria as follows: 

1. Accuracy: How accurate the results are when applied to various problems. This 

reflects the quality of the algorithm's results. 

2. Speed: CPU time spent by the algorithms to solve instances, 

3. Simplicity: The convenience of using the algorithm with the problems at hand, 

4. Flexibility: The convenience of modifying the algorithms for different problems, 

and 

5. Consistency: Robustness of the algorithm with different instances of different 

problems. In terms of computational efficiency and optimality, Ide and Yasuda 

(2005) define robustness as the ability of an algorithm to withstand differences in 

problem structures. The chance of achieving a poor solution should be a very low, 

and the performance should not be sensitive to the parameters (Silver, 2004). 

In this study's solution reports, the values for some of these criteria have already 

been obtained, especially those that are quantitative in nature. Specifically, the 

percentage deviation was recorded for accuracy, time for speed and standard deviation 

for consistency for each proposed algorithm. Different from percentage deviation and 

standard deviation which are already between 0 and 1, the values of time for each 

algorithm were normalized in order to reach their scaled values in the same interval. For 
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the simplicity and flexibility criteria, the appropriate numerical values were given based 

on the average labor hours spent for using (simplicity) and modifying {flexibility) the 

algorithms when required to solve different type of problem. These labor hours can be 

easily transformed into the scaled factors between 0 and 1 by taking their ratios in overall 

total, as in Table 52. 

Table 52. Creating Scaled Factors for Simplicity and Flexibility 

Performance 
Value 

Meta-RaPS 

Criteria Value 
EDA Q PR AP V2 

Simplicity Labor Hour 3 3.5 1 2 1.5 

Scaled Factor 0.60 0.70 0.20 0.40 0.30 

Flexibility Labor Hour 3.5 4 0.5 0.5 0.5 

Scaled Factor 0.70 0.80 0.10 0.10 0.10 

Although there are five performance criteria to measure the performance of the 

metaheuristics, this does not mean that all performance criteria have the same level of 

significance. One criterion might be more important than others for the users, and 

therefore, weights can be assigned to each based on users' experience. The values of the 

percentage deviation for accuracy, time for speed and standard deviation for consistency 

were calculated from the runs. It is assumed in this research that the weights of simplicity 

and flexibility as 15% in total. 

In Table 53, the comparison of Meta-RaPS versions in terms of performance 

criteria is presented. For the performance criteria, the lower values are always better. The 

total weighted values for each proposed algorithm were calculated by multiplying the 
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values for the performance criteria by their weights and then summing up these weighted 

values. As seen in Table 53, the minimum and maximum total weighted values belong to 

Meta-RaPS PR and Meta-RaPS Q algorithms, respectively. Therefore, it can be argued 

that Meta-RaPS PR has the best performance and Meta-RaPS Q has the worst 

performance among the all proposed versions. 

Table 53. Comparison of Meta-RaPS Versions in Terms of Performance Criteria 

Performance 
Definition Weight 

Meta-RaPS 

Criteria 
Definition Weight 

EDA Q PR AP V2 

Accuracy Deviation% 0.50 0.15 0.45 0.15 0.12 0.21 

Speed Time 0.20 0.25 0.43 0.10 0.22 0.00 

Simplicity Scaled Factor (0-1) 0.05 0.60 0.70 0.20 0.40 0.30 

Flexibility Scale Factor (0-1) 0.10 0.70 0.80 0.10 0.10 0.10 

Consistency Standard Deviation 0.15 0.10 0.29 0.11 0.11 0.20 

Total Weighted Values 1.00 0.24 0.47 0.13 0.15 0.16 

To observe the effects of the given weights on the total weighted values for each 

Meta-RaPS version, the sensitivities of the total weighted values for the first two largest 

weights (deviation% and time), are analyzed in Figures 25 and 26. In this sensititity 

analysis, while these weights are increasing/decreasing, their amount of change is equally 

subtracted from/added to the weights of the other performance criteria. As can be seen in 

these figures, selection of the best algorithm, Meta-RaPS PR, does not changed for large 

intervals of the weights of deviation% and time. This means that the weights are fairly 

robust in obtaining the total weighted values. 
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The comparison of the proposed Meta-RaPS algorithms to other algorithms in the 

literature for large 0-1 MKP instances is presented in Table 54 in terms of percentage 

deviation. Besides all the versions of Meta-RaPS, the Genetic Algorithm approaches of 

Chu and Beasley (1998) and Haul and Voss (1997) denoted by GA-CB and GA-HV, 

respectively were included in the comparison. Furthermore, the algorithms of Magazine 

and Oguz (1984), Pirkul (1987), and Volgenant and Zoon (1990) denoted by MKP-P, 

MKP-MO, MKP-VZ, respectively, as well as the Approximate Dynamic Programming 

(ADP) method of Bertsimas and Demir (2002) were also included in the comparison. In 

some cells of Table 54, there are no entries because Meta-RaPS EDA, Q, PR and AP 

were applied to the sets of 100 items with 5, 10 and 30 knapsacks, and in ADP approach, 

only the results for the sets of 250 and 500 items with 30 knapsacks were reported. 

In the first three sets (100 items and 5, 10 and 30 knapsacks) all proposed Meta-

RaPS algorithms produced better results than the other algorithms in the literature. After 

redesigning the Meta-RaPS by removing the improvement phase (local search) and 

adding a more sophisticated Path Relinking approach, Meta-RaPS V2 was used to solve 

all of the large instances. Although the approach of Bertsimas and Demir's (2002) shares 

the best overall percentage deviation with Meta-RaPS V2 among the other algorithms, it 

can be observed that Meta-RaPS V2 outperformed ADP if their results for the instance 

sets of 250x30 and 500x30 are compared. For the large size 0-1 MKP instances, Moraga, 

et al. (2005) reported that Meta-RaPS DGR run times ranged from 7 to 35 minutes per 

problem, and average solution times for Chu and Beasley's (1998) Genetic Algorithm 

ranged from 6 to 65 minutes on a Silicon Graphics Indigo workstation. 
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Table 54. Comparison of Meta-RaPS Versions to Other Algorithms for Large 0-1 MKP Instances (Adapted from Moraga, et al., 2005) 

Meta-RaPS 

Instance Set EDA Q PR AP MR2 DGR GA-CB GA-HV MKP-P MK-MO MKP-VZ ADP 

100x5 0.05 0.14 0.03 0.02 0.03 0.60 0.59 0.72 0.95 8.49 7.63 N/A 

100x10 0.14 0.49 0.16 0.10 0.19 1.17 0.94 1.26 2.12 10.79 10.65 N/A 

100x30 0.25 0.72 0.25 0.23 0.42 2.23 1.69 2.14 4.85 11.93 11.11 N/A 

Average 0.15 0.45 0.15 0.12 0.21 1.33 1.07 1.37 2.64 10.40 9.80 N/A 

Std.Dev. 0.10 0.29 0.11 0.11 0.20 0.83 0.56 0.72 2.00 1.75 1.89 N/A 

250x5 N/A N/A N/A N/A 0.08 0.17 0.14 0.36 0.31 5.14 4.61 N/A 

250x10 N/A N/A N/A N/A 0.20 0.45 0.30 0.74 0.66 7.66 6.74 N/A 

250x30 N/A N/A N/A N/A 0.49 1.38 0.68 1.36 2.02 8.89 7.81 0.97 

500x5 N/A N/A N/A N/A 0.12 0.09 0.05 0.34 0.12 3.40 3.02 N/A 

500x10 N/A N/A N/A N/A 0.19 0.20 0.14 0.64 0.29 6.05 4.99 N/A 

500x30 N/A N/A N/A N/A 0.46 0.82 0.35 1.20 1.03 6.89 6.28 0.52 

Overall Average N/A N/A N/A N/A 0.24 0.79 0.54 0.97 1.37 7.69 6.98 0.24 

Overall Std.Dev. N/A N/A N/A N/A 0.17 0.70 0.52 0.58 1.49 2.69 2.68 0.17 
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The algorithm of Haul and Voss (1997) takes a very long time to solve large 

instances, in some cases more than four hours on an Intel Pentium 100 MHz PC. 

Bertsimas and Demir's (2002) reported an average solution time of 87 seconds on a Dell 

Precision 410 machine. Other than the approach of Bertsimas and Demir's (2002), Meta-

RaPS V2 algorithm outperformed all other algorithms in terms of CPU with an average 

solution time of 3.53 minutes (211 seconds). 

10.3 Statistical Comparison of Meta-RaPS Versions 

To begin the statistical comparison of the different Meta-RaPS versions, first, the 

method of the one-way ANOVA is applied to understand if there is significant difference 

among the proposed algorithms in terms of the means of Percentage Deviations and Time 

for Meta-RaPS Versions. For the one-way ANOVA, the following hypotheses are 

constructed: 

Ho: Means ofpercentage deviations/time for Meta-RaPS versions are equal. 

H j :  A t  l e a s t  o n e  o f  t h e  m e a n s  o f  p e r c e n t a g e  d e v i a t i o n s / t i m e  f o r  M e t a - R a P S  

versions is different. 

First, the means of percentage deviations of the Meta-RaPS versions will be 

evaluated for the set of 100 Items and 5 Knapsacks. One of the assumptions of the one­

way ANOVA is that the variances of the groups are similar. The Test of Homogeneity of 

Variances in Table 54 shows the result of Levene's Test of Homogeneity of Variance, 

which tests for similiar variances. If the significance value is greater than 0.05 then there 

is an homogeneity of variances. Levene's F Statistic has a significance value of 0.00 and, 

thus, the assumption of homogeneity of variance is not met. When there is a violation of 
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the assumption of homogeneity of variances, the significant difference between the 

groups could still be determined by the Welch test in the Robust Tests of Equality of 

Means (Table 55). Since the significance value of Welch test is 0.01, which is less than 

0.05, then we can say that there is statistically significant difference between groups. 

Table 55. ANOVA of Percentage Deviation for the Set of 100 Items and 5 Knapsacks 

Test of Homogeneity of Variances 

Deviation 
Levene 
Statistic dfl df2 Sid. 

26.370 4 145 .000 

ANOVA 

Deviation 
Sum of 

Sauares df Mean Sauare F Sid. 
Between Groups .315 4 .079 8.446 .000 
Within Groups 1.353 145 .009 
Total 1.668 149 

Robust Tests of EquaWy of Means 

Statistic' dfl df2 Sid. 
Welch 3.627 4 70.958 .010 

a. Asymptotically F distributed. 

Because the null hypothesis (Ho: Means of Percentage Deviations for Meta-RaPS 

Versions Are Equal) is rejected via the one-way ANOVA, the Tukey's multiple 

comparison test is conducted as the next step. In this analysis, the Meta-RaPS EDA, Q, 

PR, AP and V2 versions are coded as numbers from 1 to 5, respectively. According to 

results in terms of percentage deviations shown in Table 56, only Meta-RaPS Q is 

staisically different from the other versions, and there are no statistically significant 

differences among Meta-RaPS EDA, PR, AP and V2 versions. The obtained results are 
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not different for other set of instances (100 items and 10, 30 knapsacks) solved by the 

proposed algorithms, as shown in Tables 57 and 58. 

Table 56. Tukey's Test of Percentage Deviation for the Set 100 Items and 5 Knapsacks 

Deviation 
TM9V H3P 

95% Confide snce Interval 

m Alnnrlthm r.ft Alnnrlthm 
Mean 

Difference fl-J] Std. Error Sla. Lower Bound UDDer Bound 
1 2 -.09771" .02494 .001 -.1666 -0288 

3 .01 374 .02494 .982 -.0552 .0826 
4 .02600 .02494 .835 -.0429 .0949 
5 .01967 .02494 .934 -.0492 .0886 

2 1 .09771" .02494 001 .0288 .1666 
3 .11144" .02494 .000 .0426 .1803 
4 .12370" .02494 .000 .0548 .1926 
5 .11738" .02494 .000 .0485 .1863 

3 1 -.01374 .02494 .982 - 0826 0552 
2 -.11144" .02494 .000 - 1803 -.0426 
4 .01226 .02494 .988 -.0566 .0811 
5 .00593 .02494 .999 -.0830 .0748 

4 1 - 02600 .02494 .835 -.0949 .0429 
2 -.12370" .02494 .000 -.1926 - 0548 
3 -.01226 .02494 .988 -.0811 .0566 
5 - 00633 .02494 .999 -.0752 .0626 

5 1 -.01967 .02494 .934 -.0886 .0492 
2 -.11738" .02494 .000 -.1863 -.0485 
3 -.00593 .02494 .999 -.0748 .0630 
4 .00633 .02494 .999 -.0626 0752 

'.The mean difference is significant at the 0.05 level. 

These outcomes were expected because our main focus was on integrating 

memory and learning mechanisms into Meta-RaPS, and as specified in 4.6, the only 

difference among all these proposed algorithms is how to produce the priorities for Meta-

RaPS to use in the solution process. In the original Meta-RaPS version, the algorithm 

needs to apply some greedy rules to select the next item to add to the partial solution. 
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Table 57. Tukey's Test of Percentage Deviation for the Set 100 Items and 10 Knapsacks 

Deviation 

95% Confidence Interval 

m Alnnrlttim 
Mean 

Difference fl-J) Std. Error Sia. Lower Bound UooerBound 
1 2 -.35701" .07305 .000 -.5588 -.1552 

3 -018B7 .07305 999 -.2205 .1831 
4 .03794 .07305 985 -.1639 .2397 
5 -.05220 .07305 .953 -.2540 .1496 

2 1 .35701" .07305 .000 .1552 .5588 
3 .33834" .07305 .000 .1365 .5401 
4 .39495" .07305 .000 .1931 .5967 
5 .30481" .07305 .000 .1030 .5066 

3 1 .01867 .07305 .999 -.1831 .2205 
2 -.33834" .07305 .000 -.5401 -.1365 
4 .05660 .07305 .937 -.1452 .2584 
5 -.03353 .07305 .991 -.2353 .1683 

4 1 -.03794 .07305 .985 -.2397 .1639 
2 - 39495" .07305 .000 -.5967 -.1931 
3 -.05660 .07305 .937 -.2584 .1452 
5 -.09013 .07305 .732 -.2919 .1117 

5 1 .05220 .07305 .953 -.1496 .2540 
2 -.30481" .07305 .000 -.5066 -.1030 
3 .03353 .07305 .991 -.1683 .2353 
4 .09013 .07305 .732 -.1117 .2919 

*. The mean difference is significant at the 0.0S level. 

Table 58. Tukey's Test for Percentage Deviation of the Set 100 Items and 30 Knapsacks 
Deviation 

95% Confidence interval 

fh Alnnrlttim f.J} Alnnrlthm 
Mean 

Difference fl-J) Std. Error Sid. Lower Bound Uooer Bound 
1 2 -.47429" .08847 .000 -.7187 -.2299 

3 -.00518 .08847 1.000 -.2496 .2392 
4 .01960 .08847 .999 -.2248 .2640 
5 -.17399 .08847 .288 -.4184 .0704 

2 1 .47429" .08847 .000 .2299 .7187 
3 .46911" .08847 .000 .2247 .7135 
4 .49389" .08847 .000 .2495 .7383 
5 .30030" .08847 .008 .0559 .5447 

3 1 .00518 .08847 1.000 -.2392 2496 
2 -.46911" .08847 .000 -.7135 -.2247 
4 .02478 .08847 .999 -.2196 2692 
5 -.16881 .08847 .318 -.4132 .0756 

4 1 -.01960 .08847 .999 -.2640 .2248 
2 -.49389" .08847 .000 -.7383 -.2495 
3 -.02478 .08847 .999 -.2692 .2196 
5 -.19359 .08847 .190 -.4380 .0508 

5 1 .17399 .08847 .288 -.0704 .4184 
2 -.30030" .08847 .008 -.5447 -.0559 
3 .16881 .08847 .318 -.0756 .4132 
4 .19359 .08847 .190 -.0508 .4380 

*. The mean difference is significant at the 0.05 level. 
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However, the proposed Meta-RaPS versions benefits from the intelligent 

approaches to understand the structure of the problem and make intelligent decisions in 

reaching high quality solutions. The main structure of the Meta-RaPS was kept the same 

while designing the proposed versions of Meta-RaPS. 

Even though the difference among the proposed algorithms is small, the 

difference created by these algorithms in the solution quality is striking. When compared 

to other approaches in the literature, all the Meta-RaPS versions could generate very 

promising results, except the Meta-RaPS Q version. This is the reason why there are not 

statistically significant differences among the Meta-RaPS EDA, PR, AP and V2 versions, 

and only Meta-RaPS Q is different from the other versions. 

The "time" factor will be the next focus to analyze the Meta-RaPS versions for 

the set of 100 Items and 5 Knapsacks. Again the Levene's Statistics in Test of 

Homogeneity of Variances shown in Table 59 is 0.00, which is less than 0.05, and the 

assumption of homogeneity of variance is not met. Thus, the Welch test in the Robust 

Tests of Equality of Means can be used to make a judgment. The significance value of 

Welch test is 0.00, less than 0.05, and therefore it can be concluded that there are 

statistically significant differences between the groups. The null hypothesis (Ho: Means 

of Time for Meta-RaPS Versions Are Equal) is rejected, which means that at least one of 

the algorithms is different. 

To reveal the different Meta-RaPS versions in terms of time, the Tukey's multiple 

comparison test was conducted again for the sets having the instances 100 items and 5, 

10, 30 knapsacks. As presented in Tables 60-62, for the first set, Meta-RaPS EDA and 

PR are different from both Meta-RaPS AP and V2; Meta-RaPS Q is different from the 
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Meta-RaPS V2; Meta-RaPS AP is different from the Meta-RaPS EDA, AP and V2; and 

Meta-RaPS V2 is different from all other Meta-RaPS versions. 

Table 59. ANOVA of Time for the Set of 100 Items and 5 Knapsacks 

Test of Homogeneity of Variances 

lima 
Levene 
Statistic dfl df2 Sid. 

35.375 4 145 .000 

ANOVA 

Sum of 
Sauares df Mean Sauare F Sid. 

Between Groups 3.820E7 4 9550534.633 20.501 .000 
Within Groups 6.755E7 145 465845.855 
Total 1.057E8 149 

Robust Tests of EquaHty of Means 

Time 

Statistic1 dfl df2 Sid. 
Welch 114.786 4 58.002 .000 

a. Asymptotically F distributed. 

For the second set, Meta-RaPS EDA and Q are different from the versions of 

Meta-RaPS AP and V2; and Meta-RaPS V2 is different from all of the other Meta-RaPS 

versions. For the third and largest set, only Meta-RaPS V2 is different from all the other 

Meta-RaPS versions. 
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Table 60. Tukey's Test for Time for the Set of 100 Items and 5 Knapsacks 

Time 
TmITCYHSP 

95% Confidence Interval 

m AInnrlthm f.n AInnrlthm 
Mean 

Difference fl-J) Std. Error Sio. Lower Bound UoDer Bound 
1 2 -208.99806 176.22823 .759 -695.8120 277.8158 

3 105.14770 176.22823 .975 -381.6662 591.9616 
4 -548.84768* 176.22823 .019 -1035.6616 -62.0338 
5 968.16225" 176.22823 .000 481.3483 1454.9762 

2 1 208.99806 176.22823 .759 -277.8158 695.8120 
3 314.14576 176.22823 .388 -172.6681 800.9597 
4 -339.84962 176.22823 .307 -826.6635 146.9643 
5 1177.16031" 176.22823 .000 690.3464 1663.9742 

3 1 -105.14770 176.22823 .975 -591.9616 381.6662 
2 -314.14576 176.22823 .388 -800.9597 172.6681 

4 -653.99538" 176.22823 .003 -1140.8093 -167.1815 
5 863.01455" 176.22823 .000 376.2006 1349.8285 

4 1 548.84768" 176.22823 .019 62.0338 1035.6616 
2 339.84962 176.22823 .307 -146.9643 826.6635 
3 653.99538" 176.22823 .003 167.1815 1140.8093 
5 1517.00993" 176.22823 .000 1030.1960 2003.8238 

5 1 -968.16225" 176.22823 .000 -1454.9762 -481.3483 
2 -1177.16031" 176.22823 .000 -1663.9742 -690.3464 
3 -863.01455" 176.22823 .000 -1349.8285 -376.2006 
4 -1517.00993" 176.22823 .000 -2003.8238 -1030.1960 

* The mean difference is significant at the O.OS level. 

In the aspect of solution time, the statistical analysis shows that there are 

statistically significant differences between the Meta-RaPS versions. On the other hand, 

the difference between the proposed algorithms in terms of percentage deviation was 

small. These two criteria are not independent of each other and we need to consider both 

of the percentage deviation and time simultaneously where the proposed algorithms 

require different times to reach these percentage deviations, which are not much different 

except for Meta-RaPS Q. This phenomenon shows that the proposed Meta-RaPS versions 

employ different mechanisms in reaching these high quality solutions, and thus, it can be 

propounded that they are different algorithms. 
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Time 

95% Confide nee Interval 

m Alanrlthm 
Mean 

Difference fl-Jl Std. Error Sid. Lower Bound UDDer Bound 
1 2 -333.36614 273.02452 .739 -1087.5907 420.8184 

3 388.15719 273.02452 .615 -366.0474 1142.3617 

4 784.01010" 273.02452 .037 29.8056 1538.2147 

5 2019.88132" 273.02452 .000 1265.6768 2774.0859 

2 1 333.38614 273.02452 .739 -420.8184 1087.5907 

3 721.54333 273.02452 068 -32.6612 1475.7479 

4 1117.39624" 273.02452 .001 363.1917 1871.6008 

5 2353.26746" 273.02452 .000 1599.0629 3107.4720 

3 1 -388.15719 273.02452 .615 -1142.3617 366.0474 

2 -721.54333 273.02452 .068 -1475 7479 32.6612 

4 395.85291 273.02452 .597 -358.3516 1150.0575 

5 1631.72413" 273.02452 .000 877.5196 2385.9287 

4 1 -784.01010" 273.02452 .037 -1538.2147 -29.8056 

2 -1117.39624" 273.02452 .001 -1871.6008 -363.1917 

3 -395.85291 273.02452 .597 -1150.0575 358.3516 

5 1235.87122" 273.02452 .000 481.6667 1990.0758 

5 1 -2019.881 32" 273.02452 .000 -2774.0859 -1265.6768 

2 -2353.26746" 273.02452 .000 -3107.4720 -1599.0629 

3 -1631.72413" 273.02452 .000 -2385.9287 -877.5196 
4 -1235.87122" 273.02452 .000 -1990.0758 -481.6667 

*. The mean difference Is significant at the 0.05 level. 

Table 62. Tukey's Test for Time for the Set of 100 Items and 30 Knapsacks 

Time 
TUK8VH8P 

95% Confidence Interval 

m AInnrlthm (. 11 AInnrlthm 
Mean 

Difference fl-Ji Std. Error Sid. Lower Bound Uooer Bound 
1 2 170.82767 583.36805 .998 -1440.6716 1782.3270 

3 897.68455 583.36805 .539 -713.8148 2509.1839 

4 985.72061 583.36805 .444 -625.7787 2597.2199 

5 6043.96004" 583.36805 .000 4432.4607 7655.4594 

2 1 -170.82767 583.36805 .998 -1782.3270 1440.6716 

3 726 85688 583.36805 .724 -884.6424 2338.3562 

4 814.89295 583.36805 .631 -796.6064 2426.3923 

5 5873.13237" 583.36805 .000 4261.6331 7484.6317 
3 1 -897.68455 583.36805 .539 -2509.1839 713.8148 

2 -726.85688 583.36805 .724 -2338.3562 884.6424 

4 88.03607 583.36805 1.000 -1523.4632 1699.5354 

5 5146.27549" 583.36805 .000 3534.7762 6757.7748 

4 1 -985.72061 583.36805 .444 -2597.2199 625.7787 

2 -814.89295 583.36805 .631 -2426.3923 796.6064 

3 -88.03607 583.36805 1.000 -1699.5354 1523.4632 
5 5058.23942" 583.36805 .000 3446.7401 6669.7387 

5 1 -6043.96004" 583.36805 .000 -7655.4594 -4432.4607 
2 -5873.13237" 583.36805 .000 -7484.6317 -4261.6331 
3 -5146.27549" 583.36805 .000 -6757.7748 -3534.7762 

4 -5058.23942" 583.36805 .000 -6669.7387 -3446.7401 

* The mean difference is significant at the 0.05 level. 
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10.4 Comments on Meta-RaPS Versions 

The proposed Meta-RaPS versions created by incorporating different memory and 

learning mechanisms, i. e. EDA, Q Learning, PR and Adaptive Parameters, presented 

various performance levels in solving 0-1 MKP instances. The proposed algorithms are 

distinct and have different advantages and disadvantages over each other. First Meta-

RaPS EDA, could produce high quality results by employing the probabilistic model for 

the problem after exploring the search space, dependency relationships between decision 

variables, and other properties of the problem landscape. However, the memory matrix 

that creates these advantages makes also the algorithm time consuming, in both forming 

and updating the memory matrix. Another issue with the memory matrix is how to reach 

a converged memory matrix that includes the "right" probabilities. This decision includes 

determining the size of memory solution set, which means adding another parameter to 

the Meta-RaPS parameters. Besides these factors, generating the memory matrix has 

more difficulties when the size of the problem increases. In such cases, the size of 

memory matrix should also increase requiring more computer memory and time in 

forming and updating the memory matrix. These obstacles might be removed by applying 

the appropriate methods such as function approximation methods, clustering and 

regression models. 

Among the proposed Meta-RaPS versions, the worst outcome was generated by 

the version created with Q Learning. However, Meta-RaPS Q is still better than other 

approaches in the literature presented in Table 53. The biggest advantage of this approach 

is its simplicity to be applied to problems. Meta-RaPS Q shares also the disadvantages of 

its memory matrix where forming and updating the memory matrix of Q Learning 
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becomes more difficult in terms of computer memory and solution time as the problem 

size increases. Applying the proper methods mentioned in the case of EDA might help 

overcome these barriers. To make the memory matrix converge is another problem to 

deal with before an instance can be solved as it requires determining the size of memory 

solution set, which will add another parameter to Meta-RaPS's parameters. In addition to 

these parameters, the Q Learning algorithm has two additional parameters: learning and 

discount factors. 

The third Meta-RaPS version was created by incorporating the PR approach, 

which is different from the Meta-RaPS EDA and Meta-RaPS Q in the way of applying its 

memory and learning ability. In the previous versions of Meta-RaPS, the memory matrix 

was first generated and trained so that the algorithm can successfully solve the problem 

by utilizing the memory matrix. However, in Meta-RaPS PR, the algorithm does not need 

a memory matrix, and therefore does not suffer any of these disadvantages presented 

earlier. Memory and learning happens by remembering the attributes of best solutions 

found in the solution process, and the current solution is evolved to a better solution by 

accepting these attributes. This approach does not need any additional parameters, and 

thus keeps the simplicity of Meta-RaPS. 

While creating the fourth version, Meta-RaPS AP, the big impact of discovering 

the relationships between the parameters and the search trajectories on reaching the best 

solutions was the main motivation. This approach requires a parameter memory matrix as 

in Meta-RaPS EDA and Meta-RaPS Q, however this matrix is independent from the size 

of the problem, and only depends on the number of parameters focused on. This fact 
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makes the memory matrix converge quicker, and require less computational efforts than 

Meta-RaPS EDA and Meta-RaPS Q. 

In Meta-RaPS PR, the very basic form of PR was applied, and the new algorithm 

produced very good results compared to other Meta-RaPS versions and other algorithms 

in the literature. Even though this approach does not have the disadvantages of the Meta-

RaPS EDA and Q, it still requires high computational time with the increasing the 

problem size due to the improvement phase, i.e. due to local search techniques. The 

efficiency of PR approach encouraged us to redesign Meta-RaPS so that it can solve even 

the largest problems in an acceptable time frame while keeping the quality of its solutions 

and its design and implementation simplicity. By removing the improvement phase and 

adding a more sophisticated PR approach, the last version was created, Meta-RaPS V2, 

and reaching the goal of this dissertation. 

As revealed by the experiences in creating the proposed algorithms in the 

previous chapters, there are convincing reasons to employ memory and learning 

mechanisms in metaheuristics, or intelligent algorithms, especially as the solution 

environment is becoming so complex that human beings can no longer understand it. 

Even if Meta-RaPS versions presented different performances on solving 0-1 MKP, they 

could all show superior performance than other approaches in the literature. This fact 

shows that incorporating memory and learning mechanisms into metaheuristics is a good 

strategy that makes the algorithms more efficient. 

In the optimization area, there are such efficient metaheuristics whose power 

comes from their ability to memorize and learn in reaching high quality solutions for 

large scale problems. With the ability of learning and memorizing the search history, 
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these algorithms can find good initial starting point(s), and then a local method is 

employed to search for better solution from the initial starting point(s) (Panigrahi, et al., 

2011). 

In conclusion, it can be declared that implementing memory and learning 

mechanisms in a memoryless metaheuristic, like Meta-RaPS, can result in a significant 

improvement to the metaheuristic's performance. While performing essential steps of 

memory and learning mechanisms, i.e. generating and updating a memory matrix or 

reaching the best solution in PR, the new algorithm might require more computational 

efforts. However, there is always a cost in creating an intelligent algorithm that can 

memorize and learn, which can be thought of as a small cost to pay to reach high quality 

solutions. 

Intelligence emerges in metaheuristics via memory and learning of algorithms. 

Intelligent metaheuristics that can learn and memorize maintain a single candidate 

solution or a population of solutions that provide the information acquired by the process, 

and the basis for making future decisions. The use of prior knowledge created by the 

adapted solutions can sometimes be interesting, innovative, and even competitive with 

human expertise (Koza, et al., 2003). Memory and learning abilities are among the main 

features that draw the line between human beings' excellence and other beings. The 

addition of intelliegence to Meta-RaPS is the main contribution of this dissertation. 
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CHAPTER 11 

RESEARCH CONTRIBUTION 

This research was inspired by the idea of creating intelligent algorithms that can 

learn the structure of optimization problems, memorize the search history and eventually 

produce high quality solutions. To reach this objective, different memory and learning 

approaches in the literature were presented to be integrated into Meta-RaPS, which is 

currently classified as a memoryless metaheuristic. Therefore, the contributions of this 

research are gathered around designing and implementing "intelligent" algorithms into 

Meta-RaPS by incorporating memory and learning techniques. 

The first contribution is the introduction of Estimation of Distribution Algorithms 

(EDA) as a stochastic learning approach into Meta-RaPS. After investigating the EDA 

applications in the literature, a different but more efficient EDA form for this study's 

implementation was embedded into Meta-RaPS EDA. With EDA, the new algorithm 

could memorize the solution process by means of its memory matrix and use this 

information in making future decisions. 

The second contribution is the utilization of a machine learning approach, named 

Q Learning. As in the case of EDA, Q Learning was also analyzed to reach its best 

performance for our application. This second version of Meta-RaPS with this new Q 

Learning form, called Meta-RaPS Q, could understand the structure of problems, and 

decide its next best step via a memory matrix to generate high quality solutions. 

In the first two contributions, both of the proposed algorithms had separate 

memory matrices that should be trained to be able to extract the priorities needed for the 
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solution process by Meta-RaPS. However, in the third contribution, a new Meta-RaPS 

version that is intelligent in a very different way was implemented. In this proposed 

algorithm, Path Relinking (PR) was integrated into Meta-RaPS as a post-optimization 

method. The new Meta-RaPS PR algorithm, could learn the "good" attributes of the best 

solutions, and track them to reach better solutions without requiring any memory matrix. 

The fourth contribution is made in the parameter tuning area that plays a key role 

in metaheuristics' performance. Tuning the parameters of the algorithm to their best 

values can be another challenging learning problem. Thefore, in the fourth proposed 

algorithm, Meta-RaPS with Adaptive Parameter (AP) has the ability to adaptively tune its 

two important parameters by creating a parameter memory matrix. While proceeding, 

Meta-RaPS AP could tune adaptively its parameters in each iteration, and with these best 

parameter settings the new algorithm could generate high quality solutions. 

The fifth and last contribution is redesigning Meta-RaPS into a more "intelligent" 

metaheuristic as motivated by the successful memory and learning applications presented 

in this research. Although these proposed approches produced promising solutions, they 

still suffered from the high computational cost of the solution process. Together with the 

facts that most of solution time was consumed by the improvement phase, i.e. the local 

search algorithm within Meta-RaPS, and since PR did not require a memory matix and 

thus needed relatively lower amount of time, the new Meta-RaPS was redesigned by 

removing the improvement phase and integrating a more sophisticated PR approach. The 

new design of Meta-RaPS is renamed as Meta-RaPS V2. 
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In summary, the contributions presented in this research show that memory and 

learning mechanisms incorporated into a memoryless metaheuristic such as Meta-RaPS 

can result in a significant improvement to the metaheuristic's performance. 

In these contributions, the memory and learning approaches that were integrated 

into Meta-RaPS were successfull at obtaining high quality solutions without affecting the 

main principles of Meta-RaPS, and therefore, they all can be conveniently applied in 

other population-based algorithms. 
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