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ABSTRACT

A VIRTUAL INFRASTRUCTURE FOR MITIGATING
TYPICAL CHALLENGES IN SENSOR NETWORKS

Hady S. Abdel Salam
Old Dominion University, 2010
Director: Dr. Stephan Olariu

Sensor networks have their own distinguishing characteristics that set them apart
from other types of networks. Typically, the sensors are deployed in large numbers
and in random fashion and the resulting sensor network is expected to self-organize in
support of the mission for which it was deployed. Because of the random deployment
of sensors that are often scattered from an overflying aircraft, the resulting network is
not easy to manage since the sensors do not know their location, do not know how to
aggregate their sensory data and where and how to route the aggregated data. The
limited energy budget available to sensors makes things much worse. To save their
energy, sensors have to sleep and wake up asynchronously. However, while promoting
energy awareness, these actions continually change the underlying network topology
and make the basic network protocols more complex.
Several techniques have been proposed in different areas of sensor networks. Most
of these techniques attempt to solve one problem in isolation from the others, hence
protocol designers have to face the same common challenges again and again. This, in
turn, has a direct impact on the complexity of the proposed protocols and on energy
consumption. Instead of using this approach we propose to construct a lightweight
backbone that can help mitigate many of the typical challenges in sensor networks
and allow the development of simpler network protocols.
Our backbone construction protocol starts by tiling the area around each sink using
identical regular hexagons. After that, the closest sensor to the center of each of these
hexagons is determined - we refer to these sensors as backbone sensors. We define
a ternary coordinate system to refer to hexagons. The resulting system provides a
complete set of communication paths that can be used by any geographic routing
technique to simplify data communication across the network.
We show how the constructed backbone can help mitigate many of the typical chal-
lenges inherent to sensor networks. In addition to sensor localization, the network



backbone provides an implicit clustering mechanism in which each hexagon repre-
sents a cluster and the backbone sensor around its center represents the cluster head.
As cluster heads, backbone sensors can be used to coordinate task assignment, work-
force selection, and data aggregation for different sensing tasks. They also can be
used to locally synchronize and adjust the duty cycle of non-backbone sensors in
their neighborhood.
Finally, we propose "Backbone Switching" , a technique that creates alternative back-
bones and periodically switches between them in order to balance energy consump-
tion among sensors by distributing the additional load of being part of the backbone
over larger number of sensors.
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CHAPTER I

INTRODUCTION

Electro-mechanical sensors have been used for relatively long time in different control
systems. In a typical such system, a small number of sensors are deployed in prede-
termined positions in order to provide readings about important system parameters.
Through wired-based networking of sensors, sensory data are transmitted to a cen-
tral processing unit which analyzes received data and take decisions that control the
functionality of the system.

Advances in nano-technology and wireless communications have enabled the de-
velopment of a new generation of sensor-based networks. In particular, technology
allowed the massive production of low-cost low-power multi-functional sensors. Al-
though, these sensors usually have limited sensing, computational and communica-
tion capabilities, they can be networked to provide services for a vast spectrum of
applications. The past decade has witnessed a phenomenal proliferation of sensor
network applications ranging from battlefield surveillance [1], to border monitoring
[2], to fire detection and habitat monitoring [3], to home automation [4], to traffic
control [5], to health-care [6], and to body sensor networks [7], among many others.

1.1 DESIGN CHALLENGES

Designing a reliable and energy aware sensor network has been always challenging
due to many factors inherent to the modest sensor resources and to the nature of the
sensor network itself. A considerable amount of research has been conducted, and is
still ongoing, on the topic of developing protocols and solutions to overcome these
challenges. We now highlight some of the main challenges specific to the design of
efficient protocols for sensor networks:

• Ad hoc nature: sensor networks are ad hoc in nature with no underlying infras-
tructure. It is the responsibility of individual sensors to identify their connec-
tivity to other sensors and to decide what routing mechanism should be used
to forward information to their intended destination. Moreover, traditional
routing schemes may not be useful here because of the dynamic topology and
energy considerations;

This dissertation follows the style of The Physical Review
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• Limited energy budget: the sensors are powered by a modest, non-renewable
on-board energy source. Once its energy is depleted, a sensor becomes totally
non-functional. Hence, sensor energy must be treated as a precious resource
that has to be used wisely, if network longevity is to be promoted;

• Energy hole problem: sensory data collected from different parts of the network
need to be routed towards one of the network sinks for processing/aggregation.
The additional routing load imposed on network sensors around sinks, would
result in the depletion of their energy much faster than other sensors. Once
the energy of these sensors is totally depleted, the sinks are disconnected from
the rest of the network by holes that contain only non-functional sensors. In
time, sensory data can not be routed to the sinks and the network fails;

• Location unawareness: the sensors are usually deployed in regions that have
no infrastructure at all. A typical way of deployment is to scatter the sensors
from airplanes. This kind of deployment does not allow sensors to be aware of
their positions. Moreover, assuming that the sensors can be equipped with a
relatively expensive and energy-hungry GPS chips does not seem to be a feasible
or, indeed, an acceptable assumption for these low-cost low-power devices;

• The sensors must work unattended: due to the massive deployment of sensors, it
is entirely impractical to devote attention to individual sensors. Once deployed,
the sensors must work unattended with no external intervention;

• Limited computing power: the sensors are designed to be low-cost, low-power
devices. Thus, the computing capabilities of sensors are very limited in terms
of the processing speed and available memory. This imposes additional restric-
tions on the type of protocols that can be run by sensors;

• Small transmission range: wireless communication are known to consume a
large portion of sensor energy; indeed, running the radio interface causes the
largest energy expenditure incurred by individual sensors. Supporting sensors
with long-range transmission capability can excessively consume their energy
which it turn reduces their lifetime dramatically. To promote the functional
longevity of the network, the sensors should perform their tasks with the min-
imum possible sensor-to-sensor or sensor-to-sink communication;
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• Dynamic topology: to save their energy, the sensors alternate between sleep
and awake periods. Due to clock drift and lack of communication, the sleep
and awake cycles (duty cycles) of different sensors are assumed to occur asyn-
chronously. When a sensor wakes up, it might find many of its neighboring
sensors still sleeping. This behavior continuously changes the connectivity of
the network creating a dynamic topology that complicates many of the network
tasks, including routing and coverage;

• Unlike classical networks, where the main target is to maximize channel
throughput or link utilization, the main target in sensor networks is to extend
the network lifetime without sacrificing coverage, connectivity, and reliability
of the network.

1.2 MOTIVATION

Several techniques have been proposed to address each of the challenges mentioned
earlier (i.e. localization, clustering, routing, data aggregation, etc). The main goal
of these techniques was to make the network more tractable by solving one of the
inherent network challenges. A major problem when using this approach, each of
these techniques tries to solve one problem separately from other problems. Protocol
designers have to face the same common challenges every time they solve any of
these problems. This in turn has its direct impact on the complexity of the proposed
protocols and energy consumption.

Instead of solving each of these problems individually facing the same common
challenges with each problem, we propose to construct what we call a network skele-
ton that is constructed immediately after network deployment and provides some
kind of an infrastructure that makes the network more tractable. The skeleton pro-
vides sensors with coarse localization information that enables them to associate their
sensory data with the geographic location in which the data was measured. Moreover,
it promotes a geographic routing scheme that simplifies data communication across
the network through skeleton sensors. By hypothetically tiling the deployment area
using identical hexagons, the construction algorithm clusters sensors based on their
locations into hexagons(clusters). Skeleton sensors which are chosen to be the closest
sensors to the centers of these hexagons represent cluster heads and can play a crucial
rule in coordinating task assignment, workforce selection, and data aggregation.
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1.3 SENSOR NETWORK MODEL

We assume a typical sensor network which includes a massive deployment of tiny
sensors each perhaps no larger than a dime. These sensors are deployed uniformly at
random across the deployment area. In addition to the tiny sensors, we assume the
existence of more powerful devices, referred to as sinks. While the tiny sensors are
static, the sinks may be be able to move in support of the mission at hand. Further,
while the sensors have a modest non-renewable energy budget, the sinks are assumed
to be energetically self-sufficient and/or to have rechargeable batteries. Finally, while
the number of sensors is large, perhaps in the tens of thousands, the number of sinks
is many orders of magnitude smaller.

For precise reference, we now list our assumptions about the capabilities of sensors
and sinks.
/- Sensors:

• The sensors are tiny, inexpensive devices with very limited sensing, computa-
tional and communication capabilities;

• The sensors are powered by a non-renewable on-board energy source; when
the energy budget is exhausted the sensor becomes in-operational. Hence, the
sensors sleep and wake up alternatively to save their energy. Sleep and wake-up
cycles for different sensors are assumed to occur asynchronously;

• Once deployed, the sensors must work unattended. Although, the sensors may
have fabrication-time identities, they should be treated as if they were anony-
mous as it is either impractical or infeasible to devote attention to individual
sensors;

• The sensors are assumed to be static (immobile) and, at least initially, unaware
of their location;

• Each sensor has a maximum transmission range, denoted by tx, assumed to be
much smaller than the width or the length of the deployment area. 1 This
implies that messages transmitted by a sensor can only reach recipients in its
proximity;

1Of course, tx depends on the particular type of sensors deployed. Under technology available
at the time of this writing, tx is about 30m for micro-sensors.
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• The reception circuitry of sensors is able to determine the strength of received
signals (RSS), This feature allows each sensor to estimate its distance to the
transmitter. Unfortunately, this estimate is often inaccurate due to the irregu-
larity of signal propagation resulting from surrounding noise, signal reflection
and refraction, and multi-path fading. This limitation is inherent to all RSSI-
based distance measurements as mentioned in [8]. However, in our protocol,
we try to get around this inaccuracy by:

(a) Making distance estimates based on the average value of the received
signal strength of several transmissions,

(b) Avoiding any RSSI-based distance measurements for long-range transmis-
sions in order to reduce the probability of being affected by surrounding
noise.

//- Sinks:

• In addition to the tiny sensors, the network contains a small number of sinks.
These sinks are responsible for tasking the sensors and for collecting the aggre-
gated results;

• The sinks are much more powerful than the tiny sensors. They have no energy
constraints either by being connected to a steady energy supply or by being
powered by rechargeable batteries;

• As they do not have energy constraints, the sinks are assumed to be awake all
the time;

• The sinks may be static or mobile, however they are always aware of their
positions (i.e they might be equipped with GPS devices or their positions can
be entered manually);

• Each sink is equipped with two transceivers with transmission range Tx that
exceeds the maximum transmission range tx of a sensor. The first transceiver is
omnidirectional while the second is unidirectional with a narrow beam width.
The sink nodes are aware of their orientation, and can rotate their unidirectional
transmitter to any angle [0, 2 p] to transmit in any direction.
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1.4 ROADMAP

The remainder of this dissertation is organized as follows, in Chapter II, we briefly
summarize related work pertaining to research to solve challenges in sensor networks.
Then in Chapter III, we present the details of our backbone construction protocol.
Starting from section III. 5, more emphasis is given to show how the proposed back-
bone can help mitigate many of the typical challenges in sensor networks including
sensor localization, data clustering, data aggregation, and geographic routing. Chap-
ter IV is dedicated for backbone-based task assignment and workforce selection. We
propose one centralized and another distributed protocols that can be implemented
on top of the proposed backbone. The chapter is concluded by a family of data aggre-
gation protocols that can be integrated with the proposed task management process.
In Chapter V, we present a backbone guided sleep scheduling scheme that can be
used to balance sensor energy consumption. Finally, in Chapter VI, we conclude our
work and highlight on future research directions.



7

CHAPTER II

STATE OF THE ART

Although, advances in technology enable the massive production of inexpensive sen-
sors that can be deployed in large geographical areas, it raises numerous challenges
on the protocols needed to interact with these sensors efficiently. In this chapter, we
provide an overview of the work that has been reported in the literature and that
is related to the construction of backbones in sensor networks. We also highlight
on the state of the art techniques which were proposed to solve the most important
challenges in sensor networks including localization, scheduling and routing.

II. 1 SENSOR BACKBONES AND INFRASTRUCTURES

Wadaa et al. [9] proposed a virtual infrastructure for a massively-deployed collection
of anonymous sensor nodes. They defined a coordinate system that provides an inter-
esting clustering scheme for anonymous sensors, and referred to the process in which
sensors learn their coordinates as sensor training. Sensor training can be repeated
in a scheduled or ad-hoc basis to provide robustness and dynamic reorganization.
During the training process, the deployment area around each sink is divided using
a number of equiangular sectors (wedges) and concentric circles (coronas) centered
at that particular sink. Olariu and Stojmenovic [10] have shown that the radii of the
coronas can be determined to optimize the efficiency of sensors-to-sink transmission.
The group of sensors which reside in the region determined by the intersection of a
specific corona and a specific wedge maps into one cluster. Although sensor training
can simplify many of network management tasks like routing and data fusion, it has
an inherent scalability shortcoming. In particular, as we move from the sink node
outward, the cluster sizes increase from one corona to the next. After certain point,
sensors within the same cluster may not be within the communication range of each
other, hence more complex data fusion and leader election protocols are needed to
handle these clusters.

More recently, Bertossi et al. [11] have enhanced the training protocol presented
in [9]. The new approach outperforms the original approach in terms of the overall
time for training by lowering it from linear to a square-root function of the size of
the coordinate system used for location awareness.
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Srinivas et al. [12] presented a novel hierarchical wireless networking approach
in which some of the nodes are more capable than others. In their model, the more
capable nodes serve as mobile backbone nodes and provide a backbone over which
end-to-end communication can take place. In their approach they try to control the
mobility of the backbone nodes in order to maintain connectivity. They formulate the
problem of minimizing the number of backbone nodes and refer to it as the Connected
Disk Cover problem. They show that it can be decomposed into the geometric
disk cover (GDC) problem and the Steiner tree problem with minimum number of
Steiner points (STP-MSP). They provide approximation solutions to both problems.
Although, mobile backbones can solve many of network management problems, they
assume the existence of nodes with more advanced capabilities which may not be
available in many sensor network deployment scenarios.

Frey et al. [13] showed that any sensor network graph can be transformed into
an aggregated form which is a virtual overlay graph (e.g. an infinite mesh of regular
hexagons) whose nodes are the centers of all nonempty clusters (hexagons). Two
nodes C\ and C2 of that overlay graph are connected by an edge if there exists at
least one connected pair of network nodes with one node located in Ci and the other
located in C2- In their work, Frey et al. show that network connectivity does not
suffer from generalizing the concept of sensing coverage to arbitrary clusters. Hence,
geographic routing can be used on cluster-base and not on node-base.

II.2 SENSOR LOCALIZATION

Most WSN applications require in a way or the other to associate sensor readings
with the geographic location in which the readings were taken. Getting location
information through recording positions manually or through an expensive GPS chip
are not valid options for sensor networks. To address the localization problem and to
estimate a good approximation of the position of each sensor node, many techniques
have been developed, each of them has its merits and demerits. Up to the time of
writing these lines, there is no specific algorithm on top of others. Hence, we briefly
summarize the technical foundations of the most important localization techniques
proposed in the literature.

In general, localization techniques can be classified into two main categories:
Range-based and Range-free. Range-based techniques depend on range estima-
tion between nodes that know their positions and nodes that do not. Ranges are
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usually estimated based on measurements of received signal strength (RSS), time of
arrival (TOA), time difference of arrival (TDOA) and angle of arrival (AOA)). Al-
though Range-based techniques are more accurate than Range-free techniques, they
share a common drawback, they require additional hardware to be available with
each node to be able to take the required measures. Range-free techniques have been
proposed to overcome the stringent hardware requirements of range-based techniques.
The main idea behind these techniques is to exploit radio connectivity information
among neighboring nodes to infer rough estimates of their positions without taking
any range measurements. This way range-free techniques eliminate the need to equip
each node with any specialized hardware allowing the manufacturing cost of these
nodes to be low.

In the Centroid method [14], a sensor node estimates its position as the centroid
of the polygon whose vertices are positioned at the anchors it could receive messages
from. Anchors are location aware nodes with a transmission range that is usually
longer than the transmission range of regular nodes. If anchors were positioned uni-
formly, localization error can be reduced however this can not be guaranteed in ad
hoc or non static deployments. An obvious problem of this technique it localizes all
the nodes that receive messages from the same subset of anchors (which is typically
large number of nodes) to the same position which increases average localization
error of nodes. An enhanced however range based variation of this technique eval-
uates node position as the centroid of anchor positions weighted by the strength of
signals received from these anchors. Another similar approach for complex shapes
was proposed in [15].

The APIT method [16] divides the deployment area into triangular sections using
anchor nodes. Each sensor applies an approximate PIT test to decide whether it
is inside each possible triangle or not. After that it uses a grid scan algorithm to
estimate the maximum likelihood area within which it resides. In fact, APIT could
achieve good localization accuracy, however it has two major drawbacks. The grid
scan algorithm is very time and resource consuming especially if the grid size is
small. Also, APIT does not localize nodes outside the convex hull of the anchor
nodes accurately.

The Ad-hoc Positioning System (APS) [17] was proposed to allow non-GPS en-
abled nodes to estimate their locations in a hop by hop fashion. Three different
methods were investigated, and the DV-Hop algorithm was the best to perform in
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most cases. In the DV-hop algorithm, each anchor sends a message that contains its
location information to all the sensors around it. Sensors that receive these messages
forward them to their neighbors and so the messages are flooded through the whole
network. Within each message, there is a field that indicates number of hops this
message has been forwarded. Basically, this field is initialized to 1 at the anchor
node, and incremented at each hop. This way, sensors can determine how far they
are (in terms of number of hops) from different anchors. The average distance per
hop is calculated and each sensor can estimate its distance to different anchors. After
that, a sensor node can use the estimated distances between itself and three or more
different anchors to localize itself. Although DV-HOP is known to be one of the
best known range free protocols, it has several drawbacks: first, the flooding nature
of the protocol consumes much of sensor energy, second, it is not always easy and
sometimes infeasible to use trilateration to estimate node position using approximate
distances to anchors. The Amorphous [18] localization protocol depends on a similar
idea. The location coordinates of the anchor are flooded throughout the network
with the number of hops to the source anchor tracked in each message. This enables
each node to maintain a list of hop-count to each anchor along with the location of
that anchor. Each node that does not know its location can use this list to estimate

its location. Unfortunately, Amorphous still has the same issues of DV-HOP.
Cricket [19], an indoor location support system proposed by MIT, allows nodes

to learn their physical location by using listeners that hear and analyze information
from anchors. Anchors concurrently use radio and ultrasonic signals to send their
location information. The listener inference modules on the node overcome multipath
and interference and improve localization accuracy. AHLoS [20] is similar to Cricket
and uses RF and ultrasound for indoor localization. TDOA techniques like these
techniques rely on extensive hardware that might be expensive and energy consuming,
making it less suitable for sensor networks. Another drawback of TDOA techniques
that use ultrasound, they require dense deployment as ultrasound signals propagate
for a limited distance only.

The lighthouse system [21] uses a rotating anchor that produces a parallel light
beam of fixed width. A sensor node detects the light beam for a period of time that
depends on the distance between the anchor and the sensor. If the rotation speed
and the width of the beam are known to the sensors, then each sensor can measure
the time it detects the light beam and estimates the distance and the angle to the
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anchor.

Acoustic-based ranging techniques like BeepBeep [22] was proposed to localize
sensors based on the two-way time of flight of the beeps between two communicating
devices. Other special purpose localization techniques have also been proposed. Un-
derwater 2D and 3D localization was proposed in [23], [24]. APL was suggested in
[25] to address localization in Road Networks where most Range based localization
techniques fail due to the sparse nature of deployment. APL uses binary vehicle-
detection timestamps to obtain distance estimates between any pair of sensors on
roadways.

II.3 SLEEPING SCHEDULE

To save their energy, sensors spend its whole life switching between two modes, sleep-
ing mode (power consumption is minimum) and wake up mode (power consumption
is relatively high). Different deterministic and probabilistic schemes can be used to
determine the schedule based on which sensors sleep and wake up. Next, we sum-
marize the technical foundations of the most important approaches we found in the
literature.

In [26], a new scheduling protocol was proposed to maximize network lifetime
for rare event target surveillance systems. The protocol provides a schedule that
guarantees that each point in the environment is sensed within some maximum in-
terval of time, called the detection delay. However the protocol does not handle QoS
requirements that might require each point to be monitored by k sensors (k > 1) for
more reliable readings.

Another sleep scheduling protocol was proposed in [27], however it requires syn-
chronization between nodes which is hard to achieve in sensor networks. Analytical
analysis of the maximum achieved upper bound on network lifetime was presented
in [28].

The authors of [29] proposed a balanced-energy scheduling scheme for clustered
sensor networks. Their scheme aims to evenly distribute the energy load of the sensing
and communication tasks among all the nodes in the cluster, thereby extending the
network lifetime. However, their scheme does not provide any guarantees on QoS
requirements expressed in terms of the number of sensors participating in each task.

Another algorithm was proposed in [30] for large-scale wireless sensor networks.
The algorithm allows each sensor to probabilistically schedule its own activity based
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on its node degree to guarantee a minimum level of connectivity. Unfortunately,
fe-connectivity does not imply fc-coverage, and so their algorithm does not provide
any guarantees that fc-coverage based QoS requirements are satisfied.
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CHAPTER III

BACKBONE CONSTRUCTION PROTOCOL

The main goal of this chapter is to describe our approach for constructing a network
backbone that can be used to simplify many of the problems inherent to sensor
networks. In Section III. 5 and in the following chapters, we show how the proposed
backbone can provide solutions to many of the typical challenging problems in sensor
networks including localization, clustering, data aggregation, routing, scheduling,
workforce selection among others.

III.l COMMUNICATION BACKBONES

The concept of "network backbone" can be broadly generalized in sensor networks
to include any subnetwork of sensors. Referring to any of these backbones, it is
straightforward to realize that the network can be easily clustered by associating each
non-backbone sensor to its closest backbone sensor. Figure 1, shows the different
clusters constructed when using randomly selected backbone sensors. The reader
should note that the clusters are bounded by the Voronoi diagram whose vertices are
the selected backbone sensors.

• Backbone Sensor ° Non-backbone Sensor

FIG. 1: Clusters constructed from randomly selected backbone sensors

Due to the generality of the definition, one would expect a typical sensor network
to have a large number of backbones, although most of these backbones would have
no practical value. Apparently, in order to be practically useful, a network backbone
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has to satisfy certain conditions. Our purpose is to highlight on the minimum condi-
tions a backbone needs to satisfy in order to be practically useful for communication
purposes. This would definitely give us more insight about the best strategy to follow
in order to construct such backbones.

A network backbone would be practically useful for communication purposes if
it satisfied the following conditions:

1. The backbone subnetwork is connected so it can be used to forward messages

between different parts of the network. Moreover, to reduce the number of
hops, the distance between any two backbone sensors should be as close as
possible to sensor maximum transmission range, tx.

2. Backbone sensors are well distributed across the deployment area. Any non-
backbone sensor is within the transmission range of at least one backbone
sensor. Furthermore, non-backbone sensors should be evenly distributed across
different backbone clusters. For uniform sensor deployments, this implies that
the areas of backbone clusters are equal.

3. The number of backbone neighbors for each backbone sensor is maximized in
order to maximize the number of different communication paths between any
two nodes.

FIG. 2: Hexagonal clusters maximize the number of backbone neighbors

Assuming extremely dense network, where it is possible to find at least one sensor
as close as possible to any point in the deployment area, we are interested to find
the geometric shape of backbone clusters which will satisfy the conditions mentioned
above. We start by placing our first backbone sensor a around the center of the
deployment area (see Figure 2). From condition (1), since the distance between
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any two backbone sensors is tx, the triangle Aabc must be equilateral. Moreover, to
satisfy condition (3), we need to maximize the number of backbone neighbors around
sensor a which can be done by replicating the triangle Aabc as shown in Figure 2
confirming that each backbone sensor can have up to six neighbor backbone sensors.
Furthermore, Figure 2 shows that the backbone cluster around sensor a is in fact a
regular hexagon with side length equals ^.

III.2 THE BACKBONE CONSTRUCTION PROTOCOL

Since, in our proposed protocol, the network backbone is constructed starting from
the sink nodes outwards, we find it more appropriate to start by showing how the
protocol works around a single sink node. It will then become clear that each sink
performs the same backbone construction in a disk of radius RD around itself.

Consider an arbitrary sink; we are interested in setting up a backbone in a disk
D of radius RD, (Rd < Tx), around this particular sink. We note that, as a rule, the
area covered by the disk is a small fraction of the deployment area. Nonetheless, to
simplify the presentation, we shall refer to the sensor network built on the sensors in
this disk as the network.
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Sector 1Sector 2

Sector 3

Sector 6

Sector 4

Sector 5

FIG. 3: Partitioning the area around the sink into sectors

We summarize the main steps of our construction protocol [31, 32] in the following
phases:

• Tiling phase: in this phase the disk D around the sink is tiled using a set of
identical regular hexagons which makes the area around the sink look like a
beehive (see Figure 3);

• Backbone selection phase: in this phase the closest sensor to the center of each
hexagon is determined. These sensors are referred to as backbone sensors;

• Non-backbone sensor classification phase: after being selected, backbone sen-
sors announce themselves as well as the hexagon they represent to other nodes.
Non-backbone sensors use the received signal strength to determine the hexagon
to which they belong.

Tiling the disk D starts at the sink outwards. The first hexagon is positioned
such that the center of the hexagon coincides with the sink. The side length of the
tiling hexagons is taken to be %, where tx is sensor maximum transmission range.



17

In practice, we replace tx by tx = (1 - ö)tx, where ¿ « 0.1. The reason behind this is
to allow the selection of backbone sensors which are very close to the target hexagon
center however they reside on the other side of the center and may not be reached if
we used tx.

Referring to Figure 3, the tiling continues by placing hexagons side by side in
six different directions (i.e. f , ?, ?, ?, ?, and ?). We refer to these angles
as "orientation angles" . As shown in Figure 3, the area is divided into six sectors.
In each sector, the hexagons are stacked in rows. In the first row there is only one
hexagon (column), in the second row there are two hexagons, in the third row there
are three hexagons, and so on.

We propose a ternary coordinate system to uniquely identify the various hexagons
in the tiling above. Specifically, the hexagon in column c of row r in sector s is
uniquely identified using the tuple (s,r,c). It is worthwhile to mention that although
several addressing schemes for hexagonal networks [33, 34] have been proposed, our
coordinate system seems to be more appropriate for our construction protocol.

The remainder of this section is divided into the following subsections: in Sub-
section III. 2.1 we describe how the necessary angles and associated trigonometric
functions are theoretically computed and practically measured; in Subsection III. 2.2
we specify the order in which backbone sensors are selected; finally, in Subsection
III. 2. 3 we present the technical details of the backbone selection process.

III.2.1 Computing and Measuring Angles

<s,r,c>

<£>
<S,r,l=ì

?

Sink

FIG. 4: Estimation of the position of hexagon centers
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For a given sector s, the tangent of the angle 0<s,r,c) subtended by the positive
x-axis and the line connecting the sink to the center S(Sir,c) °f tne hexagon (s,r,c) is

r\/3tan^ + (2c-r-2) ._tan0(w) = ^ , 3 / _ -f. (1)r\/3 + (r-2c+2)tan 3

To justify (1), we begin by evaluating the coordinates (x,y) of the center S(Sir,c) of
the hexagon (s,r,c), where the sink is assumed to be located at (0,0). Referring to
Figure 4, the distance between S^tr,i) and the sink is Hx, and the distance between
S<s,r,i) and ¿'(s.r-.c) is (c — l)tx, where ix is the distance between the centers of any two
adjacent hexagons. Moreover, the angle a between the line connecting S<Sl7-,i> to the
sink and the positive x-axis is the orientation angle of sector s, and the angle 7 can
be evaluated geometrically to be a + ?. With this preamble out of the way, we can
evaluate ? and y as follows

Hx cos a + (c — l)tx cos 7
(2ß-1)p , 1W (2« + 3)p .ri, cos ^ -^- + (C-IJt1 cos ^ —¡— (2)6 0

and

Hx sin a + (c — \)tx sin 7

"6
. (2s -1)tt . ,. . (2« + 3)prasili- —^- + (c-l)íxsin^ —-^-. (3)

However, recalling that
. (2ß-1)p

sin = sin
/STT p

V~3~~ 6
7G6' 7G 7G6' . p

sin — cos - - cos —- sin -
3d ob

?/3 p^ 1 ns
— sin — cos —— ,2 3 2 3 '

(2s — 1)p (sir tt
cos = cos

3 6,
its p . 7G6' . p

cos —- cos — + sin — sm —
3d od

\/3 TTS l . Tis
— cos 1— sin —- ,2 3 2 3

(2d' + 3)p . (TTS tt\
sin = sin ( — + — J3

1rs ir TTS . ir ns
sin —- cos — + cos — sin — — cos —, and

O Z o Z ?
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(2è' + 3)tt
cos = cos

S1K p\
?+2)

p& p . 7G6' . p . its
cos — cos - - sin — sin - = - sin — .

we can rewrite equations (2) and (3) as

x = y
¿•?

y = y

rV3 cos ^ + (r- 2c +2) sin ^- (4)
rV3sin—- + (2c - 2 - r) cos — . (5)3 v '3

Using (4) and (5), combined, we can write

tan#/„(S1T1C
rV^sin f + (2c - 2 - r) cos f
r V^cos f + (r - 2c + 2) sin f
rV^tanf + (2c - r - 2)
r73+(r-2c + 2)tanf '

confirming that (1) holds.
We wish to point out that if for all s, (1 < s < 6), the values Sm(^), and

cos(^) are tabulated, then each sensor can readily evaluate the coordinates (x,y)
of the center of hexagon < s,r,c > as well as tan0<S)I.jC) without evaluating any
trigonometric functions. This is very important as it reduces the energy expended
by individual sensors.

Practical measuring of the angle between the positive x-axis and the line con-
necting the sink to any sensor is more challenging. As mentioned in the network
model, we assume that the sink is capable of both omnidirectional and directional
transmission. The directional antenna at the sink has a small beam-width and can
be rotated toward any direction. Recall that antenna physics states that the trans-
mission pattern of directional antenna consists of a major lobe which is oriented in
the direction of the transmission and several smaller (back and side) lobes [35]. The
received transmission power is maximum at the center of the major lobe and reduces
as we go far from the center. For the purpose this work, we can simplify the antenna
transmission pattern by representing it as a narrow sector with a small angle that is
divided in half by the transmission direction beam (see Figure 5).

Initially, the sink uses its omnidirectional antenna to send a sequence of WAKEUP
messages to wake up sleeping sensors so they can measure their angle to the sink.
Obviously, the number of WAKEUP messages should be sufficiently large so that
each sensor within the disk D will receive at least one copy of the message. Moreover
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FIG. 5: Radiation lobes and beamwidths of directional antenna pattern

to save sensors energy, we suggest that the number of remaining WAKEUP messages
be specified within each message, so when a sensor receives a WAKEUP message in
an early stage and realizes that there will be more WAKEUP messages to follow, it
can save energy by turning off its sensory and reception circuitry, switching to the
sleep mode after adjusting its internal timer to wake up on time.

In addition to waking up sensors, the last WAKEUP message should also provide
some level of synchronization among sensors. Although this kind of synchronization
may not be accurate due to different transmission, propagation and processing delays
at each node, the achieved level of synchronization (within a few milliseconds) is more
than sufficient for our purpose especially in the existence of the large delays due to
the mechanical rotation of the directional antenna.

After the last WAKEUP message, each sensor turns on its reception circuitry and
waits. At the same time, the sink uses its directional antenna to start transmitting
angle estimation messages starting from an initial angle O0. After transmitting a
message, the sink rotates its antenna by a small angle ?T, then it transmits the
next message and so on. Although angle estimation messages are very short, they
convey useful pieces of information to sensors. The most important among these
pieces is the current angle of transmission T. When a sensor receives a recognizable
angle estimation message (i.e received signal strength pr is larger than some threshold
value pth), it stores the angle ? along with the power of received signal pr. When the
antenna of the sink returns back to the initial angle ?0, it can either stop, or start
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another cycle using a different value for the rotation angle ?0 in order to enhance the
accuracy of the estimated angles. Obviously, there is a trade-off between the accuracy
of the estimated angles and the number of cycles needed which will definitely affect
the time and energy consumption. After the last angle estimation cycle, each sensor
estimates its angle as the average of the received angles weighted by their received
signal strength pr. Mathematically, this can be written as

fl=^=lPrrA, (6)
where ? is the total number of received messages, Bm is the angle transmitted in
message ra, and prm is the received signal strength of message m. Recall that the
power of radio signals decays proportionally with the inverse of the traveled distance
raised to the path loss exponent (> 2). Typically, reflected signals travel a distance
that is longer than the distance traveled by direct LOS signals. Hence, if the initial
transmission power p0 remains the same, then the received power of reflected signals
should be smaller than the received power of direct LOS signals. Consequently, when
angle O7n is weighted by the received power prm, we reduce the impact of reflected
signals on the accuracy of estimated angle.

Algorithm 1 Evaluate sin ? and cos ?
Input: Angle ?
Output: sino and coso

1

2

3

4

5

6

7:

8

9

10

?2 = ? ¦ ? ;
?? - lì ì d d i I d zi ì i\ ·r U ·— l 0! ' 1! ' 2! ' 3! ' 4! ' 5! ' 6! ' 7! ' 8! ' 9! > '
sin := F [9] ;
cos := F[8] ;
for (i=7; i > 0 ;) do

sin := T2 ¦ sin + F[i ] ;
cos := ?2 · cos + F [i ] ;

end for
sin := sin · ? ;
return sin, cos ;

After evaluating its angle to the sink using equation (6), each sensor evaluates
the sine and the cosine of its angle using the well known MacLaurin expansion. By
adding the first 5 terms of the MacLaurin expansion of the sine and the cosine, we
obtain an accuracy of up to 4 decimal places which is more than sufficient for our
purpose. Moreover, we can rewrite the approximated expansions of the sine and the
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cosine functions using Horner's rule [36] to reduce the number of multiplications as
follows

03 Q5 07 Q9

8??? w Ö-3!+25!-7! + 9!?2 1 ? ,2 + 1 \ 02 _ 1 , 0Z + ?9! 7! y 5! y 3!
?6

coso « 1-- + --- + -

52 * w iV -4 1 ß2 + 18! 6!/ 4iy 2
Furthermore, we can combine the evaluation of the two series and reduce required

number of multiplication to 10 operations only as shown in Algorithm 1.
By implementing Algorithm 1, and through 10 multiplications only, each sensor

can evaluate the sine and the cosine of its angle to the sink node. We draw the
attention of the reader that using this evaluation method is more appropriate and
consistent with the limited computational power available to these tiny devices.

III. 2. 2 Order of Selection of Backbone Sensors

The selection process of backbone sensors starts when the sink selects the six back-
bone sensors in the first row. After that, the process continues recursively where
the sensors in any row select sensors in the next row. This continues for a sufficient
number of rows necessary to cover the desired disk D. In practice, we expect the
maximum number of rows to be typically around 5 rows.

Backbone sensors can be selected in many ways and in different order. However, to
avoid redundant selections, minimize collisions, and save sensors energy, we propose
a set of rules that determine the order and the selection responsibility of backbone
sensors, these rules are:

1. Only the sensors with odd column coordinate are allowed to select.
(i.e. sensor 5(s>r,c) is allowed to select <*=>¦ c = l (mod 2).

2. If [(c = 1) and (r = 0 (mod 2))] Then
S(s,r,i) selects S(.Si7-+i,i), ¿>(s,r+i,2) and S(s-itr+i,r+i)·

Else

S(s,r,2c-i) selects S{s,r+i,2c-i) and 5(s,r+i,2c>·
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3. Assuming, that the selection of a single backbone sensor takes one time epoch,
then to reduce collisions and interference between transmissions, selection in
odd sectors (i.e. s = 1,3,5) occurs in different time epochs than selection in
even sectors (i.e. s = 2,4,6).

Figure 3 shows selection order and responsibilities for sector 5.
Relative to the above rules for backbone selection we note the following:

• Backbone sensors with even column coordinate do not select other backbone
sensors;

• Selection in odd rows in any sector requires 2 time epochs, however selection
in even rows requires 3 time epochs;

• The total number of time epochs needed to search in all the six sectors is 4
time epochs for odd rows and 6 time epochs for even rows.

III.2.3 The Details of Backbone Selection

In Subsection III. 2.2, we specified the order and the selection responsibilities accord-
ing to which backbone sensors are selected. In this section, we give the technical
details of the backbone selection process.

The protocol starts when the searching entity (i.e. the sink or some sensor) uses
equation (1) to compute tan^s,r,c), the tangent of the angle subtended by the positive
x-axis and the line connecting the sink to the center of the target hexagon identified
by the tuple (s,r,c). After that, it broadcasts a message to all the sensors in its
neighborhood asking for the closest sensor to the center of the target hexagon to
declare itself. Recall that sensors at this point are aware of their angle to the sink
node 9S as described in Subsection III. 2.1. The sensors that receive the message,
check if the difference | tan O8 - tan0(Sir,c>| is within acceptable range (i.e less than
certain threshold). The sensors within the range use RSS to estimate their distance
to the searching sensor S. They also use additional information within the message
transmitted by S to estimate t2s, the square of their distance to the center of the
target hexagon (calculation of e2s is presented in detail later). After that, each sensor
initializes a countdown timer to ^p- units and waits till its timer expires. When the
timer of any of these sensors expires, the sensor realizes that it is the closest sensor
to the center of the target hexagon. Consequently, it broadcasts a message to all



24

<i,1,1>

Sink

Sensor S

Sector
Orientation
Angle

FIG. 6: Case 1: estimation of es

its neighbors declaring itself as the backbone sensor representing the new hexagon.
The sensors that receive the message stop their timers and use this message along
with messages they receive from other backbone sensors to determine the hexagon to
which they belong. Sensors which evaluate el to be larger than some threshold value
(i.e. e¡h) do not initialize their internal timers. This provides the stopping criterion
upon which the boundaries of deployment area is reached.

Although collisions might well occur, they do not represent a big problem as ties
between colliding sensors can always be broken by any contention-based mechanism.
One way of doing this is to let colliding sensors wait a random amount of time before
transmitting again. The first sensor to transmit is selected to be the backbone sensor.

As we mentioned earlier, during the selection of backbone sensors, each candidate
sensor needs to estimate e2s, the square of the distance between the sensor and the
center of the target hexagon. To evaluate this value, we distinguish between two
cases. The first case handles the evaluation for the six backbone sensors around the
sink (i.e. in row 1), while the second case handles the evaluation for backbone sensors
in other rows.

Case 1: for each sector i, the sink has to select backbone sensor s to represent the
hexagon (i, 1, 1). The selection error of sensor s is es and it represents the distance
between s and the center of the hexagon (i, 1, 1). Basically, the criterion to select s
is to keep es minimum. Using Figure 6, it can be readily verified that the position
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FIG. 7: Case 2: estimation of e&2

(7)
(8)

(9)

(X3, Y3) of sensor s relative to the sink and e2 can be evaluated as
X3 = d ¦ cos ?
Y3 — d ¦ sin ?
e2 = tx2 + d2- 2txdcos{<j) - T)

= tx2 + d? — 2txd (cos f cos ? + sin f sin T)
2 2 2íTcí (cos Ö + tan f sin Ö)

= Ix + Cl / „ ,Vl + tan2 f
where d is the distance between the sink and the sensor and is estimated using RSSI.
Case 2: as shown in Figure 7, we assume the existence of backbone sensor a that
was previously selected by the protocol to represent the hexagon (sa,ra,ca)· The
selection error of sensor a is denoted by ea and represents the distance between a
and the center of the hexagon (sa,ra,ca). We recall that a was selected such that
ea2 is minimum. Now it is sensor a's turn to select another backbone sensor b to
represent the hexagon {Sb,rb,Cb). Again, b should be selected such that the selection
error eb2 is minimum (e¡, is the distance between ò and the center of the hexagon
(sb,n,cb)).

Our goal is to provide an expression for e2 that can be evaluated by each sensor
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independently. The evaluation process starts at the searching sensor, a, when it
broadcasts a message asking for the closest sensor to the center of the target hexagon
to declare itself. Within this message, sensor a includes:

l.Za = ?/Xa + ^a ¦> tne Euclidean distance between the sink node and sensor a;

2. sin ?a and cos ?a, the sine and the cosine of the angle between the positive a-axis
and the line connecting the sink to sensor a;

3. In addition to this, sensor a evaluates and sends i and tan ^6, where I is the
Euclidean distance between the center of the target hexagon and the sink,
while <j)b is the tangent of the angle subtended by the positive x-axis and the
line connecting the sink to the center of the target hexagon. Clearly, Í and
tan f?, can be evaluated using

tan<

= VX2 + Y2
r6 ?/3 tan ? +{2c- r - 2)

r6\/3 + (rb - 2cb + 2) tan ¡?- '
where X and Y are given by the equations (4), and (5) respectively.

After receiving the message transmitted by sensor a, each sensor continues the eval-
uation of e¡, on its own. Given that

• Za, sin ?a, cos ?a, t and tan </>b are known from the message received from sensor
a;

• dis estimated through the strength of the signal received from sensor a;

• sin 0b and cos 0b, (the sine and the cosine of the angle subtended by the positive
x-axis and the line connecting the sensor b to the sink) were estimated at
protocol initialization through WAKEUP messages,
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a generic sensor b can estimate the distance Z6 between itself and the sink by ele-
mentary trigonometry as follows:

________Za = d
8??(p - [ßb - ?a + f)) sin(6>6 - ?a)

¦ lù û , l\ ¦ Za ¦ Sm{0h - ?a)Sm(O6 -?a + ?) = —

COS^ +

d
sin f Za

tan(ö6 — ?a) d
1 + 2A tan f + A2 t&n2 f _ Z^

1 + tan2 f d2
Z2 Z21 + 2A tan ^ + ?2 tan2 ^ = -jf- + ^f- tan2 f, (10)d2 d2

where

A = 1 COS(O6 - ?a)
tan(06 - ?a) sin(ö6 - ?a)
cos O6 cos ?a + sin O6 sin ?a ill)
sin O6 cos ?a — cos O6 sin ?a

Because in our protocol we always assume that sensors in any row select sensors in the
next row, the value of the angle f is larger than f . For the case, when tan 06 = tan ?a,
which implies for our scenario that O6 — ?a. Hence, f = p, and Zb = Za + d. For the
general case, we solve the quadratic equation (10) for tan f,

(A2d2 -Z2a) tan2 f + 2Ad2 tan f + d2 -Z¡ = 0
-2Ad2 ± ^AA2d4 - 4{A2d2 - Z2)(d2 - Zl) __--------— — LcIIl W

2{A2d2 - Zl)
After a bit of algebra,

AdP + Zgy/dP + AW - Zttan f = Z2 _ ?2?2 ^12I
Here, we chose the negative root to guarantee that tan f is negative since A > ^f.
Now, we can evaluate Z0 as,

Zb d
sin f sin(06 — ?a)

?-??f
sin ?0 cos ?a — cos ?0 sin ?a

_ d ¦ tan f ,s
(sin O6 cos ?a - cos O6 sin ?a)\/? + tan2 (f)
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Finally, after evaluating Zb, each sensor can apply the trigonometric law of cosines
to evaluate e2, as

el = e + Z*-2eZbcos(<¡>b-eb)
= E2 + Zb - 2ÍZb (cos f?, cos 0b + sin </>b sin 06)
- «2 , 72 _ 2lZfc (cos 6b + sin 0b tan f?) .^.

y/l + tan2 f?,
K 2After evaluating e6, each sensor initializes its internal timer using -^- as described

earlier. The winning sensor, i.e. the sensor whose timer expires first, declares itself as
the selected backbone sensor by broadcasting a message to other candidate sensors.
The selected backbone sensor estimates its position relative to the sink node using

Xb = Z6-COsOb (15)
Yb = Zb-sm0b. (16)

III.3 BACKBONE SWITCHING

One of the major advantages of our proposed backbone is that it provides an implicit
clustering mechanism where hexagons can be viewed as clusters and backbone sen-
sors are cluster heads. Although this can simplify many network management tasks
including data aggregation, leader election and routing, it usually results in uneven
energy consumption among sensors. In particular, it imposes higher tasking load on
backbone sensors much more than it does on other sensors which results in depleting

their energy much faster.
One way to overcome this problem is through changing the cluster head period-

ically in order to distribute the additional load on different sensors. In this section,
we propose backbone switching as a solution to the energy balancing problem.

The main idea behind backbone switching is to construct disjoint backbones and
to periodically switch between these backbones to balance their energy consumption.
Initially, using the approach described in Section III. 2, each sink constructs its first
backbone. For lack of a better term, we refer to this as the main backbone. As
described earlier, the main backbone is constructed by selecting sensors in six different
directions (i.e. f , ?, ?, ?, ? , and 1^f). Now, what happens if the sink node
rotated its positive ? direction by some angle ? such that O < ? < f? Theoretically,
and as shown in Figure 8, the rotation should result in selecting a completely different
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FIG. 8: Balancing energy consumption using backbone switching

set of sensors (i.e an alternative backbone) . While theoretically correct, this view may
not be entirely correct from a practical perspective. Recall that backbone sensors
are selected to be the closest sensors to the hexagon centers they represent. So it is
possible that even after rotation, the same sensor may still be the closest sensor to the
new hexagon center, hence it can be selected to be part of the alternative backbone.
Fortunately, our selection protocol only selects sensors that nominate themselves to
be part of the network backbone (by participating in the countdown process). Hence,
if sensors which are already part of another backbone do not nominate themselves,
they will not be selected as part of the new backbone giving chance to other sensors
to join the new backbone. This trick provides a simple solution to guarantee that
alternative backbones are disjoint.

After constructing the main backbone, each sink constructs a set of alternative
backbones using appropriately selected angles 0¿. Each backbone is associated with
an ID assigned by its sink node. At any point of time, only one backbone should
be active. It is the responsibility of the sink to periodically broadcast messages to
change the current active backbone giving a chance to sensors in other backbones to
save their energy.



30

r

No backbone sensors
in the shadow of the

void region

I3Q
\

Void Region
// s

FIG. 9: Unlocalized sensors in the shadow of void regions

III.4 RECOVERING FROM SENSOR VOIDS

In certain applications the sensors are deployed in rough environments in which there
exist some spots in the deployment area where sensors can not be deployed. We refer
to these spots as voids. Voids can be created naturally by physical obstacles (e.g.
lakes, streams, large rocks, deep holes, steep slopes, etc.). Voids can be created as
well when all the sensors within a certain spot expire due to energy depletion.

The main goal of this section is to discuss how our proposed construction protocol
would perform in the presence of such voids. Initially, we point out to the problems
that might arise due to the existence of these voids. After that, we show how the
proposed protocol can overcome these problems.

Figure 9 shows how voids can prevent the propagation of the backbone selection
process. If no backbone sensors can be selected in the void region and, consequently,
the selection process stops and no backbone sensors are selected in the shadow of the
void region. To get around this problem, we propose the "Even Neighbor Replace-
ment" rule and enhance it later by adding "Backward Selection" .
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111.4.1 Even-Neighbor Replacement - the Details

Recall that in our basic backbone selection rules, in any row, only sensors with odd
column coordinate are allowed to select backbone sensors in the next row. More-
over, as shown in Figure 10-(a), every even neighbor can receive selection messages
transmitted from its two immediate odd neighbors. If the initial selection rules failed
to select an odd backbone sensor due to the existence of a void, then all backbone
sensors belonging to the tree rooted at the missing sensor are pruned out. This kind
of behavior blocks the propagation of backbone selection in the shadow area behind
the void.

The idea behind the even neighbor replacement rule is to allow the immediate
even neighbor sensors to replace any missing odd sensors in order to continue the
selection chain. Figure 11, shows an example of how our construction protocol would
work when applying the even neighbor replacement rule. Although, the protocol can
recover from the void region, its recovery rate is relatively slow which leaves a large
region of the deployment area uncovered by backbone sensors. This motivates for
our next selection rule that we add to our protocol rules in order to expedite the rate
by which voids are recovered.

111.4.2 Backward Selection - the Details

The idea behind this rule is simple. If the selection of a backbone sensor was ini-
tiated by a sensor other than the one determined by the basic rules (i.e. through
even-neighbor replacement or another backward selection) , then the selection respon-
sibility is reversed and the newly selected sensor carries the responsibility of selecting
the odd sensor that was supposed to select it. Figure 12 shows how the rule is applied.

Initially, sensor S2i-i transmits a message calling for the closest sensor to the
center of hexagon H3 to announce itself. As expected, sensor S2i receives the mes-
sage transmitted by sensor S^-i, however, it does not receive a similar message from
sensor S2i+i. This motivates sensor S2i to apply the even neighbor replacement rule
and transmits a message calling for the closest sensor to the center of the hexagon
(H2) to announce itself. Sensor A2 receives the message and announces itself to
other sensors. Moreover, from the information embedded within the message that
triggered its selection, sensor A2 realizes that the message was transmitted by sensor
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S2Ì+1 and not sensor S2i as determined by the basic selection rules. This motivates
sensor A2 to apply backward selection rule and transmits a backward message calling
for the closest sensor to the center of the hexagon (H5) to announce itself. Sensor
S2i+i receives the message and announces itself to other sensors. Following the ba-
sic selection rules, sensor S2i+\ transmits a message calling for he closest sensor to
hexagon H\ to announce itself. Sensor A1 responds to this message announcing it-
self to other sensors. After fulfilling its forward selection obligations, and because it
was not selected according to basic forward selection rules, sensor S^+i continues its
backward selection toward the void region.

Figure 13, illustrates an example of how our proposed construction protocol works
when applying the even-neighbor replacement rule with backward selection. Obvi-
ously, the protocol can recover from void region efficiently.

III.5 MITIGATING NETWORK CHALLENGES

Sensor networks have their own distinguishing characteristics that set them apart
from other types of networks. The ad-hoc nature of deployment, location unaware-
ness, modest non-renewable energy budget, limited computing and communication
capabilities, along with the dynamically changing topology induced by the sleep-
awake cycles are only few examples of the typical challenges faced by WSN protocol
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designers. Instead of solving each of the aforementioned problems individually, fac-
ing the same common challenges with each problem, we show how our proposed
backbone can be very useful in collectively simplifying solutions for these problems.

Our network backbone provides some form of virtual infrastructure that allows
the sensors to acquire coarse-grain location awareness and promotes dynamic clus-
tering. Thus, on the one hand, the infrastructure provides the sensors with necessary
information that enables them to associate their sensory data with the geographic
location in which the data was measured and, on the other hand, it simplifies the
task of clustering the sensors in support of various network tasks. Once such an
infrastructure is in place, entire protocol suites can leverage the infrastructure, re-
sulting in ease of programming and energy savings. In particular, by tiling the area
around sinks using identical hexagons, the construction algorithm clusters sensors
based on their locations into hexagons (clusters). Backbone sensors represent clus-
ter heads and can play a crucial rule in data aggregation, workforce selection, task
management, leader election, duty cycle scheduling, and local synchronization.

In the following subsections, we show how our proposed backbone can simplify
sensor localization [37], local data aggregation, geographic routing, and clustering.
We also point to how using mobile sinks on top of our backbone can reduce the energy
holes growth rate within the network. We dedicate Chapter IV for backbone-based
task management and workforce selection. We start Chapter V by a rigorous analysis
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on awake sensor density and its relation to different scheduling schemes. After that,
we propose a backbone guided energy-aware scheduling scheme for balancing sensor
energy consumption.

III.5.1 Sensor Localization

As the exact position of a sink (Xsink, YSink) can be broadcast to all the sensors in a
disk D of interest, as an additional field in WAKEUP messages, we assume without
loss of generality that (Xsink,YSink) is known to all the sensors in D. Moreover, we
have shown earlier in Subsection III.2. 3 that the sensors can estimate their position
relative to the sink through equations (7), (8), (15), and (16). Using the available
information, each sensor can estimate its absolute position (X1Y) as:

(Xsink + d ¦ cos ? for case 1
Xsink + Zb ¦ cos O6 for case 2

{Yaink + d ¦ sin ? for case 1
Ysink + Zb ¦ sin 0b for case 2

As expected and confirmed by simulation in Section III. 6, the localization ac-
curacy decreases almost linearly with the distance between a sensor and the sink.
When the sinks are mobile or in the case of a relatively large number of sinks, we can
use these sinks to enhance the achieved level of accuracy as follows: the sensors that
reside close to one of the network sinks will typically belong to a hexagon that has
a small row coordinate, hence these sensors should be localized accurately. On the
other hand, sensors that reside far from the network sinks and close to the bound-
aries of the localization regions of different sinks will typically receive localization
messages triggered by each of these sinks. From the received messages, boundary
sensors can localize themselves relative to each of these sinks. These sensors should
estimate their final position as the weighted average of the positions estimated from
each sink individually. The weight of each position is evaluated based on the row co-
ordinate of the hexagon that contains the sensor relative to the sink used to evaluate
this position. The positions associated with small row coordinates are expected to
be more accurate, hence they are assigned higher weights than positions associated
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with large row coordinates. Mathematically, this can be expressed as follows,

1 r<

? = Zf=I^i -Xi
Ef=I Wi

? = Zf=I Wj ¦ Yj
Ef=! Wi

where

• 5 is the number of sink nodes used to localize the sensor,

• (Xi, Yi) is the position of the sensor as estimated through sink i,
• Ris the maximum number of rows allowed within the disk centered at the sink,

• Ti is the row coordinate of the hexagon that contains the sensor when localized
through the sink i.

111.5.2 Clustering and Leader Election

Our backbone implicitly clusters the sensors based on their geographic location. Each
hexagon represents a cluster and the backbone sensor around the center of each
hexagon is the cluster head which can be always elected as the leader to coordinate
between sensors in its hexagon for any centralized protocol. For instance, backbone
sensors can play an important rule in workforce selection and task management
for all sensing tasks issued in the hexagons they represent. More details about this
approach are presented in Chapter IV. Furthermore, backbone sensors can be treated
as elected coordinators for any centralized synchronization or scheduling protocols
for sensors within their hexagons. This is discussed in more details in Chapter V. We
note here that when it comes to selecting the backbone sensor in a given hexagon,
nothing prevents us from extending the selection protocol in the obvious way to select
a committee of several possible backbone sensors that may collectively act as cluster
leaders or, indeed, may take turns serving any assigned tasks.

111.5. 3 Geographic Routing

Given the coordinates of the hexagon that contains the source sensor in the ternary
system defined by our backbone protocol, it is straightforward to find a path from
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the source hexagon to the sink by hopping through backbone sensors representing
the hexagons in between (see Figure 14). The details behind the selection of the
route through which data flows toward the sink are presented in the next subsection.
Here, it is worthwhile to mention that by controlling the mobility of sink nodes, we
can tremendously reduce the growth rate of energy holes within the network.

III.5.4 Data Aggregation:

Non-backbone sensors within any hexagon can report their sensory data to the back-
bone sensor in their hexagon which can locally aggregate the data before forwarding
the aggregated result to the next backbone toward the sink node.

Using backbone hexagons, sensory data aggregation and routing aggregated re-
sults toward sink nodes can be straightforward. In particular, when a sensor par-
ticipates in any task, it transmits its results to the nearest backbone sensor where
sensory data can be locally aggregated. After that, backbone sensors in row r for-
ward their aggregated results to backbone sensors in row r — 1 and so on toward
the sink node. Backbone sensors in row r use a reversed version of the same rules
they followed during backbone selection in order to determine which backbone sen-
sor in row r — 1 to forward their data to. Figure 14 illustrates an example of data
aggregation and routing toward the sink node.

The reader should note that our backbone does not impose any restrictions on
the order or the type of local data aggregation inside the hexagons. The aggregation
process runs completely under the supervision of the backbone sensor within the
hexagon. Furthermore, routing aggregated results toward the sink node by reversely
following the path determined during backbone selection automatically provides a
workaround for routing problems that might arise due to the existence of energy
holes or void regions.

III.6 SIMULATION RESULTS

In order to evaluate the performance of our proposed backbone, we have built a
simulator that implements our backbone construction protocol. In our simulation, we
have run several experiments using different network parameters and configurations.
In general, we assumed a rectangular deployment area where a number of sinks were
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placed uniformly across the deployment area. We used a standard uniform pseudo-
random generator to distribute sensors with required density in the deployment area.

We estimated the backbone selection error as the average Euclidean distance
between the position of the selected sensor and the position of the center of the
hexagon it represents. Mathematically,

I nError = -^ y/{xSi ~ ^k)2 + (ySi ~ VU2,n ¿=i
where (xSi,ySi) is the position of backbone sensor representing hexagon i — (a, s, r, c)
and (XhiiVhi) is tne position of center of the hexagon i.

To verify the correctness of our simulation implementation, we initially run our
simulation assuming exact distance and angle measurements. Basically, in the ab-
sence of distance and angle measurement errors, there should be no errors in sensor
localization (except for minor truncation errors), also the closest sensor to the cen-
ter of each hexagon should be always selected to be the backbone representative of
this hexagon (we intentionally put sensors at these positions and verified that they
are appropriately selected). Figure 15 shows a plot of average localization error for
different rows and verifies the correctness of our implementation.
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FIG. 15: Average localization error of backbone sensors vs. row number for different
network densities using a single sink in the absence of measurements errors

After verifying the correctness of our implementation, we conducted several ex-
periments to test the performance of our proposed backbone in the existence of errors
in distance estimations and angle measurements. To account for errors in distance
measurements due to the irregularity of signal propagation, we represented estimated
distance between the transmitter and the receiver as a random variable that follows
the Gaussian distribution with mean equals the exact distance and standard devia-
tion equals 0.1 of the maximum transmission range (around 3m when tx = 30m). In
a similar fashion, we represented measured angle between a sensor and the sink node
as a Gaussian random variable with mean equals the exact angle and a standard
deviation equals 3 radian degrees.

In our first experiment, we were interested to know what the actual hexagons
produced by our protocol look like. Figure 16 shows the actual hexagons produced
by our simulation when the deployment area was set to a (200m ? 200m) square, a
single sink node is placed at (0,0), network density was set to ? = 0.3 sensors/m2,
and sensor maximum transmission range tx = 30m. Although the boundaries of the
hexagons are completely distorted as they do not look like hexagons, we are still able
to distinguish the spots they occupy. For the same experiment, Figure 17 shows the
positions of hexagon centers and the positions of the corresponding backbone sensors
representing them.
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FIG. 16: Actual hexagons produced by simulation

After that, we conducted several experiments to measure the impact of dis-
tance/angle measurement errors on the localization accuracy. Figure 18-(a) shows
the average localization error under different network densities (0.05, 0.10, 0.15,
and 0.20) assuming only distance measurement errors. The figure shows that the
backbone selection error increases almost linearly with the row number. When we
repeated the same experiment under the same simulation parameters in the existence
of angle measurement errors. Figure 18-(b) shows that the average localization error
still increases linearly with the row number, however the slope of the curve nearly
doubles its value in the distance-noise case. This can be explained by the fact that
an angle measurement error of ?T for a sensor that is away from the sink node by
distance d, will result in a selection error proportional to d ¦ ?T. So for the same
angle error, localization error increases as the value of d increases (i.e the row num-
ber increases). We repeated the same experiment a third time, however this time we
considered both distance and angle measurement errors. As expected, Figure 18-(c)
shows a similar linear relationship but with a larger slope.

We also conducted another experiment to compare the localization accuracy
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achieved when using our backbone against other localization techniques known in
the literature. In particular, we compare the performance of our protocol to other
RSSI based localization techniques like weighted centroid and APIT. *. We also
compare our technique to two range-free protocols: the centroid and DV-HOP.

Figure 19 shows a quantitative comparison between average localization error for
different localization protocols. The figure confirms that backbone-based localization
has a better accuracy compared to other protocols.

1APIT uses RSSI to approximate the PIT test
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CHAPTER IV

BACKBONE-BASED TASK MANAGEMENT

Sensors can perform their sensing tasks in two different modes: Proactive Mode
and Reactive Mode. In the proactive mode, sensors periodically report their sen-
sory data to one of the sink nodes that are distributed across the deployment area.
The periodic reporting behavior of sensors makes the proactive mode more appropri-
ate for surveillance and monitoring applications. On the other hand, in the reactive
mode, sensors provide information only in response to queries or tasks assigned to
them by task issuing entities (TIEs) (e.g sink nodes). This makes the reactive mode
more appropriate for query based applications (e.g elderly aid navigation systems).

In networks adopting the reactive mode, the first step to perform a task is to
recruit a workforce of sensors in the area of interest, these sensors will be responsible
for the actual execution of the task. The workforce size is usually determined ac-
cording to QoS requirements expressed in terms of the minimum number of sensors
participating in each task. Although, some network designers may decide to skip
workforce selection by allowing all the sensors in the task neighborhood to partici-
pate in the task execution, such decision would be completely inefficient from energy
point of view especially for tasks whose QoS requirements can be satisfied by only a
few number of sensors. Due to the modest and non-renewable energy budget avail-
able to sensors, it is highly not recommended to skip workforce selection in reactive
sensor network applications. In general, task assignment and workforce selection can
be challenging and handling it improperly may eventually result in many problems
as shown in the following example.

Assume that sensors were deployed as shown in Figure 20-(a). Tasks T1 and T2
are issued in the indicated locations, each task is assumed to consume one unit of
energy of each recruited sensor and requires the cooperation of at least three sensors
(in order to increase the reliability of the readings) . Furthermore, we assume that
the sensing range for sensors is R, so sensors within range R from the task location
are allowed to participate in the task. Other sensors can not participate because the
monitored phenomenon is outside their sensing range. The chart in Figure 20- (b)
shows the remaining energy of sensors Si through S9. For illustration purposes, we
assume that sensors S1 through S9 will be awake during sensor recruiting for tasks
T1 and T2.
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FIG. 20: An example of improper task assignment

Now, assume that the recruiting protocol for task T1 selected sensors 54, S5, and
S6- Although the recruited sensors still have enough energy to complete task T1, the
energy of sensors S4 and S5 will be totally depleted after the task completion, hence
they will not be able to participate in any upcoming task. Moreover, there is no way
to recruit three sensors for task T2- On the other hand, if the recruiting protocol
for task T1 had selected sensors S1, S2, and S3, then sensors S4 and S5 would have
saved their energy to participate in task T2. A more clever protocol would not recruit
sensors S4 and S5 together for task T2, instead it would recruit sensors SV, S9 and
either S4 or S5. Should there be a third task T3 at the same location of task T2,
enough sensors will still be available to execute the task.

In spite of its simplicity, the previous example shows that task assignment can be
very tricky and doing it improperly can cause many problems starting from reducing
network density in different areas of the network and ending with the creation of
energy holes that can eventually partition the network into disconnected islands.
This in turn has its impact on network reliability and durability through increasing
task failure rate and being unable to satisfy QoS requirements. The example also
shows the importance of taking the difference in sensor energy into consideration
while selecting the required workforce for any task.

Next, we propose two different techniques that can be used throughout our pro-
posed backbone to efficiently recruit sensors for different network tasks. Both tech-
niques consider sensor remaining energy in the workforce selection process giving
priority to sensors with high energy over other sensors. While the first technique is

S8R
S,

ß
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centralized [38, 39, 40, 41] and depends on backbone sensors to coordinate workforce
selection, the second technique is fully distributed and does not require a central
entity for coordination [42, 43]. In the following sections, we present the details of
both techniques highlighting the merits and the demerits of each of them.

IV. 1 CENTRALIZED TASK MANAGEMENT

In this approach, workforce selection occurs in a centralized fashion coordinated by
the nearest backbone sensor to the task position. We refer to this sensor as "Task
Coordinator" . Tasks are issued to sensors by TIEs (i.e sink nodes) according to the
following tasking model.

IV. 1.1 Centralized Tasking Model

Each sensing task is associated with a certain position that is chosen to be at the
center of the area of interest. Using the localization protocol described earlier in
subsection III. 5.1, sensors should be aware of their positions. Based on the position
of the task center, sensor position, sensor remaining energy, and sensing range, each
sensor can determine whether it can participate in a given task or not. We assume
that each task requires the cooperation of a workforce of w sensors and consumes
one unit of energy of each participating sensor.

The sensors have a maximum transmission range denoted by tx , and a maximum
sensing range denoted by R. The communication and sensing ranges of sensors are
governed by the inequality (tx > 2R). This inequality guarantees that whenever two
sensors are within the same sensing range (i.e. they can cooperate in the same task),
they will be able to communicate with each other during the workforce selection
process.

If the distance between the centers of two tasks is less than 2(tx+R), then they are
not allowed to run concurrently to avoid interference between messages transmitted
during workforce selection (see Figure 21). This constraint can be partially removed
if the TIEs can communicate between themselves through a separate channel. If
this communication channel is available and if the distances between the centers of
the tasks to be performed concurrently are relatively small, then these tasks can be
combined into one single task. The QoS requirements of the combined task is chosen
to be the maximum of the QoS requirements of the comprising subtasks. Only one
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FIG. 22: Tasking model for the centralized approach

TIE should be responsible for running the combined task. Once the TIE gets the
aggregated result, it can forward the result directly to other TIEs through their
separate communication channel.

Under the assumptions described above. TIEs issue tasks for sensors and later
they receive the aggregated results for taking decisions. Figure 22 shows the dif-
ferent stages of running a task under the centralized model. A task starts, when
the TIE sends a sequence of Call To Work (CTW) messages to get the attention of
a sufficiently large number of sensors that we will refer to as "candidate sensors" .
After that, a contention-based workforce selection mechanism is used to recruit re-
quired workforce based on sensors remaining energy. The workforce selection process



48

involves one or more bidding rounds to be coordinated by the nearest backbone sen-
sor. After collecting the required workforce, task execution starts immediately by the
recruited sensors. Task execution time might vary based on the type of the sensing
task and the sensor itself. When the sensors complete the execution of their tasks,
they start sending their sensory data back to the nearest backbone sensor in the same
order they joined the workforce. In the next few sections, we provide the technical
details of each of these steps.

IV. 1.2 CTW Messages

Recall that in our tasking model, we assume that the TIE sends a sequence of k
CTW messages to attract the attention of a sufficient number of sensors for the next
task. An important parameter that the TIE has to evaluate is the parameter k.

Assuming that the network density is ? sensors/t?2, the sensing area of any task
is pR2, and so the expected number of sensors in the sensing area of a given task
is given by N = -???2. Furthermore, assuming that the probability that a sensor is
awake to receive a CTW message is p, it is easy to see that the expected number
of awake sensors collected by the first CTW message is Np. On the second CTW
message, the probability that a sensor is awake remains p, however the number of
remaining sensors becomes (N-Np), hence the expected number of sensors collected
by the second CTW message is

[N-Np)P= {I -p)Np

Similarly, on the third CTW message, the expected number of collected sensors is

(N-Np- (1 -p)Np)p = (l-p)2Np

An easy inductive argument shows that on the kth CTW message, the expected
number of collected sensors is given by

(l-pf-'Np

Consequently, the expected value of the total number of collected sensors at the end
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of k CTW messages is

Collected Sensors = ^{l-pYNp
k-l

¿=0

fe-1

= ^V J](I-P)*
¿=o

2 (l-jy)fc-l

= pnR2-[i-(l-p)k] (17)

The TIE can use equation (17) to estimate k, the number of CTW messages needed
to attract the attention of c candidate sensors as follows

c > pnR2- [l-{l-p)k]
[l-p)k > 1

k >

k

?p?2
log(l fmR2 >

log(l-jp)
log(l ?pE?

log(l-p) (18)

At this point it is important to observe that c does not represent the number of
sensors required for the task; instead, c represents the number of candidate sensors
from which the required workforce w is to be selected. Hence, if the TIE wants to
collect a workforce of w sensors for the next task, it substitutes c in equation (18) by
c = f(w) > w (the derivation of the function f(w) is presented later). This way the
protocol probabilistically attracts the attention of more than w candidate sensors.
From these sensors, only w sensors will be selected based on the difference in sensor
remaining energy.

Next, we show how the TIE estimates p, the probability that a sensor is awake.
Assume that a sensor during its whole life and before its energy is totally depleted
goes through m sleep/awake duty cycles. We assume that in each cycle, a sensor
sleeps for a random amount of time uniformly distributed in the range [TS,TS] and
stays awake for a random amount of time uniformly distributed in the range [T¡, TL).
If to, the total number of cycles, is sufficiently large, then the expected total awake
time, the expected total sleeping time, and the expected total lifetime of a sensor
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can be expressed as

Awake Time = (19)

ci t· m(Ts + Ts) (9n.Sleep Time — (/UJ

T.f _ * m(Tt + TL) , m{Ts + Ts)Lite 1 ime = 1

Tn(T1 + TL + Ts + Ts)
2

From (19) and (21), we can evaluate ? by writing

(21)

Tn(T1+Tj,) rp . rp— 2 _ 1I + 1l C22ÌP - Tu(T1+Tl+T3+Ts) - Tl + TL + Ts + TS

Interestingly, the expression in (22) shows that the probability that a sensor is
awake is independent of time.

IV. 1.3 Workforce Selection

Workforce selection starts immediately after the last CTW message through one
or more bidding rounds. A bidding round is a contention-based mechanism used
to select a subset of sensors from a larger set based on a certain criterion. Each
bidding round has a number of bidding slots which is explicitly specified in CTW
messages or within bidding result messages of the previous rounds. Candidate sensors
willing to participate in a task show their interest by bidding randomly in one of the
bidding slots. The task coordinator (the nearest backbone sensor to the task center)
is responsible for coordinating the bidding process (i.e. it announces the winning
bidders at the end of each round, determines whether there is a need for another
bidding round and announces the number of bidding slots in the next bidding round).
Only single-bidder slots are considered winning slots. Once the task coordinator
announces the winning slots in a round, the winning bidders (sensors which bid on
any of the winning slots) immediately join the workforce. If the required workforce is
not fully recruited, bidding continues for another round. In the new bidding round,
not only losers in the previous round are eligible to bid but also additional sensors
who received the bidding results message but were asleep during the CTW stage can
place their bids. If the bidding extends beyond the maximum number of bidding
rounds allowed, there are two options available: (1) cancel the task, (2) execute the
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task with the currently recruited workforce. Either way the TIE must be informed
that the required level of Qos will not be satisfied.

Immediately after the last CTW message (for the first bidding round) or the
bidding result message (for the following bidding rounds), the time line is divided
into a number of bidding slots; each bidder selects one of these slots at random and
transmits a short frame that contains the sensor current energy level and the slot
number (to avoid any confusion due to the lack of accurate synchronization between
sensors).

Candidate sensors participate in bidding with probabilities that are proportional
to the difference between their current energy and the maximum energy among can-
didate sensors Emax. TIEs send their estimate of the value of Emax in the neighbor-
hood of the required task within CTW messages. In the first bidding round of the
first task within a certain area, the TIE does not know Emax, so candidate sensors
participate in bidding with probabilities \ (we justify for this choice later). For sub-
sequent rounds, the task coordinator can estimate Emax from the bids received so
far and transmits the estimated value of Emax within the bidding results message.
This value is also transmitted with the aggregated result to the TIE which uses the
received values to update an internal two dimensional matrix that keeps track of the
current estimate of Emax in different regions of the network.

Each bidding slot can have zero, one, or multiple bids. Slots with no bids are
useless while those with multiple bidders result in garbled messages and also are
useless and ignored. Only messages in single-bidder slots can be received correctly.
At the end of each bidding round, the task coordinator calculates the number of
single-bidder slots G. If G is greater than the required workforce w, then the task
coordinator selects required workforce by adding sensors based on their remaining
energy starting by those with higher energy first. If G is less than w, then it selects all
the winning sensors and announces for another bidding round to collect the remaining
workforce.

Each bidding result message contains a vector ? that has s elements corresponding
to the s bidding slots in the preceding bidding round. For bidding slot i, the corre-
sponding element v[i] is set to 0 to indicate that the bidding sensor was not selected
at this round, otherwise v[i] is set to a non zero temporary ID to indicate that the
bidding sensor was selected by the task coordinator to join the workforce. A sensor
starts task execution immediately after it joins the workforce. When sensors finish
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the execution of the required task and based on their temporary IDs they sequen-
tially send their results to the task coordinator for local data aggregation. Finally,
the task coordinator sends the aggregated results to the TIE for further processing
if necessary.

Next, we show how the number of bidding slots in any bidding round is estimated.
Assuming that for a general bidding round we have ? bidders and s slots, we calculate
the expected number of single-bidder slots in this round. We assume that a bidder
can bid on any slot with equal probability, more precisely j, and since we have ?
bidders that bid independently of each other, the probability that a specific slot has
only one bidder equals n(|)(l - ^)"-1- Since we have s slots, the expected number
of single-bidder slots, G, can be expressed as

/ lx™_1E[G] = ? Í 1 - -
Recall that, in our workforce selection only single-bidder slots are counted. Hence,
maximizing the number of these slots will definitely reduce the number of bidding
rounds needed. Since ? is a discrete variable, we define the continuous variable ?
such that ? = ? for all the values of n. Now, we can differentiate E[G] with respect
to ? as follows.

E[G] = X^l-1-
dE[G] ? G

x-l

dx

x-l ?

1 + ? ¦ In
1

s

The maximum value of E[G] occurs when its first derivative equals 0.
x-l3E[G]

dx
1 -

1
1 + ? ¦ In 1 - 0

In ( 1 - -

1 = In 1

1-

(e) ? (23)

Obviously, the approximation in equation (23) is valid for large values of s. More-
over, equation (23) shows that the maximum value of E[G] occurs when the number



53

of bidders ? is equal to the number of bidding slots s and that the maximum number
of single-bidder slots expected is given by

E[G]max = s-(l- Ì)«"1
For a task that requires a workforce of size w, the required number of single-

bidder slots is also w. Based on this, we can determine the number of slots to use as
follows,

G = w = S[I-1
s ¦ e

s

-1

î-1

W

e ¦ w «
s2

s-1
s2 — e ¦ vj ¦ s + e ¦ w ~ 0

« · ™ (l + >/ï-aO
2

(24)

For w > 3, (1 + a/1 - -^) « 2, hence equation (24) can be simplified to
s w e · w (25)

Next, we turn our attention to the relation between n, the number of bidders, and
c, the number of candidate sensors. Previously, we mentioned that each candidate
sensor participates in bidding with probability that is proportional to the difference
between its energy (i.e E3) and the maximum energy among all candidate sensors
(i.e Ernax). In particular, a candidate sensor with energy level E3 should bid with
probability . , P *—¡?-. Assuming that the energy of candidate sensors is uniformly
distributed across I consecutive levels, the expected number of bidders can be related
to the number of candidate sensors as follows,

?-? i-i ? c
E[n] = Y1Pi-Ci = S ?— -y

¿=0 i=0

1 1 1
1+2 + 3 + ···?

Solving for c, yields

c

ì
C-H1 = c- (In(Q + 7)

I I

E[n] -I ?- 1
In(Z) + 7 In(O + 7 (26)
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where 7 « 0.57721 is Euler 's constant. The TIE uses equation (26) to estimate the
required number of candidate sensors it has to collect through CTW messages in order
to select the workforce for the next task. The parameter I in equation (26) reflects
the average width of sensor energy spectrum at different points in network lifetime.
Since the task management protocol is designed to balance energy expenditure among
sensors by minimizing variations in their energy, it is expected that the value of I
will remain small most of the time. Simulation results verified this expectation
and showed that I did not exceed 6 levels in all our experiments. More details are
presented in Section IV.4.

Recall that in Subsection IV. 1.3, in the presence of an unknown value for Emax,
the participation probability of sensors was taken to be \. Equation (26) can be
used to justify our choice for this value as follows. Equation (26) expresses the ratio
between the number of bidders to the number of candidate sensors as ln( /+7 . The
average value of this ratio for small values of I (i.e < 6) is 0.515 « 0.5. Hence, at the
very early stage of the network lifetime when the differences between sensor energy
levels are minor (i.e I is small) and when Emax is unknown, if each of the candidate
sensors participates in bidding with probability of 0.5, then the expected number of
bidders will be close to ? justifying our choice.

IV.2 DISTRIBUTED TASK ASSIGNMENT

A major problem with the centralized approach described in Section IV. 1 is the
excessive load it imposes on backbone sensors for coordinating workforce selection
and data aggregation. Several techniques can be used to overcome this problem. For
instance, we can use "Backbone Switching" , in which several alternative backbones
are constructed instead of having only a single backbone. Switching periodically
between alternative backbones distributes the load on network sensors and gives
exhausted sensors a chance to rest. Another way to solve this problem is to use
" Task Management Delegation" , in which the coordination needed for a specific task
is treated like a task by itself and is delegated to one of the network sensors that is
chosen to be with relatively high energy.

In addition to the two previous techniques, we propose a distributed version of our
workforce selection protocol. In this version, we adopt the tasking model depicted in
Figure 23.

The model is similar to the tasking model we used earlier in the centralized case
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FIG. 23: Tasking model for the distributed protocol

with some differences in the task assignment stage and the way data is aggregated.
In the distributed tasking model, task assignment consists of two phases. In the first
phase, candidate sensors collected in the CTW stage run a distributed protocol to
determine the maximum energy among themselves (see Subsection IV. 2.1). In the
second phase, each sensor decides whether or not to participate in the current task
based on: (1) the difference between its current energy and the maximum energy
determined in the first phase; (2) its distance to the position of the task center (see
Subsection IV.2.2).

Our previous assumptions about the capabilities of sensors still hold. In the
following subsections, we present the details of the different phases of the task as-
signment protocol.

IV.2.1 Phase 1: Estimating the Maximum Energy

The main goal of this phase is to run a fully distributed protocol in order to determine
Emax, the maximum energy among collected candidate sensors. Assume that sensor
energy E8 can be quantized into 2n levels (i.e. E3 can be encoded in a string of ?
bits). The idea is to let candidate sensors transmit the strings that represent their
energy levels bit by bit in a sequence of ? short packets (n iterations) . The time line
is divided into ? slots, and sensors start the encoding process immediately after the
last CTW message 1. Sensors start their transmission from the most significant bit
to the least significant bit as follows: a value of O is not transmitted while a value

1We assume that CTW messages include information about the number of remaining CTW
messages.
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of 1 is transmitted. Sensors that pick up the values transmitted use the following
disambiguation scheme:

• No packets received: 0 is recorded;

• A single packet received: 1 is recorded;

• Two or more packets received or a collision detected: 1 is recorded.

A sensor drops out if the binary representation of its energy has a 0 in its kth most
significant bit, and it detected a collision or received one or more packets in the kth
iteration (time slot). At the end, each sensor in the sensing area stores the maximum
energy among all candidate sensors in the sensing area. Note also that there is no
loss of information in the process of estimating the maximum.

The reader might argue that we cannot trust the synchronization achieved using
the last CTW message because packets received by different sensors suffer from dif-
ferent propagation and processing delays. Although this seems to be true, we still
can argue that the achieved level of synchronization is more than sufficient for our
purpose especially when there is no actual payload (data) in the packets transmitted.
Detecting a collision is equivalent in its interpretation to receiving a packet. Hence,
if the iteration slot length is T, and the transmission time to send any of these small
packets is Tt, the only way in which this protocol fails is when a sensor is delayed
for a period longer than T — Tt. In this case its string is transmitted and interpreted
shifted by one or more bits. However, since the slot time T can be chosen arbitrarily,
we can choose T such that the probability that a sensor will be delayed longer than
T — Tt is very small, especially when the sensors are within the same sensing area.

Next, we show an example of how this protocol works. Referring to Figure 24,
we assume a scenario where there are 5 sensors (i.e Si, S2, S3, S4 and S5) that lie
within the sensing area of a specific task. We assume that the respective energy
levels of these sensors are 11101, 10111, 11011, 01111 and 11100. To determine the
maximum, we need 5 iterations. In the first iteration, only sensors Si, S2, S3 and
S5 transmit. A collision is recorded and all the sensors set the most significant bit
of the perceived maximum to 1. Moreover, sensor S4 realizes it should drop out
since its most significant bit is a 0. In the second iteration, only sensors Si, S3,
and S5 transmit. Again a collision is recorded, and all the sensors set the second
most significant bit to 1. Sensor S2 drops out. In the third iteration, only sensors
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FIG. 24: Estimation of the maximum energy among candidate sensors

Si and S5 transmit. All the sensors set the third most significant bit to 0. Sensor
S3 remains inactive for the remaining iterations. In the fourth iteration, there is
no transmissions, so 0 is recorded. Finally, in the fifth iteration, only sensor S1
transmits. Sensors set the least significant bit of the perceived maximum to 1 and
reach the consensus that the maximum energy is 11101.

It is worthwhile to mention that when sensors know the maximum energy within
each sensing area, they can benefit from this in many different ways. For example,
this knowledge allows each sensor to adjust its duty cycle (the ratio between its
sleep and awake time) based on the difference between its remaining energy E8 and
the maximum energy in its sensing area Emax. As a result, sensors with relatively
low energy [E1 < Emax) can sleep for longer periods than sensors with relatively
high-energy. More details about this feature is presented in Chapter V.

IV.2.2 Phase 2: To Participate or Not to Participate

After evaluating the maximum energy in the sensing area, each sensor has to decide
whether or not it is going to participate in the task at hand. Each sensor makes
this decision based on the difference between its energy Es and the maximum energy
Emax determined in the previous phase. Since our protocol is fully distributed and
there is no central node to coordinate sensor participation, sensor decisions have to be
taken independently of each other. Unfortunately, under these conditions we cannot
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guarantee that the number of participating sensors matches the required workforce.
The best we can do while keeping our protocol distributed is to keep the actual
number of recruited sensors as close as possible to the required workforce.

To achieve this goal we divide the task sensing region into k disjoint subregions
of equal size using concentric circles of radii i\ < r2 < · · · < Tk — R- Based on the
task center position and its own position, each sensor can determine its subregion (see
Figure 25) . Participation decisions are taken in decision rounds that run immediately
after estimating the maximum energy in the sensing area. Each decision round is
associated with an energy level that determines the set of sensors that can join the
workforce.

Specifically, in the first decision round, only sensors with energy equals to Emax
are allowed to transmit, in the second decision round, only sensors with energy
equals to Ernax — 1 are allowed to transmit and so on. The packets transmitted by
sensors are very short and contain no payload, the payload is implicitly encoded in
the transmission itself. Each decision round has k time slots corresponding to the
k subregions described above. In slot i in decision round j, only sensors that are in
subregion * with energy level equals j are allowed to transmit.
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Each sensor initializes an internal counter to 0 and waits for the decision round

corresponding to its energy and the time slot corresponding to its subregion. It is
possible that the protocol collects the required workforce and terminates before the
decision round and slot of a sensor comes. The idea of the protocol is to recruit
sensors one by one based on their energy and using subregions to reduce the number
of sensors that are being added in each step (only one sensor at each step if possible).
The sensors that pick up the packets transmitted use the following scheme to update
their counter:

• No packets received: no action is taken;

• A clear packet received: increment counter by 1;

• A collision recorded: increment counter by 2.

The protocol terminates when the internal counter of a sensor is greater than or
equals the required workforce. Only sensors that had the chance to transmit during
the participation phase join the workforce. To guarantee that the protocol terminates
in a finite number of decision rounds, there should be a maximum number of decision
rounds that the protocol allows. If the last decision round is reached, then all the
sensors that are in the sensing area and have not already transmitted, transmit in
their corresponding slot irrespective of their energy level.

Immediately after joining the workforce, sensors start the execution of their as-
signed tasks. When sensors complete the execution of their tasks, they send their
results to the nearest backbone sensor in the same order they joined the workforce.
After the nearest backbone sensor collects the data from all the sensors, it aggregates
the collected results and forwards their aggregate to the TIE for further processing.
Because more than one sensor can join the workforce at the same time, collisions
between sensor transmissions during data aggregation might occur (i.e sensors will
have the same transmission turn during data aggregation). In order to coordinate
between sensor transmissions during data aggregation, we suggest that when their
transmission turn comes, each of the competing sensors delays its transmission by a
random amount of time uniformly distributed in the range [0, Max]. When its delay
timer expires, a sensor transmits its result immediately. If the message is transmitted
successfully, other sensors reset their delay timers to another random value and wait
for their new timers to expire in order to be able to transmit. When a collision is
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detected, only colliding sensors reset their delay timers, non-colliding sensors should
not reset their timers. If Max time units pass since the last successful transmission,
then this indicates that all competing sensors have successfully transmitted their
data to the backbone sensor. At this point of time, sensors in the next turn should
start to send their data.

The radii that divide the sensing area into subregions are determined in such a
way that the number of sensors in these subregions are as even as possible. The best
way to do this under uniform distribution is to choose these radii such that the areas
of the subregions are equal. Mathematically, this can be expressed as follows,

T-(Tf-Tf-1) = Tr-(Ti1-Ti2)
r2 _ o,„22Ti1 - ri2 (27)

substituting in (27) for ri_1,ri_2

ri = 3ri2-2rÌ3
rì = 4r?_3-3r?_4

A simple inductive argument shows that

r? - i ¦ r\ - (i - l)r02
r¿ = Vï-ri (28)

If the entire sensing area is divided into k subregions of equal area (i.e. ^f-), then
R = Tk = Vie- ri

* - Tk (29)
Finally, substituting the value of t? from equation (29) into equation (28) yields

r,= ^Ä (30)
IV.2. 3 Average Over-Recruited Workforce

After determining the radii of the subregions, we estimate the average number of
over-recruited workforce by evaluating the probabilistic distribution of the number
of sensors in each subregion and show how it changes with the number of subregions
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fe. Assuming a uniform distribution of sensors in the sensing area, we can map the
problem to the classical "balls and bins" problem in which ? balls are distributed
uniformly at random into fe bins. In our scenario, we have ? sensors that are deployed
randomly in fe subregions. The reader should note that here ? refers to the number of
sensors in the sensing area with energy level that matches the energy level determined
by the decision round. Since sensors in the sensing area may have different energy
levels, ? only represents a fraction of the total number of candidate nodes collected
in the sensing area.

The event that a given sensor will be deployed in a particular subregion is a
Bernoulli trial with probability of success equal to the ratio between the region area
to the whole sensing area (i.e. \ since the subregion areas are equal). Thus, the
random variable X1 which represents the number of sensors in subregion i follows a
Binomial distribution B(n,^).

™ -»- C)G)Wr
We are interested in evaluating the probability that more than two sensors fall in
the same region because this may result in recruiting more sensors than the required
size of the workforce. The sought probability is

Pr[{Xi>2}\ = l-Pr[{X%<2})

—toar(^r -
To simplify our notation we define a¿(n, fe) as follows

«*»- SC)G)W
= htO -»"-'J=O XJ/

(X1(Tt, k) = ¿ [(fe -1)" + «(fe -I)""1] (32)
«2(n,fc) = fc^((fc-i)2+n(fe-i)+^) (33)

By substituting (33) in (31) we obtain

Pr[{X¿>2}] = l-«2(n,fe) (34)
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We are no ready to evaluate the expected size of the extra workforce recruited for a
given task. For this purpose, we define the random variable Y1 that represents the
number of extra workforce in subregion i and also define Y = S?=1 Yi, the size of
extra workforce in the whole sensing area. Easy manipulations show that

3=0 3=0
n-2 / „, \ / ? \ J+2 / . -? \ n-0'+2)

^J \j + V Kk3 = 1 W / X

lY+z fk-1

'-3 V
t?-I

S

n\ /lV fk-lsn~l
J \k1=3

1 /„. 1\ Z1N'-! /jfe_1\("-1)-('-1)
k^2\l-lj \kj V k
^E n\ ? l\l (k

l=3 JJ \kj V fc
7?

= -[l-ai(n-l,fc)]-2[l-a2(n,fc)]
By the linearity of expectation

k

E[Y] = Y1EW = It-E[YiI
- n[l-a1{n-l,k)}-2k[l-a2(n,k)} (35)

Figure (26) gives us more insight about how E[Y] changes with changes in k and
n. Obviously, as the number of subregions k increases the expected number of extra
workforce recruited decreases to match the required workforce. It is also important to
note that E[Y] represents the expected number of extra workforce recruited assuming
that the protocol continues to run in all the slots of the decision round. However
this is not the case for many tasks in which the protocol terminates in the first few
slots of the first decision round. So in fact E[Y] is more like an upper bound on the
extra workforce recruited.

IV.3 DATA AGGREGATION

As we mentioned earlier, the excessive load imposed on backbone sensors for coordi-
nating workforce selection and data aggregation may result in depleting their energy
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FIG. 26: E[Y] vs. k/n

at a very high rate. In this section, we propose a set of distributed data aggregation
techniques that can be used to aggregate sensory data collected by recruited sensors.
In general, it is very difficult to devise efficient distributed protocols to evaluate a
generic aggregate function. Fortunately, for certain functions like the MAX, MIN,
and the Logical OR this can be done.

In section IV. 2.1, we showed how the maximum can be obtained. By a simple
trick we can use a similar approach to evaluate the minimum. For instance if Xi is the
digitized reading of a sensor, instead of transmitting Xi directly, each sensor should
transmit V1 = N-Xi, where N is a constant which is greater than the maximum
possible value of the sensor reading X¿. After the last iteration, Vmax, the maximum
value transmitted should be known to all the sensors. Each sensor can evaluate the
minimum as Xmin — N — Vmax.

A similar approach can be used to evaluate the logical OR of the values collected
by different sensors in ? iterations, where ? is the number of bits used to encode
these values. In this case, the disambiguation scheme should be as follows:

• Ambient noise: 0 is recorded;

• A single packet is received: 1 is recorded;

• Two or more packets are received or a collision is detected: 1 is recorded.
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At the end, every recruited sensor in the sensing area stores the logical OR of the
data collected by the recruited sensors.

Algorithm 2 Approximation of the most significant fc bits of the average
l

2:

3

4:

5:

6

7

8

9

10

11:

12:

13:

14:

15

16

17

18

19

20

21

S = O
N = O
for i=l To k do

if (no packets are received) then
continue

end if
if (a single packet is received) then

s = s + (?; - 1)
N = N+l

end if
if (collision is detected) then

S = S + 2-(i-l)
N = N + 2

end if
end for
if (N = 0) then

A2 = O
else

A2 = \S/N]
end if
return A2

Now, we show another protocol to approximate the average of the collected sen-
sory data. Again, we assume that the sensory data can be encoded into a string of ?
bits. We further divide the ? bits representation of each value into 2 parts, the first
part consists of the least significant n — k bits while the second part consists of the
most significant k bits. Data aggregation occurs in 2 stages.

In the first stage, the logical OR of the least n-k significant bits of each collected
value is evaluated as an approximate of the least ? - k significant bits of the average
function. We refer to the result of the logical OR operation as A1 and this value can
be evaluated in ? — fc iterations as described above.

In the second stage, the most significant k bits of each collected value is written in
the "Single-One representation" format. In this format, each value m, {0 < m < 2k}
is represented by m zeros followed by a 1. Obviously, 2fe bits are needed to represent
the first part. Table 1 shows the One-Bit representation of 0 < m < 23 = 8.

After preparing the Single-One representation of the k most significant bits of
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TABLE 1: Single-One Representations of 0 < m < 23 = 8
m

_0_
2

_4_
T

Representation
00000001
00000100
00010000
01000000

m Representation
00000010
00001000
00100000
10000000

each value (and in 2fc subsequent iterations from right to left), each sensor transmits
a short packet only in the iteration corresponding to the position where it has 1 in
its value. When sensors pick up the values transmitted, they implement Algorithm
IV.3.

In Algorithm IV.3, A2 represents an approximation of the most significant k bits
of the average of the data collected by different sensors. The final value of the
average approximation is A2 ¦ 2n'k + Ax and can be evaluated in ? -k + 2k iterations.
Obviously, the accuracy of the obtained average depends on k which is chosen to be
around 3 bits.

IV.4 SIMULATION RESULTS

Using C++, we built a WSN simulator that implements different workforce selec-
tion protocols. To the best of our knowledge we are the first to address workforce
selection in WSN. Hence, we could not compare our protocols to other well-known
protocols. Hence, we compare the performance of our proposed protocols to the per-
formance achieved using ideal workforce selection in which the workforce is selected
from sensors with the highest energy in the sensing range of the task being executed.
In addition to this, we compare our protocols to energy-unaware or energy-neutral
protocol which uses the same CTW and bidding rounds mechanisms described in our
centralized protocol. The only difference is that the bidding decisions of candidate
sensors are made irrespective of their remaining energy. This is different from our
approach in which the estimate of the maximum energy among candidate sensors,
Emax, is used to control the probability by which candidate sensors participate in
bidding for the next task.

An important parameter which we need to consider when dealing with energy-
neutral protocols is the "Participation Factor" (PF). PF defines the probability by
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which candidate sensors participate in bidding. In our simulation, we run several
experiments assuming PF takes the values 0.5, 0.75, and 0.90.

Before presenting our results, we find it more appropriate to start by defining
what we mean by the reliable-lifetime of the network. In a typical sensor network,
sensors are deployed with a predetermined density ? which is usually chosen in a way
that satisfies QoS requirements expressed in terms of number of sensors participating
in different sensing tasks. An appropriately chosen value of ? can provide a reliable
network performance by guaranteeing that enough sensors will be available to perform
upcoming tasks with the required level of QoS. Unfortunately, sensors have limited
and non-renewable energy budget, once the energy of a sensor is entirely depleted, it
becomes non-operational and eventually the sensor density decreases. When sensor
density goes below certain threshold, the number of sensors available may not be
enough to satisfy QoS requirements of upcoming tasks and at this point the sensing
results cannot be considered reliable anymore. Based on this, we define a-reliable
lifetime of a network as the average number of tasks the network can perform till the
sensor density goes below a of its initial value. For instance, the 0.1-reliable lifetime
of a network with density 0.5 sensors/m2, is the average number of tasks that can
be performed on this network before the sensor density goes below 0.05 sensors/m2.

We conducted several experiments to evaluate the performance of our proposed
protocols. In our simulation, sensors were deployed uniformly at random in a square
with side length 200m. We used different sensor densities ranging from 0.3 to 1.5
sensors/m2. The network has a single TIE which is placed at the origin (0,0) and
is responsible for tasking sensors across the deployment area. QoS requirements of
generated tasks were expressed in terms of the minimum number of sensors needed
to participate in each task. The required workforce for different tasks was selected
randomly from the range [1,20]. We tried to balance tasking load on different spots
of the network by selecting the positions of the task centers uniformly at random
across the whole deployment area. Sensors were assumed to have a fixed sensing
range of 10.0 meters, beyond this range sensor readings may not be reliable. Sensors
sleep and wake up alternatively and asynchronously in a way that makes them active
for only %10 of their lifetime. Initially, each sensor has exactly 30 units of energy
(i.e. each sensor can at most participate in 30 tasks).

Figure 27 shows, for different network densities, the average number of CTW
messages needed to get the attention of sufficient number of sensors in order to
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FIG. 27: Average number of CTW messages

execute the next upcoming task. The optimal protocol assumes that a single CTW
message is enough. However, this is not the case for other protocols which substitute
its specific estimate of the number of candidate sensors into equation (18) to evaluate
the required number of CTW messages. Each of the shown protocols has its own way
to estimate, c, the number of candidate sensors. The centralized protocol depends
on equations (25) and (26) to estimate c However, in the distributed protocol, c
is evaluated by multiplying the workforce size, «;, by some constant factor /i (in
our simulation experiments, we assume fi — 4). The energy-neutral protocol uses
equation (25) to estimate the number of bidders, n, from the workforce size. After
that, it uses the participation factor to relate the number of bidders to the number
of candidate sensors (n = PF ¦ c). From figure (27), we can see that the average
number of CTW messages needed decreases as the network density increases with
very minor differences between different protocols.

Figures 28 and 29, respectively, show the expected number of bidding rounds
along with the expected number of bidding slots within each round. In the optimal
scenario, the workforce selection protocol ends using a single bidding round which has
a number of bidding slots that is equal to the size of the required workforce. However,
for other protocols, typically more than one bidding round is needed to compensate
for any empty or garbled slots that might arise due to bidding collisions (i.e when
more than one sensor bid into the same slot). As the value of the participation
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factor of energy-neutral protocols increases, the expected number of bidding rounds
increases. This goes to the increase in the number of sensors willing to bid within
the same round. Hence, the resulting number of single-bidder slots decreases and
more rounds are needed to select the remaining workforce.

Figure 29 confirms that the average number of bidding slots used in the central-
ized protocol bidding rounds is very close to its counterpart in the energy-neutral
protocol with very minor changes due to using different participation factors. It is
also important to understand that the curve associated with the distributed protocol
in figure 28 shows the number of decision rounds used in workforce selection since in
this protocol there is no bidding. And for the same reason, the number of bidding
slots for this protocol is always 0.

Figure 30 shows how our centralized and distributed protocols can preserve net-
work density for longer periods by balancing the rate by which sensor energy is
consumed. In particular, the figure compares the average width of sensor energy
spectrum throughout the network 0.2-reliable lifetime for different network densities.
To estimate the average width of sensor energy spectrum, we evaluated the width of
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the spectrum after the execution of every task using equation (36).

wt = I (36)
^2KlAE-Es) E8 <?

Where E is the average energy of sensors immediately after the execution of task
t. ?? is the number of sensors whose remaining energy is larger than or equal to E.
Similarly, n2 is the number of sensors whose remaining energy is less than E. Finally,
the average spectrum width among all executed tasks was estimated as -£]t'=1Wt,
where ? is the total number of tasks executed during the network lifetime.

From figure 30, we can see that the average width of sensor energy spectrum
of the distributed protocol is much narrower than the width obtained when using
any of the other protocols. Moreover, the average spectrum width is very close to
its optimal value (i.e 1). The superior performance of the distributed protocol over
other protocols can be attributed to: (1) The accurate estimation of the maximum
energy among candidate sensors. (2) Selecting workforce using decisions rounds that
give priority to sensors with higher energy over sensors with lower energy. Although,
the average spectrum width of the centralized protocol is slightly wider than its
counterpart in the distributed approach, it is much narrower than its value in other
energy-neutral protocols. At this point, it is worthwhile to mention that in both
of the centralized and the distributed protocols, the average spectrum width hardly
changes with sensor initial energy. This is not the case for energy-neutral protocols,
in which the average spectrum width increases when sensor initial energy increases
as confirmed by Figure 31.

The large differences between the energy of sensors when using energy-neutral
protocols makes one expect that many of the heavily loaded sensors would die out
at an early stage of the network lifetime. Typically, when a large number of sensors
which reside at some spot die out, the network density at this spot decreases. Figures
32-a, 32-b, and 32-c capture this phenomenon when using different workforce selection
protocols with initial deployment densities of 0.3, 0.7, and 1.0 respectively.

As shown in figure 32, degrade in network density for energy-neutral protocols
starts at relatively an earlier stage compared to other protocols. Table 2 lists the
percentage of the network lifetime lived before the network density starts to degrade.
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TABLE 2: Percentage of network lifetime lived before density degrades
Density Optimal Centralized Distributed Energy-Neutral

0.3 96.1 86.0 93.2 61.7
0.7 97.0 94.5 63.4
1.0 97.2 83.3 94.3 62.3
1.5 97.3 90.9 94.3 61.9

The continuous degrade in network density can eventually create energy holes.
We conducted a set of experiments to capture the impact of using different workforce
selection protocols on the rate by which holes grow up in the network. Figure 33
compares the growth rate of energy holes using the four protocols under different
deployment densities. The initial deployment densities of figures 33-a,33-b, and 33-c
are respectively 0.3, 0.7, and 1.0. The sharp slopes of the curves in figure 33 show
that our centralized and distributed protocols can reduce the rate by which holes
grow up in the network specially under small and medium network densities. Under
dense deployments, our protocols tends to be less effective in reducing the growth
rate of holes. In order to explain the reason behind this, we recall that energy holes
grow up only when all the sensors within the hole are dead. Although the degrade
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in network density when using energy-neutral protocols starts in an earlier stage,
there is always a nonzero probability to find at least a single alive sensor that can
restrict the growth of the energy holes. This probability gets higher under dense
deployments which in turn delays the appearance and the growth of energy holes
making our techniques less effective.

Figure 34-a compares the maximum number of tasks the network can execute
throughout its 0.2-reliable-lifetime using the 4 different protocols. It is interesting
to notice that some protocols are able to execute more tasks than the optimal pro-
tocol. To understand how this could happen, we recall our tasking model in which
a sequence of CTW messages are transmitted by the TIE to attract the attention
of sensors willing to participate in the execution of the next task. In some cases,
especially at the late stages of the network lifetime, the number of collected sensors
is less than the required size of the workforce as determined by QoS. Hence, those
down-recruited tasks are executed using whatever was collected even if the collected
number of sensors was less than what was specified in the CTW messages. For exam-
ple, if at a late stage of the network lifetime all sensors within a certain spot died out
except for a single sensor which has E units of energy remaining, then the network
can assume falsely it can execute up to E additional tasks at this spot irrespective
of the workforce size required by these tasks. Fortunately, the same scenario cannot
happen using any of the optimal, centralized, or distributed approaches because of
the minor differences between sensor energy. By the time the first sensor within a
certain spot dies out, the remaining sensors within the same spot will be about to die
out as well. Hence down-recruiting occurs for a small number of tasks. Our explana-
tion is confirmed by the results we got in figure 34-b in which we show the number of
tasks executed using the exact workforce size. From the figure, it is obvious that the
optimal protocol has superior performance over other protocols. Although, the cen-
tralized approach is the closest protocol to optimal in performance, the distributed
approach seems to perform poorly and even worse than energy-neutral protocols.
The reason for this goes to over-recruiting. Because of the distributed nature of
the protocol, sensors join the workforce independently, and as a result the number
of recruited sensors may be larger than the required workforce size. Simulation re-
sults showed that for %38.3 of the total executed tasks, the size of the workforce
recruited by the distributed protocol is larger than the required workforce size by
around %17.4. We confirmed this by adding another curve to figure 34-b that shows
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the total number of tasks executed using a workforce size that is at least as large
as the required workforce size. Surprisingly, after adding over-recruited tasks, the
performance of the distributed protocol has increased tremendously to the extent it
became slightly better than the centralized protocol. On the average our centralized
approach can increase the network 0.2-reliable lifetime by around %16.5 while our
distributed approach can increase it by around %17.2.
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CHAPTER V

SCHEDULING IN SENSOR NETWORKS

Sensors spend their entire lifetime switching between two modes: sleep mode where
energy consumption is minimum and awake mode where energy consumption is rel-
atively high. Due to their modest non-renewable energy, sensors spend most of
their lifetime in sleep mode and wake up for short periods to participate in various
tasks supportive of the overall mission of the network. Various deterministic and
probabilistic schemes can be used to determine the schedule based on which sensors
sleep and wake up. Each sleep/awake schedule has an impact on the effective sensor
density (ESD), defined as the density of awake sensors. The ESD is an important
network parameter because it is precisely the ESD that an application "sees" when
it is launched. Consider for example, an intrusion event. The quality of the intrusion
detection is a function of the number of awake sensors that witness the event. It
is clear, therefore, that the network ESD is of fundamental importance to guaran-
tee that sensing tasks are executed at their required level of QoS. In other words,
it is necessary to have control over the ESD in order to satisfy QoS requirements
expressed in terms of the minimum number of sensors needed to report monitored
events.

Our main goal in this chapter is to show how our proposed backbone can help
solving the scheduling problem in sensor networks. To achieve this goal, we start by
conducting a rigorous mathematical analysis on ESD as seen from the perspective of
the monitored events. We also provide design guidelines to determine deployment-
time sensor density and an associated sleep schedule which probabilistically keeps
the ESD at a level needed by QoS requirements. After that, we propose a backbone-
guided fully distributed sleep schedule which adaptively adjusts the duty cycles of
sensors within the same sensing area based on the relative difference in their re-
maining energy budget. To adjust its sleep schedule, each sensor must have access
to up to date information about the minimum and the maximum sensor energy in
its neighborhood. Through interaction with sensors in their neighborhood during
workforce selection and data aggregation, backbone sensors get access to required
information about sensors energy. After task completion and while forwarding the
aggregated results to the sink node, backbone sensors attach the minimum and the
maximum energy of sensors in its neighborhood as an extra field in the message
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payload. Sensors that receive the message, extract energy information and adjust
their sleeping schedule accordingly. The main advantage of the proposed scheme is to
balance energy consumption among sensors, thus promoting the functional longevity
of the network, without changing the ESD.

We can summarize our contributions into the following:

(a) under the assumption that arrival of the events to be monitored is a Poisson
process, we conduct a rigorous probabilistic analysis to prove that the well-
known PASTA [44] property can be applied to the number of awake sensors
(and, consequently, to ESD) as seen from the perspective of the monitored
events. Specifically, we show that under a mild technical condition the limiting
fraction of the events that find k awake sensors in a certain area is precisely the
fraction of time that the area is under the surveillance of k awake sensors. This
is a result of great importance as it justifies using the time- invariant probability
distribution of fc-coverage to analyze different scheduling schemes;

(b) we state the sleep-awake cycle of a sensor as a renewal process and, using the
Key Renewal Theorem [45] derive a general expression for the limiting (i.e.
time-independent) probability of a sensor to be awake at a given moment. To
the best of our knowledge this is the first time such a result is obtained for
sensor networks;

(c) we investigate different sleep scheduling schemes and their impact on ESD and
the capability of the network to satisfy QoS requirements;

(d) we also look into how we can achieve better network lifetime by adjusting the
sensor sleep schedule without reducing the ESD. In particular, in subsection
V. 3. 3, we propose a sleep schedule scheme that prolongs the sleep time of
sensors with relatively low energy and probabilistically compensates for their
absence by shortening the sleep time of sensors with relatively high energy.
An interesting by-product of our scheme is that the ESD, as perceived by the
monitoring events, remains unchanged;

(e) finally and through simulation, we monitor sensor energy distribution during
the network lifetime and show that using our energy aware scheduling approach
can balance energy consumption among sensors. We also show that using the
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proposed scheme provides a substantial increase in reliable network lifetime
when compared with static and dynamic scheduling schemes.

The remainder of this chapter is organized as follows: in Section V.l, we look
into the number of awake sensors as a stochastic process then we prove that if the
monitored events follow a Poisson process, then the PASTA property can be used to
analyze the number of awake sensors as seen by the monitored events. In Section V. 2
we cast the sleep/awake cycle of a sensor as a renewal process and derive a general
expression for the limiting probability that a given sensor is awake at time t. Using
the theoretical foundations laid down in Sections V.l and V. 2, in Section V.3, we
evaluate the time independent probability distribution and the expected value of the
number of awake sensors using different scheduling schemes including our proposed
energy-aware scheduling scheme. In Section V. 4, we show how our proposed backbone
can be useful in solving the scheduling problem and propose several approaches by
which sensors can have access to information needed to apply our scheduling scheme.
Simulation results are summarized in Section V. 5.

V.l APPLICABILITY OF PASTA

Throughout this work, we take the view that the sensor network was deployed in
support of detecting events of an unspecified nature. Moreover, we assume that QoS
requirements stipulate that in the interest of reliability a minimum of k, {k > 1),
sensors must detect each event, where k is an application-specific parameter. Thus,
in such a context, in order to meet the specifications of the QoS, a minimum of k
sensors should be awake in each sensing neighborhood.1 If an arriving event "finds"
k awake sensors in its neighborhood, then it will be correctly detected - otherwise
it will not. Thus, it is of great theoretical interest to look at the ESD of the sensor
network as seen by the occurring events.

In this section, we show that if the events occur according to a Poisson process,
then the PASTA [44] property (Poisson Arrivals See Time Averages) is applicable
to the number of awake sensors available to detect the occurrence of these events.
This result justifies analyzing the performance of the scheduling schemes presented in
Section V.3 using the time-invariant probability distribution of the number of awake
sensors in the sensing area centered at the location of the event.

1SOmC authors refer to this as fc-coverage. To follow established terminology, we shall use the
term /c-coverage in the remainder of this work.
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For a uniformly distributed random deployment of sensors where the sensing
range of each sensor is r, we choose an arbitrary point ? and define the counting
process, {N(t),t > 0}, such that N(t) represent number of awake sensors at time t
in the disk D of radius r centered at p. We refer to {N(t) = k} as "the process N is
in state k at time i" whose semantic value is "disk D is fc-covered at time i" where
the maximality of k with this property is implied.

Assuming that the number of events arriving at the network is a Poisson process
{A(i), t > 0} with rate ? > 0, our objective is to compare the fraction of time
the process N(t) is in state k to the fraction of the events occurring in D that find
the stochastic process {N(t),t > 0} in state k. Put differently, we are interested in
comparing the fraction of arriving events that occur while D is fc-covered with the
fraction of time disk D is fc-covered.

For this purpose, define Ik(t) as the indicator random variable of {N(t) = k} at
time t

/.W = (1T""*1I 0 otherwise.

In other words, 4(i) is 1 if and only if the number of awake sensors in D is k at time
t. Recalling that we are interested in fc-coverage (for some k > 1), to simplify the
notation we shall drop the subscript k and write I(t) instead of Ik{t).

Define the random variable F(t) as follows

F(t) = \ ¡ 7(5) ds. (37)
The intention is for F(t) to represent the fraction of time in [0, t] that disk D is
fc-covered. Since F(t) involves the Riemann integral of I(t) on [0,i], the definition of
the integral, as a limit, allows us to approximate F(t) for sufficiently large ? by

+ l)i it]^-?S'® ?
(38)

¿=o

with

lim Fn(t) = F(t). (39)
For later reference we take note of the fact that |Fn(i)| is bounded. Indeed,

\Fn(t)\ = Fn(t)
rt

ds< -I- tJo
= 1. (40)
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An important consequence of (40) is that the Lebesgue Bounded Convergence
Theorem applies to the sequence of random variables {Fn(t)} and

Hm E[Fn(t)] = E[F(t)]. (41)

Similarly, let a(t) be the random variable denoting the number of events occurring
in disk D in the time interval [0,i] that find the disk D /c-covered. Formally, a(t) is
the Stieltjes integral of I(t) with respect to A(t). Thus, we can write

i(t) = fJo
I(s) dA(s)

By the definition of the Stieltjes integral, as a limit, it follows that u(t) can be
approximated for sufficiently large ? by

rt-l

-µ = S' ?it (i + l)i
?

-Al*
?

with

lim a„(?) = a(t).
?—>oo

Next, we show that |on(i)| is bounded. Indeed, we can write

\an(t)\ = an(t)
< a(t) [because A(t) is monotone non-decreasing]

I(s) dA(s)

(42)

(43)

<

Jo

/ dA(s) [because I(s) < 1]Ja

= A(s)

= A(t)-A(0)
- A{t). [because A(O) = 0] (44)

Since it is well-known, and also very easy to prove from scratch, that the number
A(t) of Poisson arrival (i.e. events) in disk D in [0,i] is bounded, the conclusion
follows.

An important consequence of (44) is that the Lebesgue Bounded Convergence
Theorem applies to the sequence of random variables {an(t)} and, therefore,

lim E[an(t)] = E[u(t)}. (45)
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Before proceeding, we observe that the event arrival process A is independent of
the number of awake sensors in disk D. Moreover, future increments of the events
arrival process do not, in any way, depend on the current or any previous number of
awake sensors in D. In other words, for each 0 < a < t, ? > 0

[A(t + x) - A(t)} and I(s) are independent. (46)
This turns out to be a simple instance of the lack of anticipation assumption [44] .

We are now ready to prove the first non-trivial result stating that in any finite
interval [0,i], the expected number of events that find the disk D fc-covered equals
the event arrival rate times the expected time during which D is fc-covered.
Theorem V.l.l For allt>0

Í I(s) dsE[a(t)] = XE

Proof 1 We begin by evaluating E[an(t)]. First, by the linearity of expectation we
have

EK(t)} = ?[S£?*)[?(??)-?(*)'
S* 1{it

?
A

?
-A

Since, by virtue of (46), the random variables [A(t + x) - A(t)] and I(s) are inde-
pendent for every choice ofO<a<t and ? > 0, we can write

n-l

#??)] = S> ?
E A [i+l)t

?
-A[

?̂

Recalling that Poisson processes have stationary increments, it is the case that
E A [i + l)t

?
A

it
?

= E A
?

?

¦E

and, consequently, the expression of E[an(t)} becomes
'it

i=0 L
E[an(t)} ?

A

?
i=0

?

XE
i-l

¿=o

(i+l)t
?

it

?
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Further, by (4I) and (45) combined, we can write

E[a(t)] = lim E [an(t)}n~>oo

"n-1

lim XE
?—»oo

= XE

= XE

S'
¿=o
n-1

lim y"/
¿=0

(z+l)t Ü
? ?

{i+V)t it
??

fl{s)
vo

ds

This completes the proof of the theorem.

Having proved Theorem V. 1.1 it is helpful to put the result in perspective.

• We note that Theorem V. 1.1 is part of the sensor network folklore and has
been used in the literature without proof. To the best of our knowledge this is
the first time it has received a formal proof for the case where the monitored
events occur according to a Poisson process;

• We are, however, quick to point out that Theorem V. 1.1 holds for other arrival
processes; however, it would seem that the problem of characterizing the class
of monitored events for which Theorem V. 1.1 holds is still an open problem;

• In spite of its interest, Theorem V. 1.1 only refers to the "average" case and
does not provide a truly crisp view of the instantaneous status in which a given
event occurring in disk D may find the process N.

We now turn our attention to the general case: our aim is to compare the fraction
of time that disk D is fc-covered with the fraction of the events occurring in D that
find D fc-covered. More precisely, define P(t) as the fraction of the events in [0,i]
that find disk D fc-covered

P(t) A(ty
(47)

In this notation, we shall prove the following fundamental result, similar in spirit,
to the well-known PASTA property proved in a different context [44].
Theorem V. 1.2

limP(i) = limF(t).
i->oo i->oo
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The proof of Theorem V. 1.2 is rather technical and relies on a number of re-
sults which are of independent interest. To begin, we define the stochastic process
{R(t),t >0} where

R(t) = a(t)-Xt-F(t). (48)
The intention is for R(t) to capture, for a given t > 0, the difference between the

number a(t) of events occurring in [0, t] that find D fc-covered and the arrival rate
? times the total time in [0,i] during which D is fc-covered. Since the arrival time
? multiplied by the total time in [0, i] during which D is fc-covered is the expected
number of arriving events that find D is fc-covered, it follows that R(t) denotes the
difference between the number of events occurring in [0, t] that find D ^-covered and
the expected number of events that (upon arrival) find D fc-covered.

Lemma V. 1.3 R(t) is a continuous-time martingale.

Proof 2 In order to prove that R(t) is a martingale we need to show that for t >
0; /i>0

E[R(t + h) I R(s), 0 < s < t] = R(t).
We find it convenient to prove the following equivalent statement

E[R(t+h) - R(t)\R(s), 0 < s < t] = 0.

Recall from the definition of R(t) that,

R(t) = a(t)-\t-F(t)
R(t + h) = a(t+h)-X(t + h)-F{t + h)

R{t + h)-R(t) = [a(t+h)-a(t)]-[\(t + h)F(t + h)-\tF(t)}

Applying the expectation operator on both sides of the previous equality and using
elementary manipulations we write

E[R(t + h) - R(t)] = E[a{t+h)-a(t)]-E[X{t + h)F{t+h)-XtF{t)}
= E[a{t + h)] - E[a{t)} - E[X{t + h)F(t + h) - XtF(t){49)

Recall that by Theorem V. 1.1

E[a(t)} = XE f I(s) ds
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and

E[a(t + h)} = XE

It follows that

E[a(t + h)} - E[a(t)] = XE

Further, recalling that

rt+h

/ /(6·) dsJo

rt+h

J. ,(S) ds

and that

we can write

X{t

tF(t) - / I(s) dsJo
rt+h

(t+h)F(t+h)= / I(s)dsJo

/t+h
ds

and so

E[X{t + h)F(t + h)- XtF(t)} = XE

Substituting (50) and (51) in (49), we obtain

/t+h

I(s) ds

E[R(t + h) - R(t)} = XE

XE

= O.

rt+h

I /(
rt+h

ds

s) ds

(50)

(51)

We just proved that R(t + h) - R(t) is independent of R(s) for 0 < s < t. This
completes our proof of Lemma V. 1.3.

For arbitrary h > 0 and positive integer ? define the sequence of random variables

by writing
Xn = R(nh)-R((n-l)h).

Observe that (52) implies
?

S Xn = R(nh)
i=l

(52)
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and that by linearity of expectation

E[Xn] = E[R{nh) - R((n - l)/i)]
- E[R(nh)]-E[R((n-l)h)]
= 0.

Now, the previous two equalities together with the Law of Large Numbers allow
us to write

lim« = Ii,^
Ti->oo ? n-»oo ?

= E[Xn]
0. (53)

We now turn our attention to the proof of Theorem V. 1.2. Observe that by
dividing both sides of (48) by t, we can write

R(t) _ ajt) - XtF(t)

a(t) -XF(t)

A(t) t - XF(t)

= P(t)^--\F(t).
Observe that since A(t) is Poisson distributed with parameter ?

Um4!>-A.
i->oo t

Thus, taking limits in (54) as t —>· oo we obtain

lim R(t)
t—>oo t P(Jt)M- XF{t)lim

lim P(t) lim ^- - lim XF(t)t—»OO t—>CXD t t—>00

? lim P(t) - X lim F(t) [by (55)]t—>oo t—>oo

Hm P(t) - lim F(í)t—>oo

(54)

(55)

(56)

Equation (56) makes it plain that in order to complete the proof of Theorem
V. 1.2 we need to show that UiIi(^00 —p- = 0.

With this in mind we now provide the proof of that missing link. Specifically, we
show that
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Lemma V. 1.4

lim
i->oo t

Proof 3 Let h > 0 be arbitrary and write

? —

0.

By virtue of (57) we have the following double inequality
nh<t< (n + l)h.

Now, recalling that a(t) is monotone non-decreasing allows us to write

a(nh) <a(t) <a({n+l)h),

which, upon subtracting XtF (t), yields

a(nh) - XtF(t) < o(i) - XtF{t) < a{{n + l)h) - XtF(t).

Using (48), the above double inequality can be written as

R(nh) + XnhF{nh) - XtF(t) < R{t) <
R((n + l)/i) + ?(? + l)hF((n + l)/i) - XtF{t)

Further, using (37) and (58) it is straightforward to see that
r(n+l)h

(57)

(58)

I(s) ds
An+l)h

Í /J nh
ds

and, similarly, that

dsI{s)

= - Í I(s) ds
Jnh

fJ nh

>

>

ds
nh

f(n+l)h/ ds
Jnh

(59)

(60)

(61)



Now, by replacing (61) and (60) in (59) we obtain
R{nh) -\h< R{t) < R((n + l)/i) + Xh. (62)

Dividing (62) by t and taking limits as t —> oo we write

Hm *("*)- ?* < lim M < lim fi((n+l)ft) + A^ (63)?-î-oo Í t-yoo í í->oo Í

Noticing that lim^oo ? = 0, (ft?,) can ¿>e written as
lim M < lim A(O £ „m ñfín+W. (64)t->oo Í i->oo t i->oo /

£fy (57), t —>¦ oo implies that ? = |_fj -> oo and, moreover
? nlim — < oo.

77hs observation allows us to write

, ?(t??) ,. Ä(nft) ,. ?lim —-—- = hm lim —
t—>oo Í n->oo /(, i—>oo Í

o. /ij, r^y (65)
Similarly,

, ?((p+1)/?) ,. Ä((n + I)Zi)1. n+1hm — — = hm hm —-—
t->oo t n->oo ? -\- 1 í-s-oo £

= 0. /ty(53;7 (66)
Finally, replacing (65) and (66) in (64) yields

0 < lim ^- < 0
t->oo Í

completing the proof of Lemma V. 1. 4-

With this the proof of Theorem V. 1.2 is complete.
Theorem V. 1.2 tells us that for large intervals [0, t], the fraction of events that occur
while D is fc-covered equals the fraction of time the disk D is fc-covered. In other
words, if the monitored events occur according to a Poisson process, the number of
sensors that will be awake to report these events is a discrete random variable with
probability distribution determined by the fraction of time the network spends in each
state. Based on this, it is probabilistically correct to analyze sleep scheduling schemes
using the time-invariant probability distribution of the number of awake sensors in
a given sensing area, provided such a time-invariant probability distribution exists.

It is the goal of the next section to show that under very mild technical conditions,
this is indeed the case.
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V.2 REASONING ABOUT THE TIME-INDEPENDENT AWAKE
PROBABILITY

In deployments populated by energy-constrained sensors it is of paramount impor-
tance to design energy-aware protocols that promote the functional longevity of the
underlying network. This typically means that the sensors spend their lifetime alter-
nating between two modes: in sleep mode the sensor turns off its radio interface clocks
down its processor; in awake mode the sensor is fully functional, with its processor
running at top speed and its radio interface turned on.

Let the sequence of random variables A1, A2, ¦ ¦ ¦ , An, ¦ ¦ ¦ denote the consecutive
awake times of a given sensor. It is quite natural to assume that these awake times
are independent identical distributed (i.i.d.) with a common distribution function
Fa and that A has finite expectation. Similarly, let the sequence of random variables
S1, S2, ¦ ¦ ¦ ,Sn,--- denote the consecutive sleep times of a given sensor. We assume
that the sleep times are i.i.d. with a common distribution function F8. As before,
we assume that S has finite expectation

To make a choice,2 we assume that the sensor wakes up for the 0-th time at t = 0.
Referring to Figure 35, we find it useful to model the lifetime of the given sensor as
a renewal process {N(t), t > 0}, where the renewal points are the moments when
the sensor wakes up (other than the 0-th wake-up at time t = 0). Let

T0 = 0, T1 = A1 + S1, T2 = A2 + S2, ¦¦¦ , Tn = An + Sn, ¦¦¦

be the inter-arrival times of the renewal process where for ? > 1, Tn is the time inter-
val between the (n — l)-th and the n-th renewals where, recall, t = 0 is taken as the
0-th renewal. It is clear that the random variables T11T2,- ¦ ¦ , Tn, ¦ ¦ ¦ have a common
distribution FT, which is the convolution of FA and F8. Since, by assumption, both
A and S have finite expectation, so does T. In fact, we can write

µ = E[T] = E[A + S) = E[A] + E[S] < oo. (67)

We are interested in the limiting probability h(t) that our sensor is awake at time
t. To derive the integral equation satisfied by h(t), we condition on the time of the

2As it turns out, this assumption is adopted for convenience only; as far as the limiting probability
of the sensor to be awake at some arbitrary time t this assumption is irrelevant.
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FIG. 35: Illustrating the renewal process of wake-up times.

first renewal, T1. Indeed, we can write
/1OO

h(t) = / Pr[{awake at time t} \ [T1 = s}] PrI[T1 = s}}Jo
/OO

= / Pr [{awake at time t} \ [T1 = s}} dFTl{s)Jo

= / Pr [{awake at time t} \ [T1 = s}] dFTl(s) +Jo
/OO

Pr [{awake at time t} \ [T1 = s}\ dFTl{s)
Observe that for O < s < t, we can write

Pr[{awake at time t} \ [T1 = s}] = h(t - s).
On the other hand, for t > s we have

/OO

Pr[{awake at time t} \ [T1 = s}] dFTl(s)
= PvI[A1 >t}n [T1 > t}}
- Pr[{^! > i}] [since [A1 > t} Q [T1 > t}]
= l-FA(t).

By virtue of (69) and (70), combined, (68) becomes

h(t) = [1 - FA(t)} + [ h{t - s) dFT(s)Jo
Writing

Q(t) = 1 - FA(t)

it is easy to see that h(t) satisfies the renewal integral equation

h(t) = Q{t) + f h(t- s) dFT(s)Jo

and that Q(t) has the following properties

(68)

(69)

(70)

(71)

(72)
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(ql) Q(t) > O;

(q2) Q(t) is non-increasing for all t > 0;

(q3) G Q(t) dt = /"[I - FA{t)] at = E[A] < oo.
Assuming that T is non-lattice,3 the Key Renewal Theorem [45] guarantees that

1 f°°lim hit) = Hm [1 - FA(t)] + lim - / Q(«) dst-¥00 ?->00 t->00 µ Jq
? ?-00

= lim — / Q(s) dst^oo µ J0

= —£^[^4] [by property (q3) above]
ß

E[A] [by (67)] (73)E[A] + E[S]
To summarize our findings, we have proved the following result.

Theorem V.2.1 Assuming that A has finite expectation and that T — A + S is non-
lattice with finite expectation, the limiting probability that a given sensor is awake at
time t equals

E[A]
E[A] + E[S] '

Having proved Theorem V. 2.1, it is important to put this result in perspective.

• Since the conclusion of Theorem V.2.1 is intuitively satisfying, the result itself
has been a part of the sensor network folklore and has been used without proof.
To the best of our knowledge this is the first time the result is formally proved;

• Theorem V.2.1 has an unmistakable PASTA "flavor": for, consider an observer
external to the network that is watching and noting the behavior of our sensor.
The observer will note that the long-term probability of the sensor to be awake
is E1^L3] ¦ On the other hand, Theorem V.2.1 tells us that far away from the
origin (i.e. t — 0), the probability that the sensor is awake at an arbitrary time
* iS a^S0 E [A] +E\S\ '

• Theorem V.2.1 is a very convenient tool since it allows one to use the time-
invariant probability of a sensor being awake in lieu of the instantaneous awake
probability.

3A discrete random variable is said to be lattice if all the values it can assume with positive
probability are of the form nh for some h > 0 and integer n.



92

We put Theorem V. 2.1 to work in the Section V. 3, where it will be used to reason
about various scheduling schemes. Before that, in the next subsection, we offer an
empirical validation of Theorem V.2.1.

V.2.1 Empirical validation

In order to validate empirically the results of Theorem V.2.1, we conducted the
following experiment to compare the probability that a sensor is awake (i.e. the
expected value of -^) to the value obtained from Theorem V.2.1 (i.e ^rfjqqsj)· It is
straightforward, albeit tedious, to show that if A is uniformly distributed at random
in [a,b] and S is uniformly distributed in [c,d] then, with ? = 2(6 - a){d - c), the
expectation E [^g] of the random variable -^ reads

E
A

A + S
1 c2-ò\ fb+c\- + —?— ln ? ; +2 ? \b + dj
d?-c2, fa + c\ d?-a2, fa + d: In - t H In

b + dj ? \a + c
The interested reader can find a detailed discussion of the probability distribution

function of -^ as well as the derivation of E[-£g] in Appendix A.
Our goal was to measure the difference between the exact and the approximated

values of the awake probability assuming different ranges for [a, 6] and [c, d]. Without
loss of generality we can always use shifting and scaling to map one of the two ranges
into the range [1, 2] and express the other range using the same mapping. Figure 36
shows a plot of the simulated, theoretical, and approximated values of sensor awake
probability. In Figure 36, we assumed that the range [a, b] is mapped into the range
[1,2] and we tried different ranges for [c,d] based on the ratio ^. Specifically, we
tried the following ratios: ^, ¿, ^, ^, |, \, §, 1, 2, 4, 8, 16, 32, 64, and 128.
As shown in Figure 36, for all the ranges, the differences between the theoretical,
simulated, and approximated values of the probability are minor and can be ignored
in almost all practical applications.

V.3 SCHEDULING SCHEMES

In a sensor network with nominal (i.e. deployment-time) density ? where, in order
to promote system longevity, some sensors will be in sleep mode, of interest is the
effective sensor density (ESD) pe defined as the density of the awake sensors in the
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FIG. 36: Empirical validation of Theorem V. 2.1

network at any point of time. If a time-invariant probability Pawake of individual
sensors to be awake exists, then pe is related to ? by

Pe ¿awakeP·

Switching between the sleep and awake modes is controlled by a scheduling scheme
used in the network. Different deterministic and probabilistic scheduling schemes can
be invented and implemented; each such scheme makes decisions about how much
the sensors sleep and, as such, impacts the pe and the ESD.

We begin this section by introducing two relatively simple scheduling schemes: our
first such scheme is static, the second is dynamic. We also study the implications of
each scheme on the ESD. Finally, we propose a third, energy-aware scheduling scheme
designed to balance energy consumption among the sensors in the same sensing area.

V.3.1 Static Scheduling

The main advantage and unmistakable appeal of static scheduling schemes are their
simplicity. Before deployment, each sensor is given two values Ts and Ta, which
represent the number of time units each sensor stays in sleep mode and awake mode,
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FIG. 37: Sleep and awake cycles in static scheduling

respectively. In general T3 and Ta, are chosen such that T3 » Ta. This choice
allows the sensors to sleep more than they stay awake helping them to save their
energy budget and to extend their lifetime. Moreover, it is highly recommended to
give sensors common values for T3, and Ta, otherwise the energy consumption rate of
sensors with longer awake times will be much higher than the energy consumption
rate of other sensors. This, in turn, would adversely impact network longevity and
reliability and could, eventually, lead to the creation of energy holes that would
partition the network into disconnected islands [10, 46].

Because the sensors are asynchronous, the sleep time of a sensor usually overlaps
with the awake time of other sensors. Hence, using an appropriate deployment density
we can ensure there is always, with any desired probability, a sufficient number of
awake sensors to attend to any required network task. Figure 37 shows an example
where the overlapping of the awake times of sensors Si through Sg totally cover the
scheduling cycle.

In the static scheduling scheme the total length of the sleep and awake cycle is
fixed to Ta + T3 time units. Each sensor stays awake for Ta time units and sleeps
for T8 time units. It is clear that, in this case, the time-independent probability of a
sensor to be awake is

Tn.
Ta + T3

Given a nominal network density ? and a sensor sensing range of r, the expected
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number of sensors in the sensing area can be evaluated as ? — nr2p. Under these as-
sumption, the probability distribution of the number X of awake sensors is a binomial
random variable and for all k, (0 < k < n),

P[{X = k}]
\fc/ r n«-*

kj \Ta + TJ \Ta + Ts
n\ (Ta)k(Tsy-k
k) {Ta + Tsy ·

Since the schedule is static, it makes sense to define for an arbitrary sensor the
awake ratio A as

T
A

Ta + Ts
In this notation, (74) becomes

P[{X = k}) = (fWfc(l -A)n-k. (75)
Now, (75) implies, unsurprisingly, that the ESD, E[X], corresponding to this

scheme is

E[X] = nA = wr2pA. (76)
Equation (76) can be used to estimate the required nominal density, given QoS

requirements expressed in terms of number of sensors needed per task.

V.3.2 Dynamic Scheduling

In this scheme, we assume that a sensor sleeps for a random amount of time selected
uniformly at random in the interval [TS,TS], and is awake for another random amount
of time that is selected uniformly in the interval [Ta, TA]. Define the random variables
Ai and 5¿ representing, respectively, the awake and sleep time of a generic sensor in
an arbitrary cycle i. The expected values of sleep time and awake time in cycle i are
given by

E[Si] = ^4^ (77)
E[A1] = ^±^ (78)

Our choice of the distribution of A¿ and 5,; along with (77) and (78) ensure that the
random variable T¿ = ? + S¿ is non-lattice and has finite expectation. By Theorem
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V. 2.1, the time-invariant probability of a sensor to be awake is
E[A]Pa =

£/[/ij -I- £/[Dj
T J- T.

(79)
E[A] + E[S]

Ta + TA
Ta + TA + Ts + Ts

Define X as the random variable that denotes the number of awake sensors when
the next event occurs. To evaluate the probability distribution of A, we model the
problem as a sequence of ? Bernoulli trials, where the probability of success is PA-
According to this model, the random variable X follows a binomial distribution with
parameters ? and Pa-

jfc/i r> \n—kP[{X = k}] = (fy PkA(l -PaY
and, similarly,

E[X]

n\ (Tg + TA)k(Ts + Ts)n~k
k) (Ta + TA + Ts + Tsr

n(Ta + TA)
(Ta + TA + Ts + Ts)

nr2p(Ta + Ta) (80)(Ta + TA + Ts + T8)
As in the case of static scheduling, equation (80) can be used to estimate required

deployment density to satisfy QoS requirements when the network uses dynamic
scheduling.

It is also worth noting that our dynamic scheduling scheme presented in this
work follows the "standard" (and, perhaps, simplistic view that the awake and sleep
periods are uniform random variables. There is no need for this; in fact, we could
have taken any distribution for the awake times and for the sleep times that satisfies
the conditions of Theorem V. 2.1.

Observe that by Theorem V. 2.1, for any dynamic scheme it is always possible
to construct a probabilistically equivalent static scheme that draws its sleep and
awake times from general probability distribution functions. To do this, in the newly
created static scheme the sensors sleep and awake times are adjusted at the expected
values of the sleep and awake distribution functions of the original dynamic scheme.

V.3. 3 Energy-Aware Scheduling

Finally, we propose a dynamic scheduling scheme [47, 48] that contributes to balanc-
ing energy consumption among sensors by adjusting their sleep time based on their
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remaining energy budget. The main idea behind the proposed scheme is to proba-
bilistically prolong the sleep time of sensors with relatively low energy and shorten
the sleep time of sensors with relatively high energy, without affecting the ESD of
the network.

As in Subsection V.3.2, we assume that a sensor sleeps for a random amount
of time uniformly distributed in [T8, T3] and is awake for a random amount of time
uniformly distributed in [T0, TA}. Either periodically or after each task, the sensors
adjust the upper bounds of the ranges from which they select their sleep and awake
times. This adjustment is based on the relative difference between sensor energy
e¿, the minimum energy emin and the maximum energy emax among the neighboring
sensors. In Section V.4 we propose several approaches by which sensors can have
access to energy information of the sensors in their neighborhood.

Several adjustment formulas can be used; one natural choice is

TS_ = T8 + c( emaxJEl )(Ts-T.) (81)\ &max &min J

TAnew = Ta + c(pei~ypm )(TA-Ta) (82)
where c is a constant to be determined. Using equations (81) and (82), each sensor
can adjust its sleep and awake time by selecting them, uniformly at random, from
the ranges [Ts,TSnew] and [Ta,TAneJ, respectively. The constant c is determined such
that the expected value of ESD remains unchanged.

If the sleep time and the awake time upper bounds in cycle i are TSn„„ and
TAnew respectively, then the expected sleep time and awake time can be expressed,
respectively, as

2

and
TAnew + Ta

2

Unfortunately, both TAnem and TSnew change over time. However, because these
changes do not occur abruptly, it is safe to assume that TSnew and TAnew will remain
fixed for the upcoming m cycles until the next adjustment. Based on this, A4, Si for
the upcoming m cycles are drawn uniformly from the ranges [Tn, TAnem] and [T3, TSne„,}



respectively. Hence, we can express the expected value of A and S as

E[A] = E S^ Y1E[A1,
¿=i

??
i=l

1 An„„ + -La

mTa 1
—- + -

2 2+ ö /l£ir4.J
¿=1

Similarly, E[X^J can be evaluated as

^PX. Ga+,^? ß— )(??-?a)
c-marr &,max ^rnvn

--max ? ^min

E[ei] =

E[TAnJ = Ta + c

+ en

2

--max ^nun
{?a - Ga)

Ta + -{TA-Ta)

Substituting the expression for E[TAnew] from (84) into (83) yields

mTa , 1S[A] 2 ' 2+ 5SG- + ^-t·)
i=l

mc(TA - Ga)

m(cT¿ + (4 - c)T0)
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Using the same approach, we can evaluate E[S] as,

E[S]

mT3

E[T8

2 2

= Ts + c

S* =S*
= 1 J ¿=1

£[ßt?

+ G,

¿=1

^max

(Ts

= T6. + e 2

^t?ax ^mm
(Ts - T3

E[S]

E[S]

TS + -(TS-TS[
mT<

mTs + mc(Ts - T3)

m(cTs + (4 - c)Ts[ (86)

Now, using equations (85) and (86), Theorem V. 2.1 tells us that the probability a
sensor is awake is

Pa
m(cTA + {A-c)Ta)

4

%(cTA + (4-C)Tn) , m(cTA+(A-c)Ta)
4 T 4

crA + (4 - c)Ta (87)¿G? + (4 - c)T0 + cTs + (4 - c)Ts
Solving equations (79) and (87) for c, yields c = 2; with this, the equations (81) and
(82) can be rewritten as

Tsn

TAn

T3 + 2

Ta + 2

Zi

jmax ^min
(T8 - T3)

(t?-ta).

(88)

(89)

After determining c, the equations (88) and (89) are used by individual sensors to
adjust their sleep/ awake schedule. As we noted at the end of the previous subsection,
we have chosen the uniform distribution of sleep/awake times for convenience only;
in fact, any distribution satisfying the conditions of Theorem V. 2.1 could have been
employed just as well. We expect that, ultimately, the choice of the distribution to
be application-dependent.
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TABLE 3: Mica2 Power Requirements
Component Power Component Power
CPU Active 24.0 mW Rx 21.OmW
CPU Sleep 225.0 //w Tx(-20 dBm) 11.1 mW
Sensor ADC 3.OmW Tx(-15 dBm) 16.2 mW
Sensor board 2.1 mW Tx(- 8 dBm) 19.5 mW
EEPROM Read 18.6mW Tx( OdBm) 25.5 mW
EEPROM Write 55.2mW Tx(+ 4 dBm) 34.8 mW

V.4 ENERGY ESTIMATION

The energy-aware scheduling scheme proposed in Subsection V. 3. 3 assumes that each
sensor has information about the minimum and the maximum energy in its neighbor-
hood. In this section we propose several approaches that can be used to provide such
information to sensors. Particularly, we provide answers to two questions: (1) How
can a sensor estimate its own energy? (2) How can a sensor get access to information
about the energy of other sensors in its neighborhood?

Since current technology enables battery-powered electronic devices to measure
their remaining energy [49], this might be taken as an easy answer to the first question
regarding how sensors can estimate their remaining energy. However, from a practi-
cal prospective, this technology may not be sufficiently mature to be applicable at a
reasonable price for our tiny inexpensive sensors. Fortunately, it is possible to find
an alternative software solution to this problem. To be able to apply this solution,
the manufacturer of each sensor should provide an energy consumption data-sheet
that specifies the energy consumed per unit time for different sensor features. Table 3
shows the power consumption for the Mica2 platform for different sensor components
and different operating modes. For instance, the CClOOO transceiver in the Mica2
mote [50] features a transmission range proportional to the radiated output power,
which can be selected from -2OdBm to +5dBm. Table 3 shows the energy consump-
tion when a Mica2 mote transmits at power -2OdBm, -15dBm, -8dBm,0dBm, and
+4dBm. Also the table shows the CPU energy consumption when the sensor is in
awake or sleep mode.

We can use the energy consumption information provided in the data-sheet to
estimate the remaining sensor energy budget as follows:
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• Each sensor should have an internal counter initialized to zero ec = 0.

• Upon changes in the functionality of the sensor, the counter value should be
updated based on the manufacturer data-sheet to reflect changes in energy
consumption. For example, if a Mica2 mote is to switch to sleep mode for 2
seconds, then before the CPU switches to the sleep mode, it should increment
the counter as ec <- ec + 0.45 to reflect changes in consumed energy.

• ec(t), the value stored in the counter at time ? is a measure of the total energy
consumed up to this point in time. If e/ is the initial number of energy units
a sensor has, then e(t), the remaining energy of a sensor at time t, can be
obtained as e(t) = e¡ — ec(t).

We have just outlined two different ways in which a sensor can estimate its remaining
energy at any point in its lifetime. However, this might not be sufficient since the
energy-aware scheduling scheme described in Subsection V. 3. 3 not only requires each
sensor to be aware of its remaining energy but also requires each sensor to be aware
of the minimum and the maximum energy among the sensors in its neighborhood
(i.e. within the same sensing area). Next, we propose two different strategies that
the sensors can use to estimate the minimum and the maximum energy of sensors in
their neighborhood.

The first strategy to solve this problem is to let each sensor include the value of
its remaining energy e(t) in the header of each packet transmitted. Basically, each
sensor uses two internal variables to keep track of its estimation of the minimum
and the maximum energy among the sensors in its sensing area. Each sensor should
initialize these variables to the current value of its own energy. When a sensor
receives a packet from another sensor, it extracts the value of the current energy
of the transmitting sensor from the packet header. After that it uses this value to
update its estimate of the minimum and the maximum energy in its sensing area. It
is worthwhile to mention that a sensor should not use all received packets to update
its internal variables as some of the received packets may be transmitted from sensors
outside its sensing area. Based on the strength of the received signal a sensor can
determine whether the transmitting sensor is within its sensing area or not, hence it
can decide whether to update the variables or to ignore the packet completely. Also,
when the energy of a sensor changes, a sensor may need to update its estimation of
the minimum and the maximum energy in its sensing area. This way a sensor has
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access to up to date information about the minimum and the maximum energy of
sensors in its sensing area with minimum overhead, hence it can apply our proposed
scheme to adjust its sleeping schedule.

Our second strategy to allow sensors estimate the minimum and the maximum
energy in their neighborhood is through integrating sleep scheduling with task man-
agement. In particular, information about the minimum and the maximum energy in
the sensing area is obtained during the time the workforce for a given task is selected
[40, 39, 42].

In Section IV. 1, we proposed a bidding-based centralized approach for workforce
selection in which backbone sensors (i.e task coordinators) would have access to up
to date information about the remaining energy of sensors in their neighborhood.
After task completion and while forwarding aggregated results toward the sink, a
backbone sensor can always attach the minimum and the maximum energy among
sensors in its neighborhood. Sensors that receive this message should extract these
values and adjust their sleep schedule accordingly.

Also, in Section IV.2, we proposed a distributed workforce selection protocol that
considers sensor energy while selecting the required workforce. The proposed protocol
simply consisted of two phases where in the first phase, the maximum energy among
sensors in the area of interest is determined (please refer to subsection IV.2.1 for
details). Also in Section IV.3, we showed how the minimum energy among awake
sensors within the same sensing area can be evaluated using a similar approach.
Once the maximum and the minimum energy are known, sensors can adjust their
sleep schedule as described in Subsection V.3. 3.

V.5 PERFORMANCE EVALUATION

To verify our analytical results and to evaluate the performance of the scheduling
scheme proposed in Subsection V. 3.3, we built a simulator of a wireless sensor network
that can be configured to implement static, dynamic and energy-aware scheduling
schemes. In our simulation, we assumed that sensors are equipped with necessary
hardware to estimate their remaining energy, also we assumed that the header of
each packet transmitted by a sensor contains the current remaining energy of the
transmitting sensor. For static scheduling, awake time Ta was set to 10 time units
and sleep time Ts was set to 90 time units (a sensor is awake 10% of the time). In
dynamic scheduling, awake and sleep times was selected uniformly from the ranges
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FIG. 38: (a) Average number of tasks, (b) Percentage of under-recruited tasks, (c)
Average number of reliable tasks, executed in the network throughout its 0.2-reliable-
lifetime using different scheduling schemes.



104

[1,9] and [1, 89] respectively (on the average a sensor is awake 10% of the time). We
used the same settings of dynamic scheduling in our energy-aware scheduling scheme.

For the simulation configuration, we assumed a square deployment area of size
100m ? 100m. We adopted a reactive tasking model which assumes the existence
of a powerful sink node placed at the origin and responsible for assigning tasks to
sensors according to a Poisson point process. A task is defined using its position
(x, y) and QoS expressed in terms of required workforce w. Each task is assumed
to consume one unit of sensor energy. Sensors had a transmission range of 25m and
a sensing range of 15m. Unless mentioned otherwise, we assumed that each sensor
starts with 50 units of energy.

Recalling the definition of the «-reliable lifetime of the network given in Chapter
IV, to show the impact of using different scheduling protocols on network reliable-
lifetime, we ran our simulator using the three scheduling schemes presented in Section
V.3 and measured the 0.20 reliable-lifetime of the network. Figure 38(a) compares
the average number of tasks the network can execute throughout its 0.2-reliable-
lifetime using different scheduling protocols. The figure assumes different network
densities ranging from 0.1 to 1.0 sensors /m2. Interestingly, the number of tasks
executed when using our energy-aware scheduling scheme is hardly higher than its
counterpart values when using static or dynamic scheduling schemes. Although, this
might imply that our energy-aware protocol is not very useful in extending network
lifetime, however a deeper insight showed that this conclusion is incorrect.

While recruiting the workforce for some tasks especially in later stages of the
network lifetime, the number of sensors available at the task position may be less than
the minimum size of the workforce specified in QoS requirements. Hence, those tasks
are under-recruited and executed using whatever is available even if that number
is much lower than what was specified in QoS requirements. This situation gets
worse when the variations between sensor energy increase. For instance, if at a late
stage of the network lifetime all sensors within a certain area have expired except
for a single sensor which has e units of energy remaining, then the network can
assume incorrectly that it can execute up to e additional tasks, irrespective of the
workforce size required by these tasks. Fortunately, using techniques that consume
sensor energy evenly reduces the probability that such a scenario can happen. By the
time the first sensor within a certain area is about to expire, the remaining sensors
within the same area will be about to expire as well. Hence under-recruiting occurs
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for a small number of tasks and at the very late stages in the life of the network.
Our explanation is confirmed by Figure 38(b) that shows for different scheduling
protocols the percentage of the executed tasks that are under-recruited. On the
average, only about 5% of the tasks executed on networks running Energy-Aware
scheduling are under-recruited compared to around 25% of the tasks executed on
networks implementing static or dynamic scheduling.

Figure 38(c) shows the number of reliable tasks executed by different protocols.
By reliable tasks, we mean tasks that were executed while satisfying their required
level of QoS (i.e. number of sensors participating in each task is greater than or
equal to the required workforce specified in the task QoS requirements). As shown in
Figure 38(c), using Energy-Aware scheduling increases reliable-network lifetime for
different network sizes by around 18.1%. Before leaving this point, it is instructive
to note that the average number of executed tasks during the network 0.2 reliable-
lifetime when using static scheduling and dynamic scheduling is almost the same.
This result is consistent with the theoretical results, as for any dynamic scheduling
scheme one can always construct an equivalent static scheme where the sleep and
awake times of sensors are fixed at the averages of the dynamic scheme.

Figure 39(a) shows the distribution of sensor energy during subsequent stages of
the network lifetime when using static scheduling. For clarity of presentation, we
represented different stages by different colors. Figures 39(b), and 39(c) respectively
show sensor energy distribution in case of dynamic scheduling and energy-aware
scheduling. Apparently, when using static and dynamic scheduling as time passes
and network ages, the energy of sensors spans a broad range of the whole energy
spectrum which implies severely unbalanced consumption of sensor energy. On the
other hand, using energy-aware scheduling can bound variations in sensor energy
within around 4 energy levels in different stages of the network lifetime which implies
balanced consumption of sensor energy.

Figure 40 summarizes sensor energy distribution patterns for different scheduling
schemes and different network densities. In particular, the figure compares the av-
erage width of sensor energy spectrum throughout the network 0.2-reliable lifetime
for different network densities ranging from 0.1 to 1.0 sensors /m2. To estimate the
average width of sensor energy spectrum, we used the same formula we used earlier
in Chapter IV (i.e. equation (36)).
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Figure 40 reveals that the average width of sensor energy spectrum of energy-
aware scheduling is much narrower than the width obtained when using other
schemes. Moreover, although it is not shown here due to limited space, we found
that the spectrum width for static and dynamic scheduling schemes gets even larger
when sensor initial energy was set to larger values (e.g 70 or 100 units).

The large variations in sensor energy when using static or dynamic scheduling
protocols makes one expect that many of the heavily loaded sensors would die out
at an early stage of the network lifetime. Typically, when a large number of sensors
which reside at some spot die out, the network density at this spot decreases. Figures
41-(a), 41-(b), and 41-(c) capture this phenomenon when using different workforce
selection protocols with initial deployment densities of 0.3, 0.7, and 1.0 respectively.

As shown in Figure 41, the degradation in network density for static and dynamic
scheduling starts at relatively an earlier stage compared to energy-aware scheduling.
Table 4 lists the percentage of the network lifetime lived before the network density
starts to degrade for different schemes.

The degradation in network density can eventually lead to the creation of energy
holes. We conducted a set of experiments to capture the impact of different scheduling
protocols on the rate at which holes appear in the network. Figure 42 compares the
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TABLE 4: Percentage of network lifetime lived before density degrades
Density Static Dynamic Energy-Aware

0.3 ~64.0 64.3 90.8
0.7 54.2 54.4 93.4
O 52.4 52.7 93.3

growth rate of energy holes using static, dynamic and energy-aware scheduling under
different deployment densities. The initial deployment densities of Figures 42-(a),42-
(b), and 42-(f) are respectively 0.3, 0.7, and 1.0. The steep slope of the curve of the
energy-aware scheduling protocol shows that it can reduce the rate at which holes
appear in the network under different network densities.
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CHAPTER VI

CONCLUSIONS

This work has explored the construction and the advantages of having a virtual
backbone for WSNs. Specifically, we proposed a new backbone construction protocol
for WSNs where, in addition to the tiny sensors, several more powerful devices known
as sinks have been deployed. The protocol works equally well with static or mobile
sinks as long as they are capable of omnidirectional as well as directional transmission.
Initially, the deployment area around a given sink is tiled using identical regular
hexagons. Backbone sensors are selected to be the closest sensors to the centers of
the hexagons they represent. Collectively, all the backbone sensors in a certain disk
around the sink is referred to as the "Network Backbone" relative to that sink. We
also introduced the concept of "Backbone Switching", that can be used to create
alternative backbones by rotating the tiling hexagons for different arbitrary angles.
When several alternative backbones are available, the network can periodically switch
between them to balance energy consumption among sensors.

The main advantage of the constructed backbone is to help mitigate many of
the challenges inherent to sensor networks. In addition to sensor localization, the
proposed protocol provides an implicit clustering mechanism in which each hexagon
represents a cluster and the backbone sensor around the center of the hexagon is the
cluster head. Moreover, we showed how the proposed backbone can simplify many of
network management tasks including data aggregation and geographic routing. We
also point to how using mobile sinks on top of our backbone can reduce the growth
rate of energy holes within the network.

In addition to that, we showed the usefulness of the proposed backbone in energy
aware task management and workforce selection. We started by demonstrating how
tasking sensors improperly can affect the reliability and the durability of the network
by reducing network density, creating energy holes, and isolating the network into
disconnected islands. After that, we proposed one centralized and another distributed
workforce selection protocols for maximizing network lifetime by balancing task load
among sensors within the same sensing area. The centralized approach depends
on running a contention-based bidding rounds to select required workforce for any
task based on sensor remaining energy. Backbone sensors play a crucial rule in
coordinating the bidding process and in aggregating and forwarding results to the sink



112

node after task completion. On the other hand, the distributed approach works in
two phases. In the first phase, sensors within the task sensing range runs a distributed
protocol to estimate the maximum energy among themselves. After that, and in the
second phase sensors join the workforce in decision rounds based on their distance
to the task center and the difference between their current energy and the maximum
energy determined in the first phase. Again, after task completion, sensory results
are aggregated and forwarded toward the sink node through backbone sensors.

Due to the importance of using an appropriate sleep scheduling scheme on the
coverage capability of the network, we dedicated a separate chapter to discuss differ-
ent scheduling schemes and to demonstrate how our backbone can be useful for this
purpose. In Chapter V, We showed that when the monitored events in an area occur
according to a Poisson process, the PASTA property can be applied to the effective
sensor density (ESD) (i.e. density of awake sensors) as seen from the perspective of
the monitored events. Specifically, we showed that under a mild technical condition
the limiting fraction of the events that find k awake sensors in a certain area equals
the fraction of time that this area is under the surveillance of k awake sensors. This
result has a great importance as it justifies using the time-invariant probability dis-
tribution of /c-coverage to analyze different scheduling schemes. We also modeled the
sleep-awake cycle of a sensor as a renewal process and derived a general expression
for the limiting (i.e. time-independent) probability of a sensor to be awake at a given
moment. To the best of our knowledge this is the first time such a result is obtained
for sensor networks.

We have developed a rigorous mathematical analysis on several scheduling
schemes including static, dynamic, and energy-aware scheduling. We also briefly
discussed the problems inherent in each of these scheme. We proposed a backbone-
guided energy-aware scheduling scheme designed to extend network reliable lifetime
by balancing energy consumption among sensor nodes. The main idea of the pro-
posed scheme is to continuously and probabilistically adjust sleep and awake times
of sensors based on differences in their remaining energy. In particular, the proposed
scheme tries to prolong the sleeping periods of sensors with relatively low energy
and compensate for their absence by shortening sleeping periods of sensors with rel-
atively high energy. The main challenge is to do this without reducing the effective
density of the network. To achieve this goal, we conducted a probabilistic analysis
to determine necessary parameters needed for the adjustment process.
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We have conducted extensive simulation experiments to simulate the performance
of our backbone under different network sizes and network densities. We also consid-
ered different deployments in noisy and noise-free environments. Simulation results
showed that our backbone construction protocol can construct strongly connected
backbones that is well distributed across the whole network. The results also proved
that our backbone can be very useful in mitigating many of the typical challenges
inherent to sensor network design. For instance, when we compared the localization
accuracy achieved by our backbone against other localization techniques known in
the literature, simulation results showed that using the same number of sink nodes
(anchors), the localization accuracy achieved by our backbone is higher than those
achieved by (e.g. DV-HOP and APIT). Simulation results also demonstrated that
backbone-guided task management and scheduling can increase the reliable-lifetime
of the network by evenly consuming sensors energy and reducing energy differences
between sensors within the same sensing area.

VI. 1 FUTURE RESEARCH DIRECTIONS

Despite the encouraging results, many important challenges and research questions
remained unanswered. In this section, we list several future research directions
through which this work can be extended.

• In the construction protocol, it would be useful to reduce the amount of inaccu-
racy due to RSS; one way around this difficulty would be to estimate the initial
distance through several readings and to continuously update this estimate
form different messages received throughout the network lifetime.

• Given the limited on-board energy budget available to sensors, it would be of
interest to see how far can one streamline the computational requirements of the
construction protocol. In other words, in the current version of the construction
protocol, backbone sensors in different columns are selected simultaneously,
can we also parallelize the selection of backbone sensors in different rows? The
answer to this question is yes, one way to do this is to let the sink node estimate
the positions of all the hexagon centers and to broadcast them to all the sensors.
After that, sensors in different hexagons can simultaneously estimate the closest
sensor to the center of each hexagon.
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• Sensor Synchronization is one of the most challenging problems in sensor net-
works. It would be of interest to show, if possible, how our proposed backbone
can be useful in simplifying the synchronization problem.

• Network security is something that we completely overlooked in our presented
work. Revisiting the proposed protocols form a security point of view would
definitely open a new dimension of research challenges.

This all promise to be exciting research directions for future work.
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APPENDIX A

DISTRIBUTION AND EXPECTATION OF ?
X+Y

Given the uniformly distributed random variables X and Y defined as shown below,

X£U[a,b], 0<o,<b

Y€U[c,d], 0<c<d
We define the random variable Z as,

X
0 < 0 + c

X + Y
We are interested in Fz[Z), VZ G R as well as E[Z].
Since X and Y are positive, so is Z. Moreover, It is straightforward to realize that,

a <z< b
a + d b + c

Consequently,
F2[Z) = 0 VZ < —^-¡K ' - a+d

and

FAz) = 1 vz > JL·
Hence, from now on, we assume that

a b
Z £

Initially, we observe that,
a + d' b + c

{?£t*>}·{**?+?"{*-?^}
Now consider the planar domain

D= < (tt, ?) \a < u < 6; c < ? < d; u <v>

In this notation, Vz € [^, ^] ,

Consider the line d defined by the following equation
1 -z

? — u
Z

Each value of ? determines the slope of the line d which in turn determines the
boundary of the area of interest D.
Now, we distinguish between the following two cases.



Case 1 ( ad < be ) Case 2 ( ad > be )
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FIG. 43: An illustration of different possible cases or different ranges of the random
variables X and Y

A.0.1 Case 1 {ad < be)

This is equivalent to f < ^. In other words, the slope of the line passes through (0, 0)
and (b,d) does not exceed the slope of the line passes through (0,0) and {a,c). As
shown in Figure 44, depending on where d intersects with the line of equation ? — c,
we have the following subcases:

• Subcase 1.1: -9H < ? < -^- , the intersection points of the line ? = ^u witha+d — a+c ' L 2

the rectangle are (a, (1~z)a) and (-^,d). It follows that our area of interest
D is the triangle whose vertices are the points (a,d), (a, ~ ), and {f^,d)
which can be evaluated as,

\D\
1 zd

— a
2\l-z
[{a + d)z-af

d
zìa

2^(1 - ?)

Hence, the required probability is evaluated by,

[(a + d)z -a}2P[{Z < z}} Az(l-z) (90)

— , the intersection points of the line ? = ^u with
the rectangle are (^, c) and (f^,d). In this subcase, D is the trapezoid whose
Subcase 1.2: ^ < ? < b+d
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vertices are the points (r~,

\D\ =

P[{Z<z}} =

,c), {a,c), (a, (Z), and (??^,?). Hence
(d

2

(d-c)

ZC
-a] +

zd
l-z y vi

2{1_z)l(2a + d+c)z-2a)
(d-c)[(2a + d + c)z-2a)

2(1 - z){d - c){b - a)
(d-c)[(2a + d+c)z-2a\

A(I -z) (91)

Subcase 1.3: & < ? < £-c (?-f\the intersection points are (??^,,?) and (6,
In this subcase, apparently, it is more appealing to start by evaluating the
area of D which is a triangle whose vertices are the points (?^,?) (6, c), and
(Ò, ^1"2-*6). The area of D can be evaluated as,

\D\

Consequently,

P[{Z < z}]

2 V l-z
[b-(b + c)z]2

2z(l - z)

\D\

zc \ f(l-z)b

\D\
(d-c)(b-a) (d-c)(b-a)
? [b-(b + c)zf

Az(l-z)
(92)

? <

From equations (90), (91), and (92), it follows that in the case ad < be, Fz(z) can
be defined as,

0
((a+d)z-a)2

Az(l-z)
(d-c)[{2a+d+c)z-2a]

1- '
Fz(z)

a-\-d

a+d — a-t-c

??(?-?)

-2- <Z <a+c — b+d (93)
b+c

1 6+c < Z

A.0.2 Case 2 (ad > be)

The case condition is equivalent to | > ^. In other wards, the slope of the line
passes through (0, 0) and (6, d) exceeds the slope of the line passes through (0, 0) and
(a, c). In general, case 2 is very similar to case 1 and can be handled in a similar
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? a

b+c

FIG. 44: An illustration of the different subcases of Case 1

way. Again, and as shown in Figure 45, depending on where d intersects with the
line of equation ? = c, we have the following subcases:

Subcase 2.1: -j-¡ < ? < -?-j, the intersection points of the line ? 1-2
a+d b+d

u with

the rectangle are (a, (1~*)a) and (??^,?). It follows that our area of interest,
D, is the triangle whose vertices are the points (a,d), (a, (1~^a), and (fz¿,d)
which can be evaluated as,

\D\ (a + d)z — a]
2z(l - z)

Hence, the required probability is evaluated by,

[{a + d)z -a}2P[{Z < z}] Az(l-z) (94)

Subcase 2.2: rh < ? < -7- , the intersection points of the line ? = -^u with0-\-a n-i-r > * Z

the rectangle are (a,
a+c '

and (6, In this subcase, D is the trapezoid
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a+c

!¿??a?-'""^*)
> ?

FIG. 45: An illustration of the different subcases of Case 2

whose vertices are the points (a, ^-^£), (a,d), (b,d), and (6, ^-^). Hence,
(6 -a)O

P[{Z < z}]

2

(ft -a)
22

4.?!\ + ??-!1^
[(2d + a + 6)2 -tt-6]

(ft-ffl)[(2d + a + 6)z-a-ft]
2z(d-ß)(6-o)

(6 - a) [(2d + a + b)z - a - b]
Az (95)

Subcase 2.3: -^. < ? < ^, the intersection points are (fr^c) and (Ò
Again, it is more appealing to start by evaluating the area of D which is a
triangle whose vertices are the points (^, c) (b, c), and (6, (1~z) )¦ The area of
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D can be evaluated as,

|ñ| if»--ïï-2 V 1-z
[b-(b + c)z]2

2z(l-z)

[l-z)b

Consequently,

P[{Z<z}] = \D\ \D\

= 1

(d-c)(6-a) {d-c)(b-a)
[b -(6 + c)2]2

Az(I (96)

From equations (94), (95), and (96), it follows that in the case ad > be, Fz(z) can
be defined as follows,

Fz(z) = {

0 ? < a+d
((a+d)z-a)2

Az(l-z)
(b-a)[(2d+a+b)z-a-b] b < 2 < a

Az b+d — a+c
(b-(b+c)z)2

Az(l-z)1

a+d — b+d

a+c — b+c

(97)

1 b+c —< Z

A.l EVALUATING E[Z]

Now, we turn our attention to the evaluation of E[Z]. In particular, we show that,

E[x+yI
1 c2

= 2 + - In
b + c
V+d +

(f-c2
A

In
a + c

b~+~d
d — c

+
cP-a2

In
a + d
a + c

1 c2 / b-a\ b\ . 1- + -In 1+ + — In 1 + L2 ? V a + c/ ? V ö + c
d2

In 1 +
b-a d-ß
a + d J A V a + c

where ? = 2(6 - a)(d - c).
Because the distribution function is different, we again have the same two cases

we pointed out earlier.
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A. 1.1 Case 1 (ad<bc):

To prove this, we find it more appropriate to start the evaluation of E[Z] using the
following formula,

E[Z] = / [l-Fz{z)]dz= dz + [l-Fz(z)]dz +
b+d I b+c

[1 -Fz(z)]dz + J b [1-Fz(z)]dz (98)b+d

GJo
dz

a+ d (99)

/S—

a+ci_
s-,

((a + d)z — a) ¦dz
a+d

a

G a+c

a+d

d +

Az(I-Z
(a + d)2z2 - 2a(a + d)z + a2

Az(I - z)
dz

1 + (a + df l-2-l\ 1 2a(a + d)z-a2
\-z J + A iTTTi)

(a+d)2 ^ a(d-c) ? f«+c -a*z-d'z+2a*,z-a' j(a+d)(a+c) ^ J^3 Az(l-z) UZ
-a2z-d2 z+2a2z-a2

However,

/¦»+<= a2 ? — d2!
y . ??(?- (¿2; 1_ /^ (a2 - ?

AJa (1 - z) z(l - ?)A

1_ /1^ (a2
fl + rf

ft

1 /"a+c -

Ai a (T

(a2 - rf2)
1-2)
2-d2) a" a'2

(1-*
¦dz

-d2 a2 Jdz

a+c— a

Z

A= ^ [ In-^-? ? a+d—a
\ a+d /

d2 /, a + d , c
= -r-ln + In-

A \ a + c d
Substituting equation (101) into equation (100) yields,

In
a+d /

a2 /, a + d
? I « + c

(100)

(101)

[I- Fz(z)] dz d2-a2 ? a+d _ eP ? d , a(d-c)? ln a+c ? U c "¦" (a+c)(a+d) 1 + (a+d)2

a+d

(102)
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And similarly,

I [1- Fz(z)] dz -L^ (d-c)\(2a+d + c)z-2a\ ,1 — -^—r-, ; dz
A(IÍ1+C

[& (ri-c)(2a + ri+c)(l-z-l) 2g(ri - e)/^ A(l-z) A(I -?)
b

-?:
o.

-L

*+¿ (d - c)(2a + d + e) 2a(d-c)-(d-c)(2a+d+c) .
?(1-2) a?I + ^ ^ ^ +

s+* ? + (d - c)(2a + d + e) (d-c)(d + c
a.-\-c

b

?(1
dz

+ ¦In·(d-c)(2(i>-g) + (2g+d+e)) (bc-grf)
? ' (o+c)(b+d)

d2-c2. Jn o+c + d2-c2 Jn d + (bc-ad)(d-c)(2b+d+c)

b
~ b+d

b+d ~"~ ? A(a+c)(b+d.) (103)

And also,

bb+r'[l-Fz(z)}dzJ t+d
^ (6 -(6 + f)2:

j t+d
b

? r^

dz

2^2b2-2(b + c)bz+(b + c)2z dz
b+d

b
b+c.

V2 , _62_
2 "^ 1-2

1 /??

2(1 - ?)

2{b+c)b (6+c)2(l-2-l)
1-2? /_fe_

b+d

Aï 62

1-2 ¿2

b2 + 2òc - (6 + e)

(6 + e)2 ò(c - ri)
+ U

1 -2

sfc 62 e2
+

¿2

? (6 + ri)(6 + c) ? 7-A- 2 1-2b+d

--^±^— + 1 fò2 In ? - e2 In CÌ2(b-a)(b + d) A\ A-, ?-. I

dz

b(b+c)
2(b-a)(b+d)

C? d c2-b\-t- In - + —-— In
Ac A

+ ¿ (-62 In ^
b+d b+d )

b+d c2 In I + e2 In ^)
6 + e b(b + e)
b + d ~ 2(b-a)(b + d) (104)

Now, gathering all the pieces together,

E[Z] a-\-d + -d2 , d2-C2 , Ç2.
? "G" ? "^ ? In i + ^# Jn a±á + <£=£ in a±£ + ¿_dñ In h+c

+ a(d— c) , q(d-c)(q+d)2 .
~G /„ ? .?/-, ? .J\ ? "T(a+c)(a+d) (a+c)(a+d)A

a+c

(bc-ad) (d-c) (2b+d+c)
A(a+c)(b+d)

b+d + ?
6(b+c)

2(6-a)(6+d)

6+d

(105)
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Interestingly, the non-logarithmic terms can be simplified as follows,
(be - ad)(d - c)(2b + d + c) b(b + c)h

A(a + c){b + d) 2(ò- a)(? -M)
{be - ad){(b + c) + (ò + d)) - b{b + c){a + c)

2(6 - a)(a + c) (6 + d)
6c(6 + c) + òc(6 + d) - ad(6 + c) - ad(6 + d) - ba{b + c) - 6c(6 + c)

2(6-a)(a + c)(6 + d)
6f + d) - ad{b + e)- ad(b + d) - 6o,(6 + a)

2(6 - a)(a + ß) (6 + d)
6c(ö + d) - ad(6 + d)- a(b + c)(6 + d)

2(6 - a)(a + c) (6 + d)
bc — ab — ae — a<i

2(6 -a) (a + c)
a6c — a2b — a2c — a2d + bed — abd — aed — ad2

2(6 -a)(a + c)(a + d)
a(d — c) a(d — c)(a + d)2

(u + c){u+d) (a + c){a + d)A
2a(d - c)(6 - a) + o(o + d)2

2(a + c)(a + d)(6-a)
2a(d - e){b - a) + a(a + d)2

2(u + c)(u + d)(b - u)
a(2bd - 2bc + 2ac + a2 + d2)

2(a + c)(a + d)(6-a)

h + h = abc-a2b-a2'c-a2 d+bed—abd-aed-ad2 +2abd—2abc+2a2'c+a3 +ad2
2(6-a)(a+c)(a+d)

abc-a2b-a2c-a2d+bcd-abd-acd~ad2+2abd-2abc+2a2c+a3+ad2
2(b-a)(a+c)(a+d)

—ad(a + c) + (a + c)bd — ab(u + c) + o2(c + a)
2(6 - a) (a + c)(a + d)

—ad+ bd — ab + a2
2(6 -a)(a + d)

d(b — a) — a(b — a)
2(6 - a) (a + d)

d — a ,(106)2(tt + d)
Substituting the value of equation (106) into equation (105), E[Z] can be written as,
pG^, a d — a d2 — a2 , a + d d2 — c2, a + c c2 — 62 6 + c# z = j + ^T ? + —X— ln + —?— ln I 1 + —a— ln I ;a + d2(a + d) ? a + c A b + d A b + d

1 c2-62 b + c d2 -c2 , a + c d2 - a2 ? a+ d .??„.= ñ + —?— lni ;+ —a— mi ; + —?— ln (107)2 ? 6 + d ? 6+d ? a+c y '
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Which can be further simplified and rewritten in any of the following formats,
1 c2 - b2 c2 -b2 (P-C2

E[Z] = - + -^-In(O + C) ^- ln(& + d) + —--— ln(a + c) -
2(P — c2 (P — a? d? — a,

' - In(O + d) H — ln(a + d) — ln(a + c)

and,

? ? v ' ?

= I + ^x^(ln(ò + ci~ ln(b + d^ + ^-¿^-(ln(a + c) - ln(6 + d)) +
<P -(P
—-— (ln(o + d) - ln(a + c))
1 c2-ò2 L . b2-d2 iu .= - + —^- ln(6 + c) + —-^- ln(ò + d) +
O2 - C2 (P- (P^-^ln(a + c)+----^ln(a + d) (108)

nM 1 c2, 6 + c b2b + d d2. b + d a2, a + d ,inn.£2 = - + -r-ln + ^rIn-; ^r In ?~?G1? (109)L J 2 ? a+c A b+c A a+d A a+c v
and also,

1 c2, ( b-a\ b2 , / d-£[Z] = - + -In 1 + -—- +-In 1 +
c

2 ? V a + c/ ? V b + c
d2 , /' 6 — u\ a2 , ? d — c\ /11?.-r-ln I + 3 -^rln - + (?0? V a+d) A \ a + c)

?.1.2 Case 2 (ad > be):

Again, we start by writing E[Z] as follows,

£[Z] = / [l - Fz{z)] dz = dz + [I - Fz{z)] dz +
a b

/°+C [I - Fz(z)] dz + T+" [I - Fz(z)] dz (111)
''b+d J -¿+7:

Now, looking at the terms of equation (111) separately yields,
b b

/b+d f b+d^ [I- F2(Z)] dz = J^ l- ((a + d)z-af

J.
a

L

Az(I - z)
*+J (a + d)2 z2 -2a(a + d)z + a2

Az(I -z)a-\-d

T^ (a + d)2 fl-z-l\ 1 2a(a + d)z-a? ,1 + -—t-1- ¦ —. + -i ,' , dz1 - ? ) A 2(1 - z)
fb+d -a2z-d2z+2a2.(a+d){b+d) ' J-f- ??(?-?)

a+d

? + ^) uÊÉhs + Jg ^'-Ùt%'-* dz (112)
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However,

/h+d U2Z — (Pz —
a_ Az(I -?)

¦dz 1 [^ (a2 -d2)
A

a+rf
6

1_ /^ (a2 -*/*, (?-
rf2)

a+íi
b

1 /"(¦+<* — C

d y. (T=
,2 / b+d-b

^ l g+d-g

2)

?(1

?

2

-dar

(fe

:?-*)
¦dz

d2-à
a+d J

2 a + d
A

In fe+g
g

a+d

. „ . „ a2 . 6In ¦; t —r~ ln ~? b+d A a

Substituting equation (113) into equation (112) yields,

[1-F7Az)] dZ - ^gîlr.g+g-^lr.ft-U rf("-«)
p+íi

And similarly,

/T- ^tofâ-^ï + (a+d)(b+d) 1 + (a+d)2

/?[1- F2(Z)] ? = /^1- (&-*)[(2«*+a + 6)?-a-6]&
b+d J-6—

b+d
??

/1^ A-(6-o)(2rf+q + 6) ^y b ? ??17 b+d

a*
dz

[a-b)(2c+a + b) a

a + e b + d
+

b2-a2

(113)

;il4)

In b
b+d

(a-b)(2c+a+b)(ad-bc) b2-a2
A(a+c)(b+d) "t" ?+ !L^^ln6+d + Hi-2a+c ' ?6 -° In ? (115)
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And also,

/¦•fe Fz(z)] dz -?:
b

1 Gt+7;

? X4

^ (6- (ò + f)
Az(I-

¦dz

2 Jlb2 -2(b + c)bz+ (b+c)2 ? dz

?

z(l-z)
62 2(b + c)b (b + c)2(l

1 1
¦ dz

a+c
b

A
1 ?''* „ X2 ^2 b2 + 2bc - (b + e)2 ,^~(ò + c)+7 rrz dz

n-\-c

(b + c)2 c(a-b) 1_ f& b^_ ~2
A 7_2_ ;

2(a + c)(c-d)

Now, gathering all the pieces together,

a + c) (b + c

2(a + c)(c-d)
a + e

C2In

\-z

b+c-b '
b+c

a+c—a
a+c

dz

+ ^1nU (H6)b+c Aa y '

E[Z] = +
d(b — a)

a + d (a + d)(b + d)
1 + (a + df

c(b + c)
2(a + c)(c-d)
?2-a2? a b''—Ä— ln T + -A b

+
d2 a

A

A

2 , a + dIn

+

,2

(a - b)(2c + a + b)(ad - be)

b + d
a* , ò 6— In - + —T-
? a ?

A(a + c)(b + d)
? -2b + d

In +

-?-

a + c

- c2 , a + c b2 , b—— In 1- — In -? b+c A a (117)

Again, the non-logarithmic terms can be simplified as follows,

+
c(b + c)(a - b)(2c +a + b)(a,d - be)

A(a + c)(b + d) T 2(a + c)(c - d)
(2c+a+b)(bc-ad) - c(b + c)(b + d)

2(b + d)(a + c)(d - c)
(20c2 - 2acd + abc - a2d + b2c - abd) - (b2c + bed + be2 + âd)

be2 — 2acd + abc
2(b + d)(a + c)(d - c)

a2d — abd — bed — (?d
2(6 + d)(a + c)(d - c)

(abc2 -2a2cd+a?bc-a3d-a2bd-ac2d) + (bc2d-2acd2 -a2d? -abd2 -bed2 -c2d2)
2(b+d)(a+c)(a+d)(d-c)
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1 +d{b-u)
{a+d)(b + d)

d(b - a)
{a+d)(b + d) '
2bd2 - 2bcd + 2acd

(2bd

(a + d)2
?
2ad 2bc + 2ac) + (a2 + 2ad + d2)

2{b-a){d-c)
a2d + d?

2{a + d){b + d)(d - c)
(2aòtP - 2abcd + 2a2cd + a3d + ad3) + {2bcd2 - 2bc2d + 2ac2d + a2cd + cd3)

2(a + d){b + d){a + c)(d - c)

h + ¿4 — 2(b+d)(a+c)(a+d){d~c)
(2abd2-2abcd+2a2cd+a3d+ad3) + (2bcd2-2bc2d+2ac2d+a2cd+cd3)

2(a+d){b+d)(a+c)(d-c)

Rearranging terms,
(abd2 - abed + bed2 — b(?d + ad3 — acd2 + cd3 — c2gP)

+

h + h +
2(a + d)(b + d)(a + c){d - c)

(-a2bd + a2bc - abed + abc2 — a2d? + a2cd - acd2 + ac2d)
2(a + d)(b + d){a + c)(d-c)

_ d(abd-abc+bcd-bc2 +ad2 -acd+cd2 -c2d)-a(abd-abc+bcd-bc2 +ad2 -aal+cd2 -c2d)
~ 2(a+d)(b+d)(a+c)(d-c)

{d - a)((abd - abc + bed - be2) + (ad2 - acd + cd2 - c2d))
2(a + d){b + d){a + c)(d-c)

_ (d - a)(b(a,d - a,c +cd- c2) + d{a,d - ac + cd- c2))
2(a + d){b + d){a + c){d - c)

(d — a)(b + d)(ad — ac + cd — c2)
2(a + d)(b + d)(a+c){d-c)

_ (d - a)(a(d — c) + c(d — c))
~ 2(a + d)(a + c)(d - c)

(d — a)(a + c)(d — c)
~ 2(a + d)(a + c)(d - c)
= d~a (118)2(tt + d) K '

By substituting the value of equation (118) into equation (117), yields E[Z] as,
?t?G/71 a ? d~a 1 d2—a2 i^ a+d , b2-a2 i„ b+d , b2— <? i„ q+ch[z\ = an + 2(o+oT + ^- m t? + —ä~ m oTïï + -?~ m t+?

a + d b2 -a? b + d b2 - c2 , a + c /???.H -, In —: 1 ?— ln—— (119)1 &-a2?E[Z] = - + —-— In t ,L J 2 ? b+d ? a+c ? b+c
We can relate equation (107) to equation (119) by the following nice argument,

E[Z] - E

= E

X
X + Y

E
X + Y -Y

X + Y

1-
Y

X + Y
= \-E

Y
Y + X = 1 - E[Z']
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By exchanging the random variables X ?· Y, and their corresponding ranges
a 4$ c, and b <& d, one can convert from case 1 to case 2 and vice versa. More
interestingly, evaluating the difference between equation (107) and equation(119)
yields,

1 c2 - b2 , b + c d2 - c2 , a + c d2 - a2 , a + dDifference = - H t— In ; H — In H t in2 ? b + d ? b + d A a + c
1 d2 -a2 , a + d ò2 - a2 , ò + d ò2 - c2 , a + cIn r In t in
2 ? ò+d ? a + c ? ò+c

= ¿((c2-ò2 + 62-c2)ln(6 + c)+
(ft2 _ c2 + ß2 _ d2 _ ft2 + ¿2 _ fc2 + fl2) ln(fe + d) +
(d2 - c2 + a2 - d2 + ò2 - a2 -62 + c2)ln(a + e)+
(d2 - a2 - d2 + a2) ln(a + d)) = 0 (120)

Which implies that equation (107) and equation(119) are equal, completing the
proof.
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