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With the advent of VLSI technology, circuits with more than one million transistors have been
integrated onto a single chip. As the complexity of ICs grows, the time and money spent on designing
the circuits become more important. A large, often dominant, part of the cost and time required to
design an IC is consumed in the routing operation. The routing of carriers, such as in IC chips and
printed circuit boards, is a classical problem in Computer Aided Design. With the complexity inherent
in VLSI circuits, high performance routers are necessary. In this paper, a crucial step in the channel
routing technique, the single row routing (SRR) problem, is considered. First, we discuss the relevance
of SRR in the context of the general routing problem. Secondly, we show that heuristic algorithms are
far from solving the general problem. Next, we introduce evolutionary computation, and, in particular,
genetic algorithms (GAs) as a justifiable method in solving the SRR problem. Finally, an efficient
O(nk ) complexity technique based on GAs heuristic is obtained to solve the general SRR problem
containing n nodes. Experimental results show that the algorithm is faster and can often generate better
results than many of the leading heuristics proposed in the literature.

Keywords: CAD; Genetic algorithms; Heuristics; Single row routing; VLSI

INTRODUCTION

The design and layout of complex multilayer printed

circuit boards (MPCBs) and integrated circuits (ICs) is of

central importance in electronic systems today. MPCB

design and layout involves the following steps: first,

placement of the functional modules of the system on the

MPCB, and second, interconnection between the modules

on the MPCB in a way suitable for the application, subject

to various physical and technological constraints.

The complexity of the global routing problem is so large

that these two related problems are usually treated

separately. The second problem is a classical problem in

Computer Aided Design, applicable to all levels of scale.

Despite the fact that a large number of CAD packages for

layout are available nowadays, the circuit layout problem

is far from solved.

Let us first define a routing region to be a continuous

area between circuit modules that can be used for routing.

A terminal is a pin on a circuit module. A signal net (or

simply net ) is a set of terminals to be interconnected by

wires. A via is an area where wires on different layers are

electrically connected.

The routing task is divided into global routing and

detailed routing. Global routing gives an overall analysis

on the distribution of nets between modules, generating an

intermediate sketch routing for each net. The routing area

between circuit modules is divided into a set of routing

regions called channels. The global routing result is

represented by crossings placed on the interfaces between

channels. Note that the global routing does not generate

detailed routing, it only specifies a rough path for each net

between channels.

The crossing points for the nets between channels do

not have fixed locations yet. The exact locations are

determined by detailed routing. For a given channel, if all

fixed terminal are on one set of parallel edges and non-

fixed terminals at the channel ends, then we can use a so-

called channel router to give a detailed routing of the

channel.

The first systematic approach to the general problem of

multilayer channel routing was first proposed by So [1].
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The essence of the layout problem presented by So is to

interconnect functional modules, with hundreds or

thousands of terminals, by means of printed conductors,

layered on a multilayer board.

The large MPCBs consist of pins and vias (feed-

throughs), uniformly spaced on a uniform grid. This is

shown in Fig. 1. We assume that the placement of modules

is predetermined.

So’s approach [1] consists of a systematic decompo-

sition of the general multilayer wiring problem into a

number of independent single-layer, single-row routing

problems. By doing this, he was able to make an estimate

on the routability of any given problem. He also developed

sufficient conditions for routing, which guarantee rout-

ability for the single-row single-layer case. Prior to his

work, all techniques have been empirical in nature and

lacked the capability of prognostic analysis.

So decomposed the multilayer problem as follows.

Consider a backplane with a fixed array of pins and vias as

shown in Fig. 2(a). We designate each pin or via according

to its location. Thus b5 represents the pin located at the

intersection of the bth row and the 5th column. Suppose

that the problem is to route the net list L ¼ {N1;N2;N3}

where N1 ¼ {a1; b5; e9}; N2 ¼ {c1; c3; d5}; and N3 ¼

{a7; c5; d7; e5}: This implies that pins a1, b5, and e9 in net

N1 are to be interconnected, as are the pins in N2 and N3,

respectively.

A possible realization is shown in Fig. 2(b). As shown,

So adopts a special strategy that depends on horizontal

conductor paths to connect pins and vias which lie on a

row, and vertical conductor paths on another layer, as

indicated by dotted lines, to connect pins or vias which lie

on the same column. This scheme was called uni-

directional routing.

This strategy is strategically sound because it allows a

systematic study and rules out the necessity of considering

other routing strategies. The scheme is also economic and

can handle many simple circuits with only two layers.

Thus the general multilayer problem in Fig. 2(a) has been

reduced to 7 simple single-row single-layer problems.

In general, there are five phases to So’s decomposition

of the multilayer [1]: via assignment, linear placement of

via columns, layering, single row routing (SRR), and via

elimination. In this work, we are concerned only with the

fourth phase, SRR, which deals with the detailed routing

of the single-row single-layer case.

Following the decomposition, there is one SRR problem

for every horizontal and every vertical line of points in the

original problem. In each single-row routing problem,

FIGURE 1 An MPCB with pins and vias alternating on each row.

FIGURE 2 Multirow multilayer problem reduced to 7 single-row single-layer problems: (a) 3 nets defined on board with 5 rows and 9 columns, (b) 3
nets connected through vias on board.

A. Y. ZOMAYA et al.124



there is set of evenly spaced nodes and a set of nets. The

nets consist of nodes that are to be made electrically

equivalent.

The single-row single-layer routing problem can be put

in the context of a single layer printed circuit board (Fig.

3(a)). Each module connection can be thought of as a node

on a two-dimensional surface. The nodes are intercon-

nected on the PCB by nets of electrical conductor. The

nets are routed such that they do not overlap. Now imagine

moving all of the nodes into a single row on the two-

dimensional surface. The result is a realization of a SRR,

as depicted in Fig. 3(b).

So [1] decomposed the multilayer problem as follows.

Consider a backplane with a fixed array of pins and vias as

shown in Fig. 2(a). We designate each pin or via according

to its location. Thus b5 represents that the pin is located at

the intersection of the bth row and the 5th column.

Suppose that the problem is to route the net list L ¼

{N1;N2;N3} where N1 ¼ {a1; b5; e9}; N2 ¼ {c1; c3; d5};
and N3 ¼ ða7; c5; d7; e5}: This implies that pins a1, b5, and

e9 in net N1 are to be interconnected, as are the pins in N2

and N3, respectively.

The SRR problem is very important in the design

automation of electronic systems. The problem is known

to be computationally intractable [4]. However, an

efficient heuristic solution of this problem will have a

great impact on other problems of similar nature (e.g.

scheduling and networking).

Genetic algorithms (GAs) are a class of computational

models particularly suited to solving complex optimiz-

ation problems efficiently. The goal of this paper is to

investigate GAs as a possible approach to solving the SRR

problem.

PROBLEM OVERVIEW

In the SRR problem, we are given a set, V ¼ {1; 2; . . .; n};
of n nodes that are evenly spaced along a straight line, and

a set, L ¼ {N1;N2; . . .;Nm}; of m nets. Each net, Ni,

represents a set of nodes that are to be made electrically

equivalent. We say that node j is a touch point of net i if

and only if j [ Ni: Nets satisfy the following conditions:

Ni > Nj ¼ B i – j

<
n

i¼1
Ni ¼ V {1; 2; . . .; n} ð1Þ

The nodes may be regarded as module connections or as

pins that penetrate all layers of the multilayer board. The

straight line on which nodes occur is referred to as the

node axis. The wire used to join together the vertices of a

net is made up of horizontal and vertical segments. Figure

4 shows some of the possible ways to realize the

corresponding routing.

In the development of So [1], arrangements such as the

one shown in Fig. 4(d) are not permitted. This

arrangement contains a backward move; it goes from

node 2, around node 1, and then back over node 2. So [1]

considers only those wiring schemes where backward

moves are not permitted. More formally, if one were to

make a vertical cut at any node, the cut can intersect a

maximum of only one wire per net.

Finally, horizontal wire segments are run in tracks. Two

wires cannot share or overlap a segment of the track. Also,

vertical wire segments are not permitted to cross over

horizontal wire segments, and vice versa.

A realization of a net set L is a wiring scheme that

satisfies all of the above requirements. A realization with

backward moves is a wiring scheme that satisfies all

requirements, but allows backward moves. Figure 5shows

one SRR realization of the netlist: n ¼ 10; L ¼

{{1; 7}; {2; 8}; {3; 6}; {4; 9}; {5; 10}}:
In Fig. 5(a), the area above the node axis is referred to

as the upper street, and the area below the node axis as the

lower street. The number of horizontal tracks used in

the upper street is called the upper street congestion (Cus),

and the number of horizontal tracks used in the lower

street, the lower street congestion (Cls). In Fig. 5(a),

FIGURE 3 (a) Typical circuit, (b) equivalent single row routing.

FIGURE 4 (a)–(c) Ways to wire a net, (d) a net with a backward move.
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Cus ¼ Cls ¼ 3. In solving the SRR problem, one tries to

obtain a realization which minimizes the street congestion

on both streets, or simply to minimize Q0 ¼

max{Cus;Cls}:
A significant representation of the SRR problem is the

interval graph representation. It has been shown in Ref. [2]

that each realization of a netlist has a corresponding

interval graph representation. The interval graph rep-

resentation consists of an ordered set of m horizontal

intervals representing the m nets. The node axis is termed

the reference line. Each horizontal line corresponds to the

interval between the two extreme nodes of a given net.

Figure 5(b) shows the interval graph representation of the

realization in Fig. 5(a).

In Fig. 5(b), the reference line is a dashed line

consisting of continuous line segments connecting the

nodes in succession from left to right. If we straighten out

the reference line, then the m horizontal interval lines are

mapped topologically into vertical and horizontal paths.

Nets which lie above the reference line are mapped into

paths in the upper street, while nets below the reference

line are mapped into the lower street.

Let us draw a vertical line at node i superimposed onto

the interval graph representation, as shown in Fig. 5(b).

The number of nets, not including the net to which node i

belongs, cut by this vertical line is called the cut number

(ci) of node i. The upper cut number (ciu) and the lower cut

number (cil) of node i are defined as the number of nets cut

by the vertical line, above and below node i, respectively.

In Fig. 5(b) above, c5 ¼ 4; c5u ¼ 3; c5l ¼ 1: Note that, for

each node i, ci ¼ ciu þ cil; and that ci is fixed for a given

instance. That is, ci will not be affected by the ordering of

the nets. However, ciu and cil will certainly be affected by

the ordering of the nets. After we straighten out the

reference line of an interval graph representation, the

number of tracks required above and below the node axis,

at node i, is equivalent to ciu and cil, respectively. Thus,

Cus ¼ maxciu and Cls ¼ maxcil:
Nodes on the node axis can be further differentiated by

defining a node to be either a beginning node (B ) if it is at

the beginning of a net, i.e. it is the left most node in a net,

or an end node (E ), if it is at the end of a net, i.e. the right

most node in a net, or alternatively, a middle node (M ) if it

is a touch point of a net. Thus nets with 2 nodes consist

only of a beginning and end node.

SOLVING THE SRR PROBLEM: AN OVERVIEW

By far, most of the research to date for solving the SRR

problem is based on heuristics. In this section, we will

overview some of the well-known heuristics that have

been used to solve this problem.

Existing Solutions for the SRR Problem

The SRR problem has been studied extensively. The

problem was first shown to be NP-complete by Raghavan

and Sahni [3,4]. A brute force approach computing all the

possible routings is of order O(n!). This is especially

unacceptable in a context where the number of nodes, n, is

expected to be large.

Some heuristics use the method of trial and error to

solve a problem. The problem is broken down into smaller,

easier to deal with problems. Then a whole series of trial

and error is used to determine the best solution.

A number of researchers have developed necessary and

sufficient conditions for a net set to be realizable [2,5].

That is, conditions that are not only adequate for an

optimal solution to exist, but also essential. For very

limited cases (street widths # 3). Tsukiyama et al. [5]

developed an O(mn ) algorithm to solve the routing

problem. A faster algorithm has been developed by

Raghavan and Sahni [3]. It has a complexity of

O(k!*k*n*log k ) where k is the maximum street width.

The fastest heuristic found in the literature was developed

by Han and Sahni [6,7]. Their algorithm has a complexity

of O(kn ) for optimally solving the SRR problem on a

single layer, however it is restricted to street widths of

three or less, i.e. k # 3:
The drawback of these heuristic algorithms is that they

either constrain the problem or produce non-optimal

solutions. Heuristics that restrict the street width only deal

with a set of “nice” problems that might occur only rarely

in reality.

Some Examples of Heuristic Algorithms

In the following we shall examine two heuristic

algorithms representing the two main approaches to the

SRR problem. These two algorithms are the most efficient

FIGURE 5 (a) Realization of a netlist, (b) interval graph realization of the netlist.
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ones found that deal with the unrestricted SRR problem.

We will use these heuristics to compare our results in

“Results” section. The first by Tarng et al. [8], is based on

cut numbers while the second, by Ting et al. [9], is based

on necessary and sufficient conditions.

The Algorithm by Tarng et al. [8]

This algorithm is based on the intuitive assumption that

nets containing a node with the largest cut number should

appear as inner nets on the interval graph representation,

while those with the least cut number should appear as

outer nets. The algorithm was reported to be of O(mn )

complexity, the fastest algorithm found with unrestricted

street size.

Before the details of this algorithm can be presented, we

need to define the necessary terminology. As previously

discussed, the cut number (ci) of net Ni is the maximum cut

number of all the nodes that belong to the net Ni. Partition

the net list L, into two sub-lists, L0 and L00 such that:

1: L0 > L00 ¼ B ð2Þ

2: L0 < L00 ¼ L

Now, define the internal cut number (icj) of the net Nj

with respect to L0 as the cut number of Nj in L0. The

residual cut number (rcj) of net Nj with respect to L0 is

defined as the cut number of Nj in L00.

In this algorithm, we first group all nets, in the netlist L,

into several “classes,” L0; L1; . . .; Lk: Let cM denote the

maximum cut number of all the nets, i.e.

cM ¼ maxðc1; c2; . . .; cnÞ ð3Þ

Then, a net Nj with cut number i is assigned to LcM
2 i.

And so, all of the nets are grouped according to their cut

numbers, with nets of cut number cj ¼ cM in class L0, up

to the class Lk containing nets with lowest cut numbers.

After all nets are grouped into classes, the internal and

residual cut numbers for all nets in each class Li with

respect to L0i; (the union of all nets in that class), is

calculated.

The next step is to sort all nets according to their class,

internal and residual cut numbers. A net with smaller class

index comes before a net with larger class index. Nets with

the same class are arranged according to descending

internal cut numbers. If two nets belong to the same class

and have the same internal cut number, then the one with

larger residual cut number precedes the one with smaller

residual cut number. If two nets belong to the same class

and have the same internal and residual cut numbers, then

the ordering can be arbitrary. It was reported in Ref. [8]

that the algorithm always produced optimal solutions for

various examples. In the following, we present an example

where the algorithm does not generate an optimal solution.

Example of Tarng et al. Algorithm [8]

Let L ¼ {N1;N2;N3;N4;N5;N6;N7} where N1 ¼ {1; 5};
N2 ¼ {2; 6}; N3 ¼ {3; 11}; N4 ¼ {4; 7}; N5 ¼ {8; 13};
N6 ¼ {10; 12}; N7 ¼ {9; 14}: The cut number (cj),

internal cut number (icj), and residual cut number (rcj)

of each net Nj are given in Table I.

The nets are first partitioned into classes according to

their cut numbers. Thus, L0 ¼ {N1;N3;N4;N6}; L1 ¼

{N2;N7}; and L2 ¼ {N5}: Then the nets are further sorted

based on their internal and residual cut numbers. Thus,

one possible order of all nets is N1, N4, N3, N6, N2, N7, N5.

The corresponding interval graph representation obtained

is shown in Fig. 6, and the street congestion is, Q0 ¼ 3:
Let cm and cM denote the minimum and maximum cut

number of all nets, respectively. Let dye denote the smallest

integer greater than or equal to y. It has been shown in Ref.

[2] that for each realization,

Q0 $ max{cm; dcM=2e} ð4Þ

For the above example a realization with Q0 ¼

dcM=2e ¼ 2 is certainly optimal. A realization with Q0 ¼

2 is shown in Fig. 7. Thus, it can be seen that the algorithm

proposed in Ref. [8] does not produce optimal results even

for simple netlists.

The Algorithm by Ting et al. [9]

The heuristic algorithm proposed by Ting et al. [9]

represents the second major paradigm of the heuristic

approach to solving the SRR problem. Ting’s algorithm is

based on necessary and sufficient conditions for finding

the optimal solution. It can potentially take exponential

time, i.e. O(e n).

Before we describe the necessary and sufficient

condition used in Ref. [9], we need to present a number

of definitions.

TABLE I Cut numbers, internal cut numbers, and residual cut numbers
of each net

Net Cut number Internal cut number Residual cut number

1 3 2 1
2 2 2 0
3 3 1 2
4 3 2 1
5 1 1 0
6 3 1 2
7 2 1 1

FIGURE 6 Interval graph representation of one solution ðQ0 ¼ 3Þ:
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. A net N covers an interval [c,d ], if its beginning and

end nodes, nb and ne, respectively, surround the

interval [c,d ], i.e. nb ,¼ c , d ,¼ ne: For the case of

c ¼ d; we say that the net N covers the node c or d.

. With respect to the interval graph representation, a net

N covers a node c from above if net N covers node c,

and the portion of net N at node c is in the upper street.

Similarly, a net N covers node c from below if the

portion of net N at node c is in the lower street.

. An interval [c,d ] is of the type I(k ) if all nodes in the

interval have their cut numbers no less than k and the

preceding node (i.e. node c 2 1) and the succeeding

node (i.e. node d þ 1) of the interval have their cut

numbers equal to k 2 1:
. The density of a unit interval ½a; aþ 1� is the number

of nets covering the interval. We denote the maximum

density of all unit intervals on the node axis as r. For a

given set of nets, the minimum street congestion for all

possible realizations is Q0 $ dr=2e:

It is interesting to note that Liu et al. [10] obtained a

tighter lower bound on the street congestion based on the

density of unit intervals. Let byc denote the largest integer

less than or equal to y. Then the street congestion Q0 for

the optimal realization satisfies

Q0 $ max{cm;bcM=2cþ 1} ð5Þ

The necessary and sufficient condition used in Ref. [9]

can be stated as follows: there exists an optimal realization

with street congestion Q0 iff for each unit interval with

density I . Q0; there is at least 2ðI 2 Q0Þ nets covering

the interval and each of them has cut number less than I.

Initialize x ¼ dr=2e; and sort all unit intervals with

density greater than x based on their density, (smaller

first), and sequence on the node axis. Then, according to

the sorted order, each unit interval with density greater

than x is checked to see if the sufficient condition is

satisfied. If the condition is not satisfied x is incremented

by one and the search is continued from the previously

failing unit interval.

If the condition is met then some unassigned net which

covers the interval and has cut numbers less than I are

assigned to the outermost position of the upper and lower

streets, such that there are at least I 2 x nets covering the

interval. Once all intervals have been checked, the

remaining unassigned nets are assigned to the middle of

the interval graph representation. Then, for the realization,

Q0 ¼ x: Unfortunately, this algorithm does not always

produce optimal results, as shown in the example below.

Example of Ting et al. Algorithm [9]

Using the previous example in the second section of

“Some examples of heuristic algorithms” with L ¼

{N1;N2;N3;N4;N5;N6;N7} where N1 ¼ {1; 5}; N2 ¼

{2; 6}; N3 ¼ {3; 11}; N4 ¼ {4; 7}; N5 ¼ {8; 13}; N6 ¼

{10; 12}; N7 ¼ {9; 14} we find that r ¼ 4; thus we

initialize x ¼ dr=2e ¼ 2:
According to the algorithm, we only have to examine

unit intervals with density greater than 2. All of the

remaining unit intervals are sorted into the following

order: [3,4], [5,6], [9,10], [11,12], [4,5], [10,11]. We begin

by examining the interval [3,4] with density I ¼ 3; to see

if the sufficient condition holds for this interval, i.e. for

unit interval with density of ðI ¼ 3Þ . ðQ0 ¼ 2Þ there is at

least 2ðI 2 Q0Þ ¼ 2 assigned nets covering the interval.

The condition cannot be met, therefore, x is incremented

to 3. One possible realization obtained by this algorithm is

shown in Fig. 7(a). However, an optimal realization only

requires Q0 ¼ 2 as shown in Fig. 7(b).

GENETIC ALGORITHMS

A genetic algorithm is a search algorithm which is based

on the principles of evolution and natural genetics. GAs

combine the exploitation of past results with the

exploration of new areas of the search space. By using

survival of the fittest techniques combined with a

structured yet randomized information exchange, a GA

can mimic some of the innovative flair of human search. A

generation is a collection of artificial creatures (strings). In

every new generation, a set of strings is created using

information from the previous ones. Occasionally, a new

part is tried for good measure. GAs are randomized, but

they are not simple random walks. They efficiently exploit

historical information to speculate on new search points

with expected improvement [11].

The central theme of research on GAs has been

robustness. The balance between efficiency and efficacy

necessary for survival in many different environments.

The implications of robustness for artificial systems are

manifold. If artificial systems can be made more robust,

costly redesigns can be reduced or eliminated. If higher

levels of adaptation can be achieved, existing systems can

perform their functions longer and better. Features for

self-repair, self-guidance, and reproduction are the rule in

FIGURE 7 The interval graph representation with (a) Q0 ¼ 3; (b)
Q0 ¼ 2:
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biological systems, whereas they barely exist in the most

sophisticated artificial systems [12–15].

In order for GAs to surpass other techniques in terms of

robustness, they must differ in some fundamental ways.

GAs are different from more normal optimization and

search procedures in five ways: (1) working with a coding

of the parameter set, not the parameters themselves; (2)

searching from a population of points, not a single point;

(3) using payoff (objective function) information, not

derivatives or other auxiliary knowledge; (4) using

probabilistic transition rules, not deterministic rules; and

(5) coding.

The majority of optimization methods move from a

single point in the decision space to the next using some

transition rule to determine the next point. This point-to-

point method is dangerous as it can locate false peaks in

multimodal (many-peaked) search spaces. By contrast,

GAs work from a database of points simultaneously (a

population of strings), climbing many peaks in parallel.

The probability of finding a false peak is reduced

compared to methods that go point to point.

Many search techniques require auxiliary information

in order to work properly. For example, gradient

techniques need derivatives in order to be able to climb

the current peak, and other local search procedures like the

greedy techniques of combinational optimization require

access to most if not all tabular parameters. GAs have no

need for all this auxiliary information, they are blind. To

perform an effective search for better and better structures,

they only require payoff values (objective function values)

associated with individual strings. This characteristic

makes a GA a more canonical method than many search

schemes. Different search problems have vastly different

forms of auxiliary information. By not using this auxiliary

information, a broadly based scheme can be developed. Of

course, this does not mean that when information is

available one should not use it.

The mechanics of a simple GA are surprisingly simple,

involving nothing more complex than copying strings and

swapping partial strings. Simplicity of operation and power

of effect are two main attractions of the GA approach. The

effectiveness of the GA depends upon an appropriate mix

of exploration and exploitation. Three operators to

achieve this are: selection, crossover, and mutation.

Selection according to fitness is the source of

exploitation. The mutation and crossover operators are

the sources of exploration. In order to explore, they must

disrupt some of the strings on which they operate. The

tradeoff of exploration and exploitation is clearest with

mutation. As the mutation rate is increases, mutation

becomes more disruptive until the exploitative effects of

selection are completely overwhelmed. More information

is provided on these operators in the next section.

The Workings of a GA

A GA starts with a pool of feasible solutions (population)

and a set of biologically inspired operators defined over

the population itself. At each iteration, a new population

of solutions is created by breeding and mutation, with the

fitter solutions being more likely to procreate. According

to evolutionary theories, only the most suited elements in a

population are likely to survive and generate offspring,

transmitting their biological inheritance to the next

generation. GAs operate through a simple cycle of stages:

creation of a population a strings, evaluation of each

string, selection of the best strings, and reproduction to

create a new population.

Individuals are encoded as strings, termed chromo-

somes, composed over an alphabet. The chromosome

values, termed genotypes, are uniquely mapped onto the

decision variable, phenotypic, domain. The most

common representation for GAs is the binary alphabet

{0,1}. Other representations include ternary, integer and

real valued.

Variables are mapped onto the chromosome. When the

chromosome is decoded into its phenotypic values,

meaning specific to the problem can be gained.

Once the chromosome has been decoded, it is possible

to evaluate the performance, or fitness, of individuals in a

population. An objective function is used to characterize

an individual’s performance to the problem. This is

analogous to an individual’s ability to survive in the

natural world. Thus, the objective function gives the basis

for selection of pairs of individuals that will be mated

together during reproduction. During selection, each

individual is assigned a fitness value given by the objective

function. Then pairs are selected for matting. Individual

selection is biased to fitter individuals, giving them a

proportionally higher chance of being selected.

Reproduction involves two types of genetic manipu-

lation, namely crossover and mutation. The simplest

crossover operator is single point, where genetic

information is swapped after a random position, producing

two new offspring. Mutation is another genetic operator

that is applied to all new chromosomes with a set

probability. In the binary string representation, mutation

will cause a random bit to change its state, 0 to 1 or vice

versa. Mutation can be considered as a background

operator that ensues the probability of finding the optimal

solution is never zero. Mutation tends to inhibit the

possibility of converging to a local, rather than the global

optimum.

After reproduction, the cycle is repeated. New

individuals are decoded and the objective function

evaluated to give their fitness values. Individuals are

selected for mating according to fitness, and so the process

continues. The average performance of individuals in a

population is expected to increase as good individuals are

preserved and bred, while less fit members die out. The

GA is terminated under a given criteria, for example, a

certain number of generations have been completed, a

level of fitness has been obtained or a point in the search

space has been reached.

There are several parameters to fine tune in a GA,

such as population size and mutation frequency. These
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parameters can be chosen with experience, or though

experiments.

Modifying Simple Genetic Algorithms

The basic type of GAs, known as the simple GA (SGA),

uses a population of binary strings, single point crossover

and proportional selection [11]. Many other modifications

to the SGA have been proposed, some of these are used in

this work.

Population

Typically a SGA uses of a population of between 30 and

100 individual solutions, although a variant called the

micro GA uses a very small population, ,10 individuals,

in order to speed computation time.

Initialization and Realization

The first step in the SGA is to create an initial population.

Usually a random number generator is used to uniformly

distribute numbers in the desired range. For instance, a

binary population of Nind individuals whose chromosomes

are Lind bits long would require, Nind £ Lind random

numbers uniformly distributed over the set {0,1} to be

generated. A variation to this is the extended random

initialization where the GA is seeded with individuals

known to be in the vicinity of the global minimum.

Fitness and Objective Functions

The objective function provides the mechanism for

evaluating each chromosome in the problem domain. In

the case of a minimization problem, the most fit

individuals would have the lowest numerical value for

their objective function. The fitness function normalizes

the objective function value, transforming it into a relative

measure of fitness in a convenient range, 0–1, i.e.

FðxÞ ¼ gðf ðxÞÞ ð6Þ

Here, f is the objective function, g transforms the value

of the objective function to a non-negative number and F

is the resulting relative fitness. The normalized fitness

value is then used by the selection mechanism.

Selection

Selection models the “survival of the fittest” mechanism.

Fitter solutions survive while weaker ones perish. In the

SGA, a fitter string is more likely to receive a higher

number of offspring, increasing its chances of survival.

In the proportionate selection scheme, where a string

with fitness value Fi is allocated a relative fitness of Fi=F;
where F is the average fitness of the population. The SGA

uses the roulette wheel style of selection to implement

proportional selection. Each string is allocated a sector

(slot) of a roulette wheel with the angle subtended by the

sector at the center of the wheel equal to 2pFi=F: A string

is allocated an offspring if a randomly generated number

in the range 0–2p falls in the sector corresponding to the

string. The algorithm selects strings until the next

generation is completely generated.

The basic roulette wheel selection method is called

stochastic sampling with replacement (SSWR). With this

method, the segment size and corresponding selection

probability remain the same throughout selection. It is also

possible for the final number of offspring to vary

significantly from that expected. However, for a large

population, the actual number of offspring approaches that

expected.

Stochastic sampling with partial replacement (SSWPR)

extends upon SSWR by reducing the sector of an

individual if it is chosen. Another extension is remainder

SSWR (RSSR). Here individuals are selected according to

the integer part of their expected number of offspring, with

the fractional part decided probabilistically, either SSWR

or SSWPR. Other types of selection techniques are

SSWPR and Stochastic universal sampling (SUS).

Crossover

Crossover produces new individuals that have some parts

of both parents’ genetic material. The simplest form of

crossover is single-point crossover, which was described

previously. Typically the SGA uses a crossover rate of

between 0.5 and 1.0.

Multipoint crossover uses m randomly chosen cross-

over positions. Bits between successive crossover points

are exchanged producing two new offspring. In this case,

parts of the chromosome that contribute most to the fitness

of an individual may not necessarily be contained in

adjacent substrings. The disruptive nature can also

encourage exploration of the search space, rather than

favor convergence to locally fit individuals early on,

making the search more robust. Other methods of

crossover are Uniform and Shuffle crossovers. Real-valued

genes can also use line recombination or intermediate

recombination schemes.

Mutation

As stated earlier, strings are subject to mutation. Mutation

is applied uniformly to the entire current generation of

strings. In SGAs, mutation is randomly applied with a low

probability, typically in the range of 0.1–1.0%. In the

SGAs, mutation is a background operator, ensuring that

the probability of finding the optimal solution is never

zero. Mutation also acts as a safety net to recover good

genetic material that may be lost through selection and

crossover. Variations on mutation include biasing towards

less fit individuals, increasing the exploration without

losing information from fitter individuals, or changing the

mutation rate, decreasing it with population convergence

or increasing it with stagnation. With non-binary
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representations, mutation is achieved by randomly

altering the gene values within some allowed range.

Termination

The GA is a stochastic search method where the average

performance of individuals in a population are expected to

increase as good individuals are preserved and bred, while

less fit members die out. However, because a population

may remain static for a number of generations before a

superior individual is found, using single termination criteria

is problematic. Typically, a GA is terminated after certain

number of generations, or if a level of fitness has been

obtained or a point in the search space has been reached.

THE PROPOSED METHODS AND

IMPLEMENTATION DETAILS

This section details the implementation of a GA and then its

application to the SRR problem. Then, the implementation of

Tarng et al.’s [8] heuristic algorithm will also be investigated.

Single Row Netlist

In this section, a routing environment is setup and then

GA-based techniques are developed to solve the SRR

problem.

The first step in creating a routing environment is to

generate a representation of a netlist, L ¼

{N1;N2; . . .;Nm}; of m nets and n nodes. The nets contain

nodes that are to be made electrically equivalent. A netlist

needs to be generated at random or taken from an example

circuit. Initially, we consider 2 node nets, with n ¼ 2 £ m;
but as agreed in Ref. [4] this restriction is not essential.

Thus the netlist needs the following characteristics:

readily understood format, quick generation of examples,

possibility of expanding beyond 2 node nets, simple

assimilation into an input program.

The simple “nodelist” format shown in Fig. 8has all of

these features and takes up a minimal amount of memory.

Each number represents a node on the node axis, with the

value of the number giving the node to be made

electrically equivalent with it. Thus, we can see that

node zero is included in the net with node 6, and vice

versa. There are many features in this representation that

can be exploited by routing algorithms.

The next step is to create a random nodelist generating

algorithm that will generate examples for the routing

algorithm to be developed later. The nodelist generat-

ing algorithm begins with an empty array of length m.

Nodes are considered from left (beginning) to right (end).

If a node is already part of a net, then the next node is

considered, as shown in Fig. 9.

An unpaired node is then chosen at random, and a net

pair is formed. All unpaired nets are guaranteed to occur to

the right of the node being considered. If a node is

chosen that is part of a net, the algorithm tries again. At

first glance, this may continue indefinitely, however, it

was found after a number of trials that the total number

of nodes considered was in direct proportion to the

number of nodes. In fact, as n increased the number of

nodes considered approached 1.5 £ n. This is quite

acceptable.

Other methods would involve a look-up table where all

unrouted nodes are put in a table for selection. However,

these methods would drive the complexity up from O(n )

to O(n 2).

The Single Row Router

Once an example nodelist has been generated and stored

in a file, it is ready to be routed. The algorithm Genetic

Single Row Router (GSRR) reads a nodelist from the file

specified in the command line, finds the cut numbers of

each node and then executes the genetic routing algorithm

to find an optimal routing.

Cut Numbers

Once the netlist has been read into the data structure, the

next step is to determine the cut numbers (ci) of every

node, i [ ½0; n 2 1�: The cut numbers can be simply

obtained from the netlist format.

Nodes in a two-node net are either beginning nodes (B )

or end nodes (E ). Beginning nodes are always paired with

nodes to the right, while end nodes are always paired with

nodes to the left. As a result one simply has to examine a

nodelist:

. if nodelist½i� . i; then the node is a beginning node,

(B ).

. if nodelist½i� , i; then the node is an end node, (E ).

. if nodelist½i� ¼ i; then the node points to itself, not

possible in a two node net.

The cut number of a net can be thought of as the number

of active nets over a node, where a node is active if the

FIGURE 8 (a) A node net list with m ¼ 5; (b) Net diagram.
FIGURE 9 A netlist array. Node (2) is the next node to be considered,
all possibilities lie to the right in the array.
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beginning node has been reached, but the end node is yet

to be encountered. Thus, the cut number of a node is the

sum of all previous (B ) type nodes minus the sum of all

previous (E ) type nodes. The code for the cut number

function is given below.

From the cut number, the theoretical lower bound on the

street width at node i, Ci,min, can be determined. The

minimum possible value of Ci ¼ maxðciu; cilÞ occurs when

ciu ¼ cil; since from Eq. (2), ci ¼ ciu þ cil where ci is a

fixed number, thus:

Ci;min ¼ dci=2e ð7Þ

This value is determined for every node in the nodelist.

The theoretical upper bound on the street width occurs

when ciu ¼ 0; or cil ¼ 0; thus

ci;max ¼ ci ð8Þ

Applying the GA to the SRR

Once all relevant preliminaries have been completed, the

genetic routing algorithm is used to find the optimal

routing. The GA used is based on the one presented in

“Single row netlist” section with two major differences:

the objective function, f(x ), and the fitness function, g(x ).

We will first consider the crucial objective function,

which transforms a chromosome to a routing and then

evaluates attributes of the routing to produce a value. The

success or failure of the GSRR hinges on the objective

function.

The Routing Objective Function

At the outset of each generation of the genetic routing

algorithm the fitness of each string has to be determined.

Each chromosome, represented by a string, has a value and

an associated fitness. The objective function, DecodeR-
outing (n, i), takes string i, and netlist n, and

produces the required value.

Routing Decisions

Genetic algorithms can be used in a problem by first

considering what choices have to be made in order to

generate an arbitrary solution. Let us first consider the start

of an arbitrary SRR to see what decisions need to be made

(see Fig. 10). We see that only 2 choices are possible, to

route the first net above or below the reference line. This is

a binary decision that can be implemented as a binary bit

on the chromosome. Next we consider the more general

case.

In Fig. 11we have a net, Ni, containing two nodes,

Ni ¼ ða;bÞ; where a is to the left of b, thus, a is a start

node and b is an end node.

We see that around end nodes no routing decisions need

to be made, since to form a solution without backtracking,

net Ni must always be routed to b. This is shown in Fig.

11(a). Before the start node the number of pseudo points,

pa, needs to be decided. The set of pseudo points, Qa ¼

{q1; q2; . . .; qp}; are the points of intersection of wiring

paths and the node axis, Fig. 11(b).

The number of pseudo points is an integer decision

about the routing at a start node. This integer decision is a

gene that can be implemented as K binary bits on the

chromosome. Consequently, the range of possible pseudo

points is ½0; 2K 2 1�: The larger the value of N we choose,

the larger the search space. However, much search time

can be wasted for values out of the possible range.

Another type of routing decision was thought to exist

between two adjacent start nodes, since a binary routing

decision exists. Na can only be routed above or below the

following node, as shown in Fig. 11(c). However, this is

just a special case of the previous routing decision, where

other nets are not permitted to cross the node axis between

two adjacent start nodes.

The first routing decoder implemented only allowed a

single binary decision between two adjacent start nodes.

The second allowed a binary decision about the number of

pseudo points before all start nodes, while the final version

allowed the number of pseudo points before all start nodes

to be an integer. The GSRR program proposed here allows

any of these schemes, by specifying the value of K as a

FIGURE 10 Starting the routing process.

FIGURE 11 (a) Net routing to end nodes, (b) Net routing before and, (c) after start nodes.
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command line argument, K ¼ 0 commands the router to

use the first scheme, K ¼ 1; the second, and K ¼ x; x , 1

for the third.

Chromosome Length

An additional step required by a variable encoding

scheme to determine the number of bits needed in a

chromosome, termed the chromosome length. One

chromosome contains all the information to produce a

routing, with bit positions fixed for any particular nodelist.

The function ChromLength (n), shown below, takes a

routing n, and returns the chromosome length needed for

the encoding. It simply counts the number of start nodes

minus one, and multiplies the value by K. In the case of

K ¼ 0; only adjacent start nodes are counted.

int ChromLength (n)

nodelist *n;

{

int i, length ¼ 0;

for (i ¼ 1; i , n- . size; iþþ)

if(n- . node[i] . i) /* start node */

if ((n- . node[i-1] . i) &&
(maxpseudo ¼ ¼ 0))

length þ ¼ l; /* followed by start */

else

length þ ¼ maxpseudo;

return (length);

} /* End of ChromLength ( ).
*/

When the initialize_population ( ) function

is called at the beginning of the genetic routing algorithm,

all strings are initialized to ChromLength (n) size.

Implementation of the Routing Objective

Function

To implement the objective routing function, we need a

data structure to hold the order of the nets at each node.

Four procedures are also required to manipulate it. The

router starts at the first node, always a start node, adding

its net number to the data structure. The router continues

to the right, using the chromosome to make routing

decisions while manipulating the data structure accord-

ingly. Taking the second node,

. if it is an end node then the net must be removed from

the data structure,

. if it is a start node, then it must be added to the data

structure in the order specified by the first gene on the

chromosome.

This is shown below in Fig. 12. To complete the picture,

only the position of the reference line needs to be known.

Over the entire routing the data structure is added to (in

the case of start nodes), and removed from (in the case of

FIGURE 12 The first routing decision, (1) initial 2(i) or 2(ii) routed.

FIGURE 13 A routing example and the associated data structure.
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end nodes). An example routing is shown in Fig. 13, with

the state of the data structure at each node shown. There

are a few items of interest relating to Fig. 13. The routing

diagram itself can be derived from the data structure and

vice versa. Therefore, a printout of the data structure at

each stage will give a picture of the routing for a given

chromosome. A convention is needed concerning the

position of the reference line, since a net is never on an

entire interval of the reference line. The convention

applied is that the net on or directly above the reference

line is used to show (flag) its position. Where all nets are

below the reference line, the flag points to the null net

which always sits above all others, e.g. nodes 7 and 8 in

Fig. 13. The null net can simply be the first element of an

array, list, or tree. Four routing functions are needed to

fully manipulate the data structure, by: adding a start node,

searching for an end node, removing an end node, and

finding upper and lower street widths.

Let us consider the general case of adding a start node z,

to the netlist as shown below in Fig. 14.

Obviously, the reference line will always be at node z

after inclusion. The routing decision is made before the

node is added. If net c is to be routed above node z, the

reference line flag is moved up at least one position. The

number of positions depends on the number of pseudo

points, pa, decided by the chromosome.

At an end node, no routing decisions need to be made.

The data structure is searched for net a, and the reference

line flag set to it. Then net a needs to be removed from the

nodelist and the flag set to the next higher net.

The final function required is to determine the street

widths from the data structure. The street width is

determined just before each start node and after each

end node. The street widths are used to determine the

value of the objective function, which results in a fitness

value.

Possible Choice of Data Structures

The routing data structure and the resulting

manipulation functions are of prime importance, since

they determine the order of complexity of the entire

GSRR. An implementation that can minimize the

amount of computation and storage space, is required.

Table II shows all of the data structures considered, their

features and complexities.

Two data structures were implemented in the router,

arrays for ease of implementation and doubly linked lists

for lowest computational cost.

List Implementation

Of all the data structures considered, doubly linked lists

are theoretically the least computationally intensive. Lists

are built out of “CUTNODES” used to represent nets in

the cut. The order of the nets gives information about the

routing. A CUTNODE consists of two pointers and an

integer to hold the net number, as shown below. The

pointers form a doubly linked list, one pointer to higher

and one to a lower CUTNODE in the list.possible
data structures.

The reference line flag is implemented as a pointer to

the relevant CUTNODE. The null net is always at head

of the list, and is implemented by a CUTNODE with

net number set to 2 1. Several functions were

implemented to cater for the manipulation of the

doubly linked list.

1. AddToList (CUTNODE * cut, int net) used

to start a new netlist with net number, net. A new

CUTNODE is created and placed above cut. A

pointer is returned to the new CUTNODE.

FIGURE 14 Adding a start node to the data structure.

TABLE II Possible data structures

Data structure Functional order Suitability

1 Array O(k ) O(k ) O(k ) O(1) Very suitable, easy to implement
2 Arrays O(k ) O(k ) O(k ) O(1) Suitable, one lower street, and one upper street
Stacks NA (not applicable) FIFO, unsuitable
Queues NA LIFO, unsuitable
Lists O(1) O(1) O(1) O(k ) Very suitable, quick search and manipulation
Binary trees O(k ) O(1) O(k ) O(k ) Suitable, slow searching
Tables O(k ) O(k ) O(1) O(k ) Suitable, slow manipulation
N-ary trees NA Unsuitable, no obvious structure
Symbolic table NA Unsuitable, no inherent key, no gain over table
AVL trees O(log k ) O(k ) O(k ) O(k ) Balancing destroys inherent street ordering
Hashing NA Not a sparse table, key not applicable
Priority queues NA Unsuitable, no inherent priority
Sets NA Unsuitable for adding or removing
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2. InsertToList (CUTNODE *cut, int net)
inserts a new CUTNODE below that pointed to by

cut, and returns a pointer to the new CUTNODE.

3. FindNode (CUTNODE *thisnet, CUTNODE
*cut) searches for thisnet in the cut list, and

returns a pointer to it. The position of thisnet in the

list, replaces the net number in thisnet. The value is

needed to determine street widths.

4. RemoveFromList (CUTNODE *thisnet,
CUTNODE *cut) removes the CUTNODE passed

to it and returns a pointer to the CUTNODE

immediately above it. Attempting to remove a null

node or a node in the list without a higher node,

results in an error.

DecodeRouting was also implemented as an array.

The comparison between the two schemes is given in the

next few pages.

Objective Function

In order to determine the fitness of a routing, the value

of the objective function needs to be evaluated. At each

node, the street widths are calculated from the routing data

structure. This, together with cut number information,

gives all that is required to evaluate the fitness of a routing.

The upper street congestion, Cus, is simply the maximum

of the upper street widths, ciu:

Cus ¼ maxðciuÞ ð9Þ

and similarly for the lower street:

Cls ¼ maxðcilÞ ð10Þ

An optimal realization is one which minimizes the

street congestion in both streets. Thus, the objective of

SRR is to minimize:

Q0 ¼ max{Cus;Cls} ð11Þ

The selection process biases fitter strings with higher

fitness values. So, the minimization of the street

congestion must first be converted to a maximization.

First, we define the maxcut as maxcut ¼ maxðciÞ: Then

highest value of Q0 possible is given by the maximum cut

number, so the objective of SRR can be restated as to

maximize maxcut 2 Q0 ¼ maxðciÞ2 max{Cus;Cls}: The

first objective function value tried was the one given in the

previous equation. The results for the different objective

functions are given in “Results” section, as well as the

reasoning behind their formulation.

The Fitness Function, g(x )

Every solution string has a value and an associated

fitness. The fitness function, g(x ) transforms the

objective value into a non-negative relative fitness, F.

The normalized fitness value is then used by the

selection mechanism to bias reproduction to fitter

routings. The higher the relative fitness, the larger the

chance that a string has of being selected to pass its

genetic material to the next generation.

As the breeding process continues, a record needs to

kept of the best solution. On termination, the best solution

is put forward as hopefully the optimal SRR. Solution

strings are selected by the roulette wheel selection

scheme. All prospective parents are given a proportion of

the wheel based on their fitness. Using the original fitness

function given in Ref. [14], it was found that for large

fitness values, the difference in fitness values, tended to be

proportionally small. This results in a string with a better

fitness having almost the same chance as any other of

being selected.

A better fitness function was needed that differentiates

well among fitness values, no matter how large the values

get. The answer is to normalize the fitness by the

“Bestvalue” found in the search so far. In order to

highlight the difference in fitness, all values were reduced

by the Bestvalue, i.e.

xNi ¼ xi 2 Bestvalue ð12Þ

This has its own problem since it allowed negative

numbers, not acceptable in probability. The resulting

fitness values, Fi, has to conform to the following

conditions:

1. Fi [ ½0;1�
2. Negative objective values are to be mapped low.

3. Positive objective values are to be mapped high.

4. The objective value of 0 is to be arbitrarily mapped to a

fitness of 1.

5. As objective values increase, the slope of the fitness

function must increases, to highlight better answers.

Indeed, the exponential function, gðxÞ ¼ ex; has all of

the properties required. In order to normalize the values

obtained, XNi, is divided by Bestvalue and multiplied by

an arbitrary scaling factor, i.e.

gðxÞ ¼ expðfactor £ ðx 2 BestvalueÞ=BestvalueÞ ð13Þ

The exponential function was implemented as a Taylor

series:

expðxÞ ¼ 1þ xþ x2=2!þ x3=3!þ x4=4!þ · · ·

þ xn=n!þ · · · ð14Þ

For practicality reasons, the polynomial was truncated

to the fifth term. However, this truncation results in the

polynomial diverging for values of x less than 22. To

remedy this, an inverse function, 1/x, was used for values

less than 21. The inverse function was scaled to give the

sane slope as e x at 21. The resulting piecewise function,
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continuous to the first derivative is:

expðxÞ ¼
1þ xþ x2=2!þ x3=3!þ x4=4! x $ 21

21=ðe·xÞ x , 21:

24
ð15Þ

In the implementation below, to further reduce

computation time, the Taylor expansion was factored,

i.e.

expðxÞ ¼
1þ xð1þ xð1=2þ xð1=6þ x=24ÞÞÞ x $ 21

21=ðe·xÞ x , 21:

"
ð16Þ

Termination

The GA presented previously is terminated under two

conditions: either the maximum number of allowed

generations has been reached, or the average fitness of the

population has not increased by an acceptable amount.

The result of using a normalized fitness function is that the

fitness values tend to remain static. Rather than increase

with time, the average fitness of the population stays

relatively constant. This caused the second termination

condition to be called too frequently, typically after only 3

or 4 generations, resulting in suboptimal solutions. The

answer was to reduce the acceptable increase from 5 to

less than 1%.

Tarng et al.’s Heuristic

As discussed earlier, the heuristic presented in Ref. [8] is

based on cut numbers. To be compatible with the input to

the GSRR program Tarng et al.’s heuristic needs to

initially accept a node list format. This allows the program

to use the method of determining cut numbers as discussed

in “Results” section. The nodelist then needs to be

converted to a net list format, where each net consists of a

start and end node and has a cut number and internal cut

number as shown in Fig. 15.

After the net list is sorted, based on the nets cut

numbers, the internal cut number of each net is found by

splitting the net list into classes and then evaluating each

class. To evaluate the internal cut numbers of each class,

every possible node is searched in turn. Once the start

node of a net has been found the net is flagged “active.”

After the end node of the net has been found, the net is

flagged “not active.” The internal cut number of each net is

then the maximum number of active nets either above or

below the net when the start or end node is found. This is

shown in Fig. 16.

The function is used for two applications of the

heuristic given in Ref. [8]. First, to determine internal cut

numbers of each class and finally to evaluate the

congestion of the resulting interval graph. A number of

issues need to be noted: classes other than the first include

previous classes for evaluating internal cut numbers, the

residual cut number of a net is redundant as it is only the

difference between the cut number and internal cut

number for two node nets, and the interval graph

representation is built by assigning nets from the

middle out. Once the internal cut numbers have been

found, the net list is again sorted and the street width at

each net found by evaluating the entire net list as a single

class.

RESULTS

In this section, we shall examine the speed at which the

GSRR is able to generate solutions and the quality of the

generated solutions. By applying GSRR to different net

lists, we will show it is faster, and can generate better

results, than current heuristic methods.

FIGURE 15 Netlist representation.

FIGURE 16 (a) The internal cut at node X after the end node is 2, (b)
determining the internal cut numbers of class L0 in the example in second
section of “Some examples of heuristic algorithms”.
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Computation Times for Different Objective Function

Implementations

Every time the objective function, “DecodeRouting” is

called, a particular routing, (based on a chromosome), is

evaluated. This function is the most computationally

intense portion of the entire GSRR, and is of critical

importance in deciding its complexity. “DecodeRouting”

was implemented using both an arrays and lists. While

harder to implement, it was expected that the list

implementation would have a lower computational

complexity, i.e. for a large number of nodes, the list

implementation will be quicker.

The following two tables show the average time taken

by “DecodeRouting” for between 10 and 1000 node net

lists generated at random. It is possible that the solution

string may have some part to play in the time taken, so the

only chromosomes used consisted entirely of 1’s or 0’s.

All computations were performed on a Sun Sparc 20.

To get an indication of the complexity of the objective

function all values were divided by the prospective order.

If the resulting value remains relatively constant over the

range, then the function is known to be of that complexity.

For example, if n is the number of nodes and the

function is really of complexity:

T ¼ OðAn2 þ Bnþ CÞ ¼ Oðn2Þ ð17Þ

then:

n!1
lim

T

n2
¼

n!1
lim
ðAn2 þ Bnþ CÞ

n2
¼ A ð18Þ

where A, B, and C are constants. Thus we know that the

example is O(n 2).

As shown in Tables III and IV, three different

complexities were tried; O(n ), O(n log n ), and O(n 2).

O(n log n ) complexity remains linear in the range for the

list implementation, so it can be concluded that

“DecodeRouting” is O(n log n ). All other computation in

the GSRR is of O(n ) so the order of the objective function

determines the overall complexity.

Figure 17 shows that arrays are faster for a low number

of nodes, while lists are faster for a large number. The

break even point is about 500 nodes. Since the number of

nodes for a given problem remains fixed, CAD package

may use both implementations and select the best, based

on the number of nodes. All further results will be given in

terms of the list implementation.

Optimizing the Fitness Function

As discussed earlier, the fitness function is of the form:

gðxÞ ¼ expðfactor £ ðx 2 BestvalueÞ=BestvalueÞ ð19Þ

The variable factor provides the slope of the fitness

function. The effect of different slope factors is given in

Table V. Obviously a higher slope factor is more severe,

implementing an elitist selection strategy. In an elitist

strategy, only the very best solution strings are breed. On

the other hand, a low scaling factor implements a steady

state strategy, where all strings have a reasonable chance

of becoming parents.

The Objective Function and the Quality of Routings

Produced

Once the fastest data structure has been implemented, the

objective function has a predetermined computational

time. However, the effectiveness of the objective function

in finding the optimal solution has to be evaluated. The

objective of SRR can stated as to maximize:

maxcuti 2 Q0 ¼ maxðciÞ2 max{Cus;Cls} ð20Þ

The first objective function tried was the one given in

Eq. (20). The results of other objective functions are given

in Fig. 18. When the objective function returned the value

given in Eq. (20), GSRR (1), it was found that little

TABLE III Array implementation

Number of nodes (n ) Av. time Av. time/n Av. time/(n log n ) Av. time/(n 2)

10 204 20.4 20.4 2.1
20 516 25.8 19.8 1.3
40 1221 30.5 19.0 0.8
100 4681 46.8 23.4 0.5
1000 321153 321.1 107.1 0.3

TABLE IV Doubly linked list implementation

Number of nodes (n ) Av. time Av. time/n Av. time/(n log n ) Av. time/(n 2)

10 581 58.1 58.1 5.8
20 1141 57.1 43.9 2.9
40 2286 57.2 35.7 1.4
100 6616 66.2 33.1 0.7
1000 200658 200.7 66.9 0.2

SINGLE ROW ROUTING 137



progress was made in the evolution of a solution. Almost

all routings had the same street congestion.

The problem is that large areas of the search landscape

have the same street congestion, Q0. As an example,

consider a five-bit optimization problem, where every

possible string has the same fitness, except for the string

“11111”. As the fitness values of all other strings are the

same, no bias is given to closer solutions. And so the

optimal solution string can only be found at random. For

large chromosomes this is unacceptable, as the optimal

solution may never be found.

The answer is to smooth the search landscape. Rather

than having cliffs between fitness values, we need to

smooth out the landscape allowing a more gradual rise to

maximums. This can be done by adding more search

information to the objective function. By giving extra

indications of a chromosome being near a better solution,

the selection process can be biased to better chromosomes.

In the above five-bit optimization example this extra

search information could be the number of 1’s in the

solution, or the integer the string represents, or the number

of times “11” appears, the possibilities are endless.

To avoid these fitness cliffs in the SRR problem, the

street width at every node can be considered. Different

objective functions were used to evaluate routing, as

shown in Fig. 18.

The next objective function used is given by Eq. (21),

GSRR (2), in Fig. 18.

maxcuti £ size 2
X

qi ¼ maxðciÞ

£n 2
P

max{ciu; cil}

This objective function consistently produced better

routings for all examples tried. Note that a better routing is

one with a smaller street width. Other objective functions

are possible, but most are similar to Eq. (21).

In GAs many different variables exist that need to be

fine tuned. The results given by GSRR (3) in Fig. 18,

represent the optimal variables for the objective function

in Eq. (21). The optimal conditions found through

experiment are:

. Population size, 20 solutions.

. Probability of cross over, PCROSS ¼ 0:3:

. Probability of mutation, PMUT ¼ 0:05:

The heuristic solution in Fig. 18 is that by Tarng et al.

[8]. As can be seen, the solutions produced are

consistently better than the unaided GAs, except in the

case of a small number of nodes. When the heuristic is

used in the second section of “Some examples of heuristic

algorithms”, it produces the routing shown in Fig. 6, with

street congestion Q0 ¼ 3; as expected. However, the GA

FIGURE 17 Array versus list implementation of DecodeRouting.

TABLE V Different slope factors versus final Bestvalue

Slope factor Bestvalue obtained

1 470
10 470
50 486
100 490
500 491
1000 494

FIGURE 18 Quality of routings produced.

A. Y. ZOMAYA et al.138



almost always produces the routing shown in Fig. 7(a),

with street congestion Q0 ¼ 2; a superior routing.

The better solutions produced by the heuristic can be

exploited in the GA by implementing extended random

initialization. The result of this is shown in Fig. 18, as the

“Seeded” solutions. Thus the GA can be used to find

improved solutions to the heuristic results.

Computation Times of the GSRR

The GA has been found to converge to a near optimal

solution in a relatively short period of time. Figure

19shows a typical graph of a GA converging on a solution.

From the observation of many such graphs, the following

points have been noted.

. The GA converges to a near optimal solution very fast,

after about 50 generations.

. The answers it converges to are normally very good

ones, in some cases better than heuristic solutions.

. Once the solutions start to converge, only occasionally

does a noticeably better solution appear.

The computation time of the entire algorithm is shown

in Fig. 20. The computational time increases as O(n log n )

as expected from the discussion in “Optimizing the fitness

function” section.

Another important factor affecting the computation

time is the encoding scheme. Varying the length of routing

variables increases the search space at the cost of

execution time, as shown in Table VI.

As expected, the shorter the chromosome, the shorter

the execution time. The time increased at O(L log L ),

where L is the chromosome length. The fastest encoding is

the one bit per adjacent start node scheme. However, more

optimal solutions were not necessarily found in the

largest, and slowest, encoding schemes. Two reasons can

be given as to why.

1. Large areas of the representation are redundant. If the

decision variable calls for more pseudo points than is

possible, the extra is ignored. This is another form of

fitness cliff, correctable by limiting the value of L.

2. The representation of the decision variables for L . 1;
enabled Hamming cliffs to occur. This can be

corrected with Gray coding.

Figure 21 shows the number of nodes against the CPU

time of the GSRR and Tarng et al.’s heuristic. The GSRR

FIGURE 19 A general solution produced by the GSRR.

FIGURE 20 Graph of computation time versus the number of nodes in the net list.

TABLE VI Results for different encoding lengths (time in s)

w L Best value Av. time Av. time/(L log L )

0 30 488 5 0.11
1 49 498 6 0.07
2 98 488 12 0.06
3 147 490 20 0.06
4 196 454 32 0.07
5 245 404 50 0.09
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shown is with a population size of 10 over 50 generations.

Thus the GSRR evaluates 500 routing’s per execution. It

can be noted that the heuristic is very slow for a large

number of nodes, as would exist in a practical circuit. The

GSRR is faster than the heuristic for more than 500 nodes,

(note that the array implementation of GSRR is faster for

less than 500 nodes).

In summary, the GSRR developed here is both fast and

robust. The array implementation of the objective function

was found to be faster for a small number of nodes, while

the list implementation is faster for a large number.

Changing the factor in the fitness function can implement

different selection strategies. It was found that the best

objective function is one based on street width. The

optimal GA has a population size of 20, a probability of

cross over of 0.3, a probability of mutation of 0.05 over 50

generations. Tarng’s heuristic produces better results than

the unseeded GSRR, but the seeded GSRR can produce

still better results. Finally, the GSRR is faster than the

heuristic for all but a small number of nodes.

CONCLUSIONS

A new approach was developed to solve the SRR problem.

The solutions produced are better than the one offered by

conventional methods in some cases, as would be

expected of an NP-hard problem. The only question that

needs to be answered is if the new algorithm is more

efficient. After studying the complexity of the code of the

GSRR, it was found to be O(nk ). Where n is the number of

nodes and k is the street width. The street width k, varies

with n as follows:

. k is O(1) for a sparse netlist. In this practical case, the

GSRR is O(n ).

. k is O(log n ) for a random netlist. In this case, the

GSRR is O(n log n ).

. k is O(n ) for a River routing netlist. In this case, the

GSRR is O(n 2).

A River routing netlist is a case where each node needs

to be made electrically equivalent with a node symmetric

on the node axis. Routing algorithms exist that perform

River routing in O(n ) time.

This compares with Tarng et al.’s heuristic which was

found to be of O(nm ), where m is the number of nets. For

the case of two nodes per net, n ¼ 2m; thus the heuristic is

always O(n 2). Thus the new algorithm is more efficient

except in the River routing case where both are equally

efficient.

The new approach is able to produce a lower

complexity algorithm because it tackles the problem in a

different way. Traditionally heuristics look at the problem

from a vertical perspective, resulting in algorithms

dependent on m, the number of nets. The new approach

looks at the problem from left to right, resulting in an

algorithm dependent on k, the street width. This is very

similar to Han and Sahni approach [6], but with unlimited

street width. Since k is always of lower order than m this

approach is more efficient.
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