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ABSTRACT

FUNCTIONAL NEAR INFRARED DETECTION OF REAL AND IMAGINED 
FINGER TAPS USING SUPPORT VECTOR MACHINE, LINEAR DISCRIM INANT 

ANALYSIS, AND DECISION TREE CLASSIFICATION METHODS

Eugene A. Stoudenmire 
Old Dominion University, 2013 

Director: Frederic (Rick) McKenzie

This study investigates the thesis that given cerebral response samples o f  an 

individual’s left, right, both, and imagined finger tapping, continuous wave (CW) 

functional Near Infrared (fNIR), unregistered with fMRI, can differentiate between any 

two o f the four categories.

Fifty subjects were outfitted with a single source/detector attached to a single, 

square pad, affixed to their heads using devices such as elastic bands and caps for light 

shielding. Slides depicting arrows pointing left, right, both directions, or made o f  dashed 

lines were presented to each subject, with a slide o f text interspersed between each. 

Subjects tapped with their left finger, right finger, both left and right finger, or imagined 

tapping, depending on the type o f arrow. Text was presented in between each tapping 

slide and was read with no tapping. Each slide was presented for twenty seconds and 

each type o f tapping occurred three times in an eight minute, 20 second period.

Classification was performed using Support Vector Machine (SVM ), Linear 

Discriminant Analysis (LDA), and decision tree algorithms. Results indicated that left 

finger tapping can be distinguished from right, both, and imagined right finger-tapping 

with error rates ranging from 24.92% to 29.51% (SVM), 40.05% to 42.69%  (LDA), and 

23.34% to 28.85% (decision tree). The decision tree algorithm produced results, on an



individual trial basis, with greater than 95% confidence that the results were not due to 

chance.

These results were obtained with no screening out due to individual 

characteristics such as hair thickness. The generalizations included the use o f  a large 

sample o f  subjects for which the selection criteria only included statutory minimum and 

maximum ages.

This study also produced validation o f a method o f mitigating hair effect. Raising 

the sensor was shown to still produce valid results that could not be attributed to chance 

at a confidence level o f  95%.

The results are directly applicable to brain-computer interfaces in a number of 

areas. These relate to validating the ability to classify data collected by a device with a 

single source/detector, from non-prescreened individuals, with real-time algorithms in a 

normal environment.
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This thesis is dedicated to all the people who may one day benefit from a brain computer
interface.
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NOMENCLATURE

Biaucular Distance from one preauricular to the other

Bilateral Both sides of the brain

BOLD Blood Oxygenation Level Dependent

Channel Combination of IR source and detector; sometimes includes wavelength

Contralateral Opposite side of the brain

Cutaneous Sensing through the skin

CW  Continuous Wave

EEG Electroencephalography

fM R I  Functional Magnetic Resonance Imaging

fN IR  Functional Near Infrared

Handedness The hand (left or right) whose use dominates the other

ICA Independent Component Analysis

Inion The protrusion at the rear of the skull at which the neck meets the skull

IR Infrared

Ipsilateral Same side o f the brain

KNN  K Nearest Neighbor

Kinesthesis Sensing through muscles, tendons, and joints

LDA Linear Discriminant Analysis

Ms Millesecond; one one-thousandth of a second

Nasion The top of the bridge o f the nose

Oximeter An instrument that measures oxygen in blood

PCA Principal Component Analysis

PMC Primary Motor Cortex



Preauricular The point of a protruding bone in front o f the ear opening 

Proprioceptive Stimulated from within the body 

SMA Supplementary Motor Area

SVM  Support Vector Machine
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C H A P T E R !

INTRODUCTION

This study is for the investigation o f the use o f  Continuous Wave (CW) functional 

Near Infrared (fNIR) to measure the cerebral response o f real and imagined finger 

tapping over the course o f time and analyze the results using Support Vector Machine 

(SVM), Linear Discriminant Analysis (LDA), and decision tree algorithms. The CW 

fNIR will be used without coregistering locations with functional Magnetic Resonance 

Imaging (fM RI)1.

1.1 Purpose

With this study, tailored, supervised classification algorithms are used to show 

that finger tapping and finger-stationary states can be differentiated (1) on an individual 

(vice collective group) basis, (2) using a continuous wave (CW) fNIR system, (3) with 

only one set o f source/detectors, (4) without a priori knowledge of an individual’s brain 

geometry.

1.2 Thesis Statement and Gaps Addressed

Given single source/detector CW fNIR cerebral response samples during an 

individual’s left finger tapping, right finger tapping, both (right and left) finger tapping, 

and imagined finger tapping; a real-time capable supervised classification algorithm such 

as SVM can differentiate between any two o f the four categories, even if the individual’s 

brain has not been registered using fMRI.

1 The figures, tables, and references in this dissertation were formatted using the IEEE Transactions and 
Journals Style.
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Four key components o f  this hypothesis are:

•  Only one set o f CW source/detectors is required {i.e., measure a single location).

•  Prior knowledge o f an individual’s brain geometry is not required.

• Preprocessing and classification can be accomplished with algorithms that have 

the potential to execute in real time.

•  Classification can be accomplished on an individual (vice collective group) basis.

The hypothesis components address gaps in the current state of technology and lead 

to the benefits described in Table 1.

T a b l e  1. H y p o t h e s e s  G a p s  a n d  V a l u e

Hypothesis Component Benefit

One set of CW source/detectors Less hardware on person’s head; More 
affordable BCI

Prior knowledge o f individual brain 
geometry not required

Eliminates pre-registration with fMRI, 
reduces cost, allows widespread 
application

Distinguish between two finger 
tapping states

Minimum requirement o f  a Brain 
Computer Interface (BCI)

Preprocessing and classification with 
algorithms with real-time potential

Essential for BCI

Individual basis versus group basis BCIs normally require individual interface

Although not part o f the hypothesis, this study will show that preprocessing steps 

that convert raw data to concentrations o f  oxygenated and deoxygenated concentrations 

may not be necessary for effective classification.
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1.3 Theoretical Background

Functional Near Infrared (fNIR) is a noninvasive neuroimaging method that can 

detect concentrations o f  oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin 

(deoxy-Hb) [1]. Decreases in deoxy-Hb and increases in oxy-Hb and total-Hb can reflect 

neural activation [2]. Near-Infrared light can pass through body tissues such as the scalp 

and skull but is absorbed by hemoglobin (or more specifically, the chromophores in 

hemoglobin). An activation in the brain causes oxygenation (metabolism o f oxygen), 

followed by deoxygenation. Cerebral blood flow increases, causing the oxygenation 

levels {i.e., concentrations) to exceed the deoxygenation levels.

fNIR is absorbed to different degrees by oxygenated and deoxygenated blood and 

these differences vary by the wavelength o f the infrared light. By shining infrared light 

o f different wavelengths through the brain and measuring the amount returned, the 

relative concentrations o f oxygenated and deoxygenated blood can be determined [3].

fNIR has been used to measure brain activations at various cerebral locations 

while subjects perform various tasks and actions. Each combination o f  location/action 

that has been studied has both theoretical and applied importance. They are o f 

importance because a mapping o f  a cerebral activation location to a simultaneous task 

can further knowledge o f  how the various parts o f the brain function. They are o f applied 

significance because a mapping o f cerebral location to task being performed could help in 

the design o f prosthetics and in the creation o f brain-computer interfaces, as well as 

potential applications in diagnostics and therapy.
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1.4 Method and Procedure

The study consisted o f data collection, preprocessing, classification, and 

interpretation. Fifty subjects were each presented with stimuli for which they were 

instructed to either tap their right finger, left finger, both fingers, imagine tapping, or read 

text. A Spire fNIR oximeter with one light source and one detector was used to obtain 

measurements o f four wavelengths o f light at a rate o f  10 samples per second. The data 

were preprocessed by using a moving average filter, then classified using a support vector 

machine supervised classification algorithm and two additional algorithms -  Linear 

Discriminant Analysis (LDA) and decision tree.

1.5 Outline of the Document

Chapter 1 provides an overview o f the thesis statement, theoretical background, 

and the methodology. Chapter 2 describes details o f  the theoretical background. Chapter 

3 reviews current literature, Chapter 4 describes the methodology, and Chapter 5 

describes the data collection and preprocessing o f the data. Chapter 6 analyzes the results 

o f the classifications. Chapter 6 provides concluding remarks, including contributions to 

fNIR research and future directions.



5

CHAPTER 2 

THEORETICAL BACKGROUND

Functional N ear Infrared (fNIR) is a noninvasive neuroimaging method that can 

detect concentrations o f oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin 

(deoxy-Hb) [1]. Decreases in deoxy-Hb and increases in oxy-Hb and total-Hb can reflect 

neural activation [2]. Near-Infrared light can pass through body tissues such as the scalp 

and skull but is absorbed by hemoglobin (or more specifically, the chromophores in 

hemoglobin). An activation in the brain causes oxygenation (metabolism o f oxygen), 

followed by deoxygenation. Cerebral blood flow increases, causing the oxygenation 

levels {i.e., concentrations) to exceed the deoxygenation levels. Fig. 1, adapted from 

research o f Abdelnour shows the rise in oxygenated hemoglobin, followed by a rise in 

deoxygenated hemoglobin [4]. The data are from a left handed subject tapping with left 

hand for 20 seconds, initiating a neural activation. Note the approximately five second 

lag in the rise after tapping begins and an even longer persistence after tapping has 

ceased; however, there is a wide variance among individuals in both the timing and 

extent o f the changes.
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0.5

Concentration 
Change (fiM )

- 0.2 4020 
— •

Right Hand Tapping

Right H em isphere Left H em isphere  
O xygenated ---------------------------  —

D eoxygenated ............................................................................. .

Fig. 1. Oxygenation/deoxygenation change (adapted from Abdelnour [4])

fNIR is absorbed to different degrees by oxygenated and deoxygenated blood and 

these differences vary by the wavelength o f the infrared light. By shining infrared light 

o f different wavelengths into the brain and measuring the amount o f each wavelength that 

is reflected back after passing through the brain, the relative concentrations o f  the 

oxygenated and deoxygenated hemoglobin that flowed can be calculated, allowing neural 

activations to be detected [3]. The degree to which material such as hemoglobin absorbs 

light is based on the material’s absorption coefficient, the amount o f material the light 

passes through, and the wavelength o f the light passing through the material. Fig. 2,



modification o f a figure from a Spire oximeter manual, depicts how the absorption 

coefficient for a particular degree o f oxygenation varies by wavelength [5]. In general, 

the shorter the wavelength, the greater the variability o f the absorption coefficient and 

therefore, o f  the readings.

100% Oxygenated 100% Deoxygenated (0% Oxygenated)

100 SO 60 40 20 OH*

^  0.55
I
■g 0.45
.i
IE 0.35

OH0.15

750 •00 •so 900650 700600
wavelength (nm)

Fig. 2. Absorption by oxygenation and wavelength (adapted from Spire manual [5])

Note that the 100% oxygenation line on the chart is the lowest line for all 

wavelengths below approximately 800 nm but it is the highest wavelength above 800 nm. 

By using an oximeter with one light with a wavelength below 800 nm and one light 

above 800 nm, the amount o f light o f light o f each wavelength that is returned can be 

compared, allowing the absorbance coefficient to be determined. Once the coefficient is 

known, the chart allows the percent oxygenation (i.e., which line on the chart) to be 

determined. For example, if more light was returned from a 650 nm light than an 850 nm



light, then the applicable line on the chart would be one that is lower at the 650 nm point 

than at the 850 nm point (keeping in mind that more light passing through equates to less 

absorption). The line would thus be one toward the higher oxygenation levels.

An oximeter is an fNIR device that measures oxygenation. The most accurate 

type has a pulsed light source, which allows the origination time of the pulse to be 

compared to the detected time o f the pulse, thus allowing the time o f flight o f the pulse to 

be determined. Knowing this time period allows the length o f  the path through the brain 

to be calculated for a given material (e.g., hemoglobin), thus allowing the particular depth 

o f the underlying neural activation to be bounded and the particular concentration o f  the 

material to be known and neural activations detected.

A CW oximeter is another type o f  fNIR device, in which a continuous infra-red 

source is used. The length o f the path cannot be accurately calculated and must be 

approximated. Exact concentrations o f  material cannot be determined; however, relative 

concentrations can be calculated and these approximations are sufficient to detect 

activations. CW oximeters are the more prevalent type used in current research. One 

such instrument, a Spire CW oximeter, has a light source with four wavelengths and is 

the one which was used in the research for this dissertation.

2.1 Physiological Model

Knowledge o f  which portion o f  the brain affects what functionality is also 

important with regards to determining where to place sensors/detectors. Once the 

physical area is identified, the location on a particular individual has to be determined, as 

locations vary among individuals. Currently, locations o f functional areas o f  interest are 

typically estimated or determined in real time by analysis o f  sources/detectors placed at
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multiple locations. Predetermination is typically accomplished by MRIs o f  the subjects 

but other methods can be used. In research by Lee, nerve stimulation measurements were 

used [6]. The areas o f interest have tended to be either motor areas, somatosensory areas, 

or areas within the cerebellum; however, effects for the specific areas conflict among 

studies per a metastudy by Witt [7]. For the study in this dissertation, only one 

source/detector is used; therefore, the placement would optimally be on one o f the areas 

for which there is agreement.

2.2 Finger Tapping Physiological Model

Finger tapping is one o f the more common motor tasks for experiments. It is 

performed in many different manners, including sequentially tapping each finger to the 

thumb, tapping a finger to a surface, moving a finger without tapping, or different 

combinations o f left/right handed people tapping with the dominant/nondominant hand. 

Tapping can be performed to an external stimulus (auditory or visual) or can be 

continuously performed at a self-determined rate, without a stimulus. Rates vary from 

experiment to experiment and can be a fixed rate, subject’s maximal rate, or subject’s 

comfortable rate [8]. Each combination o f these factors can result in a different brain 

activation signature, indicating the potential for a complex mental model [9]. Different 

parts o f the brain would be required in different methods o f  tapping and tapping control. 

For example, proprioception provides knowledge o f a finger’s location, there is a 

sensation when a finger touches an object, and auditory or visual functions might be 

required for monitoring related timing stimuli.

Finger tapping activates numerous areas o f the brain. The particular areas and 

their degree o f activation can be affected by the method o f pacing (external stimulus or
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continuous); the type o f source stimulus (visual or audible), what is tapped (external 

surface, other fingers, or nothing), and handedness. Fig. 3 depicts Pinel’s theoretical 

view o f some, but not all, o f these areas [10]. The locations o f  the areas are noted.

Neither the areas nor their relationships are meant to be exhaustive, nor are they all 

necessarily supported by empirical evidence. The drawing was created based on text that 

described major inputs and outputs o f selected areas and is designed to facilitate an 

understanding o f how functions and relationships o f  locations might be related to finger 

tapping.

One area that is involved in finger tapping but not depicted is the cerebellum. Its 

function with regard to finger tapping is not well understood although there are finger 

tapping -  related connections between the cortex and cerebellum [11]. Anatomically, 

there are pathways that loop between the cortex and cerebellum. Functionally, areas in 

the cerebellum have been shown to be connected to the motor and somatosensory 

cortices. Its location is not easily accessible via the current fNIR.

In the particular theoretical model this chart depicts, signals travel from the sense 

receptors to the thalamus, then on to an area o f the cortex for the particular sense type -  

auditory, visual, or somatosensory (body) cortex. From there, the association cortex 

integrates signals from the different senses and sends a signal to the motor cortex. The 

motor cortex then sends signals to whatever body parts are to be controlled. As 

previously noted (and as shown in subsequent paragraphs), this model is only one view, 

has understated complexity, and may not be empirically supported.
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Fig. 3. Notional model o f finger tapping signal flow [10]

2.3 Interconnections

The interconnections among some o f these areas, particularly the motor-related 

areas, have been researched through such methods as stimulating an area and observing 

movement o f  particular parts o f  the body (e.g., fingers). The interconnections, as well as 

the involvement o f the areas in motor functions, have also been researched through 

imaging (e.g., fMRI, EEG, fNIR) in both humans and primates. The research o f  Dun and 

Strick has conflicting results regarding the division o f the areas as well as their 

interconnections [12, p. 20]. The following paragraphs describe some o f  this research, 

especially among the areas within the primary and secondary motor cortices. This 

research is generally supportive o f  the primary and secondary motor connections depicted
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in Fig. 3 as well as some o f the other areas. The research; however, suggests many more 

connections among the areas and subareas than the diagram depicts as well as 

bidirectional connectivity among some o f the parts.

The research o f Dun and Strick references research (based on connections to the 

primary motor cortex) that indicates the secondary motor cortex consists o f  three 

cingulate motor areas, a ventral, and a dorsal premotor area, and the supplementary area; 

hence, a different anatomical division than that o f Fig. 3 [12, p. 13]. The same source 

cites research that the premotor cortex has corticospinal neurons that project directly to 

the spinal cord as well as to the primary motor cortex, suggesting each can directly 

influence movement [12, p. 10]. In a monkey with the primary motor cortex removed, 

stimulation o f  the supplementary motor area still evoked movement -  using currents in 

the preremoval range [12, p. 17]. In other words, after the primary motor cortex had been 

removed, responses could still be evoked, indicating the existence o f a pathway that 

bypassed the primary motor cortex in normal operation. Had an increase in current been 

required, the effect could have been attributed to the higher level forcing a path not 

normally used.

This research tends to confirm some o f the connections o f Fig. 3 but adding new 

connections, thus convoluting the flow o f activity. Excitation o f the secondary motor 

cortex (specifically, the supplementary motor area) has a higher threshold than excitation 

o f the primary motor cortex [13]. In fact, exciting the primary motor cortex with 

electrical stimulation has been shown to have a lower threshold than any other area o f  the 

cortex [12, p. 4], These differing thresholds add further complexity, not indicated by the 

simplified diagram. Padoa-Schioppa cites research showing that many o f the premotor
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areas project to the spinal cord, including the dorsal premotor area, ventral premotor area, 

supplementary motor area, and three or four cingulated motor areas [14]. Research also 

provides evidence that connections exist from both the primary and secondary 

somatosensory cortices, but removal o f these areas does not keep proprioceptive 

responses from traveling to the primary motor cortex [12, pp. 21-23]. These studies 

provide evidence that just because connections exist, there is not necessarily a rote use o f 

them -  more argument against the existence o f a simple, straightforward functional flow 

diagram. There is research indicating that only the cingulate and premotor cortex receive 

signals from the dorsolateral prefrontal cortex whereas Fig. 3 depicts signals traveling the 

supplementary motor area as well [12, p. 27]. There is also research from Dum to 

support connections among each o f the areas in the secondary motor cortex (cingulate 

motor areas, premotor cortex, and supplementary motor areas) and o f  two o f these areas 

(premotor cortex and supplementary motor areas) to the primary motor cortex [12, pp. 

21-24].

Connections between the premotor cortex and primary motor cortex appear to be 

essential to map a visual cue to a motor response [15]. Monkeys whose dorsal premotor 

cortex was removed were not able to choose the correct motor response for a task (open a 

lit or unlit box). Monkeys without the dorsal premotor cortex removed were able to do 

the task. In another study, removing monkeys’ dorsal and ventral premotor cortex 

resulted in the monkeys not being able to relearn a visually-cued task to operate a handle 

[15]. The connections between the inferiotemporal cortex and the ventral and orbital 

prefrontal cortex also appear to be used for visual-to-motor mapping. Monkeys whose 

connections were severed were slower to perform such mapping tasks but they were able



14

to learn the tasks [15]. The posterior parietal cortex has been shown to not be needed for 

mapping involving color (agreeing with Fig. 3). Even lesions of the dorsal prefrontal 

cortex have been shown not to disrupt this mapping, again agreeing with the diagram.

2.4 Areas Related to Finger Tapping

An item o f interest to this dissertation is the location to  place sources/detectors. 

While the primary motor cortex is an obvious candidate for finger tapping studies, there 

are other candidate areas depending on research objectives, equipment, and methodology. 

The metaanalysis o f Witt included 38 studies (22 fMRI and 16 PET) and gives some 

insight into various factors involved in finger tapping and how, for example, auditory and 

visual pacing can activate different hemispheres [7]. The source studies o f  the 

metaanalysis had differences in their experimental methods, making comparisons 

difficult. W itt’s study performed three distinct analyses o f right handed finger tapping:

(1) all the studies, (2) groups based on type o f  stimulus -  auditory, visual, or none, and 

(3) groups based on tapping complexity [7], Table 2 depicts areas in which the papers 

had agreement for each o f  the three groups. O f note is the premotor cortex, which did 

have agreement but task-dependent agreement. For example, visual pacing resulted in 

bilateral agreement while auditory pacing and self-pacing did not.

For all the finger tapping tasks, paced and unpaced, there were areas o f some 

agreement in primary sensorimotor cortex, supplementary motor area, basal ganglia, and 

cerebellum. Studies o f auditory and visual stimuli have reported different areas activated 

for these types o f stimuli; but the results were inconsistent. The studies had differences 

in their experimental methods, making comparisons difficult.
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T a b l e  2 . E f f e c t  o f  S t im u l u s  T y p e  o n  A r e a  A c t iv a t e d

Auditorial ly- 

paced

Visually­

paced

Self-

paced

Dorsal Premotor Cortices (task- 
dependent laterality)

X (right) X (bilateral) X (left)

Right Dorsolateral prefrontal Cortex X X

Right Inferior Parietal Lobe X X

Bilateral Claustrum (task-dependent 
laterality)

X X

Bilateral Insula X

Right Inferior Frontal Gyrus X

Bilateral Occipital Lobe X

Left Posterior Cerebellum X

Brodmann’s area 44 X

Left Ventral Premotor Cortex X

Right Posterior Cerebellum X

2.5 Functions of Areas

Per the same metastudy referenced above, the following are functions thought to 

be performed by the various motor-related areas [7], O f particular note are the executive 

area for simple voluntary movements, motor learning, selection of movement, visual 

cuing, sustained attention, finger movements, and imagined movements.

• Primary sensorimotor cortex.

o Executive area for simple voluntary movements.



o Processing o f complex sequential tapping. 

Supplementary motor area.

o Executive area for simple voluntary movements, 

o Higher motor processing.

Initiation o f  movement.

Motor programming.

M otor planning.

Readiness to move.

Motor learning.

Complexity o f  movement. 

Responsiveness to internal cueing. 

Selection o f  movement.

Cerebellum.

o Preparation, 

o Execution, 

o Timing.

o Externally-cued movements, 

o Internally-cued movements.

Basal gaglia.

o Single repetitive movements, 

o Complex sequential movements.

Premotor cortex.

o Transformation o f  sensory data into movement.



o Execution o f  movements under sensory guidance. 

Lateral premotor cortex.

o Dominance over internally-guided movements. 

Medial premotor cortex.

o Dominance over externally-guided movements. 

Ventral premotor cortex.

o Visually-guided movements.

Dorsolateral prefrontal cortex, 

o Lateral.

■ Visual-cuing.

■ Sustained attention, 

o Medial.

■ Self-paced cuing.

Inferior parietal lobe.

o Sequence-specific data, 

o Sensorimotor integration.

Right cerebellar pyramis.

o Possible third homunculus.

Inferior frontal gyrus, 

o Finger movements, 

o Imagined movement, 

o Motor learning, 

o Motor observation.
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2.6 Somatotopic Mapping

Somatotopic maps relate specific physical areas o f the brain to areas o f  the body 

controlled by that part o f the brain. Such maps have been identified in many motor- 

related areas. One method used to create these maps is by tracing corticospinal neurons 

from the primary motor cortex and the secondary motor cortex areas. The neurons that 

go to cervical segments o f  the spinal cord control neck and arm movements while those 

that go to lumbarsacral segments control the leg. The origins o f the cervical vs. lumbar 

neurons did not have significant overlap and also corresponded with the locations of 

neurons that projected to equivalent areas o f  the primary motor cortex.

O f interest to this dissertation is a finding by Dum that the amount o f primary 

motor cortex area projecting to the upper cervical segments (neck, elbow, shoulder 

control) was the same as the amount projecting to the lower cervical segments (hand, 

wrist control), suggesting a disproportionate amount o f the brain used to control the wrist 

and hand, perhaps allowing more complex movements. Also, the upper and lower origin 

areas were segregated, similar to the cervical/lumbar segregation. Within the cingulated 

motor areas; however, a degree o f overlap was found. Research has established that each 

o f the areas in the premotor cortex has a somatotopic organization, although they are not 

all complete representations {e.g., one o f the premotor cortex areas does not have a face 

representation) [12, pp. 11-20],

fMRl has also been used to investigate somatotopic mapping. With respect to 

differentiating areas involved with the different fingers, an fMRI study by Kleinschmidt 

and Toni showed great overlap among the areas for each finger [16]. In fact for any hand 

or finger movement there was complete and continuous activation o f  the entire cortical
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hand area. Their work contrasted the movement o f each finger with the same finger at 

rest and showed more overlap than when the finger movement was contrasted with a 

different movement. One reason posited was that less specific effects could be occurring 

during rest (an example o f  draining vasculature was offered); another reason posited was 

that the finger had to be stabilized while at rest, perhaps canceling the effects occurring 

while not at rest. The strongest activations were found in the contralateral primary motor 

cortex, although in many cases an ipsilateral response was also noted. In experiments 

involving a determination o f handedness effects, there were conflicting results. In some, 

handedness had no effect on contralateral versus ipsilateral effects. In other experiments, 

handedness did have an effect. For example in one study the use of the non-dominant 

hand had less contralateral effect [16]. In another study, by Dane, a relationship was 

found between handedness and the intraocular pressure of each eye [17]. Right-handed 

subjects had higher intraocular pressure in the right eye than the left eye but in left- 

handed subjects there was no difference.

There is also some evidence by Geyer that the arms and hands have two 

representations in the primary motor cortex [18]. O f particular interest is a finding by 

Sato that digit I has the largest representation and digits III-V, the smallest [19]. 

Additionally, the representations o f each digit overlapped that o f neighboring digits. The 

implications for this study are that the representation o f  the finger that is tapping may 

have two representations or may overlap the area related to a neighboring finger.



2 0

CHAPTER 3

LITERATURE REVIEW OF HYPOTHESIS COMPONENTS

This chapter provides the current state o f research and knowledge with regards to 

the four components o f the hypothesis. Studies that provide the current state o f the 

components are followed by sections that address particular areas related to the 

components and to the methodology o f  this study. Table 3 summarizes the findings, 

relative to the hypothesis component.

T a b l e  3 . H y p o t h e s e s  C o m p o n e n t s  a n d  C u r r e n t  S t a t e

Hypothesis Component Literature Findings

Prior knowledge o f individual 
brain geometry not required

Currently mitigated by adding source/detectors 
to increase geographical coverage

One set o f CW source/detectors Most research involves multiple 
source/detectors

Individual basis versus group 
basis

Previous gap but addressed by recent research

Classification algorithm to 
distinguish finger tapping states

Limited research on fNIR classification 
algorithms

Algorithms with real-time 
potential

Limited research on application o f  real-time 
algorithms to fNIR

Current research addresses these areas but not all simultaneously, specifically use 

o f a single channel CW device in conjunction with a real-time individual-based 

classification capability.
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3.1 Prior Knowledge of Individual Brain Geometry

Functional areas o f the brain vary in physical location on each individual; 

therefore, sensor locations to measure specific functionality are unique for each person. 

To detect signals from a specific functional cerebral area, the literature describes four 

methods that are currently used.

Chance described one method -  that o f first having the individual perform the 

task while being imaged by fMRJ, then using the fMRl results to determine the exact 

physical locations activated on that individual [20]. A second method addresses 

differences in individual geometry by averaging signals from multiple individuals with 

the hope that in enough individuals the sources/detectors will cover the location o f 

interest, such as was done by Suto [21]. Ferrari described the evolution from single 

source/detector devices to those with multiple sources/detectors [22]. Most fNIR 

research in motor functions in the last decade, such that o f Suto, has addressed individual 

differences in brain geometry by using numerous source/detector combinations to 

simultaneously collect data from a wide areas o f the brain, mitigating the need to know 

the exact location o f a particular brain area for an individual [21]. By increasing the 

number o f sources and detectors, such as the 16 o f each (for 256 combinations) that 

Abdelnour used, the coverage area increases greatly [4]. O ther instances o f  multiple 

source/detector sets are noted in the research discussed regarding classification methods. 

The fourth method is just to estimate the location o f  interest based on that o f an average 

individual.

The first method, pre-MRI, would work for a brain-computer interface; however, 

an MRI would be costly and require added time. The second method, averaging
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individual responses, is unsuitable for a BCI. Requiring multiple source/detector sets is 

effective but adds physical complexity and constraints to a BCI. The last method is 

simpler and this study attempts to show that it may be sufficiently accurate for purposes 

o f detecting motor activity using fNIR.

3.2 One Set of CW Source/Detectors

Most research with CW devices involved multiple sources/detectors. Current 

research with a single source/detector was scarce. The literature does not provide many 

instances o f the use o f a single fNIR source/detector for areas o f the head covered by 

hair. Single source/detector research, such as the studies reported by Ferrari, tends to 

involve earlier studies or is placed over areas with no hair, such as a study by Mandrick 

where sensors/detectors were placed over each prefrontal cortex [23] [24].

3.3 Individual Basis versus Group Basis

With regard to motor tasks, results were often analyzed by comparing the average 

of measurements received from a set of individuals performing a task to another set o f 

individuals not performing the task (or performing it in a different manner). Analysis o f  

the changes occurring over time on an individual basis had not been studied much until 

recent years such as a study by Sato where sources/detectors were placed over and around 

the motor cortex area [25], Current research is now commonly done on an individual 

basis so this component o f  the hypothesis is less a discriminating factor than the others. 

The knowledge o f  individual changes is essential to the operation o f a BCI since BCIs are 

for individuals, not groups.
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3.4 Classification Algorithms for Finger Tapping States

The objective attributes o f a classification method for this research are discrete 

assignment and computational feasibility for real-time use. The discrete assignment will 

determine which o f several discrete actions a subject is taking but not how much o f  each 

action is being taken. Although classification for this particular study will not be 

accomplished in real time, a longer term objective is to be able to perform real-time 

classification, such as would be necessary for a brain-computer interface.

Overlapping the classification method itself are the related preprocessing steps. If  

a classification method is to support real time, the preprocessing steps must also.

3.4.1 Supervised and Unsupervised Classification

Classification algorithms can be divided into two types, supervised learning and 

unsupervised. Supervised learning involves the prespecification of target classes, along 

with data elements for which the target class is known. These data elements can then be 

used to determine attributes o f each class, which can then be used to classify subsequent 

data elements [26, p. 3]. Unsupervised classification divides data into naturally occurring 

clusters without regard to whether the data in a cluster is the same class o f  data. Since in 

this study the target classes are known and training data was collected, a supervised 

algorithm is preferable.

Some methods are the Kalman filter, regression, K-Nearest Neighbors (KNN), 

Parzen Windows, Support Vector Machine (SVM), decision tree classifier, and Linear 

Discriminant Analysis (LDA). SVM is the focus o f  this project and it will be compared 

with the results o f a decision tree classifier and LDA.
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3.4.2 Kalman Filter Finger Tapping Classification

The Kalman Filter is a method that makes an estimate based on data from 

previous trials, then weighs that estimate with information from the current data point to 

predict the current state. As new data are collected, the values are reweighted. An 

adaptation of this model by Abdelnour adds knowledge o f the timing o f  stimulus events 

and it is dependent on a prior knowledge o f stimulus timing [4]. The experiment 

included coupling with a simple classifier algorithm and 79% of finger tapping events 

were correctly classified as right or left handed “overall for the 3 subjects.” A trial was 

considered overall correct if predictions were correct for over half its data points; 

therefore, the 79% accuracy reflected that data points were classified greater than 50% 

correctly. Two o f the subjects were right-handed and one w as left-handed and they 

alternated between periods o f tapping with the left finger and right finger [4], This study 

had six minute periods in which the covariance between data from left and right tapping 

was obtained. Subsequent trials used the covariance data from the training trial in 

conjunction with a KNN classification algorithm to classify taps as right or left handed.

In the adaptive model that was used, the covariance data were constantly updated as data 

from subsequent taps occurred. For twenty seconds, the subjects sequentially tapped 

each finger to their thumb on their right or left hand. Tapping was self-paced and lasted 

for a 20 second block, with a 20 second rest period between blocks. Subjects appeared to 

alternate between left and right tapping for each block, although the paper was not clear 

on this. Data were captured from 56 source-detector combinations placed on the left and 

right motor areas at a rate o f 4 Hz; however, due to transfer and classification restrictions, 

the data were only classified at 2 Hz. These time points were classified as either left
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tapping or right tapping and the resulting classification labels displayed, in real time, to 

the subjects on their computer screens.

The advantages o f  this method are several. The use o f  56 source-detector 

combinations allowed for more localization than is possible with only a few source- 

detector combinations. The use o f the Kalman filter factored in some o f  the expected 

noise.

A disadvantage o f  this method is that the adaptive model created a lag o f  2-3 

seconds in the classification due to the time required for the model to process the data 

from the previous tap as well as the current tap. The delay tended to result in 

classification o f  a finger tap occurring after several subsequent finger taps had occurred. 

This delay was compounded by relatively slow oxygenation/deoxygenation activation 

periods, which caused classification o f data as finger taps, even after finger tapping had 

ended and the subject had gone to a resting state. The oxygenation/deoxygenation lag 

varies among individuals but is on the order o f five seconds after task initiation and five 

seconds after task halting [21] [27], Note: this same artifact is one o f the reasons that the 

use o f any algorithm with a temporal template is somewhat problematic for a real-time 

application. The results o f  applying the template are not known until the time period 

spanned by the template has elapsed.

One shortcoming o f this method is that displaying the result to the subjects could 

bias the subjects. For example, a misclassified result could cause a subject to tap harder 

to try and increase the accuracy. Providing the result to the subjects also appeared 

inappropriate because o f the classification lag described in the previous paragraph -  the 

subjects were apparently being presented with the classification of the finger tap that
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occurred two to three seconds earlier. Regarding the potential for subject bias, the study 

did note that the subjects’ responses were sensitive to their attention to the task. When 

not fully attentive, brain responses were smaller and more classification errors occurred. 

The relationship o f the attentiveness, error rate, and subject bias could, in my opinion, be 

that when the subjects were more attentive they would be more likely to be in a state o f 

mind to pay attention to the classification results being displayed and then adjust their 

tapping to keep errors low.

3.4.3 Regression

This method provides a probable value o f an independent (response) variable 

based on a linear relationship to dependent variables. Recent research by Mandrick in 

which a pair o f sensor/detectors was placed over each prefrontal cortex, shows that a 

linear regression slope o f hemodynamic responses during cognitive tasks showed promise 

as a differentiator between a subject at rest and performing a cognitive activity [24]. A 

pattern o f increase in oxy-hemoglobin and decrease in deoxy- occurred during task 

periods in 63.7% o f the trials.

3.4.4 Principal/Independent Component Analysis (PCA/ICA)

PCA and ICA, although not classification algorithms, can provide a set o f 

components (e.g., a set o f variables, a set o f  variable values) that can account for 

maximum difference (entropy) among those components. A potential use in this type 

application would be to identify the set o f sensors that account for differences between 

the two states, thus allowing subsequent analysis to concentrate on those sensors/values. 

These are viable means o f  data reduction and geographical feature extraction with
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systems that have many combinations o f sensor locations, source locations, and 

wavelengths.

In this research, there is only one location o f the sensors/detectors and four 

wavelengths, o f which three are essential to the study; therefore ICA would not offer 

added value to this study.

3.4.5 K Nearest Neighbor (KNN)

This algorithm has the potential o f being computationally feasible for real-time 

use, and can be easily modified to allow for a sample to remain unclassified. KNN is a 

classification algorithm that takes K number o f  training data elements nearest the sample 

to be classified, then assigns the sample to the class most prevalent in those K elements.

3.4.6 KNN Classification of Focus Task

One o f the end goals o f fNIR research is the development of BCIs. Experiments 

involving such capability were performed by Ayaz using 10 detectors, four sources 

placed on the forehead, and four wavelengths [28], Subjects were asked to focus on a bar 

on a computer screen during tasking periods, which alternated with rest periods. The 

oxygenation changes o f subjects were monitored and used to change the size o f  the bar. 

States were classified as either resting or task using a KNN classification algorithm and a 

Bayes classifier. Training data were collected in the morning and used to classify the 

afternoon trials. The results o f the five subjects were 75.44% correct for the k nearest 

neighbor and 72.10% for the Bayes.
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3.4.7 KNN Classification of Imagined Movement

A study by Mason used a nearest neighbor algorithm (with k = l)  to classify EEG 

signals to determine intent to finger-tap [29]. Subjects consisted of two spinal-cord 

injured people who could not move their fingers. Ten electrodes were placed over the 

supplementary motor areas and sensory motor cortices and sampled at 128 Hz. Data 

were collapsed averaged at 1/8 second intervals and classified every 5/16 o f a second. 

Subjects imagined untimed finger flexions. Subjects reported classification errors using a 

“sip and p u ff’ switch during a feedback period. Resulting hit rates were from 36-44% 

with false positive rates less than 1%. A strength o f  this study is that imagined 

movement appeared to be detected and the algorithm was not tuned for the particular 

individuals. However, the self-report method may have spuriously inflated correct 

detection rates. Error reporting required an action, whereas reporting o f a correct 

classification was passive; i.e., the default and therefore might tend to occur more often. 

Secondly, since the subjects knew what the “correct” response was, they might have a 

desire to show “correct” behavior.

3.4.8 Parzen Windows

This algorithm has the potential o f being computationally feasible for real-time 

use, and can be easily modified to allow for a sample to remain unclassified. Parzen 

Windows is similar to KNN but uses a kernel function to determine the weight o f each 

sample that is within the region defined by the kernel [30]. More weight can be given to 

neighbors that are closer, which could increase classifier accuracy in cases, such as this 

dissertation, where classes have high variability.
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3.4.9 SVM

SVM is a classification algorithm using the concepts o f  a decision boundary -  a 

linear separation o f classes, and the margin -  the distance between any o f  the data 

elements and the decision boundary [26, pp. 326-327]. SVM establishes an optimal 

decision boundary between classes such that the distance from it to the classes is 

maximized. Classification is then determined by which side o f  the boundary a sample 

lies on. A downside o f this method is that when the boundaries of training sets overlap, 

there is no pure decision boundary. Modified versions can use “slack variables” that 

would allow for overlap o f  classes [26, 331]. Although SVM is designed for two classes 

multiple classes can be solved by first solving for a pair o f classes, then progressively 

solving subsets within each pair until the total number o f classes has been addressed [31 ]. 

Another downside is the complexity o f the algorithm -  initially establishing the boundary 

is computationally intensive. It is more computationally intensive than KNN but is more 

accurate. One solution for the complexity issue is to divide the problem space into 

subsets and solve each, then progressively combine subset solutions and solve for the 

combination until in the end the total space has been solved [32], Another solution for 

complexity is to recursively eliminate features -  attributes o f  the problems space with 

potential relevancy to the target classes [33].

3.4.10 SVM Classification of Imagined Movement

Herff led a study that compared 252 channels o f  fNIR data from subjects speaking 

(audible), moving their articulatory muscles but not speaking (silent), and imagining 

moving their articulatory muscles (imagine) [34], Sources/detectors were placed over the
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motor area, forward o f  the motor area, and over the pre frontal cortices. The results for 

SVM binary classifications were 80% correct for audible/imagine (standard deviation = 

15.0), 72% for silent/imagine (standard deviation = 10.7), and 65% for audible/silent 

(standard deviation = 23.1).

3.5 Research into Related Areas Other than Classification

Research related to imagined actions, stimuli, and other areas related to this 

project are discussed below. There is a significant amount o f  research into imagined 

movement, including involvement o f  amputees with phantom limbs, amputees without 

phantom limbs, and non-amputees.

3.5.1 Imagined Finger Tapping

In a study by Jeannerod there was an increase in metabolic activity in the 

contralateral primary motor cortex while performing imaginary finger tapping with an 

amputated right hand [35]. Amputees with phantom hands had higher activations in the 

contralateral motor and somatosensory cortex than non-amputees. But a w om an’s 

phantom limbs (the woman was bom without limbs) did not evoke sensorimotor 

activation. But in the other direction, transcranial magnetic stimulation (TMS) 

stimulation o f the sensorimotor cortex increased her sensations. These studies indicate the 

potential for imaginary finger tapping to be detected in the study for this dissertation.

3.5.2 Interaction of Real and Imagined Movements

In another study, phase synchronization during EEG was used to demonstrate a 

degree o f interaction (and thus functional connections) that were similar between real and



imagined movements [36]. The phase synchronization methodology analyzed the 

synchrocity between different areas (increases or decreases in power occurring 

synchronously between different areas), showing detection o f  weak nonlinear interactions 

between them. A key strength o f the study was the rigor o f  the methodology -  focusing 

on a red light to mitigate ocular artifacts, number o f  trials used (e.g., 130, 220), 

instructions (e.g., instructed to imagine kinesthetic o f  movement rather than its imagery), 

and inclusion o f  a control session (no movement). W eaknesses included the need for the 

subjects to practice finger tapping and removal o f trials with artifacts (approximately 

10% o f trails were removed). The results showed similarity in the synchronizations 

obtained from the imagined and actual tasks. The results also showed some functional 

connectivity among four pair o f the electrodes.

3.5.3 Area- and Time- Related Differences in Oxygenation/Deoxygenation

In an fNIR study o f finger-tapping, by Sato (2007), two area-related categories o f 

oxygenation/deoxygenation changes were observed [25]. Five source and four detector 

probes were used in a configuration that provided 12 measurement points for each 

hemisphere. The two categories were: (1) oxygenated hemoglobin and total hemoglobin 

increases over a large area (approximately 80% o f a 6 cm x 6 cm region) and (2) 

deoxygenated hemoglobin decreases in a smaller area (8% same side and 16% 

contralaterally). The smaller areas o f  deoxygenated hemoglobin changes were explained 

by the potential that the levels were smaller, therefore having a smaller signal-to-noise 

ratio, resulting in a smaller area o f statistical significance. This lower signal-to-noise 

ratio o f  deoxy-Hb was also related to deoxy-Hb decreases having no laterality. The 

second case was assumed to be due to motor cortex activation because o f  similar results



with fMRI. fMRI is a type o f magnetic resonance imaging that captures Blood Oxygen 

Level Dependent (BOLD) signals by measuring differences in magnetic fields per 

Bestmann [37]. Rack-Gomer and Kwong found that fMRI BOLD signals reflect changes 

in neural activity by way o f changes in oxygenation o f  blood, cerebral blood flow, 

cerebral blood volume, and metabolism [38] [39]. Three time-related categories were 

also noted by Sato: (1) sustained activation in one region; (2) activation only at the 

beginning in a second region, and (3) cumulative activation in a third area. The first 

category (sustained activation) was believed due to the finger tapping. This category 

occurred contralaterally over the points corresponding to C3 and C4 on the international 

10-20 system and corresponding to the motor cortex. The second (initial period) 

occurred over the somatosensory cortex and was believed related to the initial stimulus 

and decreasing due to habituation. The third (cumulative) occurred over the posterior 

frontal cortex and superior temporal cortex and was believed to be related to maintenance 

o f a long task.

Variations among onset and amplitude o f fNIR responses were also documented 

by Miezin [40]. Variations occurred among different individuals, among different areas 

o f the brain within a single individual, and at different times within the same individual.

3.5.4 Stimuli -  Types and Timing

Neural refractory periods cause the response elicited by a stimulus to be reduced 

for a subsequent stimulus. For auditory stimuli in an EEG study by Liu (2005), the 

subsequent stimulus response was reduced and when the interstimulus interval was 

shorter than 150 ms, the response to the subsequent stimulus was completely inhibited 

[41]. An optical imaging study by Cannestra (1998) with auditory stimuli also showed



that the greater the duration o f  a stimulus, the longer this reduced responsiveness period 

as measured over the sensorimotor cortex [42]. Table 4, recreated from their paper, 

delineates this effect. With regards to this dissertation, responses to finger taps, after the 

first tap, may be reduced. Furthermore, tapping rates greater than six/minute may be 

“completely inhibited” .

T a b l e  4. E f f e c t  o f  S t im u l u s  o n  In t e r v a l  o f  R e d u c e d  R e s p o n s i v e n e s s  f42]

Primary Stimulus Duration (seconds) Interval o f Reduced Responsiveness 
(seconds)

0.5 4.5

1.0 4.25

2.0 4.0

2.25 4.25

2.4 7.1

3.5 7.0

10.0 8.0

15.0 13.5

Another area o f interest to this dissertation is what regions might be activated by a 

directional visual stimulus -  in particular, are there activated areas that are either 

interconnected to, or in close proximity to, premotor or motor areas. A recent fMRI 

study compared the effects o f directional visual stimuli (faces, pointing hand, and arrows 

[43]). All three types elicited responses in the right hemisphere, attributed to possible 

spatial or attention processing. All the directional stimuli resulted in activations in the
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superior temporal sulcus, the inferior parietal lobule, the inferior frontal gyrus, and the 

occipital cortices in the right hemisphere. Directional hands and arrows also had 

responses in the inferior frontal gyrus. Directional arrows resulted in activations o f  the 

right inferior and middle temporal gyri and the left superior parietal lobule; attributed to 

possible cognitive processing.

Also o f particular interest to this proposal is the effect the type (visual or auditory) 

o f  timing stimuli has o n ‘areas activated. The areas involved in integrating a timing 

stimulus appear to be different for a visual stimulus than for an auditory or no stimulus. 

This could be due to an audible stimulus being more automatic than visual or the effect 

could be due to the area o f visual integration being also used for attentiveness functions. 

Perhaps an audible stimulus requires little thought to follow. In one study o f the rate o f  a 

timing stimulus, rates o f 1, 2, 3, 4, and 5 Hz resulted in a linearly increasing Blood 

Oxygenation Level Dependent (BOLD) response; however at frequencies below 1 Hz, 

the linearity was disrupted, perhaps because o f  a different mode of execution.

Predictable cuing can have different effects than unpredictable cuing, with greater 

activation for unpredictable. The amplitude o f  movements is correlated with the 

magnitude o f an fMRI BOLD response in the primary motor cortex [44]. Generally, rates 

vary from 0.25 to 4 HZ with little consensus on activation differences within that range 

[7]. There is also more variance in the effects that result from different stimuli methods 

than there is in the results from tapping tasks o f  varying complexity, indicating a lack o f 

understanding in what in the brain differentiates complex tasks from each other. While 

finger tapping may appear to involve only movement o f  the fingers (and eyes/ears for the 

stimulus), other muscles are in fact involved including those o f  the wrist, elbow and
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shoulder [45]. Additionally, this movement is sensed through proprioception, and 

touching o f a surface or other fingers is sensed and transmitted back to the brain. O f note 

to this particular research is that cutaneous stimulation does not excite the supplementary 

motor area [46].

In a study where subjects responded to an external stimulus, the results were very 

similar (except for auditory regions) to the responses o f  the same subjects subsequently 

responding without a stimulus (self-paced) [47]. Interestingly, this study used an 

auditory stimulus and the comment in the previous paragraph regarding the similarity o f 

auditory stimuli and no stimuli begs the question o f  whether this study would have shown 

differences had visual stimuli been used. This study also did not indicate w hether there 

was a group o f subjects that used the reverse order (non-pacing, followed by audible 

pacing) to help differentiate whether or not the similarity o f activations was due to 

“learning.” Activations for syncopated tapping were evident in a broader area than for 

synchronized tapping. Activity was greater in the supplementary motor area, left 

premotor area, right thalamus, bilateral inferior frontal gyri, and cerebellum.

3.5.5 Preprocessing Steps

Many studies used a sequence o f steps to process the collected data and prepare 

the data for subsequent analysis and/or classification. These include a variety o f  methods 

to average data over multiple trials or multiple subjects, filter data, estimate 

hemodynamic response from raw values, and data reduction techniques; however, many 

of these methods are not amenable to real-time classification or to classification with a 

single sensor/source. For example, data reduction might be necessary on systems with 

many combinations o f sensor locations, source locations, and wavelengths but not with a
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single source/sensor. Some methods are more amenable than others to real-time 

classifications. For example, any averaging o f  data from multiple trials or multiple 

subjects could not be used in real-time classification o f  a single subject’s actions; 

although they may be useful in developing models for classification. The literature 

search for this study focuses on finding methods that may be applicable to real-time 

classification with a single sensor/source.

Low pass filters and averaging are common methods to reduce some 

contaminating physiological features such as heart beat (1.1 Hz) and respiration (0.2Hz) 

[48] [49].

In the study by Herff previously discussed under the SVM section, they converted 

the raw data into optical densities, then converted to oxy- and deoxy-hemoglobin values; 

detrended the data, extracted features with classification potential, selected features, then 

classified the data [34], Optical density is simply taking the amount o f light received and 

making a determination o f  the density (absorbance) o f  the material traversed. No explicit 

rationale was given for any functional need to optical densities or to hemoglobin values. 

No discussion was provided o f how the data were detrended. The features were extracted 

by subtracting the mean o f  samples 9 through 15 o f each trial from the mean o f  samples 1 

through 7, thus giving two features per trial per channel (252 channels). Feature 

selection, therefore, was a function o f geographic selection. SVM was used for 

classification and produced a 79-80% accuracy. The optodes were secured to a helmet to 

prevent movement during the study. The location o f  the optodes included areas with and 

without hair, including the motor cortex, areas forward of the motor cortex, and both 

sides o f the prefrontal cortex.



One researcher, Scarpa, tested the use o f  reference sources to capture a baseline 

signal [48]. The study placed 14 sources and four sensors over the parietal areas, along 

with two pair o f reference sources/detectors with reduced separation -  only one third the 

separation o f  the other sources/detectors. The reduced penetration allowed detection o f 

only the scalp, allowing them to capture signals not related to the response o f  the 

stimulus. The reference signal was then subtracted from each o f the other signals. The 

results showed an improved contrast to noise ratio.

One method, empirical mode decomposition, decomposes input into “ intrinsic 

mode functions” through an iterative process. This method can isolate elements 

containing a stochastic component [50] and can work on a single-trial basis but requires 

post-experiment analysis and is therefore not suitable for this effort.
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CHAPTER 4 

METHODOLOGY

This section describes the overall methodology, followed by a discussion o f the 

stimulus and collection methods, including subjects, system used, placement o f 

source/detector, stimuli used, and subject tasking. The data collection execution and 

classification methods are then discussed.

4.1 Subjects

Fifty subjects were solicited through the ODU SONA program, with the only 

criteria being that they be at least 18 years old and under 65 years old. Fifty subjects, 36 

females and 14 males, volunteered. A questionnaire was administered, asking the 

subject’s gender, age, number o f  caffeine drinks they had had prior to the experiment, 

and whether they are a drummer. The modified Edinburgh handedness inventory in 

Table 5 was administered to enable a determination o f handedness [51]. The 

modifications to the Edinburgh inventory included adding the hand used to eat (fork, 

chopsticks), use a computer mouse, hold a cup o f  water, use a TV remote, use a light 

switch, and plug a cord into an electrical outlet; and deleting the hand used to hold 

scissors, knife, spoon, broom, striking a match, and opening a box with a lid. These 

changes were made to be more inclusive o f multiple cultures and adapt to today’s usage 

o f objects. The inventory given to the initial subjects included only the first nine items 

on the list; the remaining seven were added back to the questionnaire to use for potential 

new research. For this study only the results from the first nine were used. The
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following table depicts the items, which ones were original and whether they were for 

this research or for future research.

T a b l e  5. M o d if ie d  E d in b u r g  H a n d e d n e s s  In v e n t o r y

On Original
Edinburg
Inventory

To be Used 
for This 
Research

To be Used 
for Future 
Research

1 Writing X X (original)

2 Drawing X X (original)

3 Eating (fork, chopsticks) X (added)

3 Throwing X X (original)

4 Toothbrush X X (original)

5 Computer Mouse or Touch Pad X (added)

6 Hold a glass or bottle o f  water X (added)

7 TV Remote X (added)

8 Light Switch X (added)

9 Plug cord into outlet X (added)

10 Scissors X X (original)

12 Knife (without fork) X X (original)

13 Spoon X X (original)

14 Broom (upper hand) X X (original)

15 Striking match (match) X X (original)

16 Opening box (lid) X X (original)
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4.2 System

The fNIR device used was a Spire-NASA LaRC Cerebral Oximeter Model SPI- 

CerOxim-06A, developed by Spire Corporation for NASA depicted in Fig. 4 and Fig. 5 

[5],
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Fig. 4. Spire-NASA oximeter interface
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Fig. 5. Spire-NASA oximeter interface

The device contains four infrared emitters, each with a different wavelength: 670 

nm, 735 nm, 785 nm, and 830 nm. Light at two o f these wavelengths, 670 nm and 735 

nm, is absorbed by deoxygenated hemoglobin more so than oxygenated hemoglobin 

while the opposite is true at 830. At 785 nm, the absorption o f  oxygenated and 

deoxygenated hemoglobin is approximately equal. The light emanates from a 1 mm x 1 

mm optical prism. As the light passes through the scalp, skull and a portion o f the 

cerebral cortex, it is refracted and absorbed, with a portion o f the light making its way 

back to the scalp. A 1 cm x 1 cm prism gathers this light. The source prism and the 

detector prism are separated by 2 cm. This separation distance determines the average
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penetration depth o f the light (i.e., a 2 cm separation leads to a 2 cm penetration depth). 

More accurately, as depicted Fig. 6, the separation distance determines the predominant 

depth from which the detector senses the light. The closer together the sensor and 

detector, the greater the propensity to sense light with a shallow penetration.

Source Detector

Range of 
Detector

Area of FNIR 
Penetration

Area of Optimal
Detection

Fig. 6. Detection depth

One o f the device’s four emitters is turned on for five ms, then turned off. Five 

ms later a different emitter is turned on and off. After all have been on for five ms and 

off for five ms, the process is repeated until collection is stopped. The detector readings 

are sampled at 10000 Hz which equates to 500 samples per emitter on period and 500 per 

off period. The internal LabVIEW program then averages peak values to provide 

measurements at 10 Hz.
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4.3 Source/Detector Positioning and Calibration

The source/detector was placed over the primary motor cortex on the precentral 

gyrus. The primary motor cortex is organized somatotopically; therefore, the location 

responsible for finger movement is known for humans in general; however, the exact 

location varies from individual to individual. The left cortex was used since subjects had 

either a dominant right hand or equal dominance o f hands and primary motor cortex 

stimulation results in contralateral muscle movement [10]. The placement on the motor 

cortex was driven by the following objectives and constraints.

The motor cortex is one o f the final brain areas with connection to motor 

movement, specifically, finger movement and conceivably will be more active for actual 

movement, as opposed to intentioned movement or decisions related to movement.

The equipment used has a single placement location and the motor cortex has a 

known location. Furthermore, finger movement appears to be lateralized for people with 

right hand dominance; therefore, source/detector placement would only need to occur on 

one hemisphere.

The arrangement o f the source/detector on the FNIR equipment used has a fixed 

detection depth as discussed in Section 4.2; therefore, the target area needed to be near 

the surface. Some areas, such as the cerebellum are not within the range o f  this 

equipment.

4.4 Subject Stimuli and Tasking

Subjects were placed in front o f a computer display and continuously responded 

to stimuli {i.e., arrows, as in Fig. 7, presented for 20 seconds each).
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Right Finger Tap

Both Fingers

Right Finger Imaginary Tap •  •  •

R est (Read Text)
Excerpts from the  
U S Constitution

Fig. 7. Stimuli

The subjects were instructed to tap with the left index finger if  the stimulus was a 

solid arrow pointing to the left and tap with the right index finger if the stimulus was a 

solid arrow pointing to the right. If  the stimulus had arrows pointing both left and right, 

the subject was to tap with both fingers. Since the literature indicated auditory and 

visual timing elicit additional brain activity, no timing was provided in order to keep 

ancillary brain activity to a minimum. Subjects were instructed to tap at whatever rate 

they desired. When a dotted right arrow was presented, the subject was to imagine 

tapping with the right finger. Text (portions o f  the United Stated constitution) were
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presented for 20 seconds between each type o f  stimulus, during which time the subjects 

read the text and did not tap.

The fNIR device was placed on the left side since finger tapping results in 

contralateral activation. A block design was used, in which subjects were cued with a 

baseline o f  text, followed by each o f  the four tapping stimuli, each interspersed with a 

block o f text. This cycle repeated twice so that each stimulus was presented three times 

and the interspersed text presented 13 times. The entire sequence took eight minutes and 

20 seconds, four minutes for tapping stimuli (1/3 minute x 4 stimuli x 3 cycles) and four 

minutes, 20 seconds for the baseline (1/3 minute x 13 presentations). This blocked 

sequence is illustrated in Fig. 8.

Baseline Stim 1 Baseline Stim 2 Baseline Stim 3 Baseline Stim 4

20 secs 20 secs 20 secs 20 secs 20 secs 20 secs 20 secs 20 secs

Repeat twice, changing order o f stimuli and ending with 20 secs o f  baseline

Fig. 8. Block protocol o f stimuli (Stims) and text baseline

Extensive counterbalancing o f  stimuli ensured any effects from the order o f 

stimuli were negated. Both the beginning stimulus and the subsequent sequence were 

varied for the subjects so that a nearly equal number were performed for each 

permutation o f the stimuli. The four tapping stimuli were each used once as one o f the 

first four stimuli, once as one o f the second four stimuli, and once as one o f  the last four 

stimuli so that each stimuli occurred once during each third o f  the protocol. The 

sequence o f the four was changed for each third o f the protocol so that subjects would not
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ever experience the four stimuli in the same order twice. Within those two restrictions,

34 different permutations o f sequences were used, as listed in Appendix A, Table 53.

Research previously discussed suggests that the use o f  directional arrows as a 

visual stimulus activates areas that are not in either the motor or premotor area. Any 

resulting nonmotor activity from looking at the arrows was expected to have a short 

duration since the arrows were static for the entire time a stimulus was presented. The 

arrows therefore were not expected to negatively affect this research.

4.5 Data Collection

Data were collected at the rate o f 10 samples per second using the labVIEW 

program accompanying the fNIR device. Each sample consisted of four measurements -  

one for each o f  the wavelengths. The data were then saved to disk for post analysis.

After all data were collected, three ratios o f  wavelength data were obtained. The 

resulting ratios were used for classification o f  the actions taken by the subjects. O f the 

four wavelengths, 780 nm is the closest to the crossover wavelength at which higher 

oxygenation changes from a higher oximeter reading to a lower oximeter reading; 

therefore, the ratios o f  the other three wavelengths to 780 nm are good differentiators o f 

relative absorption occurring. Physiological factors such as heart beats could increase 

overall blood volume and therefore increase the readings from all wavelengths, the ratios 

should remain relatively constant, negating the need for filtering of respiration and 

cardiac affects. Additionally, since the data in the four values were effectively captured 

by the three ratios, the data were reduced by 25 percent, a significant benefit with regards 

to classification algorithms.
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4.6 Classification

The first supervised classification algorithm that was used to analyze the data was 

SVM due to its posited accuracy. The second was a Linear Discriminant Analysis 

algorithm and the third was a decision tree.

Ten percent o f the data from each individual was designated as training data and 

used to create training sets. Each o f these samples was classified as either right tapping, 

left tapping, imagined, or stationary, based on the actual state o f  the subject. The data for 

these sets were randomly selected from the full data set. The remaining 90% o f the data 

was tested using the three classification algorithms.



CH APTER 5 

DATA COLLECTION AND PREPROCESSING

This chapter describes the execution o f  the protocol and collection o f the data. 

The findings o f an initial look at the data are then presented. The research proposal for 

this data collection is provided in Appendix B and was approved by Old Dominion 

Human Subjects IRB, approval number 09-134, November 19, 2009.

5.1 Protocol Execution and Data Collection

The checklist in Appendix C was used for both subject preparation and system 

setup. All subjects were briefed on the rules and administered the modified Edinburgh 

handedness inventory. The nasion/inion and preauricular distances were measured and 

used as references to place the source/detector pad o f  the Spire-NASA LaRC cerebral 

oximeter over the primary motor cortex o f the left cortex. The oximeter was turned on 

and adjusted for suitable signal strength. A practice trial was run to ensure subjects 

understood their tasking. The actual trials then began with each subject being 

administered the presentation containing the stimuli, while data were captured by the 

oximeter. Several issues surfaced early on during these trials.

5.2 Collection Issues

Subjects were administered the protocol detailed in the previous section -  

presented with the stimuli while they responded as instructed, and data were recorded.

One issue that became immediately apparent was that the readings were 

extremely noisy and/or very weak. This was traced to hair blocking the source/detector
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path. Engineers at Spire were contacted and said the oximeter had been used on the front 

part o f the head, where hair is not prevalent and on people without much hair. To 

mitigate this problem, hair was parted and different articles affixed to the head to try to 

either directly keep the hair parted or to keep the source/detector pad firmly against the 

head to maintain the hair part. Swimsuit caps, Velcro straps, elastic bands, and other 

devices were used.

Even with the use o f these devices to maintain the part and stabilize the pad, the 

oximeter returned negligible or no readings for some subjects. Subjects’ hair color, 

density, and strand thickness appeared to be a factor in the amount o f  signal attenuation 

and noise. The darker the color, the denser the hair, and the thicker the strands, the 

weaker the resulting detected signal and the greater the noise. Collection records for 

most subjects were annotated with hair color, hair density, and strand thickness for 

potential analysis value.

In an attempt to get some usable data, pieces o f material were inserted under the 

pad perimeter to raise the pad. The material was covered with black electrical tape to act 

as a baffle and prevent reflections and resultant false readings. Reading in most cases 

then became higher. Collection records were annotated with the height o f  any pad used.

A second issue that arose was undesired movement drift of the sensor pad. The 

pad would tend to move downward, more so on some subjects than others. This issue 

was mitigated by using multiple Velcro straps and/or elastic bands. Collection records 

were annotated with the beginning location and the ending location o f the sensor pad.



50

Fig. 9 depicts the use o f  Velcro straps for stabilization and a white piece o f 

Styrofoam used to increase the height o f the sensor. In cases where only a very small 

amount o f height was needed, a comb would be wedged under one side o f  the sensor pad.

Fig. 9. Styrofoam and Velcro straps

Fig. 10 depicts the use o f a cap to block ambient light. It was used on an as 

needed basis and was especially useful in cases where the sensor pad did not fit snugly 

onto the subjects head.
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Fig. 10. Cap to block ambient light

Due to the sensor movement and the collected data variations due to hair 

characteristics, notes were made for many o f the subjects, capturing signal quality, hair 

characteristics, sensor beginning location and ending location.

A third issue that arose is that the data appeared to be truncated. Consultation 

with the engineers at Spire led to the conclusion that the data were cached and written to 

disk periodically so that if  the machine was turned o ff prior to the last data being written 

to disk, the portion o f  data remaining in the cache would be lost. This problem was 

temporarily addressed by letting the oximeter run for a period o f time prior to turning it 

off. In parallel, Spire made a software fix and furnished a new release that permanently 

fixed the problem. The data from the first few subjects were excluded from subsequent 

analysis.
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5.3 Initial Look at Data Quality and Processing Tools

A quick look of the data was taken to validate that the data are plausible, the 

methodology is viable, the methodology is appropriate, and to make adjustments as 

needed. A portion o f the data was averaged into approximately one-second blocks, per 

the proposed methodology, to reduce the data to 20 data points per slide. The data were 

then plotted and reviewed to get an initial look at apparent quality o f the data.

Fig. 11 is a plot o f the raw values read by each sensor. The y axis is the value o f 

those readings. The legend for the top line incorrectly reflects 810 nm. The correct value 

is 830 nm. On the first plot, the data do not show, at least to the naked eye, any 

systematic variability relative to the timing o f the slides {i.e., the tick marks). A general 

downward trend o f values is evident.
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Fig. 11. Raw data values



Fig. 12 has the first 19.6 seconds (subject reading text) o f the raw values o f all 

four wavelengths plotted on the same graph. Offsets were added to each wavelength 

such that the plots were generally overlaid, allowing the differences between the 

responses o f the different wavelengths to be visualized. W hile the offsets aided in 

visually comparing the results o f  the different wavelengths, they were not necessarily o f  

any benefit to classification algorithms.
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Fig. 12. Raw data values o f one baseline presentation

The figure, along with similar figures from other trials, were visually reviewed for 

any apparent artifacts that might indicate a need for further review prior to continuing to 

process the data. For example, if the data for any o f  the wavelengths were to appear to be 

all zeros or all a constant value, the validity o f the data would be suspect. Numerous
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abnormal spikes might indicate corruption or contamination o f  the data. If  the variations 

o f each wavelength were to appear constantly similar, the data could be potentially 

suspect since some degree o f continual changes in oxygenation/deoxygenation would be 

expected and each wavelength would respond differently.

The visual review revealed that each frequency had non-straightline data and each 

frequency had a different pattern. No two frequencies changed in sync -  indicative o f 

responses that affect each frequency differently.

The plots had numerous, relatively mild, spikes, but they were not regular in 

either frequency or amplitude and did not appear to be even close to a frequency 

indicative o f either heartbeats or breathing. The spikes were therefore likely due to noise. 

Filtering the data may remove some o f the noise although classification routines could 

arguably be applied without detriment to the unfiltered data.

The data were noisy, even after averaging the data into 20 values per slide 

(stimulus block) leading to a decision that a method other than block averaging would be 

more useful for classifying. A supervised classification needs a set o f data for training 

the classifier, and that set needs to include enough good data points to establish a viable 

training set. If  the data were noisy, as this data appeared to be, more points would be 

required to ensure enough good points were included. In this experiment, each stimulus 

was presented to a subject three times (three slides), generating only 60 points per 

stimulus per trial, if averaged into one-second points. Even if  twenty percent o f  the 

points were held out for training, that is only 12 points for 60 seconds o f  stimulus 

presentation, insufficient for this experiment for several reasons. First, 12 points o f noisy 

data will equate to less than 12 accurate points. Second, the oxygenation/deoxygenation



55

effects have time patterns, necessitating time points that occur during different phases o f 

the pattern. Third, the data showed global trends which will necessitate ensuring training 

points are selected from different global time phases.

In summary, a filtering method that retains the number of data points, yet 

produces a smoothing effect, would be more appropriate.

5.3.1 Filter Selection

A moving average filter o f  length 28 (2.8 seconds) with equal weights was 

selected, but only after the comparison o f  a variety o f window ranges, discussed below. 

The filter reduced noise and was, in effect, a low pass filter attenuating cardiac effects.

Variability, presumably noise including physiological effects, was evident in the 

data from each signal and each ratio suggesting filtering may be beneficial. An initial 

comparison o f filters was made to determine an appropriate filter to use with the results 

indicating a moving average filter o f  length 28 and equal weights will suffice. Using the 

MATLAB filter command, filters were executed for values and ratios, for different 

weights, and for different moving average lengths. The filters compared were:

•  Values and ratios.

•  Weights o f 3, 2, 2, and 1, and a filter length o f 8.

• Weights o f 3, 2, 2, and 1, and a filter length o f 8.

• Equal weights and a filter length o f 8.

• Equal weights and a filter length o f  16.

• Equal weights and a filter length o f 32.
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As the filters progressed to 32x1, the noise became reduced. At 32x1; however, 

there appeared to be the desired information began being reduced; therefore, a 28x1 filter 

was selected for the experiment. The filtering o f values did not reduce variability any 

more than the filtering o f ratios. Since only three ratios are necessary to capture the 

information o f the four values, filtering ratios is the better method.

5.3.2 Filtering

The collected data consisted o f  values o f four wavelengths, collected at 0.1 

second intervals. Each stimulus was presented for 20 seconds; however, due to 

PowerPoint and cpu timing, the timings varied slightly. The minimum presentation 

length was 19.0 seconds so each presentation was truncated at 19.0 seconds to make them 

equal length. The result was 4750 data points per trial, divided into blocks o f  190 points. 

Each stimulus, other than the baseline o f reading text, was presented three times, making 

a total o f  570 points per stimulus. Prior to the first presentation, after the last, and in- 

between the others, a 19.0 second block o f baseline data was saved.

The data were multiplied by -1 so that higher number would reflect higher 

densities o f the optical path. M ATLAB’s polyfit and polyval functions were used to 

evaluate the data and produce a polynomial o f  degree 2. The resulting polynomial, 

overlaid on the data, is shown in Fig. 13.
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Fig. 13. Polynomials fitted to data

The raw values were then subtracted from this polynomial, resulting in deltas 

from the polynomial, mitigating any global trend and normalizing the data to a common 

zero baseline. A plot o f these deltas is shown in Fig. 14.
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Fig. 14. Data subtracted from polynomials
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The differences in variance among the four baselines remained; changes due to 

heart beat, overall blood volume, respiration, and movement artifacts also remained.

The data were then filtered using M ATLAB’s filter function, with a 28 point 

convolution with equal weights. At each data point, the previous 28 points are averaged 

and that average is substituted for the current data point. The results are shown in Fig. 

15.

All data was put into structures to facilitate subsequent manipulation by subject, 

stimulus, ratio, or value. The text immediately preceding a stimulus presentation was 

averaged with the text after a presentation to provide a text baseline for classification 

uses.



59

5.3.3 Feature Extraction

Feature extraction was not accomplished for several reasons. The values o f 

feature extraction are to reduce the amount o f  data to an actionable level and/or to extract 

meaning from the data, which can then be classified. In this project there is only one 

source/detector, only four wavelengths (which can be reduced to three ratios), and only 

ten captures o f that data, per second; therefore data reduction is unnecessary. Also, the 

data already has a meaning -  the ratios o f the raw values captured o f  each wavelength 

indicate ratios o f oxygenation/deoxygenation occurrences. While they don’t give 

absolute concentrations o f oxygenated and deoxygenated blood, they do give relative 

values which are sufficient for classification algorithms to act upon.

5.3.4 Classification

The filtered, normalized data were classified using a MATLAB SVM classifier. 

The SVM was used to classify the data as either “Right” tapping or “N ot Right” tapping. 

“Not Right” included left tapping and reading text. The classifier was trained on 10% o f 

the data (randomly selected), then applied to the remaining 90%. The following two 

tables, Table 6 and Table 7 show the aggregate results o f three classification executions 

for the subject in Fig. 15 above and the aggregate results for a sample o f  six subjects.

The six subjects were selected as ones having generally less apparent noise than the 

others.
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T a b l e  6 . C l a s s if ic a t io n  o f  "N o t  R ig h t " a n d  "R i g h t ", O n e  S u b j e c t

Classified as 

“Right”

Classified as 

“Not Right” 

(Left or Text)

Correct

Actual

“Right”

1067 695 60.56%

Actual

“Not Right” 
(Left or Text)

1351 2177 61.71%

Total 2418 2872

Error Rate 38.68%

T a b l e  7 . C l a s s if ic a t io n  o f  "N o t  R ig h t " a n d  "R i g h t ", S ix  S u b j e c t s

Classified as 

“Right”

Classified as

“Not Right”

(Left or 
Text)

Correct

Actual

“Right”

5429 5143 51.35%

Actual

“Not Right” 
(Left or Text)

9459 11709 55.31%

Total 14888 16852

Error Rate 46.01%

These results are sufficient to confirm that SVM is an appropriate classification 

method for this project. The average error rate o f 46.01% is slightly better than the 50% 

that would be expected from a random assignment o f  classes. These results are with only
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ten percent o f the data being used for a training set and the remaining 90 percent being 

held out for actual classification. The confusion tables above, Table 6 and Table 7 show 

that the amounts o f  Type I and Type II error are of the same order o f  magnitude and the 

amounts classified into each class are also o f  the same order o f  magnitude. Such results 

indicate the hyperplane created by SVM cut through the center of the data, as it should, 

rather than being placed near the edge o f the data. A third positive aspect o f  these limited 

results is that this classification was applied “Right” tapping and “Not Right” tapping; 

which is a total o f  three classes since “Not Right” tapping included both left tapping and 

reading text. If only two stimuli are to be differentiated, the accuracy should increase.
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CHAPTER 6 

CLASSIFICATION

O f all the trials, 60 were suitable for classification. The others had either 

truncated data or issues with getting a signal through hair. Almost all o f  the unsuitable 

trials occurred during the first week o f  collection. This chapter provides the 

demographics o f those trials, the hypotheses to be tested, and the results o f  the 

hypotheses testing. The results o f the classification o f  states using SVM, decision tree, 

and LDA classifiers are presented, then results o f testing the remaining hypotheses are 

described, and lastly comparison o f the classifiers with themselves and with the results o f 

other research is discussed.

6.1 Demographics of Test Trials

The 60 suitable trials were used for all hypothesis testing. The trials were from 29 

subjects and contained 17 male and 40 female trials. O f the 29 subjects, one subject had 

one “left” and four “right and left” boxes checked on the handedness inventory. All the 

other 28 subjects had only “right” or “right and left” checked, of which only four had 

four or more “right and left” boxes checked. Summarizing their handedness, 24 o f  the 29 

subjects appeared clearly right handed while five could arguably be considered both 

handed.
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6.2 Hypotheses to be Tested

Hypotheses tested covered discrimination o f  finger tapping states, gender, age, 

rate o f tapping, and experimental-related attributes. The attributes o f  the experimental 

apparatus included the raising o f  the sensor to obtain a signal, the subjective perception 

o f noisy signals.

6.3 Statistical Method

The data consists o f 57 trials, each o f  which has 513 values (570 -  57 values used 

for training) that were classified into one o f  two categories. With only two states per 

value, each trial could be evaluated as a binomial distribution. As such, the trial data 

could be compared to a random binomial distribution to determine if  a null hypothesis 

(Ho) were supported. The null hypothesis would posit that the results o f  the trial could 

have occurred by chance -  that the actual mean o f the population was in fact 50% and the 

sample results deviated from 50% simply because o f  chance. If  Ho were not supported 

within a specified level o f  confidence, typically 95%, we could be assured the results did 

not happen by chance and therefore the alternative hypothesis is supported -  that the 

algorithm correctly classified the data. This methodology does more than determine that 

the classifier performed better than chance, it also determines that the mean, which could 

be far from 50%, was not a random occurrence.
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6.3.1 Analysis of a Single Trial

H0 can be tested using (1) and (2), where n is the number of points in the sample, 

nj is the number o f correctly classified points, and s is the standard deviation o f the 

sample [52] [53, p. 565].

p = n , / n  (1)

s = squareroot ( p * ( l - p ) / n )  (2)

The first SVM “left” and “right” trial, which had a 40.94% error rate (59.06% 

correct classification rate) would have a standard deviation calculated as in (3) and (4). 

p = nj / n = 303/513 = 0.5906 (0.4094 error rate) (3)

s = squareroot ( 0.5906 * (1 -0.5906) / 513) = 0.02171 (4)

The standard deviation, s, o f 0.022 is then compared with a z-score table to find if 

s is greater than the z score for 0.05. The z score for 0.05 is 1.64, indicating there is less 

than a 95% probability that true mean error rate o f  the population from which this sample 

came is 0.5 or greater. Another way o f expressing the statistic is that if  100 trials were 

performed, less than 5 o f them would have a mean error rate o f  0.5 or greater.

The performance o f the classifier during a single trial could be further measured 

by calculating a range within which the actual (population) mean might lie, within a 

specified confidence (again, typically 95%). For example, a sample mean error rate o f 

23% might have a 95% confidence interval o f 16% to 30%, meaning the true mean could 

lie anywhere between 16% and 30%. This confidence interval can be found with (5)

[54]. The latter term (l/2n) is for small samples only (n <= 50) and will be omitted for 

this analysis.

P + / - ( s * z i - a  1 / 2n)  (5)
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Applying (5) to the trial just discussed, we have (6) and (7) which gives a 

confidence interval o f 0.56 to 0.63 for correct classification or 0.37 to 0.44 confidence 

interval for the error rate.

6.3.2 Analysis of All Trials Combined

The law o f large numbers states that as a sample size increases, the mean o f that 

sample converges to the population mean. By this theorem, as the sample size goes from 

the 513 points o f  one trial o f this experiment, to the 29,241 points o f  all the trials, the 

mean is converging toward the population mean.

The 29,241 data points could be analyzed as above -  as if they were one 

binomially distributed sample. The error rate derived from dividing the total 

misclassifications o f all the trials by the total points classified could be tested against Ho. 

The error rate would be the same as the mean o f the individual trial error rates since each 

trial had an equal number o f data points. However, because o f  the larger sample size, the 

confidence interval would be narrower than the average o f the individual intervals. For 

example, for the 57 trials for SVM “left” and “right” , the error rate was 0.3624 and 

correct classification rate o f 0.6376. Using (5) with the overall rates and with n = 29,241, 

we have (7), (8), (9), and (10). The confidence interval o f the correct classification rate is 

0.633 to 0.642 and the error rate is from 0.358 to 0.367.

p = nj / n = 0.6376 (0.3624 error rate) (7)

P +  ( s  * Zi - a  1 / 2 n )  =  0 .5 9 0 6  +  (0 .0 2 1 7 1  * 1 .6 4 )  =  0 .6 2 6 (6)

p  - ( s * z i - a  1 /  2 n ) =  0 .5 9 0 6  -  ( 0 .0 2 1 7 1  * 1 .64 ) =  0 .555 (7 )

s = squareroot ( 0.6376 * (1 - 0.6376) / 29241) = 0.00281 (8)
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p + ( s  * z i - a  1 / 2n)  = 0.6376 + (0.00281 * 1.64) = 0.633 (9)

p - ( s  * z i - a 1 / 2n)  = 0.6376 -(0 .0 0 2 8 1  * 1.64) = 0.642 (10)

Using this method, the classification rate and error rate have a narrow interval o f 

confidence, largely due to the high number o f  samples.

6.3.3 Analysis as a Distribution of Samples and the Central Limit Theorem

Per Sprinthall, the mean o f a distribution o f  samples can be treated as raw scores 

and use the standard deviation equation o f the means [53 p. 150]. Further, the central 

limit theorem says that the distribution o f the means o f samples of a population will be 

approximately normal, regardless o f  the distribution o f any o f  the samples. The mean o f 

those sample means will approach the mean o f the population as the number o f samples 

increase. This knowledge allows the means o f the 57 trials o f  this experiment to be 

subjected to analyses that are only appropriate for normal distributions, regardless o f 

whether the distributions o f the individual trials are normal.

6.3.4 Analysis of Trial Means as Raw Scores — Z-Tests

Since (1) the distribution o f  trial means is normal (although the underlying 

distribution may not be), (2) the distribution o f trial means is not binomial (although the 

underlying distribution is), and since the number o f  trials is large, using a z-test to 

evaluate the trial results is appropriate. The z-test will show the number o f  standard 

errors the distribution mean is from the population mean. For the null hypothesis, the 

population mean is 0.50 (random); therefore, the mean o f the trials will be compared with 

0.50.
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6.3.5 Statistical Testing

Most o f the testing consisted o f  applying z-tests to determine (1) whether there 

was a 95% confidence that a sample mean would be less than 50% (random) and (2) 

whether there was a 95% confidence that one trial would be less than 50%. The mean o f 

the samples is assumed to be normal, as justified by the central limit theorem [53 p. 151].

The z-test was used in two forms, one for a distribution o f means and one for a 

single sample. The first form is the z-test for a mean o f a sample distribution o f  means. 

This test is appropriate for a distribution o f means, which we have and the results speak 

to the level o f confidence in classification on a data point basis. The second z-test is a 

test for a single sample and therefore treats the distribution o f  means as a distribution o f 

raw error rates; therefore, the results speak to the level of confidence on a trial basis, not 

on an individual data point basis. The first test results in a much narrower interval o f 

confidence and is therefore much more likely to attain statistical significance at the 0.05 

level, brought about by the high number o f samples (data points instead o f  trials).

The formula used for the first test is in (11), where z is the number o f  standard 

errors from the mean, M b a r  is the mean o f samples, p  is the population mean, s is the 

standard deviation o f the samples, and n is the number of samples [54]. Testing was 

accomplished using a z-test calculator that was validated with the formula, then used to 

obtain the results [55].

z = (M bar - p ) / ( s / sqr(n) ) (11)

The formula used for the second test is in (12), where z is the standard deviation, 

M is the error rate o f a sample (trial), pis the population mean, s is the standard deviation
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o f the samples, and n is the number o f  samples [54]. M icrosoft Excel was used for 

testing [56] [57].

z = (M - p ) / ( s  ) (12)

6.3.6 Z-Test -  Two Sample Comparison

The above discussion all related to comparison o f one distribution (o f means or o f 

samples, but one distribution) to a random distribution in order to test the null hypothesis 

and determine confidence intervals. Some comparisons in this experiment are o f  two 

distributions, such as “raised” to “not raised” and “male” to “female” . Like the previous 

distributions, these also can be treated as normal distributions per the central limit 

theorem. These comparisons are o f samples with different sample sizes and different 

standard deviations; therefore, a z-test formula that accounts for these differences was 

used. The formula is very similar to the z-test formula for one sample but includes the 

statistics (means, standard deviations, and number o f  samples) for each distribution, he 

formula used is (13), where M bar is the mean, a  is the standard deviation and n is the 

number o f samples [58].

z = ( M bari - M_bar2 ) / square root ( (cri / m ) + ( 0 2  / n2 ) )  (13)

6.3.7 Discrimination of Finger Tapping States

The hypothesis that any two finger tapping states can distinguished from each 

other using SVM, a decision tree classifier, and LDA was tested. The states tested were 

“Left”, “Right”, “Both”, and “Imagine”. A test SVM classification was conducted using 

a MATLAB SVM classifier applied to six trials and two classes, “Right” and “Not
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Right” . The SVM, decision tree, and LDA classifiers were then applied to all sixty trials, 

testing the classification all combinations o f “Left”, “Right”, “Both”, and “Imagine”.

6.3.8 Handedness

Since no subjects were left handed, and only a few were both handed, no 

handedness-related hypotheses were tested.

6.3.9 Gender

The hypothesis that SVM classification o f “Left” and “ Right” finger states will 

generate different results, based on gender, was tested.

6.3.10 Age

The hypothesis that SVM classification o f “Left” and “Right” finger states will 

generate different results, based on age, was tested.

6.3.11 Rate of Tapping

The hypothesis that SVM classification o f “Left” and “Right” finger states will 

generate different results, based on rate o f finger tapping, was tested.

6.4 Support Vector Machine (SVM)

The first classifier applied was the SVM. A linear SVM was first used, followed 

by quadratic and polynomial (degree 3) models. All models were used to classify the left 

tapping and right tapping data from all trials as either “Left” or “Right” , followed by all 

other two-state combinations o f  “Left”, “Right”, “Both”, and “Imagine”.
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6.4.1 SVM Classification -  “Left” and “Right”

The results for the “Left” and “Right” linear model are shown in

Table 8 and depict an error rate o f 36.24% with a standard deviation o f  9.68%, 

much better than the 50% to be expected if the results were due to randomness. The 

results with the group (sample mean) z-test (Equation 1) were significant; however, the 

results for the sample (individual trial) z-test were not.

T a b l e  8. SVM L in e a r  C l a s s if ic a t io n  o f  ‘

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Left Right 57 36.24% 9.68% Yes

z= 10.732 

one tail

p<0.0001

No

z=1.42 

one tail 

p=.0778

.e f t ” a n d  “ R ig h t ”

A look at the individual trials revealed one trial for one subject with an 

unreasonable error rate, resulting in additional investigation to address the issue. On one 

trial for one individual, the average error rate was 0.0049% averaged across three 

MATLAB classification executions. Additional MATLAB executions o f  this particular 

trial resulted in similar error rates. A look at the classification results showed all 342 left 

tapping stimuli were classified correctly and 333 o f the right tapping were correctly 

classified, with nine being incorrectly classified as right tapping. A look at the raw data 

also indicated nothing out o f the ordinary. The preprocessing and classifying o f the data
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were performed in a batch routine, with all trials for all subjects being subjected to the 

same code during the same MATLAB execution; therefore, a coding error would be very 

unlikely. The notes taking during collection indicated the subject had medium blond 

hair, medium thickness, and medium density, all o f which had been properties amenable 

to good apparent signal strength and quality. The notes did reflect four good signals with 

no extra height required.

The classification o f  some o f the other states resulted in rates that were not 

extraordinarily low. Other classification algorithms applied to this trial also resulted in 

rates that were more reasonable. Since none o f  this investigation gave reason to believe 

the data were invalid, and in fact point to a potentially good classification, the trial was 

included in the analysis and not exempted.

The results o f  the quadratic model are shown in Table 9 and depict an error rate o f 

28.01% with a standard deviation o f 12.12%. Unlike the SVM linear model, the 

quadratic results were significant on an individual basis, with a p of 0.0351 (.9649 

confidence).

T a b l e  9 . SVM Q u a d r a t i c  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ R ig h t ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Left Right 57 28.01% 12.12% Yes

z= 13.6981 

one tail 

pO.OOOl

Yes 

z= l .81 

one tail 

p=.0351
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The results of the polynomial model are shown in Table 10 and depict an error 

rate o f 24.92% with a standard deviation o f 11.81%. Unlike the SVM linear model, the 

polynomial results were significant on an individual basis, with a p o f  0.0172 (.9828 

confidence).

T a b l e 0. S V M  P o l y n o m ia l  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ R ig h t ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Left Right 57 24.92% 11.81% Yes

z= 16.033 

one tail 

pO .0001

Yes 

z=2.12 

one tail 

p=.0.0172

6.4.2 SVM Classification -  “Left” and “Imagine”

The results for the “Left” and “Imagine” linear model are shown in Table 11 and 

depict an error rate o f 32.55% with a standard deviation o f  13.03%. The results with the 

group (sample mean) z-test (Equation 1) were significant; however, the results for the 

sample (individual trial) z-test were not.

T a b l e  11. S V M  L in e a r  C l a s s if ic a t io n  o f  “L e f t ” a n d  “ Im a g in e ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Left Imagine 57 32.55% 13.03% Yes

z= 10.1109 

one tail

p<0.0001

No

z=l .34 

one tail 

p=.0901
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The results for quadratic model are shown in Table 12 and depict an error rate of

26.00% with a standard deviation o f 12.33%. Unlike the SVM linear model, the

quadratic results were significant on an individual basis, with a p of 0.0256.

T a b l e  12 . S V M  Q u a d r a t ic  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ Im a g in e ”

Class Class No Error Std 'Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Left Imagine 57 26.00% 12.33% Yes

z= 14.6955 

one tail 

pO.OOOl

Yes 

z=l .95 

one tail 

p=.0256

The results for the polynomial model are shown in Table 13 and depict an error 

rate o f 25.31% with a standard deviation o f  12.55%. Unlike the SVM linear model, the 

polynomial results were significant on an individual basis, with a p o f  0.0244.

T a b l e  13. SVM P o l y n o m ia l  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ Im a g in e ’

Class Class No Error Std 'Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Left Imagine 57 25.31% 12.55% Yes

z=14.853 

one tail 

pO.OOOl

Yes 

z= l .97 

one tail 

p=.0244
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6.4.3 SVM Linear and Quadratic Classification -  “Left” and “Both”

The results for the “Left” and “Both” linear model are shown in Table 14 and 

depict an error rate o f 38.34% with a standard deviation o f  10.56%. The results with the 

group (sample mean) z-test (Equation 1) were significant; however, the results for the 

sample (individual trial) z-test were not.

T a b l e  14. SVM .in e a r  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ B o t h ’

Class Class No

Sub

Error Std Significant at 0.05?

1 2 Rate Dev
Mean Ind

Left Both 57 35.98% 11.67% Yes

z-9.0702 

one tail 

pO.OOOl

No

z=1.20 

one tail 

p=0.1151

The results for the quadratic model are shown in Table 15 and depict an error rate 

o f 27.46% with a standard deviation o f 12.64%. Unlike the SVM linear model, the 

quadratic results were significant on an individual basis, with a p of 0.0375.

T a b l e  15. SVM Q u a d r a t i c  C l a s s i f i c a t i o n  o f  " L e f t "  a n d  " B o t h "

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Left Both 57 27.46% 12.64% Yes

z= 13.4631 

one tail 

pO.OOOl

Yes 

z= l .78 

one tail 

p=0.0375
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The results for the polynomial model are shown in Table 16 and depict an error

rate of 27.21% with a standard deviation of 11.55%. Unlike the SVM linear model, the

polynomial results were significant on an individual basis, with a p o f 0.0244.

T a b l e  16 . S V M  P o l y n o m i a l  C l a s s if ic a t io n  o f  “L e f t ” a n d  “ B o t h ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Left Both 57 27.21% 11.55% Yes

z= 14.897 

one tail 

pO.OOOl

Yes 

z=l .97 

one tail 

p=0.0244

6.4.4 SVM Classification -  “Right” and “Both”

The results for the “Right” and “Both” linear model are shown in Table 17 and 

depict an error rate o f  38.13% with a standard deviation o f 11.76%. The results with the 

group (sample mean) z-test (Equation 1) were significant; however, the results for the 

sample (individual trial) z-test were not.

T a b l e  17. SVM L in e a r  C l a s s if ic a t io n  o f  “R ig h t ” a n d  “ B o t h ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Right Both 57 38.13% 11.76% Yes

z=7.6205 

one tail 

pO.OOOl

No

z=1.01 

one tail 

pO .1562
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The results for the quadratic model are shown in Table 18 and depict an error rate

of 30.85 with a standard deviation of 12.72. The results are significant on a group basis

but not on an individual basis.

T a b l e  18. SVM Q u a d r a t i c  C l a s s if ic a t io n  o f  “ R ig h t ” a n d  “ B o t h ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Right Both 57 30.85% 12.72% Yes

z= l 1.3663 

one tail 

pO.OOOl

No

z= 1.51 

one tail 

p=0.0655

The results for the polynomial model are shown in Table 19 and depict an error 

rate o f 29.51 with a standard deviation o f 11.55. Unlike the SVM linear model, the 

polynomial results were significant on an individual basis, with a p o f 0.0384. SVM 

Polynomial Classification o f “Right” and “Both”

T a b l e  19. S V M  P o l y n o m ia l  C l a s s if ic a t io n  o f  "R i g h t " a n d  "B o t h "

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Right Both 57 29.51% 11.55% Yes

z=13.3936 

one tail 

pO.OOOl

Yes 

z= l .77 

one tail 

p=0.0384
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6.4.5 SVM Classification -  “Right” and “Imagine”

The results for the “Right” and “Imagine” linear model are shown in Table 20 and 

depict an error rate o f 36.70% with a standard deviation o f  12.37%. The results with the 

group (sample mean) z-test (Equation 1) were significant; however, the results for the 

sample (individual trial) z-test were not.

T a b l e  2 0 . S V M  L in e a r  C l a s s if ic a t io n  o f  “R i g h t ” a n d  “ Im a g in e ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Right Imagine 57 36.70% 12.37% Yes

z=8.1174 

one tail 

pO.OOOl

No

z= l .08 

one tail 

p=0.1401

The results for the quadratic model are shown in Table 21 and depict an error rate 

o f 29.82% with a standard deviation o f  12.71%. The results with the group (sample 

mean) z-test (Equation 1) were significant; however, the results for the sample 

(individual trial) z-test were not.

T a b l e  2 1 .  S V M  Q u a d r a t ic  C l a s s if ic a t io n  o f  “ R ig h t ” a n d  “ Im a g i n e ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Right Imagine 57 29.82% 12.71% Yes

z= 11.9871 

one tail 

pO.OOOl

No

z=l .59 

one tail 

p=0.0516
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The results for the polynomial model are shown in Table 22 and depict an error

rate of 27.97% with a standard deviation of 12.62%. Unlike the SVM linear model, the

polynomial results were significant on an individual basis, with a p o f 0.0175.

T a b l e  2 2 . S V M  P o l y n o m i a l  C l a s s if ic a t io n  o f  “ R ig h t ” a n d  “ Im a g i n e ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Right Imagine 57 27.97% 12.62% Yes

z=13.1793 

one tail 

pO.OOOl

Yes 

z=l .75 

one tail 

p 0 .0 4 0 1

6.4.6 SVM Classification -  “Both” and “Imagine”

The results for the “Both” and “Imagine” linear model are shown in Table 23 

depict an error rate o f  38.26% with a standard deviation o f 8.99%. The results with the 

group (sample mean) z-test (Equation 1) were significant; however, the results for the 

sample (individual trial) z-test were not.

T a b l e  23. SVM L in e a r  C l a s s if ic a t io n  o f  “1Bo t h ” a n d  “ Im a g i n e ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Significant at 0.05?

Mean Ind

Both Imagine 57 38.26% 8.99 Yes

z=9.8593 

one tail 

pO.OOOl

No

z=l .31 

one tail 

p=0.0951



The results for the quadratic model are shown in Table 24 depict an error rate of

29.01% with a standard deviation o f 10.39%. The results were significant on an

individual basis.

T a b l e  2 4 .  S V M  Q u a d r a t ic  C l a s s if ic a t io n  o f  “ B o t h ” a n d  “ Im a g in e ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev Mean Ind

Both Imagine 57 29.01% 10.39% Yes

z= l 5.2523 

one tail

p<0.0001

Yes 

z=2.02 

one tail 

p=0.0217

The results for the polynomial model are shown in Table 25 depict an error rate o f 

27.81% with a standard deviation o f 10.55%. The results were significant on an 

individual basis.

T a b l e  2 5 .  SVM P o l y n o m i a l  C l a s s if ic a t io n  o f  “ B o t h ” a n d  “ Im a g i n e ”

Class Class No Error Std Significant at 0.05?

1 2 Sub Rate Dev
Mean Ind

Both Imagine 57 27.81% 10.55% Yes

z= 15.8797 

one tail 

pO.OOOl

Yes 

z=2.10 

one tail 

p=0.0179
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6.4.7 SVM Classification Summary

All results for both the linear and nonlinear models were significant at 0.05 

confidence level for the individual z-test. For the linear model none o f  the results were 

significant for the individual z-test; however, for the quadratic model, the results for the 

individual z-test were significant for three o f  the five state comparisons but not for the 

other two. For the polynomial model, all tests were significant.

6.5 Decision Tree Classifier

The second classifier applied was a decision tree classifier, often used with EEG 

data for feature reduction as well as classification [59], The combinations o f finger states 

that were used for SVM were also classified by the decision tree. The left tapping and 

right tapping data from all trials were classified as either “Left” or “Right” , followed by 

all other two-state combinations o f  “Left”, “Right”, “Both”, and “Imagine” .

Initial decision tree classifications were producing trees with too many levels, six 

or more for some trials. Since there were only three features being classified and those 

were ratios which have a relationship to each other, the tree appeared to be overfit -  

providing too much o f  a match to the training data. An overly high fit on a tree will 

provide lower error rates on the data used for training but is less likely to maintain that 

rate on other data. High cross-validation rates also suggested an overfit tree; therefore 

cross validation was run using different parameters and an optimal minimum leaf size o f  

25 was obtained. Cross validation provides error rates that would result if  trees made 

from other slices o f the data were used to classify the data and therefore provides a good 

indication if a particular tree is overfit. With less fitting to the data, the trees with the



minimum leaf size o f 25 produced a higher error rate on the training data but should be 

more likely to retain that error rate on test data.

All decision tree executions took a noticeable period o f  time to execute -  on the 

order o f two-three seconds. Whether this amount o f  time is good, bad, or neither is 

totally dependent on the intended application. Even for a BCI, any requirement for a 

minimum latency is driven by the requirements o f  the BCI.

6,5.1 Decision Tree Classification -  “Left” and “Right”

The left tapping and right tapping data from all trials were classified as either 

“Left” or “Right” . The results, shown in Table 26, depict an error rate o f 24.98% with a 

standard deviation o f 8.85%, much better than the 50% to be expected if  the results were 

due to randomness. The results for both the group (sample mean) z-test (Equation 1) 

and the sample (individual trial) z-test were significant. Both the resubstitution error rate 

and cross validation error rates are shown for this and subsequent decision tree 

classifications. The resubstitution error rate provides the error rate obtained by the 

decision tree when applied to the training data and therefore can be considered to be a 

lower boundary o f the classification tree’s accuracy. In this case the rate is 20.51%, less 

than the decision tree’s error rate o f 24.98%. The cross validation error rate is the error 

rate when applied to data that was not part o f the training set. As such it provides a more 

realistic indication o f the general capability o f the tree to accurately classify and can also 

be used to compare classification methods [60]. The cross validation rate is 25.59% and 

is only slightly larger than the decision tree’s rate o f  24.98%, indicating the decision 

tree’s ability to correctly classify may hold up when classifying other data.
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T a b l e  2 6 . D e c is io n  T r e e  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ R i g h t ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Cross
Val
Error

Significant at 0.05?

Mean Ind

Left Right 57 24.98% 8.85% 20.51% 25.59% Yes

z= 21.334 

one tail 

pO.OOOl

Yes 

z=2.83 

one tail 

p=0.0023

6.5.2 Decision Tree Classification -  “Left” and “Imagine”

The left tapping and imagined tapping data from all trials were classified as either 

“Left” or “Imagine”. The results, shown in Table 27, depict an error rate o f 24.34% with 

a standard deviation o f 10.23%, much better than the 50% to be expected if the results 

were due to randomness. The results for both the group and individual z-tests are 

significant at 0.05.

T a b l e  2 7 .  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ Im a g in e ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Cross
Val
Error

Significant at 0.05?

Mean Ind

Left Imagine 57 23.34
%

10.23
%

19.48
%

24.65
%

Yes

z= 19.67 

one tail 

pO.OOOl

Yes 

z=2.61 

one tail 

p 0 .0 0 4 5
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6.5.3 Decision Tree Classification -  “Left” and “Both”

The left tapping and both tapping data from all trials were classified as either 

“Left” or “Both” . The results, shown in Table 28, depict an error rate o f  26.15% with a 

standard deviation o f  10.41%, much better than the 50% to be expected if  the results were 

due to randomness. These results are very similar to the “Left” and “Imagine” discussed 

earlier and are also significant at the 0.05 level.

T a b l e  2 8 . D e c is io n  T r e e  C l a s s if ic a t io n  o f  “ L e f t ” a n d  “ B o t h ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Cross
Val
Error

Significant at 0.05?

Mean Ind

Left Both 57 26.15
%

10.41
%

21.53
%

27.09% Yes

z= 19.675 

one tail 

pO.OOOl

Yes 

z=2.29 

one tail

p=0.011

6.5.4 Decision Tree Classification -  “Right” and “Both”

The left tapping and both tapping data from all trials were classified as either 

“Right” or “Both”. The results, shown in Table 29, depict an error rate o f  25.52% with a 

standard deviation o f 10.83%, similar to previous results. The results for both the group 

and individual z-tests are significant at 0.05.
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T a b l e  2 9 .  C l a s s if ic a t io n  o f  “R ig h t ” a n d  “B o t h ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Cross
Val
Error

Significant at 0.05?

Mean Ind

Right Both 57 25.52
%

10.83
%

21.18
%

27.16
%

Yes

z=l 7.056 

one tail

p<0.0001

Yes 

z=2.26 

one tail 

p=0.0119

6.5.5 Decision Tree Classification -  “Right” and “Imagine”

The left tapping and both tapping data from all trials were classified as either 

“Right” or “Imagine”. The results, shown in Table 30, depict an error rate o f 26.90% 

with a standard deviation o f 10.43%, similar to previous results. The results for both the 

group and individual z-tests are significant at 0.05.

T a b l e  3 0 . D e c is io n  T r e e  C l a s s if ic a t io n  o f  “R i g h t ” a n d  “ Im a g i n e ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Cross
Val
Error

Significant at 0.05?

Mean Ind

Right Imag­

ine

57 26.90
%

10.43
%

22.29
%

28.03
%

Yes

z=16.721 

one tail 

pO.OOOl

Yes 

z—2.21 

one tail 

p -0 .0136
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6.5.6 Decision Tree Classification -  “Both” and “Imagine”

The left tapping and both tapping data from all trials were classified as either 

“Both” or “Imagine”. The results, shown in Table 31 depict an error rate o f  28.85% with 

a standard deviation o f 9.16%. The results for both the group and individual z-tests are 

significant at 0.05. Decision Tree Classification o f “Both” and “Imagine”

T a b l e  31 . D e c is io n  T r e e  C l a s s if ic a t io n  o f  "B o t h " a n d  Im a g in e "

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Cross
Val
Error

Significant at 0.05?

Mean Ind

Both Imag­

ine

57 28.85
%

9.16
%

22.81
%

29.85
%

Yes

z=l 7.432 

one tail 

pO.OOOl

Yes 

z= 2 .31 

one tail 

p=0.0104

6.5.7 Decision Tree Classification Summary

All results were significant at 0.05 confidence level, with both the group and 

individual z-test.

6.6 Linear Discriminant Analysis (LDA)

The third classifier applied was LDA. The left tapping and right tapping data 

from all trials were classified as either “Left” or “Right”, followed by all other two-state 

combinations o f “Left”, “Right” , “Both”, and “Imagine”.
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6.6.1 LDA Classification -  “Left” and “Right”

The left tapping and right tapping data from all trials were classified as either 

“Left” or “Right” . The results, shown in Table 32, depict an error rate o f 42.69% with a 

standard deviation o f 7.68%, somewhat better than the 50% to be expected if  the results 

were due to randomness. The results with the group (sample mean) z-test (Equation 1) 

were significant; however, the results for the sample (individual trial) z-test were not. 

LDA Classification o f “Left” and “Right”

T a b l e  32. L D A  C l a s s if ic a t io n  o f  " L e f t " a n d  "R ig h t "

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Significant at 0.05?

Mean Ind

Left Right 57 42.69% 7.68% 41.08% Yes

z=7.1861 

one tail 

pO .0001

No

z=0.95 

one tail 

p—0.1711

6.6.2 LDA Classification -  “Left” and “Imagine”

The left tapping and imagined tapping data from all trials were classified as either 

“Left” or “Imagine”. The results, shown in Table 33 depict an error rate o f  40.05% with 

a standard deviation o f 10.81%, somewhat better than the 50% to be expected if  the 

results were due to randomness. The results with the group (sample mean) z-test 

(Equation 1) were significant; however, the results for the sample (individual trial) z-test 

were not.
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T a b l e 3. LDA C l a s s i f i c a t i o n  o f  “ L e f t ” a n d  “I m a g in e ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Significant at 0.05?

Mean Ind

Left Imagine 57 40.05% 10.81% 38.81% Yes

z=7.8152 

one tail

p<0.0001

No

z=0.92 

one tail 

p=0.1788

6.6.3 LDA Classification -  “Left” and “Both”

The left tapping and both tapping data from all trials were classified as either 

“Left” or “Both”. The results, shown in Table 34, depict an error rate o f  41.47%  with a 

standard deviation o f 8.39%. The results with the group (sample mean) z-test (Equation 

1) were significant; however, the results for the sample (individual trial) z-test were not.

T a b l e  34. LDA C l a s s i f i c a t i o n  o f  “ L e f t ” a n d  “B o t h ”

Class Class No Error Std Resub Significant at 0.05?

1 2 Sub Rate Dev Error Mean Ind

Left Both 57 41.47% 8.39% 39.85% Yes

z=7.6758 

one tail

p<0.0001

No

z= l .02 

one tail 

p=0.1539
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6.6.4 LDA Classification -  “Right” and “Both”

The left tapping and both tapping data from all trials were classified as either 

“Right” or “Both”. The results, shown in Table 35, depict an error rate o f  44.09% with a 

standard deviation o f 9.92%, only slightly better than the 50%  to be expected if  the 

results were due to randomness. The results with the group (sample mean) z-test 

(Equation 1) were significant; however, the results for the sample (individual trial) z-test 

were not.

T a b l e  35. LDA C l a s s i f i c a t i o n  o f  “ R i g h t ” a n d  “B o t h ’

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Significant at 0.05?

Mean Ind

Right Both 57 44.09% 9.92% 42.80% Yes

z=5.4797 

one tail

p<0.0001

No

z=0.60 

one tail 

p=0.2743

6.6.5 LDA Classification -  “Right” and “Imagine”

The left tapping and both tapping data from all trials were classified as either 

“Right” or “Imagine”. The results, shown in Table 36, depict an error rate o f  42.17% 

with a standard deviation o f  10.01%, again only slightly better than the 50% to be 

expected if  the results were due to randomness. The results with the group (sample 

mean) z-test (Equation 1) were significant; however, the results for the sample 

(individual trial) z-test were not.
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T a b l e  3 6. LDA C l a s s if ic a t io n  o f  “ R ig h t ” a n d  “ Im a g i n e ’

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Significant at 0.05?

Mean Ind

Right Imagine 57 42.17% 10.01% 41.48% Yes

z=5.9056 

one tail 

pO.OOOl

No

z=0.78 

one tail 

p=0.2177

6.6.6 LDA Classification -  “Both” and “Imagine”

The left tapping and both tapping data from all trials were classified as either 

“Both” or “Imagine” . The results, shown in Table 37, depict an error rate o f 42.68%  with 

a standard deviation o f  9.21%. The results with the group (sample mean) z-test (Equation 

1) were significant; however, the results for the sample (individual trial) z-test were not.

T a b l e  3 7 . L D A  C l a s s if ic a t io n  o f  “B o t h ” a n d  “ Im a g in e ”

Class

1

Class

2

No

Sub

Error

Rate

Std

Dev

Resub

Error

Significant at 0.05?

Mean Ind

Both Imagine 57 42.68% 9.21% 41.16% Yes

z=7.2465 

one tail

p<0.0001

No

z=0.79 

one tail 

p=0.2148
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6.6.7 DA Classification Summary

The results o f  state-by-state classification using LDA are depicted in Table 38.

All results with the group (sample mean) z-test (Equation 1) were significant; however, 

all results for the sample (individual trial) z-test w ere not.

T a b l e  3 8 . L D A  S t a t e - t o - S t a t e  C l a s s if ic a t io n  R e s u l t s

Right Both Imagine

Left

Error Rate 42.69% 41.47% 40.05%

Standard
Deviation 7.68% 8.39% 10.81%

P (ind) =0.1711 =0.1539 =0.1788

Right

Error Rate 44.09% 42.17%

Standard
Deviation 9.92% 10.01%

P (ind) =0.2743 =0.2177

Both

Error Rate 42.68%

Standard
Deviation 9.21%

P (ind) =0.2148

6.7 Classification Comparison -  Sensor Pad “Raised” and “Not Raised”

During the collection process the sensor pad was raised approximately 0.63 cm 

for some trials, using either pieces o f Styrofoam or in some cases, a comb. Raising the 

sensor pad made the signal appear stronger and/or less noisy in many cases, especially in
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subjects with dark hair, coarse strands, or with dense hair; therefore this technique was 

used sometimes when the signal was either very weak or very noisy.

The literature search did not find any mention o f this technique, thus raising the 

question o f whether the results would be valid. The literature was also lacking with 

regards to the effects o f  hair on infrared light, including color, chemical treatment, 

density, and strand thickness, on infrared light. Solovey and Tufts (2011) simply noted 

that hair absorbs light and therefore, most research had involved the prefrontal cortex 

[61].

Raising the sensor by 0.63 cm would mean the detection depth would be 

decreased by that amount and would be 1.37 cm instead o f  2 cm, still sufficient to 

penetrate and detect activations o f the cortex. The larger question is why the signal was 

stronger. Without any extra height, the sensor seemed to be blocked by hair -  

presumably hair that was pushed flat. Perhaps raising the sensor allowed the hair to stand 

up slightly, providing openings between the strands.

To determine the validity o f raising the sensor pad, the results o f  classifying trials 

with the sensor pad raised was compared with a random classification. If  the method has 

a likelihood o f  being valid, the results with a raised pad should have an error rate less 

than the rate o f  a random classification (i.e., error rate should be less than 50%), 

significant at the 95% confidence level. Table 39 shows the results. The error rates were 

significantly different from 50% with all classifiers.
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T a b l e  3 9 . C o m p a r is o n  o f  “N o t  R a i s e d ” a g a i n s t  R a n d o m  5 0 %  E r r o r  R a t e

Class

1

Class

2

No

Sub

Type

Trials

Classifier Error
Rate

Std

Dev

Significant 

at 0.05?

Left Right 38

Sensor

Pad

“Raised”

SVM 39.35% 6.85%
Yes

z = 9.58

Decision
Tree 26.89% 8.01%

Yes

z =  17.79

LDA 43.51% 7.28%
Yes

z = 5.49

The group with a raised pad would also be expected to  have a higher error rate 

than those without a raised pad because (1) the raising only occurred in trials with greater 

noise and/or low signal strength; (2) the additional distance above the scalp would 

decrease the penetration into the brain; and (3) the signal may be subject to absorption, 

reflection, or refraction by the hair.

The results o f the left-right classifications w ere broken down into those trials for 

which collection notes indicated the pad was raised and those for which the pad was not 

raised. The results, shown in Table 40, Table 41, and Table 42, depict an error rate 

higher for “raised” than “not raised” with all three classifiers. The significance results 

are for comparisons between the sensor pad “raised” and “not raised” . The results were 

significant for SVM and decision tree, but not for LDA.
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T a b l e  4C>. C o m p a r is o n  o f  “R a i s e d ” a n d  “N o t  R a i s e d ”  u s in g  SVM C l a s s if ie r

Class
1

Class
2

No

Sub

Type

Trials

Error

Rate

Std

Dev

Significant 

at 0.05?

Left Right

38
Sensor Pad 

“Raised”
39.35%

6.85%
Yes 

z=3.25 

two tail
19 Sensor Pad 

“N ot Raised”
30.01% 11.54%

T a b l e  4 1 . C o m p a r is o n  o f  “R a i s e d ” a n d  “N o t  Ra i s e d ” u s i n g  D e c is io n  T r e e  
C l a s s if ie r

Class Class No Type Error Std Significant
1 2 Sub Trials Rate Dev at 0.05?

Left Right

38
Sensor Pad 

“Raised”
26.89% 8.01% Yes 

z=2.27 

two tail19
Sensor Pad 

“Not Raised”
21.16% 9.41%

T a b l e  42. C o m p a r is o n  o f  “R a i s e d ” a n d  “N o t R a i s e d ” u s i n g  LDA

Class Class No Type Error Std Significant
1 2 Sub Trials Rate Dev at 0.05?

Left Right

38
Sensor Pad 

“Raised”
43.51% 7.28%

No

19
Sensor Pad 

“N ot Raised”
41.04% 8.37%

z=1.10
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6.8 Classification Comparison -  “Noisy” and “Not Noisy”

During data collection, notes were made as to the subjective quality o f the signal, 

specifically the relative degree o f noise in the signals. The results o f  the previous SVM 

left-right classification was broken down into those trials for collection notes indicate 

noise and not noise. The results shown in Table 43 depict an error rate o f  31.31 % with a 

standard deviation o f 12.58%, less than the 39.58% o f “N oisy” trials. These results are 

significant at 0.05 indicating the ability o f an observer to differentiate noisy signals from 

not noisy signals cannot be attributed to chance. A two tail test was used since the goal 

was to differentiate whether there would be different results from the two perceptions o f  

noise, not better results. The results indicated that, with a 95% confidence level, the 

results cannot be attributed to chance -  that visually looking at the quality o f  data as it is 

collected may provide an indication o f  the relative value o f  the subsequent use o f the 

data.

T a b l e  4 3 . C o m p a r is o n  o f  “N o i s y ” a n d  “N o t  N o i s y ” u s in g  S V M  C l a s s if ie r

Class

1

Class

2

No

Sub

Type

Trials

Error

Rate

Std

Dev

Significant 

at 0.05?

22 “Not Noisy” 31.31% 12.58% Yes

Left Right 35 “Noisy” 39.58% 7.11% z=2.139 

two tail 

p=0.0049

Even when just the results o f the noisy signal are analyzed, they cannot be 

attributed to chance at 0.05 as indicated by the results in Table 44. The conclusion that
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can be drawn from these results is that data which appears to be noisy might still be valid 

data and have retrievable information.

T a b l e  44. C o m p a r is o n  o f  “N o i s y  u s i n g  SVM  C l a s s i f i e r ”

Class Class No Type Error Std Significant

1 2 Sub Trials Rate Dev at 0.05?

35 “Noisy” 39.58% 7.11%
Yes

Left Right
z=8.6703 

one tail

p<0.0001

6.9 Rate of Tapping Comparison

During data collection, the rate at which subjects tapped was recorded. The rate 

was determined by visually watching the subject and counting the number o f taps in a 

representative one minute period. Expected results were that a higher tapping rate would 

cause a greater activation o f motor areas, increasing the difference in results from left 

tapping and right tapping, thus reducing the classification error rate. A high negative 

correlation between the tapping rate and error rate would give some credence to this idea.

A linear regression was performed using the results o f  the previous left-right 

SVM classification along with the tapping rates. A plot o f the tapping rate versus error 

rate is provided in Fig. 16. The correlation coefficient of 0.2508 shows a correlation, 

albeit it very weak, but it is a positive correlation. The correlation had a p-value o f 

0.0599 indicating a 94% confidence level and a slope o f 0.0017 as indicated in Table 45.
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The higher the tapping rate, the higher the error rate. One possible explanation is that the 

physical movement introduces noise into the data collection process, through physical 

movement o f the sensor pad, for example.

Tapping Rate Versus Error Rate
0 6

0 •
0 20 40 60 80 100

Taps per Minute

Fig. 16. Tapping rates versus error rates

T a b l e  4 5 . T a p p in g  Ra t e s  v e r s u s  E r r o r  R a t e s

Correlation Coefficient 0..2508

R-Squared 0.0629

Y-Intercept 0.2714

Slope 0.0017

P-Value 0.0599

Equation Error Rate = 0.2714 + 0.0017 * Taps / Minute
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6.10 Classification Comparison -  “Male” and “Fem ale”

The results o f the previous SVM left-right classification were broken down into 

those trials for males and those for females. The results shown in Table 46 depict an 

error rate o f 36.74% for males, with a standard deviation o f  7.67%, only slightly different 

from the 36.02% o f “Female” trials. These results are not significant -  they do not show 

a difference that cannot be attributed to chance.

T a b l e  4 6 . C o m p a r is o n  o f  “M a l e ” a n d  “ F e m a l e ”

Class

1

Class

2

No

Sub

Gender Error

Rate

Std

Dev

Significant 
at 0.05?

17 M 36.74% 7.67% No

Left Right 40 F 36.02% 10.49% z=0.2889 

two tail 

p-0 .7727

6.11 Age Comparison

During data collection, the age o f the subjects was recorded. Expected results due 

to age were unknown. A linear regression was performed using the results o f  the 

previous SVM left-right classification along with ages. The results are shown in Table 

47.
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T a b l e  47. A g e  L i n e a r Re g r e s s i o n  Re s u l t s

Correlation Coefficient -0.1483

R-Squared 0.02199

P-Value 0.2710

Equation Error Rate = 0.4017 + 0.0017 * Age

A plot o f the age versus error rate is provided in Fig. 17. The correlation 

coefficient o f -0.1483 shows a weak negative correlation. The higher the age, the lower 

the error rate. The p-value of 0.2710 indicates the confidence level is 82% and not 

significant at 0.05.

Age Versus Error Rate

Fig. 17. Age versus error rate o f  SVM classifier



Linear regressions were also performed separately for ages 19-29 and 30-65. The

plots are shown in Fig. 18 and Fig. 19; the regression results are in Table 48 and Table

49. As can be seen, neither had results that showed both a correlation and significance.

A ges 18 -29  
A g e  Versus Error R ate

0.6
0 .5

I  0 4
?  0 .3  o
i f  0.2

•  •  •

10 20 25 30
Age

Fig. 18. Age (18-29) versus error rate

A ges 30-65  
Age Versus Error Rate

0.6
0.5
0.4
0.3
0.2

20 40
Age

80

Fig. 19. Age (30-65) versus error rate
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T a b l e  4 8 .  A g e  ( 1 9 - 2 9 )  L in e a r  R e g r e s s i o n  R e s u l t s

Correlation Coefficient 0 .0 0 6 9

R-Squared 0.0000

P-Value 0 .9 6 2 3

Equation Error Rate = 0 .3 6 2 7  +  0 .0 0 0 4  * Age

T a b l e  4 9 .  A g e  ( 3 0 -6 5 )  L in e a r  R e g r e s s i o n  Re s u l t s

Correlation Coefficient 0 .1 1 7 0

R-Squared 0 .0 1 3 7

P-Value 0 .7 8 2 7

Equation Error Rate -  0 .2 2 9 3  +  0 .0 0 1 7  * Age

6.12 Comparison of Classifiers

The results o f all four classifiers are presented in Table 50. Decision tree 

classifications had much lower error rates than either SVM or LDA in all state 

combinations while LDA had much higher error rates in all combinations.

Decision tree classifications had lower error rates than any o f  the other classifiers 

in four o f the six states; SVM polynomial was lower in the other two states. Decision 

tree classifications had much lower error rates than either SVM linear or LDA in all state 

combinations while LDA had much higher error rates in all combinations.



101

T a b l e  5 0 . C o m p a r is o n  o f  C l a s s i f ic a t i o n  A l g o r it h m s

Right Both Imagine

SVM Linear 36.24% 35.98% 32.55%

SVM Quadratic 28.01% 27.46% 26.00%

Left SVM Polynomial 24.92% 27.21% 25.31%

LDA 42.69% 41.47% 40.05%

Decision Tree 24.98% 26.15% 23.34%

SVM Linear 38.13% 36.70%

SVM Quadratic ■ . *■ 30.85% 29.82%

Right SVM Polynomial 29.51% 27.97%

LDA 44.09% 42.17%

Decision Tree 25.52% 26.90%

SVM Linear 38.26%

SVM Quadratic 29.01%

Both SVM Polynomial 27.81%

LDA 42.68%

Decision Tree 28.85%

The results o f all six classifiers are presented graphically in F ig . 20 and their 

standard deviations in F ig . 21. Although SVM quadratic and polynomial had low error 

rates, they both have high standard deviations o f error rates for every state combinations, 

indicating it provides less consistency o f  classification among different subjects. For four 

o f the six states, LDA had the lowest standard deviation, although it had the highest error 

rate among the three algorithms.
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50%
45%
40%
35%

30%
25%
20%
15%
10%

5%
0%

Left LeftLeft Right Right Both
Right Both Imagine Both Imagine Imagine

— — LDA SVM Linear SVM Py -  --D ec is ion  Tree —  SVM Qd

Fig. 20. Comparison o f error rates

14%

12%

10%

8%

6%

4%

2%

0%
Left Left RightLeft Right Both

Right Both Imagine Both Imagine Imagine

 LDA  SVM Ln   SVM Qd
-  -  -  Decision Tree  SVM Py

Fig. 21. Comparison o f error rate standard deviations
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6.13 Comparison of Results to Previous Research

Table 51 compares the results obtained in this study with those o f  other fNIR 

studies. The 26% error rate noted in the table is the average o f  the decision tree error 

rates, which ranged from 23% to 29%. The error rates the other studies are averages o f 

different classification results. The lowest error rates were those of Abdelnour and Herff, 

both o f which had a large number o f  channels (source/detector combinations) and only a 

few trials. Abdelnour had 56 and Herff had 252. None o f  the three other studies had 

many subjects. Abdelnour classified an entire stimulus period as correct if over 50% o f 

the classifications in the period were correctly classified.

T a b l e  5 . E r r o r  Ra t e s  o f  O t h e r  fN IR  S t u d ie s

Study Method Ch Trials States Err Rate

This Study Decision
Tree

1 5 7 Left, Right, Both, Imagined 

Taps

2 6 %

Abdelnour
[4]

Kalman
Filter

5 6 3 Right Taps 

Left Taps

2 0 %

Ayaz [6 2 ] KNN,
Bayes

16 5 Task

Rest

2 8 %

H erff [34] SVM 2 5 2 5 Speech

Rest

2 1 %

To more closely compare the results from this dissertation with the results 

Abdelnour obtained, the SVM polynomial was run again against the data. This time the 

classification results o f each stimulus epoch were reviewed and the epoch counted as a 

correct classification if over 50% o f the data points within the epoch were correctly



104

classified. The results o f  measuring errors based on epoch performance are shown in 

Table 52.

T a b l e  5 2 . E r r o r  R a t e s  u s i n g  A b d e l n o u r 's  E p o c h  M e t r ic

States Compared This Study Error Rate Abdelnour Error Rate

Left/Right 3% 20%

Left/Both 2%

Left/Imagine 3%

Right/Both 4%

Right/Imagine 4%

Both/Imagine 4%
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CHAPTER 7 

CONCLUSION

This study contributes to the body o f knowledge o f  single source/detector fNIR 

detection capabilities in the general population. This dissertation’s thesis statement was 

that given single source/detector CW fNIR cerebral response samples during an 

individual’s left finger tapping, right finger tapping, both (right and left) finger tapping, 

and imagined finger tapping; a real-time capable supervised classification algorithm such 

as SVM can differentiate between any two o f the four categories, even if  the individual’s 

brain has not been registered using fMRI.

7.1 Thesis Statement Components

The four components were:

•  Only one set o f  CW source/detectors is required, {i.e., measure a single 

location).

•  Prior knowledge o f an individual’s brain geometry is not required.

• Preprocessing and classification can be accomplished with algorithms that 

have the potential to execute in real time.

• Classification can be accomplished on an individual (vice collective group) 

basis.
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7.2 Thesis Statement Evaluation

The methodology used for this study met all the criteria required by the thesis 

statement, including its components except for the real-time aspect. Specifically, in the 

study:

The Spire oximeter was a CW device that only had a single source/detector.

There was no a priori knowledge o f any o f the subject’s brain geometry (i.e., no 

fMRI had been performed on any o f them.)

Preprocessing o f the data was all amenable to real-time processing, as were the 

classification algorithms; however, the method o f selecting the training sets were not.

The filtering was accomplished by a very low-order filter -  a moving average 

with a 2.8 second window. A real-time moving window that includes future data injects 

a lag equal to the length o f  the future data portion o f the window. In the research for this 

dissertation, the window used only current and previous data.

The classification algorithms used were M ATLAB’s SVM, LDA, and decision 

tree, all o f  which can be applied in real time. The decision tree and SVM linear 

algorithms had results, for individual trials, that were significant at 0.05.

In this particular implementation, the classification was not done in real time. 

Instead, the training set was derived from data points throughout the individual trial, then 

used to test the remaining data points, which were also spread throughout the trial. For a 

real-time application, any future data used in a training set will cause an equal delay in 

any classification decisions (i.e., a classification result cannot occur until applicable 

training data has been ingested.) With respect to a BCI, the method o f  training set 

selection used in this study means that no BCI actions could be finalized until all tapping
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is completed. For a BCI to discriminate states, at least two states would be required.

Two states occurred three times each, for 20 seconds each, for a total period o f  two 

minutes (three minutes and 40 seconds if the interspersed baseline is included).

Therefore using this protocol, after a lag o f  three minutes and 40 seconds, six decisions 

could be made.

The classifications were accomplished on individual subject/individual trial basis, 

not on group averages, not on individual averages, and not on averages o f  like-stimuli 

within a trial.

7.2.1 Caveats

Some occurrences during the experiment could have had an effect on the data 

collection and the subsequent classification results.

As discussed earlier, the sensor was raised in some cases by approximately 0.63 

cm, decreasing the detection depth. The data from those trials may have questionable 

validity. The case was made that the detection depth was decreased to 1.37 cm, from 2 

cm, and therefore sufficient penetration made, the literature does not address this 

situation. The optics and physiology pertinent to light traveling through the hair in those 

circumstances is not known, nor is the state o f the hair under the sensor. The raising may 

have allowed the hair to stand up, enabling light to pass through but the light could have 

been reflected back to the detector. A brain computer interface would need to reduce any 

obstructions between the light source and the head and ensure the distance is minimized.

Classifications occurred for each data point, starting with the presentation o f  a 

stimulus. There was a small delay between the time the stimulus was presented and the 

time the subject began tapping. Once tapping began, there was a further delay for the
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oxygenation/deoxygenation responses to begin. A BCI could not depend on 

classifications occurring during this ramp up period. Additionally the filtering was 

accomplished with a filter that averaged the previous 2.8 seconds o f data; therefore, a 

BCI using the results o f  the data would be basing actions on a classification based on data 

from a time point 1.4 seconds prior to the classification occurring.

Individuals were allowed to set their own tapping pace, which could have 

introduced motion artifacts into some trials more so than other trials. Subjects with high 

tapping rates could tire and slow down the tapping.

An attempt was made to position the sensor/detector above the motor cortex; 

however, exact positioning was not possible on some subjects. On other subjects the 

initial position was correct but the sensor drifted downward. The results in those 

instances could therefore be due to activations in areas neighboring the motor cortex or 

from the motor cortex but not from the finger area.

7.2.2 Lessons Learned

Throughout the experiment, issues were encountered and mitigated in some 

manner. The following are suggestions that might enable future researchers to  avoid 

some o f the pitfalls.

• An algorithm that can train, then test, thus providing a true real time capability 

is plausible but requires upfront design, especially if subjects cannot be used 

in preexperimental trials.

• Consider spreading out data collection to allow time to find solutions for any 

problems prior to collection from additional subjects.
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•  Have an assistant to help collect the data. Trying to  mark the beginning, end, 

and waypoints o f the collection stream, counting subjects’ tapping rate, and 

monitoring/noting movements o f the subject became difficult.

•  Allow more time per subject. Configuring and stabilizing the hardware on the 

head at the desired location takes time, especially with equipment tethered 

with optical cable.

•  The data had some artifacts. Attempt to design experiment to reduce 

movement.

•  Find a very secure, safe method for securing the sensor pad. Test with a wide 

range o f head shapes, sizes, and hair color, texture, thicknesses, and densities. 

Test with people wearing and not wearing glasses.

•  Consider securing the head. Some previous researchers have done so. M ight 

reduce artifacts but is a tradeoff with generalizability of results.

•  Consider specifying a rate o f  tapping.

•  Find a way to have line o f  site from sensor to scalp, e.g., shaving, 

prescreening o f  subjects, or other method.

•  Consider fewer different states (stimuli). Four stimuli plus a baseline state 

provided a rich set o f data for analysis but at the expense o f  fewer trials o f 

each stimulus type.
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7.2.3 Summary

The study produced the results with regards to the thesis statement. The results, 

on an individual trial basis, using the decision tree algorithm, were significant at the 95% 

confidence level, thus rejecting the null hypothesis for all state comparisons.

7.3 Contribution to the State of fNIR Research

The study produced a number o f results that are directly applicable to brain- 

computer interfaces. These relate to validating the ability to classify data collected by a 

device with a single source/detector, from non-prescreened individuals, with real-time 

algorithms in a normal environment. They also show that classification is viable without 

converting raw data to absolute concentrations o f oxygenated/deoxygenated hemoglobin.

7.3.1 Simplicity of Source/Detector

The results were obtained with a single source/detector attached to a single, 

square pad affixed to subject’s heads using easily available devices such as elastic bands 

and caps for light shielding.

7.3.2 Generalization to the Population

Unlike almost all studies to date, these results were obtained from non-laboratory 

conditions with no screening out due to individual characteristics such as hair thickness. 

The generalizations included:

•  A large number o f subjects for which the selection criteria only included 

statutory minimum and maximum ages.
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•  One period o f time for collection. No returning another day to attempt better 

results. No exclusion o f subject data. The only excluded data were from the 

first week in which no signal could be obtained.

•  No detection and removal o f specific artifacts, although filtering was used.

•  No fixation o f  the head to make it stationary.

• Use o f  real-time algorithms. N o use o f algorithms that require knowledge o f  

future data prior to analysis o f  present data. For example there was no use o f  

finding an individual’s respiration rate, then going back and using that 

knowledge to filter out respiration.

• No removal o f noise with any method requiring a priori knowledge o f  the 

data. A moving average was used which is very amenable to real-time 

processing.

7.3.3 Evidence Supporting Method to Mitigate Hair Effects

This study produced a potential method o f mitigating hair effect. Raising the 

sensor was shown to still produce valid results that could not be attributed to chance at a 

confidence level o f 95%.

7.3.4 Evidence Supporting Validity of Subjectively Assessing Signal Quality and

the Validity of Classifying Noisy Data

Evidence was provided that supports the ability to subjectively rate signal quality, 

important for real-time applications. Additionally, comparison of data rated noisy was 

shown to be amenable to valid classifications that cannot be attributed to chance at a 

confidence level o f 95%.
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7.3.5 Evidence Showing the Degree of Relationships between Subject Attributes

This study produced evidence that does not support differences in motor 

activations between males and females. The study also produced evidence o f a mild 

correlation between rate o f finger tapping and motor area activation.

7.4 Future Directions

There are many areas in which this research can be extended to further the science 

and application o f  brain activation research, including the following:

Currently, algorithms are individualized to remove physiological and behavioral 

artifacts. This research demonstrated that data can be classified without such removal, 

thus facilitating real-time applications. Future research can address optimization o f 

preprocessing algorithms and generalization o f  algorithms. For example what filter with 

what parameters is best for the general population?

Currently, collecting data through hair is difficult. Hair is parted with attempts to 

keep it parted with mechanically-related means. This research showed the sensor can be 

raised slightly and still allow for classifiable results. Future research could address the 

conditions under which raising a sensor is appropriate and what results could be 

expected. The physiology o f light traversing hair with various attributes can be 

investigated, including absorbance, refraction effects.
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APPENDICES 

APPENDIX A: STIMULI ORDER OF PRESENTATION

The permutations used in the experiment are those listed in Table 53.

T a b l e  53. S t im u l i  P e r m u t a t i o n s

First Third Second Third Last Third
1 B I R L B R I L L R B I
2 B 1 L R L R 1 B B R I L
3 I R L B 1 L R B L I R B

4 R L B I I R B L L I R B
5 I R L B L B R I R L B I

6 I L R B L I R B R 1 B L
7 I B L R L R B I R I B L

8 I L R B L I B R I R L B

9 R I L B L R B I L I R B
10 R I B L R B L I L R B I

11 L B R I R L B I L I B R
12 L B R I R L B I L I B R
13 R B L I I L R B L I B R
14 R I L B L R B I I L R B

15 R I L B L B I R L B R I
16 L I R B I R B L L B R I
17 I B L R R L B I I R B L
18 L I R B L R B I I R B L

19 B L R I L I R B R L B I

20 I L R B L I R B L R B I

21 B L R 1 B R I L B I L R
22 R 1 L B R L I B I L R B
23 B R I L I B L R I B R L
24 L R B I R B I L B R L I

25 B I R L B R I L R L B I
26 I B R L L B R I B R I L
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27 R B I L L 1 R B B 1 R L
28 L B R I I L B R R L I B
29 R B I L L B R I L B I R
30 B R L I I L B R L R B I
31 R B L I L I B R B L R I
32 R I L B B I R L R L B I
33 L I B R I L B R B L R I
34 B I R L L R I B I L R B



APPENDIX B: IRB APPROVAL

No.: 09-134

O L D  D O M IN IO N  U N I V L R S I 1 Y 
H U M A N  S U B J E C T S  IN S T IT U T IO N A L  R E V IE W  B O A R D  

RESEARCH PROPOSAL REV IEW  NO TIFICA TIO N  FORM

T O  Frederic M c K e n z ie
i /i.wWc P ro jec t In ve s tig a to r

DATE: Novem ber 19, 2009
IRB  Decision Denc

RE: Functional N ear  Infrared Detection of Real an d  Imaginary Finger T ap s
Using K N eares t  Neighbor and P a rzen  W indows Classification

Please be inform ed that your research protocol has received approval by the Institu tional 
Rex ievv Board. Y o u r research protocol is:

Contact the IR B  for c la rifica tion  oi me terms ot your research, or i f  you w ish to m ake  
A N Y  change to your research protocol.

J he approx al expires one year from  the IR B  decision  date Y o u  m ust submit a Progress 
Report and seek re-approval i f  you xvish to continue data co llection  or analy sis beyond  
that date, or a C lose-out report. Y o u  must report adverse c\ cuts experienced b y  subjects  
to the IR B  chair in a tim e ly  m anner (see un iversity  policy).

* A pprova l o f  your research is C O N T IN G E N T  upon the satisfactory c om ple tion  o f  
the fo llow in g  changes and attestation to those changes by the chairperson o f  the 
Institu tional R e v ie w  Board. Research m ay not begin until a fte r this attestation.

* In the Application:
• U nder 7 c, the  investigator should check  the  box(es) th a t  would indicate if 

underg rad u a te  and/or g rad u a te  s tuden ts  will be enrolled in the  study. The 
investigator should a lso  contact Dr Mark S cerbo  to initiate the  p ro ced u re s  
required to obtain a c c e s s  to the pool of Psychology s tuden ts  w ho would 
participate in the re search  study. Dr. Ju stice  will s e n d  the  p ro ced u re s  to 
Dr. McKenzie that explain how individuals outside of th e  dep a r tm en t  may 
obtain a c c e s s  to the  s tuden t  pool of sub jec ts  available.

• U nder #  11. the u se  of the  videotaping portion of th e  study, should  be  
clarified with re spec t  to its intent. Is the  investigator planning on 
videotaping all subjects  for p u rp o se s  of confirming/validating th e  m e a s u re  
or will only s o m e  sub jects  be v ideo taped  for p u rp o se s  of d issem inating the 
study findings through platform and  poste r  p resenta tion

_  A pproved  
_  Tabled/D isapproved
X  A pproved, contingent on m aking ihe changes b e lo w *

IR B  C h m rp et)<jr.sonbr>
November 19, 2009
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• Under 12C, NO should be checked instead of YES.

In the Informed Consent:

• In the “Description of Research Study1’ add a statement that will clarify the 
intent of the videotaping of the subjects ( i.e. for validation of the measure 
or for research presentations at professional conferences) that will be 
congruent with the application statement. Add a sentence/phrase in the 
section that describes the laser as similar to a classroom laser pointer.

• In the “Cost and Payments” section add the standard statement from the 
Psychology Department that states student participation as well as the 
alternative method for obtaining research credits for those students who 
prefer not to participate in the study. Also add the $5.00 payment is only 
offered to subjects who are outside of the Psychology Department 
research pool.

• Under Compensation fro Illness and Injury" section, change the word 
"principal'’ to "project" following Dr. McKenzie’s name. Add the Office of 
Research and phone number (757) 683-3460 as a point of contact in this 
section.

• (Postscript: the investigators increased the required time from 
approximately 30 minutes to approximately 45 minutes as noted on the 
informed consent document)

A t t e s t a t i o n

A s d ire c te d  by the In s titu tio n a l R e v ie w  B o a rd , the R e s p o n s ib le  Pro ject In v e s t ig a to r  m ad e  

the above changes. R esearch  m a y  beg in

Jan uary  7, 2010
tHB Cfyur\K‘i >un v Sigftinth-
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INFORMED CONSENT DOCUMENT 
OLD DOMINION UNIVERSITY

PROJECT TITLE: Functional Near Infra Red Detection of Real and Imaginary Finger Taps Using K Nearest Neighbor and 
Parzen Windows Classification

INTRODUCTION
The purposes of this form are to give you information that may affect your decision whether to say YES or NO to
participation in this research, and to record the consent of those who say YES.

RESEARCHERS
Responsible Project Investigator: Rick McKenzie, Associate Professor, PhD, Frank Batten College of Engineering and 
Technology, Electrical and Computer Engineering Department.
Project Investigator: Eugene a. Stoudenmire, Student, MBA, MS, PhD Candidate, Frank Batten College of Engineering 
and Technology, Electrical and Computer Engineering Department.
Project Investigator: Mark Scerbo, PhD, Professor, Psychology, College of Sciences.

DESCRIPTION OF RESEARCH STUDY
Several studies have been conducted looking into the subject of brain activations during finger tapping. None of them 
have explained how to effectively and consistently classify types of finger tapping from infrared data.

If you decide to participate, then you will join a study involving research of infra red detection of brain activity resulting 
from finger tapping. An infra red device, similar to a classroom laser pointer, will be affixed to the top of your head and will 
measure brain activity by applying laser light, then measuring the scattered light that returns to the device. You will be
presented with a computer screen that will have either: a solid left or right arrow, a bar, or a dotted arrow. Each time a
solid arrow appears you are to tap your finger (left finger if left arrow and right finger if right arrow). Each time a bar 
appears you are to do nothing, just rest. Each time a dotted arrow appears you are to imagine tapping the table with your 
right index finger. Next, you will be presented with two arrows pointing in opposite directions. Each arrow will flash 
differently. You will be asked to look at one arrow at a time.

You may be videotaped for the purposes of disseminating the study findings through platform and poster presentation.

If you say YES, then your participation will last for approximately 45 minutes at the location of the experiment. 
Approximately 50 people will be participating in this study

EXCLUSIONARY CRITERIA
You should be right-handed to participate in this study.

RISKS AND BENEFITS
RISKS: If you decide to participate in this study, then you may face a risk of eye damage if you were to look directly at the 
lasers. The researcher will reduce this risk by ensuring the device is not turned on until the device is affixed to your scalp 
and, prior to removal, ensuring the device is turned off. As with any research, there is some possibility that you may be 
subject to risks that have not yet been identified.

BENEFITS: There is no direct benefit to you for participating in this study. However, this research will potentially further 
the development of practical brain-computer interfaces that may one day benefit people.

COSTS AND PAYMENTS
If you are part of the Psychology Department research pool and you decide to participate in this study, you will receive 1 
Psychology Department research credit, which may be applied to course requirements or extra credit in certain 
Psychology courses. Equivalent credits may be obtained in other ways. You do not have to participate in this study, or any 
Psychology Department study, in order to obtain this credit.

If you are outside of the Psychology Department research pool, you will receive five dollars to help defray Incidental 
expenses associated with participation such as parking fees, etc.

NEW INFORMATION
If the researchers find new information during this study that would reasonably change your decision about participating, 
then they will give it to you.
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CONFIDENTIALITY
The researchers will take steps to keep private information, such as photos or videos, confidential by attempting to ensure 
they contain no personally identifying information. The results of this study may be used in reports, presentations, and 
publications; but the researcher will not Identify you. Of course, your records may be subpoenaed by court order or 
inspected by government bodies with oversight authority.

WITHDRAWAL PRIVILEGE
It is OK for you to say NO. Even If you say YES now, you are free to say NO later, and walk away or withdraw from the 
study -  at any time. Your decision will not affect your relationship with Old Dominion University, or otherwise cause a loss 
of benefits to which you might otherwise be entitled.

COMPENSATION FOR ILLNESS AND INJURY
If you say YES, then your consent in this document does not waive any of your legal rights. However, In the event of 
harm, Injury, or Illness arising from this study, neither Old Dominion University nor the researchers are able to give you 
any money, insurance coverage, free medical care, or any other compensation for such injury. In the event that you suffer 
injury as a result of participation in any research project, you may contact Dr Rick McKenzie at 757-683-5590, the 
responsible project investigator or Eugene Stoudenmire, the investigator at 757 857 5670 x509. or Dr. George Malhafer 
the current IRB chair at 757-683-4520 at Old Dominion University, or the Old Dominion University Office of Research at 
(757) 683-3460 who will be glad to review the matter with you.

VOLUNTARY CONSENT
By signing this form, you are saying several things. You are saying that you have read this form or have had it read to 
you, that you are satisfied that you understand this form, the research study, and its risks and benefits. The researchers 
should have answered any questions you may have had about the research, if you have any questions later on, then the 
researchers should be able to answer them:

Investigator Eugene Stoudenmire, 757-857-5670 x509.

if at any time you feel pressured to participate, or if you have any questions about your rights or this form, then you should 
call Dr. George Maihafer, the current IRB chair, at 757-683-4520, or the Old Dominion University Office of Research, at 
757-683-3460

And Importantly, by signing below, you are telling the researcher YES, that you agree to participate in this study. The 
researcher should give you a copy of this form for your records.

Subject's Printed Name & Signature

INVESTIGATOR'S STATEMENT
I certify that t have explained to this subject the nature and purpose of this research, includi 
any experimental procedures. I have described the rights and protections afforded to hurr 
nothing to pressure, coerce, or falsely entice this subject into participating. I am aware of mj 
federal laws, and promise compliance. I have answered the subject's questions and have 
additional questions at any time during the course of this study. I have witnessed the above 
form.

Date

ig benefits, risks, costs, and 
an subjects and have done 
obligations under state and 
encouraged him/her to ask 
signature(s) on this consent

Eugene A Stoudenmire Date

Approved Institutional 
Review Board - ODU

NflV 1 9 ?009

Expires 1 year from date 
Questions: 757 683-3460



APPENDIX C: SUBJECT AND SYSTEM SETUP CHECKLIST

INSTRUCTIONS

1. Read and have sign consent.

2. Fill out questionnaire.

3. Are you a drummer?

ATTACH INSTRUMENTATION

1. Measure Subject Nasion-Inion.

2. Measure Subject Biauricular.

3. Compute PMC, SMA, Premotor Cortex.

4. Attach source/detector to subject -  Left M otor Cortex.

5. Cover source/detector.

CALIBRATE

1. Plug in

2. Load “ODU\MSIM897 2008 Spring\NASAfNIR\workspace\SPI=CerOxim-06C. 

Note: Use calibrate for data file and log file.

3. Click start arrow.

4. Adjust power to 10.

5. Click “Save Data” .

6. Have subject tap finger.

7. Ensure clean signal.

8. Adjust to obtain stronger signal.

9. Measure final location.
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10. Adjust power to 0.

11. Stop.

PRACTICE

1. Load practice PowerPoint.

2. Describe instructions.

3. Start PowerPoint.

ARROW EXPERIMENT

1. Load arrow PowerPoint.

2. Write down PowerPoint number.

3. Name data file “RCarrows” plus number o f  PowerPoint.

Note: if not right cortex, use other letters indicative o f location.

4. Adjust power to 10.

5. Click “Save Data” .

6. Cue subject.

7. Simultaneously click start button and slide show F5.

8. Insert marker at beginning o f  each slide.

9. Monitor.

10. Immediately at end, reduce power to 0 and click stop button.

11. Verify data file has correct number o f rows.

FLASHING EXPERIMENT

1. Load “FLASHING 001 20100126” PowerPoint.

2. Write down PowerPoint number.

3. Name data file “flashing” plus number o f  PowerPoint.



4. Adjust power to 10.

5. Click “Save Data” .

6. Cue subject.

7. Simultaneously click start button and slide show F5.

8. Monitor.

9. Immediately at end, reduce power to 0 and click stop button.

10. Verify data file has correct number o f rows.
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