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ABSTRACT

IDENTIFICATION AND CHARACTERIZATION OF GENES ASSOCIATED 
WITH V-JUN INDUCED CELL TRANSFORMATION

Martin Hadman 
Eastern Virginia Medical School, 1995 

Advisor: Dr. Timothy J. Bos

The u-jun oncogene was initially identified as the causative agent for 
fibrosarcomas in chickens. Studies show that overexpression of v-Jun proteins 
transforms chicken embryo fibroblasts (CEF) in vitro, and forms tumors in 
chickens in vivo. The mechanisms for this are not clearly defined. Conceivably, 
overexpression of an unregulated transcription factor would cause cell 
transformation by illicit regulation of its target genes. In support of this, we 
show that in vivo v-Jun complexes exhibit differential binding to in vitro 
generated AP-1 and 'AP-l like' target sequences, suggesting that the pattern of 
target gene expression is altered during cell transformation. With this in mind, 
we set out to identify genes associated with v-Jun induced cell transformation. 
We have isolated several clones by subtractive hybridization, and a modified 
differential display procedure. One of these is clone 4, showing strong sequence 
homology, both at nucleotide and amino acid level, to cysteine thiol proteases. 
Northern blot analysis shows that the steady state levels of clone 4 mRNA are 3 
to 7 times higher in v-Jun transformed CEF (VJ-1), when compared to c-Jun 
overexpressing CEF (CJ-3), or normal CEF infected with vector sequences only 
(RCAS).

Another is clone 15-15, showing strong sequence identity to the chicken 
Apolipoprotein A1 (ApoAl) gene. Northern blot analysis demonstrates that the 
steady state levels of ApoAl mRNA in RCAS is 3 to 10 times higher than in VJ-1 
cells, indicating that v-Jun might repress this gene by transcriptional 
mechanisms. To investigate this possibility, we generated several ApoAl 
reporter CAT constructs containing 5' deletions in the promotor, and tested 
them in VJ-1 and RCAS cells. Our findings suggest that three potential cis-acting 
sequences could regulate this promotor in normal RCAS CEF. Quite remarkably, 
none of these constructs were transcriptionally active in VJ-1 cells. DNA binding
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studies utilizing one of the potential cis-acting regions, suggests that a specific 
factor is present in normal nuclear extracts, but absent from v-Jun transformed 
extracts. This observation suggests that this specific factor may be a positive 
activator protein. In addition, actinomycin D studies demonstrate that the 
ApoAl mRNA has a long half-life of up to 20 hours. We therefore propose that 
ApoAl is positively regulated by at least three cis-acting sequences, and 
maintained at high steady state levels in normal CEF. Several possible 
mechanisms exist to explain ApoAl repression in normal RCAS and VJ-1 cells. 
One possibility is the direct repressor mechanism, whereby a silencer region 
directly inhibits ApoAl expression in normal cells. In VJ-1 cells however, a 
squelching mechanism could predominate. In this case, overexpressed v-Jun 
proteins would sequester and inactivate potential factors that positively regulate 
ApoAl transcription, leading to repression.
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Chapter I. INTRODUCTION

Discovery of the v-jun  oncogene.

Avian sarcoma virus (ASV-17) was isolated from a spontaneous sarcoma 

in adult chickens. Retroviral isolates of ASV-17 form polyclonal tumors when 

injected into chickens, in vivo, and transform chicken embryo fibroblasts cultures 

(CEF), in vitro. These transformed fibroblasts have a characteristic fusiform 

shape organized in parallel arrays when grown in liquid medium, and form 

anchorage independent colonies in soft agar. Interestingly, in vitro transformed 

CEF are not immortalized by ASV-17; instead they become highly vacuolated 

after 25 to 30 cell doublings, and die. In contrast, cultures derived from ASV-17 

induced tumors have a longer lifespan, indicating that additional genetic 

modifications are responsible for cell immortalization (reviewed in ref 35).

Further studies show that ASV-17 is a defective retrovirus requiring non­

defective helper virus to replicate efficiently, and produce infectious progeny. 

Characterization of the ASV-17 retroviral genome revealed a 0.93 kb insert 

showing strong homology to a cellular c-jun gene, and to the DNA binding 

domain of a yeast transcription factor, GCN4. When either the cellular gene (c- 

jun) or the ASV-17 derived insert (v-jun) was cloned into a retroviral expression 

vector, RCAS, and overexpressed in CEF, phenotypic properties similar to 

ASV-17 induced cell transformation occurred in vitro. This finding demonstrates 

that the factor responsible for transformation was acquired from the cell by 

ASV-17, and establishes that the jun gene is a true oncogene (35).

pagel
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Discovery of c-jun.

Seminal studies propelling jun into forefront of oncogene research began 

with the characterization of a transcription factor complex from HeLa cell 

extracts that specifically recognized the SV40 enhancer element and the human 

metallothionein HA (hMIIA) promotor. This transcription factor complex, called 

AP-1 fraction, (activator protein-1) binds the sequence, TGA(C/G)TCA. This 

sequence, later called the AP-1 DNA binding site, is present in regulatory 

regions of several viral and cellular genes. Interestingly, this site is homologous 

to the TRE site (TPA responsive element) responsible in the regulation of cellular 

genes stimulated by cell treatment with phorbol esters. Definitive proof that Jun 

protein is a component of the AP-1 fraction comes from immunoblot assays 

showing that antibodies to v-Jun peptides, PEP1 and PEP2, recognize a 39 kd 

polypeptide in purified AP-1 preparations. Sequencing of AP-1 tryptic digests 

showed strong similarity to predicted Jun amino ad d  sequences. Moreover, 

bacterial expressed Jun proteins are able to bind the AP-1 site. Further studies 

showed that the AP-1 fraction consists of other proteins involved in recognizing 

the AP-1 binding site: these indude the well characterized oncogene, c-Fos, 

other Fos related proteins, and Jun related proteins. Further characterization of 

Jun and Fos proteins demonstrated that they form homodimers and function as 

important cellular transcription factors. These observations provided incentive 

to investigate the role of Jun and other AP-1 factors in gene regulation and 

cellular function (35).

Role of c-Jun in  cellular events.

The c-jun gene is expressed at basal levels in most tissues, and is rapidly 

induced in response to serum and extracellular growth fadors (29, 35). For this 

reason, c-Jun activity has been implicated in several growth related events

page 2
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including: cell growth and proliferation (66), differentiation (14, 93-96),

embryonic development (65), wound healing (35), tissue regeneration (35), and 

UV induced cell damage (68). Interestingly, a recent study demonstrates a role 

for Rb (Retinoblastoma susceptibility gene product) in c-Jun regulation, and 

further suggests that these transcription factors could regulate cell growth (98). 

It is therefore possible that Rb/Jun targets might include cell cycle regulators. 

Indeed, the expression of c-jun as an immediate early gene (29, 35, 66, 67) 

correlates well with induction of cell growth, implying that it could potentially 

effect downstream targets to regulate the entrance or exit from the cell cycle.

c-Jun structure.

The c-jun gene is highly conserved in several species, and present in non­

vertebrates like Drosophila, and in vertebrate species of chickens, mouse, rat, 

and humans. The human c-jun gene, located on chromosome lp3.1-3.2, is a 

single copy gene, as determined by stringent Southern blot analysis of genomic 

restriction fragments with a jun probe. Interestingly, the 984 bp coding region 

does not contain any introns. Other important characteristics include a long GC 

rich 5' untranslated region, and an AT rich 3' region, common in growth factor 

genes and proto-oncogenes. The promotor region contains several transcription 

factor binding sites, including an AP-1, SP-1 and CTF sites, and two variant 

TATA-like boxes. Two major transcripts, 2.7 and 3.4 kb, are produced from 

multiple transcription initiation sites and two poly A addition signals. Although 

several ATG start sites exist, further studies suggests that the various c-jun 

transcripts all code for the same Jun protein (29,35).

The c-jun gene codes for a 39 kd protein. Functional domains include the 

transcriptional activation region, the basic region, and leucine zipper, (figure 1).

page 3
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Figure 1. Structural differences between c-Jun and v-Jun.
The figure above shows the functional domains on the c-Jun protein. Note 
that v-Jun contains several structural alterations, including a  gag region 
acquired from the transforming retrovirus, a 27 amino acid deletion in the 
transactivation domain (called the delta region), and three point mutations 
at the COOH region. The numbers above denote positions o f amino acid 
residues; G: glycine; S: serine; C: cysteine; R: arginine; F: phenylalanine.

page 4
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The COOH terminal half of the Jun protein contains the basic region and leucine 

zipper motif, responsible for dimerization and subsequent DNA binding to the 

AP-1 site. The leucine zipper consists of five leucine residues which are equally 

spaced by seven amino add residues. Structural analysis suggests that this 

arrangement forms an alpha helical structure with the leucine residues 

protruding from the sides and aligning in a straight line, favorable for 

dimerization with other proteins with similar conserved structures. These 

proteins indude the yeast activator protein, GCN4, the fos family of proteins, c- 

Fos, Fra-2, andFosB, and Jun family of proteins, JunBandJunD. Dimerization 

with c-Jun is spedfic since other proteins containing leucine zipper motifs, like c- 

Myc, do not form heterodimers with either Jun or Fos proteins. Moreover, 

CREBII, which belongs to the CREB (cAMP responsive element binding) family 

of proteins, can form heterodimers with c-Jun but not c-Fos. This observation 

suggests that dimerization specifidty is maintained by the structural organization 

of the leucine zipper conserved among Jun, Fos and CREB family of proteins. 

Other regulatory regions outside the conserved leucine zipper domain might 

regulate dimerization, since neither c-Fos nor Fra-1 form homodimers; other 

CREB members form homo- and heterodimers among their family members, 

but not with c-Jun proteins (29,35).

Immediately upstream from the leudne zipper region is the basic domain, 

or DNA binding domain. This region, also conserved in Jun, Fos, and CREB, 

families, consists of long stretches of positively charged amino acids. Site 

directed mutagenesis suggest that the basic region is responsible for DNA 

binding and not dimerization, although other domains outside the Jun basic 

domain could contribute to the DNA binding affinity or specifidty to target 

sequences. This observation was verified by several domain swapping

page 5
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experiments. Since dimerization precedes DNA binding, it is possible that 

dimerization induces conformational changes favorable to DNA binding 

specificity (29,35). These observations imply that dimerization partners, or their 

availability, influence DNA binding and the overall regulation of target gene 

expression.

The transcriptional activation domain (TAD) of c-Jun, located in the amino 

terminal half, consists of negatively charged amino adds, induding proline and 

glutamine. This region of addic amino adds, conserved in the Jun family of 

proteins, can confer an activator protein of new sequence specifidty when fused 

to a heterologous DNA binding domain. A duster of proteins with a molecular 

mass around 52 to 55 kDa (p52/55) specifically recognize the Jun TAD, and could 

potentially regulate the transcriptional activation of Jun target genes (64).

More importantly, v-Jun has a 27 amino add deletion, called the delta 

region, that maps to the transactivation domain of c-Jun. While this deletion 

does not appear to affect the overall transactivation potential of v-jun, it reduces 

its dimerization and DNA binding properties (29). Moreover, the delta region 

could regulate significant post-translational modifications of c-jun, since a 

peptide encoding this region reduces the ability of JNK (Jun N-terminal kinase) 

to effidently phosphorylate the Jun protein in vitro (102). Evidence suggests that 

kinase phosphorylation at ser 63/73 affects the dimerization and DNA binding 

properties of Jun proteins (58). The relevance of these observations to c-Jun 

regulation and cell transformation will be discussed later.

Regulation of c-Jun activity.

c-Jun activity is stringently regulated during the normal cell process, as

page 6
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aberrant Jun activity leads to cell transformation in vitro, and tumorigenesis in 

vivo. Cellular mechanisms regulating c-Jun can be divided into: (a) factors that 

enhance its expression at the transcriptional and translational level, including the 

factors that regulate its mRNA and protein stability; (b) signal transduction 

mechanisms that effect post-translational modifications, which in turn regulate 

its overall function including dimerization and transactivation; and, (c) other 

poorly defined regulatory mechanisms, including the role of potential stabilizing 

factors, and control of transport to the nucleus (75 -78).

Signal transduction events regulating c-Jun.

Binding of extracellular factors to cell surface receptors initiates multiple 

signal transduction cascades. Studies indicate that some of these signaling events 

regulate Jun related responses by activating basal levels of preexisting c-Jun 

proteins present in resting Go cells (6,39). These activated Jun proteins form Jun 

heterodimers, and positively autoregulate c-jun gene transcription, and 

coordinate the expression of Jun target genes necessary to effect cellular 

responses. Northern blot analyses indicate a 30 fold increase in steady state 

levels of c-jun mRNA 30 minutes after serum treatment, accompanied by 

increased Jun heterodimers formation, and binding to AP-1 sites. Expression of 

corresponding target genes, such as collagenase, occurs 8 to 12 hours later, 

depending on the cell type. In this way, amplification of an initial transient 

extracellular signal to achieve the desired cellular response, is mediated by 

activated Jim heterodimers (29,35).

Several extracellular factors and stimuli inducing c-jun gene expression, c- 

Jun activation, as well as Jun target gene expression, are shown in table 1. Some 

factors, such as TNF-alpha, andTGF-beta, induce prolonged c-jun transcription

page 7
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Table 1. Listing of factors known to affect c-jun gene expression. 

stim uli________ comments_________________________________ reference
serum

NGF

EGF

TGF-B

TNF

IL-1 and IL-2 

IL-3

IL -6 ,
oncostatin M

endothelin
isopeptides

GM-CSF

ju n /fos

CREB

retinoic acid

NF-jun

Rb

progesterone

FSH/ follicle
stimulating
hormone

transient increase of c-jun mRNA in most cells, 29, 35
including fibroblasts and mouse 3T3 cells

decreased c-jun transcription in PC-12 cells; 90, 91
response is differentiation dependent

stimulation of c-jun mRNA in NIH/3T3, rat 79, 59
fibroblasts

stimulation of c-jun mRNA in adult rat 80, 85
hepatocytes and A549 human lung
adenocarcinoma;

prolonged activation of c-jun mRNA in human fetal 81, 82
fibroblasts, monocytes and granulocytes;

enhanced c-jun mRNA expression in T-cells; 8 6 -

no c-jun mRNA detected in 32D hemato poetic 66 ..
cells but increases noted in FDCP-1 cells;

rapid and transient c-jun mRNA increase in human 8 3 -
fibroblasts;

induction of c-jun mRNA and activity in mesangial 8 4 -
cells;

c-jun expression and AP-1 enhancer activity 7 2 -
observed in U-937 cells;

positive auto-regulation in HeLa, HEPG2, F9 29, 35

phosphorylated CREB activates c-jun gene 8 8 -
transcription in NIH 3T3;

strong c-jun mRNA expression in undifferentiated 8 9 -
EC stem cells

transcription factor affects c-jun transcription in 8 7 -
human myeloid leukemia cells

Rb activates c-jun transcription thru the SP-1 9 8 -
binding site

down regulation of c-Jun in avian oviduct 108..

FSH inhibits c-jun in Rat Steroli cells 9 9 -

page 8
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rates, and higher steady state levels of c-jun message. Further evidence 

suggests that the cell type involved, the duration of cell treatment, and the 

convergence of dual signals are responsible, as will be discussed later. The first 

signal pathway identified to induce c-jun transcription and activity is the protein 

kinase C (PKC) pathway, as cell treatment with phorbol ester, such as TPA, 

both increase c-jun mRNA steady state levels and c-Jun activity, as evidenced by 

binding to TPA responsive elements (TEE/ AP-1 sites) (29,35).

A listing of kinases and phosphatases known to regulate c-Jun activity are 

shown in table 2. Extensive studies show that c-Jun activity is regulated by post- 

translational modifications involving phosphorylation and dephosphorylation at 

several potential serine and threonine sites on the c-Jun protein. In resting cells, 

latent or inactive c-Jun is phosphoiylated at the C-terminal ser 243 residue, 

located just upstream from the DNA binding site. PKC activation induces a rapid 

dephosphoiylation at this site, associated with increased binding to AP-1 sites 

(56). Studies also show that resting cells have a dephosphorylated ser 63/ 73 

residue at the N-terminal half of c-Jun, thereby restricting its activity. MAP 

kinases (Mitogen Activated Protein-serine Kinases) induced by mitogens, 

phorbol esters, and an activated ras oncogene, specifically phosphorylate these 

sites, resulting in an increase in c-Jun transactivation activity (7, 73). This 

suggests that a balanced phosphorylation/ dephosphorylation mechanism 

regulates c-Jun activity. However, these observations contrast with another 

study demonstrating that phosphorylation of Jun at either ser 63 / 73, or ser-246, 

does not significantly alter c-Jun dimerization, DNA binding, or in vitro 

transactivation, and strongly suggest that these sites may not be critical for c-Jun 

regulation (57). Although the discrepancy may be in the use of different cell 

types and extracellular stimuli utilized in each study, it is clear that the regulation

page 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 2. Kinases and phosphatases affecting c-Jun activity.

enzyme_

PKC /  TPA

phosphorylation site affected

casein kinase II

GSK-3; glycogen 
synthetase kinase-3

c-Jun is not a direct substrate; purified 
c-Jun is not phosphorylated in vitro; 
phosphorylation and dephosphorylation 
of potential ser and thr sites noted in 
HeLa and fibroblasts cells;

phosphorylation at thr-231 and 
s e r-2 49

phosphorylation at th r-239, ser-243, 
ser-249; in vitro

Ha-Ras /  MAP kinase 
and cdc/p34 kinase

protein phosphatase 2A 
(PP2A)

phosphorylation at ser 6 3 /7 3 ;  
dephosphorylation at thr-239, 
ser-243, ser-249

sites not determined; variations in 
phosphorylation demonstrated by 
changes in electrophoretic mobility;

JNK /  SAPK (Jun N phosphorylation at ser 6 3 /  73, both in
terminal kinase/ Stress vitro and in vivo;
activated protein 
kinase)

comments reference

cell treatment with TPA increases jun/fos  
heterodimerization and binding to A P-1/ 
TRE sites

phosphorylation negatively affects DNA 
binding and AP-1 activity

decrease in DNA binding, in vitro;

phosphorylation/ dephosphorylation 
mechanisms activate c-Jun;

loss of PP2A activity is associated with 
deletion in the delta region;

JNK/ SAPK kinase activity is regulated by 
delta region;

29, 35, 56

97 ..

56 ..

7, 57, 73  

70 , 71

58, 92, 101, 
1 0 2 ,



of c-Jun activity is complex, requiring other post-translational regulatory events, 

and stabilizing factors. Indeed, other post-translational modifications include 

glycosylation (35), and a reduction/ oxidation pathway, as will be discussed 

later.

Intensive research committed to elucidating the active participants 

involved in extracellular signaling have established that MAP kinases are 

important in growth factor responses and c-Jun protein activation. (39, 74). 

Studies report a UV induced signaling pathway involving Ras, Raf and MAP 

kinases in the regulation of c-Jun activity. The terminal effector in the cascade 

directly responsible for c-Jun phosphorylation at ser-63/ 73 residues belongs to a 

family of related MAP kinases (7, 8), known as the JNK-1 kinase (jun -N- 

terminal kinase) (58), or Stress Activated Protein Kinase (SAPK) (101). In vitro 

studies demonstrate a direct binding between a purified JNK to c-Jun, and 

implicate the importance of delta domain. In vivo studies confirm that c-Jun 

phosphorylation enhances DNA binding and transactivation of AP-1 sites. The 

UV induced pathway mentioned above is related to a growth factor signaling 

pathway, in that both pathways utilize Ras, Raf, and MAP kinases (68). They 

differ in that the latter pathway involves extracellular-signal-regulated-kinases 

(ERKs) (74). These pathways are distinct since agents that activate the former, 

such as UV and stress, only weakly activate the ERK pathway (39, 74). 

Moreover, studies show that the existence of a Ras signaling pathway that 

activates c-Jun, but does not involve ERKs (103). Although extracellular growth 

factors or receptor tyrosine kinases have been established in the regulation of c- 

Jun activity, the immediate effectors acting on c-Jun have yet to been identified. 

For instance, the phosphatase(s) directly involved in activating c-Jun by 

dephosphorylation at ser 246, or at other potential C-terminal sites, have yet to

page 11
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be determined. It is conceivable that this putative phosphatase is regulated by 

the ERKs, since PKC, an important constituent of the tyrosine kinase pathway, 

induces dephosphorylation at this site (56).

Extensive studies demonstrate that other signal pathways may be 

involved in c-Jun regulation. For instance, a PKC-independent pathway induced 

by the EGF receptor has been proposed to activate c-jun transcription (59). In 

this study, EGF or serum stimulation was able to induce c-jun gene transcription 

in PKC depleted NIH /3T3 cells. Another study investigated the role of diacyl- 

glycerol and Ca2+ in the regulation of c-Jun activity in U-937 cells (60). When 

cells are treated with either low doses of diacyl-glycerol, or agents increasing 

intracellular Ca2+, c-jun gene transcription was observed without changes in c- 

Jun activation or AP-1 enhancer activity. However, when these agents act in 

synergy, AP-1 enhancer activity and expression of U-937 differentiation markers 

were noted. This last study emphasizes that regulation of c-jun gene 

transcription and AP-1 enhancer activity could be under separate control. It also 

suggests that dual converging pathways serve to regulate c-Jun activity. In 

support of this, studies demonstrate that activation of JNK-1 in T-cells, is 

dependent on Ca+2 mobilization and PKC activation (92).

Another interesting study reports that a factor isolated and characterized 

from HeLa cell extracts, the Ref-1 gene product, facilitates AP-1 DNA binding 

activity. (61, 62). Reduction of a conserved cys-272 residue on c-Jun protein, 

with either DTT, thioredoxin, or a purified Ref-1 gene product, increased DNA 

binding of Jim/Fos heterodimers to AP-1 sequences, in vitro. In contrast, 

chemical oxidation or modification of critical residues from cysteine to serine, 

inhibits DNA binding. Interestingly, the Ref-1 gene product has apurinic/
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apyrimidinic (AP) endonuclease activity involved in DNA repair. The redox and 

DNA repair properties of Ref-1 can be distinguished biochemically. The reports 

further suggest that a redox signaling pathway could regulate c-Jun activity 

during periods of oxidative stress, or severe DNA damage. In support of this, a 

redox signaling pathway involving nitric oxide (NO) proposes that transcription 

factors involving CREB, NF-KB, c-Jun and c-Fos are likely NO targets (69). It 

remains to be shown how these events relate to or differ from the UV and stress 

induced signaling events known to regulate c-Jun.

Dimerization regulates c-Jun activity.

Another important aspect in the regulation of c-Jun activity is 

dimerization. Since this critical event is a prerequisite for DNA binding, it 

follows that factors regulating dimerization could ultimately regulate c-Jun 

activity. As described earlier, c-Jun specifically interacts with other protein 

family members that have an identical or conserved leucine zipper structure. 

Since other leucine zipper containing proteins do not interact with c-Jun, an 

important aspect in maintaining dimerization specificity is the structure of the 

leucine zipper itself.

But how does dimerization regulate c-Jun activity? While c-Jun can form 

homodimers, it binds weakly to AP-1 sites, in vitro, as compared with Jun/Fos 

heterodimers, suggesting that Jun dimer partners influence the binding 

specificity and affinity to AP-1 sites. Indeed, studies show that the composition 

of Jun homodimers and heterodimers change rapidly during cell stimulation (29). 

During resting Go states, c-Jun homodimers predominate. Immediately after 

stimulation, the composition changes to c-Jun/c-Fos heterodimers, followed by 

c-Jun homodimers after c-Fos levels decay. Heterodimerization with JunD and
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JunB also occurs, but play a minor role. Further studies suggest that while Jun 

homodimers are responsible for maintenance of basal cellular function, Jun 

heterodimers play a role in initiating the induction response. More importantly, 

it demonstrates that the availability of Jun dimer partners at any given time 

point could determine Jun target specifidty, and consequent regulation of Jun 

target genes. Interestingly, c-Jun can interact with other transcription factors 

that do not involve the leucine zipper. These indude the steroid family of 

transcription factors, myoD, NF-KB, and NF/AT complex. This observation 

further supports the assumption that the promiscuous behavior of c-Jun endows 

it with new DNA binding specifidty, which could be responsible for various 

cellular responses.

Negative regulation of c-Jun activity.

An important requirement in the maintenance of appropriate cellular 

function is the immediate inactivation of c-Jun activity after extracellular 

stimulation. Negative regulation can be achieved, in part, by decreasing c-Jun 

protein levels. One mechanism is the transcriptional attenuation of c-jun gene 

transcription that occurs within 30 minutes of extracellular stimuli. Although the 

exact mechanism is unclear, studies suggest that the immediate decay of c-Fos 

proteins contribute to low levels of Jtrn/Fos heterodimers, which in turn reduce 

c-jun gene transcription, and diminish the activation of AP-1 target genes. The 

c-jun message also has inherent destabilizing properties: the 3' end has the 

sequence, AUUUA, which contributes to early mRNA degradation. Moreover, 

the message also has an unusually long GC-rich 5'-untranslated region that 

reduces its translational effidency. Kinetic studies show that although TPA 

treatment induces a 15 fold increase in c-jun mRNA levels, only a 3 - 4 fold 

increase in protein synthesis is observed. Finally, the c-Jun protein has PEST
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regions (proline, glutamic add, serine, threonine) known to enhance protein 

degradation. Recently, the delta region of c-Jun has been linked to ubiquitin 

mediated degradation (63). These destabilizing factors, in combination with 

necessary post-translational requirements for dimerization and DNA binding, 

restrict c-Jun activity to critical events in the cell cyde. It follows then, that 

deregulated c-Jun activity leads to cell transformation.

Overexpression of v-Jun induces cell transformation in CEF.

Extensive studies from our laboratory and others report that deregulated 

overexpression of v-jun induces a rapid and effident cell transformation of CEF 

in vitro (3, 4). The fibroblasts appear transformed by two important criteria: 

loss of contact inhibition and anchorage independence. In addition, these 

phenotypic properties dosely resemble ASV-17 induced tumors in chickens (3, 

35, 37). In contrast, overexpression of c-jun transforms CEF weakly when 

compared to v-jun (10-25 fold less) (4,32), and fails to form tumors in chickens 

(30). Intriguingly, Jim transformed CEF are not immortalized; instead, they 

become vacuolated after 25 to 30 cell doublings, and die. Possible differences 

exist between mammalian and avian systems: the former requires a cooperating 

Ha-Ras oncogene for effident cell transformation (35).

The mechanisms involved in the Jun induced cell transformation of CEF 

are not clearly defined. A working model proposes that the structural alterations 

in v-Jun affect its functional properties, as exhibited by an increase in its 

transformation potential. These points will be discussed below.
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Structural alterations in Jun protein affect its functional properties.

The structural differences between c-Jun and v-Jun are shown in figure 1. 

v-Jun has a gag leader sequence obtained from the transforming retrovirus, a 27 

amino add  deletion at the amino terminus that maps to a transactivation 

domain, and contains three point mutations at the carboxyl terminus (35). 

Studies show that deletion of the 27 amino ad d  region (called the delta domain) 

is critical to v-Jun's transformation potential (4, 5,70). The delta domain contains 

regulatory sequence information influendng Jun stability (63), DNA binding, 

dimerization (58), trans-activating properties, as well as its translocation to the 

nudeus (75). In addition, loss of the delta region affects the ability of specific 

kinases, such as JNK/ SAPK, to effidently phosphorylate Jun proteins in vitro 

and in vivo (39). Deletion also increases v-Jun’s half-life by redudng ubiquitin 

mediated degradation (63). Consequently, post-translational modifications 

responsible for appropriate stringent control are lost, contributing to a stable, 

unregulated v-Jun protein. Although c-Jun possesses no structural defect, weak 

transformation still occurs since expression from the retroviral LTR, maintains 

high levels of c-Jun, thus prolonging its activity (4). Taken together, the 

differences in transformation potential between c-Jun and v-Jun, can be 

explained, in part, by their structural differences, namely loss of the delta 

region in v-Jun.

Dimerization affects Jun transforming ability.

During normal physiological conditions, the half-life of potential Jun 

heterodimer combinations is low, and restricted to the Go to Gi transition phase 

in vivo (67). Studies estimate that dimerization among the Jun and Fos family 

members alone contribute to 15 potential dimer combinations with varying 

affinities and spedfidties to AP-1 sequences in vitro (22). Although the estimated
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number of complexes appear high, and may increase since Jim interacts with 

other non-leudne zipper factors, the predicted number of complexes at any 

given time point is actually lower since Jim proteins are inherently unstable and 

turnover rapidly. However, when stable v-Jun proteins are overexpressed, the 

half-life and repertoire of potential dimer combinations along the cell cycle 

would increase dramatically. It follows that these new complexes would illicitly 

regulate their target genes, and ultimately contribute to cell transformation.

Changes in v-Jun functional properties could induce transformation by 

inappropriate regulation of target genes.

The mechanisms involved in cell transformation have received much 

attention in the scientific community (1). One model proposes that oncogenic 

transformation might result from a change in the pattern of target gene 

expression mediated by changes in DNA binding or transactivation of target 

genes (2). A similar situation could occur for v-Jun induced cell transformation. 

Conceivably, overexpressed v-Jun would lead to stable interactions with other 

transcription factors, thereby increasing the repertoire of potential transcription 

regulators. Such interactions could occur both at the protein and DNA level. 

Consequently, cell transformation would arise from the illicit regulation of AP-1 

and AP-1 related target genes.

Although there is no evidence that v-Jun behaves this way, studies show 

that its cellular homolog does. For example, unregulated c-Jun proteins can 

inhibit estrogen receptor activity in human breast cancer derived cells (13). c-Jun 

proteins can also interact with a variety of transcription factors both at the DNA 

level and the protein level (10-15, 18-20, 23, 51). For instance, the master 

regulatory protein, myoD, interacts with Jun proteins during myocyte cell
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differentiation (14, 15). Jun/ AP-1 proteins also interact with the thyroid 

hormone receptor (18), and the glucocorticoid receptor complex (11, 12). 

Interactions with other factors alter the pattern of target gene expression and 

overall cellular response. For instance, NF-KB p65 and Jun/AP-1 protein 

interactions produce potentiated biological responses (10); myoD and Jun 

interactions affect myogenic differentiation (14). Finally, some of these 

interactions are regulated by extracellular signals: Dimerization between the NF- 

AT p /c  and c-Jun proteins are dependent on calcium and PKC signals, 

respectively. The resulting NF/AT complex is required to activate critical target 

genes. Activation of these factors by PKC or calcium alone, stimulates a 

different set of target genes (39).

Problem and hypothesis

The mechanisms involved in Jun induced cell transformation are not 

completely understood. One model proposes that the structural changes in v- 

Jun contribute to its altered functional properties (4). We test the hypothesis that 

such changes influence the pattern of target gene expression (2). Consequently, 

several target genes would be activated or repressed inappropriately. Cell 

transformation would result from a change in the balance between potential 

oncogenic and tumor suppressor target genes (2). This dissertation therefore 

aims to support the hypothesis by identifying potential genes regulated by v- 

Jun, and to implicate them in cell transformation.
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Objectives

A detailed listing of the objectives are as follows:

AIM 1: Determine v-Jun target specificity in vitro.

• construct in vitro AP-1 target sequence mutants;

• characterize the DNA binding specificity of each mutant AP-1 target 

sequence in VJ-1, CJ-3, and RCAS nuclear extracts;

• determine the transactivation potential of each in vitro AP-1 fragment 

in VJ-1, CJ-3 and RCAS cells;

AIM 2: Isolate in vivo target genes associated with v-Jun induced cell 

transformation by:

• subtractive hybridization:

• differential screening of subtracted library;

• identification of differentially expressed clones;

• Northern blot analysis to confirm differential nature;

• differential display:

• improve the technique;

• identification of differentially expressed clones;

• Northern blot analysis to confirm differential nature;

• partial DNA sequence analysis;

• GENBANK database searches;

AIM 3: Characterize clone 4, a gene up-regulated in v-Jun transformed CEF;

• DNA sequence analysis;

• GENBANK and SWISS-PROT database searches;

• generation of full length cDNA clone by 5' RACE;
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AIM 4: Characterize done 15-15, a gene repressed in v-Jun transformed CEF;

• evaluate the stability of apo-Al mRNA;

• identify the Jun responsive element on the apo-Al promoter;

• characterize the Jim responsive element by promotor deletion analysis 

and DNA transactivation studies;

• assess the DNA binding properties of the putative responsive element;

• speculate on a mechanism for the transcriptional regulation of the 

chicken apo-Al gene in v-Jun transformed CEF;
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Chapter II. MATERIALS and METHODS

Table 3. Primers used in this study

primer sequence shown 5' to 3'

A p o A l p r im ers
ApoAl-primer 1 
ApoAl -primer 2 

ApoAl-primer 3 

ApoAl-primer 4 

ApoAl-primer 5 

ApoAl-primer 6 
17 primer 
SP6 primer 
SP6-T primer

CACTGCTCGTCCCGTGTGAG 

CCTCCGTCCACTTGGCAGAGAAC 
GGAGAGGAGATT AAGGAGGGGTCC 

CTCACACGGGACGAGCAGTG 

CGGGGAGCTCCTGTTTGCTGAGG 

GCTCTCCTGCCGCTGCTCCG 

TAATACGACTCACTATAGGG 
GGATTT AGGTGACACT AT AG 

GATTTAGGTGACACTATAGAATACT-11

d if fe r e n t ia l d is p la y  p rim ers

DD-17 5 '-primer 
DD-18 5' primer 
DD-20 5' primer 
DD-A 3' primer 
DD-G 3' primer 
DD-T3' primer 
DD-C 3' primer

c lo n e  4  p r im ers
clone 4 primer B 

clone 4 nested primer 
anchor primer 
reverse anchor primer

CTGCTCTCA 

CTTGATTGCC 

CTGATCCATG 
T12-VA V=A,G, or C
T12-VG V=A,G, or C
T12-VT V=A,G, or C
T12-VC V=A,G, or C

TACATACAGCTCTCATCCTGCCCGATGTAG
GTCCGGCCCTTCAGCTGCC
CACGAATTCACTATCGATTCTGGAACCTTCAGAGG
CTGGTTCGGCCCACCTCTGAAGGTTCCAGAATCGATAG

A P -1 p r im ers

GGGTCTAGAATGACNCATCGGATCCTGCAGGA
GGGTCTAGAATGACTNATCGGATCCTGCAGGA
GGGTCTAGAATGACTCNTCGGATCCTGCAGGA
GGGTCTAGAATGANTTATCGGATCCTGCAGGA
GGGTCTAGAATGACNTATCGGATCCTGCAGGA
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Transformation of chicken embryo fibroblasts

Primary chicken embryo fibroblasts (CEF) were isolated from 9-11 day 

old chicken embryos and transformed by infection with a replication competent 

retroviral vector, RCAS, designed to overexpress either v-Jun or c-Jun (4, 38). 

CEF infected with vector sequences alone do not transform and serve as normal 

control. Jun overexpression is verified by Western blot analysis. These cells are 

used to isolate nuclear extracts for DNA binding assays, to isolate RNA for 

Northern blot analysis, the differential display and subtractive hybridization 

approach; CEF were also used for DNA transfection assays.

Generation of mutant AP-1 fragments and reporter CAT constructs.

Sixteen in vitro generated mutant AP-1 sequences containing variations in 

the consensus AP-1 site, were constructed by primer extension of two 

overlapping oligonucleotides. Five different oligonucleotides (table 1) containing 

a degenerate nucleotide at a single position were allowed to anneal, and were 

then extended with Klenow to generate double stranded sequences. After 

restriction digestion, sequences were cloned into pGEM4 vector and amplified in 

appropriate hosts. Individual clones were isolated and verified by sequencing. 

The overall strategy is described in figure 2. The resulting sequences are shown 

in table 4. These sequences are used in a DNA binding assay described below, 

and were cloned upstream from the human metallothionein promotor of a 

reporter CAT construct, pMCAT III, for DNA trans-activation studies.

DNA binding assays

DNA binding assays are a modification from Nakabeppu (43). Briefly, 1 

to 10 ug of nuclear extracts in a reaction buffer containing 1 u g / uL poly dl-dC 

poly dl-dC, 10 mM HEPES pH 8.0, 4 mM MgCk 17.5% glycerol, 0.1 mM EDTA,
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20 mM NaCl, 2 mM DTT, and 2 mM spermidine are pre-incubated on ice for 15 

minutes, followed by incubation with 50,000 cpms of labeled probe. The 

resulting complexes formed are separated on a 4-6 percent (59:1) acrylamide/ bis 

-acrylamide /TBE gel, dried, and exposed to autoradiographic film. 

Competition shift assays used a 40 to 100 fold excess of unlabeled homologous 

oligonucleotide or specific antibody. Quantitation of binding intensity is 

determined by densitometric scanning.

DNA transactivation

Sequences of interest were either cloned upstream from the human 

metallothionein promotor at the Bgin site of the pMCAT 3 construct, or into the 

multiple cloning site of the pCAT/Blue construct, which contains the CAT gene 

in a pBluescript SK (+)vector. These reporter CAT constructs were transiently 

transfected into either v-Jun transformed, c-Jun overexpression or normal CEF 

by a DMSO-polybrene procedure (40). Relative transcriptional activation from 

these sequences are evaluated by a CAT assay (45); quantitation of CAT protein 

expression was done on a phospho-imager (Molecular Dynamics). CAT 

expression was normalized to B-galactosidase activity from the construct, 

pCHllO.

Northern blot analysis

Total RNA was isolated from transformed or normal CEF by an add- 

phenol extraction procedure (41). Briefly, CEF are lysed in guanidine-isothio- 

cyanate solution, and extracted with add  phenol and chloroform. The aqueous 

phase containing RNA was predpitated with isopropanol, and rinsed with 

ethanol. 10 to 15 ug of total RNA was then separated on a 1 per cent agarose/ 

formaldehyde gel, transferred to nylon membrane, UV-crosslinked at 150
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mjoules/ cm2, and hybridized to a labeled probe at 42 °C for 3 to 4 hours. Excess 

probe was removed by several 20 minute stringent washes in 0.1 X SDS /  0.1 

%SSC at 42 ° to 60 °C, and exposed to X-ray film for autoradiography (53).

Differential screening of a subtractive cDNA library

Enrichment of unique sequences from a subtracted VJ-1 cDNA library 

were accomplished by a Reverse Northern procedure (42). Briefly, 5 ug of 

mRNA from v-Jun transformed CEF (VJ-1), c-Jun overexpressing (CJ-3), and 

normal CEF (RCAS) were each extended by reverse transcription using 20 

pmoles of SP6 Oligo T primer, in IX RT buffer (BRL) containing 400 mM dNTP, 

100 mM DTT, 5 ng / mL Actinomycin D, and 300 units of MoMuRT, at 37 °C for 

45 minutes. The cDNA sequences were converted into double stranded 

sequences with Klenow and random hexamers (53). The resulting sequences 

contained an SP6 site at one end allowing generation of large amounts of labeled 

anti-sense RNA using SP6 RNA polymerase (42, 53). 3,000 colonies from the 

subtracted VJ-1 library were poked out into LB plates in quadruplicate. Colony 

lifts were prepared from three sets; the nylon filters were UV-crosslinked at 150 

mjoules (BioRad UV-crosslinker) and pre-hybridized for 5 hours at 65 °C (53). 

Each set of labeled anti-sense transcripts were then hybridized to individual 

colony lifts from the subtracted library overnight at 65 °C, washed in stringent 

conditions, and exposed for autoradiography (53). Unique colonies hybridizing 

to VJ-1 labeled transcripts but not to CJ-3 and RCAS were identified, and 

isolated from the unhybridized set.

Construction of ApoAl promotor CAT plasmids.

All promotor fragments used in the study utilized the pCAT/ Blue 

construct generated by inserting the HinDIII/ BamHI CAT gene fragment from
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pSV2CAT plasmid, into the HinDIII/ BamHI site of pBluesaipt SK (+) 

phagemid. The -193/20 fragment was generated by PCR amplification using 

ApoAl primer 5 and 1. The -193/20 fragment was generated by digesting the 

5/1 PCR fragment with Sadi which removes 20 bases of exon 1. The -300/263 

fragment was generated by isolating the 563 bp KpnI/PstI fragment from the 

p7.5 ApoAl /Blue construct, which contains the 7.5 kb genomic sequence cloned 

into pBluescript. The -300/ 43 fragment was generated by PCR amplifying the p- 

300/263 ApoAl CAT construct with ApoAl-primer 6 and a T7 primer which 

hybridizes to polylinker sequences. The -300/20 fragment was generated by 

PCR amplifying the p-300/263 ApoAl construct with ApoAl primer 1 and T7 

primer. The -3.3/43 construct was generated by inserting the 3.0 kb Asp718 

fragment from p7.5 ApoAl /  Blue into the unique Asp718 site of p-300/ 43 ApoAl 

CAT construct. The -3.3/20 construct was generated by inserting the 3.0 kb 

Asp718 fragment into p-300/20 ApoAl CAT construct. The p-300/0 fragment 

was isolated from a Kpnl/ Sac II digestion of p7.5 ApoAl/Blue. The 3.3/0 

ApoAl construct was generated by inserting the 3.0 kb Kpnl/ Kpnl fragment 

from p7.5 ApoAl/Blue into the Kpnl site of p-300/0 ApoAl-CAT. The p-6.8/0 

ApoAl- construct was generated by ligating the 7.6 kb HinDIII/ Xbal fragment 

from p7.5 ApoAl/Blue with 4.1 kb HinDIII/ Xbal fragment from p-3.3/0 ApoAl 

CAT construct.

Differential display

The modified differential display procedure is described in reference 46. 

Briefly, the reverse transcriptase step was accomplished by annealing 0.2 ug of 

mRNA with 250 pmoles of unlabeled 3' primer (Table 1) at 65 °C for 5 minutes, 

followed by extension at 37 °C for 1 to 1.5 hours. The reaction was terminated 

at 90 °C for 3 minutes. The RT reaction buffer contained 10 mM DTT, 0.5 mM
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dNTP, 12.5 ng/uL Actinomycin D and 300 units of Moloney murine Reverse 

transcriptase (BRL Gibco). After the RT reaction, the RNA template was 

removed with 1 ug/m L RNAse A digestion. Excess primers, unincorporated 

dNTP and degraded RNA were removed by size exclusion on a Chromaspin-10 

column. One fourth of the resulting single stranded cDNA sequences were then 

PCR amplified with 20 pmoles 5'-primer and 20 pmoles of end labeled 3-primer, 

for 35 to 40 cycles at 94° C/ 45 seconds, 40 ° to 42 °C /  2 minutes, and 70 °C /1 

minute. The IX PCR buffer (Promega) includes 200 uM dNTP, 1 mM MgCk and 

5 units of sequencing grade Taq DNA polymerase (Promega). The PCR products 

were separated on a 5% denaturing poly-acrylamide / urea gel, and exposed for 

autoradiography. Selected bands were excised, PCR amplified, and sub-cloned 

into a PCR cloning vector, pGEM-T (Promega). Differential expression was 

verified by Northern blot analysis. Selected clones were sequenced by a 

dideoxy method using a USB sequencing kit, according to manufacturer’s 

suggestions.

Construction of cDNA libraries and subtractive hybridization

Briefly, three plasmid cDNA libraries were prepared from mRNA isolated 

from v-Jun transforming (VJ-1), c-Jun overexpressing (CJ-3), and from normal 

CEF (RCAS). To obtain sequences unique to v-Jun transformed cells, a VJ-1 

minus RCAS subtraction was performed. Briefly, single stranded sequences 

were obtained from RCAS cDNA libraries by phage rescue utilizing dNTP-biotin 

incorporation. These single stranded sequences were then extensively 

hybridized with double stranded plasmid sequences from VJ-1 cDNA library, 

and separated on a Strep-Avidin column. Common sequences are retained in 

the column, while unique sequences elute out, and were packaged for infection 

to appropriate hosts. Similar strategies to isolate sequences unique to c-Jun
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overexpressing cells were performed. Plasmid and subtracted libraries were 

prepared by Dr. Timothy J. Bos.

DNA Sequence Analysis

DNA sequence analysis was performed by the dideoxy sequencing 

method utilizing the USB Sequenase Kit, according to manufacturer's 

recommendations.

Table 4. AP-1 a n d ’AP-1 like' sequences used in study.

sequence description
TGACTCA consensus AP-1

TGACATCA chicken jun promotor

TGACGTCA CREB

TGACTAA SV40 promotor

TGACTCG

TGACTCT

TGACTGA

TGACTTA

TGACTCC

TGACCCA

TGACCTCA

TGACGCA

TGACACA

TGATTTCA

TGAGTTCA

TGACTTCA
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GG6TCTAGAATGACTCATCGGAXCCTGCAGGA

Anneal

GGGTCTAGAATGACTCATCGGATCCTGCAGGA
AGGACGTCCTAGGCTACCCAGTAAGATCTGGG

*
Xba I Pst I Xba I

GGGTCTAGAATGACTC0CGGATCCTGCAGGATCCGATGG6tcATTCTAGACCC
CCCAGATCTTACTGAG^GCCTAGGACGTCCTAGGCTACC£JM;TAAGATCTGGG

BaniHI BamHI

.  Pst I 
♦  Xbal

CTAGAATGACTCMCGGATCCTGCA GGATCCGATGGGTCATT
TTACTGAGjrjvGCCTAGG ACGTCCTAGGCTACCCAGTAAGATC

clone into pGEM 4 at 
Pst I and Xba I

*

Figure 2 Strategy for generating 16 different AP-1 mutant sequences.
Five different oligonucleotides containing a degenerate nucleotide at a single 
position were allowed to anneal, and then extended with Klenow to generate 
double stranded sequences. After restriction digestion, sequences were cloned 
into pGEM4 vector and amplified in appropriate hosts, Individual clones were 
isolated and verified by DNA sequencing. The (*) indicates residues in the 
primer that contained all four nucleotides. Individual primers contained only one 
degenerate nucleotide.
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Chapter III. RESULTS

AIM 1: Determine v-Jun target specificity in vitro.

As mentioned earlier, overexpression of Jun proteins could potentially 

increase the repertoire of possible dimer combinations, and consequently alter 

the pattern of target gene expression. To evaluate this possibility, the DNA 

binding properties of overexpressed Jun complexes formed in vivo against in 

vitro generated AP-1 and AP-1 related' sequences were assessed. We wished to 

compare our findings with previous studies demonstrating variations in DNA 

binding using in vitro translated Jun proteins to in vitro generated AP-1 sequences 

(22,52). We also wished to determine the trans-activation potential of these AP-1 

sequences in the context of v-Jun transformed conditions and normal conditions, 

and correlate them to DNA binding. We expect to find qualitative and 

quantitative differences in target recognition and transcriptional activation 

between v-Jun and c-Jun proteins during overexpression. These studies not only 

establish experimental conditions necessary to identify in vivo target genes but 

will give us an idea on potential regulatory mechanisms involved in v-Jun 

induced transformation.

DNA binding to consensus AP-1 and related AP-1 sequences.

To investigate the DNA binding properties of in vivo Jun complexes, 

nuclear extracts from v-Jun transformed, c-Jun overexpressing, and normal 

CEF, were isolated and used in a gel shift assay to the consensus AP-1 and to the 

various AP-1 like sequences. These nuclear extracts represent possible Jun dimer 

complexes formed in vivo under those conditions. Figure 3 shows that the 

consensus AP-1 sequence, TGACTCA, is recognized by two distinct complexes
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Figure 3 DNA binding to consensus AP-1 and related AP-1 
sequences.
Competition shift assays of related AP-1 sequences against the 
consensus AP-1 sequence to in vivo Jun complexes present in v-Jun 
transformed (VJ-1), c-Jun overexpressing (CJ-3), and normal CEF 
infected with retroviral sequences only (RCAS), were assessed. A 40 
to 50 Molar excess of competitor fragments were used. Arrows show 
position of complex 1 and 2. lane positions are:

lane 1 probe alone TGACTCA
lane 2 no competition
lane 3 TGACTCA
lane 4 TGACTCG
lane 5 TGACTCT
lane 6 TGACTCC
lane 7 TGACTTA
lane 8 TGACTAA
lane 9 TGACTGA
lane 10 TGACCCA
lane 11 TGACGCA
lane 12 polylinker
lane 13 TGACACA
lane 14 TGATTTCA
lane 15 TGAGTTCA
lane 16 TGACTTCA
lane 17 TGACCTCA
lane 18 TGACATCA
lane 19 TGACGTCA
lane 20 polylinker
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present in all three cell types. Interestingly, no significant differences in band 

intensity were noted among the three conditions even when Western blot 

analysis show that Jun proteins are greatly overexpressed in CEF transformed 

with either c-Jun or v-Jun. (Figure 4). This finding suggests that only small 

amounts of Jun proteins are required for DNA binding to the consensus AP-1 

site, or that much of the overexpressed protein may be inactive.

To determine if other AP-1 related sequences are preferentially 

recognized over the consensus AP-1 sequence, sixteen different but related AP-1 

sites (figure 2; table 4) were used in competition shift assays (figure 3). The 

study shows marked differences in the ability of each nuclear extract to 

preferentially recognize the consensus AP-1 site. Table 5 shows the statistical 

analysis of relative DNA binding among the different AP-1 sequences, between 

both complexes, and among cell types. Interestingly, the variations occur in the 

lower band. While most of the sequences did not compete with the consensus 

AP-1 site, five of the sixteen AP-1 like sequences show dramatic differences. This 

finding suggests that complexes formed during v-Jun overexpression 

preferentially recognize a different subset of AP-1 related promotor sequences, 

as compared to the complexes when c-Jun is overexpressed, or to Jun complexes 

during normal conditions. Such differences in substrate specificity indicate that 

Jun overexpression increases the repertoire of available heterocomplexes, and 

consequently affect DNA binding or DNA trans-activation of Jim target genes.
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Day 4 Day 7

Figure 4 Western blot of overexpressed Jun proteins.
Protein from v-Jun transformed CEF (VJ-1), c-Jun overexpressing 
CEF (CJ-3), and normal CEF infected with vector sequences alone 
(RCAS) were assayed for Jun expression using a Jun specific antibody, 
PEP-1. Expression was monitored 4-7 days after infection.

page 32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5 Statistical analysis of DNA binding to AP-1 and AP-1 like sequences.

Relative competition by AP-1 and 'AP-1 like1 sequences for binding to specific 
in vivo complexes.

VJ-1 CJ-3 RCAS

com plex
1

com plex
2

com plex
1

com plex
2

TGACTCA 86 +/- 08 82 +/- 04 87 +/-09 89 +/-06
TGACTCG 20 +/-19 18 +/-15 34 +/-25 47 +/-1I
TGACTCT 23 +/-16 31 +/-18 28 +/-24 36 +1-22
TGACTCC 26 +/-16 10 +/-I4 18 +/-07 14 +/-09
TGACITA 5 +/-09 11 +/-10 09 +/-05 15 +/-19
TGACIAA 47 +/-14 37 +1-23 56 +/-08 70 +/-14
TGAGCTCA 9 +/-13 13 +/-18 21 +/-07 3 +/-04
TGACCCA 9 +/-I3 0 +/-00 12 +1-07 0 +/-00
TGACGCA 61 +/-09 60 +/-17 64 +/-I6 70 +/-14
TGACACA 41 +/-21 26 +/-19 54 +/-23 66 +/-06
TGATTCA 7 +/-11 0 +/-00 15 +/-19 26 +.'-03
TGAGTI’CA 12 +/-10 14 +/-17 7 +/-09 34 +/-16
TGACITCA 12 +/-I7 13 +/-15 7 + 1 2 68 +/-13
TGACCTCA 17 +/-17 14 +/-13 13 +/-I5 58 +/-03
TCiACA’l'CA 48 +/- 22 51 +/-25 50 +/-28 83 +/-07
TGACGTCA 80 +/-17 70 +/-28 82 +/-18 96 +/-03

complex complex 
I 2

86 +/-12 

6+/-08 
24 +/-12
9 +/-I2 

30 +/-13 
35 +/-38
10 +/-14 
7 +/-09 

48 +/-30 
43 +/-26 
10 + /-17  

9 +/-08 
15 + -11 
18 +/-23 
43 +/-41 
83 +/-11

93 +/-04 
28 +/-12 
60 +': |7  
3 +/-04 

57 +/-11 
50 +Z-36 
3 +1-04 

26 +/-16 
63 +/-29 
45 +/-07 
32 +/-11 
57 +'-09 
76 +/-05 
68 +/-05 
82 +/-U 
1(X) +/-07

Significant differences between complex 1 and complex 2 within each cell type are 
denoted by boxes. Differences calculated by ANOVA with P = 0.05.

Variations in target recognition by individual complexes between cell

complex 1________   complex 2

v-Jun c-Jun RCAS v-Jun c-Jun RCAS
TGACITA 5 +/-09 19 +/-05 30 +/-13 II +/-10 15 +/-I9 57 +/-II

TGACACA 26 +/-19 66 +/-06 45 +'-07
TGATITCA (X) +/-CX) 26 +/-03 32 +/-1I

TGAG'ITCA 14 +/-I7 34 +/-16 57 +'-09

TGACITCA 13 +'-15 68 +'-13 76 +'-05
TGACCTCA 13 +/-15 58 +/-03 68 +/-05
TGACATCA 51 +!-25 83 +/-07 82 +/-I1

Significant differences were determined by ANOVA with P = 0.05.
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Identification of in vivo  complexes that recognize the AP-1 site.

Having demonstrated variability in DNA target recognition among Jun 

complexes to different AP-1 related sequences, antibody shift experiments were 

performed to identify the complexes present in both bands. Figure 5 shows that 

a Jun specific antibody reduces the band intensity of both complexes in all three 

cell conditions. This finding suggests that Jun proteins form at least two 

complexes with other nuclear factors resulting in different molecular weight 

aggregates. It is interesting to note that in vitro generated c-Jun and v-Jun 

homodimers bind DNA very weakly, and require other dimer partners to 

efficiently demonstrate DNA binding. Most likely, Jun proteins require other 

nuclear factors to efficiently trans-activate AP-1 target sequences. Efforts to 

identify other Jun partners were also performed. Anti-fra-2 antibodies cause a 

super-shift in all three nuclear extracts (figure 5). It is possible that one or both 

complexes contain Fra-2 proteins.

DNA transactivation studies.

Having demonstrated that overexpression of either v-Jun or c-Jun 

complexes alters the DNA binding pattern to different AP-1 target sequences, 

we wished to determine if such differences correlate with transcriptional 

activation or repression of these target sequences in the various cell conditions. 

To accomplish this, reporter CAT constructs containing the consensus AP-1 

sequences were first tested in a DNA trans-activation study. While noticeable 

transcriptional activity occurs from the consensus AP-1 site, no significant 

differences in DNA trans-activation were noted in all three cell conditions (figure 

6). This finding is consistent with the DNA binding data from the consensus AP- 

1 sequence, and indicates that no preferential transcriptional activity occurs 

during v-Jun or c-Jun overexpression, or during normal conditions.
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Figure 5 A ntibody Shift Com petition assay 
Nuclear extracts from v-Jun transformed CEF (VJ-1), c-Jun overexpressing 
(CJ-3), and normal CEF infected with vector sequences only (RCAS) were 
used against the consensus AP-1 site. Lane 1: probe alone: TCACTCA; 
lane 2: no competition; antibodies used were: anti-Jun polyclonal (3); anti- 
Jun PEP1 (4); anti-CREB (5); anti-Fra-2 (6); anti-Fos B (7); anti-Jun B (8); 
anti-Fos (9); goat anti-rabbit (10). In vitro translated v-Jun/ c-Fos proteins 
were also used against consensus AP-1 site; no competition (A); anti-Jun 
polyclonal (B); anti-Jun PEP1 (C); and anti-c-Fos (D). Arrows show 
locations of complex 1 and 2; Dark spot on lane 6 shows supershift using 
anti-Fra-2 antibodies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



VJ-1 1 2 3 4 5 6 7 8 9  10 A B C D

CJ-3 1 2 3 4 5 6 7 8 9  10
s** ■> ». -W  *■>» If ft V'. •

RCAS 1

page 35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6 Transcriptional activation of AP-1 and AP-1 like
sequences.
Reporter-CAT constructs containing AP-1 and AP-1 like sequences were 
transfected into v-Jun transformed (VJ-1, c-Jun overexpressing (CJ-3) 
and Normal CEF infected with retroviral sequences only (RCAS), to 
investigate their transcriptional responses. This figure shows the results 
from the CAT assay. All AP-1 sequences were cloned pMCAT-3 
construct, which contains the human metallothionine promotor; jun- 
CAT construct contains the jun promotor; lane descriptions are:

lane 1 TGACTCA
lane 2 TGACTTA
lane 3 TGACTGA
lane 4 TGACTCT
lane 5 TGACTCC
lane 6 TGACGCA
lane 7 TGACACA
lane 8 TGACTCG
lane 9 TGACTAA
lane 10 pMCAT-3
lane 11 j  un-CAT
lane 12 TGACCTCA
lane 13 TGACTTCA
lane 14 TGAGTTCA
lane 15 TGATTTCA
lane 16 TGACTCA
lane 17 TGACCCA
lane 18 TGACATCA
lane 19 TGACGTCA
lane 20 pMCAT-3
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When the mutant AP-1 sequences were tested for transcriptional activity 

in the 3 cell conditions, the responses produced were below background levels 

(figure 6). While these observations are difficult to interpret since the flanking 

sequences dose to the AP-1 site greatly affect its transcriptional potential (22), it 

is conceivable that a majority of the overexpressed Jun complexes are inactive, 

or that DNA binding to these mutant AP-1 sequences results in transcriptional 

repression.

In summary, we show that overexpression of v-Jun proteins results in a 

change in substrate specifidty in vitro. It is conceivable then that a corresponding 

change in the pattern of target gene expression occurs in vivo. For this reason, 

we chose to identify potential target genes induced during v-Jun transformation.

AIM 2: Isolate in vivo target genes assodated with v-Jun induced cell 

transformation.

Two approaches to identify genes induced during v-Jun transformation 

are differential display and subtractive hybridization. Both strategies utilized 

mRNA obtained from v-Jun and c-Jun transformed CEF, as well as from normal 

CEF. mRNA from c-Jun expressing cells are induded to characterize 

transformation assodated genes from the weakly transforming c-Jun gene. CEF 

are chosen in this study since they are effectively transformed by the v-Jun 

oncogene without cooperation from other cytoplasmic oncogenes. This is 

significant since other cooperating oncogenes could potentially activate another 

distinct set of target genes complicating analysis (36).
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Three potential target genes were isolated by subtractive hybridization.

Using the subtractive hybridization approach, three potential target 

genes were isolated. Clone 4 is a 700 bp clone showing consistent over­

expression in v-Jun transformed CEF over normal CEF. Northern blot analysis 

from 5 separate RNA preparations show a 3 to 7 fold increase in steady state 

mRNA levels (figure 7). DNA sequence analysis and GENBANK database 

searches show strong homology to a cysteine thiol protease, (see further details 

in Aim 3.)

Clone 943 is a 2.2 kb clone that appears to be differentially expressed in v- 

Jun transformed CEF by Northern blot analysis (figure 7). Recent experiments 

however, show variability in the level of gene expression, perhaps due to 

different cell growth conditions, or different stages in the progression of cell 

transformation. Further studies to address this are under investigation. Partial 

DNA sequence information for clone 943 using SP6 and T7 primers is shown in 

figure 8. GENBANK database searches do not show homology to any known 

genes.

Clone 15-15 and 14-67 are two of several clones obtained by differential 

screening of a subtracted v-Jun cDNA library. Northern blot data from 5 

different RNA preparations show a consistent 3 to 10 fold higher level of clone 

15-15 expression in normal CEF over v-Jun transformed CEF (Figure 7). DNA 

sequence analysis show that both clone 15-15 and 14-67 are identical. GENBANK 

database searches show strong identity to a previously isolated chicken 

Apolipoprotein A1 gene, (see further details in Aim 4.)
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clone 4 clone 943 clone 15-15

V C R  V C R

clone 14V clone 103V

Figure 7 Northern blot analysis of v-Jun target genes 
Northern blot analysis showing differentially expressed clones 943 and 14V; 
overexpressed clones 4  and 103 V; and a repressed clone 15-15; total RNA was 
isolated from v-Jun transformed CEF (V); from c-Jun overexpressing cells (C); 
and from normal CEF infected with vector sequences only (R).
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5 '  TGAGTGTTTCCTGAATAAATGGACACAGAAATAGAAGGATTGAATATTG
TACCCAATTGGTTTTGAATTTAACCTATTTGCTAGGCTTTTACAGACAG
ATCAGGACAAACAGCACTTAAATAAATCTACAGASTGCAAAACAATAAT
GVAAMMAGTGAGCAGAGATAGCTTACYTSGHYGATGAATGMACCATSCA
CMCTTTTGCGACGTTTCATGTAATTGCTTTTCCTCTCCGGTCATTAAGA
ACMGAAATGTTCCAACTGGCTTTAGGTATGAGATTTTTATTGTTATTTT
AAATTGCCAGTTGTTGGRGATCAGATATTGAGTGCMGTCAGCACTGGAG
TTCCTCTCTGCTTTTWTGTWGATAAACAAATATATCTWGATATCCTTGT
AGTATGCTCTTATCTGTTGGAGTTGCACAGCAGTGGTGTGATGCTGCGT
GCTCCTGCCCTAAACATACAGAACAAGTGCTCTGCACTCCCCAGAGGGC
TGCAATGGGAAGGGACTTAATTGTACTGGGTGTCTTCTGGGTTACATCC
CTCTGTTTTTCACTCCTGCTTTGTGGATCGAATTTYCTAAGTAGAAAAA
CAGGGGAAAGGAGCAGGTGACTCTTGCTGGGAAWTGTAGCAGAGAATAC
TTATTTCTANYTCTWGATYTAAGTWCAMTYTGATTACTYHDB?AGAGTT
TGGATACAYBCATGCAAATTAAAGAWTTAAACTAAATCTGATAAACTGT
CTGTGTGATTGTAGGCTCTGGSCARGGGTGAGGGGGAAATACCTTTAAC
CTAGAAAGCTTGAYRSMTWKYTWSAGTATTCTAT--------------------------
 / / -------------------------------------------------------------------
TCTGAATGAAAGGATCACAGCAACAAMCTCACAAGTGTATTTTATCCTG 
CAGCTGGTAATATTTGGGACMAAGGTCTAAGGTGCTGACTTTACCAAAA 
ATGGTAGACAATGATAGATACCAGCAAMWTRDAGGCAGCTT?GAAGAGA 
ATTTCATATGRACTGGCAGCGCTAAACGTGTRGAAAATWTATAAATCST 
TTRRGSARGAAWTTAAACTCTTTTAAAATGAGGGAAATAAAACTGTTTT 
CTCATGAAACATTACAACCACTTGGCCTTTCTGTTCCCTTTGGTGCAGA 
GCTGTGTTGCTTAGGAGGGGCTCCACTGGCTCACTCATTGAAAGGCCCA 
GTGTTCCTGAAGTACATTGCCACTGATGTCAATGAGAGCAGAAGCAAGT 
CAGAAACGATGCAAAGAGAAAGTTAAGCAAAGTTGTGAAGAGCTCAGCT 
TCTGCCAACAGAACAACAAACAATCTGGGTTGTGTTAAACTCATGTCTG 
GTGSCTTATTTCTGCSWACATTACTAGATGAAACATCWTCMARGTGGCT 
TAAGATGCAAAGTTTTCATTTCTTTATGGTCTACAGCTGATAAGAGCAT 
ACCTTTAGATAATACTGTTTTCAGCCMTGGTTGCTCCBTAWTTTCWAAT 
BCATGTTCCTCTYCYTCCCCACAAAGGACCAGCAACACTTTGGCATTTT 
TCCTGTTDTCCCACCAAATBGTGTTCCCATTTTCCAATTTGTGTGCCAA 
ATTGAAATGACAATTCTATNAAATAAAACCTCTGAAAAAATAAAAAAAA 
AAAAAAAAAAAAAAA 3 ’

Figure 8. Partial sequence fo r clone 943.
DNA alphabet: A=Adenosine; C=Cytidine; G  =Guanosine; T  =Thymidine; 
R =A o rG ; Y = C o rT ; N = G ,A ,T ,o rC ; B = C ,G ,o rY ,n o tA ; D =A, G or 
T, not C; H,=A, C, or T not G; V =A, C, or G not T; K=G or C; M =A or C; 
S =G or C; W  =A orT;
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Differential display

As an alternative to the conventional subtractive hybridization strategy, 

the differential display approach (25-27), was exploited to identify genes 

associated with v-Jun induced cell transformation. The flow diagram in figure 9, 

highlights the important aspects of this technique. In this approach, mRNA or 

total RNA is extended by a reverse transcriptase reaction (RT) utilizing 1 of 4 

types of 12 to 14-mer 3’-primers (table 1). These 3' primers have sequences 

complementary to the polyA tail of mRNA, and terminate with a degenerate 

penultimate base and specific base. These features are designed to accommodate 

all 4 possible 3' end combinations of the poly-A tail, to anchor specifically at the 

poly-A tail sequence, and to extend towards the 5' end of the mRNA sequence. 

The resulting single stranded cDNA fragments are then labeled by PCR 

(polymerase chain reaction) amplification utilizing the same 3' RT primer, and a 

5' randomly generated 9 to 12-mer oligonucleotides (table 1). Both primers have 

identical annealing temperature. Labeling of PCR fragments is accomplished by 

either 32p_dNTP incorporation, or by 3-kinased primer incorporation. This 

process can be repeated using mRNA from several populations or cell 

conditions. The resulting RT-PCR products from several cell population are 

separated side by side on a denaturing poly-acrylamide gel able to resolve up to 

one base pair difference among sequences, and exposed for autoradiography. 

Since each band represents a potential individual gene sequence amplified by a 

distinct PCR primer set, unique sequences present in one cell treatment can be 

distinguished from sequences common among cell treatments based on their 

length and location on the gel. Due to the randomness of the 5' primer, the 

procedure can be repeated several times with different 5’ and 3' primer 

combinations. Following autoradiography, the differentially expressed bands 

are excised, eluted, PCR reamplified, and cloned into a PCR vector. This

page 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



' AAAAAAAA 
1AAAAAAAA 

AAAAAAAA 
AAAAAAAA

reverse transcriptase reaction

PCR amplification

separate PCR products on a 
denaturing poly-acrylamidc gel

R

elute out selected 
bands and PCR 

amplify

use PCR fragment as a probe in Northern blot 
analysis, and for isolating full length cDNA 
clones from a cDNA library.

Figure 9 Differential display strategy.
This figure shows the flow diagram for the differential display strategy. In 
this modified procedure, a kinase end labeled primer (shown as a dark 
spot) is utilized for labeling fragments in the PCR step. This modification 
greatly enhances the banding pattern and decreases the chance of isolating 
false positives, (reference 46).

page 42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cloning step guarantees that characterized sequences are generated from a single 

clone. The sequences will be used as a probe in a Northern blot assay to confirm 

differential expression. Positive sequences can then be used to select a full length 

clone from a cDNA library. This strategy has proven successful in identifying 

differentially expressed clones (24).

Advantages

The differential display method has several advantages over conventional 

subtractive hybridization. For instance, sequences from several cell populations 

or treatments can be compared and identified simultaneously, whereas only two 

comparisons are possible with the latter. Furthermore, both activated and 

repressed gene sequences can be identified by the differential display method 

concurrently, while the later will require several subtractive strategies. A major 

determinant in the success of the differential display approach depends on the 

fortunate selection of the 5' primer. Using comparisons among normal, 

metastatic and tumorigenic cell biopsies, others have identified several genes 

including a potential tumor suppressor, the alpha integrin gene (24).

Limitations

A potential problem arising from the differential display strategy is 

random misincorporations and mispriming in the PCR step resulting in an 

anomalous banding pattern. Optimal PCR conditions require specific 18 to 25 bp 

primer sequences with high annealing temperatures of 60 to 65 °C, a 20 to 200 

uM dNTP concentration, and a minimum number of amplification cycles: 25 - 30 

cycles. However, the PCR parameters described in differential display involve: 

[1] a low annealing temperature of short 10-12 mer PCR primers at 40 °C in 

asymmetric proportions, [2] a low dNTP concentration of 2 to 4 uM, and [3] a
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high cycle number of 40 cycles. While short primers are necessary to reduce the 

number of 5' primers required to accommodate all possible primer pair 

combinations, these parameters contribute to non-specific template 

amplification and further complicate the high error rate and infidelity of Taq 

DNA polymerase. The low dNTP concentration containing 32p dATP 

unfortunately generates incomplete extension products. In our experience, 

utilizing only one random 5' primer without a 3' primer can generate extension 

products and PCR amplification fragments that contribute to a high background 

or false differential banding pattern. Furthermore, DNA sequence analysis of 

one differentially selected band consisted of several comigrated sequences 

having identical molecular weight or number of base pairs. In a recent report on 

the differential display technique, Pardee acknowledges that only 20% of the 

"differential bands" characterized are authentic differentially expressed 

sequences (27).

Modifications

To overcome the limitations of the differential display strategy, several 

modifications were implemented. First, to optimize the reverse transcriptase 

reaction, mRNA was selected as a starting template, since potential hairpin loop 

extension could occur from tRNA or rRNA present in total RNA. Actinomycin D 

was included to prevent hairpin loop extension from mRNA secondary 

structure. After the RT reaction, the resulting products were treated with 

RNAse to remove the RNA template, and size selected by column 

chromatography to obtain longer cDNA extension products, and remove 

unincorporated nucleotides and primers. Second, the labeling procedure in the 

PCR step was improved by utilizing a 3'-end labeled primer and a non-labeled 5'- 

arbitrary primer. Since the 3'-primer is in the same sense-orientation as the
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cDNA template, labeled extension can only occur from a 5' extension sequence, 

after the second amplification cycle. In this way, a majority of PCR amplified 

sequences labeled occur from 3’-primer incorporation. This strategy has several 

advantages over the recommended 32p-dATP incorporation. Labeling by 3'- 

primer extension eliminates detection of PCR products generated from two 5'- 

primers in opposing orientations, and detection of false 5'-primer extensions. 

Third, PCR conditions were optimized. For example, a DNA Taq polymerase 

without 5'-phosphatase activity was selected. Nucleotide and primer 

concentrations were adjusted to prevent random misincorporations obtained 

from low dNTP concentrations.

Figure 10 shows the improvements from labeling by 3'-primer extension. 

Notice that the banding pattern in lane 1 using both 5' and 3' primers with 32p_ 

dNTP incorporation and has an identical pattern to lane 2 using only a 5' primer. 

These observations suggests that 32p-dNTP labeling can lead to false priming 

events in the PCR reaction, and possible isolation of several false positives. In 

contrast, the modifications described above results in a "cleaner" banding 

pattern (figure 10; lane 9). These modifications have been reported (46).

Two potential target genes were isolated by the differential display strategy.

Using the modified differential display strategy, two potential target 

genes were isolated from three cell conditions: mRNA from v-Jun transforming, 

c-Jun overexpressing, and normal CEF. Clone 14V and 103V are approximately 

250 base pair fragments that shows weak differential expression in v-Jun 

transformed cells (figure 7). Partial DNA sequence analysis is shown in figure 11. 

GENBANK database searches do not show homology to any known genes. 

Clone 4 and 15-15 were chosen for further investigation in AIM 3 and AIM 4.

page 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32p dNTP 3' primer
labeling method incorporation extension

S' primer +  + -  + + -  + - + -
3' primer +  -  +  +  - +  +  +  +  +

RNA source T T T M M M  T T M M

1 2 3 4 5  6 7 8 9  10

Figure 10. Differential display improvements showing the advantages of 
using a 3 ' end labeled primer. T=total RNA; M=mRNA;
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clone 14V

5 '  TTTAACACTATGATCTAAGGTATAGATAAATTTGTCCGATG
TGGTTGGTTTTGGGGCACTGAGTCCCGCCCCAGATTGTTTA
AGGTGAGAGGAGAGGC ATGT-----------------/ / ----------------
TAATATCTCTAAGACATACTGATGCTCTGCTCTACTAAAAT 
CTGGCGGACTAGTGCCAAAACCAACCACATAGGACAAAATT 
TATCTATAACCTTGAGATACATGAGTGTGGAAAAAAAAAAA 
AAAAGATTGG 3'

clone 103V

5 '  TGAGGGCAAAAGAATCTTCCAGAGCATCAGTTCTCAAATG
AAAGGGAACTTCACACTCCAGAGGTAGCAGAATGTTTTGA
TGAATATCTATGTAGATTCAAAAGAGAAGTCAGAACTCTG
ACATTAGAGAAGTAGAA--------- /  / --------- GAGTGAAAGA
AGAAGCTAGAACTCTGAACAATATAAAGAAGAAAGTAAGA 
ATTCTTCTTCCGGCCAGAAAGAAANAGAACTGGCTCAAAG 
AAAAANAAGAAGAGGAATAAAAATAGT-----3'

Figure 11 Partial DNA sequence for clone 14V-5 and 103V-5.
This figure shows partial DNA sequence information for two sequences 
isolated by differential display. The 5' and 3' orientations are based on 
locations poly A rich regions. More DNA sequence analysis is essential 
to confirm these sequences.
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AIM 3: Characterize clone 4, a gene up-regulated in v-Jun transformed CEF.

Clone 4 belongs to a family of related cathepsin proteases.

Clone 4 was identified by subtractive hybridization. Northern blot 

analysis demonstrates its differential expression in v-Jun transformed CEF 

(figure 7). Further screening of the v-Jun subtracted cDNA library with a clone 4 

probe, identified two longer cDNAs: 4-572 and 4-768. Figure 12 shows 

overlapping DNA sequence information aligning the new clones with Exo HI 

digested fragments of clone 4.

The consensus DNA sequence for clone 4 is shown in figure 12. 

GENBANK database searches reveal strong nucleotide sequence homology 

between clone 4 and Homarus Americanus (American Lobster) cysteine-thiol 

protease. SWISS-PROT database searches using all six reading frames show 

significant homology to 34 known protease sequences (table 6). Amino add  

alignment between done 4 and cathepsin L proteins from different spedes show 

significant homology to the active site of these thiol proteases (figure 13). 

Altogether, these observations strongly suggest that done 4 belongs to a family 

of related cysteine-thiol proteases. This finding is significant since a known c-Jun 

target gene, stromelysin, is a known protease. Interestingly, clone 4 is novel, 

and shows no DNA or amino add  sequence identity to any known chicken 

cathepsin thiol protease.

A doser analysis of the clone 4 cDNA sequence reveals that the 5’ end of 

the gene is missing, since a good open reading frame is not available. 

Moreover, protein sequence alignment of done 4 with Cathepsin-like proteins 

suggests that a portion of the cysteine thiol active site is missing from the NH3
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F i l e  Name 
4  ( 3 - 6 )
4  ( 3 - 3 )
4  SP6 
4  ( 3 - 4 )  
4 - 7 6 8 - s p 6  
4 -5 7 2 - S P 6  
4  T7 
4  ( 1 )  
4 - 7 6 8 - T 7  
4 - 5 7 2 - T 7

O b j e c t

1 4 3 2 8 6 429 572
--------»

/
/

7 1 6

GCGGCTCCTG-TTGGGCGTTC-AGCTCAGTGG-GGGCTCTGGA— 40 
GGGGCAGCTG-AAGGGCCGGA-CGGGGAAACT-GCTGTCCCTC— 80 
AGCCCCCAGA-ATTTGGTGGA-CTGCGTCTCC-AAC AACAACG— 120 
GCTGCGGGGG-GGGTTATATG-ACCAACGCCT-TCGAATACGT— 16 0 
CCGCCTTGAA-CCGCGGCATC -GACTCGGAGG-AYS YGTACCC— 2 0 0 
CTACATCGGG-CAGGATGAGA-GCTRTATGTA-CAGCCCCACC— 240 
GGAAGKCGGC-CARATCGGCK-ACGGMKATCC-GRGAGATCCC— 28 0 
CGAAGCAACG-AGAAGGCTCT-GAAGCGCGCG-GTGGCCCGGA— 320 
TTCGCCGGGT-CTCGGTGGGC-ATCGATGCAG-TCTGCCCTCC— 360 
TTCCAGTTCT-ACAGCCGCGG-GGTGTACTAC-GACACGAGCT— 40 0 
GCAACCCGGA-GAACATCAAC -C ATGCGGTGT-GGCGGTGGGG— 4 4 0 
TACGGCGCAC-AGAAGGGCAC-CAAGWCACTG-SATCATCAAG— 4 8 0 
AACAGCTGGG-CACGAGTGGC-AATAAGGCTA-CGTGCTGCTG— 520 
ACCGCATATG-ACAAGCTGCG-CATGCACCTG-CCAGCTTCCC— 560 
CAAGATGTGW-GCTCTGGAGG-TGCCAACGTC-CGTCTGCAGG— 6 0 0 
AGTGGGGTTG-GGGGGCTGSA-ACCCCCCCCC-CCCCCCRRRT— 64 0 
ATCACATCTC -TGAGTCCWWW-GGGGGGATGC -GGAGAACGAT— 6 8 0 
GGGATTTTGT-TCTTCAAATA-AAAGCAGTGG-GGGAGA — 716

Figure 12. Partial DNA sequence for clone 4.
Shown above is the sequence alignment of clone 4  with two longer cDNAs 
clones: 4-572 and 4-768, obtained by further screening the v-Jun subtracted 
library The consensus sequence is shown below.
DNA alphabet: A=Adenosine; C=Cytidine; G=Guanosine; T=Thymidine; 
R =A orG ; Y = C orT ; N=G,A, T, orC ; B=C, G, or Y, not A; D=A, G or T, 
not C; H,=A, C, or T not G; V =A, C, or G not T; K=G or C; M =A or C; S 
=G or C; W =A orT .
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Table 6 SWISS-PROT database search for clone 4
Listing of entries in the SWISS-PROT database showing strongest 
homology to clone 4  amino acid sequence. Note that all entries belong to a 
family of proteases from various species.

e n t r y n a m e
ALEU HORVU THIOL PROTEASE ALEURAIN PRECURSOR
CATB BOVIN CATHEPSIN B
CATB HUMAN CATHEPSIN B PRECURSOR
CATB MOUSE CATHEPSIN B PRECURSOR
CATH HUMAN CATHEPSIN H PRECURSOR
CATH RAT CATHEPSIN H PRECURSOR
CATL CHICK CATHEPSIN L
CATL HUMAN CATHEPSIN L PRECURSOR
CATL MOUSE CATHEPSIN L PRECURSOR
CATL RAT CATHEPSIN L PRECURSOR
CATS BOVIN CATHEPSIN S
CATS HUMAN CATHEPSIN S  PRECURSOR
CATS RAT CATHEPSIN S  PRECURSOR
CYS1 DICCI CYSTEINE PROTEINASE PRECURSOR
CAS1 HOMAM DYGESTIVE CYSTEINE PROTEINASE 1
CYS1 HORVU CYSTEINE PROTEINASE EP-B 1 PRECURSOR
C Y S2 DICDI CYSTEINE PROTEINASE 2  PRECURSOR
CY S2 HOMAM DIGESTIVE CYSTEINE PROTEINASE 2  PRECURSOR
CY S3 HOMAM DIGESTIVE CYSTEINE PROTEINASE 3  PRECURSOR
C Y S4 BRANA CYSTEINE PROTEINASE COT 4 4  PRECURSOR
CYSL LYCES LOW TEMP INDUCED CYSTEINE PRECURSOR
CYSP PEA CYSTEINE PROTEINASE 1 5 A  PRECURSOR
CYSP PLAFA THROPHOZOITE CYSTEINE PROTEINAS PRECURSOR
CYSP THEPA CYSTEINE PROTEINASE PRECURSOR
EUMI EURMA MITE GROUP 1 ALLERGENIC PROTEIN
LCPA LEIME CYSTEINE PROTEINASE PRECURSOR
MMAL DERPT MAJOR MITE FECAL ALLERGENIC PRECURSOR
ORYA ORYSA ORYZAIN ALPHA CHAIN PRECURSOR
ORYC ORYSA ORYZAIN GAMMA CHAIN PRECURSOR
P 3 4  SOYBN P 3 4  PROBABLE THIOL PROTEASE PRECURSOR
PA P2 CARPA CHYMOPAPAIN PAPAYA
P A P3 CARPA CARICAIN PAPAYA PRECURSOR
P A P4 CARPA PAPAYA PROTEINASE IV
PAPA CARPA PAPAIN PRECURSOR
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c 4  AA s e q
CATL_RA T
CATL_MOUSE
CATL.HUMAN
CA TL_CH IC K

MTPLLLLAVL
MNLLLLLAVL
MNPTLILAAF

CLGTALATPK
CLGTALATPK
CLGIASATLT
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KWKAMHNRLY

GTNEEEWRRA
GTNEEEWRRA
GMNEEGWRRA

c 4  AA s e q
CATL_RAT
CATL.M OUSE
CATI HUMAN
CAT! CHICK

VWEKNMRMIQ
IWEKNMRMIQ
VWEKNMKMIE

LHNGEYSNGK
LHNGEYSNGQ
LHNQEYREGK

HGFTMEMNAF
HGFSMEMNAF
HSFTMAMNAF

GDMTNEEFRQ
GDMTNEEFRQ
GDMTSEEFRQ

IVNGYRHQKH
VVNGYRHQKH
VMNGFQNRKP

c 4  AA s e q  - - - - - - - - - - - - - -  - - - - - - - - - - - - - -  - - - - - - - - - - - - - -
CATL_RA T KKGRLFQEPL MLQIPKTVDW REKGCVTPVK NQGQl
CATL.M OUSE KKGRLFQEPL MLKIPKSVDW REKGCVTPVK NQGQi
CATI HUMAN RKGKVFQEPL FYEAPRSVDW REKGYVTPVK
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Figure 13. Alignment of clone 4 to several Cathepsin L proteases.
Shaded areas are regions of strongest homology between clone 4  and family of 
Cathepsin L proteases. Dark line show the cysteine thiol protease active site 
having the consensus sequence: QXXX[G/E1XC WXX|STAG ].
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700 bp seq of clone 4

Pvu I

/ /  AAAAAAAAAAA

reverse transcribe mRNA from v-Jun 
transformed CEF with clone 4 primer B

LicoR I
ligate cDNA to anchor 
primer with RNA ligasc

PCR amplify with 5' reverse 
anchor primer and nested primer

Pvu 11licoR I

Figure 14. s'-RACE strategy used to determine the S' end of clone 4.
RACE Rapid Amplification of Cloning Ends: mRNA isolated from v-Jun 
transformed CEF is reverse transcribed with primer B which is 
complementary to the 5' terminal region of clone 4. The resulting fragment is 
then ligated to an anchor sequence with RNA ligase, and PCR amplified with 
a nested primer complementary to sequences upstream from primer B, and a 
reverse anchor primer. The resulting PCR fragment can be verified by DNA 
sequencing and restriction analysis. The convenient restriction sites in the 
anchor sequence and PCR fragment can be used to generated a full length 
sequence.
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terminal region (figure 13). To obtain the 5' end of the gene, a 5' RACE (Rapid 

Amplification of Cloning Ends) strategy was attempted (figure 14). A full length 

clone can easily be constructed utilizing convenient restriction sites.

AIM 4: Characterize clone 15-15.

Clone 15-15 was isolated by differential screening a subtracted v-Jun 

cDNA library and shown to be preferentially expressed in normal CEF. DNA 

sequencing and GENBANK database searches show strong sequence identity to 

the chicken apolipoprotein A -l gene. Clone 15-15 was therefore chosen for study 

since its identity is known, and the regulatory mechanisms in mammalian 

systems were well characterized.

Previous studies

Apolipoprotein A1 (Apo-Al) is the major protein constituent of high 

density lipoproteins (HDL). Early studies suggest that these proteins are 

responsible for overall cholesterol metabolism, transport and distribution, and 

play an important role in reducing coronary heart disease (47 and references 

dted).

The apo-Al gene is highly conserved in several species; the rat, human 

and chicken genes show strong sequence homology in the 5’ regulatory region 

and coding areas. While mammalian apo-Al expression is restricted to the liver 

and intestine, avian species express it in all tissues, although predominantly in 

liver and intestine. Appreciable amounts are detected in kidney, ovary/testes, 

brain, lung, skeletal and heart muscle. Furthermore, males express higher
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levels of Apo-Al protein in comparison to females. These findings suggest that 

different regulatory mechanisms exist among species and within different tissue 

environments (47).

The regulation of the apo-Al gene at the transcriptional level has received 

much attention. The mammalian apo-Al regulatory region contains four 

responsive elements (site A, B, C and D) (figure 15). Transcription factors that 

recognize site A include a placental transcription factor (ARP-1) and the retinoic 

acid receptor (RXRa), which decrease and increase apo-Al, respectively (47,48). 

In rat hepatocytes, a member of the thyroid/ steroid receptor super-family 

(HNF-4), positively regulates apo-Al through site C (50). Site B is recognized by 

several factors. Studies conclude that transcriptional regulation of the 

mammalian Apo-Al gene is determined by an interaction among several 

transcription factors both at the protein level and at DNA binding sites.

site B site C site D

mammalian

avian

site A

s i

- 2 2 0  - 2 0 8  - 1 8 6  
trrr

- 1 5 8  - 1 2 3  - 1 0 8  - 6 0  - 5 5

" ■ ■ — 1 1 -

Figure 15. Structure of the ApoAl regulatory region.
This figure shows a comparison between the mammalian and avian 
upstream regulatory elements, highlighting the regions of significant 
homology.

In contrast to the mammalian regulatory region, the chicken sequences 

show no homology to site A, have homology to only half of site B, and strong 

homology to sites C and D. Functional analysis of the chicken apo-Al regulatory 

region identifies site D (-60 to -54 ) as the positive enhancer element in several
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transformed cell lines, including human hepatoma (HEP-G2), human colon 

carcinoma (Caco2), human cervical epithelial (HeLa), mouse embryonal 

fibroblasts (NIH/3T3), and RSV transformed quail myoblasts (QMLA29) (47). 

Although site D resembles a GC rich SP-1 binding site, SP-1 or other factors have 

not been demonstrated to recognize this site. Surprisingly, these studies also 

show that constructs containing upstream sequences beyond -300 nucleotides 

are weakly fraws-activated in these cell lines. In addition, avian sequences 

corresponding to mammalian enhancer elements A, B, and C are 

transcriptionally inactive (47, 48)). This finding contrasts with another report 

showing apo-Al to be repressed in quail myoblasts transformed with a 

temperature sensitive Rous Sarcoma Virus (RSV) at the permissive temperature, 

but expressed during non-permissive temperatures (49). Qearly, different 

regulatory mechanisms exist between mammalian and avian species (47).

ApoAl regulation.

Northern blot analysis in our laboratory suggest that the steady state 

levels of apo-Al mRNA are approximately 3 to 10 fold higher in normal CEF, as 

compared to v-Jun transformed CEF (figure 7). There are several possibilities. 

One explanation is that transcriptional repression occurs in v-Jun transformed 

CEF; that is, the transcription rates are slower in v-Jun transformed CEF, as 

compared with normal CEF. Another possibility could be that the turnover rates 

in both cell conditions are different. Accumulation of a stable apo-Al mRNA 

could occur in normal CEF. Alternatively, overexpressed v-Jun proteins could 

contribute to unstable apo-Al mRNA in v-Jun transformed cells. With these 

questions in mind, we decided to determine how v-Jun directly or indirectly 

influences chicken apo-Al gene expression in transformed CEF, as compared to 

normal CEF.
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ApoAl mRNA is very stable.

Actinomytin D treatments were used to assess the half-life, and message 

stability of apo-Al mRNA during normal and transformed conditions. This drug 

blocks transcription by inhibiting RNA polymerase II activity, allowing an 

evaluation of mRNA stability during transcriptional repression. A rapid decay 

rate strongly indicates message instability, while a slow decay rate suggests that 

high message stability contributes to accumulation.

v-Jun transformed (VJ-1) and normal CEF infected with vector sequences 

only (RCAS) were treated with 5 ug/  mL of Act D at different time points. Total 

RNA was isolated, and the steady state levels of apo-Al mRNA were estimated 

by Northern blotting. Although the levels of apo-Al message are clearly higher 

in normal CEF (figure 16), the decay rates in both v-Jun transformed and 

normal CEF are identical (Figure 17). This gradual decrease for up to 20 hours 

indicates that apo-Al mRNA is very stable in both cell conditions ( tl/2  = 15 to 20 

hours), and reveals that the differences in steady state levels observed in the 

Northern blots can not be explained by mRNA stability. More importantly, the 

data suggests the v-Jun overexpression does not contribute to apo-Al message 

instability. It is therefore conceivable that the variations in apo-Al message seen 

in Northern blot analysis are due to accumulation of a stable message from an 

upstream regulatory sequence, or that transcriptional mechanisms are 

responsible. With these considerations, we set out to identify potential 

regulatory sequences by promotor deletion analysis, and verify them by DNA 

binding studies.
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Figure 16. Actinomycin D studies.
Top figure shows Northern blot analysis of total RNA from v-Jun transformed 
CEF (VJ-1) and normal CEF infected with retroviral sequences only (RCAS) 
treated with 5 ug/mL Actinomycin D at indicated time points. Bottom figure 
shows quantitation of mRNA levels at indicated time points, demonstrating higher 
steady state levels of apo-Al message in RCAS than in VJ-1.
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Figure 17 Estimation of apo-Al mRNA half life.
Quantitation of apo-A l mRNA steady state levels in v-Jun transformed CEF 
(VJ-1), and Normal CEF treated with retroviral sequences only (RCAS) 
after Actinomycin D treatment. Study shows identical decay rates in both 
VJ-1 and RCAS CEF. Estimated mRNA half life is approximately 20 
hours.
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Isolation of an apo-Al genomic clone.

To determine if transcriptional control mechanisms influence apo-Al gene 

expression during normal and transformed conditions, we first isolated the 

upstream regulatory region of apo-Al from a genomic done. The 13 kb genomic 

clone was isolated by screening a lambda chicken genomic library with a 700 bp 

done 15-15 sequence as a probe. Restriction analysis, Southern blotting and 

partial DNA sequendng verify the authentidty of the genomic done, as 

reported previously. Figure 18 below shows the genomic map of the apo-Al 

gene and sequences corresponding to done 15-15.

--10kb — fiftkh - a a k h  - n n k h  i

Figure 18. Structure of the ApoAl genomic clone. This figure shows the 
apo-A l regulatory region in relation to its coding region and sequences 
corresponding to clone 15-15.

Convinced that an authentic genomic clone was isolated, we set out to search for 

potential activator or repressor elements by promotor deletion analysis.

kill' 1 iniiif—
e x o n  1 e x o n  2 e x o n  3 e x o n  4

1 5 -1 5  s e q
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Promotor deletion analysis.

To identify potential c/s-acting sequences on the apo-Al regulatory region, 

several reporter CAT constructs containing 5' deletions were transiently 

transfected into v-Jun transformed CEF (VJ-1), and normal CEF infected with 

retroviral sequences only (RCAS). A summary of reporter CAT constructs and 

corresponding responses are shown in figure 19; the CAT assay is shown in 

figure 20.

Studies show three potential cis-acting regulatory elements on the apo-Al 

gene. A strong activator region is present between -6800 to -3300 nucleotides. 

Deletion of this region to generate the p-3300/0 construct, reduces the level of 

expression from 11 fold to background levels in normal cells. Another 

responsive site may be located within 20 bases of exon 1. Exclusion of this site 

reduces the level of expression by approximately 1 to 2.5 fold [compare p- 

193/20 to p-193/0; p-3300/20 to p-3300/0 and p-300/20 to p-300/0]. However, 

the remaining half of exon 1 (bases 20 to 43) could hold repressive regions. 

Addition of these sequences appears to reduce expression by 1.4 to 4 fold; 

[compare p-300/43 to p-300/20; and p-3300/43 to p-3300/20]. Finally, a 

potential repressive region could be located within sequences -3300 to 300. 

Deletion of this sequence appears to increase expression by 1.5 fold [compare p- 

3300/0 to p-300/0]. Interestingly, none of these promotor CAT constructs are 

responsive in VJ-1 CEF. This findings agree with Northern blot data showing 

high steady state levels of the apo-Al message in normal CEF, and strongly 

suggests that transcriptional mechanisms regulate the apo-Al promotor during 

normal and transformed conditions.
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Figure 19 Summary of ApoAl promotor deletion analysis.
Several A poA l reporter CAT constructs containing 5' deletions in the promotor were transfected into VJ-1 and 
RCAS CEF. Summary of DNA trans-activation studies are shown. Fold over background is calculated as 
the per cent acetylation of each construct relative to the negative control: pCAT/Blue. pCAT/Blue is a 
promotor-less reporter CAT construct; positive control: pSV2CAT/ Blue with SV40 enhancer and promotor 
sequences.
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Figure 20. CAT assay of apo-Al promotor CAT constructs.
Responses of apo-A l reporter constructs in VJ-1 and RCAS cells. Lane 
designations are: p -6800/0(l); p-3300/0 (2); p-300/0(3); p-3300/20 (4);
p-300/20 (5); p -193/20 (6); p-3300/43 (7); p-300/43 (8); p -193/0 (9); 
negative control used is pCAT/ Blue, a promotor less CAT construct (10); 
positive control: pSV2CAT/ Blue containing the SV40 promotor and enhancer 
elements(ll).
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Figure 21. Possible models fo r eukaryotic gene repression.
Several models for eukaryotic gene repression are illustrated (reference 44). In 
model 1, positive transcription is initiated by the formation of a transcriptional 
activation complex (TAC) at the transcriptional start site. This complex consists 
of several large heterocomplexes including RNA polymerase II, TATA binding 
proteins and co-factors. A positive cw-acting sequence or enhancer region aids in 
the formation and stability of the TAC. In general, repression can occur by 
disrupting or preventing the formation o f the TAC. In the competition models, 
negative factors compete for binding to either the TAC (competition #2), or to 
the activator sequence (direct competition #3). In the direct repression model 
(#5), a repressor protein binds a functional repressor sequence, or silencer 
region, distinct from the activator sequence. Quenching (#4) is accomplished by 
protein-protein interactions between the activator and repressor protein; these 
larger heterocomplexes recognize adjacent or overlapping ds-acting DNA 
sequences to effect repression. This is different from the squelching mechanism 
(#6) which does not require DNA binding; repression occurs when 
overexpression of another factor sequesters the functional activator protein, thus, 
preventing DNA binding and transcriptional activation. It is important to 
remember that these are simplistic models, and that transcriptional repression 
could involve multiple combinations of these models depending on the overall 
context of the promotor, the availability of transcription factors, and the 
physiological cell conditions. Nevertheless, all of these models could potentially 
repress apo-A l in v-Jun transformed CEF.
Legend: A: activator protein; R: repressor protein; B: overexpressed factors; 
clear circles: transcriptional activator complex; arrows indicate the 
transcriptional start site; shaded areas represent regulatory elements.
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Putative responsive element identifies a single distinct complex present in 

normal nuclear extracts only.

Promotor deletion analysis of the apo-Al regulatory region indicates that 

several c/s-acting elements could regulate its expression. We focused our 

attention on the putative responsive element located in the -193 to +20 region. 

Studies indicate that this region has a 1.7 fold level of activity over background in 

normal CEF, and is 1.5 fold times higher in normal CEF over VJ-1 cells. 

Although this may not be significant, sequence analyses reveals that this region 

contains three potential factor binding sites that could regulate apo-Al gene 

expression (47) (see figure 15). Since three of the possible repression models 

described in figure 21 require DNA binding to effect repression, we wanted to 

determine if any repressor heterocomplexes present in normal or transformed 

CEF would recognize sites on the -193/20 promotor region.

Gel shift analysis using a labeled 213 bp fragment shows a single distinct 

complex present in normal CEF, but absent in v-Jun transformed CEF (fig. 22). 

The intensity of the shifted band appears to increases proportionately with 

increasing concentration of nuclear extracts. A 100 fold excess of homologous 

unlabeled competitor specifically competes with the shifted band, while a non­

specific competitor, pGEM 4 plasmid, does not (figure 23). This finding supports 

the existence of a specific factor in normal cells that could act as a positive 

activator protein. In addition, specific complexes that recognizing the 213 bp 

fragment were not detected in v-Jun transformed CEF, suggesting that DNA 

binding may not be required to repress the p-193/20 reporter CAT construct in 

v-Jun transformed CEF. This observation suggests that a squelching mechanism 

may be involved in the repression of the p-193/20 apo-Al -CAT construct.
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Figure 22. DNA binding assay using 213 bp ApoAl promotor fragment
Gel shift analysis using the 213 bp apo-A l promotor fragment encompassing 
193 nucleotides upstream from the transcriptional start site and 20 bp o f exon 
1 identifies a distinct band present in nuclear extracts from normal CEF (lane 
5-7), but barely detectable in v-Jun transformed CEF (lane 2-4). Intensity of 
the shifted band appears to increase proportionately with increasing 
concentrations of nuclear extracts, lane 1, probe alone;
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Figure 23. Competition shift analysis .
Nuclear extracts from v-Jun transformed CEF (lane 1, 2, A, C) and 
normal CEF infected with vector sequences only (lane 3 ,4 , B, D) were 
used in a gel shift assay with the 213 bp fragment A 100 fold excess of 
unlabeled homologous competitor specifically competes with the labeled 
probe in normal extracts (lane 4), while a non-specific sequence does not 
(lane D) (at arrows). This suggests the existence of a specific factor in 
normal CEF, not found in v-Jun transformed CEF. (lane 5, E: probe 
only).
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Antibody shift assays suggest that Jun proteins are absent in heterocomplexes 

that recognize the 213 bp fragment

One of the possible models to explain apo-Al repression in v-Jun 

transformed CEF is the squelching model. In this scenario, overexpressed v-Jun 

proteins bind to the positive activator proteins and sequester them from binding 

to its cognate sequence, hence preventing transcription. To determine if v-Jun 

proteins are involved in such a mechanism, Jim antibodies were included in VJ-1 

nuclear extracts to possibly neutralize binding to the positive activator protein. 

However, anti-Jun antibodies failed to restore DNA binding to the 213 bp 

sequence (lane 3; fig. 24). A possible explanation is that the antibodies were 

unable to neutralize overexpressed v-Jun proteins due to large proportional 

differences, or that the physical interactions between v-Jun and the activator 

protein were stronger. It would be interesting to see if large amounts of 

bacterial expressed v-Jun proteins could squelch DNA binding in normal nuclear 

extracts.

Antibody shift assays were also performed to identify other components 

of the specific complex in normal nuclear extracts. Other antibodies including 

anti-Jun, anti-c-myc, and anti-ras, did not cause a supershift or decrease in band 

intensity, indicating that their cognate proteins may be absent from these 

complexes (figure 24). More intensive tests are necessary to verify this.
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Figure 24 Antibody gel shift assay 
Antibody competition shift assays using several antibodies, including 
anti-Jun fail to cause a super-shift or a decrease in band intensity in 
normal nuclear extracts (lane 4) suggesting that Jun proteins may be 
absent from complexes that recognize the 213 bp fragm ent. lane 1,2: no 
antibody; lane 3,4: anti-c-Jun; lane 5,6: anti-c-myc; lane 7,8: anti-ras; 
lane 9: probe alone; V J-1: nuclear extracts from v-Jun transformed CEF; 
RCAS: nuclear extracts from normal CEF infected with vector sequences 
only;
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Chapter IV. DISCUSSION

The molecular mechanisms responsible for v-Jun induced cell 

transformation are not clearly understood (1,2). An interesting possibility is that 

v-Jun influences the pattern of target gene expression by inappropriately 

activating or repressing its target genes (2). v-Jun behaves this way due to the 

structural changes at the protein level that ultimately alter its functional 

properties (4). For instance, its stability and dimerization aspects could change. 

Consequently, overexpression would increase the repertoire of available Jun 

heterocomplexes through an interaction with other nuclear factors. In support 

of this, we demonstrate that in vivo Jun complexes exhibit differential binding to 

in vitro generated AP-1 target sequences (34). These observations have 

important implications concerning v-Jun induced cell transformation.

In v ivo  Jun complexes exhibit differential binding to in vitro  generated AP-1 

target sequences.

To analyze the DNA binding properties of Jim complexes formed during 

overexpression, nuclear extracts from normal, c-Jun overexpressing and v-Jun 

transformed CEF were used in a gel shift assay against AP-1 and related AP-1 

sequences. Using mutant AP-1 sequences against the consensus AP-1 site in a 

competition assay, we were able to demonstrate that Jun complexes formed 

during overexpression preferentially recognize distinct subsets of AP-1 related 

sequences. This finding suggests that the in vitro substrate specificity may be 

altered during Jun overexpression, relative to the normal condition. DNA 

transactivation studies using these AP-1 related sequences show that their 

transcriptional responses were below basal levels in all three nuclear extracts,
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indicating that overexpressed Jun complexes could contribute to transcriptional 

repression.

We also investigated the DNA binding properties of Jun complexes 

against the consensus AP-1 site. We expected to find more shifted bands, or 

more Jun heterocomplexes formed during overexpression, relative to the 

normal condition. Instead, our study shows that two distinct Jun 

heterocomplexes recognize the consensus AP-1 site in all three cell conditions. 

Furthermore, the DNA binding intensities in all three conditions were identical. 

This finding is consistent with DNA trans-activation data showing the consensus 

AP-1 sequence to be equally responsive in all three cell conditions, with no 

significant differences. Altogether these finding suggest that although Jun 

proteins are indeed overexpressed, either very low levels of activated Jun are 

required to bind the consensus AP-1 sequence, or that a majority of Jun 

complexes are inactive and do not bind DNA.

Our DNA binding data agrees well with another study investigating the 

DNA binding affinities of in vitro translated Jun and Fos family members to 

several in vitro generated AP-1 and CREB target sequences. (22). This study 

reports that various homodimer and heterodimer combinations of Jun proteins 

demonstrate different binding affinities to various AP-1 sequences. For example, 

Jun heterodimers bind AP-1 and related sequences with higher affinity, when 

compared to Jun homodimers. Moreover, Jim heterodimerization with various 

Fos proteins significantly changes the stability and half-life of protein/DNA 

complexes, suggesting that Jun dimer partners and their availability influence 

binding to AP-1 sites.
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Identification of genes associated with v-Jun induced cell transformation

Having demonstrated that in vivo Jun complexes formed during cell 

transformation recognize an altered pattern of in vitro target sequences, we 

wished to determine if a similar situation occurs in vivo. We began with the 

identification of potential target genes regulated by v-Jun. Utilizing the 

subtractive hybridization and differential display approach, we isolated five 

differentially expressed target genes. Clone 4 is a novel cathepsin-like gene that 

belongs to a family of related cysteine thiol proteases. This finding is significant 

since proteases have long been implicated in cell transformation processes, and 

in metastasis of tumor cells. Furthermore, proteases, such as stromelysin and 

collagenase, are c-Jun target genes. A second gene, the apolipoprotein A -l gene, 

is repressed in v-Jun transformed CEF.

Positive regulation of ApoAl expression in normal CEF.

The mechanisms regulating chicken apo-Al expression in normal CEF are 

not clearly defined. Differences exist among cell and tissue types, and between 

mammalian and avian systems. Promotor deletion analysis in our laboratory 

has identified three potential c/s-acting regions on the apo-Al promotor. Two of 

these appear to be enhancer regions located at -6.8 kb to -3.3 kb. and -193 to 

+20.

We chose to characterize the possible activator sequence located between 

-193 to +20 since this region contained several transcription factor binding sites 

(47,48,50). Our DNA binding studies show that this 213 bp fragment recognizes 

a single distinct factor present in normal RCAS nuclear extracts, but not in VJ-1 

extracts. In addition, antibody shift assays suggest that Jim proteins are absent 

from these complexes (figure 24). These findings agree with our Northern blot
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data establishing that the steady state levels of apo-Al mRNA are considerably 

higher in normal cells, as compared to v-Jun transformed CEF (figure 7), and 

further suggests that positive transcriptional mechanisms regulate apo-Al gene 

expression. This finding also agrees with previous studies demonstrating by 

DNA trans-activation studies, by DNA binding studies, and by DNA foot 

printing analysis that a short segment of the chicken apo-Al promotor 

encompassing -60 to -54 nucleotides indeed regulates this gene in several 

transformed cell lines (47).

We therefore propose that normal CEF regulate apo-Al expression in a 

positive way by at least two activator sequences. One located between -6800 and 

-3300 nucleotides, and another between -193 to +20. Since Actinomycin D 

treatments show that mRNA is relatively stable with a half-life of up to 20 hours, 

it is possible that the high steady state levels seen in Northern blot analysis is due 

to accumulation of stable message expressed from a constitutive promotor. 

More likely, the activator sequence located between -6800 to -3300 would 

predominantly regulate this gene.

Negative regulation of ApoAl gene expression in normal CEF.

Several potential mechanisms could repress apo-Al expression in normal 

CEF. Promotor deletion analysis suggest that potential repressor sites could be 

located between -3.3 kb to -0.3 kb, and on sequences encompassing half of exon 

1 (+20 to +43). For example, expression from the p-3300/0 construct is 1.5 times 

weaker than the p-300/ 0 construct. Deletion of the +20 to +43 region appears to 

reduce transcriptional responses. For instance, the p-300/43 construct is 4 times 

lower than the p-300/20 construct. In addition, a 1.4 fold reduction is observed 

between p-3300/20 and p-3300/43. While such discrepancies suggest that more
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defined deletions are necessary to delineate these elements, it is clear that 

negative regulation of apo-Al transcription occurs in normal CEF. Several 

possibilities exist (figure 21). Repression could occur by the direct competition 

model (#3), the quenching model (#4), or the direct repression model (#5). 

More DNA sequence information, DNA binding studies and DNA 

transactivation experiments are necessary to determine which of these 

mechanisms predominate.

Negative regulation of ApoAl expression in v-Jun transformed CEF.

The apo-Al gene is one of the target genes isolated that appears to be 

repressed in v-Jun transformed CEF. Northern blot data show that the steady 

state levels of apo-Al mRNA are 3 to 10 times lower in v-Jun transformed CEF, 

as compared to normal CEF (figure 7). Promotor deletion analysis 

demonstrates that all of the reporter CAT constructs containing 5’ deletions are 

repressed in v-Jun transformed CEF. Altogether, the observations suggest that 

v-Jun overexpression negatively influences apo-Al gene expression. Possible 

repression mechanisms are discussed below.

Repression by DNA binding.

It is conceivable that v-Jun proteins act as repressors and inhibit apo-Al 

expression by binding directly on the apo-Al promotor. v-Jun could exert its 

repressive action as a heterodimer involving other binding partners. There are 

three possibilities: In the quenching model, v-Jun heterodimers would

recognize adjacent or overlapping sites on the promotor. In the direct 

competition model, v-Jun heterodimers would compete with an activator 

protein for a common regulatory site. In the direct repression model, v-Jun 

heterodimers would bind to a silencer region on the promotor. Alternatively, v-
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Jun might not bind the apo-Al promotor, but indirectly influence apo-Al by 

inducing the expression of a functional repressor protein. Further proof of 

which models are responsible depends on demonstrable DNA binding of v-Jun 

complexes to distinct promotor regions, and identification of repressor regions 

on the ApoAl promotor by DNA transactivation studies.

Repression not involving DNA binding.

In an attempt to demonstrate that v-Jun overexpression influences apo-Al 

expression, we investigated the regulation of the p-193/20 reporter construct in 

a DNA transactivation study. We chose this region since it contains several 

transcription factor binding sites. Our preliminary analysis suggest that 

expression of this construct is 1.7 times lower in v-Jun transformed CEF, as 

compared to normal CEF. Although this may not be significant, DNA binding 

studies suggest that no apparent "repressor protein" recognizes this region, 

suggesting that DNA binding may not be required for repression of this 

sequence. Interestingly, these observations agree well with a squelching model 

of repression. As mentioned earlier, this model depends on the active 

sequestering of potential regulators that effect repression by preventing DNA 

binding, and eliminating positive transactivation of its target genes. More work 

is necessary to verify this.

Implications of study on v-Jun induced cell transformation.

The results of this study have important implications concerning the 

mechanisms involved in v-Jun induced cell transformation. Overexpression of v- 

Jun proteins can result in two related possibilities that ultimately lead to cell 

transformation: an increase in the repertoire of potential transcription factors, 

and squelching of target genes. Each possibility will be discussed below.
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One possibility is that the repertoire of possible transcription factors is 

increased. This can occur since Jun proteins can interact with a variety of 

transcription factors, both at the DNA level and through protein-protein 

interactions (10-15, 18-21, 23, 51). The increased repertoire can consist of both 

activator and repressor complexes which could influence gene expression by 

either transcriptional activation or repression. The new repertoire would 

recognize variations in AP-1 sequences, or bind to new non-AP-1 sites. Since 

this illicit event is not stringently controlled, cell transformation can develop. 

These assumptions are supported by the observations in the study. For instance, 

overexpression of v-Jun proteins leads to a change in substrate specificity in vitro, 

suggesting a change in the pattern of target gene expression in vivo. Indeed, 

our study has identified two genes showing altered patterns of gene expression, 

although the role of these genes in cell transformation has yet to be established.

The second possibility of v-Jun overexpression is a squelching phenomena 

(54, 55). In this situation, v-Jun actively sequesters other transcription factors 

rendering them as inactive complexes. As a result, target genes of the 

sequestered factor are repressed. If such genes are important in the regulation 

of cell proliferation, cell transformation could occur. Evidence suggests that 

overexpressed c-Jun proteins could indeed interact with members of the steroid 

receptor family of transcription factors, and squelch their target genes (11, 12). 

Again, these assumptions reflect the observations of the study. For example, 

no change in DNA binding or DNA transactivation occurs using the consensus 

AP-1 sequence. DNA transactivation using mutant AP-1 sequences produced 

responses that were below basal levels, suggesting that a majority of the 

overexpressed Jun complexes may be inactive. Indeed, the v-Jun induced
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repression of ApoAl during cell transformation may occur by a squelching 

mechanism.

Intuitively, neither possibility would predominate to effect cell 

transformation. Rather, a combination events would occur; the outcome would 

ultimately depend on promotor structure, or the organization of enhancer and 

repressor sites along the upstream regulatory region. Studies show that c-Jun 

proteins can interact with other nuclear factors resulting in DNA binding to new 

non-AP-1 sites. These members include the steroid hormone receptor family, 

myoD, and NF-KB (10-15, 18-21, 23, 51). Studies suggest that the promiscuous 

behavior of c-Jun proteins may contribute to changes in the pattern of target 

gene expression, and could ultimately be responsible for a variety of cellular 

responses. It is therefore possible that overexpressed v-Jun could behave 

similarly. If this is so, these newly formed Jun-heterocomplexes with longer 

half-lives could interact with both activator and repressor factors serving to 

either positively or negatively affect their target genes. This could drastically 

alter the pattern of target gene expression. In support of this, the dissertation 

project has identified two target genes showing altered patterns of gene 

expression: clone 4, which probably functions as a protease, is overexpressed in 

v-Jun transformed CEF, while apo-Al, responsible for overall cholesterol 

metabolism, is repressed. Indeed, more deregulated genes are anticipated. 

Potential candidates include genes coding for positive and negative regulators 

and effectors whose aberrant expression would change the balance in favor of 

cell transformation. Potential repressed targets include tumor suppressor genes, 

negative cell cycle regulatory genes, or anti-apoptosis genes; activated targets 

would include oncogenes, positive cell cycle regulators, growth factors and their 

receptors, or positive signal transducers.
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Undoubtedly, interactions occurring from overexpression are not the 

only explanation for v-Jun induced cell transformation. Clearly, more than one 

mechanism could be responsible since cell transformation is a complex process 

requiring multiple independent but related steps. For example, v-Jun 

homodimers alone are sufficient to transform CEF (33). A major c-Jun partner, 

c-Fos, is not required. Overexpression of a chimeric v-Jun construct (VJ-GLZ) 

that only forms homodimers through the GCN4 leucine zipper, weakly 

transforms CEF. Interestingly, the phenotypic characteristics of VJ-GLZ 

transformed CEF differ from v-Jun transformed CEF: the former are arranged 

in random focal arrays as compared to circular swirls observed in v-Jun 

transformed CEF. Their kinetic properties are different too; the transformation 

potential of VJ-GLZ homodimers resembles c-Jun: weak and inefficient. Rapid 

transformation obviously requires other parameters, perhaps partners that do 

not involve dimerization.

Although this last study suggests that v-Jun induced cell transformation in 

CEF does not require dimerization with c-Fos or other nuclear factors, and may 

accomplish this without increasing the repertoire of Jun heterocomplexes, it 

does not argue against it. It is possible that potential interactions occur with 

other nuclear factors that do not involve the Jun leucine zipper.
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CHAPTER V. FUTURE DIRECTIONS

The dissertation project tests the hypothesis that deregulated expression 

of v-Jun contributes to cell transformation in CEF by influencing the pattern of 

target gene expression. It predicts that several downstream target genes would 

be activated or repressed inappropriately. In support of this, two target genes 

were isolated showing altered patterns of gene expression For this reason, 

identification of other target genes is necessary, if not mandatory.

Importance of clone 4.

An important concern is the transcriptional regulation of clone 4 during 

normal and transformed conditions. Although a differential pattern of clone 4 

gene expression has been demonstrated, it is not certain if it is a direct or indirect 

primary gene target of v-Jun, or a secondary target expressed as a consequence 

of cell transformation. Likewise, if done 4 is a primary target, can basal levels 

of c-Jun regulate this protease during normal conditions? To address this 

question, investigations on its regulation at the transcriptional level are 

necessary, as well as the identification of AP-1, or essential non-AP-1 binding 

sites on the promotor. Furthermore, the regulatory factors governing its 

functional aspects at the protein level should not be ignored. Answers to these 

questions relate to its possible involvement in cell transformation, as will be 

discussed below.

Several approaches to correlate a role for clone 4 in cell transformation 

exist. One strategy is to determine the functional aspects of clone 4 during 

normal conditions, and investigate how its deregulated overexpression may 

contribute to cell transformation. Since extensive nudeotide and amino add
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sequence analysis indicates that this gene could belong to a family of related 

cathepsin-like proteases, several important questions arise, including: what is 

its chromosomal location, and is this a site of known chromosomal aberration?, 

What is its tissue distribution? Where is its predominant cellular location, or 

sites of action? Since most proteases are initially produced in an inactive 

proenzyme form, what are the requirements for optimal activity? What are its 

direct substrates? Important answers to the functional aspects clone 4 will 

provide us with clues on how its deregulation may contribute to cell 

transformation in CEF. For instance, well known proteases like stromelysin and 

cathepsin, have been implicated in tumor progression and metastasis (104, 105). 

Interestingly, stromelysin is a Jim target gene. Its direct substrates are 

extracellular matrix components. It would be interesting to see if clone 4 belongs 

to the cathepsin family of proteases possessing similar functional properties, 

since cathepsins are a prognostic tumor marker for breast cancer (105).

Another strategy to establish a role for clone 4 in transformation is to 

determine its requirements in v-Jun induced transformation. For instance, will 

overexpression of clone 4 be sufficient to transform CEF? Rapid transformation 

occurring independent of v-Jun activation suggests a strong correlation, while 

weak to no transformation will indicate that clone 4 may be required, but not 

sufficient. In a similar way, if done 4 is a downstream effector of v-Jun, then 

blocking clone 4 expression, or activity during v-Jun overexpression, should 

reduce v-Jun's transformation potential. Possible sites of inhibition could be 

accomplished at the transcriptional or translational level (with antisense RNA), 

or at protein level (with done 4 antibodies). Answers to these questions would 

also confirm if clone 4 is a primary or secondary target of v-Jun.
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Importance of Apo lipoprotein A1

The transcriptional control mechanisms regulating apo-Al expression 

during normal and transformed conditions have not yet been resolved 

completely. In addition to the mechanisms proposed earlier, two studies 

suggest that other factors may be involved. First, studies show that the steroid 

family of transcription factors cooperate best with Jun proteins to regulate gene 

expression. Quite remarkably, the apo-Al promotor contains several potential 

steroid binding sites located between -193 to +20 (see figure 15). It would be 

interesting to see whether these factors act exclusively, or in concert with Jun 

proteins to regulate Apo-Al gene expression.

Second, it is possible that cholesterol could directly affect apo-Al 

transcription. Recently, low levels of membrane cholesterol have been shown 

to regulate transcription by stimulating the cleavage and post-translational 

activation of an ER- membrane bound transcription factor, SREBP-1 (sterol 

regulatory element binding protein -1) (reviewed in reference 106). Intriguingly, 

SREBP-1 and -2 belongs to a family of bHLH-ZIP (basic-helix-loop-helix leucine 

zipper) transcription factors responsible for the regulation of low density 

lipoprotein (LDL) receptor through the SRE (sterol regulatory element). These 

observations raise several possibilities on the role of Jun proteins and apo-Al 

regulation. Since Apolipoprotein-Al is a constituent of HDL (high density 

lipoproteins) involved in regulating cholesterol mobilization, it is conceivable 

that concentrations of cholesterol could in turn regulate apo-Al expression 

through SREBP-1. Although the SREBP leucine zipper does not resemble the Jun 

leucine zipper, it is conceivable that overexpression of v-Jun would form 

SREBP/ Jun heterocomplexes to repress apo-Al transcription by a squelching 

mechanism. It would be interesting to see if a SRE site exists on the apo-Al
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promotor. This would suggest that cholesterol or SREBP may regulate apo-Al 

similar to the LDL receptor during normal conditions, and that this site may be 

squelched during v-Jun overexpression. Answers to these questions can provide 

clues on how deregulated expression may contribute to cell transformation.

Another interesting inquiry is a possible role for apolipoproteins in cell 

transformation, in vitro, or tumorigenesis in vivo. An indication that this may be 

so comes from studies with ApoE demonstrating its ability to regulate neuronal 

growth in vitro (107). This study shows that ApoE3 increases neurite outgrowth 

in neurons in vitro, while an ApoE isoform ApoE4, has the opposite effect. 

These ApoE mediated cellular responses are believed to occur through low 

density lipoprotein (LDL) receptor interactions, since blocking with specific 

antibodies, affects ApoE mediated response. However, it is not certain if these 

growth related events are mediated by extracellular receptor signaling 

pathways, or from internalized ApoE /LDL receptor complexes, and whether 

the responses are specific to neural cells only. Nevertheless, other studies show 

that HDL (high density lipoprotein) and LDL mediated receptor binding 

stimulates signaling events involving phosphoinositide catabolism and Ca+2 

mobilization in a number of cell types, including smooth muscle cells (111). In 

kidney mesangial cells, LDL receptor activation induces a number of growth 

related genes, including c-Fos and c-Jun transcription (109). Since Apo-A and 

Apo-E share similar regulatory roles, namely the mobilization of plasma 

cholesterol, it is conceivable that HDL containing Apo-Al lipoproteins would 

behave in a similar manner to affect cellular growth responses, such that 

deregulated overexpression would cause transformation. Future studies to 

establish such a role should therefore include a possible autocrine pathway 

where secreted ApoAl would influence cellular growth responses, perhaps
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through the HDL recrptor.

Finally, understanding the transcriptional mechanism regulating done 4 

and apo-Al, as well as their requirements in cell transformation, would give us 

an idea on how future Jun target genes might be regulated. One could expect 

the isolation of other deregulated Jun targets, the identification of new 

transcription factors interacting with Jim, how these factors cooperate to affect 

transcription, and why activation should occur instead of repression. This 

information would help us undertake strategies to correct for Jun related 

disorders, which can be investigated by gene therapy.
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