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ABSTRACT 

 

DEVELOPMENT OF A LASER-SPARK MULTICHARGED ION SYSTEM – 

APPLICATION IN SHALLOW IMPLANTATION OF SIC BY BORON AND BARIUM 

 

Md. Haider Ali Shaim 

Old Dominion University, 2018 

Director: Dr. Hani E. Elsayed-Ali 

 

A novel multicharged ion source, using laser ablation induced plasma coupled with spark 

discharge, has been investigated in this work. The designed and demonstrated ion source is cost-

effective, compact and versatile. Experiments are described with the intention of demonstrating 

the practicability of ion implantation via laser ion source. 

Multicharged aluminum ions are generated by a ns Q-switched Nd:YAG laser pulse 

ablation of an aluminum target in an ultrahigh vacuum. The experiments are conducted using 

laser pulse energies of 45–90 mJ focused on the Al target surface by a lens with an 80-cm focal 

length to 0.0024 cm2 spot area and incident at 45° with the Al target surface. With the increase in 

the laser pulse energy, a slow increase in the number of ions generated is observed. The 

generation of ions with a higher charge state is also observed with the increase in the laser pulse 

energy. For 5 kV accelerating voltage applied to the Al target and using laser energy of 90 mJ, 

up to Al4+ charge is delivered to the detector which is located 140 cm away from the Al target. 

Raising accelerating voltage increases the charge extraction from the laser plasma and the energy 

of multicharged ions. 

The components of a transport line for a laser multicharged ion source are described. 

Aluminum and carbon multicharged ions are generated by a Q-switched, nanosecond Nd:YAG 

laser (wavelength λ = 1064 nm, pulse width τ = 7.4 ns, and pulse energy up to 82 mJ) ablation of 

a target in a vacuum chamber. Time-of-flight and three-grid retarding ion energy analyzers are 

used to determine the velocity and the charge state of the ions. A three-electrode cylindrical 

einzel lens is used to focus the ions. At 30 cm from the center of the focusing electrode of the 

einzel lens, Al1+ and Al2+ have a minimum beam diameter of ∼1.5 mm, while for Al3+ and 

Al4+ the minimum beam diameter is ∼2.5 mm. The simulation of the ion trajectories is done 

using SIMION 8.1. A high voltage pulse applied to a set of two parallel deflecting plates is used 



 

for the pickup of ions with different charge states according to their time-of-flight. An 

electrostatic cylindrical ion deflector is used for analysis and selection of charges with specific 

energy-to-charge ratio. The design of these transport line components and their operation are 

described.  

A spark discharge is coupled to a laser multicharged ion source to enhance ion 

generation. The laser plasma triggers a spark discharge with electrodes located in front of 

the ablated target. For an aluminum target, the spark discharge results in significant enhancement 

in the generation of multicharged ions along with higher charge states than observed with the 

laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse 

energy 72 mJ, laser spot area on target 0.0024 cm2) is used, the total multicharged ions detected 

by a Faraday cup is 1.0 nC with charge state up to Al3+. When the spark amplification stage is 

used (0.1 μF capacitor charged to 5.0 kV), the total charge measured increases by a factor of ∼9 

with up to Al6+ charge observed. Using laser pulse energy of 45 mJ, charge amplification by a 

factor of ∼13 was observed for a capacitor voltage of 4.5 kV. The spark discharge increases the 

multicharged ion generation without increasing target ablation, which solely results from the 

laser pulse. This allows for increased multicharged ion generation with relatively low laser 

energy pulses and less damage to the surface of the target. 

Laser plasma generated by ablation of an Al target in vacuum is characterized by ion 

time-of-flight combined with optical emission spectroscopy. A Q-switched Nd:YAG laser 

(wavelength λ = 1064 nm, pulse width τ ∼ 7 ns, and fluence F ≤ 38 J/cm2) is used to ablate the Al 

target. Ions are accelerated according to their charge state by the double-layer potential 

developed at the plasma-vacuum interface. The ion energy distribution follows a shifted 

Coulomb-Boltzmann distribution. Optical emission spectroscopy of the Al plasma gives 

significantly lower plasma temperature than the ion temperature obtained from the ion time-of-

flight, due to the difference in the temporal and spatial regions of the plasma plume probed by 

the two methods. Applying an external electric field in the plasma expansion region in a 

direction parallel to the plume expansion increases the line emission intensity. However, the 

plasma temperature and density, as measured by optical emission spectroscopy, remain 

unchanged. 



 

Aluminum multicharged ion generation from femtosecond laser ablation is studied. A 

Ti:sapphire laser (wavelength 800 nm, pulse width ∼100 fs, and maximum laser fluence of 

7.6 J/cm2) is used. Ion yield and energy distribution of each charge state are measured. A linear 

relationship between the ion charge state and the equivalent acceleration energy of the individual 

ion species is observed and is attributed to the presence of an electric field within the plasma-

vacuum boundary that accelerates the ions. The ion energy distribution follows a shifted 

Coulomb-Boltzmann distribution. For Al1+ and Al2+, the ion energy distributions have two 

components; the faster one can be attributed to multiphoton laser ionization, while the slower 

one is possibly due to collisional processes. Ion extraction from the plasma is increased with an 

applied external electric field, which is interpreted to be due to the retrograde motion of 

the plasma edge because of the external electric field. Multicharged ion generation 

by femtosecond laser ablation is compared to previously reported ion generation with 

nanosecond laser ablation and is shown to require significantly lower laser fluence and generates 

higher charge states and more energetic ions. 

Fully-stripped boron ions are generated by a nanosecond Nd:YAG laser 

(wavelength λ = 1064 nm, pulse width τ = 7 ns, and maximum laser pulse energy E = 175 mJ) 

ablation of a B target in vacuum. Higher charge states, along with the increase in the number of 

ions detected, are observed with the increase in the laser fluence. An external electric field 

between the end of the expansion chamber and a grounded grid is used to extract the ions and 

accelerate them according to their charge state. For 5 kV accelerating voltage applied to the B 

target and using a laser fluence of 115 J/cm2, ∼1.5 nC of total charge is delivered to the detector 

which is located ∼150 cm away from the B target. Ion deflection by an electrostatic field 

separates the ions from the neutrals and makes this geometry suitable for ion implantation. 

The developed multicharged ion deposition and implantation system was used to perform 

interfacial treatment of the SiC/SiO2 interface using boron and barium ions. SRIM simulation 

was used to estimate the ion penetration depth in the SiC substrate. The multicharged ions were 

used for shallow ion implantation in 4H SiC. The optical bandgap of the 4H SiC was reduced 

due to boron ion implantation. Several MOSCAP devices were fabricated with a combination of 

boron and barium shallow implantation. High-low C-V measurements were used to characterize 

the MOSCAPs. Boron implantation affects the flatband voltage significantly, while the effect of 

https://www.sciencedirect.com/topics/materials-science/boron
https://www.sciencedirect.com/topics/materials-science/laser-pulses
https://www.sciencedirect.com/topics/materials-science/ion-implantation


 

barium ion implantation is negligible. Shallow boron implantation in the SiC/SiO2 interface 

reduces the flatband voltage from 4.5 V to 0.04 V.  
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CHAPTER 1 

 

INTRODUCTION 

 

Multicharged ions (MCI) sources are of interest for their utilization in surface 

modification, e.g., etching and deposition, for ion implantation, and for fundamental studies of 

ion-surface interactions. The intersection of MCIs with solids is different from that of singly 

charged ions. For singly charged ions, the ion projectile mainly interacts with the target nuclei 

causing surface sputtering, intermixing, and defect generation [1]. The total energy of an ion 

beam depends on the charge state of the ions (potential energy) and its velocity (kinetic energy). 

During interaction with a solid, the potential energy carried by the MCIs is released along with 

its kinetic energy. This potential energy can be significant for highly-charged ions and can 

exceed that of the ion kinetic energy. The release of the ion potential energy causes electronic 

exchange interaction in the target material and electronic excitation [2]. For sufficiently slow 

MCI, this released potential energy can be localized to a depth of few nm causing surface nano-

features.  

One attractive application of MCIs is ion implantation. MCIs can allow for ion 

implantation at different depths in a single step since different charge states are accelerated to 

different kinetic energies with the same potential [3]. Also, the ability to control both kinetic and 

potential energy of the MCIs could possibly be used to minimize implantation damage by ion 

recoil [3]. The higher charge state allows reaching higher kinetic energies with lower potential, 

therefore, reducing the requirement on the high voltage power supply making it possible to 

develop comparatively low-cost and compact ion implanter. The properties of MCIs are depicted 

in Fig. 1.1. 

  

Fig. 1.1 Illustration showing the properties of MCI 
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1. Due to the high charge state, MCI possess a great amount of potential energy. For 

example, Ag15+ has a potential energy of ~5 keV, while Xe52+ has a potential energy of 

more than 100 keV [2]. 

2. For a sufficiently slow MCI, the potential energy can be localized to the surface. During 

interaction with a solid the potential energy can be released within a few 10 fs and over 

an area of ~100 nm2, providing a power density of 1012 to 1014 Wcm-2 [2]. 

3. During ion-surface interaction, due to high power density at the surface, a single MCI can 

create Nano-crater.  

4. Due to the high-power density at the surface, MCI can produce secondary particles such 

as neutrals as well as secondary ions and electrons.  

5. MCI can be accelerated effectively compared to a singly charge state. The acceleration is 

proportional to the charge state q for linear accelerators and proportional to q2 for circular 

accelerators, where q is the charge state. 

6. The use of ions with different charge states for implantation makes it possible to implant 

with different ion kinetic energies in one-step. This feature can be used to control the 

implanted ion depth profile producing a uniform concentration over a certain depth or a 

tailored gradient when needed. 

1.1 MULTICHARGED ION SOURCE 

Multicharged ions are mainly generated by electron cyclotron resonance ion sources 

(ECRIS), [4, 5] electron beam ion sources (EBIS), [6, 7] and laser multicharged ion (LMCI) 

sources [8, 9]. ECRIS and EBIS operate only with gases and, therefore, for elements with low 

vapor pressures, they require introducing gaseous compounds or some vaporization mechanism. 

Introduction of gases inside the MCI system requires additional pumping capacity to avoid 

recombination of the MCIs in the generation chamber and the transport beam line. ECIRS and 

EBIS can produce a continuous beam of MCIs. LMCI sources generate many ions per pulse and 

can generate MCIs from any solid even from nonconductive or refractory targets [8, 10]. LMCI 

sources can operate in an ultrahigh vacuum with a relatively small pumping capacity since no 

gas load is required for most elements. In principle, LMCI sources can also be used with gas 

targets since ultrafast laser pulses can induce gas breakdown generating dense plasma [9]. Laser 
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ion sources have been tested as potential ion sources for injection into ion accelerators [11]. 

Moreover, many pulsed laser deposition systems can be reconfigured into LMCI sources.  

1.2 LASER MULTICHARGED ION SOURCE 

Laser ablation of a solid target results in the formation of dense plasma that is a source of 

multicharged ions (MCIs). The laser-matter interaction produces dense plasma consisting of 

ions, electrons, clusters, and neutral particles. The laser plasma plume expands in the 

perpendicular direction to the ablated surface. The ions are accelerated in the plasma sheath and 

can be additionally accelerated by an external electric field forming an ion beam [12-14]. The 

LMCI source produces ions from a small spot on the target, which gives control on the ion beam 

divergence and emittance. The produced MCIs can then be collimated and focused in an ion 

transport line. The study of MCIs generation from laser plasma is a topic of interest because 

these MCIs provide valuable information on the laser-plasma characteristics in addition to their 

applications in ion implantation [1], ion surface cleaning and patterning [1], secondary ion mass-

spectrometry [2], extreme ultraviolet lithography [3], and for injection in electron cyclotron 

resonance ion sources and ion accelerators [4, 5]. Moreover, the ions generated by laser ablation 

impact thin film growth by pulsed laser deposition as these ions interact with the substrate [6]. 

The characterization of the different laser-generated ions involves measuring their number, 

charge state, energy distribution, and angular distribution. These measurements make use of a 

combination of different techniques such as time-of-flight (TOF) ion detection [7], electrostatic 

retarding field analyzers [8], and different configurations of electrostatic [8], and magnetic [2] 

ion spectrometers based on ion bending.  

Nanosecond (ns) lasers are often used to generate ions by ablation of a solid target in a 

vacuum. During laser-matter interaction, the electromagnetic energy is converted into electronic 

excitation and then into thermal, chemical, and kinetic energies [15]. The process of ns laser 

ablation consists of three main stages: evaporation of the target material, interaction between the 

evaporated material and the laser pulse resulting in the formation of partially ionized vapor that 

absorbs the incident laser radiation, and plasma plume expansion and rapid cooling [16]. The 

laser energy is converted into internal energy of the plasma and emitted or absorbed during the 

hydrodynamic motion of the plume. Intense collisional ionization takes place in the hot plasma. 

Near the target surface, the residual recombination releases recombination energy acting against 
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the adiabatic cooling, thus slowing down the recombination rate. Due to the rapid expansion of 

the plume, the plasma density is reduced before the recombination eliminates the ionized species, 

despite a rapid increase in the three-body recombination rate due to electron temperature 

decrease in the adiabatic expansion [15]. In the expanding plasma, different charge states 

become frozen. Hence, some of the MCIs generated in the hot plasma core survive and are 

ejected from the expanding plume. 

In laser-plasma, three groups of ions have been reported, depending on the laser 

conditions [15]. The main group is composed of thermal ions that gain their energy from the 

thermalization processes followed by plasma expansion into the vacuum [17]. The fast ions are 

attributed to the presence of super-thermal electrons formed by the electrostatic waves [18]. The 

number of fast electrons is dependent on the laser intensity and wavelength [18]. Slow ion 

groups can be generated by secondary collisional processes during plume expansion or due to 

reabsorption of emitted x-rays outside the laser focus [15, 19, 20]. 

Various processes have been proposed to explain the physical mechanisms of ion 

acceleration during ns laser ablation. The laser interaction with the plasma heats the plasma 

electrons by inverse bremsstrahlung. The energy of the heated electrons is then transferred to the 

neutrals and ions through collisions. The time needed to transfer the energy from the electrons to 

the ions, i.e. the electron-ion thermalization time scale (10-10 to 10-11 s) [21], is much shorter than 

the ns laser pulse duration resulting in the establishment of local thermal equilibrium (LTE) 

between the electrons and the ions during the early portion of the laser pulse [21, 22]. Due to the 

mass differences between the electrons and the ions, fast electrons escape the plasma plume 

much earlier than the ions. The space-charge separation between the fast electrons and the ions 

that are lagging prevents some electrons from escaping the plasma resulting in the establishment 

of a self-electrostatic field at the expanding plasma-vacuum interface. This field is referred to as 

the ambipolar electric field or the double-layer potential [23]. The ions, which enter in the region 

of this electric field, are accelerated according to their charge state.  

Generation of a large number of high-energy (hot) electrons during interaction of the 

laser pulse with the solid target and their subsequent escape from the expanding plume is the 

responsible mechanism for the formation of the double-layer potential. The hot electons are 

formed in the plasma by three-body recombination or absorption of the remaining laser pulse by 

inverse bremsstrahlung. Some of these hot electrons escape the target, leaving behind a positive 
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electric charge region at the boundary of the expanding plasma-vacuum interface. The lifetime of 

the laser ablated plume is determined by the velocity of the plume expansion, which in turn is 

related to the hydrodynamic pressure inside the plume [24]. 

The structure of the double-layer potential depends on the ratio of the hot electrons to 

thermal electrons, which is dependent on the laser fluence. With the increase in the laser fluence, 

more hot electrons are generated and the double-layer structure changes from a layer formed by 

the escaping electrons and the excess ions at the front of the expanding plasma core to a more 

complex two-peak structure with two double-layers [23]. The developed two-electron-

distribution and the role of prompt electrons in the development of this complex double-layer 

structure was studied, both experimentally and by numerical simulations [25]. As the initial 

electron density at the front of the expanding plasma increases, electron compression in the 

plasma occurring by the forces of the prompt electrons, cannot be compensated for by the ion 

oscillation frequency. This results in ion cloud fragmentation and a complex ion acceleration 

mechanism [25].  

1.3 LITERATURE REVIEW 

Several groups have developed LMCI sources. Abdellatif et al. reported that, for 

aluminum target ablation using a Nd:YAG laser (λ = 1064 nm, τ = 7 ns, and laser intensity of 8.7 

x 1010  Wcm-2), the plasma density was ~1.13 x 1018 cm-3 at a distance 100 µm from the Al target 

surface [26]. At 1200 µm from the target surface, the plasma density was reduced to 0.55 x 1018 

cm-3. The plasma temperature was ~1.17 eV at the target surface, and at 500 µm, the plasma 

temperature increased to 4.2 eV then decreased beyond this point. In their experiment, an Al 

charge up to 3+ was generated [26]. Nassisi et al. reported on a Cu LMCI source with a charge 

state up to 5+ with most ions generated in the singly and doubly charged states, with ionization 

of the plasma estimated to be 16%. In their experiment, an excimer laser providing 70 mJ/pulse, 

corresponding to 3.5 x 108 Wcm-2 was used [27-29]. An Nd:YAG laser (λ = 532 nm, τ = 3 ns, 

and maximum energy of 170 mJ/pulse) was used to ablate carbon plasma creating in excess of 

70% ionization [30]. 

 To increase the production of MCIs from LMCI sources, higher plasma density and 

temperature are needed. This is achieved using larger laser pulse energies, shorter pulse widths, 

and shorter laser wavelengths to penetrate the formed dense plasma [15, 31-37]. High laser 
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intensity (≥1014 Wcm-2), causes nonlinear interactions, e.g., self-focusing, with the plasma 

formed by a pre-pulse or the initial part of the laser pulse resulting in higher charge state 

generation [31, 32].  Laska et al. observed charge state of >50 for Ta with high kinetic energies 

(up to 100 keV/amu) using a high-power iodine photo-dissociation laser (λ = 1315 nm, pulse 

energy 40 750 J, τ ~400 ps, intensity ≤6 x 1016 Wcm-2) [31-33]. A strong increase in MCI 

production was observed for laser intensities of ~2 x 1014 Wcm-2 when the laser focus was above 

the target surface. They also reported on the production of MCIs from different elements by a 

Nd:YAG laser ( = 1064 nm, pulse energy ≤ 0.9 J, pulse width ~9 ns, intensity ~1 x 109 to ~5 x 

1010 Wcm-2) and an iodine laser (2nd and 3rd harmonic of the fundamental  = 1310.5 nm, pulse 

energy ≤ 50 J, pulse width ~350 ps) [15]. For the Nd:YAG laser, which provided low laser 

intensity, the maximum ion charges reported were Nb8+, Ta8+, W9+, Au10+, and Pb9+. For the 

iodine laser, the maximum charges observed were Co25+, Ni26+, Ag36+, Sn38+, Ta55+, W49+, Pt50+, 

Au51+, Pb51+, and Bi51+ ion [15]. Lorusso et al. used frequency tripled pulses of the iodine laser (λ 

= 438 nm, τ = 400 ps, pulse energy ≤250 J) to generate up to Ge25+ ion [38]. A theoretical model 

of a hybrid ion source composed of a Nd:YAG laser (λ = 1064 nm, τ = 9 ns, and maximum pulse 

energy of 0.9 J) coupled with ECRIS to boost the charge state was developed [34]. These 

calculations showed that this approach could be effective if the ion energy from the laser source 

is maintained below a few hundred eV. However, precise control of ion energy in laser ion 

sources is complicated by ion acceleration in the sheath and plasma shielding effects. In addition, 

contaminations for the first laser shot can require further outgassing and target etching [34]. 

Woryna et al. reported the generation of up to Ag37+ with an iodine laser (λ = 1315 nm, τ = 300-

700 ps, pulse energy ~45 J, intensity ~1 x 1014 Wcm-2) [35]. Using iodine laser (λ = 1315 nm, 

pulse width 350-600 ps, pulse energy 40 J, and intensity ~1015 Wcm-2), Rohlena et al. reported 

the generation of charge state up to Ta45+ with energies >4 MeV [36]. At CERN, production of 

high current and high charge state ion beam with maximum charge state of Ta23+ was reported 

using a CO2 laser (λ = 10.6 μm, τ = 70 ns, pulse energy ≤ 50 J) [37]. Clearly, using lasers with 

large pulse energies is effective in increasing the plasma density and temperature resulting in 

higher ionization states and more ion production. However, this approach requires expensive 

lasers that are typically available only in limited laser laboratories. Therefore, it is desirable to 

develop LMCI sources capable of delivering high charge states without the complication and 

cost associated with large laser systems.  



 7 

1.4 SCOPE OF RESEARCH 

The research presented in this dissertation provides a detailed experimental procedure for 

MCI production by means of a laser-spark ion source. The main goal is to increase the plasma 

ionization by coupling a spark discharge with the laser plasma. The increase in the plasma 

ionization enhances the total ion generation along with the increase in maximum charge state. 

This dissertation is organized as follows: 

Chapter 1 deals with the MCIs, mechanism of laser ion source, some literature review of 

previous work done on laser multicharged ion source, and presently used methods to enhance the 

ion production.  

Chapter 2 explains the details of the experimental setup of a LMCI source for Al MCI 

generation. The plasma is characterized in terms of laser fluence, accelerating voltage, incident 

laser angle on target, and ion energy distribution. 

Chapter 3 covers the details of the ion transport line module fabrication. Faraday cup 

with three-grid retarding field ion energy analyzer, einzel lens, cylindrical ion deflector, and 

parallel plate ion selector were fabricated and tested. 

Chapter 4 explains the details of the laser-spark MCI source. The laser produced plasma 

is reheated by deposition of external energy from a capacitor. The laser-spark plasma is 

characterized in terms of spark energy, and laser fluence. 

Chapter 5 describes the characterization of the nanosecond laser-generated aluminum 

plasma using ion time-of-flight and optical emission spectroscopy. 

Chapter 6 provides a detailed account of the experimental production of aluminum MCIs 

by means of femtosecond laser produced plasma.  

Chapter 7 covers the details of the modified LMCI source for ion implantation without 

neutral particle deposition. The system also generated fully stripped boron ions. 

Chapter 8 explains the effect of shallow implantation of boron and barium ions in 4H-

SiC. Silicon carbide-metal oxide semiconductor capacitors (SiC-MOSCAPs) are fabricated with 

boron and/or barium shallow implantation in the SiC/SiO2 interface. 

Chapter 9 covers the conclusion and a summary of the work presented along with 

suggestions for future work.  
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CHAPTER 2 

 

LASER MULTICHARGED ION SOURCE 

 

2.1 INTRODUCTION 

We report on the development of an aluminum laser MCI source in which a Q-switched 

ns Nd:YAG laser is used for target ablation and an ion extraction and accelerating voltage is 

applied to the target. The velocity and the charge state of the MCIs are determined by using time-

of-flight (TOF) and a three-grid retarding ion energy analyzer. The use of TOF to characterize 

MCIs is suitable when the ion pulse is much shorter than the ion travel time from target to 

detector. The energy distribution of the ions generated from the laser plasma plume is measured 

by their TOF or the electrostatic energy analyzer. The energy distribution of ions for increasing 

ablation laser pulse energy shows an increase in the ion energy along with a narrowing of the 

distribution. 

Aluminum ion implantation and deposition have many applications. For example, Al ion 

implantation followed by oxidation was used to reduce atomic oxygen degradation of polymers 

[39]. Increased conductivity of ZnO by Al ion implantation was reported to be due to the reduced 

effects of oxygen vacancies [40]. Al ion implantation of surgical AZ 31 and AZ91 magnesium 

alloys was used to increase their corrosion resistance [41, 42]. Plasma immersion ion 

implantation of Al on HfO2 causes a reduction in the leakage current, smaller flatband shift, and 

steep transition from the accumulation to the depletion region in the C-V characteristics, 

indicating the reduction of both bulk oxide and interface traps [43]. All these applications were 

conducted with singly-charged Al ions. MCI potentially can offer advantages due to control on 

both their kinetic and potential energy. The availability of MCIs with different charge states 

makes it possible to control the implanted ion depth profile producing uniform concentration 

gradient, or a tailored gradient when needed. An example where a uniform Al concentration 

gradient is needed is in the p-type doping of SiC by ion implantation. To achieve this uniform 

concentration, implantation is conducted with singly-charged Al ions with different energies 

ranging from 25 to 300 keV [44]. SiC is an attractive material for high power and high 
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temperature fast devices because of its high thermal conductivity, large electron saturation drift 

velocity, high electric field breakdown, and thermal stability [45, 46]. Using an ion beam 

containing Al MCIs could enable implantation at different depths in a one-step process. Also, the 

ability to control both kinetic and potential energy of the Al ions could conceivably be used to 

minimize implantation damage by ion recoil. The higher charge states also reduce the required 

potential to reach a certain kinetic energy, thus reducing the requirement on the high voltage 

power supplies and allowing development of a compact and cost-effective implanter. 

2.2 EXPERIMENTAL 

The experimental setup used in this study is shown in Fig. 2.1. It consists of a Q-switched 

Nd:YAG laser, operating at the fundamental wavelength ( = 1064 nm) with a pulse duration 

(FWHM) of 7.4 ns. An aluminum disc target of 99.9 % purity, 0.5 mm thickness and with a 

surface roughness (rms) of 261.77 nm, as characterized by the manufacturer (Alfa Aesar), is 

placed on a multi-axes translational stage and the laser beam is focused on the Al target surface 

by a lens with an 80-cm focal length. The laser energy on the target was controlled by a 

combination of half-wave-plate and thin film polarizer. An insulating connector is used to mount 

the Al target support inside the MCI generation chamber. This arrangement allows for applying 

an accelerating voltage directly to the Al target keeping the experimental chamber at ground. An 

extraction nickel mesh of 10 cm diameter, 100 µm thicknesses, and 70% open area from 

Precision Eforming is placed 10 cm in front of the target. The beam strikes the Al target surface 

at an angle ϑ = 45˚ with a laser spot area, at focus, of 0.0024 cm2, as measured by the knife-edge 

method at target-equivalent plane with the edge scanned at 45˚ to the laser beam. The knife edge 

was used to scan the laser beam in both horizontal and vertical directions. The Faraday cup is 

made of Al and has a diameter of 5 cm. The retarding field ion energy analyzer consists of three 

nickel meshes, similar to the extraction mesh but with a diameter of 5 cm, separated by 1 cm and 

placed with the closest mesh to target at a distance of 130-cm away from the Al target. The 

diameter of the MCI generation chamber is 15 cm. A 125 cm long transport tube with inner 

diameter of 10 cm is connected to the chamber. The suppressor electrode is biased with negative 

voltage to suppress the secondary electron emission from the Faraday cup due to positive ion 

collisions. Throughout the experiment, the Faraday cup voltage was maintained at -70 V and the 

suppressor electrode voltage was at -80 V. The electrostatic barrier mesh is biased with variable 
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positive voltage and is used to analyze the ion energy distribution. To observe the effect of 

consecutive laser pulses hitting the target, we calculated the total ions generated per pulse for 

pulses hitting the same spot on the target. The second pulse on the Al target reduces the total 

number of ions generated by 10 – 20% compared to the first one. With further pulses, the change 

in the number of ions generation per pulse is within the experimental shot-to-shot fluctuations of 

~ 5%. The reported data were obtained from the 3rd laser pulse. 

 

 

Fig. 2.1 A schematic of the laser multicharged ion source showing the target chamber and the electrostatic 

time-of-flight energy analyzer, EB: the electrostatic barrier, SE: suppressor electrode, and FC: Faraday 

cup. 

 

2.3 RESULTS AND DISCUSSION 

We characterized the generated ions from the laser plasma with and without applying 

accelerating voltage to the Al target. Fig. 2.2 shows the Faraday cup signal that is dependent of 

barrier voltage. At the instant of the laser trigger, a positive signal is observed due to the 

photoelectric effect where photons generated from the laser plasma with energy above the work 
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function of the Faraday cup material cause photoemission. The plasma ion peak drifts towards 

the Faraday cup with a velocity of ~ 2.8x104 ms-1. The ions generated by pulsed laser ablation 

reach the Faraday cup as a bunch containing the different ion states. As expected, increasing the 

barrier voltage stops more of the slower ions. From Fig. 2.2, we also observe that the arrival time 

of the fastest ions in the bunch becomes longer with the increasing barrier voltage, changing 

from ~ 30 s at 0 barrier voltage to ~ 38 s at 70 V. Also, with applied barrier voltage, the 

number of ions in the plasma with energies sufficient to overcome that barrier voltage and reach 

the Faraday cup is reduced. Increasing the barrier voltage slows down all ions which causes an 

increase in ion loss due to enhanced recombination and ion scattering out of the propagating 

plume. Similar trends were also observed in excimer laser generation of Cu MCI conducted by 

Nassisi et al. [27]. The inset in Fig. 2.2 shows the reduction in the total charge with the increase 

of barrier voltage. 
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Fig. 2.2 Dependence of the generated multicharged ions on barrier voltage when no accelerating voltage 

is applied. Inset shows the reduction of total charge with the increase of barrier voltage when no 

accelerating voltage is applied to the target. 

For nanosecond lasers, the laser ablation mechanism consists of three main regimes: 

target material evaporation, interaction of the laser pulse with evaporated material which results 
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in material heating and plasma formation, and plasma plume expansion and rapid cooling [16]. 

During laser ablation, the electrons are heated through laser absorption by inverse 

bremsstrahlung, and then the heated electrons transfer their energy to ions and neutrals through 

collisions. The time to transfer energy from electrons to ions is much shorter than the ablation 

laser pulse duration for our experimental condition. Due to the hydrodynamic pressure in the 

plume, the velocity of the plume expansion determines its lifetime. The ion mass affects the 

average velocity of plume expansion [47]. 

The total charge reaching the Faraday cup, Ci is given by 𝐶𝑖 =
1

𝑅
∫ 𝑉𝐹(𝑡)𝑑𝑡, where VF(t) is 

the voltage signal on the Faraday cup and R is 50 Ω internal resistance of the oscilloscope. The 

ion energy distribution function 𝑓(𝐸) is calculated from the kinetic energy 𝐸 =  
1

2
𝑚𝑣2 with 

𝑣 obtained from the TOF signal. For 5 kV accelerating voltage, 500 V of barrier voltage, and a 

laser pulse energy of 90 mJ, charge state, up to Al4+ is generated, as shown in Fig. 3. Beside the 

identified MCI peaks, slow Al1+ ions are present. The main groups of ions are the thermal ions 

generated due to direct laser interaction processes. These ions establish an energy distribution by 

collisional thermalization in the dense laser plasma. The slow ions were suggested to be 

generated by X-rays reabsorbed outside the laser focus spot [48]. To measure the total charge per 

charge state, we separate the TOF for individual MCI of Fig. 2.3 by roughly estimating the tail 

position using the peak fitting option in Origin-lab 9.1 software. Integrating the area of 

individual charge state gives us the total charge delivered to the Faraday cup for that MCI, while 

its energy distribution is calculated from the TOF signal. For Al1+, we have ~ 0.45 nC charge 

with most probable energy Emp ~ 2.0 keV, Al2+ has ~ 0.07 nC charge with Emp ~ 3.0 keV,  Al3+ 

has ~ 0.05 nC charge with Emp ~ 4.0 keV and ~ 0.08 nC of Al4+ ions with Emp ~ 6 keV.   
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Fig. 2.3 Generation of Al multicharged ions for 5 kV accelerating voltage with a laser pulse energy of 90 

mJ shows charge state up to Al4+. 

  

2.3.1 Laser Pulse Energy 

In laser produced plasma the laser parameters (pulse energy, intensity, and pulse width) 

can affect the plasma density, temperature, ablated mass, and the ion and electron energy. Fig. 

2.4(a) shows the relationship between total charge generated and the laser pulse energy incident 

on the target when 5 kV accelerating voltage is applied. The laser focus spot, angle of incidence, 

and pulse width were kept constant as described in the experimental section. Initially, the total 

number of charges rises with the increase of laser pulse energy. For laser pulse energies ≥ 65 mJ, 

the charge reaching the Faraday cup nearly saturates at ~ 0.6 nC. From Fig. 2.4(b) we observe 

that, as the laser pulse energy is increased, higher Al charge states are observed. Laser pulse 

energies 60, 65 and 90 mJ generate charges up to Al2+, Al3+ and Al4+, respectively. The laser 

pulse energy is measured before the UHV chamber window which has ~ 8% loss.   
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Fig. 2.4 (a) Total charge generation for different laser pulse energies. (b) Charge state generation with 

laser pulse energy; Accelerating voltage is 5 kV and the laser pulse energy of 45 to 90 mJ 

 

The saturation in charge yield with the laser pulse energy in Fig. 2.4(a) is well explained 

by the plasma shielding effect, which is frequently observed in experiments on laser drilling [49]. 

As the laser pulse energy is increased, the plasma density increases as well, reaching a density 

where the plasma plume absorbs a significant part of the remaining laser pulse energy. At this 

condition, the degree of plasma ionization increases, producing a higher state ion charge. The 

main absorption mechanisms of the plasma consist of the electron-atom inverse bremsstrahlung, 

the electron-ion inverse bremsstrahlung, photoionization, and Mie absorption [50]. Plasma 
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absorption results in the saturation of charge generation, as shown in Fig. 2.4(a). The energy 

distribution of Al ions up to Al4+ for different laser pulse energies is shown in Fig. 2.5. The peak 

kinetic energy of the Al ions increases with the laser pulse energy. This ion energy distribution 

gives information on the relative abundance of MCIs.  The peak ion energy is increased for the 

higher charge state ions. The shoulder present at ~ 1 keV in Fig. 2.5(a) in the energy distribution 

is due to the slow ions.  
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Fig. 2.5 The energy distribution of the generated Al multicharged ions for different laser pulse energies 

(a) 55 mJ  (b) 60 mJ (c) 65 mJ and (d) 90 mJ. An accelerating voltage of 5 kV was applied to Al target. 
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2.3.2 Accelerating Voltage 

The ions are accelerated according to their mass-to-charge ratio. During the plume 

expansion, the thermal interactions, the adiabatic expansion, and the Coulomb interactions are 

responsible for the ion acceleration in plasma [51]. An applied accelerating voltage allows 

resolving higher charge states. Fig. 2.6 shows the ion signals for accelerating voltage 4, 5, and 6 

kV with laser pulse energy of 65 mJ. Due to plasma shielding, the electric field established 

between the target and the grounded extraction mesh does not fully penetrate the plasma plume 

resulting in ion acceleration to energies less than the potential applied to the target. If plasma 

shielding effects are not considered, the TOF signal varies with the accelerating voltage 

according to 𝑇𝑂𝐹 =  𝑡𝑎 + 𝑡𝑑 =  √
2𝑚

𝑍𝑞𝑉
𝑑 +  √

𝑚

2𝑍𝑞𝑉
𝑆, where 𝑡𝑎 is the time that an ion is 

accelerated from zero velocity at target to velocity 𝑣 at the extraction mesh, 𝑡𝑑 is the time that 

ions drift at constant velocity from extraction mesh to Faraday cup, d is the distance from target 

to extraction mesh, S is the distance from the extraction mesh to the Faraday cup in meters, m is 

the mass of Al atom, q is electron charge, Z is the charge state, and V is the applied accelerating 

voltage. The above equation does not account for the initial ion velocity gained in the plasma 

sheath. The ion accelerating time 𝑡𝑎 is small compared to ion drift time 𝑡𝑑. Experimentally, we 

identified the MCIs using the ratio of calculated TOF of individual MCIs. It is also observed that 

increasing the accelerating voltage increases the amplitude of the ion signal due to an increase in 

the charge extraction from the Al plasma due to the electric field between the target and 

extraction mesh.  

With the increase of acceleration voltage from 4 to 5 kV and from 5 to 6 kV, total charge 

generation increased from ~ 0.25 to ~ 0.5 nC then to ~ 0.65 nC, respectively. When the target-to-

Faraday cup distance is reduced to 80-cm, the ratio of the ions detected compared to that for 140-

cm distance varied between 2.4 to 2.0 when 1 to 6 kV are applied to the target. For ions extracted 

by an applied electric field, the main transport loss is due to ion divergence rather than 

recombination in the UHV chamber. With no accelerating voltage, the plasma ions detected at 

the two Faraday cup locations differ by a factor of ~ 4 due to both ion divergence and 

recombination. Therefore, ion transport loss is dependent on the electric field between the target 

and mesh. The energy distribution of Al1+, Al2+ and Al3+ for 4, 5 and 6 kV accelerating voltages 



 17 

is shown in Fig. 2.7. The ion energy depends on the potential applied to the target and how much 

of the electric field is shielded by the laser plasma. 
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Fig. 2.6 Effect of change of accelerating voltage from 4 to 6 kV on the TOF and the extraction of ions 

from the laser plasma. The laser pulse energy is 65 mJ. 
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Fig. 2.7 Energy distribution of Al1+, Al2+ and Al3+ ions for accelerating voltage of (a) 4 kV (b) 5 kV, and 

(c) 6 kV. The laser pulse energy is 65 mJ. 
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The enhancement of the ion extraction with increasing electric field between the Al target 

and the extraction grounded mesh is due to the retrograde motion of the plasma edge, which 

exposes more ions to the accelerating field and repels electrons [52]. This phenomenon can be 

explained using the sheath structure at the plasma edge. The retrograde motion of the plasma and 

the ion current introduced in the presheath cause the space-charge limited flow in the ion sheath 

that controls the ion extraction [53]. 

2.3.3 Incident laser angle 

 

Fig. 2.8. Angular distribution of Al multicharged ions when target was rotating. At 45o the target faced 

the extraction grounded mesh while the laser incidence angle to the target surface is 45o. At 90o the target 

surface has a 45o angle with the extraction grounded mesh and the laser is incident perpendicular to the 

target. 

 

The spatial distribution of MCIs in the plasma plume is not uniform. The laser incident 

angle was changed by rotating the target relative to the geometrical axis of the drift tube, and the 

number of the charged ions was collected by the Faraday cup. In Fig. 2.8, the dependences of the 

number of Al1+, Al2+ and Al3+ ions collected by the Faraday cup with the change of the target 

angle for accelerating voltage of 5 kV and laser pulse energy 65 mJ are shown. By changing the 

target angle, the laser incidence angle ϑ on the target is changed from 45o to 90o, which increases 

the laser energy density on target by a factor of ~ 1.4 as the laser is incident perpendicular to the 
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target surface (ϑ = 90o). This change in laser energy density is not significant enough to cause the 

behavior observed in Fig. 2.8, which shows significant differences in the spatial distribution of 

the ions extracted from the plume with Al1+ showing much higher directionality compared to 

Al2+ and Al3+. These preliminary results showing different spatial distributions depending on ion 

charge could be due to the influence of the electric field developed in the plasma sheath. Further 

studies are needed to characterize the ion charge-dependent angular distribution in laser MCI 

sources. 

2.4 SUMMARY 

A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse τ = 7.4 ns) was used to 

generate Al multicharged ions by laser ablation. The total number of ion generation, the 

maximum charge state, and their kinetic energy are influenced significantly by the incident laser 

pulse energy. For 5 kV extraction and accelerating voltage applied to the target and a laser pulse 

energy of 90 mJ, charge state up to Al4+, with most probable energy for Al4+ of 6 keV and total 

charge of ~0.65 nC were detected. Plasma shielding reduces the effective accelerating field 

established between the target and the grounded extraction mesh resulting in ion acceleration to 

energies less than the potential applied to the target. 
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CHAPTER 3 

 

ION TRANSPORT LINE COMPONENTS 

 

3.1 INTRODUCTION 

We discuss the design and operation of transport line components used in the LMCI 

source [54, 55]. These components are: (1) A time-of-flight (TOF) ion energy analyzer 

combined with a three-grid retarding field analyzer used to resolve the various charge states and 

analyze their energy distributions; (2) Three-electrode electrostatic einzel lens used to focus the 

MCIs; (3) A set of parallel deflection plates used with a pulsed high-voltage source for MCI 

pick up based on their TOF; and (4) An electrostatic cylindrical deflector ion energy analyzer 

(EIA) for MCI selection with energy-to-charge E/z ratio. The EIA selects ions according to the 

E/z ratio from an MCI beam and allows measuring the energy distribution of each charge state. 

Ion trajectory simulations are done to design transport line components compatible with our 

experimental conditions and for better understand the operations of the designs. These 

simulations are carried out utilizing SIMION 8.1 ion optics software [56]. 

Several groups have reported on the design and operation of ion transport line 

components. For example, a laser ion source utilizing an Nd:YAG ( = 532 nm,  = 8 ns, 

repetition rate 20 Hz, and maximum laser energy per pulse 30 mJ), Trinczek et al., generated a 

charge state up to Al4+ and focused the charges using a three-electrode einzel lens [57]. A pulsed 

extraction voltage was used to extract and accelerate the ions. The maximum voltage applied for 

the pulsed extraction and the einzel lens was 30 kV [57]. Yeates et al. reported a laser ion source 

based on Q-switched Ruby laser ( = 532 nm,  = 8 ns, laser fluence of 0.1 - 3.9 kJ/cm2) to 

generate charge state up to Cu6+. Einzel lenses were utilized to transport and collimate the ion 

beam, which was detected by a Faraday cup [58]. Nagaya et al. reported on an ECRIS to 

generate fullerene up to a charge state of C60
3+. The transport line consisted of three electrode 

extraction system, einzel lens, analyzing magnet, slit assembly, and Faraday cup [59].  

 

 



 22 

3.2 EXPERIMENTAL 

Two LMCI sources are constructed; one is used to produce aluminum MCIs, while the 

other is used for carbon MCIs. The transport line components in both systems are similar. A 

schematic of the MCI source used for the aluminum source is shown in Fig. 3.1. A Q-switched 

Nd:YAG laser pulse (wavelength  = 1064 nm, pulse width  = 7.4 ns (full-width at half maxima 

(FWHM), pulse energy 82 mJ on target, with maximum repetition rate of 10 Hz) is used to ablate 

the Al target. An aluminum disc target of area ~1 cm2, 99.9% purity, 0.5 mm thickness and with 

a surface roughness (rms) of 261.77 nm, as characterized by the manufacturer (Alfa Aesar), is 

placed on a multi-axis translational stage. The laser beam is incident on the Al target surface at 

an angle of ϑ = 45˚. A 50 cm focal length convergent lens is used to focus the laser beam on the 

Al surface. The laser spot area at focus is ~0.0024 cm2, as measured by the knife-edge method 

with the edge scanned at 45˚ to the laser beam. Throughout the experiment, the Al target is 

biased at 7 kV. The distance from the target to mesh is 10 cm, and from the center of the target to 

the chamber wall is 15 cm. This experimental chamber was described in our recent publications 

[54, 55]. The transport line consists of an einzel lens to focus the ion beam, a pair of deflection 

plates to select ion charge, a knife edge to measure the ion beam diameter and a Faraday cup 

(FC) to collect the ions. The distance from the Al target to the center of the middle electrode of 

the einzel lens is ~94 cm; the knife edge is placed ~30 cm away from the center electrode of the 

einzel lens. The deflection plates are at ~120 cm away from the Al target and the FC is at 33 cm 

from the deflection plates. The distance from the Al target to the FC is ~153 cm. An EIA can be 

added before the retarding filed MCI analyzer. The EIA allows for the selection of ions with E/z 

ratio from an ion beam and can also be used to measure the energy distribution of each charge 

state. The ion energy distribution can also be obtained from the TOF signal. 
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Fig. 3.1 A schematic of the laser MCI source showing the target chamber, Vc is the Faraday cup voltage, 

and Vs is the suppressor voltage, and Vb is the barrier voltage. 

 

3.3 DESIGN AND OPERATION OF THE TRANSPORT LINE COMPONENTS 

3.3.1 Faraday cup and three-electrode retarding field analyzer 

A time-of-flight energy-to-mass E/m analyzer consists of a drift tube terminated by a 

Faraday cup (FC) with secondary electron suppressor electrode (SE). A three-grid retarding field 

ion energy analyzer (RIA) is used to analyze the energy of the MCIs. The FC and the SE are 

made of aluminum and have a diameter of 5 cm. The RIA consists of three nickel mesh with a 

diameter of 5 cm, 100 μm thickness and 70% opening area, separated by 1 cm and placed with 

the closest mesh to aluminum target at 143 cm. The outer two electrodes of the RIA are 

grounded while a variable positive voltage is applied to the center electrode to measure the 

energy distribution of the ions. The effect of voltage on the RIA was recently discussed [54]. The 

FC, SE, and the retarding field ion energy analyzer are placed on a 6-inch CF flange attached to 

the end of the drift tube. Fig. 3.2(a) shows a schematic of the FC with suppressor electrode 

connected to the three-electrode retarding field analyzer. A negatively biased suppressor 

electrode is used to suppress the signal from secondary electrons due to ion bombardment of the 

FC. The suppressor electrode keeps the electrons from leaving the FC. We applied -70 V to the 

Faraday cup. By applying a variable negative voltage to the suppressor electrode, starting from 

ground potential, while observing the shape of the ion signal, we can detect the voltage needed to 
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suppress the effect of secondary electrons. The time-of-flight signal is affected by the secondary 

electron emission for up to -70 V applied to the suppressor electrode. That effect is reduced as 

we increase the negative voltage applied to the suppressor. At -80 V, there is no effect due to 

secondary electron emission. With more negative voltage applied to the suppressor, the shape of 

the ion signal does not change. In our experiment, we use -140 V for the suppressor voltage. Fig. 

3.2(b) shows the effect of suppressor voltage for -40, -60, and -90 V, respectively. The TOF 

signal shown is for 82 mJ laser energy on target and no acceleration voltage applied.  
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Fig. 3.2 (a) Schematic of the TOF mass-spectrometer, (b) TOF spectrum for suppressor voltage of -40, -

60, and - 90 eV. 

 

The total charge delivered to the Faraday cup Qi is given by 𝑄𝑖 =
1

𝑅𝐿
∫ 𝑉𝐹(𝑡)𝑑𝑡, where 

VF(t) is the voltage applied to the Faraday cup, and RL is the 50 Ω internal resistance of the 
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oscilloscope. Fig. 3.3(a) shows the MCI signal with charge state up to Al4+ for accelerating 

voltage of 7 kV and laser pulse energy on target of 82 mJ. A fast-positive signal is observed due 

to the photoelectric effect where photons generated from the laser plasma with energy above the 

work function of the FC material cause photoemission. The extracted ions from the plasma 

plume by the electric field between the target and the grounded mesh are detected by their TOF 

signal measured by the FC. An ion generated at the target with zero energy would reach the FC 

after a time-of-flight 𝑇𝑂𝐹 =  𝑡𝑎 + 𝑡𝑑 =  √
2𝑚

𝑍𝑒𝑉
𝑑 +  √

𝑚

2𝑍𝑒𝑉
𝑆, where 𝑡𝑎 is the time that an ion is 

accelerated from zero velocity at target to velocity 𝑣 at the extraction mesh, 𝑡𝑑 is the time that 

ions drift at constant velocity 𝑣 from the extraction mesh to the FC, d is the distance from the 

target to the extraction mesh, S is the distance from the extraction mesh to the FC, m is the mass 

of Al atom, e is the electron charge, Z is the charge state, and V is the applied accelerating 

voltage. The above equation does not account for plasma ion shielding, voltage drop on target, 

and ion acceleration in the expanding plasma. The ion accelerating time 𝑡𝑎 is small compared to 

the ion drift time 𝑡𝑑.The procedure to determine the charge state of the ions using their TOF was 

previously discussed [54, 55]. The process followed for deconvolution of the total TOF spectrum 

in Fig. 3.3(a) into separate ion charges is accomplished by, first, assigning a curve fit to the TOF 

signal using the peak fitting option in Origin-lab 9.1 software. Then, the TOF signal for each 

charge is separated using the selected peak position obtained by Origin-lab. Integrating over the 

time range and dividing the integral by the 50 Ω terminal resistance of the oscilloscope gives the 

total charge for each charge state delivered to the FC. The signal observed by the FC is the sum 

of these separated ion signals. The energy distribution for each charge state is calculated for the 

selected peak position. Peak position selection for the TOF signal corresponding to each charge 

can be also obtained directly from the TOF signal without curve fitting. These two approaches 

give almost similar total charge (within 5%) and energy distribution for each charge state. 

The total charge reaching the FC is ~640 pC when no einzel lens voltage is applied. Fig. 

3.3(b) shows the energy distribution of the MCIs calculated from the TOF signal of the ions. For 

Al1+, we detect ∼150 pC charge per pulse with most probable energy Emp ∼2.8 keV, ∼180 pC for 

Al2+, Emp ∼5.5 keV, ∼260 pC for Al3+, Emp ∼8.2 keV and ∼50 pC for Al4+, Emp ∼11 keV. The 

peak ion currents are 55 µA for Al1+, 103 µA for Al2+, 150 µA for Al3+ and 100 µA for Al4+. The 

ion energy depends on the plasma parameters, the potential applied to the target, and the 
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shielding effect of the laser plasma. The ion energy distribution 𝑓(𝐸) is calculated from the ion 

kinetic energy 𝐸𝐾 =  
1

2
𝑚𝑣2 , where the velocity v is measured from the TOF signal of the MCIs.  
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Fig. 3.3 (a) Time-of-flight analyzer signal for MCIs generating up to Al4+ for 7 kV accelerating voltage 

and 82 mJ laser energy on target, (b) energy distribution of the MCIs. 

 

  The average current that the described laser MCI source can deliver depends on the laser 

pulse repetition rate and the current rating of the power supply providing high voltage bias to the 

target. Due to their higher velocity, the ions pass the grounded grid before the expanding plasma. 

As the expanding plasma plume from the target reaches the grounded grid, the high voltage 

power supply is connected to the ground potential through the plasma resistance. This resistance 

can be low, resulting in a drop-in power supply voltage. In our system, the Q-switched Nd:YAG 

laser used has a maximum repetition rate of 10 Hz, while the power supply limits the repetition 
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rate to ~5 Hz due to time required for the voltage to recover after each pulse. At 5 Hz operation, 

the average current for each charge states are ~0.75 nA for Al1+, ~0.9 nA for Al2+, ~1.3 nA for 

Al3+, and ~0.25 nA for Al4+.  

One application of the Al LMCI source is in implantation of SiC to form a p-type layer. 

Saks et al., implanted SiC with 30-keV Al ions to a dose of ~4x1011 ions/cm2 [60]. The implant 

layer doping was 1x1017 ions/cm3 with thickness (box profile) of 500 nm. At ~5 Hz repetition 

rate, our LMCI source can provide a dose rate of ~5x108 ions/(cm2.s) for an ion beam area of 

~20 cm2 obtained without focusing. Therefore, a SiC wafer of ~20 cm2 area can be implanted 

with Al MCI to form a shallow p-doped layer in ~2.8 hour. This dose can be further increased by 

implanting before the ions pass the three meshes of the retarding ion energy analyzer which 

combined allows only ~34% of the ions to pass to the Faraday cup.  

The ion yield and charge state from laser sources vary widely depending on the laser 

source and irradiation conditions [61]. Using a table-top femtosecond Ti:sapphire laser 

(wavelength  = 800 nm, pulse width  = 200 fs, pulse energy up to 0.5 mJ, and repetition rate 1 

kHz), it was possible to generate up to Si12+ and W26+ with maximum energies in the keV range 

per charge state [62, 63]. An XeCl excimer (λ = 308 nm, τ = 20 ns) laser-based MCI source was 

developed, and extensive studies on the characteristic of the produced MCI were reported [27, 

28]. Ablation of the Cu target using 70 mJ (56 J/cm2 3.5x108 W/cm2 ) laser energy per pulse, 

maximum charge state generation was Cu5+,  with most ions singly and doubly ionized and 16 % 

ionization of the plasma [27, 28]. An Nd:YAG (wavelength λ = 1064 nm, pulse width τ = 7 ns, 

and laser fluence of 10-110 J.cm−2) was used to produce carbon MCI up to charge state C4+ with 

the total maximum charge was ~25 nC [64].   

Electron cyclotron ion sources (ECRIS) and electron beam ion sources (EBIS) generate 

MCI from gases or external ion or laser ablation sources [65-68]. An ECR ion source operating 

at 18 GHz microwave of power 1.6 kW generated 560 µA of O7+, 620 µA of Ar11+, 430 µA of 

Ar12+, 430 µA of Xe20+ [65]. A maximum current of 1.42 mA Ar12+ and 1.1 mA Xe26+ was 

reported for an ECRIS operating at 24 GHz with 7 kW power [66]. Production of currents at the 

mA level (10 µs pulse length) of different ion charges was reported for an EBIS equipped with 5 

T, 2-m long and 204 mm diameter warm bore superconducting solenoid magnet and electron gun 

operating at 10 A. This EBIS can produce high charge state ions of practically any species, 
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however, it was mainly used to generate Au32+ and Fe20+ [67].  An EBIT with 5 T magnetic field, 

800 mA electron beam current, and 200 µm electron beam radius was able to produce Ar17+ [68]. 

Commercial ECRIS made by Pantechnik operate in a continuous mode [69]. When using 

superconducting magnets, they can produce high continuous current, e.g., ECRIS model 

Supernannogan can generate 200 μA C4+ [69]. The EBIS are generally pulsed (10-300 Hz), 

although they can operate in a continuous mode with a low ion yield. For example, DREEBIT 

EBIS can produce 2x106 C6+ions/pulse [70]. The laser MCI sources produce plasma plume by 

laser ablation and ionization of a solid target. The ion yield from LMCI sources vary 

significantly with the laser source used. LMCI sources are mostly experimental and have not 

been so far commercialized. The availability of many pulsed laser deposition (PLD) systems 

makes the development of LMCI systems for labs equipped with PLD relatively straightforward, 

with mainly the ion transport line components needed. The laser MCI system and its transport 

line can operate in ultrahigh vacuum with a relatively small pumping capacity since no gas load 

is handled and no differential pumping is needed. High ion yield per laser pulse can be 

generated. With a relatively small Nd:YAG laser (wavelength 1064 nm, 15 ns pulse width, 400 

mJ pulse energy), it is possible to generate ~8x109 C6+ ions/pulse [71].   

3.3.2 Einzel lens 

A three-electrode electrostatic einzel lens is used to focus the MCIs. An einzel lens is a 

three-element lens with the outer two electrodes held at the same potential (in our case 

grounded), while the central electrode is held at a potential that can be varied for focusing at 

different distances. This lens does not vary the energy of the charged particles. Several groups 

reported on the simulation and analytical solutions of charged particle trajectory in einzel lenses. 

Sise et al., modeled multi-element cylindrical electrostatic lenses for focusing and controlling 

charged particles. Numerical modeling was done using SIMION [56] and LENSYS [72], and the 

results were described in terms of the ratios of the electrode lengths and gaps, and the ratios of 

the controlling voltages [73]. For three, four, and five cylindrical electrode lenses, higher voltage 

ratios for middle electrodes were shown to result in the lowest spherical and chromatic aberration 

coefficients [74]. Abdelrahman used SIMION to design a three electrode einzel lens system for 

focusing 5 keV singly-charged oxygen ions [75]. Different lens parameters were investigated 

with and without space-charge effects [75]. For 40 mm aperture diameter lens separated by 20 
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mm gaps, the best focal length was 550 mm from the end of the lens, which was achieved for an 

applied voltage of -4.5 kV [75]. An analytical method to evaluate the potential and the fields for 

a cylindrical einzel lens was described and the solution compared well to SIMION modeling 

[76]. We describe the construction and testing of a three-electrode einzel lens for MCI focusing. 

 

3.3.2.1 Fabrication 

Fig. 3.4 shows the schematic of the einzel lens consisting of three electrodes, of which 

the outer two electrodes are grounded, and the ion beam focusing is done by varying the voltage 

on the center electrode. These electrodes are made out of stainless-steel tubes of 33 mm length 

and 43 mm inside diameter and separated by ~1 cm. A high voltage power supply provides 

variable negative voltage to the central electrode of the einzel lens. The grounded knife edge, 

shown in Fig. 3.1, has a dimension of 5 x 5 cm and can be move up and down by an external 

linear feedthrough to intercept the ion beam path to the FC. The ion beam diameter delivered to 

the FC is measured with the knife-edge intersecting the ions beam from a fully open position, 

through the beam, to the position where the beam is fully blocked. The TOF signal of different 

MCIs are observed and used to calculate MCI transmission at certain knife-edge positions. The 

number of ions reaching the FC with respect to knife-edge position is plotted. The full-width and 

half-maximum (FWHM) value of the derivative of that curve gives an estimate of the diameter 

of the ion beam. Due to ion divergence, with the central electrode of the einzel lens at ground, 

the ion beam width is large enough to fill the 43 mm ID of the lens resulting in a portion of the 

generated MCIs hitting the einzel lens and other parts of the transport line rather than reaching 

the FC. Focusing the ion beam increases the total charge delivered to the FC. 

 

 

Fig 3.4 Schematic of the three-electrode einzel lens. 
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3.3.2.2 Testing 

Changing the einzel lens voltage affects the total number of charges delivered to the FC. 

Initially, with the increase of einzel lens voltage, the total charge reaching the FC increases 

because the electric field focuses the ion beam, reducing the ion lost in the transport line due to 

the divergence of the ion beam. After a certain high voltage applied to the central electrode of the 

einzel lens, the number of charges, with a specific charge state, delivered to the FC decreases as 

the ion beam is defocused at the location on the FC to an area larger than the FC diameter. The 

maximum charge delivered to the FC for Al1+ is ~224 pC at -2.4 kV, for Al2+ ~270 pC at -2.2 

kV, for Al3+ ~400 pC at -2.8 kV, and for Al4+ ~90 pC at -2.0 kV. The ratio of maximum charge 

reaching the FC and the total charge when no voltage is applied to the einzel lens is ~1.5 for 

Al1+, Al2+, and Al3+, while for Al4+ the ratio is ~1.8. Ion divergence from the einzel lens to FC is  

~0.5° for Al1+, Al2+, Al3+ and for Al4+ the divergence is ~0.75° estimated by the ratio of 

maximum charge reaching the FC and the total charge when no einzel lens voltage is applied. At 

higher einzel lens voltage, the number of charges delivered to the FC is decreased. This decrease 

in the total charge delivered to the FC is because the defocused ion beam diameter at the location 

of the FC is increased and is larger than the FC diameter. 

Fig. 3.5 shows measurements of the ion beam diameter at the knife edge location (300 

mm away from the center of the focusing lens) for different voltages applied to the einzel lens. 

When the central electrode of the einzel lens is grounded, the different MCIs fill the transport 

line and the beam diameter measured at knife edge is nearly equal to the inner diameter of the 

einzel lens. For Al1+ and Al2+, varying the einzel lens voltage from zero to -4.0 kV decreases the 

beam diameter at the knife edge. At -4.0 kV, the ion beam diameter for Al1+ and Al2+ is ~1.5 

mm, while Al3+ ion has a minimum beam diameter of ~2.8 mm at -3.2 kV einzel lens voltage, 

and Al4+ has a minimum ion beam diameter of ~2.6 mm at -2.7 kV. The difference in the focused 

beam diameter for different charge states is due to their different energy distributions and beam 

divergence. The inset of Fig. 3.5 shows the ion beam diameter for Al3+ and Al4+ for einzel lens 

voltage range from -2.5 to -3.5 kV with a step change of 100 V. At -4.0 kV the ion beam 

diameters of Al3+ and Al4+ are increased to ~11 and ~13 mm, respectively. Due to the distance 

from the einzel lens to FC and ion beam defocusing, all the ions passing through knife do not 

reach the FC. When the ions are focused to minimum beam diameter at the knife edge, the 
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number of ions reaching the FC for each charge state is more than 85% of their value when the 

ions are focused on the FC surface. This loss in the total number of ions detected when 

measuring the ion focus diameter by the knife edge underestimates the beam diameter at focus 

by ~15% when assuming a Gaussian ion beam shape. The voltage applied to the einzel lens for 

minimum beam diameter and the resulting beam diameter depends on the charge state because 

the different charge states have different spatial beam divergence starting from the source [77]. 

Although each charge state is accelerated to a potential that is almost directly dependent on their 

charge state, the energy distribution of ions with different charge states vary [78]. 

 

 

Fig 3.5 Experimental results of the effect of einzel lens voltage on the beam diameter of Al1+ to Al4+ at 

knife edge. Inset shows beam diameter of Al3+ and Al4+ with focusing voltage in a narrow voltage region 

where best focus is obtained. 

 

3.2.2.3 Simulation 

SIMION 8.1 ion optics simulation software is used for the modeling of the einzel lens. 

SIMION uses the 3D potential array approach to estimate the electrostatic fields created by the 

electrode geometry. A potential array contains a collection of square mesh of points. The 

potential at points outside of the electrodes is determined by solving the Laplace equation via the 

finite difference method [79]. For computation, we choose a geometry closely representing the 

actual experimental chamber used. The model simulates a three-electrode einzel lens with 
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dimensions similar to our experiment. To simulate the ion source, the experimentally obtained 

ion divergence for each charge state and the spatial distribution (fitted with Gaussian 

distribution) at the knife edge is used. In the SIMION model, we defined the spatial distribution 

of the ions with Gaussian 3D distribution with mean at origin and FWHM of 40 mm, as 

calculated from the knife edge experiment. Fig. 3.6 shows the lens geometry and ion beam 

trajectories in the SIMION model. From the experimental results the mean energy and FWHM of 

the energy distribution are: Al1+ 2.8 kV and 1.1 kV; Al2+ 5.5 kV and 1.5 kV; Al3+ 8.2 kV and 3.6 

kV, and for Al4+ 11 kV and 2.7 kV, respectively. For modeling the ion focusing distance and 

focus spot size, using an accurate ion energy source distribution is crucial. Fig. 3.7 shows the 

difference in ion trajectories between a cylindrical ion energy distribution (a) and a Gaussian 3D 

ion energy distribution when -3.5 kV is applied to the center electrode (b). For the cylindrical ion 

distribution, the Al4+ ions focus at a distance of 156 mm from the center electrode, while when a 

Gaussian ion distribution is used, that distance is 167 mm. The minimum beam diameter for the 

cylindrical ion source is 1.2 mm, whereas for the 3D Gaussian distribution it is 1.9 mm. 

 

 

 

Fig. 3.6 SIMION simulation showing the Al1+, Al2+, Al3+, and Al4+ charges are indicated by blue, red, 

green and yellow respectively. 
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Fig. 3.7 Effect on ion trajectory for ion source distribution. Al4+ ions are focusing with applied voltage -

3.5 kV with the input ions having a Gaussian energy distribution with mean of 11.5 kV and FWHM of 2.7 

kV. (a) A cylindrical spatial distribution for ion source center position at (0, 0, 0) with radius 21 mm. (b) 

Gaussian 3D spatial distribution with center at (0, 0, 0) and FWHM of 19 mm on each axis. 

 

The ion beam diameter is measured at 30 cm from the central electrode of the einzel lens. 

This distance is like the distance from the central electrode to the knife edge in the experiment. 

Fig. 3.8 shows simulated results for the effect of change of einzel lens voltage on the ion beam 

focus diameter at knife edge using SIMION. Increasing the einzel lens focusing voltage from 

zero to -3.5 kV continuously decreases the beam diameter of the ions. The minimum beam 

diameter for Al1+, Al2+, Al3+ and Al4+ is ~2 mm observed for einzel lens voltage of -2.7 kV. In 

the SIMION simulation, ions with different charges focus to the same beam diameter because the 

ions are assumed to have the same energy per charge. 
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3.3.3 Ion selection 

Ion acceleration by the internal electric field generated in the plume and by the external 

applied electric field depends on the charge state. The higher charge states for an element are 

accelerated to a higher drift velocity than the lower charge states. Therefore, selection of ions 

with certain mass-to-charge ratio m/z can be accomplished by applying a voltage pulse to a set of 

deflection plates that is synchronized to pick a subset of the ions during their TOF. Several 

groups reported on the use of pulsed ion deflection for selection or removal of ions with m/z. 

Vlasak et al., reported on the design and operation of an interleaved comb ion deflection gate 

device for selection of ions for particular m/z for TOF mass spectroscopy [80]. With a temporary 

and short-range deflection field, Guilhaus et al., removed the selected ions with certain m/z ratio 

from the TOF signal [81]. Toker et al., reported on a mass selection technique to clean a keV ion 

beam of undesirable ion masses using an electrostatic deflector and two grounded shielding 

electrodes placed before and after the electrostatic deflector [82]. A deflection device consists of 

two parallel plates for ion injection followed by two sleeve plates to reduce the ion scattering 

was reported [83].  

We have used a pair of deflection plates to select a subset of the ions based on their TOF. 

For example, if one ion charge is to be selected, the deflection plates are operated to deflect the 

ions except the selected ion charge, which drifts to the FC. The applied voltage pulse width on 

the deflecting plates determines the ion pulse width reaching the FC. Therefore, it is possible to 

select a subset of ions that can contain more than one charge or to select a kinetic energy range 

of a certain charge. 

3.3.3.1 Fabrication 

The deflecting plates are made of aluminum and have a length of 6 cm, width of 5 cm, a 

thickness of 0.5 cm, and are separated by 10 cm. Insulated feedthroughs are used to mechanically 

support the deflection plates and apply voltage to them. One deflection plate is grounded while a 

voltage pulse is applied to the other plate. The location of the deflection plates in the transport 

line is schematically shown in Fig. 3.1. The distance from the Al target to the center of the 

deflecting plates is ~120 cm. The high-voltage pulse to select specific charge is generated using a 

combination of a delay generator, a high-voltage power supply, and a high-voltage pulse 
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generator (IXYS Colorado, PVX-4110). The external trigger from the laser power supply, which 

controls the Q-switching of the laser, is used to trigger the pulsed delay generator, which in turn 

triggers the high-voltage pulse generator at a specific delay time from the laser pulse. The delay 

and the width of the high-voltage pulse are determined by the delay generator pulse and can be 

varied. We apply up to -10 kV pulse with variable pulse width and delay to the deflection plates.  

3.3.3.2 Testing 

The vertical deflection of ions due to the electric field of the deflecting plates can be 

calculated from S =
𝑉𝑑 𝐿

2𝑑𝑉𝑎𝑐𝑐
(𝐷 +

𝐿

2
), where S is the deflection of ion vertically from the center of 

the two plates at a distance of D from the end of the deflecting plates, 𝑉𝑑 is the deflecting 

voltage, 𝐿 is the deflecting plate length, 𝑑 is the separation between plates, and 𝑉𝑎𝑐𝑐 is the ion 

accelerating voltage. MCIs with different charges will be deflected together as long as they 

experience the same accelerating voltage (their kinetic energy is proportional to their charge). 

We apply -10 kV voltage to deflect all ions outside the Faraday cup. Then, to select Al1+, Al2+, 

Al3+, and Al4+, the high-voltage pulse is applied to the deflection plate at 8.0, 5.8, 4.5, and 3.4 μs 

after the laser trigger. The energy distribution of the selected MCI depends on the selected ion 

pulse width. By selecting a subset of an ion charge, that energy distribution can be smaller than 

the distribution before the deflection plates.  

Fig. 3.9 shows signal from Al1+ to Al4+ ions as they are picked up by the applied high-

voltage pulse with a width of 1 μs. The TOF signal of the Al ions after charge selection with the 

pulsed deflection plates is shown. The inset shows the applied high-voltage pulse for selecting 

Al3+ MCI when 7 kV is applied to the Al target. The deflection plate voltage is maintained high 

enough to deflect all ions away from the FC. Then, a negative high-voltage pulse is applied to 

allow only the Al3+ ions. For example, a pulse delay by 4.5 μs to the laser trigger allows only the 

Al3+ MCI to reach the Faraday cup.  
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Fig. 3.9 Selection of MCI from Al1+ to Al4+ for deflection plate voltage -10 kV with pulse width 1 μs. The 

delay of the deflection pulse is determined by the TOF of the ions. Inset shows the voltage pulse for 

selecting Al3+. Without ion selection, the TOF spectrum consists of all the MCIs generated traveling 

towards the FC, is shown in Fig. 3.2(a). 

 

3.3.4 Electrostatic ion analyzer  

Electrostatic cylindrical ion energy analyzers (EIA) are often used for analysis or 

selection of ions with a specified range of energy-to-charge ratio E/z [84]. The EIA consists of 

two curved parallel plates held at different potentials and a radial cylindrical design with a 

deflection angle that varies depending on the application. A total deflection angle of 127o is often 

used in energy analysis because this angle allows an ion beam focused onto the entrance slit to 

be also focused onto the exit slit, improving ion transmission through the EIA [85]. The EIA 

operated with TOF detection of MCIs allows E/z ratio and z to be identified independently. 

Therefore, the energy distribution of ions in each charge state can be obtained by applying 

different voltages between the EIA electrodes. An EIA was previously used to separate laser-

generated MCIs and analyze their energy distribution. An EIA was used to probe Si MCIs, 

generated by femtosecond ablation, with E/z of 0.4-33 keV and energy resolution of 8% FWHM 

[62]. Torrisi et al., used an EIA, with 90o bending angle, followed by TOF detection to study ion 

emission from Ta laser-generated plasma [86]. Using a Nd:YAG laser with 270 mJ/pulse, they 

detected up to Ta5+ in the ablation plume without external ion acceleration. Mean ion energies 

were 250 eV/z. Shan et al., used an EIA combined with TOF detection, equipped with an 
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electron multiplier, to probe charge state and energy distribution of the ions produced by a laser 

ion source [87]. Using Nd:YAG laser operating at 1064 nm with 8 ns pulse width and an energy 

of 1 J/pulse, up to Al12+ and Pb7+ were observed. We have constructed an EIA and used it to 

detect MCIs of Al and C. 

3.3.4.1 Fabrication 

The EIA is placed before the three-grid energy analyzer and Faraday cup without 

changing the distance from the target to the Faraday cup, as shown in Fig. 3.10. Ions enter the 

analyzer at one side and either pass through the other side or collide with the walls of the 

analyzer, depending on their initial kinetic energy. The ions selected by the EIA have a range of 

E/z obtained from the equation  
𝐸

𝑧
=

𝑒𝑈

[2 𝑙𝑛(
𝑅2
𝑅1

)]
, where E is the kinetic energy of the ion, e is the 

electron charge, U is the total potential across the plates, R1 = 145 mm is the inner radius, and R2 

= 183 mm is the outer radius [24]. The width of the plates is 38 mm and the bend angle is 90o. 

Ion entrance and exit slits can be placed in the EIA to reduce the spread in E/z selected, however, 

all results reported are without slits in order to increase ion transmission.  

 

 

Fig. 3.10  Schematic of EIA analyzer and Faraday cup for ion selection with E/z. RE is the retarding 

electrodes, SE is the suppressor electrode, and FC is the Faraday cup. The system can be configured with 

and without the electrostatic ion energy analyzer (EIA) while maintaining the same distance between the 

target and the Faraday cup. 
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3.3.4.2 Testing 

A second LMCI system is used to generate carbon MCI.  In this setup, the distance from the 

carbon target to EIA is 90 cm. The EIA is tested on that system and used to select carbon MCIs 

according to their E/z ratio. The EIA spectrum is obtained at a laser energy of 34 mJ per pulse 

with an Nd:YAG laser operating at  = 1064 nm and  = 7 ns. The laser spot size at focus is 

~200 µm. Fig. 3.11 shows the carbon ion spectra for 5 kV voltage applied to target without and 

with the EIA. The ion spectra in Fig. 3.11 is obtained when the E/z selection is set to allow 

transmission of ions with central E/z = 2.8 keV. The voltage applied to the EIA plates are at ±655 

V. Different E/z selections are used to analyze the energy distribution of different MCIs. 

Comparison of the MCI spectra without and with the EIA shows that the carbon MCIs contain 

multiple peaks associated with the same ion charge. For example, the peak at ~6.5 s could be 

due to C1+ that is accelerated more than the rest of the C1+ ions by the double layer potential 

established in the outer layer of the expanding plasma [23]. 
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Fig. 3.11 Carbon ion signal detected by the Faraday cup placed without (black), and with (red, intensity 

x5) the electrostatic ion analyzer. The MCI signal is produced by a single pulse from a Nd:YAG laser (λ = 

1064 nm, pulse energy 34 mJ). The voltage applied to target is 5 kV, and the EIA is set to central E/z = 

2.8 keV. 
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Fig. 3.12 shows EIA spectrum of the C2+ and C3+ ions detected from E/z = 1.7 to 5.1 keV. 

The carbon target is kept at 7 kV acceleration voltage. The widths of C2+ and C3+ peaks before 

the EIA analyzer are both ~3 µs. The ions have some overlap in time before deflection. Ion 

signals of C2+ and C3+ are shown in Fig. 3.12(a), and 3.12(b), detected for the EIA analyzer 

voltage set to transmit ion energies centered from 1.7 to 5.1 keV. As the EIA voltage is 

increased, ions with higher energies appear in the energy spectrum. The intensities of C2+ and 

C3+ are maximized at E/z ~4.2 keV. Plasma shielding of the ions during the plume expansion in 

the region between the target and grounded mesh limits the ion energy gained to less than the 7 

kV voltage applied to target. Further increasing the biasing voltage up to E/z = 5.3 keV shows 

the more energetic components of the C2+ and C3+ ions. The ion energy distributions can be 

reconstructed from the spectra obtained for different E/z selections. The energy resolution ΔE/E 

of the EIA is 7-9%, depending on the voltage applied across the EIA plates. The resolution is 

calculated by dividing FWHM of the ion peak transmitted through the EIA to the corresponding 

central kinetic energy of that ion. Introducing entrance and exit slits to the EIA can narrow the 

resolution. 
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Fig. 3.12 EIA spectrum of C2+ (a) and C3+ (b) with varying E/z. The energy resolution ΔE/E of the EIA is 

7-9%, depending on the voltage applied across the EIA plates. 

 

3.3.4.3 Simulation 

SIMION is used to simulate the carbon ion trajectory in the EIA and obtain the E/z 

selectivity of the EIA. The EIA geometry in SIMION is set similar to the experiment with the 

inner radius R1 = 145 mm and outer radius R2 = 183 mm. The voltage across the plates is varied. 

The maximum number of ions detected for ±500 V on the deflection electrodes with E/z = 2.2 

keV. Fig. 3.13 shows the ion trajectory path for C4+ passing through the EIA and reaching the FC 

for two different voltages applied to the EIA electrodes. Fig. 3.14 shows the TOF spectrum in 

terms of the number of ions reaching the FC with ±500 V applied on the electrodes of the EIA. 

From the Fig. 3.14, we observe that the EIA ion transmission increases with the ion charge state. 

The number of particles in the ion source is 500 for each charge state. All the ions are simulated 
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with both energy distribution and special distribution obtained from the experiment. For ion 

energy distribution, a Gaussian three-dimensional distribution is used with a mean of 2.3, 4.2, 7 

and 10.3 keV for C1+, C2+, C3+ and C4+, respectively. The FWHM of the Gaussian energy 

distribution is 1.5, 2.9, 3.8, and 4.3 keV for  C1+, C2+, C3+ and C4+, respectively. The simulated 

TOF corresponding to peak signal for C1+, C2+, C3+ and C4+ are 7.9, 5.5, 4.6, and 3.9 µs, 

respectively, whereas, the experimental TOF is 7.2, 5.4, 4.6, and 4 µs as shown in Fig. 3.11. 

 

 

Fig. 3.13 Ion trajectory path for C4+ through the EIA. The applied voltage to the EIA (a) ±500 V, (b) ±300 

V. 
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Fig. 3.14 Simulated TOF spectrum for C1+, C2+, C3+, and C4+. The applied voltage to the EIA is ±500 V. 
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3.4 SUMMARY 

Details of construction and operation of ion transport line components, e.g. einzel lens, 

parallel ion deflection plates, electrostatic ion energy analyzer, and three-grid retarding field ion 

energy analyzer, are reported. The minimum ion beam diameter detected of ~1.5 mm is for 

charge Al4+. With a combination of parallel deflecting plates and programmable pulse generator, 

ion charge states are selected from their TOF. The ion pulse width depends on the selected 

voltage pulse applied to the parallel plates. The EIA selects ions according to their E/z. The 

overall energy resolution of the EIA for the carbon MCI is 7-9%. This resolution can be reduced 

by using input and output slits. 
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CHAPTER 4 

 

LASER-SPARK MULTICHARGED ION SOURCE 

 

4.1 INTRODUCTION 

We report on the development of a spark discharge coupled laser multicharged ion (SD-

LMCI) source to enhance the plasma ionization by depositing spark energy into the laser ablated 

plume. A similar type of experiment was conducted by Nassef and Elsayed-Ali to enhance the 

spectral line intensity and signal/background ratio using spark discharge coupled laser induced 

breakdown spectroscopy [88]. The SD-LMCI source is composed of a laser MCI source and a 

separate spark stage to deposit energy into the laser ablated plasma. A Q-switched 7.4 ns pulse 

width Nd:YAG laser is used to ablate Al target. The electrodes of the spark system are placed in 

front of the Al target and the laser beam is incident on the target through the gap of the 

electrodes. An accelerating voltage is applied to the target while a grounded mesh is placed in 

front of the target to extract, accelerate and direct the generated MCIs towards the Faraday cup. 

The velocity and the charge state of the extracted MCIs are measured using ion time-of-flight 

(TOF) as detected by a Faraday cup. The results show that a simple spark discharge, triggered by 

the laser plasma, can be effectively used to amplify the number of ions produced and increase the 

ion charge state achieved.  

4.2 EXPERIMENTAL 

A schematic of the SD-LMCI source is shown in Fig. 4.1. The target is ablated with a Q-

switched Nd:YAG laser pulse ( = 1064 nm, 7.4 ns pulse width (full-width at half maxima 

(FWHM)), and pulse energy 72 mJ). The laser beam strikes the Al target surface at an angle ϑ = 

45˚. The laser beam is focused on the Al surface by a convergent lens with 50 cm focal length. 

The laser spot area at focus was 0.0024 cm2, as measured by the knife-edge method at target-

equivalent plane with the edge scanned at 45˚ to the laser beam. The knife edge was used to scan 

the laser beam in both horizontal and vertical directions. A combination of half-wave plate and 

thin film polarizer is used to control the focused laser energy on the target. The data reported 

here were all obtained using a single laser pulse. A 99.9% pure, 0.5 mm thick aluminum disc 

target (Alfa Aesar) with a surface roughness of 261.77 nm is placed on a multi-axes translational 
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stage. An insulating connector is used to mount the Al target support inside the MCI generation 

chamber. This arrangement allows applying accelerating voltage directly to the Al target, 

keeping the experimental chamber at ground. Throughout the experiment, 5 kV bias voltage was 

applied to the Al target. A nickel mesh of diameter 10-cm, thickness of 100 μm and with an open 

area of 70% (Precision Eforming) is placed 15-cm in front of the target.  

 

 

Fig. 4.1 A schematic of the spark discharge coupled laser multicharged ion (SD-LMCI) source showing 

the target chamber, and a spark system to deposit energy into the plasma plume; Vc is the Faraday cup 

voltage and Vs is the suppressor voltage. Inset shows the experimental setup used for the spark discharge; 

C is capacitor, V is voltage applied to the capacitor, R is current limiting resistor, and L is inductor. 

 

The spark is composed of two parallel Al electrodes of diameter 3.2 mm, separated by ~3 

mm, and placed ~5 mm in front of the Al target, as shown in the inset of Fig. 4.1. The 0.1 μF 

capacitor is connected to a variable DC power supply through a 5 MΩ current limiting resistor. 

One of the electrodes is connected to the capacitor through a 0.15 µH inductor. The other 

electrode is grounded through a 25 cm long wire. The capacitor was charged up to 5 kV. No self-

breakdown occurred for these voltages. A high voltage probe (Tektronix P6015A) and a current 

pick up coil (Pearson Electronics, Inc., 0.001 V/A current monitor) are used to record the voltage 

drop across the discharge and the discharge current using an oscilloscope. The laser beam strikes 
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the Al sample through the ~3-mm electrode separation. The laser plasma plume expands between 

the electrodes triggering the spark discharge. 

The diameter of the MCI generation chamber is 15 cm. A 125 cm long, 10.2 cm ID 

transport tube is connected to the chamber. A Faraday cup of diameter 5 cm made from Al is 

placed at the end of the drift tube to collect the MCIs. The interaction of the ions with the 

Faraday cup emits secondary electrons. To suppress these electrons, a higher negative voltage 

than the Faraday cup biasing is applied to the suppressor electrode. Throughout the experiment, 

the Faraday cup voltage was maintained at -70 V and the suppressor electrode voltages was at -

110 V. The Faraday cup is connected to the oscilloscope through a capacitor (5 µF), to remove 

the bias voltage from the recorded MCI signal. The MCI system is operating in high vacuum 

(background pressure in 10-7 Torr range) by using a combination of a turbo-molecular pump for 

initial pumping followed by an ion pump). The total scattering cross-section for different MCIs 

was measured and reported by several groups [89-91]. According to their results, for our 

experimental condition the ion travel distance from the Al target to the Faraday cup in much 

shorter than the mean free path of the generated different MCIs, reducing the MCI loss due to 

charge transfer with the background gas to a negligible value.  

4.3 RESULTS AND DISCUSSIONS 

The spark discharge operation depends on the circuit parameters, separation of the 

electrodes, electrode distance from target, and the laser ablation plume characteristics [92, 93].  

The value of the inductor L was adjusted in order to best couple the spark discharge energy to the 

ablated plume.  Fig. 4.2 shows the voltage measured across the spark discharge (a), current 

through the discharge (b), and the power dissipated in the plume by the spark (c) when the 

capacitor C was charged to 5.0 kV and a laser energy pulse of 72 mJ used to ablate the Al target. 

At this voltage, the total stored energy in C is 1.25 J. As the spark is initiated, the voltage across 

the two electrodes shows a sudden decay in 1.2 µs. The corresponding current shows damped 

oscillations with a maximum of ~670 A, as shown in Fig. 4.2(b). The peak power deposited into 

the plasma plume is ∼0.67 MW, which decays to ~0.1 MW in ~1 µs then oscillates while 

diminishing with time as shown in Fig. 4.2(c). Integrating the power dissipating in the discharge, 

shown in Fig. 4.2(c), the total energy deposited into the plasma plume is 0.9 J with 0.4 J 

deposited in 1.0 µs after initiation of the spark discharge. Discharge power dissipation time of ~1 
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µs or less can best couple the discharge energy with the laser plume and is needed to preserve the 

shape of the ion signal showing the different ion states separated in time for time-of-flight 

detection. 
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Fig. 4.2 (a) Voltage measured across the spark electrodes. (b) Discharge current. (c) Deposited electric 

power in the plasma. The spark was triggered by the Al plasma plume when a 72 mJ laser pulse ablated 

the Al target.  The capacitor C was charged to 5.0 kV. 

 

The total charge reaching the Faraday cup Qi is given by 𝑄𝑖 =
1

𝑅𝐿
∫ 𝑉𝐹(𝑡)𝑑𝑡, where VF(t) 

is the voltage signal on the Faraday cup and RL is the 50 Ω internal resistance of the 
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oscilloscope. The process we use to deconvolve the Faraday cup signal into curves for each 

charge state has been explained in a recent publication on the LMCI source without the spark 

[54]. The ions, extracted from the plasma plume by the electric field between the target and the 

grounded mesh, are detected by their TOF signal measured by the Faraday cup. Due to plasma 

shielding, the ions are not accelerated to the full potential applied between target and grid. The 

electric field due to the voltage applied to the spark also decelerates the MCIs. If effects due to 

plasma shielding and the spark electrodes are not considered, an ion generated at the target with 

zero energy would reach the Faraday cup after a time-of-flight of  𝑇𝑂𝐹 =  𝑡𝑎 + 𝑡𝑑 =  √
2𝑚

𝑍𝑒𝑉
𝑑 +

 √
𝑚

2𝑍𝑒𝑉
𝑆, where 𝑡𝑎 is the time that an ion is accelerated from zero velocity at target to velocity 𝑣 

at the extraction mesh, 𝑡𝑑 is the time that ions drift at constant velocity 𝑣 from the extraction 

mesh to the Faraday cup, d is the distance from the target to the extraction mesh, S is the distance 

from the extraction mesh to the Faraday cup, m is the mass of Al atom, e is the electron charge, Z 

is the charge state, and V is the applied accelerating voltage. The above equation does not 

account for ion acceleration in the plasma which, for our laser parameters, is mainly due to the 

sheath potential. The ion accelerating time 𝑡𝑎 is small compared to the ion drift time 𝑡𝑑. 

Identifying the charge state from the TOF spectra was performed as follows: Since the Al1+ has 

the lowest velocity, the arrival time of these ions corresponds to the longest TOF. The effective 

acceleration potential that the Al1+ ions were subjected to is obtained by calculating the 

accelerating voltage required to achieve this TOF for Al1+ and applying this accelerating voltage 

in the above TOF equation. This potential is then used in the TOF equation to determine the TOF 

of MCIs with other charges. The estimated TOF for MCIs with different charge states matches 

well the TOF spectra.  

4.3.1 Effect of spark energy  

The TOF ion signals without and with the spark discharge are shown in Fig. 4.3. The 

pulse laser energy used was 72 mJ while the spark discharge was operated at different capacitor 

C voltages.  Without the spark, up to Al3+ MCI with a total charge of ~1 nC is detected as shown 

in Fig. 4.3(a). When using the same laser pulse energy of 72 mJ and activating the spark by 

charging the capacitor C to 1.0, 4.0, and 5.0 kV (corresponding to stored energy of 0.05, 0.80 

and 1.25 J, respectively), the total charge detected is enhanced and higher charge states are 
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observed. For capacitor voltages of 1.0, 4.0, and 5.0 kV, the total charges generation are 2.0, 6.6, 

and 9.2 nC, respectively as shown in Figs. 4.3(b)-(d). The maximum charge states observed also 

increases reaching Al6+ for V = 5.0 kV. The initial noise in the TOF signal before the arrival of 

the MCIs to the Faraday cup is due to the spark generated RF noise that interferes with the signal 

detected by the Faraday cup [94]. The TOF of the MCIs also shows some peaks with complex 

shapes, for example, in Fig. 4.3(d) Al3+ and Al4+ MCIs show double peaks. The shape of the 

MCI signal depends on the energy characteristics of the ions, which could involve slower and 

faster ions depending on the ion generation mechanism and the propagation of MCIs thought the 

spark discharge electrodes [95]. 
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Fig. 4.3 Spark discharge enhancement of multicharged ion generation for 72 mJ laser energy. (a) Only the 

laser is used. (b)-(d) Spark discharge operating with energy stored in C of 0.05, 0.80, and  1.25 J, 

respectively. 
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The effect of the spark is to enhance ion generation and increase the maximum ion charge 

state. By integrating the area under each charge state in Fig. 4.3, one can determine the 

abundance of each charge state. From Fig. 4.3(a), without the spark, the ion charges detected are 

72% Al1+, 21% Al2+, and 7% Al3+, while with the spark with C charged at 1.25 J, the ion charges 

were 56% Al1+, 12% Al2+, 7% Al3+, 11% Al4+, 7% Al5+ and 7% Al6+. The TOF of MCIs is 

increased when the spark is used since the spark voltage decelerates the extracted ions in the gap 

between the target and the extraction mesh. In Fig. 4.4, we show calculation of the most probable 

energy of the Al1+ based on TOF data in Fig. 4.3. When the laser pulse was used without the 

spark, the most probable energy of Al1+ is ~1.8 keV. As the capacitor C was charged to 1.0, 4.0, 

and 5.0 kV (corresponding to stored energy of 0.05, 0.80 and 1.25 J, respectively), the most 

probable energy of Al1+ became ~1.1, ~0.9, and ~0.8 keV, respectively. The FWHM of the 

kinetic energy distribution of Al1+ remains unchanged at ~0.6 keV regardless of the spark 

operating voltage showing that the spark discharge did not introduce additional energy spread in 

the ion distribution from the laser plasma. 
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Fig. 4.4 Energy distribution of Al1+ without spark (square) and with spark energy of 0.05 (triangle), 0.8 

(circle), and 1.25 J (pentagon) coupled with the 72 mJ laser pulse energy. Spark energy refers to energy 

stored in C. 
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Fig. 4.5 shows the increase in total charge detected with the increase of energy stored in 

spark capacitor C. The laser pulse energy is fixed at 72 mJ. We observed that, with the increase 

of spark energy, total charge generation increased slowly, and for 1.25 J spark energy, the total 

charge generation increased by a factor of ~9 compared to charge generation with the laser pulse 

alone. Increasing the spark energy deposited into the laser plasma is expected to increase the 

plasma density and temperature, which in turn increases the total charge generation.  
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Fig. 4.5 Effect of spark energy deposited into the plasma plume on total charge detected. Error bars 

represent standard deviation. Spark energy refers to energy stored in C. 

 

4.3.2 Effect of laser energy 

In nanosecond laser-matter interaction, an incident laser pulse of enough energy causes 

evaporation of the target surface. Since the pulse width of the nanosecond laser is relatively long, 

the evaporated materials interact with the remaining part of the laser beam causing progressive 

ionization of the plasma plume [16, 96]. During this process, the electrons are heated by inverse-

bremsstrahlung. The heated electrons transfer their energy to the ions and neutrals through 

collisions. In our experimental conditions, the ablation time is much longer than the time to 
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transfer energy from energetic electrons to ions [26, 97]. The lifetime of the laser ablated plume 

is determined by the velocity of the plume expansion, which in turn is related to the 

hydrodynamic pressure inside the plume. The average velocity of the plume expansion is 

affected by the ion mass [24]. In laser ablated plasma, the ablated plasma density, temperature, 

ablated mass, and the ion and electron energy is affected by the laser pulse energy, intensity, and 

pulse width. The spark energy deposited into the plasma plume is expected to increase the 

plasma density and temperature leading to higher ionization rate and higher state charge along 

with increase in the total number of MCIs generated. 

Fig. 4.6(a) shows the total charge detected for increasing laser energy from 45 to 72 mJ 

without and with the spark discharge (C charged to 1.00 J). Without the spark, changing the laser 

pulse energy from 45 to 72 mJ increases the total charge detected from ~0.6 to ~1.0 nC. When 

1.00 J spark energy is used in conjunction with the laser pulse, the total charge detected 

increased from ~8.0 to ~8.3 nC for laser pulse energies of 45 and 72 mJ, respectively. The almost 

lack of dependence on the laser pulse energy shows that most of the MCIs are generated by the 

spark discharge energy with the spark causing amplification of the laser-generated MCIs by a 

factor of ~13 for a laser pulse energy of 45 mJ. Fig. 4.6(b) and 4.6(c) show the MCI generation 

for 45 and 63 mJ laser pulse energy without and with the spark discharge. Without the spark, 45 

and 63 mJ laser energy generate Al MCIs with charge states up to Al1+ and Al3+, respectively. 

With a 1.00 J spark, MCI charge states up to Al5+ are generated for both laser pulse energies. The 

increased TOF for ions when the spark is operated is due to the ion deceleration by the spark 

voltage reducing ion kinetic energy. During the experiment the laser focus spot, angle of 

incidence on Al target, and pulse width of the laser were kept constant, as described in the 

experimental section.  

 



 52 

45 50 55 60 65 70 75
0

1

7

8

9
(a) Laser + spark

 

 

T
o
ta

l 
ch

ar
g

e 
(n

C
)

Laser energy (mJ)

Laser

 

0 5 10 15 20 25
0

10

20

30

40

50

 

 

Al
+

 

Al
+

Al
+

Al
+

Al
+

Al
+(b)

Time (s)

V
o

lt
ag

e 
(m

V
)

 

0 5 10 15 20 25

0

10

20

30

40

50

 

 

Al
3+

Al
2+

Al
1+

 

 

Al
5+

Al
4+

Al
3+

Al
2+

Al
1+

(c)

V
o
lt

ag
e 

(m
V

)

Time (s)  

Fig. 4.6 (a) Measured total charge delivered to the Faraday cup for different laser pulse energies without 

the spark (squares) and with 1.0 J spark energy (circles). The error bars represents the standard deviation. 

The MCI spectra for laser energy only (red) and for the combined effect of 1.0 J spark energy and laser 

pulse energy (black) of (b) 45 and (c) 63 mJ. 
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4.4 SUMMARY 

A spark discharge is coupled to the Nd:YAG laser generated Al plasma to enhance the 

plasma ionization. A self-triggered mechanism, by shortening of the electrodes due to laser 

plasma plume expansion, is demonstrated to deposit spark energy to the laser plasma. The spark 

discharge significantly enhances the total ion generation along with higher charge states. For a 

laser-spark ion source, laser energy initiates the plasma, but the maximum charge state and total 

ion generation depends mostly on the spark energy. For 5 kV accelerating voltage, when 72 mJ 

laser pulse energy is coupled with 1.25 J spark energy, Al charge state up to 6+ is detected with 

total charge of ~9.2 nC. While without spark energy for the same condition, the maximum 

charge state is Al3+ and total charge is ~1 nC.  
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CHAPTER 5 

 

TIME-OF-FLIGHT AND OPTICAL EMISSION SPECTROSCOPY 

 

5.1 INTRODUCTION 

We extend our previous work on Al laser MCI generation [54, 98] through a combined 

ion TOF measurement and OES of the laser plasma. The double-layer potential generated at the 

plasma-vacuum interface is estimated from the deconvolution of the TOF ion signal into 

individual ion species. From optical emission spectroscopy (OES), the Ne is calculated by Stark 

broadening, while the kTe is calculated using the relative intensity ratio of two emission lines 

belonging to the same atomic species. Although LTE is assumed valid for ablation conditions 

similar to ours [99], the kTi obtained from the deconvolution of the ion TOF signal is 

significantly higher than the electron temperature obtained from OES. This is attributed to the 

difference in time and location at which the plasma is probed. MCI generation occurs mainly 

when the plasma is at its highest temperature and at a high density near the surface and the core 

of the plume. Ions escaping from the plasma and accelerated by the double-layer potential reflect 

these conditions and therefore their TOF ion signal corresponds to the high temperature used to 

generate the ions. Whereas, OES probes time and spatially integrated line emissions, which 

becomes prominent after decay of the black-body radiation from the initial laser plasma. During 

this time, the plasma is providing strong line emission, the plume is expanding, and the plasma is 

cooling. Therefore, the spatially and temporally integrated line emission, as detected by the 

spectrometer, provides a much cooler electron temperature. The peak intensity of the spectral 

lines, and the ion energy spread show dependence on the external electric field in which the 

plume expands.  

Ion emission for ns laser ablation was characterized by their TOF [22, 64, 86, 100-108]. 

The charge state, kinetic energy and angular distribution of the ions ejected from the laser plasma 

depend on the laser parameters (e.g., laser pulse energy, wavelength, and pulse duration), the 

ablated material, and the surrounding environment [22]. The general trend is that increasing the 

laser pulse energy increases ion generation. For example, laser ablation of carbon and aluminum 

with an Nd:YAG laser (λ = 1.064 μm) showed enhancement of the ion generation along with the 
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maximum charge observed with the increase in the laser pulse energy [64]. The effect of laser 

wavelength on the ion energy distribution from laser-ablated plasma in vacuum was studied. The 

Ablation of a Sn target by a Nd:YAG laser (λ = 1.064 μm) and by a CO2 laser (λ = 10.6 μm) 

yielded a maximum charge state of Sn6+ with an average ion energy of 792 eV for the Nd:YAG 

laser and Sn9+ with an average ion energy of 680 eV for the CO2 laser [101]. A combined 

Langmuir probe and an electrostatic ion energy analyzer study of Al ions generated by a 

nanosecond Nd:YAG laser and a femtosecond Ti:sapphire laser at a comparable ablation flux 

yielded maximum charge state by the ns and fs lasers of Al2+ and Al3+, respectively [104]. For 

the ns laser, the ions had a lower kinetic energy than that for the fs laser [104]. For a Pd laser ion 

source generated by a Q-switched Nd:YAG laser and its second harmonic, the ablation threshold 

was reported to be 1.2 times higher for λ = 1064 nm than for λ = 532 nm due to the longer 

penetration depth of the λ = 1064 nm in the metal [102]. For a laser pulse energy of 100 mJ, Pd5+ 

ions were detected for λ = 1064 nm, while Pd6+ ions were detected for λ = 532 nm [102]. The 

role of laser pulse duration on the ion emission from a Nd:YAG laser-generated Sn plasma was 

reported [100]. The ion kinetic energy profile shifted to higher energy with the reduction of the 

laser pulse width, while narrower energy distributions were obtained for the longest laser pulses 

used [100]. The average charge state decreased from Sn13+ to Sn7+ when the laser pulse duration 

was increased from 5 to 20 ns [100].  

For ns laser ablation, Harilal et al. reported that the plasma plume expands spherically 

with smaller laser spot size on target; while for a larger spot size the plume propagation is more 

cylindrical due to the smaller lateral expansion [103]. Using a Faraday cup to study ion energy 

distribution, they showed narrower and higher energy ion distribution with the smaller spot size 

[103]. The dependence of the ion angular distribution on the laser parameters and the ablated 

material were reported by several groups [105-107]. The fs laser-ablated plume was more 

elongated along the direction normal to the target compared with that for ns laser ablation [105], 

resulting in significantly narrower ion angular distribution at a similar laser fluence [106]. A 

narrower angular distribution of the plume occurs with increasing laser fluence [106]. Elsied et 

al. reported differences in the spatial and temporal distribution of slow and fast ions for various 

metals and related that observation to the different mechanisms in ion generation [107]. For Mo, 

the slow ion flux peaked at a direction normal to the target, whereas the fast ion flux peaked at 

relatively larger angles. For Al, the slow ions also peaked normal to the target while the fast ions 
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were absent [107]. Torrisi et al., utilizing a Nd:YAG laser, reported that the energy peaks of the 

singly-charged ions increase with the melting point of the ablated material, while the ablation 

yield showed the reverse trend [86]. Freeman et al. reported that the maximum kinetic energies 

of the ions generated by an Nd:YAG laser using its fundamental, second, and fourth harmonic 

with the same laser intensity were similar [108]. The kinetic energy distributions became broader 

as the laser wavelength was reduced, while the angular distribution of the ions showed a similar 

trend for all laser wavelengths [108].      

Several groups have studied ion emission from ns laser plasma using optical emission 

spectroscopy (OES) [26, 109, 110]. Caridi et al. reported on ion generation by laser ablation of 

Al, Ti, Mo, Au and polyethylene targets in vacuum using a Nd:YAG laser. For laser energy of 

180 mJ, the electron temperature kTe, obtained using optical emission spectroscopy is ~1.3 eV, 

while the equivalent ion plasma temperature kTi, as evaluated by TOF deconvolution using 

shifted Coulomb-Boltzmann distribution, varies from 30 to 44 eV. The difference in plasma 

temperatures was attributed to the difference in the plasma region probed [109]. Abdellatif et al. 

studied Al plasma generated in vacuum by an Nd:YAG laser. The plasma density Ne was 

measured to be 1.13x1018 cm-3 at 100 μm from the Al target surface and 0.55x1018 cm-3 at 1200 

μm from the surface. The measured Te at the target surface was ~1.17 eV and increased to 4.2 eV 

500 μm away from the surface, then it decreased beyond that point. Charge states up to Al2+ were 

observed [26]. Harilal et al. reported on OES studies of a Sn plasma generated in vacuum using a 

Nd:YAG laser. The kTe and Ne measured 1 mm from the target surface were 3.2 eV and 7.7x1017 

cm-3, respectively [16]. The time-integrated kTe near the target surface remained nearly constant 

with distance from the surface but increased significantly for a distance > 7 mm [16]. The spatial 

variation of Ne showed approximately inverse dependence on distance. Applying a negative 

potential to a gold target was shown to increase ultraviolet line emission from the laser plasma 

produced by a KrF excimer laser, which was attributed to electric field enhanced recombination 

near the target surface [110]. 

5.2 EXPERIMENTAL 

The laser ion source is composed of a Q-switched Nd:YAG laser ( = 1064 nm,   ~7 ns, 

and laser fluence F ≤ 38 J/cm2) with associated laser beam delivery optics, target ablation 

chamber, ion drift tube, three-grid retarding filed ion energy analyzer, and Faraday cup (FC). The 
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laser was p-polarized and incident on the target at an angle θ = 45O. The laser was focused on the 

target using a lens with 80 cm focal length. The laser pulses pass to the Al target through a 

viewport which has ~8% loss due to Fresnel reflections. The laser was focused on the Al target 

forming an elliptical spot (semi major axis radius 0.3 mm, and semi minor axis radius 0.25 mm) 

with an area of ~0.0024 cm2. A fast-high voltage probe (Tektronix P6015A) is used to observe 

the voltage fluctuations of the biased target during plasma plume expansion. The currents 

flowing through the Al target and the externally grounded extraction mesh are measured 

separately using two current pickup coils (Pearson current monitor, model 4118). The pressure in 

the vacuum chamber was maintained at low 10-9 Torr.  

The ions are accelerated towards the FC through a drift tube. The diameter of the MCI 

generation vacuum chamber is 30 cm. A 125-cm long transport tube with inner diameter of 10 

cm is connected to the MCI generation chamber making the distance from the Al target to the FC 

140 cm. The FC biased at -70 V detects the TOF ion signal, which is used to calculate the total 

charge delivered to the FC and their kinetic energy. The TOF signal can be used to identify the 

charge state of the ions generated. The ion signal is acquired by a fast-digital oscilloscope 

triggered by a photodetector observing the optical leak in the last mirror before the focusing lens. 

An illustration of the experimental setup is shown in Fig. 5.1. More details on the experimental 

setup for ion generation and detection are given in our previous publications [54, 55, 111].        

        

 

Fig. 5.1 Schematic of the experimental setup, EB denotes the electrostatic barrier of the three-grid 

retarding field analyzer, SE the suppressor electrode to suppress the effect of secondary emission from the 

Faraday cup (FC). 
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To further accelerate the extracted ions, the target is biased positively while a grounded 

mesh is placed in front of it. The extraction mesh is placed at 10 cm away from the Al target 

towards the FC, where the density of the plasma is several orders of magnitude lower than at the 

target surface. The plasma plume expands in the electric field generated between the target and 

the grounded mesh. The adiabatic expansion, thermal interactions, and the Coulomb acceleration 

due to the double-layer potential at the plasma-vacuum interface are mainly responsible for the 

initial ion acceleration. The external electric field accelerates ions separated from the plume. The 

ion acceleration by the external electric field is reduced due to plasma shielding. The location 

between the target and the grounded mesh at which an ion experiences the electric field also 

affects the ion acceleration by the external electric field. The ion flux extracted increases with the 

electric field due to the retrograde motion of the plasma edge exposing more ions to the 

accelerating field and repelling the electrons [53]. In the drift region, the temporal ion pulse 

width is increased. 

An optical spectrometer (Princeton Instruments, Acton SP2300 (grating size 68 x 68 mm, 

150 grooves/mm, blaze wavelength 500 nm, and a resolution of 1.27 nm as provided by the 

manufacturer)) is used to obtain the optical spectra from the laser plasma. The optical spectra 

were collected for 1 ms using a single-shot mode and without any set delay between capturing 

the optical spectra and the laser pulse. The emission from the formed plasma is imaged onto the 

open end of an optical fiber bundle using a lens of 5 cm diameter with a focus length of 5 cm. 

The optical fiber bundle has 19 optical fibers, each 200 µm in diameter and 1 m long with a 

numerical aperture of 0.2. The spectra were observed in a direction parallel to the target surface 

(i.e. 90º with respect to the direction of the plasma expansion) with its axis centered ~1 mm from 

the surface of the sample and the fiber is placed ~250 mm away from the produced plasma. The 

position of the fiber is far enough to obtain spatially-integrated spectra from the plasma. The 

spatially-integrated, time-integrated spectra from each pulse is detected and the final spectra used 

in the analysis was an average of 10 laser pulses. For a similar experimental condition, the 

plasma emitting region is >5 mm above the sample surface [112].  
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5.3 RESULTS AND DISCUSSIONS 

5.3.1 Effect of laser energy for a grounded target 

Fig. 5.2 shows the TOF ion signal for laser fluence of 21, 25, 28, and 38 J/cm2. The inset 

of Fig. 5.2 shows that the total number of charge generated increases linearly with the increase in 

the laser fluence. The ion pulse that reaches the FC contains different ionic states. The double-

layer potential, developed at the expanding plasma-vacuum interface, accelerates the ions. 

Higher charge state ions reach the FC earlier than those with a lower charge, since the ions with 

higher charge gain more kinetic energy by the double-layer potential. From analysis of the shape 

of the ion signal, we show that with the increase in the laser fluence, the ion energy distribution 

shifts to higher energies along with the generation of higher charge-state ions. Increasing the 

laser fluence from 21 to 38 J/cm2 increases the peak ion drift velocity from ~1.9x104 to ~2.4x104 

ms-1, resulting in a peak ion energy increase from ~50 to ~80 eV. 
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Fig. 5.2 Ion TOF signal for different laser energies ablating the Al target. The Al target was at ground 

potential. The inset shows the dependence of the number of charges measured by the Faraday cup (FC) on 

the laser pulse energy. 

 

The ion energy distribution can be used to characterize the plasma temperature and the 

double-layer potential developed at the plasma-vacuum interface of the expanding plume. The 

ion TOF signal is detected by the FC. The ion TOF signal and the retarding field energy analyzer 

are used to obtain the ion energy distribution. The TOF signal can be deconvoluted into 



 60 

individual ion charge signals. For a transient laser-plasma satisfying LTE (Ti ~ Te ~ T), the 

electron-atom and electron-ion collisions establishes equilibrium with the particle velocities in 

the plasma following a Maxwell-Boltzmann distribution [16]. The validity of the LTE for ns 

laser plasma was previously considered [99]. Accordingly, our plasma conditions satisfy LTE. 

Away from the target, where recombination and collisional excitation processes are absent, the 

ion charge-states are frozen and the ions drift freely in the vacuum with a velocity distribution 

for each ion species characterized by a shifted Coulomb-Boltzmann (SCB) distribution [22]. For 

a laser-plasma where the TOF of the extracted ions is much longer than the laser pulse duration, 

the Kelley and Dreyfus function expressing the ion current based on the SCB distribution, 

including the effect of Coulomb energy (in terms of an equivalent accelerating voltage) can be 

applied for the analysis of the ion current [113, 114]. Both thermal and Coulomb interactions are 

considered in the SCB model. Therefore, the sum of the individual SCB distributions for each 

ion species with their characteristic equivalent accelerating voltage and ion plasma temperature 

provides the overall distribution of the ejected ions [109]: 

𝐹(𝑡) = ∑ 𝐴𝑖 (
𝑚

2𝜋𝑘𝑇𝑖
)

3
2⁄

(
𝐿4

𝑡5) exp [−
𝑚

2𝑘𝑇𝑖
(

𝐿

𝑡
−  √

ϒ𝑘𝑇𝑖
𝑚⁄ − √2𝑧𝑒𝑉0,𝑖

𝑚⁄ )

2

]𝑖   (5.1) 

where 𝐴𝑖 are normalization constants, m is the mass of the ablated ions, t is the time-of-flight, L 

is the total distance from the target to the Faraday cup. 𝑣 =  
𝐿

𝑡
  is the velocity along the normal to 

the target and is equal to the summation of the velocity components 𝑣𝑡, 𝑣𝑘, 𝑣𝑐 . The component 

𝑣𝑡 =  √(
3𝑘𝑇𝑖

𝑚⁄ ) is the mean thermal velocity for monoatomic neutral species, 𝑣𝑘 =

 √
ϒ𝑘𝑇𝑖

𝑚⁄  is the adiabatic expansion velocity, and 𝑣𝑐 = √2𝑧𝑒𝑉0
𝑚⁄  is the velocity due to 

Coulomb acceleration. In the velocity components, ϒ is the adiabatic coefficient which for a 

monoatomic metal, e.g., aluminum, has the value of 5/3, z is the charge state, kTi is describes the 

velocity spread of the probed ions, which has been assumed equivalent to the ion plasma 

temperature (in eV) in previous laser MCI studies [22, 109], and 𝑉0 is the equivalent accelerating 

voltage developed at the plasma-vacuum interface. Eq. 5.1 applies under the condition of 

absence of significant recombination and collisional excitation processes; i.e., the ion species are 

frozen and freely drifting in the vacuum [115]. The curve fit of the TOF signal with Eq. 5.2 
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mostly depends on the kTi and V0 developed at the plasma-vacuum interface due to the double-

layer potential. We can estimate kTi and V0 from the curve fit of the measured TOF signal with 

Eq. 5.1.  

The ion pulse detected by the FC, shown in Fig. 5.2, consists of ions with different charge 

states. To determine the contribution of each ion charge to the TOF signal, deconvolution of the 

ion pulse signal for each ion charge state is accomplished. The best fit to the TOF signal is 

obtained for a combination of kTi and V0 developed in the double-layer region of the plume. 

These two parameters can be used to estimate the effects of thermal energy, adiabatic expansion, 

and Coulomb potential on the energy distribution of the individual ion species. The 

deconvolution of the ion pulse into individual ion species is conducted as follows: first, we fix 

the value of the maximum charge state n (known by separating the charge states temporally 

using an externally applied electric field between the target and the grounded mesh). Then, we 

set the V0 and the kTi as free variables to bring the total energy (sum of thermal, adiabatic, and 

Coulomb) to match with the ion pulse suppression potential applied to the central grid of the 

three-grid retarding field analyzer. Other conditions used for the fit are that the sum of the TOF 

de-convoluted signals of individual ion species fits with the measured TOF signal of the detected 

ion pulse. Also, the ratio of the ion charges detected for each charge state matches with that ratio 

as measured when an external electric field is used to separate signals from each charge state by 

their TOF. Details of the deconvolution procedure were given previously [54]. 

Previous ion TOF studies from ns laser plasma has shown that the ion energy 

distribution, for a certain ion charge, splits into two SCB distributions peaked at different 

energies [19, 20]. Bimodal energy distributions for metal ions at different peak energies were 

reported for ablation with a ns Nd:YAG laser. The SCB distribution of Al1+ ions with the higher 

velocity was correlated with the direct multiphoton laser ionization, while the slower distribution 

was associated with collisional processes. In the expanding plume, neutrals can be ionized, and 

ions can be converted into another charge state due to the collisions among ions, electrons, and 

neutrals leading to ionization, recombination, and ion charge transfer. Ions produced due to 

collisions have velocities that depend on their formation process and hence are observed as an 

independent energy distribution [19, 20]. The external energy gain also depends on the location 

between the target and grounded mesh, where the ion is generated, and the distance the ions 

travelled experiencing the external electric field. Ion acceleration by the external electric field is 
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reduced due to plasma shielding. For example, if electron-impact ionization is the dominant 

process (Al0 + e−  →  Al+ + 2e−), the kinetic energy of the Al0 involved in this reaction will 

contribute to the energy distribution of the resulting Al1+ ions. Recent studies of ns laser ablation 

observed the presence of fast and thermal ions following Gaussian and Maxwell-Boltzmann 

distributions, respectively [107]. The presence of fast ions depends on the atomic weight of the 

ablated material. For heavy metals, e.g. Mo, fast and thermal ions were observed. While for 

lighter metals, e.g. Al, only thermal ions were detected [107]. This phenomenon was attributed to 

the difference in both spatial and temporal ion distributions along with the fact that ns laser 

ablation of heavy metals emits prompt electrons, and these prompts electrons are responsible for 

the emission and acceleration of the fast ions. Similar results for ns laser ablation were reported 

by Farid et al., where higher Z materials (Mo, T, and W) show multiple peaks containing fast 

and thermal ions, while lower Z materials (C, Al, Si, and Cu) show only a single peak containg 

thermal ions [116]. In our present experiment with Al, no fast ions were detected; only thermal 

and slows ions are detected and are fitted with SCB distribution.  

The deconvolution of the ion pulse into individual ion species for laser fluence of 28 and 

38 J/cm2 is shown in Fig. 5.3(a) and (b). The higher charge state ions have higher velocities and, 

therefore, reach the FC earlier than the lower charge states. The sum of the signals from different 

ion charges gives the total ion signal, which is fitted to the experimental TOF signal. The ions 

generated with laser at a fluence of 28 and 38 J/cm2 have energies up to ~70 and ~80 eV, 

respectively, as measured by the retarding field analyzer [54]. During retarding field analysis, the 

barrier voltage, applied to the central electrode of the three-mesh retarding field analyzer, was 

increased from 0 to 80 V. From the deconvolution, we obtain charge states up to Al3+ and Al4+ 

when the laser fluence is 28 and 38 J/cm2, respectively. This is confirmed by observing the 

individual ion peaks for each charge in the TOF signal when voltage is applied to the target 

setting an external electric field sufficient to separate the different charge states.  
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Fig. 5.3 Deconvolution of the ion time-of-flight signal. (a) For a laser fluence of 28 J/cm2 showing charge 

states up to Al3+. (b) For a laser fluence of 38 J/cm2 showing charge states up to Al4+. V0 is the double-

layer potential, kTi is the ion plasma temperature, whereas V0S is the equivalent accelerating voltage for 

the slow Al1+ ions. 

 

The curve fit in Fig. 5.3(a) was done for V0 = 50 V and kTi = 9 eV and in Fig. 5.3(b) for 

V0 = 55 V and kTi = 10 eV. The slow ions Als
1+are fitted with V0S = 20 V with similar kTi as used 

to fit the thermal ions. For laser fluences of 21 and 25 J/cm2 (data not shown), the best fit to the 

TOF signal gave V0 = 35 and 43 V and kTi = 6 and 8 eV, respectively, while V0S was 15 V for 

both laser fluences. Other slow ion groups could also affect the ion TOF signal. With the target 
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grounded, for an ion with charge state z, the total energy gain of the ion 𝐸𝑧𝑇 =  (𝐸𝑡 + 𝐸𝑘) + 𝑧𝐸𝐶, 

where 𝐸𝑡 =  
3

2
𝑘𝑇𝑖 is the thermal energy, 𝐸𝑘 =

𝛾

2
𝑘𝑇𝑖 is the adiabatic energy, and 𝐸𝑐 = 𝑒𝑉0 is the 

Coulomb energy associated with the equivalent accelerating voltage due to the double-layer 

potential. The most probable energy calculated from the TOF signal, and the adiabatic and 

thermal energy estimated from the deconvolution of the TOF signal are in good qualitative 

agreement with the results previously reported from ns laser ablation [117]. This fit is best at 

time scales extending from the onset of detecting the thermal ions by the FC and extends past the 

peak of the TOF signal. The slower ions forming the tail of the TOF signal are not as well fitted 

to the SCB distribution, representing the sum of the ion charges. This is because there are 

secondary mechanisms forming these slower ions, as was previously discussed [19, 20]. 

 

5.3.2 Effect of laser energy for positively biased target  

When, the target is positively biased, establishing an electric field between the target and 

the grounded mesh, the ions that separate from the plume experience further acceleration. For 

sufficient acceleration, the ions detected by the FC appear as temporally separated peaks for each 

charge state. The extent of which the ions experience the external field depends on the distance 

away from the target that they are separated from the shielding plasma. If an ion is generated 

with zero energy near the target and is accelerated by the full potential applied, i.e. in the absence 

of plasma shielding, the ions TOF to the FC is TOF = ta+ td
  =  √

2𝑚

𝑧𝑒𝑉
𝑑 +  √

𝑚

2𝑧𝑒𝑉
𝑆, where ta is 

time to accelerate the ions in the extraction region, td is the ions drift time from the extraction  

mesh to FC, d is the length of the extraction region, S is the length of the drift region, i.e. from 

the grounded mesh to FC, m is the mass of Al atom, e is the electron charge, z is the charge state, 

and V is the external potential applied. This TOF equation does not account for the ion 

acceleration experienced by the double-layer potential, and due to the adiabatic and thermal 

expansion of the plume. The ions travel time in the extraction region is much smaller than the 

drift time. The effective acceleration experienced by the ions depends on the traveled distance of 

the plasma before the ions are extracted. Each ion charge state is accelerated in the double-layer 

potential region and by the external field according to the charge state. Al1+ gains the least 

energy compared to higher charge states and, therefore, has the lowest velocity and its TOF is the 
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longest. By calculating the accelerating potential required to achieve the TOF of Al1+, the 

effective accelerating potential that the Al1+ experience is obtained. This potential is then used to 

determine the TOF of ions with higher charge states. The sum of the estimated TOF for Al ions 

with different charge states matches the experimental TOF signal well. By adding the effective 

external potential 𝑉𝑒𝑓𝑓 with the double-layer potential 𝑉0, we can further extend the SCB 

distribution. To do so, we replaced the V0 term in Eq. 5.1 with total accelerating voltage 𝑉𝑇 =

(𝑉0 + 𝑉𝑒𝑓𝑓). This results in ion pulses with peaks that are temporally separated with each pulse 

corresponding to a different charge state. The sum of these separated pulses is the signal 

observed by the FC. From the peak of the TOF signal of each charge state, the most probable 

energy can be calculated. The total energy of the ions with charge state z is equal to the sum of 

the ablation energy (sum of thermal and adiabatic expansion), Coulomb energy (from double-

layer potential), and the effective accelerating voltage and can be written as 𝐸𝑧−𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑇 +

𝐸𝐾 + 𝑧𝐸𝑐 + 𝑧𝐸𝑒𝑓𝑓, where 𝐸𝑒𝑓𝑓 is the effective acceleration energy experienced by the ion from 

the external electric field. The value of 𝐸𝑒𝑓𝑓 is less than the voltage applied to the target due to 

the plasma shielding and secondary ion generation mechanism in the target-to-extraction grid 

region. 

 As the ions drift in the external electric field, they experience different acceleration by 

the external electric field depending on their generation location and the dynamics of plasma 

shielding in addition to the retrograde motion of the plan separating the neutral plasma from the 

non-neutral region established by the double-layer potential [23, 53]. The plasma expansion 

dynamics in an external electric field is complex and has been the subject of a few studies [52]. 

When the plasma expands in a field-free region, kTi can be deduced from the fit of the ion signal, 

far away from the ablation point, as was shown in many publications [22, 109, 115]. However, 

when the plasma expands in an external electric field, obtaining kTi from the SCB fit is 

problematic as the width of the TOF signal is affected by additional mechanisms occurring in the 

region between the target and the grounded grid causing ions with similar charge to experience 

slightly different electric field, thus, broadening the ion pulse. In this case, the TOF fit to the 

SCB distribution would not give an accurate kTi of the ablated plume but rather a higher value 

that represents the spread in the kinetic energy of the detected ions as a result of their plasma ion 

energy and the complex plume and ion extraction dynamics in the target-grid region for an 

external applied field. Therefore, we refer to this parameter used in the fit as the effective ion 
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energy spread due to the combined plasma ion temperature and ion energy spread in the external 

electric field and refer to this quantity as kTie which is larger than the kTi used for the SCB fit 

under plume expansion without an external field. 

Fig. 5.4 shows the deconvolution of the ion signal into different ion charges for 5 kV 

applied to the target. When the laser fluence is 28 J/cm2, the ratio of the ion charges Al1+: Al2+: 

Al3+ is ~ 6.2:3:1, and for a laser fluence of 38 J/cm2, this ratio for Al1+: Al2+: Al3+: Al4+ is ~ 

6:1.6:1:1. The deconvolution of the TOF signal for a laser fluence of 28 J/cm2 yielded total 

accelerating voltage 𝑉𝑇 ~1.55 kV and kTie ~26 eV.  The increase in kTie with the applied voltage 

to the target reflects the spread in the energy of the ions probed by their TOF due to the dynamic 

nature of the plasma expansion in an external electric field. The external electric field is mostly 

shielded from the expanding plasma and would not cause plasma heating. When the laser fluence 

was 38 J/cm2, as shown in Fig. 5.4(b), the deconvolution yielded total accelerating voltage 𝑉𝑇 

~1.6 kV and kTie ~27 eV. The deconvolution of Fig. 5.4(a) and (b) also shows the presence of 

slow Al1+. The slow ions were fitted for 𝑉𝑇𝑆 = (𝑉0𝑆 + 𝑉𝑒𝑓𝑓) ~1.2 kV.  

The sensitivity of the deconvolution is checked by varying the values of z, 𝑉𝑇 and kTie. 

Fig. 5.5 shows the fit performed for Al4+ using different 𝑉𝑇 and kTie values. kTie determines the 

ion pulse width for each charge state irrespective of the external electric field. 𝑉0 determines the 

ion pulse energy shift by the Coulomb energy associated with the double-layer potential, while 

𝑉𝑇 = (𝑉0 + 𝑉𝑒𝑓𝑓) adds the effect of the external electric field. The effect of 𝑉𝑇  on the fit is more 

dominant than that for kTie and, for higher charge ions, the sensitivity of the fit to the value of 𝑉𝑇  

is higher. If kTie is kept constant, the energy shift in the SCB distribution is determined by 𝑉𝑇 , 

whereas, for a fixed 𝑉𝑇 , kTie mainly determines the ion pulse width. As shown in Fig. 5.5, 300 V 

change in 𝑉𝑇 shifts the Al4+ ion most probable energy by 1200 eV. Changes in kTie by 13 eV 

mostly affects the ion pulse width. For higher charge states, the accuracy of the fitting parameter 

𝑉𝑇 increases. 
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Fig. 5.4  Deconvolution of the TOF signal for different ion charge states for 5 kV applied to target. The 

laser fluence is (a) 28 J/cm2 and 38 J/cm2 (b). VT is the total effective voltage accelerating the ions and 

kTie represents the spread in ion energy due to the plasma ion temperature and ion spread during plume 

expansion and ion extraction in the target-grid region, VTS is the effective accelerating voltage for the slow 

ions. 
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Fig. 5.5 The effect of varying the total accelerating voltage 𝑉𝑇 and kTie on the deconvolution of the ion 

pulse when 5 kV accelerating voltage is applied. The Al4+ ion pulse obtained by deconvolution is shown 

for (i) 𝑉𝑇 ~1300 V and kTie ~27 eV (red dotted line), (ii) 1600 V and 14 eV (blue dotted line), (iii) 1600 V 

and 27 eV (black straight line), (iv) 1600 V and 40 eV (blue dash line), and (v) 1900 V and 27 eV (red 

dash line). 

 

5.3.3 Effect of target bias voltage 

Fig. 5.6 shows the deconvolution of the ion TOF signal for 4 and 6 kV applied to the 

target when a laser fluence of 28 J/cm2 is used to ablate the target. The amplitude of the ion 

signal increases with the increase of the electric field between the Al target and the grounded 

mesh. For an acceleration voltage of 4, 5, and 6 kV, with all other conditions fixed, the total 

charges detected were 0.25, 0.5, and 0.65 nC, respectively. The ratio of the different ion charges 

detected remains nearly the same for the different target bias voltages. This indicates that 

changes in the external electric field between the target and mesh for our experimental conditions 

have negligible effects on the angular distribution of the detected ions. The applied electric field 

introduces retrograde motion of the expanding plasma edge exposing more ions to the 

accelerating field and repelling the electrons [53]. This is thought to be the main reason for the 

enhancement of the ion extraction with an increasing electric field between the Al target and the 

extraction grounded mesh. In Fig. 5.6(a), when 4 kV is applied to the target, the ion TOF signal 

has a best fit for 𝑉𝑇 ~1100 V and kTie ~20 eV. When 6 kV is applied to the target, the best fit to 

the ion TOF signal is obtained for 𝑉𝑇 ~1900 V and kTie ~30 eV, as shown in Fig. 5.6(b). The 
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deconvolution in Figs. 5.6(a) and (b) also shows a low energy tail in the ion TOF signal due to 

slow Al1+. For 4 and 6 kV accelerating voltage, the TOF signal for the slow ions is fitted for 𝑉𝑇𝑆 

of ~800 and ~1400 V, respectively. The insets of Fig. 5.6 (a) and (b) show the energy 

distribution of the ions as obtained from the ion TOF signal. The initial bumps present in the 

energy distribution is due to the slow energetic ions. The ion energy resolution, 
∆𝐸

𝐸
 , is dependent 

on the charge state, and is ~42 % for Al1+, ~32 % for Al2+, and ~25% for Al3+. This resolution is 

not affected by the target biasing voltage.  
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Fig 5.6 Deconvolution of the ion TOF signal into different charge states for a voltage applied to target of 

(a) 4 kV and (b) 6 kV. The ablating laser fluence is 28 J/cm2. The TOF signal is plotted in black. The 

deconvolution fit for Al1+, Al2+, Al3+, AlS
1+ are plotted in red, green, navy, and blue, respectively. The sum 

of the individual de-convoluted ion species is plotted in pink. Inset shows the TOF signal converted into 

energy distribution of the ions. 

 

5.3.4 Retarding field ion energy analysis  

To characterize the ions from the laser plasma, the voltage applied to the electrostatic 

barrier (EB) mesh was incrementally increased from 0 V to a voltage that resulted in complete 

suppression of the ions detected. The laser fluence of 28 J/cm2 was used to ablate the Al target, 
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while 5 kV was applied to the target. Fig. 5.7 shows the TOF signal for 0, 0.6, 1.2, 1.8, 2.0 and 

2.4 kV applied to the EB. The inset of Fig. 5.7 shows the reduction in the total number of 

charges reaching the FC with the increase in the EB voltage. Higher charge state ions reach the 

FC earlier than those with a lower charge since the ions gain kinetic energy from the double-

layer potential and from the external electric field, proportional to their ion charge. The EB 

potential 𝑉𝐸𝐵 suppresses all ions having kinetic energy lower than 𝑧𝑒𝑉𝐸𝐵. From Fig. 5.7, we 

observe that the EB bias of 1.8 kV suppresses more than ~80% of the Al ions. The ion energy 

measured from the EB, TOF signal, and the deconvolution of the TOF signal are in good 

qualitative agreement.  

 

5 10 15 20 25
0

20

40

60

80

100

120

Al
3+

Al
2+

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.1

0.2

0.3

0.4

0.5
T

o
ta

l 
ch

ar
g
e 

(n
C

)

EB voltage (kV)  

 

C
u
rr

en
t 

(
A

)

Time (s)

 0 V

 0.6 kV

 1.2 kV

 1.8 kV

 2.0 kV

 2.4 kV

Al
1+

 

Fig. 5.7 Effect of retarding voltage on the TOF spectrum for a laser fluence of 28 J/cm2 and 5 kV applied 

to target. 

 

5.3.5 Optical emission spectroscopy  

We use the optical spectra of the laser plasma to estimate the kTe and Ne. The emission 

spectra captured is time integrated but limited to the plasma observation location, which restricts 

the observation time depending on the plume expansion velocity. The plasma is moving in a 

direction perpendicular to the target surface. In our experiment, the fiber used has an acceptance 

angle of ~11˚. The lens that images the plume on the fiber optics bundle input is set to image the 

plume at and near the surface of the target. We estimate that optical emission from a distance up 
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to ~3 cm from the target is captured by the spectrometer. According to Harilal et al. [118], for Al 

ablation with nearly the same laser parameters, the plume has an expansion velocity of >107 

cm.s-1. With this velocity, the plume takes than 300 ns to pass the region imaged on by the fiber 

bundle connected to the spectrometer. For a ns laser ablation of Al by Nd:YAG laser in vacuum, 

Freeman et al. reported that the electron density and temperature measurement for time up to 

~450 ns after the laser ablation satisfying the LTE condition [99]. Fig. 5.8 shows the optical 

spectra when the Al target is ablated by a laser fluence of 21 J/cm2 without and with a voltage of 

7 kV applied to the target. The NIST database is used to identify the atomic and ionic emission 

lines [119]. Line emission due to neutrals and ions with charge states up to Al2+ are detected. The 

external electric field affects both the atomic and ionic spectral lines. There is a clear 

enhancement in the intensity of the spectral lines (both atomic and ionic) in the presence of an 

external electric field. The enhancement of the optical emission line intensities and the 

background is due to the shortening of the biased Al target to the grounded mesh, placed in front 

of the target, by the expanding plume. This shortening results in current flow from the power 

supply through the target and the plasma to the grounded grid. This current flowing between the 

biased Al target and grounded mesh is detected by a current pick-up coil detecting the current 

flow out of the grounded mesh. The current through the grounded mesh starts flowing at ~1 μs 

after the ablating laser pulse and is sustained for another ~1 μs corresponding to the time this 

glow discharge between the target and grid is extinguished as the plume passes that region. We 

believe that increased optical emission and its detection time is responsible for the increase in the 

integrated intensity in Fig. 5.8 when an external field is applied. In addition to enhancing the Al 

line emission intensity, a new emission line corresponding to the Ni I at 485.54 is detected when 

the target is biased at 5 and 7 kV. This is line is probably due to the sputtering of Ni grounded 

mesh, placed in front of the target, which acts as the cathode of the discharge between the target 

and mesh. While, sputtering of the Ni mesh by the laser-generated ions would also occur without 

target bias, its rate will be significantly less due to the lower ion energy. As the optical detection 

geometry detects only a distance up to ~3 cm from the target, Ni lines will only be detected if Ni 

is present in that region during the discharge established between the target and the Ni grid.  
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Fig. 5.8 Al emission spectra for laser fluence of 21 J/cm2, when no external electric field (black line) and 

when 7 kV external field (red line) is applied. 

 

For optically thin plasma, Stark broadening of line emission from neutrals or singly-

charged ions is used to estimate the Ne [120]. Applying the procedure described by Radziemski 

et al., for Al II lines at 704.21 and 705.66 nm, the statistical weight of the upper level of the lines 

are found to be proportional to the intensity ratio of the lines; therefore, the plasma was optically 

thin, and stark broadening analysis can be applied [121]. In the present experiment, the Stark-

broadened profile of the Al II line at 466.30 nm (4p1P0(1)–3p2D(1)) was used after fitting the 

line-shape to a Lorentzian profile, because of a comparatively lower self-absorption coefficient 

[122]. Three main broadening mechanisms contribute to line broadening, namely Doppler 

broadening, resonance pressure broadening, and Stark broadening. For laser plasma similar to 

ours, the effect of Doppler broadening and resonance broadening is very small compared to Stark 

broadening and can be neglected [123]. The mechanism causing Stark broadening of the Al II 

transitions is mainly due to perturbation of the energy levels of the ions by electron collisions 

leading to broadening of the emission lines. The instrumental response was obtained by fitting 

the line-shape of the 404.65 nm line from a low-pressure Hg lamp to a Lorentzian profile and 

was found to be 0.7 nm. This instrumental response was subtracted from the experimental 

linewidth of the Al II line at 466.30 nm that was also fitted to a Lorentzian profile. Eq. 5.2 can be 

used to correlate the full-width at half-maximum (FWHM) of the Stark-broadened line Δλ1/2 with 

the Ne [124]; 
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∆𝜆1/2 = 2𝜔 (
𝑁𝑒

1016) + 3.5𝐴 (
𝑁𝑒

1016)

1

4
(1 − 1.2𝑁𝐷

−1/3)𝜔 (
𝑁𝑒

1016) Å,    (5.2) 

where ω is the stark broadening parameter, and for Al II line at 466.30 nm, it has a value of 

0.0538 nm at a temperature of 15,000 K [124], A is the ion broadening parameter. Both ω and A 

are weak functions of temperature [120]. Ne is the electron density in cm-3 and ND is the number 

of particles inside the Debye sphere. The first term of the Eq. 5.2 accounts for the electron 

broadening, and the second term is the correction for the quasi-static ion broadening. The quasi-

static ion broadening term is small in plasma, similar to our case as was estimated from the 

extrapolation of the estimates of ω and A [120, 123]. Therefore, Eq. 5.2 becomes: 

∆𝜆1/2 = 2𝜔 (
𝑁𝑒

1016) Å          (5.3) 

To determine the kTe, we use the line emission intensity analysis. This method can be 

applied when the plasma satisfies LTE and is applicable to our laser plasma conditions, as 

described in previous studies using similar lasers [99]. The excitation temperature can be 

determined using Eq. 5.4 [120]. 

𝑇𝑒 =  
𝐸2−𝐸1

𝑘
[𝑙𝑛 (

𝐼1𝜆1𝑔2𝐴2

𝐼2𝜆2𝑔1𝐴1
)]

−1

         (5.4)  

where k is the Boltzmann constant, E2 and E1 are the energies of upper transition levels of two 

lines utilized for electron temperature estimation and belong to the same atomic species. I1, A1, 

g1, and λ1 are total intensity (integrated over the line profile), transition probability, degeneracy, 

and wavelength of the line with upper level E1, respectively. The subscript 2 refers to the line 

with upper level E2 for the corresponding quantities. Al II lines at 358.66, 466.30, 559.33, and 

624.34 nm are used to calculate the plasma kTe. Fig. 5.9 shows the Ne (a) and kTe (b) with the 

increase in voltage applied to the target for laser fluence of 21 – 38 J/cm2. In Fig. 5.9(b), the 

average kTe is plotted with the error bar representing the maximum and minimum values 

obtained from the line emission analysis. We observe that the Ne and kTe increase significantly 

with the increase of laser fluence, but shows no change, within the experimental error, with the 

applied external electric field.  
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Fig. 5.9 Effect of target bias voltage on (a) electron density Ne and (b) electron temperature kTe as 

measured by OES.  Laser pulse energy of 21, 25, 28, and 38 J/cm2 is represented by black-square, red-

diamond, blue-hexagon and green-circle, respectively. 

 

Using the value of Ne and kTe in the McWhirter criterion, we can determine whether the 

generated plasma satisfies the LTE condition. To satisfy the LTE condition, the lower limit of 

the Ne has to fulfill the following condition [26]: 

𝑁𝑒(𝑐𝑚−3) ≥ 1.6 × 1012[𝑇𝑒(𝐾)]
1

2[∆𝐸(𝑒𝑉)]3       (5.5) 

where ∆𝐸 is the largest energy transition from which the condition holds, and for our case it is 

3.65 eV, and  𝑇𝑒 is the plasma temperature [26]. The plasma temperature we obtained for a laser 

fluence of 21 J/cm2 when no accelerating voltage is applied is ~1.1 eV. Accordingly, the lower 

limit of Ne for the LTE condition using Eq. 5.5 is 8.8x1015 cm-3. The Ne value we obtained using 

OES is greater than the minimum LTE condition value leading to the conclusion that LTE is 

applicable to the studied plasma.  

For the laser fluence range from 21 to 38 J/cm2, kTi of the ejected ions evaluated by the 

TOF deconvolution varied between ~6 to ~10 eV when no accelerating voltage was applied, 

while when up to 6 kV accelerating voltage was applied kTie ranged from ~20 to ~30 eV whereas 

the kTe calculated from the optical spectra varied between ~1.1 to ~1.8 eV for the same laser 

fluences. Without an external field applied, the difference in the values of kTi measured by ion 

TOF and kTe measured by OES is attributed to the difference in time and location at which the 
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plasma is probed. For ns laser pulse ablation, plasma reaches its highest temperature during the 

laser pulse with its highest density near the surface forming the core of the plasma and, therefore, 

the ions are generated during the laser pulse interaction with the target and the plume [22, 125, 

126] and kTi from the TOF deconvolution estimates the initial ion temperature. Also, for ns laser 

ablation at the earlier stage, before ~60 ns, the intense continuum is dominant masking line 

emission [16]. Since kTe probed by the OES is time and spatially integrated, it estimates lower 

temperature than the initial temperature. Thus, for a laser fluence of 21 J/cm2, the plasma 

temperature cools from ~6 to below ~1.1 eV from initial plasma expansion until the plasma cools 

down. With an electric field applied between the target and the grounded mesh, temporal and 

spatial variations in ion acceleration by the field due to the dynamics of the plasma expansion 

causes a further spread in the ion velocity not associated with ion plasma temperature. Hence, 

kTie represents the combined ion energy spread due to plasma ion temperature and the ion 

extraction dynamics from the laser plume expending in an external electric field. 

5.4 SUMMARY 

Nd:YAG laser Al plasma is characterized using ion TOF and OES. Laser fluence of 21 – 

38 J/cm2 is used to ablate the Al target. Production of ions up to Al4+ was observed. The 

extracted ions energy distributions are fitted with shifted-Coulomb Boltzmann distribution. The 

ions are accelerated according to their charge state by the double layer potential developed at the 

plasma-vacuum interface, in addition to the external electric field applied to accelerate the 

extracted ions. The plasma temperature measured by ion TOF and OES shows significant 

deviation. For a laser fluence increase from 21 – 38 J/cm2, according to ion TOF measurement 

the kTi increases from 6 – 10 eV, while OES yields kTe of about 1.1 – 1.8 eV. The temperature 

measured by OES does not reflect the initial high temperature of the plasma in which the ions are 

generated, and at that time condition of optically thin plasma might not be maintained. In 

addition, temporal and spatial averaging of plasma emission influences the OES measurements 

and yield a lower plasma temperature than the early time of plume formation when the plasma 

was densest and hottest.     
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CHAPTER 6 

 

FEMTOSECOND LASER PLASMA 

 

6.1 INTRODUCTION 

Pulsed laser ablation of a solid target can be used to generate ions with different charges 

from a variety of target materials. The laser-ablated plasma can be considered as an 

instantaneous ion point source with the characteristic ion emission time smaller than the ion drift 

time and the plasma plume dimension much smaller than the source-to-ion collector distance 

[127]. Pulsed laser interaction with a solid is initiated by the absorption of part of the incident 

laser pulse causing target heating, melting, vaporization, ionization, particle ejection, and plasma 

formation and expansion. The laser pulse width, wavelength, and the pulse energy density 

determine the heat-affected zone, the ablation mechanism, plasma properties, and plasma 

expansion dynamics [128, 129]. Dense plasma consisting of electrons, ions, clusters, and neutrals 

are generated due to the laser-matter interaction. The interaction of a high-power density laser 

pulse with the target results in the ablation of the target surface. When the femtosecond laser 

intensity is 1013-1014 W/cm2, ionization of the target material, occurring during the initial laser-

solid interaction, is the dominant mechanism [130]. After the initial ionization by inverse 

bremsstrahlung and resonant absorption, electron-photon energy transfer takes place between the 

free electrons and the remaining femtosecond laser pulse [130]. During this time, a thin sheath of 

electrons and ions forms and begins to generate a bubble on the laser-irradiated surface. The 

electron cooling time (e ~1 ps) is longer than the temporal duration of the 100-fs laser pulse; 

therefore, the interaction of the femtosecond laser pulse with the metal target is already 

completed before the excited electrons transfer their energy into the lattice of the target via 

electron-phonon coupling [131]. Evaporative ablation due to the energy transfer to the lattice by 

the electrons results in the formation of the plasma plume. 

In femtosecond laser ablation, the laser pulse width is shorter than the electron-phonon 

coupling time and the heat transport time in the solid [131-133]. Therefore, femtosecond laser 

ablation causes a smaller heat affected zone compared to nanosecond ablation [134]. For laser 

intensities significantly higher than the ablation threshold, as is the case for MCI generation, 
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ablation proceeds mainly by thermal vaporization [135, 136].  In femtosecond laser ablation, 

plasma expansion occurs after absorption at the laser pulse. 

Several groups reported on ion emission by femtosecond laser pulse irradiation of a solid 

target [129, 137-139]. Using a Ti:sapphire laser (wavelength λ = 800 nm, pulse width τ = 60 fs, 

and laser fluence F = 8.5 J/cm2), Irimicuic et al. performed Langmuir probe measurement on 

transient plasmas from several metallic targets. The time-of-flight (TOF) profile of the ion 

current was fitted to a shifted Maxwell-Boltzmann velocity distribution and used to reconstruct 

the probe I–V characteristics. This technique allowed for obtaining the temporal development of 

the ion and electron temperatures and densities up to 10 µs after the laser pulse [129]. For an Al 

target, the electron temperature was ~1.6 eV, measured 8 µs after the laser pulse, while the ion 

temperature, determined from the shifted Maxwell-Boltzmann fit of the probe ion signal, was ~3 

eV. Anoop et al. used spatially and temporally-resolved optical emission spectroscopy of the 

laser plume to study the dynamics of ions and neutrals generated by ablating Cu using a 

Ti:sapphire laser (λ = 800 nm, and τ = 40 fs, and F = 0.5–77.5 J/cm2). For F >10 J/cm2, splitting 

of the plasma plume is observed and was attributed to the fast-moving ions separating from the 

slow neutrals. For F >50 J/cm2, the maximum energy estimated for the ions and neutrals was 

~800 and ~30 eV, respectively [137]. Their imaging results were correlated to Faraday cup and 

Langmuir probe measurements of the charged particles. Kelley et al. used a Faraday cup to study 

plasma from C, Al, and Cu targets ablated by a Ti:sapphire laser (λ = 800 nm, τ = 70 fs, and F = 

0.1-1 J/cm2) [138]. They reported a bi-modal ion kinetic energy distribution with the lower 

distribution following the shifted Maxwell-Boltzmann, attributed to thermal ionization, whereas, 

the higher distribution was non-Maxwellian, attributed to space-charge effects within the plume 

[138]. Donnelly et al. studied the expansion dynamics and the various plume components in laser 

ablation (λ = 527 nm, τ = 250 fs, and maximum F ~0.8 J/cm2) of a Ni target. Ion TOF profiles 

and thickness map of deposition on a transparent substrate were obtained. The ion energy normal 

to target was ~35 and ~100 eV for laser fluences of ~0.1 and ~0.8 J/cm2, respectively [139]. 

Generation of energetic MCIs by femtosecond laser pulse irradiation of a solid target 

with moderate powers was previously reported [104, 140, 141]. Gordienko et al. generated up to 

Si12+ by ablation of a Si target with a femtosecond dye-laser (λ = 616 nm, τ = 200 fs, and 

maximum intensity I = 3x1016 W/cm2) [140].  The surface of the Si target was cleaned by 
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ablating it with a nanosecond laser pulse of fluence 3 J/cm2 prior to femtosecond laser ablation. 

Fast and slow components of the Si ions were observed; the fast ions gain energy according to 

their charge state, while for the slow ions, the energy gain increases with the charge state. This 

was explained by recombination, which occurs at a faster rate for the slower ions since slower 

ions spend more time to reach the detector [140]. In that experiment, the residual gas pressure 

was ≤2 x 10-5 Torr [62]. Zheng et al., used a Langmuir probe and electrostatic ion energy 

analyzer to study the Al plasma characteristics generated by a nanosecond Nd:YAG laser (λ = 

1064 nm, τ = 6 ns, and F = 1.3 J/cm2) and a femtosecond Ti:sapphire laser (λ = 780 nm, τ = 100 

fs, and F = 0.4 J/cm2). The maximum charge states achieved by the nanosecond and the 

femtosecond lasers were Al2+ and Al3+, respectively [104]. The plasma characteristics generated 

by these two lasers were studied for comparable ablation flux using a Langmuir probe and an ion 

energy analyzer. The nanosecond laser pulse produced a greater concentration of low energy and 

low charge state ions compared to the femtosecond laser. Chutko et al., used an ion 

energy/charge cylindrical analyzer combined with TOF analysis to study ion generation from 

ablation of Si by a femtosecond laser (λ = 616 nm, τ = 200 fs, and I ≤ 2x1016 W/cm2) [141].  

Generation of charge states up to Si6+, O4+, and C6+ was reported. The O and C ions were 

attributed to impurities on the Si surface.  

We report on aluminum MCI generation by a Ti:sapphire femtosecond laser ( = 800 nm, 

τ ~ 100 fs, F≤ 7.6 J/cm2) ablation without and with ion acceleration in an external electric field 

between the target and a grounded mesh. The velocity and the charge state of the MCIs are 

determined by using ion TOF and electrostatic retarding field ion energy analyzer. The electric 

field generated in the plume-vacuum interface that is responsible for the ion acceleration is 

estimated from the deconvolution of the ion pulse into individual ion species. Distinct higher 

order charge states along with the increase in the total number of ions generated are observed 

with the increase in the laser pulse energy. Ions up to Al6+ were observed. These results are 

compared to our earlier nanosecond Al MCI generation using a Q-switched Nd:YAG laser 

(wavelength  = 1064 nm, pulse width τ  ~7 ns, and Fluence F ≤ 38 J/cm2) [54, 55]. The 

extracted MCIs from femtosecond laser ablation gain more energy from the external electric 

field compared to nanosecond ablation due to the lower plasma shielding effect in the 

femtosecond case.  
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6.2 EXPERIMENTAL 

A Spectra-Physics femtosecond amplified Ti:sapphire laser is used to ablate the Al target. 

The laser produces ~100 fs (measured with a single shot auto-correlator) laser pulses at 800 nm 

with a repetition rate of 1 kHz and laser fluence up to 7.6 J/cm2. The ions are generated in a 

vacuum chamber where the femtosecond laser irradiates the Al target. The generated ions are 

then accelerated towards the Faraday cup (FC) through a drift tube. The diameter of the ion 

generation chamber is 30 cm. A 125 cm long transport tube with an inner diameter of 10 cm is 

connected to the chamber. An illustration of the MCI source is shown in Fig. 6.1.        

         

 

Fig. 6.1 An illustration of the laser MCI ion source showing the laser irradiating the Al target, and the 

electrostatic TOF energy analyzer. EB is the electrostatic barrier electrode, SE suppressor electrode, and 

FC Faraday cup. 

 

The Al target (~1 cm square, 0.5 mm thick, 99.97% pure Al foil) was placed on a multi-

axes translational stage. The laser beam is focused on the Al target surface at an angle of 45˚ 

with the surface using a lens of 32-cm focal length positioned on a horizontal translation stage. 

The laser spot area at focus was ~8x10-5 cm2, as obtained using the knife-edge method at target-

equivalent plane with the edge scanned at 45˚ to the laser beam. The Al target support is placed 

inside the MCI generating chamber using an insulated connector. This arrangement allows for 

applying an accelerating voltage directly to the Al target while keeping the experimental 

chamber at ground. The femtosecond laser pulses pass to the Al target through a viewport which 
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has ~8% loss in optical power due to Fresnel reflections. For ion extraction, a nickel mesh of 

diameter 10-cm, thickness of 100 μm, and with an open area of 70% is placed 15-cm in front of 

the target. The generated ions are accelerated in the gap between the Al target and the extraction 

mesh. The ions are accelerated by the combined effect of the expanding plasma, the electric field 

developed in the plasma-vacuum interface due to double-layer formation [54], and the external 

applied electric field. After passing the extraction mesh, the ions drift in the transport tube with a 

constant velocity. The MCIs are detected at the end of the transport tube using an Al Faraday cup 

(FC) with a diameter of 5 cm. To suppress the secondary electrons from the FC due to positive 

ion collisions, the suppressor electrode ring, located 1 cm before the FC, is biased with -140 V 

[111]. Throughout the experiment, the FC voltage was maintained at -70 V. The retarding field 

ion energy analyzer consists of three nickel meshes, like the extraction mesh but with a diameter 

of 5 cm, each separated by 1 cm and placed with the closest mesh to target at 130 cm away from 

the Al target. To analyze the ion energy distribution, a variable voltage is applied to the 

electrostatic barrier (EB) electrode, which is the central electrode of the three-grid retarding field 

analyzer. The 1-kHz femtosecond laser pulses are gated by a fast-mechanical shutter to select 

only a single laser pulse that irradiates the Al target. The oscilloscope is triggered by a fast 

photodiode detector observing the optical leak in the last mirror before the focusing lens. Inside 

the vacuum chamber, the loss of MCIs by charge transfer with the background gas is negligible 

under our experimental conditions (background gas in UHV chamber is in the low10-9 Torr). The 

total scattering cross section for ions with different charge states was previously measured [89-

91]. The mean free path of the Al ions depends on their charge state, but for background 

pressures as in our vacuum chamber is ≳ 10 km for Al ions up to 6+. As the travel distance of 

the ions from the target to the Faraday cup is 1.4 m, ion recombination in the drift tube is 

negligible. 

6.3 RESULTS AND DISCUSSIONS 

The ion signal recorded on the oscilloscope from the FC was analyzed using Origin Pro 

version 9.1 software to determine the total charge of the Al ions delivered to the FC. Origin 

software allows processing the data recorded by the oscilloscope using a Fast Fourier Transform 

filter with a 5-point window to filter and smooth noise in the measured signal. The total charge 
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delivered to the FC Qi is given by 𝑄𝑖 =
1

𝑅𝐿
∫ 𝑉𝐹(𝑡)𝑑𝑡, where VF(t) is the voltage signal detected 

by the FC and RL is the 50 Ω internal resistance of the oscilloscope.   

To observe the effect of consecutive laser pulses hitting the same spot on the target, we 

calculated the total ion generation per pulse for each laser pulse starting with a fresh target 

surface area. The femtosecond laser pulse fluence 7.6 J/cm2 was focused on the surface of the Al 

target. The ion signal was observed, and the number of ions produced was calculated for an 

accelerating voltage of 0 – 6 kV. The general behavior of the number of ions detected with 

consecutive laser pulses is that it increases after the first or second laser pulse due to surface 

cleaning, followed by a slight reduction with laser pulses interacting with the same surface area 

due to drilling of the target. For the laser conditions used, the highest ion yield occurs at the 3rd 

laser pulse. Although there are pulse-to-pulse fluctuations in the magnitude of the ion signal due 

to a certain charge, the ion energy and energy distribution, as detected by TOF, remains 

consistent. For example, the peak amplitude of Al1+ was observed to fluctuates by 23% over four 

consecutive laser pulses while the  whereas, the TOF of the ions, which is indicative of ion 

energy, remained almost unchanged. The reported data is collected for the 3rd pulse to avoid the 

effect of any oxide or contaminants on the surface of the Al target. A different target spot was 

used for each data point; each target spot was located at least 1 mm radially from the previous 

one so that no two spots overlap. The voltage on target was measured with a fast-high voltage 

probe.  

6.3.1 Ions detected without external acceleration  

 The interaction of the femtosecond laser pulse with the surface of the target creates dense 

hot plasma within the time scale of the laser pulse. Subsequently, the plasma expands 

adiabatically into the vacuum. In the plume, the ion kinetic energy can range from hundreds of 

eV to several keV depending on laser fluence [142]. The plume expansion is mainly 

perpendicular to the sample surface. To characterize the generated ions from the laser plasma 

without applying accelerating voltage to the target, the voltage bias on the electrostatic barrier 

(EB) was incrementally increased from 0 V to a voltage that resulted in complete suppression of 

the ions detected. Fig. 6.2 shows the TOF spectrum for 0, 50, 100, 200, and 325 V positive 

voltages applied to the EB. The laser fluence of 7.6 J/cm2 was used to ablate the Al target. The 

plasma ion peak drifts towards the FC with a velocity of ~3.8 x 104 ms-1 when no barrier voltage 
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is applied. The inset of Fig. 6.2 shows the reduction in the total number of charges reaching the 

FC with the increase of the electrostatic barrier voltage. The ion bunch generated by pulsed laser 

ablation that reaches the FC contains different ionic states. The double-layer potential, developed 

in the laser-generated plasma plume, at the plasma vacuum interface, accelerates the ions [23]. 

Higher charge state ions reach the FC earlier than those with a lower charge since the ions with 

higher charge gain more kinetic energy from the double-layer potential. From Fig. 6.2, we 

observe that the EB bias of ~325 V stops most (~95 %) of the Al ions generated. 
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Fig. 6.2 Ion signal for various EB voltage biases at laser fluence of 7.6 J/cm2. Inset shows the reduction of 

total charge with the increase of barrier voltage when no accelerating voltage is applied to the target. 

 

Many factors affect the ion energy, most importantly, plasma temperature, adiabatic 

expansion of the plasma plume, and the Coulomb acceleration due to the double-layer potential 

at the plasma-vacuum interface of the expanding plume [23, 143]. The emitted ion charge states 

are identified from their TOF signal. Also, the ion energy distribution is obtained from the 

retarding energy analyzer and from the TOF signal. Therefore, deconvolution of the TOF signal 

into individual ion charge signals can be accomplished based on the assumption of local 

thermodynamic equilibrium (LTE) in the expanding laser plume [143]. The velocity distributions 

of the laser ablated ions far from the irradiated target, where the ion charge-states are frozen, is 
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characterized by a shifted Coulomb-Boltzmann (SCB) distribution for each ion species. This 

SCB distribution is given in Eq. 6.1 [143, 144]: 

𝐹(𝑣) = 𝐴0 (
𝑚

2𝜋𝑘𝑇
)

3
2⁄

(𝑣)3exp [−
𝑚

2𝑘𝑇
(𝑣 − 𝑣𝑘 − 𝑣𝑐)2]     (6.1) 

where 𝑣 =  𝑣𝑡 + 𝑣𝑘 + 𝑣𝑐 denotes the total velocity along the normal to the target surface,  𝑣𝑡 is 

the mean thermal velocity for monoatomic neutral species, 𝑣𝑘  is the adiabatic expansion 

velocity, 𝑣𝑐  is the velocity due to Coulomb acceleration, and A0 is a normalization constant. 

These velocities are obtained from the following: 

𝑣𝑡 =  √(3𝑘𝑇
𝑚⁄ );  𝑣𝑘 =  √(ϒ𝑘𝑇

𝑚⁄ ) ; 𝑣𝑐 = √(
2𝑧𝑒 𝑉0

𝑚⁄ )    

where m is the mass of ablated ion, ϒ is the adiabatic coefficient which, for a monoatomic metal, 

e.g., aluminum, has the value of 5/3, z is the charge state, kT is the equivalent ion plasma 

temperature (in eV), and 𝑉0 is the equivalent accelerating voltage developed inside the plasma. In 

Eq. 6.1, the condition of LTE (Ti ~ Te ~ T) is assumed. For a transient plasma, such as in laser-

plasma, the LTE condition requires that electron-atom and electron-ion collisions are faster than 

radiative processes. These collisions establish equilibrium with particle velocities in the plasma 

following a Maxwell-Boltzmann distribution [16, 145]. The validity of LTE for laser plasma was 

previously considered for femtosecond laser (λ = 800 nm, τ = 100 fs, and F = 0.9 – 18 J/cm2) 

ablation [146], which is nearly same laser conditions used in our present experiment.  

The Kelley and Dreyfus function, expressing the ion current based on the SCB distribution 

including the effect of Coulomb energy in terms of an equivalent accelerating voltage, can be 

applied for analysis of the ion current if the TOF of ions is much longer than the duration of the 

laser pulse [113, 114]. The SCB model considers both thermal and Coulomb interactions. TOF 

signal of each ion species can be written as 𝐹(𝑡) = 𝐹(𝑣)
𝑑𝑣

𝑑𝑡
, where  𝐹(𝑣) is given in Eq. 6.1. 

Therefore, the overall distribution of the ejected ions is a sum of individual SCB distributions 

with their characteristics equivalent accelerating voltage and ion plasma temperature:  

𝐹(𝑡) = ∑ 𝐴𝑖 (
𝑚

2𝜋𝑘𝑇
)

3
2⁄

(
𝐿4

𝑡5) exp [−
𝑚

2𝑘𝑇
(

𝐿

𝑡
−  √ϒ𝑘𝑇

𝑚⁄ − √2𝑧𝑒𝑉0
𝑚⁄ )

2

]𝑖    (6.2) 
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In Eq. 6.2, 𝐴𝑖 are normalization constants, t is the time-of-flight, and L is the total distance from 

the target to the Faraday cup [109]. Eq. 6.2 applies under the condition of absence of significant 

recombination and collisional excitation processes, i.e., ion species are frozen and freely drifting 

in the vacuum. Such properties were observed for expanding laser plasma outside the 

recombination zone limited by the critical distance Lcr (i.e., L > Lcr), where the ion charges z 

decreases with distance L such that z ∝ L-2 and the ion current follows jIC ∝ L-3 due to rarefaction 

of the expanding plasma [115]. The parameters used to fit the TOF ion signal with Eq. 6.2 are 

mostly sensitive to the equivalent ion plasma temperature kT and the equivalent acceleration 

voltage V0 developed in the plume due to the double-layer potential formed at the plasma-

vacuum interface. From this fit of the measured TOF signal with Eq. 6.2, we can estimate kT and 

V0. 

The ion pulse detected by the FC, shown in Fig. 6.2, consists of ions with different charge 

states. In order to determine the contribution of each ion charge to the TOF signal, deconvolution 

of the ion pulse signal for each ion charge state is performed. To obtain the best fit to the TOF 

signal, a combination of kT and V0 is used. These two parameters are used to estimate the effects 

of thermal, adiabatic, and Coulomb potential on the different ion charges. The deconvolution of 

the ion pulse into different ion charges is conducted as follows: (1) The ion energy distribution of 

each charge state is assumed to follow the SCB distribution described in Eq. 6.1; (2) The 

maximum charge state z generated is based on the TOF measurement conducted by separating 

the charge states temporally using an externally applied electric field between the target and the 

grounded mesh, as discussed in Section III. B; (3) The equivalent accelerating voltage developed 

inside the plasma due to the double-layer potential V0 and the equivalent ion plasma temperature 

kT are set as free variables conditional upon the total energy (sum of thermal, adiabatic and 

Coulomb) matching with the ion energy measured by the three-grid retarding field analyzer; (4) 

The most probable energy of each ion charge is separated by V0 since the ions gain energy from 

V0  that is proportional to their charge z; and (5) The sum of the TOF signal due to the different 

ion charges fits the TOF signal of the observed ion pulse that is composed of all ions. 

In laser-generated ions, two energy distributions for Al1+ and Al2+ were reported using 

Nd:YAG laser (λ = 532 nm, τ = 5 ns, and F = 0.8 – 6 J/cm2) [19]. Also, slow and fast Si MCI 

generation using a femtosecond laser (λ = 616 nm, τ = 200 fs, and maximum intensity I = 3x1016 
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W/cm2) was reported [62]. The faster group was attributed to multiphoton laser ionization, while 

the slow group was attributed to collisional processes [19]. Within the expanding plume, 

collisions among ions, electrons, and neutrals lead to ionization, recombination, and charge 

transfer resulting in ions with different charge states than the source ion species. Since, ions are 

accelerated depending on their charge state and their energy also depends on their formation 

process. Therefore, an ion charge can have more than one independent SCB distributions [19]. 

The acceleration of these ions also depends on the location between the target and grounded 

mesh at which the ion is generated and can experience the external electric field. Plasma 

shielding reduces ion acceleration by the external electric field. For example, if recombination is 

the dominant process (Al2+ + e →  Al1+ + hν), the Al2+ and Al1+ involved in this reaction will 

contribute to the energy distribution for the Al1+ ions. We considered slow Al1+ and Al2+ 

generation along with the fast ions, since multiple peak structures in the TOF signal are observed 

for these ion groups. 

The deconvolution of the ion pulse into individual ion species, shown in Fig. 6.3, results 

in a temporal distribution of ion states throughout the ion pulse. The higher charge state ions 

have higher energy and reach the FC earlier than the lower charge states. The sum of the signals 

from different ion charges gives the total ion signal which is fitted to the experimental TOF 

signal. From Figs. 6.2 and 6.3, each ion charge is always affected by the retarding field 

according to its charge state resulting in a reduction in the ion pulse amplitude, throughout the 

ion pulse, due to the temporal separation of the different ion charges. From the deconvolution, 

we recover charge states up to Al6+. This is confirmed by the individual ion charge signals 

observed after separation of the different ion charges with a voltage applied on the target making 

it possible to identify each by their time-of-flight.  
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Fig. 6.3 Deconvolution of TOF spectrum into individual ion species for laser fluence of 7.6 J/cm2 when 

no accelerating voltage is applied to target. Als
1+ and Als

2+ are the slower ions. 

 

The curve fit for the extracted Al ions in Fig. 6.3 was done for V0
 = 250 V and kT = 25 eV 

for the fast ions. For the slow Al1+ and Al2+ ions, V0 = 90 V and kT = 18 eV. The stretched tail of 

the ion pulse indicates the possibility of more groups of slow ions. The total energy of the Al 

ions without externally applied electric field is 𝐸𝑧𝑇 =  (𝐸𝑡 + 𝐸𝑘) + 𝑧𝐸𝐶 , where 𝐸𝑧𝑇 is the total 

energy gain for charge state z, 𝐸𝑡 =  
3

2
𝑘𝑇 is the thermal energy, 𝐸𝑘 =

𝛾

2
𝑘𝑇 is the adiabatic 

energy, and 𝐸𝑐 = 𝑒𝑉0 is the Coulomb energy associated with the equivalent accelerating voltage 

due to the double-layer potential. In Fig. 6.3, the most probable energy of different ion species 

are separated by ~250 eV. The calculated most probable energy of the TOF signal and the 

adiabatic and thermal energy obtained by the deconvolution are in good qualitative agreement 

with the results found for ablation using femtosecond lasers [117, 147, 148]. 

The sensitivity of the ion signals for each charge state, obtained by the deconvolution 

process, is checked by performing the fit to the detected TOF signal using different values of z, 

𝑉0, and kT. The maximum ion charge z is experimentally known from the TOF signal with the 

external accelerating field because the ions with different charges are temporally well separated. 

In performing the deconvolution, the sum of the ion signals of all charges detected is fitted to the 

measured TOF signal. This fit is best at time scales extending from the onset of the fast ions 

detected by the FC and extends past the peak of the TOF signal. The slower ions forming the tail 

of the TOF signal are not as well fitted to the SCB distribution, representing the sum of the ion 

charges. This is because there are secondary mechanisms forming these slower ions, as was 
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previously discussed [19, 62]. The ion pulse width for each charge state gives the value of kT. 

Higher kT results in a wider ion pulse for each charge state. The Coulomb energy associated with 

𝑉0 determines the ion pulse energy shift, with higher V0 corresponds to an increased ion energy 

shift of the SCB distribution. The fit is more sensitive to changes in V0 compared to changes in 

kT, with changes in V0 affecting the higher charge states more profoundly. Sensitivity to fitting 

parameters are discussed in Section III. B for ion extraction with an external electric field.  

6.3.2 Ions detected with external acceleration 

Since Al1+ has the lowest velocity among the Al ions with different charge states, the Al1+ 

ions have the longest TOF. The effective accelerating potential that the Al1+ experience is 

obtained by calculating the accelerating potential required to achieve this TOF for Al1+. This 

potential is then used to determine the TOF of ions with other charge states. The estimated TOF 

for MCIs with different charge states matches the TOF signal well.  

When an external electric field is present, the ions experience the double-layer potential 

plus the external field. The extent of which the ions experience the external field depends on the 

distance away from the target that they are separated from the shielding plasma. We, therefore, 

can extended the SCB distribution for an applied external field by adding the effective external 

field potential to the double-layer potential. A modified Eq. 6.2 is used to fit the extracted ion 

TOF signal, which also follows the SCB distribution, by replacing the term 𝑉0 with total 

accelerating voltage (𝑉0 + 𝑉𝑒𝑓𝑓), where 𝑉𝑒𝑓𝑓 is the effective voltage that accelerates the ions by 

the external field. For the extracted ions, the total accelerating energy is equal to the sum of 

accelerating voltage developed inside the plasma and the effective external accelerating voltage. 

To obtain the best fit to the TOF signal, a combination of kT and (𝑉0 + 𝑉𝑒𝑓𝑓) is used. This 

analysis results in temporally separating the TOF signal into different peak positions, each 

corresponding to a different charge state. The signal observed by the FC is the sum of these 

separated ion signals. By deconvolving the TOF signal, it is possible to obtain the energy 

distribution for each ion charge state. Integrating over the signal from a certain charge state and 

dividing the integral by the 50 Ω terminal resistance of the oscilloscope gives the total charge for 

that charge state delivered to the FC. The energy distribution for each charge state is calculated 

from the selected peak position. Peak position of temporally separated ions, as observed from the 

TOF signal, can also be used. These two approaches give almost similar energy distribution for 
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each charge state. The most probable energy of each charge state is calculated from the TOF 

signal. 

The thermal interactions, the adiabatic expansion, and the Coulomb interactions are 

responsible for the ion acceleration during the plasma plume expansion [51]. In our geometry, 

plasma plume expansion occurs in a region with external electric field. Applying an electric field 

between the target and the grounded mesh accelerates the ions according to their charge state 

causing them to separate and, therefore, can be identified from the TOF signal collected by the 

FC. The ions are not accelerated to the full potential applied between the target and the grid due 

to plasma shielding prior to ion separation from the plume. If plasma shielding is not considered, 

an ion generated at the target with zero energy would reach the FC after a TOF of 𝑡 =  𝑡𝑎 + 𝑡𝑑 =

 √
2𝑚

𝑧𝑒𝑉
𝑑 +  √

𝑚

2𝑧𝑒𝑉
𝑆, where t is the time taken by the ion to travel from target to the FC, 𝑡𝑎 is the 

time that an ion is accelerated from zero velocity at target to velocity 𝑣 at the extraction mesh, 𝑡𝑑 

is the time that an ion drifts at constant velocity 𝑣 from the extraction mesh to the FC, d is the 

distance from the target to the extraction mesh, S is the distance from the extraction mesh to the 

FC, m is the mass of the Al atom, e is the electron charge, z is the charge state, and V is the 

applied accelerating voltage. The above equation for TOF does not account for the ion 

acceleration in the expanding plume, which is mainly due to acceleration by the double-layer 

potential, the adiabatic and thermal velocity, and the effect of plasma shielding limiting the ion 

acceleration by the external electric field. The ion accelerating time 𝑡𝑎 is small compared to the 

ion drift time 𝑡𝑑.   

Figs. 6.4(a) and (b) show the ion signal for the accelerating voltage of 5 and 6 kV, 

respectively, using a laser fluence of 7.6 J/cm2. Due to plasma shielding, the electric field 

established between the Al target and the grounded mesh does not fully penetrate the plasma 

plume resulting in ion energies less than the potential applied to the target. In Fig. 6.4(a), for 

Al1+, we detect ~0.3 nC with most probable energy Emp ~2.4 keV; for Al2+ ~0.12 nC with Emp 

~4.7 keV; for Al3+ ~0.08 nC of with Emp ~7 keV; for Al4+ ~0.08 nC with Emp ~9.2 keV; for Al5+ 

~0.006 nC with Emp ~11.5 keV; and for Al6+ 0.06 nC with Emp ~13.7 keV. The peak ion energies 

are separated by ~2.3 keV for 5 kV applied to target, while for 6 kV applied to target, the peak 

ion energy separation increases to ~2.6 keV. The total energy of the ion with charge-state z when 
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the external accelerating electric field is applied 𝐸𝑧−𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑇 + 𝐸𝐾 + 𝑧𝐸𝑐 + 𝑧𝐸𝑒𝑓𝑓, where  

𝐸𝑒𝑓𝑓 is the effective acceleration energy experienced by the ion from the external electric field 

after considering plasma shielding. The deconvolution in Fig. 6.4(a) and (b) are fitted for the 

total accelerating voltage (𝑉0 + 𝑉𝑒𝑓𝑓) of ~2.3 and ~2.6 kV and kT = ~40 and ~45 eV, 

respectively. Figs. 6.4(a) and (b) also show the presence of slow Al1+ and Al2+. In Fig 6.4(a), the 

TOF signal for the slow ions was fitted for (𝑉0 + 𝑉𝑒𝑓𝑓) ~1100 V for Al1+ and ~1900 V for Al2+ 

with kT ~25 eV, while in Fig. 6.4(b), slow Al1+ and Al2+ experience (𝑉0 + 𝑉𝑒𝑓𝑓) of ~1300 and 

~2100 V, respectively, with kT ~30 eV. In Figs. 6.4(a) and (b), the shoulders present at ~15 and 

~14 µs in the TOF signal indicates the possibility that more slow ions contribute to the TOF 

signal.   
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Fig. 6.4  Al MCI detected with (a) 5 kV and (b) 6 kV accelerating voltage. The laser fluence is 7.6 J/cm2. 

The deconvolution of the extracted ion is based on a shifted Coulomb-Boltzmann distribution. (c) The 

effect of varying the total accelerating voltage (𝑉0 + 𝑉𝑒𝑓𝑓)  and equivalent plasma temperature kT on the 

deconvolution of the ion pulse when 5 kV accelerating voltage is applied. In (c), the Al4+ ion pulse 

obtained by deconvolution is shown for (𝑉0 + 𝑉𝑒𝑓𝑓) = 2300 V and kT = 40 eV (black straight line), 2300 

V and 20 eV (blue dot line), 2300 V and 60 eV (blue dash line), 2000 V and 40 eV (red dot line), and 

2600 V and 40 eV (red dash line). 

The same deconvolution procedure is applied when the target is biased at a positive 

potential.  In this case, the value of 𝑉𝑒𝑓𝑓 is adjusted to account for the external electric field. In 

Fig. 6.4(c), the fit was performed for Al4+ signal using different values of (𝑉0 + 𝑉𝑒𝑓𝑓) and of kT. 

For a fixed kT, (𝑉0 + 𝑉𝑒𝑓𝑓) determines the energy shift in the SCB distribution. Whereas, for a 

fixed (𝑉0 + 𝑉𝑒𝑓𝑓), kT mainly determines the ion pulse width. Changing kT has a small effect on 

(𝐸𝑡 + 𝐸𝑘) that is negligible compared to the effect of changing the accelerating potential (𝑉0 +

𝑉𝑒𝑓𝑓). The effect of (𝐸𝑡 + 𝐸𝑘) on the ion signal is constant irrespective of ion charge state. As 

shown in Fig. 6.4(c), changes in the value of (𝑉0, + 𝑉𝑒𝑓𝑓) by 300 V shifts the Al4+ ion most 

probable energy by 1200 eV. This shift is easily noticeable. On the other hand, changes in kT by 

20 eV mostly affects the ion pulse width. The accuracy of the fitting parameter (𝑉0 + 𝑉𝑒𝑓𝑓) 

increases for higher ion charge states. 

For a laser fluence of 7.6 J/cm2, increasing the accelerating voltage from 1 to 6 kV, 

increases the total charge detected from 20 to 720 pC. In the ion transport region, the main loss 

of detected ions is due to ion divergence resulting in ions falling outside of the FC area. The 

retrograde motion of the plasma edge exposes more ions to the accelerating field and repels the 
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electrons [52]. This is the main reason for the enhancement of the ion extraction with increasing 

electric field between the Al target and the extraction grounded mesh. The space-charge limited 

flow due to the retrograde motion of the plasma and the ion current introduction in the presheath 

affects ion extraction [53].  

6.3.3 Effect of laser fluence 

 In a laser produced plasma, the plasma density, temperature, ablated mass, and the ion 

and electron energies are affected by the laser parameters (pulse energy, intensity, and width). 

The laser fluence on the Al target was varied while all other conditions kept fixed, as described 

in the experimental section. The voltage applied to the Al target was 5 kV. Fig. 6.5(a) shows the 

TOF spectra detected by the FC for a laser fluence from 1.4 to 7.4 J/cm2. 
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Fig. 6.5 (a) TOF spectrum of MCIs for laser fluence variation from 1.4 to 7.4 J/cm2, (b) total charge 

generation as a function of laser fluence.  The accelerating voltage applied to the target was 5 kV. 
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From Fig 6.5(a), we observe that, for a laser fluence of 1.4 J/cm2, a very small ion signal 

is detected. It is not until the laser fluence is ~2 J/cm2 that ion peaks at 5 and 10 μs are detected. 

As the laser fluence is increased, the number of ions detected is increased along with detection of 

higher charge state ions. Increasing the laser fluence increases the temporal spread of the Al1+ 

ions, possibly due to the increase in the generation of slow ions. For the lower fluences of 1.4 

and 2 J/cm2, >80% of the total ion yield is Al1+, while for laser fluences above 4 J/cm2, only 

~50% of the ions are Al1+. The TOF signal shows a stretched low energy tail, which becomes 

clear for laser fluences above 6.3 J/cm2 probably due to the contribution of the slower ions to the 

TOF signal. The shape of the ion signal depends on the energy distribution of ions, which are 

generated by different mechanisms. Fig. 6.5(b) shows the total charge detected as a function of 

the laser fluence. In Fig. 6.5(b), a linear fit was applied to determine the threshold fluence for 

detecting Al ions. The point at which the fitted curve intersects with the x-axis indicates the laser 

fluence threshold for Al ion detection is 1.6 J/cm2. For longer laser pulses (picosecond and 

nanosecond, depending of the thermal diffusivity of the target), thermal diffusion determines the 

ablation depth, whereas, for femtosecond laser ablation both the optical penetration depth and the 

mean free path of nonequilibrium carriers (electrons of phonons, depending on the material) 

plays the vital role [144]. For a metal such as Al, the nonequilibrium electrons carry the energy 

from the optical penetration depth to a deeper region under the surface. For femtosecond laser 

ablation of Al, low laser fluence produces relatively low hot electron density and the laser energy 

is mainly deposited in the shallow region defined by the optical penetration depth. With 

increased laser fluence, the contribution of the heat transport by hot electrons becomes 

significant resulting in a fast rise in the lattice temperature and the heat affected zone is defined 

by the hot electron penetration depth. With the increase in the femtosecond laser fluence, 

explosive evaporation takes place causing less localized energy deposition, which results in the 

increase in total ion yield [144, 149]. 

6.3.4 Effect of focal length 

 The focusing lens was moved longitudinally along the optical axis of the incident laser 

beam from the focal length position of 324 mm by ±7 mm in 1 mm incremental steps. 

Throughout this experiment, the voltage applied to the Al target was 5 kV and the laser fluence 

was at 6.9 J/cm2 when the target was positioned at the focal length of the lens. The diameter of 
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the laser beam waist changes due to the change in the distance between the Al target surface and 

the focusing lens, resulting in a reduction in the laser fluence on the Al target surface when the 

lens position is moved away from focus. 

Fig. 6.6 shows the effect of changing the focusing lens position on the total Al charge 

delivered to the FC as a function of the Al target distance from the focal length of the lens. The 

zero position corresponds to when the Al target is placed at the focal length of the lens (324 

mm); positive positions are when the laser is focused in front of the surface, and negative 

positions are when the laser is focused behind the surface of the target.  
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Fig. 6.6  Al total ion charge detected versus distance from optical focus of the lens on target surface. 

 

It is evident from Fig. 6.6 that the best focus position for ion production is when the laser 

is focused 1 mm in front or behind the surface of the target. Moving the position of focus away 

from the surface of the target increases the spot diameter and reduces the laser fluence on the 

target. When focusing the laser at a position of ±7 mm away from the surface of the target, the 

laser fluence becomes insufficient to ablate the Al target. For ablation of Al using a 120-fs laser 

pulse with an intensity of 1.5 x 1014 W/cm2, the plume expansion velocity is ~3 x 104 ms-1 

leading to a length of expanding plume of ~3 nm in front of the target surface [147]. The 

femtosecond laser pulse does not interact with the expanding plasma as in the case of a 

nanosecond laser pulse. The absence of interaction of the expanding plasma with the laser pulse 

makes the ion yield dependence on the focal position similar when the focal spot is before or 

after the target surface.  
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The mechanism of material ablation and plasma production by femtosecond laser-matter 

interaction in vacuum is different from that for nanosecond laser interaction. The duration of 

interaction of the femtosecond laser pulse with the surface is substantially shorter than the time 

necessary for the thermal and hydrodynamic mechanisms that dominate during a nanosecond 

laser pulse [144, 150]. We have previously reported on the generation of Al MCI using a Q-

switched Nd:YAG laser (λ = 1064 nm, τ ~7 ns, and maximum fluence F = 38 J/cm2)in the same 

experimental chamber presently used [54]. To remove the same amount of material by laser 

ablation with a femtosecond pulse requires higher laser intensity than a nanosecond pulse, 

approximately inversely proportional to the laser pulse duration [150]. For example, to extract a 

total charge of ~0.7 nC when 5 kV is applied to the target, an intensity of  ~8x1013 W/cm2 is 

required for Al ablation with 100 fs laser pulses, whereas with 7 ns laser pulses an intensity of 

~5x109 W/cm2 is sufficient [54]. Lower plasma shielding effect is observed for femtosecond 

laser-generated ions compared to when nanosecond pulses are used. This results in the extracted 

ions gaining more energy from the external electric field when the femtosecond laser is used. 

The plasma decays faster for the femtosecond laser due to the difference in the energy coupling 

mechanism and because of the absence of laser-plasma interaction for the femtosecond laser 

ablation [151]. Also, at the early stage of the plasma expansion, the femtosecond laser ablated 

plume is more directed perpendicular to the surface compared to nanosecond ablation resulting 

in less ion loss due to ion divergence [151]. Higher ablation efficiency is achieved for 

femtosecond laser ablation due to lack of interaction between the laser and the plasma compared 

to nanosecond laser ablation [152]. Table I summarizes results obtained for Al MCI generation 

by femtosecond and nanosecond laser ablation. 
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TABLE 6.1. Comparison of Al MCI generated by femtosecond and nanosecond laser 

Characteristics Femtosecond laser (λ = 800 nm) Nanosecond laser (λ = 1064 nm) [54]  

Ion detection threshold 1.6 J/cm2 22 J/cm2 

Maximum ion energy 

gain in the double layer 

~325 eV/charge for laser fluence 

of 7.6 J/cm2 

~70 eV/charge for laser fluence of 38 

J/cm2 

Maximum charge state 

achieved 

Al4+, Al5+, Al6+ for laser fluence 

of 4.0, 6.3, and 7.6 J/cm2, 

respectively 

Al2+, Al3+, and Al4+ for laser fluence 

of 25, 28, and 38 J/cm2, respectively 

Ion yield with laser 

fluence 

Increases with fluence up to 7.6 

J/cm2 with no charge saturation 

observed in this region 

Increases with fluence up to 27 J/cm2 

then saturates due to self-absorption 

Plasma shielding effect 

5 kV accelerating voltage 

produce Al ions with ~2.3 keV 

per charge state 

5 kV accelerating voltage produces 

Al ions with ~1.8 keV per charge 

state 

 

For a laser fluence of 7.6 J/cm2, the equivalent kT of the ejected ions, as evaluated by 

deconvolving the TOF signal, is 25 eV when no voltage is applied to the target. However, using 

a femtosecond Ti:sapphire laser (λ = 800 nm, τ = 100 fs), which is similar to the one we used, the 

electron temperature calculated from the optical spectrum was ~1.4 eV for a laser fluence of 20 

J/cm2 [153]. The large difference in the measured plasma temperatures by the two methods is 

due to the difference in the plasma region probed. The ion TOF contains information on the 

plasma core zone, where the thermal and Coulomb interactions occur (Knudsen layer). Near the 

target surface, the plasma density of the inner core is comparable to solid density and the plasma 

temperature is expected to be much higher than that for the external zone of the expanding 

plasma [109]. Optical spectroscopy probes the electron temperature of the external zone of the 

plasma, where lower plasma densities and temperatures are expected. The outer zone of the 

plasma is formed by the colder neutral and ions of lower charge. Also, the decrease in the 

temperature in the outer zone is due to the conversion of the thermal energy into kinetic energy 

with the plasma attaining its maximum expansion velocity [26]. 

6.4 SUMMARY 

A Ti:sapphire femtosecond laser (wavelength  = 800 nm, laser pulse width τ ~ 100 fs, 

laser fluence F≤ 7.6 J/cm2) was used to generate Al multicharged ions by laser ablation. Al 
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charge state up to 6+ were detected in the faraday cup. The energy distribution of the extracted 

ions is fitted to a SCB distribution. The equivalent ion plasma temperature is estimated from the 

SCB distribution. When an external potential of 5 kV applied to the target to accelerate the ions 

setting an electric field in the plasma expansion region, the estimated ion plasma temperature 

increases from 25 to 40 eV. The ion energy depends on the sum of 𝐸𝑇 + 𝐸𝐾 + 𝑧𝐸𝑐 + 𝑧𝐸𝑒𝑓𝑓, 

where z is the charge state, indicating that ions are subjected to a Coulomb acceleration 

proportional to their charge state by the electric field generated in the plasma-vacuum interface 

of the expanding plume. For higher charge state ions, the effect of thermal energy is negligible 

compared to the Coulomb energy and effective external energy to accelerate the ions. For an 

accelerating voltage of 5 kV, optimal conditions for Al MCI production occurs when the Al 

target surface is positioned 1 mm about the focal length of the lens. The laser fluence threshold 

for Al ion detection with the femtosecond laser was determined to be 1.6 J/cm2. Comparison of 

Al ion generation by the ~100 fs laser pulses to that previously reported with ~7 ns laser pulses 

shows that the femtosecond laser has a significantly lower threshold for ion generation, resulting 

in a higher maximum charge state production, and higher ion acceleration per charge. 
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CHAPTER 7 

 

GENERATION OF B5+ IONS 

 

7.1 INTRODUCTION 

There is an interest in a lab-scale source of B ions. In addition to its wide application for 

introducing p-type acceptor impurity in silicon, B ion implantation is used in many other device 

applications [154-161]. All these applications were conducted with B1+ ions. The use of MCIs 

provides control on both ion potential and kinetic energy. Since each ion is accelerated according 

to its charge state, MCIs require less acceleration potential and smaller bending magnets 

allowing the development of a compact and cost-effective implanter. Also, the use of ions with 

different charge states for implantation makes it possible to implant with different ion kinetic 

energies in one step. This feature can be used to control the implanted ion depth profile 

producing a uniform concentration over a certain depth or a tailored gradient when needed.  

Sources of boron MCIs were previously developed and used for various applications. Up 

to B3+ was obtained from an electron cyclotron resonance ion source (ECRIS) [162]. This ion 

source was used for structural modification of fullerene thin films by irradiation with B1+ and B3+ 

ions at a similar dose [162]. The optical bandgap of the fullerene films was reduced from 1.7 to 

0.7 eV for films irradiated by B1+ and to 1.06 eV for films irradiated by B3+ ions [162]. Other 

studies of B3+ ion irradiation of fullerene showed significant reduction of surface order and 

formation of new bonds [163, 164]. Implantation of 45 keV B3+ ions in glassy carbon increased 

its hardness by more than 30% [165]. An ECRIS was used to generate up to B3+ using boron 

fluoride generated by boron interaction with SF6 plasma [166]. Up to B3+ was generated by an 

indirectly-heated cathode arc discharge ion source using BF3 gas [167].    

We report on boron MCI generation by a Q-switched Nd:YAG laser ( = 1064 nm,  = 7 

ns, and maximum E = 175 mJ) ablation. The charge state and the energy distribution of the ions 

are determined by their TOF and a three-grid retarding field ion energy analyzer. With the 

increase in laser fluence, higher order charge states are observed along with the increase in the 

number of ions generated. Fully-stripped B ions are observed. The electrostatic ion bending stage 

allows for separating the B ions for ion implantation.  
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7.2 EXPERIMENTAL 

The laser ion source is composed of a Q-switched Nd:YAG laser with associated laser 

beam delivery optics, target ablation chamber, ion drift tube, three-grid retarding filed ion 

energy-to-charge analyzer, two Faraday cups, and an ion deflection stage. The 99.9% pure B 

target is 2-inch diameter and 0.25-inch-thick (Kurt J. Lesker, part number EJTBXXX302A4). A 

schematic of the experimental setup used is shown in Fig. 7.1. The laser beam irradiates the 

target through a hole in the plasma expansion chamber (EC) made out of aluminum, which 

allows the plume to expand in a region with no applied external electric field (Region I). In 

Region I, the ions are accelerated by the double-layer potential developed at the plasma-vacuum 

interface. The EC has dimensions of 30 cm in length, 5 cm in width, and 5 cm in height. The 

beam strikes the B target surface at an angle θ = 45˚ with a laser spot area at focus of 1.3× 10−3 

cm2, as measured by the knife-edge method at target-equivalent plane with the edge scanned at 

45˚ to the laser beam. The knife-edge was used to scan the laser beam in both horizontal and 

vertical directions. The front end of the EC has a 30 mm hole covered with a 70% opening nickel 

mesh. An accelerating region (Region II) is formed by placing a grounded mesh in front of the 

EC end grid, resulting in an electric field from the EC grid to the grounded grid that accelerates 

the ions towards the Faraday cup (FC-1). The suppressor electrode (SE) is biased with a negative 

voltage to suppress the secondary electron emission from the Faraday cup due to positive ion 

bombardment. Throughout the experiment, the Faraday cup voltage was maintained at -70 V, 

and the suppressor electrode voltage was at -140 V. The distance from the B target to the FC-1 is 

150 cm. The accelerating gap is 4 cm. Four buffer capacitors, each 1 nF, are placed between the 

EC and the ground to minimize fluctuations in the accelerating voltage. A high voltage power 

supply (Glassman High Voltage, Inc Model PS/KL010R300-22) is used to bias the target. A fast-

high voltage probe (Tektronix P6015A) is used to observe the voltage fluctuations of the biased 

target during plasma plume expansion. Upon exiting the grounded mesh at the end of Region II, 

the ions enter a field-free drift region (Region III) till they reach the three-grid retarding field 

analyzer. The pressure in the vacuum chamber is maintained in the low 10-6 Torr using a 250 l/s 

turbomolecular pump. 
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Fig. 7.1 An illustration of the laser ion source showing the laser irradiating the B target, and the 

electrostatic TOF energy analyzer. EC expansion chamber, EB electrostatic barrier, SE suppressor 

electrode, FC-1 Faraday cup-1, and FC-2 is Faraday cup-2. In Region I, the plasma plume expands in a 

field-free region and the ions separate from the plume and are accelerated by the double-layer potential at 

the plasma-vacuum interface. In Region II, the ions can be accelerated by an external electric field 

between the end of the EC and the grounded mesh parallel to it. Region III is a field-free ion drift region. 

 

In a set of experiments conducted to separate the B ions from the neutrals, as discussed in 

Section 7.3.5, the vacuum chamber is modified. In this configuration, a movable Faraday cup 

(FC-2) of dimension 1 × 1 cm is placed parallel to the target with a linear motion feed-through 

to move it in a direction perpendicular to the ion beam path. Deflection plates are placed to 

deflect the ions away from the path of the neutrals. The distances from the B target to the center 

of the deflection plates to FC-1 and to FC-2 are 27, 76, and 42 cm, respectively. The EC and 

target were grounded, and the length of the EC was reduced to 10 cm. Also, the circular opening 

at the front end of the EC was replaced by a rectangular opening of 1.5 cm ×  1 cm. Deposition 

of the neutral B on the FC-2 is avoided by placing it away from the neutral path and deflecting 

the ions to it. The deflection plates have a length of 2 cm and width of 1 cm. This configuration 

separates the ions from the neutrals so that the ions can be used for ion implantation without 

neutral deposition.  

The density of the laser-ablated plasma decreases during its free expansion in the EC. In 

the drift region, the ion pulse temporal width is increased, and ion recombination is reduced due 
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to the reduced plasma density. The ion signal is acquired by a fast-digital oscilloscope triggered 

by a photodiode detecting part of the laser pulse. This arrangement provides a TOF ion signal 

that can be used to determine the ion energies, mass-to-charge ratios, and abundance of the 

different ion charges generated. The adiabatic expansion, thermal interactions, and the Coulomb 

acceleration due to the double-layer potential formed at the plasma-vacuum interface are 

responsible for the ion acceleration in the EC [23]. After leaving the EC, the ions experience the 

external electric field applied between the EC and a grounded grid placed in front of it and are 

accelerated according to their charge state.  

Pulse-to-pulse fluctuations were compensated for by averaging the ion signal obtained by 

50 consecutive laser pulses hitting the same target spot. Fig. 7.2 shows the TOF signal for pulses 

from the first to the 1800th, when the distance between the target and FC-1 is 76 cm. For a laser 

pulse energy of 135 J/cm2, the total charge delivered to FC-1 (integrated signal) for the 1st to the 

50th laser pulse varies by up to ~10%, while the ion signal maintains nearly the same most 

probable velocity. Significant reduction in the amplitude of the ion signal occurs after hundreds 

of laser pulses interact with the same spot. For the 600th, 1200th, and 1800th laser pulse, the total 

charge delivered to the FC-1 decreased to 0.64, 0.52, and 0.35 of the value obtained for the 1st 

laser pulse. The most probable velocity of the ion signal for the 1st laser pulse of ~5.5× 104 ms-1 

also decreased to ~4.4× 104, ~3.3× 104, and ~2.9× 104 ms-1 for the 600th, 1200th, and 1800th 

laser pulses. A different target spot, obtained by moving the B target by the XY manipulator, was 

used for each datum acquired, and each target spot was located at 2 mm from the previous one so 

that no two spots overlap. 
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Fig. 7.2 TOF signal for 1800 consecutive laser pulses hitting on the same target spot for a laser 

fluence of 135 J/cm2. 

7.3 RESULTS AND DISCUSSIONS 

7.3.1 Ions detected without external acceleration 

Fig. 7.3(a) shows the TOF ion signal for laser fluence of 77, 96, 115, and 135 J/cm2. The 

plume expansion is mainly perpendicular to the sample surface. The ions reach the FC-1 as a 

bunch containing different ionization states. Higher charge state ions reach the FC earlier than 

those with a lower charge since the ions with the higher charge gain more kinetic energy from 

the double-layer potential. Using retarding field ion energy analysis and assuming that the ions 

are thermalized and, therefore, their energy can be described by an equivalent ion plasma 

temperature, it is possible to deconvolute the TOF signal to obtain the energy distribution for 

each ion charge state [98, 168]. Integrating over the signal from and dividing the integral by the 

50 Ω terminal resistance of the oscilloscope gives the total charge delivered to the FC-1. From 

analysis of the shape of the ion signal, we show that, with the increase in the laser fluence, the 

peak position of the TOF signal shifted to shorter delays indicating an increase in the ion energy. 

Increasing the laser fluence from 77 to 135 J/cm2 increases the peak ion drift velocity from 

~4.5× 104 to ~5.5× 104 ms-1, and the total charge detected from 9 to 20 nC. For a laser fluence 

of 135 J/cm2, the ion bunch contains 7.6, 4.6, 3.6, 1.8, and 2.4 nC of B1+ to B5+ ions, 

respectively. These values are estimated from the ratio of ions accelerated by an external electric 

field causing ion separation according to their charge, as discussed in Section 7.3.2. The ion dose 

per pulse is 3.76x109 ions/cm2. For a moderate dose of 1014 ions/cm2 [156], it would take ~45 

minutes to implant that dose. The dose can be further increased by implanting before the ions 
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pass the three meshes of the retarding field ion energy analyzer, which combined allow only 34% 

of the ions to pass to the FC-1. The energy spread  
∆𝐸

𝐸
  depends on the laser fluence, where ∆𝐸 is 

the full-width at half-maximum of the energy distribution and E is the most probable ion energy. 

Increasing the laser fluence from 77 to 135 J/cm2 increases 
∆𝐸

𝐸
 from 0.68 to 1.16. To characterize 

the ions from the laser plasma with the target and the EC grounded, the voltage bias on the 

central mesh of the electrostatic barrier (EB) of the three-grid energy analyzer was incrementally 

increased from 0 V to a voltage that resulted in complete suppression of the ions detected. Fig. 

7.3(b) shows the TOF signal for 0 to 150 V applied to the EB. The laser fluence used to ablate 

the B target was 135 J/cm2. The applied barrier voltage stops the singly-charged ions with kinetic 

energy lower than the barrier voltage. Whereas, higher charge state ions lose kinetic energy 

according to their charge state. The retarding field affects each ion charge according to its charge 

state. The temporal separation of the different ion charges results in a reduction in the amplitude 

of the ion pulse throughout its temporal width. The inset in Fig. 7.3(b) shows the total charge 

reduction with the increase of the barrier voltage. From Fig. 7.3, we observe that ~50% of the 

ions generated with a laser fluence of 135 J/cm2 are retarded by a potential of 25 V. Almost all 

the ions are retarded by a potential of ~150 V. In another experiment (not shown in Fig. 7.3) with 

the target to FC-1 separation of 76 cm and EC front opening of 1.5 x 1 cm, showed that ~20% of 

the ions has energies less than 5 eV. The TOF signal for a laser fluence of 135 J/cm2 shows near 

flat-top profile due to the ions with different charge separation in time while drifting and, 

possibly, due to the space-charge effect.  

 

 



 104 

 

 

Fig. 7.3 (a) Ion signal detected by the FC-1 for increasing laser fluence. (b) Ion signal for a laser fluence 

of 135 J/cm2 with different applied barrier voltages. Inset shows the total charge detected with the 

increase of barrier voltage. 

7.3.2 Ions detected with external acceleration 

When a voltage is applied to the EC, an electric field is established between the grid at 

the exit of the EC and the grounded grid. In this case, the ions are accelerated by the external 

electric field in addition to the double-layer potential at the plasma-vacuum interface. In our 

geometry, plasma plume expansion occurs in the EC, a region without an external electric field. 

Applying an electric field between the EC and the grounded mesh accelerates the ions according 

to their charge state causing them to separate in time and, therefore, the different ion charges can 

be identified from their TOF signal collected by the FC-1. The total energy of the ion with 

charge-state z when the external electric field is applied is 𝐸𝑧−𝑇𝑜𝑡𝑎𝑙 = 𝐸𝑇 + 𝐸𝐾 + 𝑧𝐸𝑐 + 𝑧𝐸𝑒𝑓𝑓, 
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where 𝐸𝑇  is the thermal energy, 𝐸𝐾 is the energy due to adiabatic expansion, 𝐸𝑐 is the Coulomb 

energy associated with the equivalent accelerating voltage due to the double-layer potential, and 

𝐸𝑒𝑓𝑓 is the effective acceleration energy experienced by the ion from the external electric field 

after considering the voltage drop of the power supply used to bias the target and EC. The 

procedure to identify the ions are as follows: first, using retarding field analysis, we determine 

the ion energy obtained from the plasma expansion and the double-layer potential. Then, the 

effective accelerating potential is measured from the voltage curve of the biased EC. We 

calculate the time required for each ion charge to travel from the target to the FC. The calculated 

time matches well with the experimental ion peak positions in the TOF signal for different 

charge states.  

Fig. 7.4 shows the ion signal for the accelerating voltage of 5, 6, and 7 kV, respectively, 

for a laser fluence of 135 J/cm2. Increasing the bias voltage increases their energy and, therefore, 

reduces the TOF of the ions to reach the FC-1. Boron has two stable isotopes, 11B and 10B with 

an abundance of ~80 and ~20%, respectively. The ion TOF depends on their energy and mass. 

Ions are accelerated, by the double-layer potential and the external electric field, to an energy 

proportional to their charge. Therefore, higher charge ions arrive at the FC-1 earlier. Moreover, 

for ions with a certain charge, a 10B ion arrives earlier than a 11B ion with an equivalent energy. 

Because each ion state has a distribution of ion energy, which mainly develops by collisional 

processes in the plasma, the signal from the 10B ions can overlap with the 11B ions for certain ion 

charges. In the TOF signals in Fig. 7.4, two distinct B5+ peaks can be observed, one 

corresponding to 11B5+ while the other to 10B5+. B5+ has the highest √
Energy

Mass
 of the different ion 

charges, which allows for identifying each isotope by its TOF. The TOF of the peak identified as 

10B5+ is slightly faster than expected from a simple calculation, however, we note that previous 

work on boron ablation has shown differences in the angular distribution of the ablated boron ion 

isotopes, which can affect the TOF [169]. Increasing the bias voltage on the EC increases not 

only the ion acceleration energy but also the number of ions extracted. Increasing the EC voltage 

from 5 to 7 kV increases the B1+ detected from 0.60 to 0.83 nC, B2+ from 0.35 to 0.40 nC, B3+ 

from 0.26 to 0.37 nC, B4+ from 0.14 to 0.23 nC, and B5+ from 0.10 to 0.16 nC. When the ions are 

accelerated by the electric field established between the target and the grid by biasing the target 

at 7 kV, the ion dose per pulse is 3.9 x 108 ions/cm2. For a moderate dose of 1 x 1014 ions/cm2 
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[156], it would take ~7 hours to implant that dose when the laser is operated at 10 Hz. In the 

vacuum chamber, the main ion transport loss is ion divergence rather than recombination. 

Increasing the electric field between the EC and the grounded mesh reduces ion diversion 

causing more ions to be incident on the FC-1 [54]. 

 

 

Fig. 7.4 External acceleration voltage accelerates and separate the ions in their TOF. The accelerating 

voltage applied is 5 ‒ 7 kV, and the laser fluence is 135 J/cm2. 

 

7.3.3 Effect of laser fluence 

In a laser plasma, the plasma density, temperature, ablated mass, and the ion and electron 

energies are affected by the laser parameters (pulse energy, fluence, and width) [22]. In ns laser 

plasma, the leading part of the laser pulse interacts with the target surface resulting in the 

formation of a plasma plume containing energetic species. The remaining part of the laser pulse 

reheats the plasma. After the plume generation, the target surface is partially or totally shielded 

from the remaining part of the laser pulse because of the laser absorption in the plasma by 

inverse bremsstrahlung. This laser-plasma interaction eventually reheats the plasma, and more 

ions with higher charge are produced. The laser fluence on the B target was varied while all other 

conditions were fixed, as described in the experimental section. The EC was biased at 5 kV to 

accelerate the ions. Fig. 7.5 shows the TOF ion signal detected by the FC-1 for a laser fluence 

from 77 ‒ 135 J/cm2. We observe that, for a laser fluence of 77 J/cm2, distinct peaks for charge 

states up to B3+ are detected. It is not until the laser fluence of 115 J/cm2 that the fully-stripped 



 107 

B5+ ions are detected. Increasing the laser fluence from 77 to 135 J/cm2, increases the total ions 

detected from 0.7 to 1.5 nC. As the laser fluence is increased, the number of ions detected is 

increased along with the detection of higher charge state ions. With the increase in the laser 

fluence, higher charge state ions are generated due to the increase in the laser energy deposited in 

the plasma plume causing more plasma heating. The higher laser fluence also increases the 

ablated material per pulse providing denser plume that can absorb more of the laser pulse 

generating more ions.  

 

 

Fig. 7.5 Higher charge states are generated with the increase of the laser fluence from 77 to 135 J/cm2. 

The accelerating voltage applied to the EC is 5 kV. 

 

7.3.4 Ion energy  

The ion kinetic energy was measured by the retarding field ion energy analyzer combined 

with the TOF ion signal. The EB potential VEB retards the ions, according to their charge state z, 

and suppresses all ions having kinetic energies lower than zeVEB, whereas ions with higher 

kinetic energies lose energy during their drift to the central grid of the three-grid analyzer. This 

energy loss is then gained after the ions reach the last grid of the analyzer. During retardation the 

voltage applied to the EB was incrementally increased from 0 V to a voltage, which resulted in 

complete suppression of the ions detected. Ion with Fig. 7.6 shows the TOF signal for 0 ‒ 5 kV 

applied to the EB. The laser fluence was 135 J/cm2 and the voltage applied to the EC was 5 kV. 

The ions always affected by the EB voltage resulting in an ion pulse amplitude reduction 
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throughout the ion pulse due to the temporal separation of the different ion charges. From Fig. 

7.6, we observe that, for each charge state, ions with a lower kinetic energy are detected. 

Although 5 kV accelerating voltage is applied to the EC, most of the ions (~ 83%) have an 

energy of 4.5 to 5.0 kV/charge. The lowered energy ions could be due to the voltage drop in the 

power supply during plasma expansion in the EC.  

 

 

Fig. 7.6 Time-of-flight ion signals for different barrier voltages applied to the central grid of the retarding 

field analyzer. 

 

7.3.5 Ion deflection out of the neutral beam 

To utilize the B ions for ion implantation, the experimental chamber is modified as 

discussed in Section II to allow deflection of the ions out of the neutral beam path. The Faraday 

cup FC-2 is used to detect the deflected ions. The deflecting plates deflect the ions out of the 

neutral beam path, which is defined by the opening of the EC and FC-1. Fig. 7.7 shows the TOF 

signals for ions detected by both FC-1 and FC-2 for a laser fluence of 135 J/cm2 when no 

potential is applied to the target and the EC. The total ions detected by the FC-1 is ~17 nC, 

consisting of B ions up to B5+, when no deflecting voltage is applied. The deflection of ions due 

to the electric field of the deflection plates can be calculated from S =
𝑉𝑑 𝐿

2𝑑𝑉𝑎𝑐𝑐
(𝐷 +

𝐿

2
), where S is 

the deflection of an ion from the center of the two plates at a distance D from the end of the 

deflection plates, 𝑉𝑑 is the deflecting voltage, 𝐿 is the deflection plate length, 𝑑 is the separation 

between the plates, and 𝑉𝑎𝑐𝑐 is the ion accelerating voltage. In our experiment, D = 6.5 cm, Vd = 
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150 V, L = 2 cm, d = 2 cm, and Vacc = 150 V. Ions with different charges are deflected together 

as long as they experience the same accelerating voltage, as their kinetic energy is proportional 

to their charge. When 150 V is applied across a set of deflection plates, the ions with similar 

energy-to-charge ratio are deflected by the same angle. At the location of FC-2, the ions are 

deflected by 3.75 cm away from the center of the neutral beam. This distance is enough to assure 

that only ions reach FC-2. The total charge detected by the FC-2 is ~9.50 nC, while ~4.50 nC is 

detected by FC-1. Since the dimension of the gap between the deflection plates are smaller than 

the ion beam path dimension defined by the rectangular opening of the EC, some of the ions 

continue undeflected in the drift tube to FC-1.  

 

 

Fig. 7.7 Ion signal detected by the two Faraday cups with and without ion deflection. The TOF signal 

shown are for (i) FC-1 without ion deflection, (ii) FC-2 with ion deflection, and (iii) FC-1 with ion 

deflection. 

 

7.4 SUMMARY 

Boron multicharged ion generation from a laser-ablated target was studied by ion TOF. 

Fully stripped boron ions were generated using Nd:YAG laser (λ = 1064 nm, τ = 7.4 ns) operated 

at a fluence of  ≥115 Jcm-2. The ions extracted from the laser plasma are characterized in terms 

of laser fluence and accelerating voltage applied between the EC and grounded grid. The plasma 

plume expands in a field free region resulting that allows the separation of the ions from the 

decaying plasma. Increasing the laser fluence increases the ions generation along with producing 
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higher charge states. Two distinct ion peaks for B5+ are observed corresponding to 11B and 10B. 

The EC bias voltage fluctuates during the plasma expansion, which affects the ion kinetic 

energy. For EC biasing voltage of 5 kV, the ions are accelerated with an energy >4.5 keV/charge. 

The ion deflection stage allows the ion source to be used for implantation without neutrals 

deposition.  
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CHAPTER 8 

 

SHALLOW IMPLANTATION ON SILICON CARBIDE 

 

8.1. INTRODUCTION 

Under the VMEC seed funding, we modified a laser multicharged ion (MCI) source to 

implant boron and barium ions in SiC and characterized the ion implanter for boron MCI 

generation. The experimental chamber used is composed of (i) plasma generation chamber, (ii) 

drift tube, (iii) X-Y steering stage to steer the ion beam towards sample location, (iv) linearly 

movable sample holder across the drift tube, and (v) two Faraday cups (FC) to detect the ions. 

FC 1 (area 20 cm2) is placed at the end of the drift tube, and a small linearly movable FC 2 (area 

1 cm2), placed across the drift tube, is used to detect the deflected ions. There is a slit (width ~1 

cm) at the end of the plasma generation chamber to limit the ion beam size in the drift tube 

region and avoid wall sputtering. A Q-switched Nd:YAG (λ = 1064 nm, τ = 7 ns) is used to 

ablate the boron target. Fig. 8.1 shows the image and schematic of the experimental chamber. 

The distance from the B target to FC 1 and FC 2 is 150 cm and 40 cm, respectively.   

 

 

Fig. 8.1 Image and schematic of the laser ion implanter showing the plasma generation chamber, ion 

deflecting stage, sample holder, and Faraday cup to detect the MCI. 
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8.2 PROCEDURE 

The procedure followed to fabricate and characterize the SiC-MOSCAP is depicted in the 

block diagram of Fig. 8.2. Boron and barium multicharged ions were generated from the laser 

ion source. The substrates were 4H-SiC (5 x 5 x 0.33 mm, with two sides polished, Item # 

SC4HZ0505033S2, MTI Corporation). Shallow implantation was conducted using the laser 

multicharged ion source. The SiO2 and metal layers were grown by sputtering. 

 

 

 

Fig. 8.2 Block diagram shows the steps followed to fabricate MOSCAP. 

 

8.3 SRIM SIMULATION OF BORON ION IMPLANTATION ON SILICON CARBIDE 

The Stopping and Range of Ions in Matter (SRIM) simulation is used to check the profile 

of the implanted B atom. Fig. 8.3 (a)-(e) shows the SRIM simulation result of the B atoms 

implantation in SiC with energies of 150 to 750 eV, with an increasing step of 150 eV. The 

number of atoms in each group are 2000. Fig. 8.3(f) shows the profile of the implanted B ions 

with five energy groups of 150, 300, 450, 600, and 750 eV with each group containing ~2000 

atoms. The model shows that 80% of the implanted atoms travelled up to ~60 Å inside the SiC.  
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Fig. 8.3(a) SRIM simulation of 2000 B ions implated in the SiC wafer with energy 150 eV 

 

Fig. 8.3(b) SRIM simulation of 2000 B ions implated in the SiC wafer with energy 300 eV 
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Fig. 8.3(c) SRIM simulation of 2000 B ions implated in the SiC wafer with energy 450 eV 

 

Fig. 8.3(d) SRIM simulation of 2000 B ions implated in the SiC wafer with energy 600 eV 
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Fig. 8.3(e) SRIM simulation of 2000 B ions implated in the SiC wafer with energy 750 eV 

 

Fig. 8.3(f) SRIM simulation of 10,000 B ions with five energy groups of (a)–(e), with 2000 B ions in each 

group 
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8.4 IMPLANTATION OF B ION ON SILICON  

Boron MCIs with energy ~150 eV/charge were implanted in intrinsic silicon (University 

wafer, ID 2648, Orientation: <100>, Resistivity: >10,000 Ω-cm). The MCIs were deflected by 

the X-Y steering stage towards FC 2 (area 1 cm2). X-Y steering stage was activated, and the ion 

beam was ~2 cm away from the main axis in order to avoid deposition of neutrals on the Si 

substrate. Total charge measured is ~7 nC/pulse. The ion bunch contained 2.66, 1.61, 1.26, 0.63, 

and 0.84 nC of B1+ to B5+, respectively.  The implantation continued for 10 hours with 10 Hz 

pulse repetition rate, resulting in a dose of 5.9x1015, 1.8x1015, 9.45x1014, 3.5x1014, and 9.45x1013 

ions/cm2 of B1+ to B5+, respectively. The total number of ions implanted during the experiment 

was 9x1015/cm2. The implanted film thickness was estimated from the total number of ion to be 

~11 nm. Fig. 8.4 shows the field-emission scanning electron microscope (FESEM) image and 

UV-Vis absorption spectra of the film deposited on a microscope glass slide that was placed next 

to the Si substrate. 

A Hall measurement system (Ecopia: HMS-5500) was employed to characterize the B 

implanted sample. The sheet resistance decreased from 3.9x105 to 3.2x105 Ω/square, and 

resistivity decreased from 2x104 to 1.5x104 Ω-cm due to the B ion implantation.  

 

 

 

Fig. 8.4 (a) and (b) FESEM image of the boron film on Si, (c) transmission characteristics of the film on 

glass sample measured using UV-Vis spectrophotometer. 

 

To calibrate the film thickness growth with time, films were grown for variable time and 

their cross-sections measured with FESEM. Fig. 8.5 shows the Ba film of ~40 nm grown on 

silicon in 2 hours. 
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Fig. 8.5 Film thickness measured by FESEM of ~40 nm Ba film. 

 

 

8.5 B AND Ba SHALLOW ION IMPLANTATION ON SiC 

B and/or Ba shallow ion implantation on N-type 4H-SiC (4˚ off axis) (orientation 

<0001>, dimension 5 x 5 x 0.33 mm, surface roughness < 10Å) was performed after RCA + HF 

cleaning.  

8.5.1 Optical bandgap measurement  

The transmission spectrum and the Tauc plot method were used to determine the optical 

bandgap of 4H-SiC samples with 2 nm B film and without B ion implantation, as shown in Fig. 

8.6 The transmission characteristics are measured using a LAMBDA 45 UV/Vis System 

(PerkinElmer). As expected, the transmission (%) decreases due to boron shallow implantation, 

as shown in Fig. 8.6 (a). The coefficient of optical absorption α is obtained from [170]: α = 1/d 

ln(I0/I), where d is the thickness of SiC sample, and I0 and I are the intensities of the incident and 

transmitted light, respectively. The optical bandgap Eg is calculated using the Tauc relation 

[170]: αhυ = A(hυ-Eg)1/2 where hυ is the photon energy. By extending the linear region of the 

(αhυ)2 term versus energy (hυ), in Fig. 8.6(b), the optical bandgap of the 4H-SiC substrate is 

obtained to be ~3.24 eV. The bandgap is reduced to ~3.2 eV for SiC with 2 nm B film. 
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Fig. 8.6 Effect of B implantation on the bandgap of SiC, (a) UV-Vis photo-spectroscopy of the bare SiC and SiC 

with 2 nm boron layer, (b) Tauc plot to calculate the optical bandgap. 

 

8.5.2 MOSCAP preparation 

After RCA + HF cleaning, 6 samples were shallow implanted with B and Ba ions. The 

samples prepared as a part of this experiment are: 

1. No implantation, bare SiC 

2. Boron 2 nm 

3. Barium 2 nm 

4. Boron 1 nm and barium 1 nm 

5. Boron 2 nm and barium 2 nm 

6. Barium 1 nm and boron 1 nm 

Using reactive sputtering, ~47-nm thick silicon dioxide (SiO2) layer was formed at 250 

˚C. The thickness of the oxide was measured using an ellipsometer (M2000 J.A. Woollam Co.). 

A high temperature vacuum tube furnace (MTI Corporation GSL-1100X) was used to anneal the 

samples at 950 ˚C for 30 min. Aluminum gate contact of diameter ~3 mm and thickness of ~150 

nm was deposited. Fig. 8.7 shows the cross-section schematic of the MOSCAP. 
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Fig. 8.7 Cross-section schematic of the MOSCAP. 

 

8.5.3 MOSCAP characterization 

High-low C-V characterization technique was performed by measuring the capacitance 

from a small amplitude (10 mV) high-frequency and low-frequency AC signal centered on the 

DC voltage applied to the gate. In the high-low C-V characterization, the voltage is swept from 

the accumulation to the depletion region of the MOSCAP. In the accumulation region, the 

electron traps are filled since the conduction band edge is below the Fermi level. The metal 

Fermi level increases with decreasing DC voltage applied to the MOSCAP gate causing bending 

of the semiconductor bands upwards [171]. The AC signal is shifted by the DC voltage. The 

electrons cannot respond to the high frequency by moving into and out of the traps with the 

voltage change. However, for low frequency CV characterization, the electrons respond to the 

voltage and move into and out of the traps as the voltage changes. The condition of trapped 

electron and out of the traps creates the differences in charge resulting in higher low frequency 

capacitance than the high frequency capacitance [171].  

High-frequency capacitance-voltage (C-V) (using Agilent B1500A Semiconductor 

Device Parameter Analyzer) characteristics for a frequency of 100 kHz at room temperature for 

n-MOS capacitor with difference B and Ba doses are shown in Fig. 8.8. With increasing B dose, 

the oxide thickness increases, as evident by the reduction of the oxide capacitance, and the C-V 

curve becomes increasingly left-shifted. While with the increase of Ba shallow implantation 

dose, the oxide thickness increases with the shift in the C-V curve negligible. Under flat band 

condition the effective interfacial charge causes the deviation of the experimental flat-band 

4H-SiC 

SiO
2
 layer
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Al gate contact 
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voltage. The left shift of the C-V curve is due to the interfacial charge carrier change with the 

doping. 

 

 

 

Fig. 8.8 100 kHz C-V for n-type MOS capacitor with different B and Ba dose. 

 

 

The flat-band voltage is calculated from the C-V curve using Eq. 8.1 [172]: 

𝐶𝐹𝐵 =
𝐶𝑂𝑋.𝐶𝑠𝐹𝐵

𝐶𝑂𝑋+𝐶𝑠𝐹𝐵
         (8.1) 

 

where COX is the oxide capacitance and CsFB is the semiconductor surface capacitance in F/cm2, 

and can be calculated Eq. 8.2 [172]: 

 

𝐶𝑠𝐹𝐵 =
𝜀𝑠𝜀𝑜

𝐿𝐷
          (8.2) 

where 𝜀𝑠 and 𝜀𝑜 is the dielectric permittivity of the semiconductor and the vacuum in F/cm. LD is 

the Debye’s length in cm, LD
 can be calculated using Eq. 8.3 [172]: 

𝐿𝐷 = √
𝑘𝑇𝜀𝑠𝜀𝑠

𝑞2𝑁𝐷
          (8.3) 
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where k is the Boltzmann constant (J/K), T is the temperature in K, q is the electron charge in C, 

ND is the doping concentration in cm-3. The doping concentration can be calculated from the C-V 

curve. Using the slope (d/dV). (1/C2) of the linear part of the (1/C2) versus V characteristics and 

the ND value is calculated by Eq. 8.4 [172]: 

𝑁𝐷 =
2

𝑞𝜀𝑠𝜀0
/(|𝑠𝑙𝑜𝑝𝑒|. 𝐴2)        (8.4) 

where A is the gate area in cm2.  

The change in the flat-band voltage with varying implantation is given in Table 1. We 

observe that shallow implantation of B affects the flat-band voltage significantly while the effect 

of implanting Ba ions is negligible. 

 

Table 8.1. Flat-band voltage with the implantation variation. 

SiC MOSCAP Flat-band voltage 

No Implantation 4.5 

Ba 2 nm 4.4 

Ba 1 nm + B 1nm 2.8 

B 1 nm + Ba 1nm 2.7 

Ba 2 nm + B 2 nm 0.2 

B 2 nm 0.04 

 

 

High-low C-V measurement of bare SiC and 2-nm B implanted MOSCAP is given Fig. 

8.9. For high and low frequency 1 MHz and 1 kHz signals are used. From the Fig. 8.9 we 

observe that the deviation of the high and low C-V curve is increased with the shallow 

implantation, indicating the possibility of an interface trap density increase.  
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Fig. 8.9 High-Low C-V curve for bare SiC (a) and 2 nm boron implanted SiC (b). 

 

8.6 SUMMARY 

Shallow implantation of boron and barium multicharged ion in SiC/SiO2 is performed. 

Six different MOSCAPs, with varying boron and barium implantation dose, are fabricated and 

characterized using high-low CV method. According to SRIM simulation, for ion energy of 150 

eV/charge, the ion range is up to ~50 Å (FWHM). Two nm thick boron shallow implantation 

reduced the optical bandgap of the 4H SiC and reduced the flatband voltage noticeably. While 

the effect of the barium implantation is negligible.  
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CHAPTER 9 

 

CONCLUSION 

 

A Q-switched Nd:YAG laser was used to generate Al multicharged ions by laser ablation 

in UHV.  We characterized the dependence of extracted Al MCIs from laser plasma on laser 

pulse energy, accelerating voltage, and incident laser angle. Singly-charged ions were the 

dominant charge extracted. The charge state of the laser-generated ions and their kinetic energy 

are influenced significantly by the incident laser pulse energy. With 5 kV voltage applied to the 

target and a laser pulse energy of 90 mJ, we can extract up to Al4+ ions. The most probable 

energy of Al4+ is 6 keV applied to the target. Under these conditions, the total charge that reaches 

the Faraday cup is ~ 0.65 nC. Significant plasma shielding in the target-to-extraction grid region 

is observed. The results show that ion charge extraction is enhanced by stronger electric field 

applied between the target and extraction grid. The spatial distribution of the generated MCIs 

appears to be strongly dependent on ion charge. 

Components of a transport line for a LMCI source are constructed and tested. These 

components are an einzel lens for ion focusing, parallel deflection plates with pulsed voltage 

source for MCI charge selection, electrostatic cylindrical ion energy analyzer for MCI E/z 

selection, three-grid ion energy analyzer, and a Faraday cup for TOF ion detection. We are able 

to focus the ion beam down to ~1.5 mm depending on ion charge. Ion pick-up from TOF with 

variable pulse width allows for selecting an ion charge and a narrow energy distribution of the 

selected charge if the pick-up pulse is shortened below the ion pulse width. Ion selection by 

pulsed deflection plates can be used for ion pick-up in tandem TOF instruments and avoids 

transport of contamination ions produced from the target surface during laser-target interaction. 

A high voltage pulse generator with programmable narrow pulse width is necessary for the ion 

selection. The EIA combined with TOF measurement are used to resolve both E/z and ion charge 

and obtain the energy distribution of each charge. The transport line components discussed are 

all built on standard ConFlat flanges making them highly modular. This design provides the 

flexibility to modify each component, reconfigure the transport line, and add other beam forming 

and beam steering components in addition to a substrate processing chamber. 
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A spark discharge coupled laser multicharged ion source was developed and tested. A 7.4 

ns Nd:YAG laser is used to ablate an Al target generating a plasma plume. The spark discharge 

is triggered by the laser plume which significantly simplifies the design and provides 

synchronization of the spark discharge with the laser plume. The spark discharge amplifies the 

total charge generation and results in higher charge states. The charge state depends mostly on 

the spark energy deposited rather than on the laser ablation energy. For a laser pulse energy of 72 

mJ and spark energy of 1.25 J, charge states up to Al6+ were detected. Under this condition, the 

total charge delivered to the Faraday cup was ∼9.2 nC when the target was at 5 kV. The SD-

LMCI source is an effective method to generate high charge states of MCIs with small laser 

pulse energies. This approach also minimizes target damage by the laser pulse since the laser is 

mainly used to introduce the vapor into the spark while the energy delivered by the spark is used 

to heat the plasma, which increases the MCI state along with total charge production.  

A combined ion TOF and OES study of laser-generated Al plasma was conducted. The 

1064 nm laser ablation source providing 7 ns pulses was operated at a fluence of 21 – 38 J/cm2. 

The energy distributions of the ejected ions were fitted to SCB distribution. The ions are 

subjected to a Coulomb acceleration proportional to their charge state by the electric field 

generated at the plasma-vacuum interface of the expanding plume, in addition to the external 

electric field after their separation from the plasma. The results show significant deviation in the 

plasma temperature measured by ion energy versus that measured by OES. From the ion TOF 

measurement, the kTi increases with the laser fluence from about 6 – 10 eV for the studied laser 

fluence range. However, applying the line emission intensity analysis method to OES yields kTe 

of about 1.1 – 1.8 eV. Since the laser plasma is considered at LTE, the present results show that 

measurements of kTe by OES does not reflect the initial high temperature of the plasma in which 

the ions are produced, and the condition of optically thin plasma might not be maintained. Also, 

the OES data were obtained under temporal and spatial averaging of plasma emission. This 

averaging also influences the measurements and gives a lower plasma temperature than that 

achieved in the early part of plume formation, where the plasma is densest and hottest, which are 

the conditions at which the MCIs are generated. When the plume expands in an applied electric 

field, ion energy spread, in addition to that due to the plasma ion temperature, is observed due to 

the interaction of the plume with the external field causing temporal and spatial distortion to the 

field. Applying voltage to the target had no effect on kTe as measured by OES. 
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Ablation of Al target with 800 nm, 100 fs laser pulse of intensity 1013 – 1014 W/cm2 is 

used to generate Al ions. Production of Al ions up to Al6+ is observed. The energy distributions 

of the ejected ions are fitted to a SCB distribution. From this fit, the equivalent plasma ion 

temperature is found to increase from 25 to 40 eV when an external accelerating voltage of 5 kV 

is applied to the target setting an electric field in the plasma expansion region. The ion energy 

depends on the sum of 𝐸𝑇 + 𝐸𝐾 + 𝑧𝐸𝑐 + 𝑧𝐸𝑒𝑓𝑓, where z is the charge state, and ET, EK, Ec, and 

Eeff is the thermal, adiabatic, Coulomb, and external effective energy. For higher charge state 

ions, the Coulomb contribution to the ion velocity is much higher than the thermal ion velocity. 

Plasma shielding and secondary ion generation in the target-to-extraction grid region results in 

ion energies less than the voltage applied to the target. Comparison of Al ion generation by the 

~100 fs laser pulses with ~7 ns laser pulses shows that the femtosecond laser has significantly 

lower threshold for ion detection, results in a higher ion charge state, and ion acceleration. For 5 

kV accelerating voltage charge state up to Al6+ detected at 7.6 J/cm2 with 2.3 keV per charge 

state for the femtosecond laser, while only Al4+ with 1.8 keV per charge state is detected at a 

fluence of 38 J/cm2 for the nanosecond laser. 

Ion emission from laser-ablated B target was studied by ion time-of-flight. B5+ ions are 

generated using a 7 ns, 1064 nm laser pulse operated at a fluence of ≥115 J/cm2. By allowing the 

plume to expand in a field-free region, where the ions separate from the decaying plasma plume 

and then accelerating the ions, it is possible to separate, in time, ions with a different charge-to-

mass ratio. Increasing the laser fluence increases the ions generation along with producing higher 

charge states. For B5+, clear ion pulses corresponding to 11B and 10B are observed. The ion 

kinetic energy is affected by the bias voltage fluctuations during the plasma expansion. For 5 kV 

accelerating voltage applied to the EC, most of the ions have an energy >4.5 kV/charge. Ion 

deflecting out of the plume direction allows the laser ion source to be used for implantation 

without deposition of B neutrals. The results show that a relatively small laser source can 

produced up to the fully-stripped B5+ ions that can be accelerated by an external electric field. 

This approach offers a design of a compact B ion source for implantation. 

The multicharged ion source was used to perform shallow implantation boron and barium 

ions. To calibrate the film thickness growth with time, films were grown for variable time and 

their cross-sections measured with FESEM. The depth to which ions are implanted were 
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simulated using SRIM, and for 150 eV/charge boron ions the FWHM depth is ~50 Å. 

Implantation of boron ions affects the optical bandgap and flatband voltage noticeably, while the 

effect of barium is negligible. Several MOSCAPs were fabricated with a combination of boron 

and barium ions. The MOSCAPs are characterized using high-low CV method. 

 Future work 

Optimization of ion extraction and considering the ion energy and spatial distributions are 

needed for design of ion lenses and other components of the ion transport line in laser MCI 

systems. The proof-of-concept presented here shows the significant potential of the SD-LMCI 

source which can be used to generate MCIs out of practically any solid target. Further 

optimization of the SD-LMCI source is possible by shortening the discharge energy deposition 

time in the plume to increase the plasma density and temperature. This can be achieved through 

improvement of the pulse forming network. Also, providing control on discharge trigger time 

can lead to better coupling of discharge energy with the laser plasma. Other geometries for 

coupling the discharge energy to the plasma plume and for MCI extraction can also lead to 

further improvements in MCI yield and energy distribution. 

Also, the interfacial treatment of the SiC/SiO2 can be repeated with 4H-SiC with high 

density epitaxial layer. In the current experiment, the n-type 4H-SiC used has very low carrier 

concentration resulting in reduced effect of boron and barium implantation.  
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APENDIX A 

VACUUM SYSTEM 

Pumping down the system 

To pump down the system do the followings:  

1. Tighten all the flanges so that there is no leak. Close the gate valve. 

2. First turn on the mechanical pump and, after a short delay, the turbo pump. Monitor the 

speed of the turbo pump during start up. 

3. Wait 15 minutes before turning on the pressure gauge monitor. This gauge does not work 

above 10-3 Torr. 

4. Leave the whole system to be pumped down by the turbo for 1-2 hours. 

5. In ~ 2 hour the pressure should reach ~10-6 Torr.  

6. Leave the turbo and mechanical pumps on during the experiment.  

7. If it requires bake-out, use light bulbs around the vacuum chamber symmetrically and use 

aluminum foil to wrap the system.  

Opening the system 

1. Turn off the Turbo pump then mechanical pump.  

2. Leave the chamber for 20 minutes and then open the gate valve slowly. 
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APPENDIX B 

MULTICHARGED ION SOURCE 

 

The multicharged ion source developed at ODU is shown in Fig B. 1. This ion source 

comprises a laser ion source and a separate spark discharge system to amplify the laser plasma 

ionization. 

 

Fig. B. 1 The MCI system with its transport line components. 

 

The energy analyzer, used to detect the multicharged ions, shown in Fig B. 2. Are 

composed of a Faraday cup, suppressor electrode and three-grid retarding field ion energy 

analyzer. 

 

 

Fig. B.2 The ion energy analyzer 
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The schematic of the energy analyzer is shown in Fig. B.3. 

 

 

Fig. B.3 Schematic of the faraday cup. 
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The energy analyzer is built on a standard CF flange from Kurt J. Lesker. Fig. B.4 shows 

the image from the company website and the specifications. 

 

 

Fig. B.4 Image and schematic of the CF flange used from Kurt J. Lesker 

 

Link: http://www.mdcvacuum.com/DisplayProductContent.aspx?d=MDC&p=m.1.2.8.1 

The 6” flange bought from Kurt. J. Lesker is customized in the machine shop to build the 

Faraday cup. Fig. B.5 shows the drawing of the design. 

http://www.mdcvacuum.com/DisplayProductContent.aspx?d=MDC&p=m.1.2.8.1
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Fig. B.5 Schematic of the top view of the customized CF flange. 
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Several components are machined to develop the FC. Following figures, Fig. B.6. – B.8 shows 

the design parameters of the components. All the components are made of aluminum.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. B.6 AutoCAD schematic of the FC components. 
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Fig. B.7 AutoCAD schematic of the FC components. 
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.Fig B.8 AutoCAD schematic of the FC components 
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Fig B.9. shows the three electrode einzel lens that focuses the ion beam without changing 

the ion energy. 

 

Fig. B.9 Einzel lens. 

The AutoCAD design done by Prof. Michael Korwin-Powloski and Andranik Sarkissian 

of the einzel lens is given in Fig. B.10.                      

 

Fig. B.10 Design of the einzel and its components.  1. CF Full Nipple; 2.  1-1/3" OD CF Flanges; 3. 

Ceramic spacer; 4. 304 Stainless steel 2”OD seamless tubes; 5. Power Feedthroughs CF Flanged 20 

000V; 6. 8-32x3/4" Bolt & Nut Sets; 7. Annealed Copper Gaskets 1-1/3" CF; 8. Barrel Connector for 

0,120" wire; 9. UNC ¼” stainless steel connecting rods; 10. Ceramic isolating tubes; 11. Stainless steel 

hex nuts; 12. Stainless steel washers; 13. Annealed copper gaskets 6"CF; 14.  Stainless steel hex bolt/plate 

-nut sets; 15. Socket head screws 4-40; 16. Isolating tube. 
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Fig. B.11 AutoCAD drawing of the CF flange. 

The required components for the einzel lens are: 

1. CF Full nipple 304L-SS Kurt J. Lesker FN-0600 Qty = 1 

2. 1 1/3” OD CF flange tapped 304L-SS Kurt J. Lesker F0133X075NTW Qty = 3 

3. Seamless stainless-steel tube electropolished 304/304L Qty = 3 

4. Connector pin 304L-SS Qty = 3 

5. Power feedthrough CF flanged 20,000 V, Kurt J. Lesker, Product # EFT2011092, Qty = 3 

6. Custom ceramic spacer (Fig A.12 shows below) 
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The AutoCAD schematic of the ceramic spacer is shown in Fig. B.12. 

 

Fig. B.12 AutoCAD drawing of customized ceramic Spacer 
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Cylindrical ion deflector selects ions according to the energy/charge ratio. Fig B.13. 

shows the image of the cylindrical ion deflector during construction stage. 

    

Fig. B.13 Cylindrical ion deflector. 

The MCI system is modified to implant ions without neutral deposition. A pair of 

deflection plates deflect the ions out of neutral beam path. The schematic and the image of the 

system is shown in Fig. B.14. 

 

Fig. B.14 Schematic and image of the MCI system with ion deflection plates to avoid neutral deposition. 
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APPENDIX C 

 

ND:YAG NANOSECOND LASER OPERATION AND MAINTENANCE 

 

The Nd:YAG nanosecond laser has the following specifications; wavelength 1064 nm, 

pulse duration 7.4 ns, maximum laser energy 600 mJ/pulse, repetition rate 10 Hz. The below 

procedures should be followed for proper operation and maintenance of the laser.  

1. To turn ON the system, rotate the key to ON position, press “start/stop” and wait for 30 

minutes. 

2. Press “shutter” to get laser output. 

3. To turn OFF, turn off the “shutter” first then start/stop button and rotate the key to OFF 

position. 

4. The cooling water should be changed every six-month, cooling water was last changed on 

July 18, 2018. To change the Colling water, open the side frame of the laser power 

supply.  

5. Logbook should be maintained to follow the laser energy change over time. 

6. We have spare “flash lamp” for the Nd:YAG laser. 

7. One problem that happened earlier is the with “Marx Bank”. If the problem arises, Q-

switched will be turn ON but the “shutter does not work”. We tried to open the shutter 

manually, but there was no laser beam. The Marx bank was replaced. 
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APPENDIX D 

 

Ti:SAPPHIRE FEMTOSECOND LASER 

 

The femtosecond laser system has a pumping oscillator called the Tsunami and ReGen 

amplifier called Darwin. The ReGen amplifier consists of a stretcher, amplifier, and compressor. 

We do have two chillers  - both work to cool the pumping oscillator and the ReGen amplifier. 

The procedure to turn on the oscillator and amplifier is given below. The oscillator chiller , 

pumping oscillator and ReGen are shown in Fig. D.1. 

 

 

Fig. D.1. (a) power supply with chiller, (b) chiller temperature, (c) chiller for regen and oscillator and (d) 

pumping oscillator, oscillator, and regen. 
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The other components of the Ti:Sapphire femtosecond laser are shown in Fig. D.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. D.2 (a) Pulse generator, (b) oscilloscope, (c) Q-switched controller, (d) mode locked output in the 

computer screen. 

Procedure to Turn-on the laser 

1. Turn on power supply in the big chiller by rotating the key properly.  

2. Check the water level and allow the chiller to cool down the oscillator. Initially,  a red 

LED will be on the control panel, wait some time until the red LED is off and a green 

LED comes on.  

3. Keep the temperature of the smaller chiller around 23o C. 

4. Turn on the signal generator and oscilloscope. 

5. Turn on the Q-switch controller, it will ask to set the power as 5W. Increase the power to 

5 W. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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6. Open the software in the computer. In the software initially, we will see some spectrum 

from the incandescent light of room. To remove these, set the “auto scale” as minimum 

750 nm. 

7. In the controller, set PRF values for external. The current will be 29 mA and the 

temperature will be 22.3oC. 

8. Turn on the laser shutter 

9. The system is an active mode lock system. It should be in mode lock automatically. If 

not, adjust the knob initially to move the spectrum to the left up to value 729 nm and then 

lightly hit the table to make it mode lock. Rotate the other knob the move the center of 

the spectrum to 793 nm. 

10. Mode locking will provide 1 KHz repetition rate. 

11. Move the switch to enable the output. 

12. Turn on the power meter 

Procedure to turn off the laser: 

1. Turn of the shutter and rotate the key. 

2. Turn off the Q-switched controller. 

3. Turn of the software in the computer 

4. Turn off the chiller 

5. Turn off the oscilloscope and power meter. 
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Beam path in the ReGEN 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. D.3 Beam path in the Regen 
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Beam spot on different optics of the Regen. 

 

Fig. D.4 Beam shape observed in the concave mirror (compressor). 

Following figures shows the beam shape observed in different mirrors during laser operation. 

 

Fig. D.5 Beam shape observed in the compressor Retro-reflector 
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Fig. D.6 Beam shape in the stretcher grating 

 

 

Fig. D.7 Beam shape in the retro-reflector mirror (compressor). 
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Fig. D.8 Beam shape on the mirror (stretcher). 

 

 

Fig. D.9 Beam shape on the mirror (stretcher) 
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APPENDIX E 

 

ION ENERGY DISTRIBUTION MEASUREMENT 

 

The procedure to estimate the energy distribution of the ion from their TOF is discussed 

below.  First draw a curve fit using peak fitting option in Origin-lab 9.1 software. Separate the 

TOF signal for individual MCI using the selected peak position (red curve shown in Fig. E.1. for 

Al4+) obtained by Origin-lab. Integrating the area gives us the total charge for that MCI.   
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Fig. E.1 Deconvolution of the TOF spectrum.  

 

Fig. E.2 Extension of the signal to the base line, (b) energy distribution of the Al4+. 
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The Fig. E.1. above shows an example of how we calculate the total charge of Al4+. For 

simplicity we show the curve fit for Al4+.  The curve for Al4+ has TOF distribution from ~5.7 to 

~7.7 µs. integrating the curve over this time range and dividing the integral by the scope 

resistance of 50 Ω gives the total charge of Al4+. Integrating within the TOF for individual MCIs 

obtained from the graph directly without curve fitting can be also used and gives total charge for 

each MCI about similar to those from the curve fit with only ~5 % deviation which is within the 

experimental error.  

Energy distribution is calculated using the following steps: 

1. Curve fit the desired charge state to get the time range of the peak. 

2. Extend the signal of the overlapped region up to the base line. 

3. Select the time range and create another column in Origin Lab. 

4. Convert the time scale to energy, eV. 

5. Plot energy vs voltage curve. 
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APPENDIX F 

 

FABRICATION OF SiC MOSCAP 

 

The following process is performed to fabricate the SiC-MOSCAP. 

1. The SiCs are cleaned with RCA + HF to remove the organic and ionic contaminations.  

2. Boron and barium shallow implantation are performed without neutral boron deposition. 

For boron implantation, at laser fluence of 135 J/cm2, it takes 2 hours to grow 1 nm of 

boron film and 3 minutes to make 1 nm barium film. The sample holder is ~3.75 cm 

away from the center axis and 150 V is applied to deflecting plates.  

3. The samples are annealed at 950 °C for 30 minutes. 

4. The film thickness is measured using ellipsometer (M2000 J.A. Woollam Co.). 

5. SiO2 layer was grown by sputtering. For 200 W RF power with SiO2 target, it takes 60 

minutes to grow ~47 nm of SiO2. The oxygen flow rate is 6 ccm and argon flow rate is 20 

ccm. Nitrogen is purged to protect the vacuum pumps. Substrate was heated to 250°C. 

6. During SiO2 sputtering, if the system stops automatically and RF power supplies shows 

high reflected power, from the previous observation, I can say it’s possible that the SiO2 

has another crack. SiO2 target has several cracks but it still working. 

7. Aluminum gate contacts are sputtered at a rate of 0.5 Å/min.  

8. CV characterization is performed using Agilent B1500A Semiconductor Device 

Parameter Analyzer. 

9. UV-Vis spectroscopy is performed using LAMBDA 45 UV/Vis System (PerkinElmer). 

10. We sent the samples for SIMS and GAXRD to NC State University and are waiting for 

the results.  
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APPENDIX G 

XY DEFLECTING STAGE FLANGE DESIGN 

The AutoCAD drawing the XY deflecting stage is shown below in Fig. G.1 

 

Fig. G.1 AutoCAD drawing of XY deflecting flange. 

 

Fig. G.2 (a) assembled deflecting plate design and (b) separate plate and rod. 
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APPENDIX H 

ION SELECTION STEPS 

The steps to select specific ion using the deflector is as follows: 

1. Connect the laser external trigger cable to the pulse generator. 

2. Connect the pulse generator to the “high voltage pulsar”. 

3. For positive pulse, connect the “positive high voltage input” of the “high voltage pulsar” 

to the high voltage power supply. Ground the negative high voltage input.  

4. Reverse the polarity for negative pulse. 

5. Connect the “high voltage output” of the pulsar to the deflecting plates. 

6. Select the delay time, pulse width, rise time and fall time in the pulse generator. 

7. Apply required voltage of the output pulse in the power supply. 

8. Calculate delay time from the TOF equation and select the deflecting voltage pulse width 

according to the desired ion pulse width. 

9. If the obtained TOF signal is noisy, smooth the signal using OriginLab. 
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APPENDIX I 

LIST OF VENDORS AND DIFFERENT COMPONENTS USED 

 

Unit description Part number Vendor  

XYZ manipulator   EMC-B6C-T275T-1.39-2 Thermionic Northwest 

Mechanical pump 1201006408 Franklin Electric 

Turbo Pump Varian 250 l/s Varian 

Ion pump ULTEK D-I 220 l/s Perkin Elmer 

Nickel mesh 70% opening, thickness 100 μm,  Precision Eforming 

Pulse generator PVX-4110 Directed Energy Incorporated 

Aluminum target 99.9 % pure, 0.5 mm thick Alfa Aesar 

Shield box for Faraday cup bias 2392 Digi-key 

Oscilloscope MDO3054C Tektronix 

Current pickup coil 4418 Pearson Electronics Inc. 

Pressure monitor 500200-CG MKS GRANVILLE-

PHOLLIPS 
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