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ABSTRACT 

 

DEEP RECURRENT LEARNING FOR EFFICIENT IMAGE RECOGNITION USING 

SMALL DATA 

 

Mahbubul Alam 

Old Dominion University, 2018 

Director: Dr. Khan M. Iftekharuddin 

Recognition is fundamental yet open and challenging problem in computer vision. 

Recognition involves the detection and interpretation of complex shapes of objects or persons 

from previous encounters or knowledge. Biological systems are considered as the most powerful, 

robust and generalized recognition models. The recent success of learning based mathematical 

models known as artificial neural networks, especially deep neural networks, have propelled 

researchers to utilize such architectures for developing bio-inspired computational recognition 

models. However, the computational complexity of these models increases proportionally to the 

challenges posed by the recognition problem, and more importantly, these models require a large 

amount of data for successful learning. Additionally, the feedforward-based hierarchical models 

do not exploit another important biological learning paradigm, known as recurrency, which 

ubiquitously exists in the biological visual system and has been shown to be quite crucial for 

recognition. 

Consequently, this work aims to develop novel biologically relevant deep recurrent 

learning models for robust recognition using limited training data. First, we design an efficient 

deep simultaneous recurrent network (DSRN) architecture for solving several challenging image 

recognition tasks. The use of simultaneous recurrency in the proposed model improves the 

recognition performance and offers reduced computational complexity compared to the existing 

hierarchical deep learning models. Moreover, the DSRN architecture inherently learns 



   

 

meaningful representations of data during the training process which is essential to achieve 

superior recognition performance. However, probabilistic models such as deep generative 

models are particularly adept at learning representations directly from unlabeled input data. 

Accordingly, we show the generalization of the proposed deep simultaneous recurrency concept 

by developing a probabilistic deep simultaneous recurrent belief network (DSRBN) architecture 

which is more efficient in learning the underlying representation of the data compared to the 

state-of-the-art generative models. Finally, we propose a deep recurrent learning framework for 

solving the image recognition task using small data. We incorporate Bayesian statistics to the 

DSRBN generative model to propose a deep recurrent generative Bayesian model that addresses 

the challenge of learning from a small amount of data. Our findings suggest that the proposed 

deep recurrent Bayesian framework demonstrates better image recognition performance 

compared to the state-of-the-art models in a small data learning scenario. In conclusion, this 

dissertation proposes novel deep recurrent learning pipelines, which utilize not only limited 

training data to achieve improved image recognition performance but also require significantly 

reduced training parameters.   
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CHAPTER 1 

 

INTRODUCTION 

The twenty first century has seen rapid growth in computing power and a massive 

accumulation of human-centric data to an unprecedented scale. These advancements have 

rejuvenated computational intelligence (CI) that has now become an indispensable part of 

everyday life. In the past, the scope for CI had been limited to the application of industrial 

control and robotics. However, recent advancements in CI expand the application towards more 

complex domains such as computer vision, bio-medical image processing, natural language 

processing, cyber security and many more. Computer vision has become ubiquitous in our 

society, with applications in search, image understanding, medical imaging, and autonomous 

vehicles. The crucial parts of these applications are solving visual recognition tasks such as 

image recognition. Robust image recognition is a fundamental yet open and challenging problem 

in computer vision. Research has gradually been evolved for decades after starting with 

traditional machine learning at the core of intelligent systems to solve complex pattern 

recognition problems such as image recognition. However, machine learning techniques have 

limitations in their ability to process natural data or images in raw formats. Different pre-

processing steps are used to extract representative features from raw data or images, which are 

more amenable to machine learning models. This intermediate representation of raw data, also 

known as the “hand-engineered” feature, requires domain expertise and human interpretation of 

physical patterns such as texture, shape, and geometry among others. There are two major 

problems with “hand-engineered” features that impede any major progress in intelligent systems. 

First, the choice of “hand-engineered” features is application dependent and requires independent 

evaluation. Second, “hand-engineered” features are extracted from each training sample in a 
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stand-alone manner without the knowledge of inevitable noise and variations in data. Finally, 

“hand-engineering” of features may perform excellently with some input instances but may 

completely fail to extract quality features in other instances, which can lead to high variability in 

visual recognition performance.  

A solution to the limitations of  “hand-engineered” features has emerged through 

mimicking functions of biological neurons in artificial neural networks (ANN). The potential of 

ANNs is recently being exploited with access to large trainable datasets, efficient learning 

algorithms, and powerful computational resources. These new techniques in machine learning 

over the last decade are referred to as deep learning [1, 2] which is largely impacting the 

computer vision domain, especially visual image recognition. The rapid success of deep learning 

over traditional machine learning may be attributed to three aspects. First, it offers end-to-end 

trainable architectures that integrate feature extraction, dimensionality reduction, and final 

classification. Second, useful and intermediate features can be optimally learned from both input 

examples and classification targets without using one generic feature extractor for all 

applications. Third, deep learning methods are flexible enough to capture underlying nonlinear 

relationships between inputs and output targets at a level far beyond the capacity of ‘hand-

engineered’ features. However, current state-of-the-art deep learning models have two major 

limitations. First, the depth, complexity, and training parameters of these models increase 

proportionally to the challenges posed by the image recognition task. Second, these models 

require thousands or millions of labeled training examples to achieve a good generalization for 

solving the image recognition task. The existing research efforts in deep learning for image or 

visual recognition are designing efficient architectures following the information processing in 

the primate visual systems. Hence, it is essential to study the working principle of the recognition 
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pipeline in the primate visual system for designing a more efficient deep learning recognition 

model.  

1.1 RECOGNITION IN PRIMATE VISUAL SYSTEMS 

An understanding of the neuronal circuits architecture involved in the primate visual 

system is very important towards building a more efficient computational deep learning 

recognition model. Recognition in primate visual systems starts from the eyes. A high-level 

schematic representation of the visual object recognition areas in the primate visual system is 

shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

Fig.1. Schematic representation of the visual object recognition areas in the primate visual 

system. This is a high-level representation of information processing stages along the ventral 

visual stream. 
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The photoreceptors in the retina receive a light signal which is considered as input to the 

visual system. The retina itself includes a complex distributed circuitry to process the incoming 

visual information into a signal called the retinal ganglion cells [3-5]. This signal is then 

conveyed to the lateral geniculate nucleus (LGN) in the thalamus which, after processing, sends 

the signal to the primary visual cortex (V1) [6-8]. V1 is composed of both simple and complex 

cells [9]. These cells are responsible for extracting low level information from the signal 

received from the thalamus [10]. Several studies [11-13] have shown that, in addition to 

receiving feed-forward input from the thalamus, V1 receives feedback signals from higher 

cortical regions. The information from V1 emerges into two main pathways: ventral and dorsal. 

The ventral pathway is particularly involved in recognizing objects, whereas, the dorsal pathway 

is responsible for the localization of objects and action towards those objects [14]. In the ventral 

pathway, the information flows from V1 to V2 and then to V4. In addition, V1 also back-projects 

the signal to the thalamus [11]. In fact, all the visual areas mentioned so far back project the 

signal to the previous cortical regions [15]. Finally, the processed signal from V4 is sent to the 

inferior temporal (IT) cortex region of the ventral stream [13]. IT represents the last exclusively 

visual area where the actual recognition happens through a decision making process. On the 

other hand, the dorsal pathway is thought to perform object localization, and motion detection 

tasks primarily through medial temporal (MT) and medial superior temporal (MST) regions [16].  

1.2 BIOLOGICALLY INSPIRED COMPUTATIONAL VISION MODELS: CURRENT 

TECHNIQUES AND LIMITATIONS 

The early computational recognition models inspired by the biological visual system are 

developed based on handcrafted techniques [17-20]. These techniques, however, are applicable 

for solving simple object recognition tasks. Additionally, the features extracted using hand-
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crafted techniques are not general enough to represent different types of objects. To address this 

limitation, learning-based hierarchical models are developed to extract features directly from the 

input samples.  The fundamental units of these models are artificial neural networks (ANNs) that 

closely mimic the biological neural architectures found in the primate brain.  Moreover, the 

hierarchical working principle of the learning based recognition models is inspired by the 

hierarchical information processing observed in the ventral pathway (see Fig. 1) of the primate 

visual system [21]. Several successful hierarchical ANN (also known as deep neural network 

(DNNs)) models proposed in the literature are convolutional neural networks (CNNs) [22, 23], 

deep belief networks (DBNs) [1] and stacked autoencoders (SAEs) [24]. These models are 

capable of extracting both simple and complex features similar to the ones witnessed in the V1 to 

V4 regions of the ventral stream. Consequently, they have shown excellent performance in 

solving several computer vision tasks, especially complex object recognition [25]. However, 

these hierarchical models utilize thousands of neurons connected via millions of synaptic weights 

to perform the complex recognition task. This significantly increases the computational 

complexity of the models and requires a huge amount of computing resources. Also, current 

state-of-the-art CNN, DBN, and SAE models require thousands or millions of labeled training 

examples to achieve good generalization for solving the intricate image recognition task. In 

comparison, human learners usually require just one or a few examples to perform the learning 

task of a new image category and make meaningful generalizations to novel instances.  

The above mentioned biologically inspired hierarchical models share several properties 

with the biological visual system. However, a prominent limitation is that these models are based 

on generic feed-forward architectures while in the visual system both local (ventral pathway), 

and global recurrent connections are abundant.   



   

 

6 

1.3 CONTRIBUTION OF LOCAL BACK-PROJECTIONS IN VISUAL PATHWAY FOR 

RECOGNITION 

Several neurobiological studies [26-28] have shown the importance of local recurrent 

back-projections in the visual areas of the animal brain for recognizing objects.  

Fig. 1 shows that the visual areas (V1 ↔ V2 ↔ V4 ↔ IT) in the ventral pathway back project 

information to the earlier areas enabling local recurrent information processing for the object 

recognition task. Local recurrent processing can be thought of as a top-down process, except that 

the signal originates from the ventral stream itself [29]. In a recent study, Koivisto et al. [30] 

reveal strong evidence of recurrent feedback circuits engaged during visual processing. The 

authors use external stimulation (transcranial magnetic stimulation (TMS)) to temporarily 

prevent a targeted brain area from responding for a specific time period. The time period is 

intentionally set to disrupt the recurrent response of the targeted areas. The experiment is 

conducted using functional magnetic resonance imaging (fMRI)-localized TMS to selectively 

inactivate V1/V2 for a couple of milliseconds while subjects categorize images. Experimental 

findings show that applying TMS to V1/V2 greatly impairs subjects’ categorization performance. 

Earlier work from Corthout et al. [31] demonstrates that applying TMS over V1 impairs letter 

recognition performance. Collectively, these experiments show that the disruption of information 

processing in early visual areas impairs visual recognition. The above-mentioned biological 

evidence suggests that local recurrent processing in early visual areas plays an important role in 

visual recognition.  

As mentioned in the previous subsection hierarchical feed-forward based computational 

deep learning models do not exhibit the local back-projections observed in the ventral stream of 

the visual system. Therefore, these models can be viewed as crude approximations of the 
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biological recognition system. We believe that a hierarchical/deep model with local recurrent 

connections may lead to a more biologically plausible and efficient computational recognition 

model.  

1.4 LEARNING FROM SMALL DATA 

 In typical computer vision applications, such as image recognition, machine learning, 

especially deep learning techniques, requires thousands, or even millions of training examples to 

achieve good generalization. Conversely, human learners are capable of effectively performing 

complex image recognition tasks when the training data are very sparse. In fact, in many cases, 

only one example is often sufficient for humans to comprehend a novel category and make 

meaningful generalizations of new instances even when it is not possible to classify precisely 

[32]. Several studies [33-35] have shown that humans are able to perform accurate classification 

after observing just three or four examples. Consequently, learning from limited training data is 

an essential characteristic for computational recognition models such as deep learning. However, 

current state-of-the-art deep learning techniques such as CNNs, DBNs, and SAEs perform poorly 

for solving any computer vision problems, especially image recognition in scenarios where 

labeled training data is scarce. Therefore, in recent years, the challenge of learning from a limited 

amount of data has drawn increasing attention in the machine learning and deep learning 

research community. Nevertheless, there are very few known techniques for handling such an 

intricate task. These techniques are still in the early stage and do not generalize well for solving 

complex computer vision problems. Therefore, the problem of learning with small data is still an 

open challenge in the machine learning domain and requires extensive research for designing an 

efficient deep learning framework.      
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1.5 PROPOSED WORK AND CONTRIBUTIONS 

 This dissertation addresses two major limitations of the current state-of-the-art 

computational deep learning models: 1) the need for a large number of training parameters, and 

2) the need a large amount of training data. Consequently, we propose biologically inspired 

novel deep recurrent learning frameworks for solving complex computer vision tasks such as 

image recognition using a significantly fewer training parameters and limited training data. The 

dissertation has contributed to three journal manuscripts and three conference proceedings as 

follows. 

 A novel biologically inspired deep simultaneous recurrent network (DSRN) is proposed 

in order to improve image recognition. The DSRN model utilizes extensive weight sharing in the 

hidden recurrent layers that significantly reduces the number of trainable parameters. The 

simultaneous recurrency offers further depth within each layer in addition to the overall deep 

structure of the network that in turn enables more robust image recognition. Moreover, we show 

the generalization of the deep simultaneous recurrency concept in a generative model by 

proposing a deep recurrent generative model known as the deep simultaneous recurrent belief 

network (D-SRBN). Deep generative models are quite adept at learning meaningful 

representation from unlabeled data. We design the joint and conditional probability distribution 

functions required for the proposed D-SRBN model followed by the inference and learning 

procedure of the D-SRBN. The proposed D-SRBN model achieves superior representation 

learning performance while utilizing less trainable parameters compared to the state-of-the art 

generative models. Finally, this dissertation incorporates Bayesian statistics to the proposed 

DSRBN deep recurrent probabilistic generative model to solve the problem of learning using 

small data. More specifically, we address the intricate one-shot image recognition task which is a 
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well-known learning problem with small data, using the proposed deep simultaneous recurrent 

generative Bayesian model. The proposed model achieves better or comparable one-shot image 

recognition performance compared to state-of-the-art deep learning frameworks while utilizing a 

significantly reduced fewer training parameters. These findings have been published in IEEE 

Transactions on Neural Networks and Learning Systems (TNNLS), Neural Networks, Elsevier 

Journal. Moreover, part of the findings is also published in the proceedings of the International 

Joint Conference on Neural Networks (IJCNN) and the Society of Photo-Optical Instrumentation 

Engineers (SPIE). For the first time in the literature, we propose a novel deep learning 

framework which learns from limited training data while utilizing several orders of reduced 

training parameters.   

1.6 ORGANIZATION OF THE DISSERTATION 

  The dissertation is organized as follows. Chapter 2 describes the necessary background to 

understand the proposed deep recurrent learning framework. This chapter covers the brief 

understanding of artificial neural networks (ANNs), different architectures and the learning 

procedure, different type of deep learning architectures and their learning scheme, and a machine 

learning based classification technique such as metric learning, and hierarchical Bayesian 

models. Chapter 3 discusses our proposed deep simultaneous recurrent learning technique, 

DSRN, for efficient image recognition. This chapter provides a detailed explanation of the 

architecture, and learning technique followed by experimental results for the proposed DSRN 

model. Chapter 4 illustrates our proposed deep simultaneous recurrent generative model, D-

SRBN for efficient representation learning to demonstrate the generalization of our proposed 

DSRN concept. This chapter demonstrates the joint and conditional distribution functions, the 

learning and inference procedure developed for the D-SRBN model, and experimental results. 
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Chapter 5 demonstrates the extension of the deep recurrent generative model, D-SRBN with a 

hierarchical Bayesian technique for solving difficult learning challenges using small data. This 

chapter provides detailed formulation of our proposed deep recurrent generative Bayesian model, 

DSRBN-HB. The learning and inference procedure of the proposed DSRBN-HB framework are 

explained in detail followed by the experimental results. Finally, the dissertation concludes with 

a summary and future work in Chapter 6.     
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CHAPTER 2 

BACKGROUND OF THE STUDY 

This chapter provides a brief discussion of the techniques required to understand this 

dissertation. We illustrate the fundamental working principle of artificial neural networks 

(ANNs), different types of ANN architectures and their learning mechanism, a brief discussion 

on deep neural networks and different architectures along with training machine learning 

classification techniques such as metric learning, and hierarchical Bayesian models. In the next 

few subsections, we briefly go over each of these techniques.       

2.1 ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) are designed to closely mimic the information 

processing of biological nervous systems such as the brain. A human or animal brain contains 

billions of biological neurons that are densely interconnected with each other. Fig. 2 (a) shows a 

typical example of the biological neuron. It is a simple processing unit (soma) that receives and 

combines signals from other neurons through input paths called dendrites which contain synaptic 

connections. An artificial neuron is a computational model inspired by these biological neurons 

[36]. The artificial neurons are the basic building blocks to design ANNs.  

The first computational model of an artificial neuron also known as perceptron is 

proposed by Rosenblatt [38]. Fig. 2 (b) shows an example perceptron where the inputs are 

denoted by 𝑥𝑖(𝑖 = 1, 2, … , 𝑑) and 𝑑 denotes the number of inputs. The output 𝑦 is computed by 

transforming the weighted sum of the inputs via a non-linear activation function. The 

mathematical model of a perceptron can be written as, 

y = 𝜎 (∑𝑤𝑖 ∙ 𝑥𝑖

𝑑

𝑖=1

+ 𝑏) 
(1) 



   

 

12 

where, 𝑤𝑖′𝑠 represent weight values and ∑ 𝑤𝑖 = 𝑐𝑖  where 𝑐 represents a small value, 𝑏 denotes 

the constant bias value usually set to 1 and 𝜎 denotes the non-linear activation function (e.g. 

sigmoid, hyperbolic tangent, rectified linear).  

 

 

 

 

 

 

 

 

Fig. 2. (a) Biological neuron [37], (b) Artificial neuron or perceptron.  

 

 

2.2 ARCHITECTURES OF BASIC ANNS 

ANNs are modeled using the artificial neurons interconnected with each other and 

arranged in a layered fashion. Based on the connection between neurons and signal flow, ANNs 

can be broadly divided into two groups: feed-forward and recurrent. Using these two basic 

structures, more complex network architectures such as convolutional neural networks, deep 

neural networks, and gated recurrent networks are designed.  

2.2.1 FEED-FORWARD NEURAL NETWORKS 

In a feed-forward neural network (FFNNs), the neurons are arranged in multiple layers. 

The neurons in one layer are usually fully connected with neurons in the consecutive layer. 

Output 

y 

(a) (b) 
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Because of this layered architecture, FFNNs are also known as multi-layered perceptrons 

(MLPs) [39]. Typically, MLPs have three layers: input, hidden and output.  An example 3 layer 

MLP is shown in Fig. 3. MLPs are considered as one of the most popular types of ANNs because 

of their ability to approximate any function that is sufficiently smooth; hence, they are called 

universal approximators. The hidden layer of the MLPs can also be expanded into multiple 

layers for solving more challenging approximation functions. 

 

 

 

 

 

 

 

  

Fig. 3. A simple 3 layer feed-forward network. 

 

 

2.2.2 RECURRENT NEURAL NETWORKS 

FFNNs or MLPs are shown to be efficient for approximating non-linear functions that are 

used in different applications. However, these networks are unsuitable for resembling the 

dynamic behavior of a system. In addition, the one directional signal flow of FFNNs ignore the 

bidirectional recurrent behavior of biological neurons in the brain [40, 41].  Recurrent neural 

networks (RNNs) achieve this important property by incorporating feedback connections in the 
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NN architecture. Depending on the nature of recurrent connections, RNNs can be further divided 

into two categories: time-lagged recurrent networks and simultaneous recurrent networks. 

2.2.2.1 TIME-LAGGED RECURRENT NETWORKS 

The structure of time-lagged recurrent neural networks (TLRNs) is similar to that of 

standard FFNNs, with the distinction that they (RNNs) allow feedback connections in the hidden 

layer or output layer neurons. The purpose of TLRN is to predict or classify time-varying 

systems using recurrency as a way to provide memory of the past. Fig. 4 shows the basic 

topology of a TLRN. 

 

 

 

 

 

 

 

 

Fig. 4. Basic topology of time-lagged recurrent neural network (TLRN). The current output of 

the network, y(t) is obtained by using the current input x(t), the output from the previous time 

step y(t-1), and 𝑧−1 represents unit delay. The forward propagation function of TLRN is 

represented by f( ) and the connection weights are denoted by W.   
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As shown in the Fig. 4, TLRNs apply a unit time delay to the output feedback. 

Commonly used TLRNs are Elman recurrent network [42], Jordan recurrent network [43], long-

short term memory (LSTM) network [44], and gated recurrent unit (GRU) [45].  

 

2.2.2.2 SIMULTANEOUS RECURRENT NETWORKS 

Observe the graphical representation of a simultaneous recurrent network (SRN) shown 

in Fig. 5. Though one can draw similarities between SRNs and previously mentioned TLRNs, 

they are designed to perform fundamentally different tasks. Unlike in TLRN, an input in SRN is 

applied throughout several iterations (or time steps) and the corresponding output is obtained 

only after the disappearance of the initial transition and the network stabilizes in an equilibrium 

state [46, 47]. In other terms, an SRN is based on a FFNN with simultaneous feedback from 

outputs of the network to its inputs. This simultaneous recurrency is obtained without utilizing 

any unit time delay in the feedback connections. 

 

 

 

 

 

 

 

 

Fig. 5. Graphical representation of simultaneous recurrent network (SRN). 𝑓 denotes a feed-

forward mapping function. Note the absence of unit time delay in the architecture. 

 

𝒚𝒕+𝟏 

𝒚𝒕 
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The SRN is defined by the following mapping function,  

�̃� = 𝑓(𝑊, 𝑥); (2) 

where, 𝑥 and 𝑊 denote input vector and network weights respectively. �̃� in (2) is computed by 

iterating over the following equation [48], 

𝑦𝑡+1 = 𝑓(𝑊, 𝑥, 𝑦𝑡); (3) 

where, 𝑓 is some sort of feed-forward mapping function and �̃� is obtained by, 

�̃� =
𝑙𝑖𝑚

𝑇 → ∞
 𝑦𝑇; 

(4) 

In practical applications 𝑇 is assigned a finite value rather than ∞ (usually 𝑇 ≤ 20). Note that 

SRN behaves like a feed-forward network when 𝑇 = 1. 

From the operational point of view, SRNs are capable of efficiently approximating 

functions that can be approximated by MLPs, but the opposite is not true [49]. Moreover, the 

recurrent behavior of SRN also makes them appropriate for dynamic systems with feedback. 

Additionally, from the biological viewpoint, the simultaneous recurrrency of SRN closely 

mimics the activity in the human brain [50]. 

2.3 TRAINING ANN 

The artificial neural networks mentioned in the previous section require training to 

perform a specific task. Training ANN means adjusting the free parameters, i.e. weights (W’s) 

connecting the neurons with an appropriate algorithm. In the beginning, it was hard to develop a 

suitable training algorithm because of the difficulty in computing the derivatives of the error 

function. However, for the first time, Werbos [51] and other researchers [52] have successfully 

trained an ANN, more specifically MLP with a suitable training algorithm known as back-

propagation (BP). The BP algorithm computes the derivative of the error function and back-
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propagates the error derivative through the network. The weights of the network that need to be 

adjusted are initially set to some random values. Once the derivatives are obtained at each layer, 

the weights are updated by applying the commonly known delta rule.  

The above mentioned BP algorithm is the most popular neural network training algorithm 

for MLPs. However, this generic BP algorithm is not appropriate for training more complex 

recurrent networks.  The main challenge of training RNNs using BP is back-propagating the 

error through the recurrent layers. In order to address this problem, Werbos et al. [53] have 

proposed a modified BP algorithm known as back-propagation through time (BPTT) to 

effectively train RNNs. The BPTT first “unfolds” the recurrent neural network to a certain depth 

prior to training. Specifically, this “unfolding” process creates a pseudo feed-forward network 

consisting of replications of the original network with the recurrent link being fed forward into 

the successive copy. If the network stabilizes, the output may not change after running through a 

finite number of replications; in this case the replication process is stopped. The multi-layered 

feed-forward network resulting from the above process can be considered as equivalent to the 

recurrent network and the resulting network can be trained using the regular back-propagation 

algorithm. However, the weights in each replication must be equal, and therefore, cannot be 

updated individually. Weight updating in BPTT is done by updating the weights simultaneously 

by using the sum of all the derivatives. 

2.4 DEEP NEURAL NETWORKS (DNNs) 

The ANN architectures that we discussed so far are shallow in nature (only three layers 

with a small number of neurons) and can be utilized for solving simple approximation tasks. One 

naive way to address complex problems with shallow architectures is using millions of neurons 

in the hidden layer. However, training an ANN with millions of hidden neurons becomes 
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significantly complex and unrealistic for practical applications. The introduction of deep learning 

alleviates this problem by providing the flexibility of increasing the number of hidden layers in 

the neural network architecture. This technique of increasing the number of hidden layers in turn 

increases the number of neurons and, hence, improves the capability of ANN for solving more 

complex and challenging problems. In the next few sections, we briefly discuss the most popular 

state-of-the-art deep neural network architectures such as convolutional neural networks, deep 

auto-encoders, and different types of deep generative models, which are utilized in this study for 

comparing our proposed deep recurrent learning methods. 

2.4.1 CONVOLUTIONAL NEURAL NETWORKS 

One of the first hierarchical models, known as convolutional neural networks 

(CNNs/ConvNets) [22, 54], learns hierarchical image patterns at multiple layers with a 2D 

convolutional operation. CNNs are designed to process multidimensional data structured in the 

form of multiple arrays or tensors. For example, a color image has three color channels 

represented by three 2D arrays. Typically, CNNs process input data using three basic ideas: local 

connectivity, shared weights, and pooling, arranged in a series of connected layers. A CNN 

architecture is shown in Fig. 6. The first few layers are convolutional and pooling layers. The 

convolutional operation processes parts of the input data in small localities to take advantage of 

local data dependency within a signal. The convolutional layers gradually yield more highly 

abstract representations of the data in deeper layers of the network. Another aspect of the 

convolution operation is that filtering is repeated over the data, which makes use of redundant 

patterns in the data. 
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Fig. 6. Generic architecture of CNN. 

 

 

While the convolutional layers detect local conjunctions of features from the previous 

layer, the role of the pooling layer is to merge local features into a more global representation 

and higher level of abstraction. This helps a network become robust to small shifts and 

distortions in data. The final layers of CNN architecture are typically fully-connected neural 

networks followed by a “softmax” regression layer that performs classification using highly 

abstracted features from the previous layers. The training of all the weights in the CNN 

architecture is performed by applying a regular backpropagation algorithm commonly known as 

gradient descent optimization algorithm [51, 52].  

2.4.2 DEEP GENERATIVE MODELS AND AUTO-ENCODERS 

The hierarchical model of CNN is designed to efficiently handle images and videos by 

learning meaningful features from raw data during training. However, the major breakthrough of 

hierarchical models is the introduction of the “greedy layer-wise” training algorithm for deep 

belief networks (DBNs) proposed by Hinton et al. [1]. A DBN is built in a layer-by-layer fashion 

by training each learning module known as the restricted Boltzmann machine (RBM) [55]. 
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RBMs are composed of a visible and a hidden layer. The visible layer represents raw data in a 

less abstract form, and the hidden layer is trained to represent more abstract features by capturing 

correlations in the visible layer data [11]. Fig. 7 (a) shows a standard architecture of a DBN. 

DBNs are considered hybrid networks that do not support direct end-to-end learning. 

Consequently, a more efficient architecture known as deep Boltzmann machines (DBMs) [56] 

has been introduced. Similar to DBNs, DBMs are structured by stacking layers of RBMs. 

However, unlike DBNs, the inference procedure of DBMs is bidirectional, allowing them to 

learn in the presence of more ambiguous and challenging datasets. 

Undirected models such as RBM and its extensions suffer from a major limitation in 

training due to the associated computationally intractable partition function . Consequently, 

directed generative models such as sigmoid belief networks (SBNs) [57-59] have drawn 

increasing attention. SBNs accompany a much simpler partition function [60], making the 

computation of full-likelihood trivial. As such, RBMs are increasingly being replaced by SBNs 

as the basic learning module in the DBNs [60]. Other generative models such as variational auto-

encoder (VAE) [61-63] and generative adversarial network (GAN) [64-67] have shown to be 

quite adept at the representation learning task. GAN, unlike the probabilistic generative models, 

takes a deterministic approach by employing an adversarial scheme for representation learning. 

As such, GAN simultaneously trains a generator network and a discriminator network based on 

the accuracy of the generated outcome [64]. Specifically, the samples generated by the generator 

network are challenged by the discriminator network in terms of the difference between the 

generated sample and the actual data.  
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                          (a)                                                                   (b) 

Fig. 7. A typical architecture including layer-wise pre-training and fine-tuning procedure of (a) 

deep belief network (DBN); (b) Stacked auto-encoder (SAE).  

 

 

The introduction of generative models has led to the development of the stacked auto-

encoder (SAE) [24, 68], which is also formed by stacking multiple layers. Unlike generative 

models, SAEs utilize auto-encoders (AE) [69] as the basic learning module. An AE is trained to 

learn a copy of the input at its output. In doing so, the hidden layer learns an abstract 

representation of inputs in a compressed form. Fig. 7 (b) shows the architecture of an SAE. A 

greedy layer-wise training algorithm is used to train SAE networks, where the parameters of 

each layer are trained individually by keeping parameters in other layers fixed. After greedy 

layer-wise training of all layers, called pre-training, the layers are stacked together and the entire 



   

 

22 

network is simultaneously fine-tuned by adding a “softmax” regression layer at the end, to adjust 

all the parameters as illustrated in Fig. 7 (b).  

2.4.3 TRAINING DEEP NEURAL NETWORKS 

2.4.3.1 TRAINING DETERMINISTIC DEEP NEURAL NETWORKS 

Deterministic DNN architectures such as CNNs, and SAEs utilize huge number of 

training parameters; hence, training such DNN models is generally difficult. The most popular 

training method for DNNs is the gradient descent (GD) learning method. However, conventional 

GD techniques are not adequate to achieve good convergence for the DNNs. Therefore, 

stochastic gradient descent (SGD) [70] and mini-batch gradient descent [71] techniques are 

introduced to handle DNN training more efficiently. Nevertheless, GD based techniques require 

adjustments of hyper-parameters such as learning rate, step size, weight decay, momentum, etc. 

for successful training of DNNs. Consequently, more sophisticated GD techniques such as 

AdaGrad [72], AdaDelta [73], and Adam [74] are introduced to handle the hyper-parameter 

adjustment efficiently using adaptive techniques. Though recently introduced GD based learning 

techniques generally work well for DNN training, nevertheless, DNNs with thousands of 

adjustable parameters easily succumb to the overfitting problem. Consequently, several 

regularization techniques such as L1, L2 weight regularization, and dropout learning have been 

developed for tackling this overfitting problem. Several studies [75, 76] mathematically and 

experimentally show that dropout learning is the most effective overfitting prevention technique 

for DNNs. Dropout learning was first introduced by Hinton et al. [77]  for DNNs. The idea of 

dropout learning is to randomly drop some of the hidden units with a predefined probability 

during the forward pass of training. The connection weights associated with the dropped units 

are not updated during the backward pass of training. The process is repeated for each input 
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sample and each training epoch. By doing this dropout learning discourages any unit relying on 

the output of any other units, and it forces the units to rely on the population behavior of the 

inputs [76]. This, in turn, prevents the overfitting problem associated with DNNs and also 

improves the generalization capability of the network.  Furthermore, dropout inherently 

regularizes the network weights that favor small hidden activations [75]. During the testing phase 

of dropout learning, all units are present and the network weights are scaled appropriately based 

on the dropout probability. 

2.4.3.2 TRAINING DEEP GENERATIVE NEURAL NETWORKS 

 Unlike deterministic DNNs, probabilistic generative models such as DBM, DSBN, and 

VAE models require special learning techniques. The training of undirected generative models 

such as the DBM model is performed by applying a variational approach [78] where mean-field 

inference is used to estimate data-dependent expectations. In order to better initialize the model 

parameters of a DBM, the stack of RBMs are pretrained by applying a modified greedy layer-

wise pretraining technique [78].  A desirable property of the RBM is that the calculation of the 

gradient estimates on the model parameters is straightforward and the stochastic gradient descent 

(SGD) provides relatively efficient inference. However, evaluating the probability of a data point 

under an RBM is non-trivial due to the computationally intractable partition function [60]. The 

estimation of this partition function is usually performed by a sampling algorithm known as 

annealed importance sampling (AIS) [79]. Directed generative models such as DSBNs mitigate 

this problem by modifying the energy function to obtain a simple partition function [60]. 

Therefore, the full-likelihood under a DSBN is trivial to compute. However, training such 

directed generative models may be difficult [1]. Simple sampling based gradient estimation 

methods are proposed in [57, 80] to train the SBN model. Nonetheless, these methods are not 
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scalable and practical for learning large models. This problem is tackled by utilizing recently 

developed variational inference methods in the Bayesian statistics literature. One such method is 

known as neural variational inference and learning (NVIL) [59] algorithm which is shown to be 

very efficient in training any deep generative models. 

2.4.3.2.1 NEURAL VARIATIONAL INFERNCE AND LEARNING TECHNIQUE FOR 

DEEP GENERATIVE MODELS 

The key idea behind the NVIL algorithm is the use of an inference model to implement 

an efficient exact sampling from the variational posterior for the given observation [12, 59]. The 

parameters of the inference model are jointly trained with the true model by maximizing a 

variational lower bound on the log-likelihood. The variational objective function is obtained by 

following the standard variational inference approach [81]. 

Suppose 𝑃𝜃(𝑣, ℎ) with input space 𝑣 and latent space ℎ denotes a generative model with 

parameters 𝜃 where the exact inference of the model is intractable. The model is trained by 

maximizing a variational lower bound on the marginal log-likelihood. Since the exact posterior 

𝑃𝜃(ℎ|𝑣) of the model is difficult to obtain, a new parametric distribution 𝑄𝜑(ℎ|𝑣) with 

parameters 𝜑 is introduced which serves as an approximation to the exact posterior. The 

variational posterior 𝑄 is chosen to have a simpler form than the exact posterior; hence, easier to 

work with.  For a given observation 𝑣 the variational lower bound objective function is written in 

terms of the Kullback-Leibler (KL) divergence as follows [59], 

         £(𝑣, 𝜃, 𝜑) = log𝑃𝜃(𝑣, ℎ) − 𝐾𝐿 (𝑄𝜑(ℎ|𝑣) || 𝑃𝜃(ℎ|𝑣)) . (5) 

The KL divergence in (5) determines the tightness between the variational objective 

function and the exact posterior. The tightness is obtained by maximizing (5) with respect to the 

parameters 𝜑 of the variational posterior 𝑄 which makes this distribution a better approximation 
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to the exact posterior 𝑃𝜃(ℎ|𝑣). Now, given a training set 𝐷, the model 𝑃 is trained by 

maximizing £(𝐷, 𝜃, 𝜑) using an appropriate gradient ascent technique with respect to the model 

and inference parameters. 

The effectiveness of the NVIL algorithm is obtained by defining the variational posterior 

distribution 𝑄𝜑(ℎ|𝑣) with an efficient inference model. This inference model is represented by a 

flexible neural network architecture to compute the variational distribution from the given 

observation. The naïve gradient estimation of the inference network parameters in NVIL exhibit 

high variance. Hence, several straightforward and general variance reduction techniques are 

applied to make the NVIL algorithm practical [59]. 

2.5 CLASSIFICATION USING DISTANCE METRIC LEARNING 

In addition to the logistic regression based “softmax” classification technique which is 

widely used as an integral part of DNN models, distance metric learning (DML) is another 

popular machine learning technique to perform the classification task. DMLs aim to learn a 

metric to determine the distance or similarity between elements in a vector space. For a set of 

points 𝑈 = {𝑥𝑖}𝑖=1
𝑙 , the distance metric 𝑀 can be learnt using the following pairwise real valued 

metric function, 

         𝑑𝑀(𝑥𝑖 , 𝑥𝑗) = ‖𝑥𝑖 − 𝑥𝑗‖𝑀 = √(𝑥𝑖 − 𝑥𝑗)𝑇𝑀(𝑥𝑖 − 𝑥𝑗)  

where 𝑖, 𝑗 = 1, 2, 3, … , 𝑙  

(6) 

Most metric learning methods learn the metric 𝑀𝑙×𝑙 using information obtained from 

training examples. The information is usually available in the form of pairwise constraints: pairs 

of data points known to be similar (S) and pairs of data points that are dissimilar (D). Using 

these, a convex problem is formulated to minimize the distance between the similar pairs and 

maximize the distance between the dissimilar pairs. The convex problem is then optimized using 
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a semi supervised learning technique to approximate the underlying distance metric, 𝑀. The 

learned metric can be utilized in any distance based classification/clustering algorithm such as k-

nearest-neighbor (k-NN), k-means clustering, and SVMs.  

In [82] the authors show an iterative algorithm to solve the metric learning problem. The 

iterative method is less computationally expensive and therefore results in slow convergence. To 

alleviate this problem several other methods such as large margin nearest neighbor [83], and 

information theoretic based metric learning [84] have been proposed. While these algorithms 

show efficient techniques for solving the metric learning problem, they involve a full eigen-

decomposition step that is computationally expensive for large-scale problems. Consequently, 

Ying et al. [85] propose an alternative method for solving the distance metric learning problem 

using eigenvalue optimization (DML-eig).  Unlike other learning algorithms, DML-eig only 

computes the largest eigenvector at each iteration of the learning process making the technique 

suitable for large scale classification problems [85]. Due to the fast convergence property and 

state-of-the-art performance, this dissertation utilizes DML-eig as a classification step in of the 

proposed models.  

 

 

 

Fig. 8. Flow diagram of the randomized DML-eig metric learning algorithm (ϐr). 
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Langmead [86] introduces a randomized approach for metric learning to alleviate two 

common problems including computational complexity and overfitting.  Given similar (S) and 

dissimilar (D) pairs, the randomized algorithm first randomly selects a set of pairs to obtain Sb 

and Db, where b is the number of randomly chosen pairs from z number of pairs (b < z). Next, 

the algorithm randomly samples the input features from Sb and Db to generate 𝑆𝑚
𝑏  and 𝐷𝑚

𝑏 . This 

reduces the dimensionality of the data from n space to m subspace (m < n). The subspace 

training sets 𝑆𝑚
𝑏  and 𝐷𝑚

𝑏  are then used as input to the metric learning algorithm. The procedure is 

then repeated k times with different random subspaces. During each iteration of k, the metric 

learning algorithm returns a trained 𝑚 ×𝑚 dimensional metric, 𝑀𝑚×𝑚 over the random 

subspace. The final 𝑛 × 𝑛 metric, 𝑀𝑛×𝑛, is then obtained by linearly combining all the k trained 

𝑀𝑚×𝑚 metrics. The authors in [86] show that the k times repetition over different random 

subspaces can be performed in parallel. Therefore, the randomized algorithm may achieve a 

constant factor speedup when running on multi-core processors. The flow diagram of ϐr is shown 

in Fig. 8. 

2.6 HIERARCHICAL BAYESIAN MODEL  

Bayesian models are powerful models due to its principled ability to combine prior 

information with data. Bayesian methods provide a complete representation of parameter 

uncertainty that can be directly interpreted [87]. Hierarchical Bayesian (HB) models are 

essentially hierarchical stacking of statistical sub-models that work in conjunction to estimate the 

posterior distribution of input data using Bayes principles [88]. HB models are defined to reflect 

the dependencies of the model parameters on each other. The chain of dependencies among 

parameters exemplifies HB model. Let us consider that the observed data denoted by 𝑋, are 

described by a model with parameter 𝛽 and 𝛾. The probability of the data is represented by the 
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conditional probability distribution function 𝑝(𝑋|𝛽, 𝛾) which is called the likelihood function of 

the parameters. The prior probability of the parameters is defined using 𝑝(𝛽, 𝛾). Generally, the 

probability of the data weighted by the probability of the parameters is defined using the product 

form, 𝑝(𝑋|𝛽, 𝛾) 𝑝(𝛽, 𝛾). However, the HB model factors the product term as a chain of 

dependencies among parameters as follows, 

𝑝(𝑋|𝛽, 𝛾) 𝑝(𝛽, 𝛾) =  𝑝(𝑋|𝛽)𝑝(𝛽|𝛾)𝑝(𝛾)  (7) 

where,  𝑋 denotes the observed data, and 𝛽 and 𝛾 denote the model parameters. HB models are 

commonly used in natural language processing (NLP) applications such as topic modeling for 

document classification. More recently, HB models are utilized in image categorization 

applications to obtain better understanding of the input data which is essential for developing a 

more efficient categorization technique. HB models have shown to be particularly adept at 

learning categorization, or similarity metrics from a very few examples. Consequently, HB 

models have been adopted by many studies [34, 89, 90] to introduce an efficient learning 

mechanism where a few examples are typically sufficient for accurate categorization of a new 

object. In particular, the hierarchical Bayes model developed by Salakhutdinov et al. [90] 

accomplished “one-shot learning” in which the knowledge in categorization obtained previously 

is used to establish a novel category based on the similarity characteristics using just one 

example. 
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CHAPTER 3 

DEEP SIMULTANEOUS RECURRENT LEARNING FOR EFFICIENT IMAGE 

RECOGNITION 

3.1 CHAPTER OVERVIEW 

This chapter proposes a novel deep simultaneous recurrent learning architecture for 

efficient image recognition. Recent advances in feed-forward deep neural networks (DNNs) have 

offered improved image recognition performance. Sparse feature learning in feed-forward DNN 

models offers further improvement in performance when compared to the earlier handcrafted 

techniques. However, the depth of the feed-forward DNNs and the computational complexity of 

the models increase proportionally to the challenges posed by the facial expression recognition 

problem. Moreover, the feed-forward DNN architectures do not exploit another important 

learning paradigm, known as recurrency, which is ubiquitous in the human visual system. 

Consequently, this chapter proposes a novel biologically relevant deep simultaneous recurrent 

network (DSRN) for robust image recognition. The feature sparsity is obtained by adopting 

dropout learning in the proposed DSRN as opposed to the usual handcrafting of additional 

penalty terms for sparse representation of data. This chapter provides a theoretical analysis to 

study the sparsity and over-fitting property of the proposed DSRN model. Finally, this chapter 

shows the superiority of the proposed DSRN model by solving several challenging image 

recognition tasks. Experimental results suggest that the proposed method yields better 

performance accuracy, requires fewer parameters and offers reduced computational complexity 

than that of the previously reported state-of-the-art feed forward DNNs. 
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3.2 LITERATURE REVIEW 

This section provides a brief literature review of the recently introduced DNN models 

for image recognition. Image recognition is a fundamental yet open and challenging problem in 

computer vision. Computer vision models have seen great advancements in the recent years. 

Though these models may vary in terms of methodology and functionality, most feature-based 

methods generally involve an overall two-step process: 1) Feature extraction and selection, and 

2) Feature classification. Numerous classification methods with varying capabilities have been 

introduced. However, in feature-based classification, the overall recognition performance heavily 

depends on the ability of extracting and selecting appropriate features.  

3.2.1 FEATURE EXTRACTION TECHNIQUES IN COMPUTER VISION SYSTEMS 

Early computer vision systems relied on hand crafted feature extraction and selection 

algorithms and simple classifier designs to perform object recognition tasks [91-95]. Though 

these techniques show limited success in certain simple object (e.g. rigid objects viewed at 

certain angles) recognition tasks, they did not extend well into recognizing more complex object 

categories such as human faces. The idea of learning the solution to a specific recognition task, 

instead of hand crafting feature extractors and classifiers, led to the recent progress in vision 

applications. Instead of a pre-determined set of features, an appropriate model is learnt or 

selected from a set of possibilities, using a set of known examples [96]. This type of “learning 

from examples” provided more efficient vision models with higher accuracy even with simple 

classification methods. More recently, the idea led to more complex deep hierarchical feature 

extraction and selection techniques commonly known as deep neural networks (DNNs). These 

multi-layered architectures such as deep belief networks (DBNs) [1, 97], stacked auto encoders 

(SAEs) [24, 98] and convolutional neural networks (CNN) [22, 23] are capable of extracting and 
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refining features of incremental complexity. Hence, the automated and efficient feature 

extraction technique offered by DNNs are essentially used for solving complex image 

recognition tasks.   

3.2.2 DEEP NEURAL NETWORKS FOR IMAGE RECOGNITION 

Deep neural networks (DNNs) have shown excellent success in addressing a few of the 

challenges in image processing and computer vision. DNNs can successfully handle large scale 

complex object recognition tasks by utilizing thousands of neurons arranged in multiple layers. 

The hierarchical architecture of DNN mimics the information processing of the human vision 

system. Convolutional neural networks (CNNs) [22, 23] are one of the first hierarchical deep 

models. Later, researchers introduce other hierarchical deep architectures such as deep belief 

networks (DBNs) [1] and stacked auto-encoders (SAEs) [24]. All these deep networks and their 

variants are designed to mimic the hierarchical processing architecture of the human vision 

system using large scale feed-forward layers. However, recent biological evidence suggests that 

recurrent connections exist in the human vision system and in some regions, the recurrent 

connections even outnumber the feed-forward connections [99].  

Different types of deep feed-forward based networks have been utilized to solve the 

object recognition tasks. CNNs show excellent performance for solving various recognition tasks 

such as document recognition [22], multi-class object recognition [25], and face recognition  

[100, 101]. The main benefit of CNN is the ability to learn features from raw images and videos 

during the training process. The introduction of greedy layerwise learning algorithm [1] 

revolutionized the training of DNNs and popularized other deep networks such as DBNs and 

SAEs. Both DBNs and SAEs utilize unsupervised feature learning techniques to efficiently 

handle recognition problems such as object recognition [25], face recognition [102, 103] and 



   

 

32 

handwritten digit recognition [1, 104]. However, these feed-forward DNN architectures utilize 

thousands of neurons connected using millions of weights for solving the intricate image 

recognition task. Optimizing an increasing number of connection weights between these neurons 

quickly becomes cumbersome and computationally intensive. Moreover, these deep models lack 

the recurrent connections found in the human brain. 

3.3 DEEP SIMULTANEOUS RECURRENT LEARNING FOR IMAGE RECOGNITION 

This section illustrates the details of the proposed deep simultaneous recurrent network 

(DSRN) for image recognition. The architecture, mathematical explanation and experimental 

results of the proposed technique are discussed below. 

3.3.1 DSRN ARCHITECTURE FOR UNSUPERVISED FEATURE LEARNING AND 

CLASSIFICATION 

The internal architecture, a time unfolded version and an example deep version of the 

proposed DSRN are shown in Fig. 9 (a)-(c). In Fig. 9 (a), the hidden recurrent layer outputs of 

the deep SRN can be obtained as follows,  

𝑦𝑡+1
ℎ = 𝜎(𝑑𝑟𝑜𝑝𝑜𝑢𝑡((𝑊𝑒

ℎ .  𝑦𝑇
ℎ−1  + 𝑅ℎ .  𝑦𝑡

ℎ), 𝑝ℎ) + 𝑏𝑒
ℎ); 

 

                                         𝑓𝑜𝑟 𝑡 = 1, 2, … , 𝑇, ℎ = 1,2, … , 𝐹 𝑎𝑛𝑑 𝑦𝑇
0 = 𝑥;                                         

(8) 

where, superscript ℎ indicates layer number, 𝑦𝑡
ℎ indicates the 𝑛 dimensional recurrent output 

from the hidden units at time step 𝑡 and layer ℎ with 𝑦𝑡=0
ℎ = 0, 𝑇 denotes the maximum number 

of recurrent steps, 𝐹 denotes the number of layers, 𝑏𝑒
ℎ denotes the bias vector, 𝑝ℎ indicates 

dropout probability, 𝜎 is the non-linear activation function (e.g., sigmoid, tanh or ReLU),  𝑦𝑇
ℎ−1 

denotes an 𝑚 dimensional feature vector with 𝑦𝑇
0 = 𝑥, 𝑊𝑒

ℎdenotes 𝑛 × 𝑚 feed-forward weight 

matrix (at layer ℎ) which is projected to all the hidden recurrent layers, 𝑅ℎ denotes 𝑛 × 𝑛 

recurrent weight matrix (at layer ℎ) which is shared in the hidden recurrent layers. 
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Fig. 9. (a) Internal architecture of an SRN in sparse deep simultaneous recurrent network 

DSRN). This figure also shows the SRN setup for unsupervised feature learning. Circle with 

straight line indicates linear units and circle with curved line denotes units activated with a non-

linear function; (b) A single layer time unfolded version of DSRN (ℎ = 1) that demonstrates 

weight sharing in the hidden recurrent layers. The red-cross in this figure indicates that the unit is 

dropped; (c) An example two layer time unfolded DSRN (ℎ = 2). The network is expandable to 

ℎ = 𝐹 layers similarly. 

 

 

Though dropout does not always guarantee sparse activations, a recent study [76] shows 

that applying dropout regularization in a deep feed-forward network with sigmoid non-linear 
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activation function in all the hidden layers ensures feature sparsity. Therefore, in this study we 

use 𝜎 as sigmoid non-linear activation function in all the hidden layers of our proposed DSRN 

architecture to achieve sparsity using dropout. The dropout probability 𝑝ℎ in (8), specified by the 

user, provides control over the sparseness of the hidden units at different layers ℎ. Consequently, 

unlike existing sparse auto-encoder methods in the literature, this technique does not require any 

auxiliary regularization to enforce sparsity in the deep model. 

The output of the DSRN is obtained by using 𝑚 × 𝑛 reconstruction weight matrix, 𝑊𝑟
ℎ 

given as, 

𝑥ℎ = 𝜎(𝑊𝑟
ℎ . 𝑦𝑇

ℎ + 𝑏𝑟
ℎ);   𝑓𝑜𝑟 ℎ = 1,2, … , 𝐹; (9) 

where, 𝑥ℎ indicates 𝑚 dimensional output vector that is also considered as the reconstructed 

input, and 𝑏𝑟
ℎ denotes the bias vector. The unsupervised loss function of DSRN is written as, 

𝐸ℎ =
1

2
 ‖𝑦𝑇

ℎ−1 − 𝑥ℎ‖
2

2
; 

𝑓𝑜𝑟 ℎ = 1,2, … , 𝐹     𝑎𝑛𝑑   𝑤𝑖𝑡ℎ 𝑦𝑇
0 = 𝑥; 

(10) 

This unsupervised loss function is optimized using the back-propagation through time (BPTT) 

with stochastic gradient descent (SGD). The learning procedure of DSRN is shown in Algorithm 

1. The proposed DSRN utilizes a novel SRN as the core learning module rather than generic 

feed-forward networks. 

A “softmax” layer [1] is added to classify the feature vectors obtained from the last layer 

(layer 𝐹) of DSRN to 𝑐 categories whose output is given by, 

𝑧𝑘 =
exp (𝑊𝜍𝑦𝑇

𝐹)

∑ exp (𝑊𝜍𝑙𝑦𝑇
𝐹)𝑘

𝑙=1

 ;    where, k = 1, 2, …, c;               
(11) 

where, 𝑊𝜍 indicates 𝑐 × 𝑛 classification weight matrix, 𝑧𝑘 denotes the predicted probability of kth 

class, and 𝑦𝑇
𝐹 indicates the features extracted from the final layer of the DSRN. In summary, the 
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S-DSRN is first pretrained for unsupervised feature learning via the layer-wise learning 

procedure as shown in Algorithm 1. Subsequently, the DSRN with classification layer is 

optimized using (11) to perform the classification task. 

  
Algorithm 1: Learning procedure of DSRN using BPTT with SGD 

 

Initialization: 

- Set network weights {𝑊𝑒
ℎ, 𝑅ℎ,𝑊𝑟

ℎ} with random values 

- Set learning rate, ∝ with a small value  

 

Training: 

for each epoch do 

for each mini-batch do 

a. Perform DSRN forward propagation:  

     for each simultaneous recurrent replication  

               Compute hidden layer outputs using Eq. (8)  

          end 

- Compute final layer output using Eq. (9) 

b. Compute overall loss function using Eq. (10)  

c. Perform DSRN back propagation (BPTT):  

- Compute partial derivative of the loss function (𝐸ℎ) in terms of 

𝑊𝑟
ℎ and 𝑏𝑟

ℎ: ∇𝑊𝑟ℎ  𝐸
ℎ and ∇𝑏𝑟ℎ  𝐸

ℎ 

- Set: ∆𝑊𝑟
ℎ = ∆𝑊𝑟

ℎ +  ∇𝑊𝑟ℎ  𝐸
ℎ and 

 ∆𝑏𝑟
ℎ = ∆𝑏𝑟

ℎ +  ∇𝑏𝑟ℎ  𝐸
ℎ 

for each simultaneous recurrent replications (backwards) 

- Compute partial derivative of recurrent weights: ∇𝑅ℎ 𝐸
ℎ 

- Compute partial derivative of projected feed forward weights and bias: ∇𝑊𝑒ℎ 𝐸
ℎ 

and ∇𝑏𝑒ℎ  𝐸
ℎ 

end  

- Set: 

 ∆𝑅ℎ  = ∆𝑅ℎ +  ∇𝑅ℎ  𝐸
ℎ;  

 ∆𝑊𝑒
ℎ = ∆𝑊𝑒

ℎ +  ∇𝑊𝑒ℎ  𝐸
ℎ and 

 ∆𝑏𝑒
ℎ   = ∆𝑏𝑒

ℎ +  ∇𝑏𝑒ℎ  𝐸
ℎ 

end  

d.Update the weight parameters: 

- 𝑊𝑒
ℎ(𝑛𝑒𝑤) = 𝑊𝑒

ℎ(𝑜𝑙𝑑) − ∝∗ ∆𝑊𝑒
ℎ; 

- 𝑅ℎ(𝑛𝑒𝑤)   = 𝑅ℎ(𝑜𝑙𝑑) − ∝∗ ∆𝑅ℎ; 
- 𝑊𝑟

ℎ(𝑛𝑒𝑤) = 𝑊𝑟
ℎ(𝑜𝑙𝑑) − ∝∗ ∆𝑊𝑟

ℎ; 
- 𝑏𝑒

ℎ(𝑛𝑒𝑤)   = 𝑏𝑒
ℎ(𝑜𝑙𝑑) − ∝∗ ∆𝑏𝑒

ℎ and 

- 𝑏𝑟
ℎ(𝑛𝑒𝑤)   = 𝑏𝑟

ℎ(𝑜𝑙𝑑) − ∝∗ ∆𝑏𝑟
ℎ. 

end 
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3.3.2 COMPLEXITY ANALYSIS OF THE PROPOSED DSRN ARCHITECTURE 

This section analyzes the complexity of the proposed DSRN architecture compared to the 

state-of-the-art deep feedforward neural network (FDNN) architectures in terms of Big O 

notation. One advantage of DSRN is the use of extensive weight sharing in the hidden recurrent 

layers as shown in Fig. 9 (b). This enables efficient control over the depth of the architecture 

while utilizing fewer trainable parameters than feed-forward deep networks. An example two-

layer (ℎ = 2) DSRN is shown in Fig. 9 (c) which can be expanded to ℎ = 𝐹 layers in a similar 

manner. The number of parameters (𝑁𝐷𝑆𝑅𝑁) of a ℎ layer DSRN with 𝑇 hidden recurrent layers is 

equal to the number of independent weights and biases over all the layers (including pretrained 

and classification weights) and is given by, 

𝑁𝐷𝑆𝑅𝑁 = ℎ × (𝑛 ×𝑚) + ℎ × (𝑛 × 𝑛) + ℎ × 𝑛 + 𝑐 × 𝑛.  (12) 

In contrast, the required number of parameters (𝑁𝐹𝐷𝑁𝑁) to achieve similar depth by using 

a feedforward DNN with classification layer is given by, 

𝑁𝐹𝐷𝑁𝑁 = ℎ × (𝑇 + 1) × (𝑛 × 𝑚) +  ℎ × 𝑛 +  𝑐 × 𝑛.      (13) 

Equation (12) suggests that the upper bound of the required number of parameters for 

DSRN is 𝑂(ℎ × (𝑛 × 𝑚)) when 𝑚 > 𝑛. In comparison, the upper bound of 𝑁𝐹𝐷𝑁𝑁 from (13) is 

𝑂(ℎ × (𝑇 + 1) × (𝑛 ×𝑚)). This clearly shows that generic FDNN requires 𝑂(𝑇 × (𝑛 × 𝑚)) 

more parameters than DSRN. This parameter reduction is due to the weight sharing property 

utilized in the hidden recurrent layers of DSRN. Therefore, a ℎ layer DSRN with 𝑇 hidden 

recurrent layers may be considered as equivalent (in terms of depth) to a  ℎ × (𝑇 + 1) layer 

FDNN. 
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3.3.3 IMAGE RECOGNITION PIPELINE WITH DSRN 

The proposed pipeline for the image recognition algorithm using DSRN is shown in Fig. 

10. The images are preprocessed and converted to vectors before feeding as input to the pipeline. 

At each layer ℎ, feed-forward weights (𝑊𝑒
ℎ) and the shared recurrent weights (𝑅ℎ) play major 

roles in meaningful feature extraction. The addition of sparseness further enhances the feature 

quality by reducing redundant and unstructured features. The features are then classified by the 

“softmax” classification layer of DSRN. From here onwards we refer to this technique as S-

DSRN+softmax. We also train the proposed deep SRN architecture without using dropout 

learning for comparison and this technique is denoted as DSRN+softmax in the rest of this work.  

 

 

 

Fig. 10. Deep SRN (DSRN) based image expression recognition pipeline with (a) standard 

classification (S-DSRN+softmax); and (b) extended classification (S-DSRN with ϐr) stages. 

 

 

Fig. 10. shows that the classification stage is further enhanced by the introduction of 

metric learning. In addition, this study utilizes a randomized DML-eig metric learning technique 

[105] as discussed in Chapter 2, section 2.5 to further enhance the effectiveness of the feature 
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classification task. Once features are extracted by the DSRN, the class labels of the dataset are 

used to obtain the similar (𝑆) and dissimilar (𝐷) pairs. These pairs of training samples are used 

by the randomized DML-eig algorithm to train the metric. A 𝑘-NN classification technique then 

utilizes the learned metric to perform the expression classification task. We use ϐr to denote the 

randomized DML-eig as mentioned in Chapter 2 section 2.5; hence, the extended expression 

recognition pipeline is denoted by S-DSRN with ϐr in the rest of the paper. 

3.3.4 RESULTS AND DISCUSSION 

The efficacy of the proposed deep recurrent network based image recognition framework 

is investigated by performing three complex recognition tasks: facial expression recognition, face 

recognition and character recognition. The following few sections illustrate our findings.  

3.3.4.1 FACIAL EXPRESSION RECOGNITION USING DSRN 

This section discusses the performance of the proposed DSRN framework for solving the 

facial expression recognition task.  

3.3.4.1.1 DATASET PREPARATION 

We perform the extremely difficult human facial expression recognition task by 

conducting extensive experiments on the well-known Extended Cohn-Kanade (CK+) expression 

dataset [106, 107]. CK+ dataset has 593 video sequences from 123 subjects and 309 out of 593 

sequences are labeled as one of the seven basic expressions: anger (An), contempt (Co), disgust 

(Di), fear (Fe), happiness (Ha), sadness (Sa) and surprise (Su). Some example facial expression 

images are shown in Fig. 11. In order to obtain a fair comparison with other state-of-the-art 

methods, we drop the “contempt” expression and set up a 7-class classification task (including 

neutral expression). Each image sequence starts from the neutral pose and gradually transitions 

to the peak expression with each frame. The corresponding label is provided by the last frame in 
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the sequence. The training and testing data are formed by randomly selecting the last five frames 

of each sequence. Note the last five frames adequately capture the peak expression while 

providing a sufficient number of samples for training and testing. Additionally, we select some 

of the first few frames from 309 labeled sequences for the neutral expression. The Viola-Jones 

face detection technique [108] is used as a pre-processor for each image (640 × 490) in CK+ 

dataset to extract the frontal face. The images are resized (48 × 48) using bicubic interpolation 

and then the intensity is normalized to ensure brightness invariance in the feature extraction 

process. Therefore, the experimental dataset formed with the sampling procedure described 

above contains a total of 2067 images, which is then divided into 10 subsets to obtain a 10 fold 

cross validation.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Example facial expression images from CK+ dataset. Neutral expression is not shown in 

this figure. 
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3.3.4.1.2 DSRN ARCHITECTURE FOR FACIAL EXPRESSION RECOGNITION 

The input to the proposed DSRN is the raw intensity values from the expression images 

of size 2304 (48 × 48). The architecture of the DSRN is given as: 2304 × 1500𝑇 × 1000𝑇 ×

500𝑇 × 7, where superscript 𝑇 denotes the number of repetitions in the hidden recurrent layer. In 

this study, we consider 𝑇 = 11 and sigmoid as the non-linear activation function. The S-

DSRN+softmax pipeline is trained using Algorithm 1. For weight initialization of S-DSRN, a 

simple normalized random initialization method [109] is used. The neuronal connection weights, 

𝑊𝑒
ℎ, 𝑅ℎ and 𝑊𝑟

ℎ at each layer ℎ is initialized using the following function, 

{𝑊𝑒
ℎ, 𝑅ℎ,𝑊𝑟

ℎ} ~ 𝑈 [−
√6

√𝑓ℎ+𝑓ℎ−1
,

√6

√𝑓ℎ+𝑓ℎ−1
]               

(14) 

where, 𝑈[−𝑎, 𝑎] is the uniform distribution in the interval (−𝑎, 𝑎) and 𝑓ℎ is the feature dimension 

at layer ℎ. 

3.3.4.1.3 PERFORMANCE OF FACIAL EXPRESSION RECOGNITION USING DSRN 

We first conduct an experiment to compare our proposed expression recognition 

techniques: S-DSRN with ϐr, S-DSRN+softmax and DSRN+softmax. In the training process of 

S-DSRN, each hidden unit is dropped with a probability of 0.5 whereas each input unit is 

dropped with a probability of 0.25 when a batch of training samples are presented. In the testing 

phase, all weights are scaled down with appropriate dropout rates to compute the network 

outputs. The value of 𝑇 (i.e. the number of hidden recurrent steps in our proposed network) is 

chosen experimentally by varying 𝑇 from 5 to 20. Fig. 12 shows the effect of different values of 

𝑇 on the average 10-fold test classification accuracy. Fig. 12 illustrates that 𝑇 = 11 offers an 

optimum result. 
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Fig. 12. The effect of different values of 𝑇 (number of hidden recurrent steps of DSRN) on the 

average test classification accuracy. The classification accuracies are obtained from 10-fold cross 

validation experiment performed on CK+ dataset. 

 

 

Table 1 summarizes performance of all three DSRN techniques for facial expression 

recognition. The table shows average test classification accuracies along with the standard 

deviation over 10-fold cross validation with the CK+ dataset.  

 

 

TABLE 1 

 

PERFORMANCE COMPARISON FOR THREE DSRN BASED EXPRESSION 

RECOGNITION TECHNIQUES USING CK+ DATASET 

 

Methods 

Proposed recognition techniques 

S-DSRN with ϐr S-DSRN+softmax DSRN+softmax 

Recognition 

performance 
99.11 ± 0.87% 97.68 ± 1.39% 92.69 ± 2.83% 
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 Fig. 13 shows comparison among the three recognition techniques using true positive rate 

(TPR), false positive rate (FPR) and F1 score. F1 score indicates the harmonic average of the 

precision and recall rate. The values are obtained by averaging 10-fold cross validation results 

for the CK+ dataset. Fig. 13  shows that S-DSRN with ϐr offers the best performance with high 

TPR, high F1 scores and very low FPR for all the expression classes. On the other hand, S-

DSRN+softmax shows a slightly lower TPR and F1 score, and higher FPR (except for “Di”) than 

that of S-DSRN with ϐr. Moreover, DSRN+softmax achieves the lowest performance across all 

the criteria with low TPR and F1, and high FPR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. From top to bottom, performance comparison on the CK+ dataset in terms of a) True 

positive rate, b) False positive rate and c) F1 score for 7 basic expressions. 
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A GPU based acceleration of the proposed S-DSRN is obtained for real-time 

implementation. Table 2 shows a comparison between the training time required by the CPU and 

GPU based implementation of the proposed S-DSRN based recognition pipeline. Note that the 

CPU based experiment is conducted on a single core 2.30GHz PC.   

 

 

TABLE 2 

 

TRAINING TIME COMPARISON OF CPU VS GPU IMPLEMENTATION OF S-DSRN 

 

Implementation 
S-DSRN (CPU: single core 

2.3 GHz) 

S-DSRN (GPU: 

TESLA M2090) 

Training Time 

(10 fold cross 

validation experiment) 

90.15 hours 

(3.75 days) 
18.23 hours 

 

 

 

Table 2 shows that distributed processing capability of GPU offers several order of 

magnitude improvements in the training time when compared to a single core CPU based 

implementation. 

Finally, the performance of the proposed S-DSRN with ϐr based expression recognition 

technique is compared with a few state-of-the-art deep neural network and metric learning based 

expression recognition techniques using the CK+ dataset. The methods for comparison include 

several facial expression recognition methods including a boosted deep belief network (BDBN) 

[110]; a 3D Convolutional Neural Network (3D CNN) with deformable action parts (3DCNN-

DAP) [111] and a K-means based unsupervised feature extraction technique combined with two 

layer RBMs known as an action unit aware deep network (AUDN) [112]. For a fair comparison, 
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only the methods that use the CK+ expression dataset with a similar experimental setting are 

selected. Table 3 summarizes the performance comparison. 

 

 

TABLE 3 

 

PERFORMANCE COMPARISON OF OUR PROPOSED S-DSRN WITH THE STATE OF 

THE ART ON THE CK+ DATASET 

 

 Our proposed State of the art 

Methods S-DSRN with ϐr BDBN 

[110] 

3DCNN-DAP 

[111] 

AUDN 

[112] 

Validation settings 10-fold 8-fold 15-fold 10-fold 

Recognition 

performance 
99.11% 96.70% 92.40% 92.05% 

Number of Layers 4 6 7 8 

Total number of 

trainable parameters 

(approx. in millions 

(M)) 

9M 164M 70M 30M 

 

 

 

Table 3 shows that the proposed S-DSRN based expression recognition framework 

outperforms all other methods. The number of trainable parameters required by each method is 

also shown in Table 3. This number of trainable weights can be considered as a direct estimation 

of computational resource requirements for each model. The number of parameters is obtained 

by calculating the total number of weights and biases over all layers from the description of the 

deep neural network models [110-112]. Note the table shows that the proposed DSRN based 
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expression recognition architecture requires fewer trainable parameters than that of the other 

networks which implies usage of a much reduced usage of computing resources for DSRN. 

3.3.4.1.4 SPARSITY AND OVERFITTING ANALYSIS OF DSRN  

This section provides mathematical and experimental analysis of sparsity followed by 

overfitting analysis for DSRN. We first obtain a detailed mathematical analysis of DSRN with 

dropout learning. For the ease of analysis we rewrite the forward propagation term of DSRN in a 

simplified and generalized form [76]. We simplify (8) by removing the bias terms (𝑏𝑒
ℎ). This is 

justified because dropout in (8) is only applied to the hidden unit outputs obtained using the feed-

forward (𝑊ℎ) and recurrent (𝑅ℎ) weights while the bias term is unaffected. Next, we write (8) to 

obtain a generalized form for  "ℎ"  number of layers which yields, 

𝑦𝑡+1
ℎ = 𝜎(𝑆𝑡+1

ℎ ) = 𝜎 (∑[𝑊𝑒
ℎ. 𝑦𝑇

𝑙 + 𝑅ℎ. 𝑦𝑡
ℎ]𝛿𝑙

𝑙<ℎ

), 
(15) 

where, 𝑊𝑒
ℎ is the feed-forward weights, 𝑅ℎ denotes the hidden recurrent weights at layer ℎ, 𝜎 

indicates the sigmoid non-linear activation function,  𝑆𝑡+1
ℎ = ∑ [𝑊𝑒

ℎ. 𝑦𝑇
𝑙 + 𝑅ℎ. 𝑦𝑡

ℎ]𝑙<ℎ  denotes the  

hidden layer output of the DSRN before applying the non-linear activation function 𝜎, 𝑦𝑡+1
ℎ  

indicates the same after applying the non-linear  activation function 𝜎 to 𝑆𝑡+1
ℎ , 𝑦𝑇

𝑙=1 = 𝑥,   𝑡 =

1, 2, … , 𝑇 and ℎ = 1, 2, … , 𝐹, and 𝛿𝑙 is a Bernoulli selector random variable with probability 

𝑃(𝛿𝑙 = 1) = 𝑝𝑙. Since the recurrent weights of the DSRN are shared in the hidden layers, we 

apply dropout at 𝑡 = 1 and maintain the probability as a constant for that layer until 𝑡 = 𝑇. 

As a consequence of SGD based training, the variance of the DSRN units is considered 

approximately constant and relatively small when the learning converges. Therefore, by 

analyzing the variance of the units it is possible to understand the effect of dropout on the 

weights and activities of DSRN. The variance of the units of DSRN is computed as follows, 
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𝑉𝑎𝑟(𝑆𝑡+1
ℎ ) = ∑ [𝑊𝑒

ℎ. 𝑦𝑇
𝑙 + 𝑅ℎ. 𝑦𝑡

ℎ]
2
𝑝𝑙(1 − 𝑝𝑙)𝑙<ℎ .     (16) 

For simplicity, we assume that dropout is applied only in layer ℎ and the random 

variables 𝛿𝑙 are independent of each other. From (16) it can be observed that 𝑉𝑎𝑟(𝑆𝑡+1
ℎ ) is 

reduced when the term [𝑊𝑒
ℎ. 𝑦𝑇

𝑙 + 𝑅ℎ. 𝑦𝑡
ℎ]
2
 is minimized. In other words, dropout forces SGD to 

converge with small weights for both 𝑊ℎ and 𝑅ℎand minimal activations (𝑆𝑡+1
ℎ ) with lower 

variance in the units. The term (𝑝𝑙(1 − 𝑝𝑙)) introduced by the random dropout variable 𝛿𝑙 

provides further sparseness in the weights and the activations. Consequently, this analysis shows 

that dropout favors small weights and unit activations which leads to sparsity for the proposed 

DSRN architecture.  

Next, experimental analysis investigates the effects of dropout learning on sparsity for the 

proposed DSRN architecture. The sparsity on DSRN is observed by studying the histograms of 

the hidden layer unit activations (𝑦𝑇
ℎ) at the final recurrent step (at t = T). Fig. 14 (a) shows the 

histograms of three hidden recurrent layer activations obtained from the trained S-DSRN, 

averaged over a random test batch of 50 images from the CK+ dataset. For comparison, Fig. 14 

(b) obtains histograms of the same hidden layer activations for a regular DSRN model trained 

without dropout.    
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                (a) DSRN (dropout with p = 0.5)                                       (b) DSRN (no dropout) 

Fig.14. Sparsity of deep SRN using dropout: Histogram of the activated units for three recurrent 

hidden layers (a)  DSRN with dropout; and (b) DSRN without dropout. The activations are 

obtained from the last recurrent iteration i.e. at t = T for all three layers. 

 

 

Fig. 14 shows that the hidden unit activations of DSRN trained with dropout is far sparser 

than that of the DSRN without dropout. This demonstrates that the use of dropout regularization 

in our proposed DSRN network with sigmoid non-linearity induces sparsity in the hidden 

recurrent unit activations with no additional requirement of user defined sparsity regularization 

terms.  

Finally, we study the capability of dropout learning to prevent the overfitting problem 

otherwise associated with deep models such as DSRN. Prevention of overfitting is necessary for 

smaller datasets such as the ones used in this study. An expression recognition experiment is 

conducted with proposed DSRN with and without dropout for comparison. Fig. 15 shows the 

plot of DSRN without dropout, suggesting very high variation in the test accuracies for the 10-

fold experiment (87% - 96%). Note the training accuracy for each fold in this case is always 



   

 

48 

close to 100%, suggesting possible overfitting scenario. On the other hand, DSRN with dropout 

shows very consistent test accuracies for all folds (95% – 99%). The training accuracies in this 

case are consistently close to the test accuracies. The plot also shows a distinct improvement on 

the average test accuracy when dropout learning is applied for training deep SRN architecture.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Significance of dropout learning for training S-DSRN. Test accuracy (%) of facial 

expression recognition experiment (10-fold) obtained using S-DSRN and DSRN model. Values 

inside the box represent average test classification accuracy. 

 

 

Furthermore, the detailed mathematical analysis of the model averaging property and 

convergence of S-DSRN are provided in Appendix A. 

 

DSRN with dropout  

(p = 0.5) 

DSRN without dropout 
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3.3.4.2 FACE RECOGNITION USING DSRN 

This section illustrates the performance of the proposed DSRN technique for solving the 

face recognition task. 

3.3.4.2.1 DATASET PREPARATION 

The face dataset utilized in this experiment are obtained from low-resolution videos 

carefully captured by our research group in the Vision Lab. The videos are taken from 10 people 

at different settings with various lighting conditions, different facial expressions, pose variations 

and changes in details (glasses, no glasses, beard, no beard, etc). The face dataset is then formed 

by detecting, cropping and resizing (48x48) the faces from the video frames. By doing this we 

obtain 4609 facial images in total (the number of images of each person varies from 350 to 550). 

The dataset is randomized and divided into 10 subsets to obtain a 10 fold cross validation 

configuration.  

3.3.4.2.2 DSRN FOR FACE RECOGNITION: ARCHITECTURE AND PERFORMANCE 

ANALYSIS  

The architecture of the DSRN for the face recognition experiment is similar to the 

previously mentioned facial expression recognition model except in this case we use a single 

layer DSRN architecture given as: 2304 × 500𝑇 × 10. We perform a comparison with a state-

of-the-art feed forward network based five layer stacked auto encoder (SAE). In this case also we 

have utilized 500 neurons in all the hidden layers. The architecture of the SAE used in this paper 

can be written as: 2304 × 500 × 500 × 500 × 500 × 500 × 10 with a “softmax” classification 

layer. The SAE is pre-trained and fine-tuned using backpropogation with SGD. Moreover, in this 

experiment, we use an 𝐿2 weight regularization technique to prevent both networks from 

overfitting. The face recognition results are shown in Table 4. The results demonstrate that 
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DSRN achieves better face classification accuracy than SAE for the 10-fold cross validation 

experiment.  

 

 

TABLE 4 

COMPARISON BETWEEN PROPOSED DSRN AND FIVE LAYER SAE ON FACE 

RECOGNITION EXPERIMENT 

 

Network Classification Accuracy No. of  Total # of trainable  

 (10-fold) layers parameters 

DSRN 98.97% 1 1407K 

SAE 93.14% 5 2157K 

 

 

Table 4 also shows that the five-layer SAE requires 750K more trainable parameters than 

the DSRN. The recurrent connections of DSRN increase the depth of the network while keeping 

the number of trainable parameters constant by weight sharing. Even with substantial reduction 

in trainable parameters, the above results show that our proposed network provides more 

representational power than conventional SAEs. 
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Fig. 16. Performance comparison between DSRN and SAE on the face dataset in terms of true 

positive rate, false positive rate and F1 score. The values are obtained by averaging over all 

classes and all folds.  

 

 

Furthermore, Fig. 16 shows the comparison between the two deep models using TPR, 

FPR and F1 score measures. Note that DSRN achieves a higher TPR and F1 score than SAE. On 

the other hand, the FPR of DSRN is much lower than that of SAE. This demonstrates the 

superior face classification performance of DSRN with low false positives.  

 

3.3.4.3 CHARACTER RECOGNITION USING DSRN 

This section discusses the performance of the proposed DSRN architecture for solving the 

character recognition task. 

 

 

DSRN 
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3.3.4.3.1 DATASET PREPARATION 

The character images are obtained from the challenging Chars74K dataset [113]. The 

dataset is formed by obtaining the characters from natural images (mostly from Google street 

view images). It also contains hand drawn and synthetic computer-generated character images. In 

total the dataset has 74K images consisting of 64 classes (0-9, A-Z, a-z). This work considers a 

subset of the Char74K dataset that contains 36 classes (0-9, A-Z) with 42,371 images. The subset 

dataset is then divided into five non-overlapping sets to form a five-fold cross validation setup. 

Similar to the expression dataset the character images are converted to gray scale and resized to 

48 × 48 . Some example character images are shown in Fig. 17. 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Example character images from Char74K dataset. 

 

3.3.4.3.2 DSRN FOR CHARACTER RECOGNITION: ARCHITECTURE AND 

PERFORMANCE ANALYSIS 

The character recognition experiment is performed using the same deep architectures for 

both DSRN and SAE explained in the previous section. However, in this case the classification 

task is performed by the randomized DML-eig metric learning technique, ϐr rather than 
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“softmax”. Hence, we refer to the pipelines as DSRN with ϐr and SAE with ϐr, respectively. The 

average 5-fold cross-validation accuracy obtained on the character dataset is shown in Table 5.  

 

 

TABLE 5 

COMPARISON BETWEEN PROPOSED DSRN with ϐr AND FIVE LAYER SAE with ϐr ON 

CHARACTER RECOGNITION EXPERIMENT 

 

Network Classification Accuracy 

(5-fold) 

No. of 

layers 

Total # of trainable 

parameters 

DSRN with ϐr 92.62% 1 1402K 

SAE with ϐr 88.79% 5 2152K 

 

 

Table 5 shows that as DSRN with ϐr achieves better classification accuracy than SAE 

with ϐr, for the character recognition task. We once again point out that DSRN requires far fewer 

trainable parameters compared to SAE (750K less than SAE) as shown in Table 5. 



   

 

54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Performance comparison between DSRN with ϐr and SAE with ϐr on Chars74K dataset 

in terms of true positive rate, false positive rate and F1 score. The values are obtained by 

averaging over all classes and all folds. 

 

 

Furthermore, we show a performance comparison between the classification pipelines in 

terms of TPR, FPR and F1 score in Fig. 18 which clearly shows that DSRN with ϐr achieves 

higher TPR and F1 scores than SAE with ϐr. On the other hand, DSRN with ϐr offers much 

lower FPR than that of SAE with ϐr.   

3.4 SUMMARY 

This chapter proposes a novel biologically inspired deep recurrent model, DSRN, for 

effective image recognition. The DSRN model enables recurrent information processing in 

DSRN with ϐr SAE with ϐr 
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addition to the feed-forward information processing within each layer, which allows the model to 

learn more complex features from the input data. Moreover, the use of simultaneous recurrency 

in the DSRN model provides efficient control over the depth and the number of training 

parameters. Our findings suggest that the proposed DSRN model shows improved image 

recognition performance compared to the state-of-the-art models while utilizing a significantly 

fewer training parameters. These findings are published in [114-116]. 

 The proposed DSRN architecture shows improved image recognition performance 

compared to the state-of-the-art models. However, the DSRN model is discriminative and 

designed to solve task specific classification problems which require huge labeled examples for 

training. Such a huge number of labeled examples is not available in many practical applications 

and deep learning models are required to learn from a large collection of unlabeled data to 

achieve an understanding of the underlying distribution of the data also known as the 

representation learning problem. Task specific discriminative models perform poorly in this 

scenario; hence, a special type of deep learning models may be required to perform the 

representation learning task. Consequently, probabilistic generative models are introduced to 

perform the representation learning task from unlabeled data. Moreover, generative models are 

used as the basic building blocks of many deep learning models. Accordingly, in the next 

chapter, we extend the concept of deep simultaneous recurrency in a novel deep recurrent 

generative model to perform the representation learning task effectively.  
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CHAPTER 4 

DEEP GENERATIVE SIMULTANEOUS RECURRENT MODEL FOR EFFICIENT 

REPRESENTATION LEARNING 

4.1 CHAPTER OVERVIEW 

This chapter proposes a novel deep simultaneous recurrent probabilistic generative model 

to effectively perform the representation learning task from unlabeled data. Representation 

learning plays an important role for building effective deep neural network models. Deep 

generative probabilistic models have shown to be efficient in the data representation learning 

task which is usually carried out in an unsupervised fashion. Throughout the past decade, there 

has been almost exclusive focus on the learning algorithms to improve representation capability 

of the generative models. However, effective data representation requires improvement in both 

the learning algorithm and architecture of the generative models. Therefore, improvement to the 

neural architecture is critical for improved data representation capability of deep generative 

models. Furthermore, the prevailing class of deep generative models such as deep belief network 

(DBN), deep Boltzman machine (DBM), deep sigmoid belief network (DSBN), and variational 

autoencoder (VAE) are inherently unidirectional and lack recurrent connections ubiquitous in the 

biological neuronal structures. Introduction of recurrent connections may offer further 

improvement in data representation learning performance to the deep generative models. 

Consequently, this chapter proposes a deep recurrent generative model known as deep 

simultaneous recurrent belief network (D-SRBN) to efficiently learn representations from 

unlabeled data. The proposed D-SRBN model is a logical extension of the DSRN based 

discriminative model proposed in the previous chapter to perform more generalized 

representation learning task.   



   

 

57 

4.2 LITERATURE REVIEW 

Representation learning is considered as one of the critical steps for building robust deep 

learning models. The task of representation learning involves learning different explanatory 

factors of variation embedded in the data without explicitly knowing the labels of the data in an 

unsupervised fashion. Once the representation is learnt, the model may be applied in other 

machine learning applications such as recognition, classification, segmentation, reasoning, 

decision-making and many more. Deep generative models are particularly adept at learning 

representations directly from the unlabeled data. Similar to the majority of neural models, the 

performance and efficacy of such models generally depend on the architecture and the associated 

learning algorithm. Throughout the past decade, there has been extensive research [57, 59, 80, 

117-121] to introduce faster and efficient learning algorithms for probabilistic generative models. 

However, in addition to learning algorithms, improvements in the underlying network 

architectures are critical for effective representation learning. The rapid increase in the 

complexity of the large-scale datasets necessitates more sophisticated yet efficient architectures 

for the generative models to capture complex patterns from the data, and improve representation 

learning performance.   

4.2.1 GENERATIVE MODELS: DEFINITION AND CLASSICAL MODELS 

Generative models learn to represent a dataset as a joint probability distribution over its 

features. Therefore, the statistical samples drawn from the model represents similar types of 

observations found in the input dataset. Due to this ability of generating samples from the 

learned distribution, these models are referred to as generative models. Probabilistic generative 

models are formally expressed as 𝑝(𝑣, ℎ), a probabilistic model over the joint space of the latent 

variable ℎ and the observed data or visible variables 𝑣. Feature values are obtained as the result 
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of an inference technique to determine the probability distribution of the latent variables given 

the data, 𝑝(ℎ|𝑣). Learning is perceived in terms of estimating a set of model parameters that 

maximizes the regularized likelihood of the training data. Though several classic dimensionality 

reduction methods such as principal component analysis (PCA), linear discriminant analysis 

(LDA) and manifold learning have been proposed for representation learning applications [122, 

123], neural networks remain as one of the widely used form of generative models. During the 

neural network learning process, the trainable parameters are adjusted such that the probability 

distribution represented by the neural network model that fits the input data as best as possible. 

4.2.2 GENERATIVE MODELS: RECENT DEVELOPMENT 

Restricted Boltzman machine (RBM) was the earliest neural network based parametric 

generative model and was later utilized as the basic building block of the more expressive deep 

generative models such as deep belief network (DBN) and deep Boltzman machine (DBM). 

Deep belief network (DBN) [1] and deep Boltzman machine (DBM) [78] are two widely used 

deep probabilistic generative models that contain many layers of non-linear hidden units. These 

models utilize restricted Boltzman machine (RBM) [117-119] as the basic building block. The 

RBM is an undirected graphical model which consists of an input layer (visible layer) and a 

hidden layer of stochastic binary units. The visible and hidden layer units are connected by 

trainable weights with no connections between units in the same layer. The information 

propagation between visible and hidden units occurs in two ways: recognition, where visible unit 

activations propagate to the hidden units and reconstruction, in which the information propagates 

from hidden to visible units [117]. 
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The following sections present brief discussions on existing state-of-the-art deep 

generative models such as DBN, DBM, deep sigmoid belief network (DSBN), variational auto-

encoder (VAE) and generative adversarial network (GAN).  

4.2.2.1 DEEP BELIEF NETWORK (DBN) 

The DBN model has been successfully applied in many different applications such as 

image recognition [124], natural language processing [125] and acoustic modeling [126], etc. 

The DBNs are constructed by stacking layers of RBM on top of each other. Arranging RBMs in 

this fashion allows the DBN to progressively capture more complex patterns of the input data at 

each non-linear layer [120]. DBNs are considered a hybrid deep model since the training of the 

DBN model is performed in two stages [1]: unsupervised pretraining, and supervised finetuning. 

The pretraining of the DBN requires greedy layerwise training [121] by optimizing an 

unsupervised loss function. Consequently, a generative model with “pretrained weights” is 

obtained that captures the features of the raw input. In the second stage, first the pretrained 

weights from the RBMs are copied to a regular deep feed-forward neural network model to 

replace its hidden layer weights. Then an additional layer such as a classification layer is 

incorporated on top of the newly formed deep network to perform finetuning of the weights by 

optimizing a supervised loss function. 

4.2.2.2 DEEP BOLTZMAN MACHINE (DBM) 

Inference in DBNs is problematic, so more efficient DBM generative models are 

introduced [78]. DBMs are successfully applied in various applications such as object and speech 

recognition [127], multimodal learning [128], etc. Similar to DBNs, DBMs are formed by 

stacking layers of RBMs in which each layer captures complicated, and higher-order correlations 

between the activities of hidden features in the layer below [78]. This enables the DBM to learn 
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internal representations directly from the raw input data that become increasingly complex at 

each layer. However, unlike DBNs, the approximate inference procedure in DBMs is 

bidirectional: bottom-up and top-down, allowing the DBMs to better propagate the uncertainty of 

ambiguous inputs. This makes the DBM a more robust generative graphical model than the 

DBN. The training of the DBM model is performed by applying a variational approach [78] 

where mean-field inference is used to estimate data-dependent expectations. In order to better 

initialize the model parameters of a DBM, the stack of RBMs are pretrained by applying a 

modified greedy layerwise pretraining technique [78]. Though there are differences between 

DBN and DBM models, they both utilize the RBM as the basic learning module. A desirable 

property of the RBM is that the calculation of the gradient estimates on the model parameters is 

straightforward and the stochastic gradient descent (SGD) provides relatively efficient inference. 

However, evaluating the probability of a data point under an RBM is non-trivial due to the 

computationally intractable partition function [60]. The estimation of this partition function is 

usually performed by a sampling algorithm known as annealed importance sampling (AIS) [79].   

4.2.2.3 DEEP SIGMOID BELIEF NETWORK (DSBN) 

In recent years directed generative models such as sigmoid belief networks (SBNs) [57-

59] have drawn increasing attention. The SBN models are closely related to their undirected 

counterparts, RBMs. As mentioned above, one major limitation associated with RBMs is the use 

of an intractable partition function in the energy function. SBNs mitigate this problem by 

modifying the energy function to obtain a simple partition function [60]. Therefore, the full-

likelihood under an SBN is trivial to compute. As such, SBNs are now utilized as the basic 

learning module for the DBNs [60]. Moreover, deep directed generative models known as deep 

sigmoid belief network (DSBN) are also introduced using SBNs and successfully applied in 
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applications such as image representation [60, 129] and polyphonic music and motion capture 

[130]. However, training such directed generative models may be difficult [1]. Simple sampling 

based gradient estimation methods are proposed in [57, 80] to train the SBN model. Nonetheless, 

these methods are not scalable and practical for learning large models. This problem is tackled 

by utilizing recently developed variational inference methods in the Bayesian statistics literature. 

One such method is known as neural variational inference and learning (NVIL) [59] algorithm 

which is shown to be very efficient in training DSBN models.  

4.2.2.4 GENERATIVE ADVERSARIAL NETWORK (GAN) AND VARIATIONAL 

AUTOENCODER (VAE) 

Recent studies introduce more robust generative models such as variational auto-encoder 

(VAE) [61-63] and generative adversarial network (GAN) [64-67] for the representation learning 

task. VAE is a probabilistic graphical model whose explicit goal is to perform non-linear latent 

variable modeling by marginalizing out certain variables as part of the modeling process [61].  

During the learning process, the latent variables capture meaningful representation from the 

observed data, which is not immediately visible from the raw observations. Subsequently, the 

learned latent variable model is utilized to generate the input sample from some latent or 

unobserved space. VAE utilizes a gradient-based learning procedure inspired from variational 

inference principle. More specifically, VAE is trained by maximizing the evidence lower bound 

(ELBO) cost function by applying the gradient descent technique over the model parameters 

[61]. VAE and its variants such as conditional VAE (CVAE) [131] have been successfully 

applied in applications such as diverse colorization [132], attribute to image [133] and 

forecasting motion [131]. GAN is another generative model which attempts to train a generator 

network by simultaneously training a discriminator network [64]. Unlike existing probabilistic 
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generative models such as DBN, DBM, DSBN and VAE, GAN utilizes an adversarial learning 

scheme where samples produced by the generator network are challenged by the discriminator 

network which determines the difference between the generated sample and the real sample. The 

training is carried out until the discriminator network is maximally confused i.e. the 

discriminator network cannot differentiate the generated sample from real sample [64]. This 

learning scheme of GAN falls into the category of semi-supervised learning. GAN has been 

successfully applied in many image processing applications such as image super resolution 

[134], text to image synthesis [135] and image inpainting [136]. Though GAN is commonly 

referred as a class of generative model, it utilizes a deterministic approach to build the generator 

and the discriminator network. More specifically, the generator network is designed using an 

inverse convolution mechanism while the discriminator network is a standard convolutional 

binary classifier network. Hence, a direct model comparison from a probabilistic standpoint 

between GAN and other probabilistic generative models is not feasible. 

4.2.3 LIMITATIONS OF CURRENT GENERATIVE MODELS 

All the deep generative models discussed above such as DBN, DBM, DSBN, VAE and 

GAN utilize hierarchical feed-forward information processing in the architecture to learn 

meaningful representations from input data. This hierarchical information processing is generally 

inspired by biological neural information processing systems. However, several studies [99, 137]  

also suggest the presence of recurrent information processing in biology for learning efficient 

representations from the input stimuli. Hence, recurrency in generative models may assist in 

learning more meaningful and efficient representations of data.  

Consequently, this work proposes a novel directed deep recurrent probabilistic generative 

model known as deep simultaneous recurrent belief network (D-SRBN) for efficient 
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representation learning. The proposed model utilizes a unique type of recurrency found in 

simultaneous recurrent networks (SRNs) [48]. Several studies [46, 114-116] have proven the 

superiority of SRNs in efficacy and performance compared to regular feed-forward based 

architectures by solving challenging problems such as topological mapping, decision making and 

image recognition.  

4.3 DEEP SIMULTANEOUS RECURRENT BELIEF NETWORK (D-SRBN) MODEL  

 This section provides the detailed architecture, mathematic formulation followed by 

inference and learning procedure of the proposed D-SRBN model.  

4.3.1 ARCHITECTURE AND PROBABILITY DISTRIBUTION OF D-SRBN MODEL  

The D-SRBN is a directed deep recurrent generative model. The architecture of the 

proposed deep simultaneous recurrent belief network (D-SRBN) generative model is shown in 

Fig. 19 (a). Moreover, a time unfolded version of the generative model is shown in Fig. 19 (c) for 

further clarity. Each "ℎ" in Fig. 19 (a) and Fig. 19 (c) represents a recurrent layer at layer 𝑙 with 𝐽𝑙 

hidden units. For the first layer ℎ(1) = 𝑣 represents the visible unit (input). The simultaneous 

recurrency in the hidden recurrent layers are applied for 𝑡 = 1,… , 𝑇 steps. The input/feature at 

each layer is simultaneously applied 𝑇 times at each hidden recurrent step 𝑡 along with the 

previous recurrent input at 𝑡 − 1.  More specifically,  each recurrent layer at each time step 𝑡, 

receives input from the last recurrent layer output of the previous layer ℎ𝑇
(𝑙−1)

 as well as from the 

previous time step ℎ(𝑡−1)
(𝑙)

 of the same layer as shown in Fig. 19 (c). The addition of simultaneous 

recurrency provides t additional non-linear processing capability within each hidden layer, which 

may enable the model to learn more complex features. This eventually facilitates the D-SRBN 

model to learn better representation of the input data.  
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Fig. 19. Architecture of the proposed Deep Simultaneous Recurrent Belief Network (D-SRBN) 

model: (a) Generative model, (b) Recognition model and (c) Time unfolded version of the 

generative model. Each "ℎ" represents a recurrent layer containing 𝐽𝑙 hidden units at layer 

𝑙 except the first layer where ℎ(1) = 𝑣 indicates the visible unit (input). 
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Accordingly, the joint probability of the D-SRBN is written as,  

𝑝𝜃(ℎ
(1)|𝐻(𝐿)) =

∏ [𝑝(ℎ1
(𝑙))𝑝(ℎ1

(𝑙)|ℎ1
(𝑙+1))∏ (𝑝(ℎ𝑡

(𝑙)|ℎ𝑡−1
(𝑙) , ℎ𝑇

(𝑙−1), ℎ𝑡
(𝑙+1))𝑝(ℎ𝑇

(𝑙−1)|ℎ𝑡
(𝑙)) 𝑇

𝑡=2 ]𝐿
𝑙=2 , 

𝑓𝑜𝑟 𝑙 = 𝐿, ℎ𝑡
(𝑙+1) = 0; 

(17) 

where, ℎ(1) = 𝑣 indicates the visible layer (input), 𝐻(𝐿) =  [ℎ1
(𝐿), ℎ2

(𝐿), … , ℎ𝑇
(𝐿)

], ℎ𝑡
(𝑙)

 represents 

hidden recurrent units at layer 𝑙 and time step 𝑡 where each ℎ𝑡
(𝑙)
∈ {0,1}𝐽𝑙, 𝐿 denotes the number 

of layers and 𝑇 denotes the last recurrent step. Moreover, ℎ0
(𝑙)

 needed for the prior model 𝑝(ℎ1
(𝑙)) 

and 𝑝(ℎ1
(𝑙)|ℎ1

(𝑙+1)) are defined as zero vectors. Each conditional distribution in (17) is expressed 

as, 

𝑝(ℎ𝑡
(𝑙)|ℎ𝑡−1

(𝑙) , ℎ𝑇
(𝑙−1), ℎ𝑡

(𝑙+1)) = 𝜎 (𝑊𝑟
(𝑙)𝑇ℎ𝑡

(𝑙+1) +𝑊𝑓
(𝑙)𝑇ℎ𝑡−1

(𝑙) +𝑊𝑔
(𝑙)𝑇ℎT

(𝑙−1) + 𝑏(𝑙)) ; 

𝑓𝑜𝑟 𝑙 = 2 𝑡𝑜 𝐿;  𝑓𝑜𝑟 𝑙 = 𝐿, ℎ𝑡
(𝑙+1) = 0; 𝑡 = 2 𝑡𝑜 𝑇 and ℎT

(1) = 𝑣; 

         

(18) 

and 

𝑝(ℎ𝑇
(𝑙−1)

|ℎ𝑡
(𝑙)
) = 𝜎 (𝑊𝑟

(𝑙)𝑇ℎ𝑡
(𝑙) + 𝑏(𝑙)) 

𝑓𝑜𝑟 𝑙 = 2 𝑡𝑜 𝐿; 𝑡 = 2 𝑡𝑜 𝑇; 

         

(19) 

where, the model parameters 𝜃 ∈ {𝑊𝑟
(𝑙), 𝑊𝑓

(𝑙), 𝑊𝑔
(𝑙), 𝑏(𝑙)} are specified as 𝑊𝑟

(𝑙) ∈ ℝ𝐽𝑙×𝐽(𝑙−1) , 

𝑊𝑓
(𝑙) ∈ ℝ𝐽𝑙×𝐽𝑙, 𝑊𝑔

(𝑙) ∈ ℝ𝐽(𝑙−1)×𝐽𝑙 and 𝑏(𝑙) = [𝑏1
(𝑙), 𝑏2

(𝑙), … , 𝑏𝐽𝑙
(𝑙)
]𝑇 are bias terms. The conditional 

distribution in (5) shows that at any layer 𝑙 the hidden units at recurrent step 𝑡 (ℎ𝑡
(𝑙)

) are 

computed from the previous recurrent steps 𝑡 − 1 (ℎ𝑡−1
(𝑙)

), the last recurrent step 𝑇 from the 

previous layer  𝑙 − 1 (ℎT
(𝑙−1)

) and the recurrent steps from the layer above 𝑙 + 1 (ℎ𝑡
(𝑙+1)

). This 

computation can be considered as going bottom up in the graphical model based on the directed 
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connection shown in Fig. 19 (c). Conversely, the conditional distribution in (19) performs the top 

down computation which can be considered as the reconstruction step, where the recurrent units 

of the last step 𝑇 at any layer 𝑙 − 1 (ℎ𝑇
(𝑙−1)

) are computed from the recurrent steps of the layer 

above 𝑙 (ℎ𝑡
(𝑙)

). Further detailed derivations of the proposed D-SRBN generative model are 

provided in the Appendix B (Equation (B.1)-(B.3)). 

4.3.2 INFERENCE AND PARAMETER LEARNING OF D-SRBN  

The exact posterior computation of the D-SRBN model shown in (17) is intractable. 

Therefore, in this section we obtain approximate posterior distribution for the inference model of 

the proposed D-SRBN model. This inference model is utilized to derive the variational lower 

bound objective function.  

Given an observation ℎ(1) = 𝑣, the parameters 𝜃 of the D-SRBN model, 𝑝𝜃(ℎ
(1)|𝐻(𝐿)) 

shown in (17), are trained by defining the variational lower bound objective function. First, a 

fixed-form distribution, 𝑞𝜑(𝐻
(𝐿)|ℎ(1)) with parameters 𝜑 is introduced which approximates the 

true posterior distribution, 𝑝(𝐻(𝐿)|ℎ(1)). We utilize the approximate posterior distribution, 

𝑞𝜑(𝐻
(𝐿)|ℎ(1)) and follow the variational principle to derive the lower bound on the marginal log-

likelihood which is expressed as, 

where, ℎ(1) = 𝑣 denotes the input, 𝐻(𝐿) indicates the last hidden recurrent layer, 𝜃 and φ denotes 

the model and the approximate model parameters, respectively. The approximate posterior, 

𝑞𝜑(𝐻
(𝐿)|ℎ(1)) is defined as a recognition model [15] and the graphical architecture is shown in 

Fig. 19 (b). The recognition model is expressed as follows, 

£(ℎ(1), 𝜃, 𝜑) = 𝔼𝑞𝜑
(𝐻(𝐿)|ℎ(1))

[log 𝑝𝜃 (ℎ
(1), 𝐻(𝐿)) − log 𝑞𝜑 (𝐻

(𝐿)|ℎ(1))]; 
(20) 
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𝑞𝜑(𝐻
(𝐿)|ℎ(1)) =  ∏ [𝑞(ℎ1

(𝑙)
|ℎ𝑇
(𝑙−1)

)∏ (𝑞(ℎ𝑡
(𝑙)
|ℎ𝑡−1
(𝑙)
, ℎ𝑇
(𝑙−1)

) 𝑇
𝑡=2 ]𝐿

𝑙=2 ; (21) 

The conditional distribution in (21) is specified as, 

𝑞(ℎ𝑡
(𝑙)|ℎ𝑡−1

(𝑙) , ℎ𝑇
(𝑙−1)) = 𝜎 (𝑈𝑔

(𝑙)𝑇ℎ𝑇
(𝑙−1) + 𝑈𝑓

(𝑙)𝑇ℎ𝑡−1
(𝑙) + 𝑐(𝑙)), 

𝑓𝑜𝑟 𝑙 = 2 𝑡𝑜 𝐿;  𝑡 = 2 𝑡𝑜 𝑇 and ℎT
(1) = 𝑣. 

(22) 

where, the model parameters 𝜑 ∈ {𝑈𝑓
(𝑙), 𝑈𝑔

(𝑙), 𝑐(𝑙)} are specified as 𝑈𝑓
(𝑙) ∈ ℝ𝐽𝑙×𝐽𝑙, 𝑈𝑔

(𝑙) ∈

ℝ𝐽(𝑙−1)×𝐽𝑙 and 𝑐(𝑙) = [𝑐1
(𝑙), 𝑐2

(𝑙), … , 𝑐𝐽𝑙
(𝑙)
]𝑇 are bias terms. The conditional distribution in (22) shows 

that at any layer 𝑙 the hidden recurrent units at time step 𝑡 (ℎ𝑡
(𝑙)

) of the recognition model is 

computed from the recurrent units computed at the time steps 𝑡 − 1 (ℎ𝑡−1
(𝑙)

) and the last recurrent 

step 𝑇 from the previous layer 𝑙 − 1 (ℎ𝑇
(𝑙−1)

). Defining the approximate posterior using such a 

recognition model enables both fast inference and efficient parameter computation where the 

variational parameters 𝜑 are computed simultaneously for all 𝑣 rather than per data point [130]. 

Moreover, the parameters 𝜑 of the recognition model are learned simultaneously with the 

parameters of the generative model 𝜃.    

The parameters {𝜃, φ} of the D-SRBN are learned by optimizing (20). We use the NVIL 

algorithm [59, 130] which utilizes Monte Carlo methods to approximate expectations and 

stochastic gradient descent (SGD) to optimize the parameters, 𝜃 and 𝜑. The gradients in terms of 

the model parameters 𝜃 and 𝜑 are expressed as,  

∇θ£(ℎ
(1)) = 𝔼𝑞𝜑

(𝐻(𝐿)|ℎ(1))
[∇θ log 𝑝𝜃 (ℎ

(1), 𝐻(𝐿))], 

and 

 

(23) 
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∇φ£(ℎ
(1)) = 𝔼𝑞𝜑

(𝐻(𝐿)|ℎ(1))
[( log 𝑝𝜃 (ℎ

(1), 𝐻(𝐿)) − log 𝑞𝜑 (𝐻
(𝐿)|ℎ(1)))

× ∇φ log 𝑞𝜑 (𝐻
(𝐿)|ℎ(1))]. 

(24) 

where, 𝛻𝜃£ and 𝛻𝜑£ denote the gradient of £ in terms of 𝜃 and 𝜑. 

Algorithm 2 shows the learning procedure of D-SRBN using the NVIL algorithm. The 

detailed equations (as shown in Algorithm 2) necessary to understand the generative model, the 

recognition model and the lower bound objective function derived for the D-SRBN are provided 

in Appendix B.
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  Algorithm 2: Learning procedure of D-SRBN using NVIL 

 

Initialization: 

∎ Set generative model parameters, 𝜃 ∈ {𝑊𝑟
(𝑙),𝑊𝑓

(𝑙), 𝑊𝑔
(𝑙), 𝑏(𝑙)} and recognition model 

parameters, 𝜑 ∈ {𝑈𝑓
(𝑙), Ug

(𝑙), 𝑐(𝑙)} with random values 

∎ Set ∆𝜃 ← 0, ∆𝜑 ← 0 and £ ← 0  

∎ Set learning rate, ∝ with a small value 

∎ Set ℎ(1) = 𝑣 and ℎ0
(𝑙) = 0 

 

Training: 

for each epoch  

for each mini-batch  

            a. Perform generative step: 

     for 𝑡 ← 1 𝑡𝑜 𝑇  

               Compute 𝑝𝜃(ℎ
(1)|ℎ𝑡

(𝐿)
) using Eq. (B1)-(B3)     

          end 

            b. Perform recognition step: 

   for 𝑡 ← 1 𝑡𝑜 𝑇  

                       Compute 𝑞𝜑(ℎ𝑡
(𝐿)
|ℎ(1)) using Eq. (B4)     

                end 

             c. Compute variational lower bound, £  

                  for 𝑡 ← 1 𝑡𝑜 𝑇  

                        ∎ Compute 𝑒𝑡using Eq. (B6)-(B10) 

                        ∎ £ ← £ + 𝑒𝑡 
                  end 

              d. Compute gradients:  

                   for 𝑡 ← 1 𝑡𝑜 𝑇  

                        ∎ ∆𝜃 ← ∆𝜃 + ∇θ log 𝑝𝜃(ℎ
(1)|ℎ𝑡

(𝐿)
) 

                        ∎ ∆𝜑 ← ∆𝜑 + 𝑒𝑡∇𝜑 log 𝑞𝜑(ℎ𝑡
(𝐿)
|ℎ(1)) 

                   end 

end  

            e. Update the model parameters: 

∎ 𝜃(𝑛𝑒𝑤) ← 𝜃(𝑜𝑙𝑑) − ∝∗ ∆𝜃 

                  ∎ 𝜑(𝑛𝑒𝑤) ← 𝜑(𝑜𝑙𝑑) − ∝∗ ∆𝜑 
end  
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4.4 RESULTS AND DISCUSSION  

This section discusses the representation learning performance of the proposed D-SRBN 

model compared to the state-of-the-art models using four widely used standard benchmark 

datasets such as MNIST [22], Caltech 101 Silhouettes [138], OCR letters1 and Omniglot [139], 

respectively. These datasets are the most widely used datasets in the literature for evaluating the 

performance of the generative models. Some random example images from each of the above 

datasets are shown in Fig. 20. Further, we compare the proposed model with three state-of-the-

art deep generative models such as Deep Belief Network (DBN), Deep Boltzman Machine 

(DBM), Deep Sigmoid Belief Network (DSBN) and Variational Auto-Encoder (VAE), 

respectively. Quantitative evaluation of deep generative models is crucial to measure and 

compare different probabilistic models. The performance of the models are assessed by 

generating samples from a specific model and obtaining the average log probability metric using 

a test dataset for that model. As mentioned above, the specific performance metric used in this 

study is known as negative log-likelihood [59, 60, 78, 127, 140]. This metric calculation varies 

depending on the variational inference technique used in the probabilistic model. For our 

proposed D-SRBN model the average test negative log-probability is computed as follows. 

Average test log-probability = 
1

𝑛𝑡𝑒𝑠𝑡
∑ ∑ 𝐸𝑞

𝜑(𝐻(𝐿)|𝑥𝑡𝑒𝑠𝑡
𝑖

)

([𝑒𝑡])
𝑇
𝑡=1𝑖∈𝑛𝑡𝑒𝑠𝑡  

(25) 

where,  𝑛𝑡𝑒𝑠𝑡 denotes the number of testing samples, 𝑥𝑡𝑒𝑠𝑡
𝑖  denotes the 𝑖𝑡ℎ testing sample, 𝐻(𝐿) 

denotes the latent representation of the test data 𝑥𝑡𝑒𝑠𝑡
𝑖  and 𝑒𝑡 denotes the variational lower bound 

which is shown in (B.6) in the appendix. The average test log-probability computation for the 

                                                 
1 http://ai.stanford.edu/~btaskar/ocr/ 



   

 

71 

deep generative models in comparison can be found in [60, 61, 141]. The next few sections 

summarize and discuss the results for each benchmark dataset. 

 

 

 

 

 

 

   (a)                                    (b)   (c)  (d) 

Fig. 20. Random example images from the dataset; (a) MNIST, (b) Caltech 101 Silhouettes, (c) 

OCR letters, (d) Omniglot. 

 

 

4.4.1 MNIST DATASET  

The MNIST dataset [22] contains 60,000 training and 10,000 test images of ten 

handwritten digits (0 to 9) with image size of 28 × 28. The binarized version of the dataset is 

used for these experiments [141]. We report the average log-probability of the test data obtained 

by the proposed D-SRBN model trained with NVIL and SGD. The detailed hyper parameters 

setup to train the D-SRBN model are as follows: number of layers = 2, number of units at each 

layer = 200, 𝑇 = 15, learning rate = 0.001, weight decay = 0.0001, momentum = 0.9, step size 

= 0.001 and mini batch size = 256. The DSBN model is trained using NVIL and the test log-

probability is approximated from the variational lower bound for comparison. We follow [60] to 

obtain the architecture of the DSBN model along with the learning parameters for the NVIL 
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algorithm. On the other hand, the performance of the DBN and DBM models are evaluated by 

estimating the variational lower bound for the average log-likelihood on the test set using the 

annealed importance sampling (AIS) method [141]. The architecture and learning parameters of 

the DBN and the DBM models are obtained from [79] and [78], respectively. Moreover, the 

architecture and the learning parameters for the VAE model is obtained from [61].  

Fig. 21 shows the average log-probability achieved by the proposed D-SRBN, DBN, 

DBM, DSBN and VAE model on the test dataset at each iteration, respectively. Moreover, 

Fig.21 shows the average test log probability achieved by a single layer version (SRBN) of the 

D-SRBN model for comparison. The D-SRBN model achieves a higher average test log-

probability than the three comparative models after 50 iterations. This demonstrates the 

effectiveness of the proposed model for achieving faster model-fit of the data compared to the 

three state-of-the-art deep generative models. It should be noted here that the VAE model 

achieves a marginally higher average test log-probability than the proposed D-SRBN model 

towards the end of the training iterations as shown in Fig. 21. However, the performance of the 

D-SRBN model is significantly better for the first 300 epochs compared to the VAE model. This 

shows that the proposed D-SRBN model achieves a considerably faster convergence compared 

to the VAE model. 
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Fig. 21. Comparison of the proposed D-SRBN model with four state-of-the-art generative 

models: DBN, DBM, DSBN and VAE based on the average test log-probability using the 

MNIST dataset.   

 

 

Table 6 shows the best test log-probability estimate with corresponding iteration number 

achieved by all five deep generative models. The parameters are tuned to obtain the best test log-

probability metric for each of the DBN, DBM and DSBN models to reflect the results reported in 

studies [9], [2] and [8] on MNIST the dataset, respectively. For the VAE model we have 

achieved better performance than the one reported in [61] for the MNIST dataset. Table 6 

demonstrates that the proposed D-SRBN model is faster and achieves better performance than 

the three state-of-the-art DBN, DBM and DSBN deep generative models. Conversely, the VAE 

model achieves slightly better performance than the D-SRBN model. However, this slight 
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performance improvement achieved by the VAE model is at the expense of 2.5 times more 

hidden units (500 units at each layer) than the D-SRBN model (200 units at each layer). 

Additionally, Table 6 shows that the D-SRBN model achieves the best performance at training 

epoch 101 whereas the VAE model achieves the best performance at epoch 497. This 

demonstrates that the D-SRBN model converges with a minimal number of training epochs 

compared to the VAE and other state-of-the art deep generative models.  

 

 

TABLE 6 

 

COMPARISON OF THE PROPOSED D-SRBN MODEL WITH THE STATE-OF-THE-ART 

DEEP GENERATIVE MODELS: DBN, DBM, DSBN AND VAE BASED ON THE LOG 

PROBABILITY OF TEST DATA ON MNIST DATASET 

 

Model Number of units in each 

hidden layer 

Best test log-

probability 

Number of 

iterations taken 

DBN  500-2000  -86.56 498 

DBM  500-1000  -84.27 475 

DSBN  200-200  -99.11 408 

VAE 500-500 -76.07 497 

SRBN 200 -82.96 500 

D-SRBN  200-200  -78.12 101 

 

 

 

Further, the D-SRBN model utilizes fewer hidden units when compared to the DBN and 

DBM models and the same number of hidden units when compared to DSBN. 

4.4.2 CALTECH 101 SILHOUETTTES DATASET  

We perform the second experiment using the Caltech 101 Silhouettes dataset [138]. The 

dataset is composed of 6,364 training and 2,307 test images of size 28 × 28, representing object 
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silhouettes of 101 classes. The training and the testing protocols for the remaining deep 

generative models discussed in this work are similar to the one used for the MNIST dataset. 

Additionally, the hyper parameters used to train the D-SRBN model are unchanged from the 

previous experiment. Fig. 22 shows the average log-probability of the test dataset obtained at 

each iteration for the five generative models. The proposed D-SRBN model achieves a higher 

average test log-probability than the three comparative models after 20 iterations. Once again 

this demonstrates the effectiveness of the proposed model for achieving faster model-fit of the 

data compared to the four state-of-the-art deep generative models. 

 

 

 

Fig. 22. Comparison of the proposed D-SRBN model with four state-of-the-art generative 

models: DBN, DBM, DSBN and VAE based on the average test log-probability using the 

Caltech 101 Silhouettes dataset.  
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Table 7 shows a comparison between the proposed D-SRBN model and the four state-of-

the-art generative models in terms of the best test log-probability metric with associated iteration 

number. Additionally, we show the average test log likelihood performance obtained by the 

SRBN model. The parameters of the DBN, DBM, DSBN and VAE models are tuned to obtain 

the best test log-probability as reported in the literature [60, 142]. Table 7 demonstrates that both 

the proposed SRBN and D-SRBN model achieves better performance than the state-of-the-art 

models. Nevertheless, the performance of the D-SRBN model is better than the single layer 

SRBN model. Though the D-SRBN model achieves the best test log-probability at iteration 

number 499, the performance improvement compared to the other generative models occurs after 

just 20 iterations as mentioned above.  

 

 

TABLE 7 

 

COMPARISON OF THE PROPOSED D-SRBN MODEL WITH THE STATE-OF-THE-ART 

DEEP GENERATIVE MODELS: DBN, DBM, DSBN AND VAE BASED ON THE LOG 

PROBABILITY OF TEST DATA ON CALTECH 101 DATASET 

 

Model Number of units in 

each hidden layer 

Best test log-

probability 

Number of 

iterations taken 

DBN  500-500  -114.21 477 

DBM  500-500  -98.20 473 

DSBN  200-200  -97.32 482 

VAE 500-500 -103.13 491 

SRBN 200 -98.43 497 

D-SRBN  200-200  -95.74 499 
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Moreover, here again the D-SRBN model utilizes fewer hidden units when compared to 

DBN and DBM models and similar number of hidden units when compared to DSBN. 

4.4.3 OCR LETTERS DATASET  

The third experiment is based on the OCR letters dataset which contains images of 26 

letters of the English alphabet. The dataset is composed of 42,152 training and 10,000 test image 

examples of size 16 × 8. The training and testing protocols for the deep generative models are 

similar to the previous experiments. The hyper parameter setup for the D-SRBN model is similar 

to the previous experiments except 𝑇 is set to 11 which is experimentally found to provide the 

best performance for the OCR letters dataset. The architecture and learning parameters of the 

DSBN and DBM models are obtained from [60] and [127], respectively. Additionally, we 

perform an in-house experiment to obtain the best architecture for the DBN and VAE model 

since to the best of our knowledge there are no reported results for the OCR letters dataset using 

the DBN and VAE models. Our results suggest that a DBN model with two hidden layers 

containing 1000 hidden units at each layer and the VAE model with 500 hidden units at each 

layer achieves the best performance. The average log-probability of the test dataset observed at 

each iteration for all deep generative models is shown in Fig. 23 which shows that the proposed 

D-SRBN model demonstrates faster and much better performance than the state-of-the-art deep 

generative models. Moreover, Fig. 23 demonstrates that the single layer SRBN model shows 

improved performance compared to the state-of-the-art models. 



   

 

78 

 

Fig. 23. Comparison of the proposed D-SRBN model with three state-of-the-art generative 

models: DBN, DBM, DSBN and VAE based on the average test log-probability using the OCR 

letters dataset.  

 

 

We also present a comparison between the four deep generative models in terms of the 

best test log-probability metric for the corresponding iteration number in Table 8. The 

parameters of the DBN, DBM, DSBN and VAE models are tuned to obtain the best test log-

probability. Note that our experiments using the state-of-the-art DBN, DBM, DSBN and VAE 

models show better results than the best results reported in the literature [60, 127]. However, in 

this case also the proposed D-SRBN achieves a significantly higher performance than that of the 

state-of-the-art deep generative models while utilizing fewer or similar numbers of hidden units. 

Table 8 shows that the performance of the D-SRBN model is slightly better than the SRBN 

model while the SRBN model achieves improved performance compared to the state-of-the-art 
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models. Though the D-SRBN model takes a few more iterations (150) to achieve the best test 

log-probability compared to the DBN model (104), the performance improvement begins after 

just the 15th iteration and the improvement is noticeably better as shown in Fig. 23 and Table 8, 

respectively. 

 

 

TABLE 8 

 

COMPARISON OF THE PROPOSED D-SRBN MODEL WITH THE STATE-OF-THE-ART 

DEEP GENERATIVE MODELS: DBN, DBM, DSBN AND VAE BASED ON THE LOG 

PROBABILITY OF TEST DATA ON OCR LETTERS DATASET 

 

Model Number of units in 

each hidden layer 

Best test log-

probability 

Number of 

iterations taken 

DBN  1000-1000  -29.33 104 

DBM  2000-2000  -30.12 489 

DSBN  200-200  -30.66 471 

VAE 500-500 -25.57 500 

SRBN 200 -22.82 500 

D-SRBN  200-200  -21.99 150 

 

 

 

4.4.4 OMNIGLOT DATASET  

The final experiment utilizes the Omniglot dataset [139] that contains images of hand-

written characters across many world alphabets. We partition and preprocess the dataset 

following [143] which results in 24,345 training and 8,070 test image examples of size 28 × 28, 

representing 50 classes. The architecture and the hyper parameter setup for the D-SRBN model 

is unchanged from the MNIST experiment. The architectures of the DBN and DBM models are 

implemented following [144] as they show the best reported results. However, to the best of our 
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knowledge, there are no reported results for the Omniglot dataset using DSBN and VAE; hence, 

we conduct an in-house experiment to determine the best architecture for the DSBN and VAE 

model. Our results suggest that a DSBN model with three hidden layers containing 200 hidden 

units at each layer and the VAE model with two layers containing 500 units achieves the best 

performance. Fig. 24 shows the iteration-wise average log-probability of the test dataset for the 

four deep generative models. Fig. 24 demonstrates that for the first few iterations the 

performance of the DBN, DBM and the DSBN models are better than our proposed D-SRBN 

model. However, as the learning progresses the D-SRBN model achieves a higher performance 

than the state-of-the-art DBN, DBM and DSBN models. Moreover, the performance of the D-

SRBN model remains superior to the VAE model in all training epochs.    

 

 

 
Fig. 24. Comparison of the proposed D-SRBN model with three state-of-the-art generative 

models: DBN, DBM, DSBN and VAE based on the average test log-probability using the 

Omniglot dataset. 
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Table 9 shows a comparison among all the deep generative models considered in this 

work for the test log-probability metric and corresponding iteration number. In this experiment 

the parameters of the deep generative models are tuned to obtain the best test log-probability 

following [144]. Table 9 demonstrates that the proposed D-SRBN model achieves faster 

convergence and outperforms the state-of-the-art deep generative models while utilizing fewer 

hidden units. It should be noted here that the performance of the SRBN model is lower than both 

the D-SRBN and VAE model. 

 

 

TABLE 9 

 

COMPARISON OF THE PROPOSED D-SRBN MODEL WITH THE STATE-OF-THE-ART 

DEEP GENERATIVE MODELS: DBN, DBM, DSBN AND VAE BASED ON THE LOG 

PROBABILITY OF TEST DATA ON OMNIGLOT DATASET 

 

Model Number of units in 

each hidden layer 

Best test log-

probability 

Number of 

iterations taken 

DBN  1000-1000  -100.02 499 

DBM  2000-2000  -110.32 495 

DSBN  200-200-200  -101.64 206 

VAE 500-500 -98.16 486 

SRBN 200 -99.13 500 

D-SRBN  200-200  -94.30 145 

 

 

 

Note for all four experiments, the proposed D-SRBN offers better or comparable log 

probability metric in fewer training iterations when compared to all other state-of-the-art models 

studied in this work. Moreover, our experimental results suggest that the single layer SRBN 

model achieves better or comparable performance than the state-of the-art deep generative 
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models. However, the performance of the D-SRBN model is consistently better than the SRBN 

model. This in turn suggests that the proposed D-SRBN generative model offers better model-fit 

of the data when compared to the state-of-the-art models in this study. Furthermore, Table 6 to 

Table 9 demonstrate that the D-SRBN model utilizes fewer or the same number of hidden units 

compared to the above mentioned models. The number of training parameters utilized by the D-

SRBN model is far fewer than that of the DBN, DBM and VAE models for all four experiments. 

The D-SRBN model utilizes slightly more parameters compared to the DSBN model (though the 

number of hidden units is the same). This is due to the additional recurrent layers incorporated in 

the hidden layers of the D-SRBN model. However, these recurrent layers offer further depth 

within each hidden layer of the D-SRBN model which eventually enables the D-SRBN model to 

achieve significantly better performance than the DSBN model. 

4.5 SUMMARY  

This chapter proposes a novel deep recurrent probabilistic generative D-SRBN model for 

efficient representation learning which is a logical extension of our proposed DSRN based 

discriminative model in the previous chapter. However, unlike, DSRN, the probabilistic D-

SRBN model allows representation learning from the input data in an unsupervised fashion. Our 

experiments use four benchmark datasets, MNIST, OCR Letters, Caltech 101 Silhouettes, and 

Omniglot, to demonstrate that the proposed D-SRBN model achieves better representation 

learning performance compared to the state-of-the-art deep generative models such as DBN, 

DBM, DSBN, and VAE while utilizing fewer training parameters. These findings are published 

in [145]. This suggests that the D-SRBN model can be considered as an efficient building block 

for designing more sophisticated deep learning frameworks to handle more challenging tasks 

such as small data learning.  
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CHAPTER 5 

DEEP RECURRENT GENERATIVE HIERARCHICAL BAYESIAN MODEL FOR 

LEARNING WITH SMALL DATA 

 

5.1 CHAPTER OVERVIEW 

This chapter proposes a novel deep recurrent generative Bayesian learning model for 

addressing the challenge of learning with small data.  D-SRBN is introduced in the previous 

chapter. The D-SRBN model efficiently handles representation learning task using unlabeled 

data which is essential for any classification task. The proposed D-SRBN model shows improved 

representation learning performance while utilizing significantly fewer training parameters 

compared to the state-of-the-art models. However, the D-SRBN model alone is not sufficient to 

handle the problem of learning using a small amount of data since the model still requires a 

considerable number of labeled examples to attain good generalization for solving challenging 

image classification tasks.  Bayesian statistics are historically known for learning from limited 

training data. However, the Bayesian models usually suffer from lack of good priors resulting in 

low performance quality in difficult image classification tasks. Consequently, this chapter 

proposes a deep simultaneous recurrent belief network-hierarchical Bayesian (DSRBN-HB) 

model for solving several challenging image classification tasks using very limited labeled 

training examples. Specifically, we address the intricate one-shot image classification problem 

where a model is required to classify images from a previously unseen category.  

5.2 LITERATURE REVIEW 

Deep learning models have been quite successful in solving challenging problems in 

various application domains such as computer vision, pattern recognition, medical image 

analysis, cyber-security and many more. The performance of the deep learning models depends 
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on several factors such as the type of the architecture, the depth of the model, the learning 

algorithm, the hyper-parameter settings, and most importantly the number of training examples. 

Deep learning models are supervised models and require thousands or millions of training 

examples to achieve a good generalization. In comparison, human learners usually require just 

one or a few examples of a new category to make meaningful generalizations to novel instances 

[34, 35, 146]. In many practical applications such as medical image analysis and cybersecurity 

massive amounts of training data may not be available, so a sophisticated deep learning 

framework is desirable that can effectively handle the challenge of learning with a small amount 

of data.  

5.2.1 LEARNING TECHNIQUES WITH SMALL DATA AND ITS LIMITATIONS  

 In recent years, the challenge of learning with small data has drawn increasing attention 

in the machine learning research community. The challenge of learning with small data is 

commonly called one-shot learning, few-shot learning and zero-shot learning in the literature. 

Therefore, in this paper, we use these terms interchangeably. Several studies [77, 139, 147-160]  

propose a variety of machine learning, deep learning and statistical techniques to approach the 

challenge of learning with small data. These approaches can be broadly grouped into three 

categories: meta learning based approach, transfer learning based approach, and Bayesian 

statistics based approach. In the next few sections we briefly discuss these approaches and their 

corresponding limitations. 

5.2.1.1 META LEARNING BASED APPROACH FOR LEARNING WITH SMALL 

DATA 

Meta-learning is a popular technique for solving the challenge of learning with small 

data. In meta-learning, a model for a specific task is learned by a specialized, trainable algorithm 
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called the meta-learner. The learning occurs in two levels, gradual learning, which learns the 

meta-learner, and rapid learning, where the meta-learner trains the task-specific model. Bengio et 

al. [161] and Schmidhuber et al. [162] propose meta-learning techniques for training a meta-

learner that learns to update the parameters of the learner’s model. This approach is applied for 

optimizing parameters of deep neural networks [163, 164] and for learning dynamically 

changing recurrent neural networks [165]. Recently, Ravi et al. [166] extend these techniques to 

develop a meta-learning approach that learns both the weight initialization and the optimizer for 

solving few-shot image recognition task. The proposed method utilizes long short-term memory 

(LSTM) as the meta-learner to model the parameters of a learner, a convolutional neural network 

(CNN). However, this technique is prohibitively complex since each parameter of the learner is 

updated independently in each step. Koch et al. [152] and Vinyl et al. [148] introduce a metrics 

based meta-learner such as k-nearest neighbor (k-NN) and nearest neighbor with cosine 

similarities to train a Siamese network as the learner for solving the one-shot image recognition 

task. However, a metric does not really train a learner, rather it modifies the pairwise distance 

between examples. Consequently, Finn et al. [167] propose an optimizer, stochastic gradient 

descent (SGD) based meta-learner known as model agnostic meta-learning for solving the few-

shot learning task. The proposed method works well in practice when compared to the state-of-

the-art meta-learning techniques. From the above discussion, it is evident that the main challenge 

for the meta-learning strategy is in designing the appropriate meta-learners to be learned. 

Moreover, the technique is relatively problem and data specific and, hence, cannot be easily 

generalizable. 
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5.2.1.2 TRANSFER LEARNING BASED APPROACH FOR LEARNING WITH SMALL 

DATA 

Transfer learning allows deep neural network models to learn from a pre-trained state 

rather than learning from scratch. Usually, a deep neural network model is first trained using 

massive amounts of available labeled or unlabeled training examples. Subsequently, the 

parameters of the trained model are utilized as the starting point and re-trained using a different 

dataset where number of labeled training examples is scarce. This simple yet efficient technique 

has shown success for solving intricate classification tasks. The ability to quickly learn from 

fewer training examples is the main motivation behind using the transfer learning technique for 

solving the problem of learning with small data. Moreover, transfer learning techniques are 

easily adaptable and generalizable for different applications. Anderson et al. [158] proposes a 

transfer learning based technique for learning from limited training data. Their method combines 

a pre-trained VGG network with an un-trained residual network (ResNet) to learn the shift 

between data sets. This modular approach adds new features to the network rather than replacing 

representations via fine-tuning. Blaes et al. [153] proposes another transfer learning method for 

solving the few-shot learning task by utilizing a pre-trained deep network on the ImageNet 

dataset. The authors introduce a proto-type based learning procedure by adding additional global 

feature layers at the end of the pre-trained deep network. This global proto-type learning 

technique enables the proposed model to learn from few training examples of new categories. 

Another seminal transfer learning based technique in [156] proposes a two-step process: 

representation learning and few-shot learning, for solving the few-shot visual recognition task. In 

the representation learning step the authors utilize a CNN trained on ImageNet dataset to learn 

feature representation from many training instances of base classes. During the few-shot learning 
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step, the pre-trained model is exposed to novel categories to learn from only a few examples per 

class. The proposed model learns a classifier over the joint label space of the base classes and 

novel classes. However, the performance of the transfer learning based techniques for learning 

with small data heavily depends on how well the deep neural network model learns 

representation from the available labeled or unlabeled training examples. Hence, efficient 

learning using small data requires sophisticated deep neural networks for representation learning. 

5.2.1.3 BAYESIAN TECHNIQUES FOR LEARNING WITH SMALL DATA 

Bayesian techniques are powerful tools for understanding the underlying distribution of 

the data. However, Bayesian techniques require good prior distribution of the data to offer useful 

classification results. On the other hand, Bayesian techniques are historically popular for their 

ability to learn from limited training data; hence, they may be suitable for solving classification 

challenge using small data. Li et al. [168] propose a Bayesian approach for solving the one-shot 

learning task of object categories in an unsupervised fashion. The proposed method utilizes a 

variational Bayesian framework where object categories are represented by probabilistic models 

and prior knowledge is represented as a probability density function on the parameters of these 

models. The posterior model for a novel object category is obtained by updating the prior using 

one or very few observations. However, this method utilizes hand-crafted techniques for image 

feature extraction which may not be optimal for learning the Bayesian framework. Maas et al. 

[169] introduces a novel Bayesian network for addressing the one-shot learning problem. The 

authors mention that conventional Bayesian networks fail to identify and exploit near-

deterministic relationships between attributes which is essential for learning a novel category 

from few examples. The proposed Bayesian network overcomes this limitation by learning a 

hyperparameter from each distribution in the network that specifies whether it is non-
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deterministic or near-deterministic. However, this technique is only tested for text data and 

cannot be readily extended for solving problems encountered in computer vision. Lake et al. 

[160, 170] introduces a Bayesian program learning (BPL) framework which is capable of 

learning a large class of simple visual concepts from a single example. The authors claim that the 

proposed BPL technique achieves human level performance for learning handwriting characters. 

In addition to utilizing pixel intensity information, BPL utilizes the stroke pattern information 

captured during the handwriting data collection process. Therefore, this technique is hard to 

generalize for solving a one-shot natural image classification task where such stroke pattern 

information is not available. Salakhutdinov et al. [77] proposes a hierarchical nonparametric 

Bayesian model for solving the one-shot image classification task. The proposed hierarchical 

Bayesian (HB) model leverages higher order knowledge abstracted from previously learned 

categories. This helps the model classify a novel category using very limited training samples. 

However, the HB model considers raw images as input without applying any feature extraction 

technique; hence, it may not be suitable for more complex object categorization tasks. To address 

this limitation, Salakhutdinov et al. [159] proposes a hierarchical deep model that combines the 

DBM probabilistic generative model with a hierarchical Dirichlet process (HDP) based HB 

model to solve the one-shot classification task. The HDP model works on the feature space 

generated by the DBM model. The DBM learns meaningful features from the input data, 

substantially improving the categorization performance of the HDP model. However, as 

mentioned in Chapter 4, feed-forward based DBM and other similar deep generative models such 

as DBN, DSBN, and VAE require a huge amount of training parameters to perform the feature 

learning task which, in turn, affects the training time. Conversely, our proposed deep recurrent 
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generative model, D-SRBN, in Chapter 4 shows improved feature learning performance while 

utilizing fewer training parameters. 

5.3 PROPOSED DEEP RECURRENTE GENERATIVE HIERARCHICAL BAYESIAN 

MODEL FOR LEARNING WITH SMALL DATA 

  We propose a combined deep recurrent and Bayesian learning approach to address the 

intricate learning challenge using small data. More specifically, the deep simultaneous recurrent 

belief network (DSRBN) model performs efficient representation learning from unlabeled data. 

The learned representation is considered as input feature space for the HB model. The combined 

DSRBN-HB model is learned jointly to solve the one-shot learning task. The use of simultaneous 

recurrency in the DSRBN architecture may enable the model to learn more compact and complex 

representation from the input data while significantly reducing the number of hidden neurons, 

which in turn reduces the number of trainable parameters. The compact representation may 

facilitate the HB model to perform a faster object categorization learning task using very limited 

training data. Consequently, our proposed DSRBN-HB model efficiently performs the one-shot 

classification task while ensuring reduction in the number of training parameters..           

5.3.1 DSRBN HIERARCHICAL BAYESIAN (DSRBN-HB) FRAMEWORK FOR ONE-

SHOT LEARNING 

The hierarchical Bayesian (HB) model [77] works on the feature space obtained from a 

trained DSRBN model. The detailed explanation of the architecture and learning procedure of 

the DSRBN model is provided in Chapter 4 Section 4.3. Particularly, the features are obtained by 

passing the inputs to the trained DSRBN recognition model (See Fig. 19 (b)). The HB model 

operates on the top-level features obtained from the DSRBN model. Let us consider that for 

input, 𝑋,  DSRBN top-level features ℎ(𝐿) are obtained from 𝑁 objects. For simplicity, we first 
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consider a two-level HB model where 𝑁 objects are partitioned into 𝐵 basic-level or level-1 

categories. Such partition is represented by 𝑧𝑏 of length 𝑁, where, each entry is  𝑧𝑛
𝑏𝜖{1, … , 𝐵}. 

Next, we assume that 𝐵 basic-level categories are partitioned into 𝑆 super-categories or level-2 

categories which is represented by 𝑧𝑠 of length 𝐵, where, each entry is  𝑧𝑏
𝑠𝜖{1, … , 𝑆} [77]. The 

distribution over the DSRBN feature vector for any basic level category is given as follows, 

where, 𝒩() denotes a Gaussian distribution with mean 𝜇 and precision 𝜏, 𝑑 denotes the feature 

dimension index, 𝐷 represents the upper limit of the feature dimension, and 𝜃1 = {𝜇𝑏, 𝜏𝑏}𝑏=1
𝐵  

denotes the level-1 category parameters. Next, a conjugate Normal-Gamma prior is placed over 

{𝜇𝑏 , 𝜏𝑏} to obtain level-2 category written as follows, 

where, 𝜃2 = {𝜇𝑠, 𝜏𝑠 , 𝛼𝑠}𝑠=1
𝑆  denotes the level-2 parameters. Each dimension, 𝑑, in (27) is given 

as, 

where, Γ() denotes Gamma density function. Note for level-2 parameters 𝜃2, the following 

conjugate priors are assumed, 

𝑃(ℎ(𝐿)
𝑛
|𝑧𝑛
𝑏 = 𝑏, 𝜃1) =∏𝒩(ℎ(𝐿)

𝑛
𝑑|𝜇𝑑

𝑏 , 1
𝜏𝑑
𝑏⁄ )

𝐷

𝑑=1

, (26) 

𝑃(𝜇𝑑
𝑏 , 𝜇𝑑

𝑠 |𝜃2) =∏𝑃(𝜇𝑑
𝑏, 𝜇𝑑

𝑠 |𝜃2, 𝑧𝑠)

𝐷

𝑑=1

, (27) 

𝑃(𝜇𝑑
𝑏 , 𝜇𝑑

𝑠 |𝜃2) = 𝒩 (𝜇𝑑
𝑏|𝜇𝑑

𝑠 , 1
𝜏𝑑
𝑏⁄ ) Γ (𝜏𝑑

𝑏|𝛼𝑑
𝑠 ,
𝛼𝑑
𝑠

𝜏𝑑
𝑠⁄ ), (28) 

𝑃(𝜇𝑑
𝑠) = 𝒩 (𝜇𝑑

𝑠 |0, 1 𝜏0⁄ ), (29) 

 𝑃(𝛼𝑑
𝑠 |𝛼0) = 𝐸𝑥𝑝(𝛼𝑑

𝑠 |𝛼0), 𝑎𝑛𝑑  (30) 

𝑃(𝜏𝑑
𝑠 |𝜃0) = 𝐼𝐺(𝜏𝑑

𝑠 |𝑎0, 𝑏0); (31) 



   

 

91 

where, Exp() denotes an exponential distribution, 𝐼𝐺() denotes an inverse-gamma distribution, 

and 𝑎0 = 𝑏0 = 1. A Gamma prior Γ(1,1) is placed over the level-3 parameters  𝜃3 = {𝛼0, 𝜏0}. 

The HB model in (26) - (27) only allows generating fixed two-level categories, which is not 

generalizable. Blei et al. [171] proposes a nonparametric two-level nested Chinese Restaurant 

Prior (nCRP) over the partition 𝑧. This allows the HB model to define prior over tree structures 

and is generalizable to learn arbitrary hierarchies. The basic building block of the nCRP is the 

Chinese restaurant process, which defines a distribution on partition of integers. Consider a 

process where customers enter a restaurant with an unbounded number of tables. According to 

CRP, the 𝑛𝑡ℎ customer occupying a table 𝑘 is drawn from the following distribution,  

where, 𝑛𝑘 is the number of previous customers at table 𝑘 and 𝜚 is the concentration parameter. 

The nCRP(𝜑) extends CRP to nested sequence of partitions, one for each level of the tree. In the 

above two-level case, we first assign each observation 𝑛 to the super-category 𝑧𝑛
𝑠  and then 

recursively assign the basic-level category 𝑧𝑛
𝑏 under a super-category 𝑧𝑛

𝑠 . This two-level nCRP 

technique allows us to generate a potentially unbounded number of super-categories and an 

unbounded number of basic-level categories under each super category.  

𝑃(𝑧𝑛|𝑧1, … , 𝑧𝑛−1) =

{
 

 
𝑛𝑘

𝑛 − 1 + 𝜚
;    𝑤ℎ𝑒𝑛 𝑛𝑘 > 0

𝜑

𝑛 − 1 + 𝜚
;   𝑤ℎ𝑒𝑛 𝑘 𝑖𝑠 𝑛𝑒𝑤

, (32) 
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Fig. 25. The DSRBN hierarchical Bayesian (DSRBN-HB) model for one-shot learning. "𝑈" 

represents the trained DSRBN recognition model weights to obtain features from the input 𝑋, 

ℎ(𝐿) denotes the top-level DSRBN features. The HB model operates on the feature space, ℎ(𝐿) 

and 𝜃 = {𝜃1, 𝜃2, 𝜃3} represents hierarchical Bayesian model parameters for different levels. The 

blue box represents the root of the HB tree and the green triangles represent the super-category 

learned by the HB model from the basic categories. 

 

 

Finally, we perform the one-shot learning task using the DSRBN-HB model as shown in 

Fig. 25. Let us consider a new test instance 𝑥∗ which belongs to a novel category 𝑏∗.  First, the 

trained DSRBN model, 𝑞𝛾(ℎ
∗|𝑥∗) is utilized to obtain the feature vector, ℎ∗ from the test 

instance, 𝑥∗. The HB model sets a prior over the feature space using level-1 parameters, 𝜃1. 

Next, using the existing tree structure 𝑧 and current setting of the level-2 parameters 𝜃2 we infer 
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the super-category to which the novel category belongs. Given the model parameters 𝜃 =

{𝜃1, 𝜃2} the posterior over the assignment 𝑧𝑏
∗ is computed as follows, 

where, ~𝑧𝑏
∗ denotes variables ℎ for all observation other than 𝑧𝑏

∗. This inferred assignment 𝑧𝑏
∗ is 

used to infer the posterior mean and precision terms {𝜇∗, 𝜏∗} for the novel category. 

Subsequently, the DSRBN-HB model determines the novel category 𝑏∗ of the test input 𝑥∗ by 

computing the following conditional probability,  

where, ℎ∗ denotes the feature vector obtained using the DSRBN recognition model, 𝑞𝛾(ℎ
∗|𝑥∗), 

and the prior is given by the nCRP(𝜚).  

5.4 RESULTS AND DISCUSSION 

This section evaluates the performance of the proposed DSRBN-HB model for solving 

the one-shot learning task using four widely used standard benchmark datasets such as MNIST 

[22], Omniglot [139], OCR letters2 and CIFAR-100 [172], respectively. These are a few most 

widely used datasets in the literature for evaluating the performance of the one-shot learning 

models. We conduct the one-shot learning experiment using the DSRBN-HB model in two-steps. 

First, we pre-train the DSRBN model in an unsupervised fashion using a larger dataset which is 

completely different from any of the above mentioned datasets. This pre-training step ensures 

good generalization of the DSRBN model for feature extraction. Accordingly, we train the 

DSRBN-HB model using limited labeled training data to conduct the one-shot classification 

experiments. Further, we compare the proposed model with two state-of-the-art deep generative 

                                                 
2 http://ai.stanford.edu/~btaskar/ocr/ 

𝑝(𝑧𝑏
∗| 𝜃, ~𝑧𝑏

∗ , ℎ∗) ∝ 𝑝(ℎ∗| 𝜃, 𝑧𝑏
∗)𝑝(𝑧𝑏

∗| ~𝑧𝑏
∗) (33) 

𝑝(𝑏∗| ℎ∗) =
𝑝(ℎ∗|𝑧𝑏

∗  )𝑝(𝑧𝑏
∗  )

∑ 𝑝(ℎ∗|𝑧)𝑝(𝑧)𝑧
 (34) 
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models such as Deep Boltzman Machine (DBM), and Variational Auto-Encoder (VAE) 

combined with the HB model, respectively. From here onwards, we refer to the DBM and VAE 

model combined with the HB model as DBM-HB and VAE-HB. In the next few sections we 

discuss our experimental results obtained using the above mentioned datasets. 

5.4.1 MNIST DATASET 

 Our first one-shot classification experiment is conducted using MNIST dataset. The 

DSRBN generative model is first pre-trained using a large dataset in an unsupervised fashion. 

Note that this large dataset called EMNIST [173] is different from the MNIST dataset which we 

use for training and testing of our proposed one-shot learning framework. The EMNIST dataset 

contains 814,255 characters from 62 unbalanced classes. We use a 2-layer DSRBN architecture 

to perform the unsupervised learning task. The DSRBN model is trained using NVIL and the 

AdaGrad gradient descent method [72]. The detailed hyper parameter setup for the DSRBN 

model is as follows: number of layers = 2, number of units at each layer = 256, 𝑇 = 15, learning 

rate = 0.001, weight decay = 0.0001, momentum = 0.9, step size = 0.001, rmsdecay = 0.95  and 

mini batch size = 128. We use this pre-trained DSRBN model to train our DSRBN-HB model 

using the MNIST dataset to perform the one-shot classification task. We first investigate the 

ability of the DSRBN-HB model to learn from very limited training data per class. In this 

experiment, we randomly choose 100 example images from each class, so there are a total of 

1000 training images from 10 classes to train the DSRBN-HB model. The DSRBN model 

extracts features from the training images, which are subsequently used as the input feature space 

for the HB model as shown in Fig. 25. The HB model is trained on the DSRBN feature space to 

construct a hierarchical Bayesian tree structure. The parameters of the HB models are obtained 

following the work in [77]. The tree structure obtained from the DSRBN-HB model is shown in 
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Fig. 26 which shows that the HB model groups similar digits such as digits 4, 7, and 9 together 

under the same super-category and maintains a separate super-category for the digits that are 

sufficiently different from other digits such as 1, 2, and 3.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 26. A partition over 10 MNIST digits discovered by the DSRBN-HB model. The blue box 

represents the root of the HB tree and the green triangles represent the super-category learned by 

the HB model from the basic categories.  

 

 

In order to evaluate one-shot classification performance, we train the DSRBN-HB model 

using 9 digit classes leaving 1 class as a novel category to test the model. This gives the 

DSRBN-HB model 900 training samples from 9 classes (100 images per class). We obtain 1000 

test samples for the novel class from the test split of the MNIST dataset. We compute the area 

under the receiver operating characteristic (AUROC) curve for classifying 1000 test images as 
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belonging to the novel versus all the other 9 classes. The results are averaged over 10 classes 

using a leave-one-out testing format. Next, we compare our proposed DSRBN-HB model with 

state-of-the-art DBM-HB and VAE-HB generative models. Both these models are pre-trained 

using the EMNIST dataset as mentioned above. The architecture and learning parameters of the 

DBM and VAE are obtained from the best performing models reported in the literature [61, 78]. 

In order to make a fair comparison with our proposed DSRBN-HB model, we keep the 

parameters of the HB model the same for the DBM-HB and VAE-HB models. Table 10 

quantifies and compares the performance of the proposed DSRBN-HB model using average 

AUROC over all 10 classes with leave-one-out testing format. 

 

 

TABLE 10 

 

ONE-SHOT LEARNING PERFORMANCE COMPARISON OF THE PROPOSED DSRBN-

HB MODEL WITH THE STATE-OF-THE-ART DBM-HB AND VAE-HB MODELS USING 

THE AREA UNDER THE ROC CURVE (AUROC) ON THE MNSIT DATASET. THE 

RESULTS ARE AVERAGED OVER ALL 10 CLASSES USING LEAVE-ONE-OUT 

TESTING FORMAT  

 

Model Number of units in each 

hidden layer of the generative 

model 

Average AUROC 

DSRBN-HB 256-256 0.8705 

DBM-HB  500-1000 0.8135 

VAE-HB  500-500 0.75 

  

 

 

Table 10 shows that the proposed DSRBN-HB model achieves better one-shot 

classification performance compared to the DBM-HB and VAE-HB models. Learning better 
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representation or features of the data allows the HB model to effectively discover the partition, 

and, hence, improves one-shot classification performance for the novel category in the test case. 

Moreover, the DSRBN generative model utilizes considerably fewer hidden neurons compared 

to the state-of-the-art DBM and VAE generative models.  

5.4.2 OCR LETTERS DATASET 

The second experiment is conducted using OCR letters dataset. We use the same DSRBN 

architecture pre-trained with EMNIST as mentioned in the experiment with the MNIST dataset 

in section 5.4.1. In order to use this pre-trained DSRBN model, we resize the images of the OCR 

letters dataset from 16 × 8 to 28 × 28 to match the image size of the EMNIST dataset. 

However, the architecture of the DBM and VAE models are modified to match the best 

performing models reported in the literature for the OCR letters dataset [127]. Therefore, rather 

than using the pre-trained DBM utilized for the MNIST dataset, the model is trained from scratch 

using the EMNIST dataset. The best performing architecture of the VAE model for the OCR 

letters dataset is similar to the one used for MNIST dataset, so we use the same pre-trained 

model as mentioned above for the MNIST case. 
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Fig. 27. A partition over some of the example basic level categories of the OCR letters dataset 

discovered by the DSRBN-HB model. The blue box represents the root of the HB tree and the 

green triangles represent the super-category learned by the HB model from the basic categories.  

 

 

Subsequently, we conduct a one-shot classification experiment using the proposed 

DSRBN-HB model. First, we take a subset of the OCR letters dataset for training the DSRBN-

HB model using limited data. We consider 100 images from each class of the OCR letters dataset 

to construct the training dataset. Accordingly, there are a total of 2600 images for training the 

DSRBN-HB model. The pre-trained DSRBN model is utilized to obtain feature space from the 

training images for the HB model, and subsequently, the HB model is trained over the feature 

space. The HB model constructs a hierarchical tree as shown in Fig. 27 which demonstrates that 

the model groups similar classes under the same super-category while it keeps separate super-

categories for classes that are sufficiently different from other classes. The one-shot 

classification performance of the DSRBN-HB model is evaluated by training the model using 



   

 

99 

2500 images from 25 classes leaving 1 class as the novel category for testing. We obtain 250 

images of the novel category from the test split of the OCR letters dataset. We report the 

AUROC for classifying 250 test images as belonging to the novel versus all the other 25 classes. 

The results are averaged over 26 classes using leave-one-out testing format. We perform the 

same experiment using the DBM-HB and VAE-HB models for comparison. Table 11 quantifies 

the one-shot classification performance of the DSRBN-HB, DBM-HB, and VAE-HB models. 

Table11 shows that the DSRBN-HB model shows better performance than the DBM-HB model. 

However, the performance of the VAE-HB model performs slightly better than the proposed 

DSRBN-HB model. However, the number of hidden units utilized by the DSRBN-HB model is 

significantly lower than that of the VAE-HB model.  

 

 

TABLE 11 

 

ONE-SHOT LEARNING PERFORMANCE COMPARISON OF THE PROPOSED DSRBN-

HB MODEL WITH THE STATE-OF-THE-ART DBM-HB AND VAE-HB MODELS USING 

THE AREA UNDER THE ROC CURVE (AUROC) ON THE OCR LETTERS DATASET. 

THE RESULTS ARE AVERAGED OVER ALL 26 CLASSES USING LEAVE-ONE-OUT 

TESTING FORMAT  

 

Model Number of units in each hidden 

layer of the generative model 

Average AUROC 

DSRBN-HB 256-256 0.8301 

DBM-HB  2000-2000 0.7926 

VAE-HB  500-500 0.8511 
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5.4.3 OMNIGLOT DATASET 

We perform the third experiment using the Omniglot dataset [139] which is one of the 

most popular datasets for evaluating one-shot classification performance. The architecture of the 

DSRBN model for the Omniglot dataset is similar to the one used for the MNIST dataset. 

Moreover, we utilize the same DSRBN model pre-trained using the EMNIST dataset. However, 

the DBM model is pre-trained using the best reported architecture in the literature for the 

Omniglot dataset [144]. We use the same pre-trained VAE model as mentioned in the above two 

experiments since the best reported architecture is unchanged. In order to evaluate the one-shot 

classification performance of the DSRBN-HB model, we consider 100 training images from each 

of the 50 classes to constitute our training data. Consequently, there are a total of 5000 training 

examples for training the DSRBN-HB model. These training images are first processed using the 

pre-trained DSRBN model for feature extraction. Subsequently, the HB model considers the 

features input to construct the hierarchical Bayesian tree.  However, we observe that the HB 

model struggles to form the tree using 50 classes and soon becomes computationally impractical. 

Hence, we evaluate the one-shot classification performance by dividing the problem into smaller 

sub-problems. We perform this by considering 10 classes at a time i.e. we conduct the 

experiment for classes 1 to 10, 11 to 20 and so on. For each of the10 classes we consider 9 

classes for training the DSRBN-HB model and leave 1 class as the novel category to test the 

model. Accordingly, the DSRBN-HB model is trained using 900 images from 9 classes (100 

images per class). In order to perform the testing, we take 100 images from the test split of the 

Omniglot dataset for the novel category. We compute the average AUROC for classifying 100 

test images as belonging to the novel versus all the other 9 classes. The experiment is repeated 5 

times for each of the 10 sub-classes. For each of the 10 sub-classes the DSRBN-HB model is 
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trained and tested from scratch using the above-mentioned leave-one-out testing format. The 

final result is obtained by averaging over the average AUROC obtained from the 5 experiments. 

The same experiment is repeated for the DBM-HB and VAE-HB model to obtain a fair 

comparison with our proposed DSRBN-HB model. 

 

 

 

Fig. 28. Some example learned super-categories over the basic-level categories of the Omniglot 

dataset using the proposed DSRBN-HB model. The blue box represents the root of the HB tree 

and the green triangles represent the super-category learned by the HB model from the basic 

categories.  

 

 

Fig. 28 shows a typical partition of some of the classes from the Omniglot dataset using 

the DSRBN-HB model. The partition of the similar classes are grouped in the super-categories, 

which share the same prior distribution over the classes. Table 12 quantifies the one-shot 
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classification performance of the proposed DSRBN-HB model and compares with the DBM-HB 

and VAE-HB models using the average AUROC obtained from the experiments. The DSRBN-

HB model achieves better performance while utilizing fewer hidden neurons compared to the 

state-of-the-art models.  

 

 

TABLE 12 

 

ONE-SHOT LEARNING PERFORMANCE COMPARISON OF THE PROPOSED DSRBN-

HB MODEL WITH THE STATE-OF-THE-ART DBM-HB AND VAE-HB MODELS USING 

THE AREA UNDER THE ROC CURVE (AUROC) ON THE OMNIGLOT DATASET. THE 

RESULTS ARE AVERAGED OVER ALL 50 CLASSES USING LEAVE-ONE-OUT TEST 

FORMAT  

 

Model Number of units in each hidden 

layer of the generative model 

Average AUROC 

DSRBN-HB 256-256 0.8279 

DBM-HB  2000-1000 0.7861 

VAE-HB  500-500 0.8104 

 

 

 

5.4.4 CIFAR-100 DATASET 

The final experiment is conducted using the CIFAR-100 dataset. CIFAR-100 is a 

challenging image classification dataset which contains color images from 100 different classes 

of size 32 ×  32 × 3. The dataset has 50,000 training and 10,000 test images of a balanced 

number of examples per class. In this experiment we pre-train the DSRBN model using 4 million 

tiny color images obtained from an 80 million tiny image dataset [174]. Using the unlabeled tiny 

images, we perform the unsupervised learning task using a 2-layer DSRBN architecture with 
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NVIL and AdaGrad. The detailed hyper parameter setup for the DSRBN model is as follows: 

number of layers = 2, number of units at each layer = 500, 𝑇 = 17, learning rate = 0.001, 

weight decay = 0.0001, momentum = 0.9, step size = 0.001, rmsdecay = 0.95,  and mini batch 

size = 512. The architectures of the DBM and VAE models are obtained from the best 

performing models in the literature [159]. 

Subsequently, we perform the one-shot classification experiment using the CIFAR-100 

dataset. Similar to the previous experiments, we consider 100 training images from each class of 

the CIFAR-100 dataset, which constitutes 10,000 examples for evaluating the performance of the 

proposed DSRBN-HB model. The pre-trained DSRBN model is used for extracting features 

from the training images. The HB model considers this feature space as input and constructs a 

hierarchical Bayesian tree. In order to assess the one-shot classification performance of the 

DSRBN-HB model, we take images from 99 classes for training the DSRBN-HB model and 

leave 1 class as the novel category for testing. However, similar to the Omniglot case, the HB 

model becomes computationally unreasonable to form the hierarchical Bayesian tree from 99 

classes. Therefore, we divide the 100 class problem into smaller 10 class sub-problems to 

perform the one-shot classification task. More specifically, for each sub-problem, we consider 

classes 1 to 10, 11 to 20 until 91-100, respectively. The one-shot classification task for each of 

these 10 classes is performed by taking 900 images from 9 classes for training leaving 1 class as 

the novel category for testing. We take 100 images of the novel category from the test split of the 

CIFAR-100 dataset. We compute the average AUROC for classifying the 100 test images as 

belonging to the novel versus all other 9 classes. The experiment is repeated 10 times for each of 

the 10 sub-classes individually. The DSRBN-HB model is trained and tested from scratch for 

each of the 10 sub-class experiments. We obtain the final result by averaging the average 
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AUROC obtained from all 10 experiments. We repeat the same experiment for the DBM-HB and 

VAE-HB model to compare with our proposed DSRBN-HB model.    

 

 

 

Fig. 29. DSRBN-HB model learns to group similar basic level categories under the same super-

category for some of the example CIFAR-100 classes. The blue box represents the root of the 

HB tree and the green triangles represent the super-category learned by the HB model from the 

basic categories.    

 

 

Fig. 29 shows a partition learned by the DSRBN-HB model over some of the example 

basic-level CIFAR-100 classes. Fig. 29 shows that the classes belonging to the same super-

category exhibit some underlying similarity. For example, the model groups bottle and bowl 

classes under the same super-category. Similarly, bee and insect classes are categorized under 
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the same super-category. However, the model incorrectly groups bicycle with bee and insect 

classes. During the testing case, the model will classify this as belonging to the wrong super-

category. For example, in this case, when we perform one-shot classification experiment using 

bicycle as the novel category, the model is expected to confuse the bi-cycle class with the insect 

and bee classes. This is one limitation of the HB model. However, this happens on rare occasions 

when the HB model fails to differentiate one class as a separate super-category due to lack of 

sufficient dissimilarity discovered by the model. Table 13 shows a quantitative comparison of the 

proposed DSRBN-HB model with that of DBM-HB and VAE-HB models using average 

AUROC. The results demonstrate that the DSRBN-HB model achieves significantly improved 

one-shot classification performance compared to the DBM-HB and VAE-HB models. 

Additionally, the DSRBN-HB model utilizes fewer hidden units compared to the state-of-the-art 

models demonstrating the superior efficiency of the proposed DSRBN-HB model.  

 

 

TABLE 13 

 

ONE-SHOT LEARNING PERFORMANCE COMPARISON OF THE PROPOSED DSRBN-

HB MODEL WITH THE STATE-OF-THE-ART DBM-HB AND VAE-HB MODELS USING 

THE AREA UNDER THE ROC CURVE (AUROC) ON THE CIFAR-100 DATASET. THE 

RESULTS ARE AVERAGED OVER ALL 100 CLASSES USING LEAVE-ONE-OUT 

TESTING FORMAT  

 

Model Number of units in each 

hidden layer of the generative 

model 

Average AUROC 

DSRBN-HB 500-500 0.9123 

DBM-HB  5000-1000 0.7435 

VAE-HB  1000-1000 0.8341 
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5.5 SUMMARY  

This chapter proposes a novel deep recurrent Bayesian learning framework, DSRBN-HB 

for solving challenging classification tasks with a small amount of data. We solve the intricate 

one-shot classification task, which is a well-known learning challenge with small data, using the 

DSRBN-HB model. More specifically, the proposed DSRBN model performs efficient 

representation learning from unlabeled data. The learned representation is considered as input 

feature space for the HB model. The combined DSRBN-HB model is learned jointly to solve the 

one-shot learning task.  The performance of the proposed DSRBN-HB model is evaluated using 

four widely used benchmark datasets: MNIST, Omniglot, OCR Letter and CIFAR-100. We 

compare our proposed method with two state-of-the-art deep generative models based one-shot 

learning frameworks, namely DBM-HB and VAE-HB. Our results suggest that the proposed 

DSRBN-HB model achieves better or comparable one-shot classification performance while 

utilizing significantly fewer training parameters when compared to the state-of-the-art deep 

learning frameworks.  
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORKS 

The overall goal of this dissertation is to propose novel biologically inspired deep 

recurrent learning models for efficient image recognition using a small amount of data. In order 

to achieve this, our first goal is to design an efficient deep learning framework with simultaneous 

recurrency for efficiently handling the image recognition task. The novel deep recurrent learning 

model is expected to provide efficient control over the depth of the model, extract more complex 

features from the input data utilizing the recurrency and achieve superior recognition 

performance while reducing the number of training parameters by several orders of magnitude. 

Secondly, our goal is to show the generalization of the proposed deep simultaneous recurrency 

concept in a probabilistic generative model by solving the challenging representation learning 

task from unlabeled data. The proposed deep simultaneous recurrent generative model is 

expected to achieve superior representation learning performance while significantly reducing 

the number of training parameters compared to the state-of-the-art models similar to the case of 

deep simultaneous recurrent image recognition model. Our final goal is to extend the proposed 

deep simultaneous recurrent generative model by incorporating Bayesian techniques for solving 

the intricate problem of learning with small data. The overall outcomes of this dissertation are 

summarized in Table 14 and further discussed below. 
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TABLE 14  

 

SUMMARY OF THE RESEARCH FINDINGS RELATED TO THE PROPOSED METHODS 

 

Chapter Topic Contributions Results Comments 

3 Deep simultaneous 

recurrent network 

(DSRN) for 

efficient image 

recognition 

 Introduced unique 

simultaneous 

recurrency in a 

deep learning 

model 

 Developed a 

biologically 

inspired novel 

deep neural 

network model  

DSRN model shows 

significantly 

improved 

recognition 

performance 

compared to the 

state-of-the-art deep 

learning models 

 DSRN provides 

efficient control 

over the depth  

 DSRN utilizes less 

training parameters 

 DSRN extracts 

more complex 

features from the 

input data using 

feed-forward and 

recurrent weights  

4 Deep 

Simultaneous 

recurrent belief 

network (D-

SRBN) for 

efficient 

representation 

learning from 

unlabeled data 

 Introduced deep 

simultaneous 

recurrency in a 

probabilistic 

generative model 

 Developed joint 

and conditional 

probability 

distribution 

functions for the 

D-SRBN 

generative model 

D-SRBN achieves 

improved 

representation 

learning performance 

compared to the 

state-of-the-art deep 

generative models  

 D-SRBN utilizes 

both recurrent and 

feed-forward 

information 

processing for 

learning 

meaningful 

representations 

 D-SRBN utilizes 

fewer training 

parameters 

 

5  Deep 

Simultaneous 

recurrent 

hierarchical 

Bayesian model 

(DSRBN-HB) for 

solving the 

problem of 

learning with small 

data  

 Introduced 

Bayesian 

technique with D-

SRBN generative 

model 

 Developed 

efficient one-shot 

image recognition 

pipeline using 

highly expressive 

D-SRBN model 

and hierarchical 

Bayesian model  

DSRBN-HB 

demonstrates 

improved one-shot 

image recognition 

performance 

compared to the 

state-of-the-art 

methods 

 DSRBN-HB 

requires very 

limited training 

data to perform 

one-shot image 

recognition task 

 DSRBN-HB 

requires 

significantly 

reduced training 

parameters to 

achieve high 

accuracy  
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Firstly, we propose a novel deep recurrent learning model called DSRN for solving 

complex image recognition tasks. The simultaneous recurrency of DSRN provides efficient 

control over the depth of the model while keeping the number of trainable parameters constant 

by sharing weights between hidden recurrent layers. We introduce sparsity to the proposed 

DSRN architecture by utilizing dropout learning that avoids the addition of user defined external 

sparsity penalty terms to the loss function. Extensive mathematical and experimental analyses of 

sparsity and overfitting of DSRN show efficacy of DSRN. Moreover, we solve several 

challenging image recognition tasks such as facial expression recognition, face recognition, and 

character recognition to show the effectiveness of the proposed DSRN model. Our experimental 

results using several widely used publicly available datasets show that the proposed DSRN 

architecture outperforms the state-of-the-art deep neural network models such as DBN, SAE, and 

CNN for each of the above mentioned image recognition tasks. Moreover, our findings 

demonstrate that the proposed network requires a lower number of trainable parameters and thus 

offers enhanced efficiency with reduced computational resources than that of the state-of-the-art 

feed forward DNNs. We further extend the proposed DSRN recognition framework by 

incorporating a randomized metric learning technique (DML-eig) for object categorization. The 

results suggest that integration of DML-eig for the proposed DSRN model offers a considerable 

performance improvement over generic regression based classification such as softmax.  Finally, 

we show that a parallel GPU based implementation of DSRN attains several orders of magnitude 

speedup over CPU based implementation wherein the training time is reduced from days to 

hours. The quick training times achieved through GPU acceleration and general processing time 

with fewer trainable parameters makes the proposed pipeline appropriate for real time image 

recognition applications.   
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Secondly, we show the generalization of the proposed deep simultaneous recurrency 

concept in a deep probabilistic generative model. Generative models are well known for their 

ability to learn meaningful representation from unlabeled data. Consequently, we propose a deep 

recurrent generative model known as, D-SRBN for efficiently solving the representation learning 

task. The D-SRBN model utilizes both recurrent and feed-forward information processing for 

learning meaningful representations from unlabeled data. Due to this unique and novel 

formulation of the D-SRBN architecture, we first design the joint and conditional distribution 

function required for the model. Subsequently, we show the inference and learning procedure of 

the proposed model using a well-known NVIL algorithm. Finally, we perform extensive 

benchmark evaluation using four widely used publicly available datasets such as MNIST, 

Caltech 101 Silhouettes, OCR letters and Omniglot. The effectiveness of the proposed D-SRBN 

model for representation learning is demonstrated by performing a comparison with three 

existing state-of-the-art deep generative models such as DBN, DBM, DSBN and VAE, 

respectively. The performance of the generative models is evaluated by computing a commonly 

used metric known as the average negative log-likelihood of the test dataset to determine the 

representation learning performance of the generative models. The results suggest that the D-

SRBN model consistently achieves improved or similar performance compared to the state-of-

the-art deep generative models. Moreover, experimental results demonstrate that the single layer 

SRBN model offers better or comparable performance compared to the benchmark deep 

generative models. However, the performance of the D-SRBN model is consistently better than 

the SRBN model. Furthermore, the results demonstrate that the D-SRBN model utilizes 

significantly fewer (than the DBN, DBM and VAE) or comparable (to the DSBN) number of 

trainable parameters while achieving a higher performance. The improved performance of the D-
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SRBN with fewer training parameters may be due to the additional depth introduced by the 

simultaneous recurrency within each hidden layer.  Hence, the D-SRBN model may be 

considered as an efficient alterative to the state-of-the-art deep generative models such as DBN, 

DBM, DSBN and VAE for learning efficient representation from unlabeled static input data. 

Finally, we propose a novel DSRBN-HB network for solving difficult learning challenges 

using small data. Specifically, we address the intricate one-shot image classification task using 

DSRBN-HB. The DSRBN generative model is pre-trained using a large unlabeled dataset to 

obtain good feature generalization. This pre-trained model is then utilized to extract features 

from the dataset with a very limited number of labeled examples. Subsequently, the HB model 

trains on the feature space to construct the hierarchical Bayesian tree which groups basic 

categories into meaningful super-categories. Our experiments show that the proposed DSRBN-

HB model efficiently infers appropriate super-category with correct underlying novel categories 

enabling improved one-shot classification using only one or very few examples. Both training 

and testing of DSRBN-HB model involve the leave-one-out method. Average AUROC is used to 

evaluate the proposed DSRBN-HB model using four widely used benchmark datasets: MNIST, 

OCR letters, Omniglot and CIFAR-100. A small subset of data is considered from each of these 

datasets for one-shot classification evaluation. Moreover, the performance of the proposed 

DSRBN-HB model is compared with two state-of-the-art generative models, DBM-HB and 

VAE-HB, respectively. Our results show that the proposed DSRBN-HB model achieves either 

improved or comparable one-shot classification performance using these benchmark datasets 

when compared to DBM-HB and VAE-HB models, respectively. Our experiments also show that 

the DSRBN-HB model achieves improved classification accuracy with far fewer training 

parameters in comparison to the DBM-HB and VAE-HB models. 
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Our future plan is to introduce a more scalable and versatile deep recurrent learning 

framework for small data which may be applicable in different application domains and various 

different data types such as static, time dependent, and multi-dimension. In order to achieve this, 

we first plan to address some of the limitations of our proposed deep recurrent learning models, 

DSRN and D-SRBN. Both DSRN and D-SRBN models process multidimensional input as a 

sequence of vectors. This may be a potential limiting factor for the DSRN and D-SRBN models 

in applications which involve large scale inputs. Hence, our future plan is to incorporate efficient 

windowing-based convolution or a cellular information processing technique to tackle large scale 

inputs. Moreover, convolution and cellular techniques inherently allow parallel information 

processing. Hence, the use of convolution or cellular techniques may allow our DSRN and D-

SRBN models to achieve better scalability and distributed information processing capability 

through parallel processing. Moreover, our future plan is to propose better adaptive hyper-

parameter adjustment techniques during learning of the DSRN and D-SRBN models. More 

specifically, we plan to adaptively adjust the important hyper-parameter, number of simultaneous 

recurrent steps, 𝑇 of the DSRN and D-SRBN models to ensure better convergence. This may 

require us to make appropriate modifications to the existing gradient descent learning techniques. 

Additionally, in future, we plan to investigate the proposed deep recurrent hierarchical Bayesian 

model, DSRBN-HB for introducing a more efficient learning technique for small data. The 

DSRBN-HB model requires off-line pre-training of the DSRBN model for feature extraction and 

the HB model requires appropriate prior assignment for building the HB tree. This may limit the 

application of the DSRBN-HB model in a new domain which consists of un-familiar data types. 

Therefore, our future plan includes introduction of a better learning scheme such as online 

learning to avoid pre-training of the DSRBN model using external data sources. Furthermore, 
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study to improve prior distributions for the HB model that facilitates better learning from 

different data types and distributions may also be pursued. Finally, the above mentioned 

modifications to our proposed deep recurrent learning framework may contribute a more 

efficient and versatile learning scheme for small data, applicable in a diverse application domain 

which involves different data types.           
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APPENDICES 

APPENDIX A. AVERAGING AND CONVERGENCE PROPERTY OF DSRN 

This section shows that the proposed DSRN satisfies several desirable properties that are 

common for models with dropout learning.  

1) AVERAGING PROPERTY OF DSRN WITH DROPOUT LEARNING 

 The analysis of [76] shows that when dropout is applied to a neural network with non-

linear activation functions, the expected outcome of the dropout network can be observed by 

finding the normalized weighted geometric mean (NWGM) of the actual output of the network. 

Therefore, in our case the expected outcome of the DSRN with dropout is obtained by computing 

NWGM of (15) and can be written as,    

                                                         𝐸(𝑦𝑡+1
ℎ ) ≈ 𝑁𝑊𝐺𝑀(𝑦𝑡+1

ℎ )                                                       (𝐴1) 

                                                         𝑁𝑊𝐺𝑀(𝑦𝑡+1
ℎ ) = 𝜎[𝐸(𝑆𝑡+1

ℎ )]                                                 (𝐴2) 

where, 𝐸(𝑆𝑡+1
ℎ ) = ∑ [𝑊𝑒

ℎ. 𝐸(𝑦𝑇
𝑙 ) + 𝑅ℎ. 𝐸(𝑦𝑡

ℎ)]𝑝𝑙𝑙<ℎ . The fundamental assumption for (A2) is the 

independence of the random variables from the activity of the units of the DSRN. 

2) CONVERGENCE OF DSRN WITH DROPOUT LEARNING 

Following [76], we show the convergence of DSRN with dropout learning. This is 

performed by showing that the expected gradient of the dropout network is equal to the gradient 

of the ensemble network to a certain extent with the addition of a complex and adaptive weight 

decay term. Here, an ensemble network means the collection of all possible sub-networks 

obtained from the dropout network. Let us consider the following quadratic error function, 

                                                        𝐸 =
1

2
(𝑡𝑎𝑟 − 𝑦𝑇

𝐹)2                                                          (𝐴3) 
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where, 𝑡𝑎𝑟 indicates target value for supervised training. From here onwards, we use 𝐸𝐷 and 

𝐸𝐸𝑁𝑆 to denote the error function associated with the dropout network and ensemble network 

respectively.  

Now, the output of the dropout DSRN is given by (15). To avoid any confusion the output 

of ensemble S-DSRN is described with different notations 𝐼 and 𝑉 as follows, 

                                 𝑉𝑡+1
ℎ = 𝜎(𝐼𝑡+1

ℎ ) = 𝜎(∑ [𝑊𝑒
ℎ. 𝑉𝑇

𝑙 + 𝑅ℎ. 𝑉𝑡
ℎ]𝑝𝑙𝑙<ℎ )    

                                                   𝑤𝑖𝑡ℎ 𝑉𝑇
0 = 𝑥 𝑎𝑛𝑑 𝑉𝑡

0 = 0                                                  (𝐴4) 

Since the core of DSRN is a recurrent network, we apply BPTT rather than regular 

backpropagation based gradient descent technique. The gradients of the feed-forward 𝑊𝑒
ℎ and 

recurrent 𝑅ℎ weights are obtained by applying the chain rule on the two weights separately. The 

gradient of the ensemble network in terms recurrent weights 𝑅ℎ with 𝜎(𝑏) =
1

1+𝑒−𝑏
 is computed 

as follows, 

                                                        
𝜕𝐸𝐸𝑁𝑆

𝜕𝑅ℎ
=

𝜕𝐸𝐸𝑁𝑆

𝜕𝐼𝑡
ℎ

𝜕𝐼𝑡
ℎ

𝜕𝑅ℎ
,                                                          (𝐴5) 

where, the backpropagated error 
𝜕𝐸𝐸𝑁𝑆

𝜕𝐼𝑡
ℎ  through the recurrent weights is obtained recursively as 

follows, 

                                           
𝜕𝐸𝐸𝑁𝑆

𝜕𝐼𝑡
ℎ = ∑ ∑

𝜕𝐸𝐸𝑁𝑆

𝜕𝐼𝑖
𝑙𝑖>𝑡𝑙>ℎ 𝑅ℎ𝑝ℎ𝜎′(𝐼𝑖

𝑙),                                       (𝐴6) 

where, 𝜎′ denotes the derivative of the activated units. The error deltas at the top layer ℎ = 𝐹 is 

computed by, 

                                                     
𝜕𝐸𝐸𝑁𝑆

𝜕𝐼𝑡
𝐹 = −(𝑡𝑎𝑟 − 𝑉𝑇

𝐹).                                                      (𝐴7) 

The second term of (A5) is given as, 

                                                             
𝜕𝐼𝑡
ℎ

𝜕𝑅ℎ
= 𝑝𝑙𝑉𝑡

ℎ,                                                                (𝐴8) 
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Similarly, error for the dropout DSRN is given as,  

                                                            
𝜕𝐸𝐷

𝜕𝑅ℎ
=

𝜕𝐸𝐷

𝜕𝑆𝑡
ℎ

𝜕𝑆𝑡
ℎ

𝜕𝑅ℎ
,                                                            (𝐴9) 

with, 

                                                         
𝜕𝐸𝐷

𝜕𝑆𝑡
ℎ = ∑ ∑

𝜕𝐸𝐷

𝜕𝑆𝑖
𝑙𝑖>𝑡𝑙>ℎ 𝑅ℎ𝛿ℎ𝜎′(𝑆𝑖

𝑙),                                       (𝐴10) 

                                                        
𝜕𝐸𝐷

𝜕𝑆𝑡
𝐹 = −(𝑡𝑎𝑟 − 𝑦𝑇

𝐹)    𝑎𝑛𝑑                                         (𝐴11) 

                                                                
𝜕𝑆𝑡

ℎ

𝜕𝑅ℎ
= 𝛿𝑙𝑦𝑡

ℎ                                                           (𝐴12) 

The expected gradient error for dropout S-DSRN is computed as follows, 

                                                 𝐸 (
𝜕𝐸𝐷

𝜕𝑅ℎ
) = 𝐸 (

𝜕𝐸𝐷

𝜕𝑆𝑡
ℎ |𝛿

ℎ = 1)𝑝𝑙𝐸(𝑦𝑡
ℎ) 

                                                               ≈ 𝐸 (
𝜕𝐸𝐷

𝜕𝑆𝑡
ℎ |𝛿

ℎ = 1)𝑝𝑙𝑉𝑡
ℎ 

                                                    =  𝐸 (
𝜕𝐸𝐷

𝜕𝑆𝑡
ℎ |𝛿

ℎ = 1)
𝜕𝐼𝑡
ℎ

𝜕𝑅ℎ
    [𝑓𝑟𝑜𝑚 (𝐴8)].                     (𝐴13)  

 

From (A13), we can see that the second term is actually same as the second term of (A5) 

which provides the error gradient of the ensemble DSRN in terms of recurrent weights, 𝑅ℎ. To 

show the equality between the first term of (A5) and (A13) we take the expectation of (A10). 

The resulting term is similar to the right-hand side term of (A6) which is the first term of (A5). 

Therefore, from (A5) and (A13) it can be concluded that the gradient of the error for ensemble 

DSRN (
𝜕𝐸𝐸𝑁𝑆

𝜕𝑅ℎ
) and that for the dropout DSRN (𝐸 (

𝜕𝐸𝐷

𝜕𝑅ℎ
)) are related and similar (in terms of 𝑅ℎ). 

This in turn suggests that the convergence of DSRN with dropout learning is retained.  Similar 

analysis can be performed to show the convergence of DSRN in terms of feed-forward weights, 

𝑊𝑒
ℎ. 
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APPENDIX B. LEARNING AND INFERENCE DETAILS OF D-SRBN 

This section shows the learning and inference details of the proposed D-SRBN model. 

We first show the detailed equations for the generative and recognition model of the D-SRBN 

and equations to compute the variational lower bound. 

For 𝑡 = 1, … , 𝑇 and 𝑙 = 2,… , 𝐿 we consider ℎ(1) ∈ {0,1}𝐽1  and ℎ𝑡
(𝑙)
∈ {0,1}𝐽𝑙. The 

parameters 𝜃 of the model are defined as 𝑊𝑟
(𝑙) ∈ ℝJl×J(l−1), 𝑊𝑓

(𝑙) ∈ ℝJl×Jl, 𝑊𝑔
(𝑙) ∈ ℝJ(l−1)×Jl and 

𝑏(𝑙) ∈ ℝJl. The generative model of the D-SRBN is expressed as,  

𝑝(ℎ𝑗𝑙𝑡
(𝑙) = 1) = 𝜎 (𝑤𝑓𝑗𝑙

(𝑙)𝑇ℎ𝑡−1
(𝑙) + 𝑤𝑔𝑗𝑙

(𝑙)𝑇ℎT
(𝑙−1) + 𝑏𝑗𝑙

(𝑙)),  

𝑓𝑜𝑟 𝑙 = 𝐿 𝑎𝑛𝑑 𝑡 = 1 𝑡𝑜 𝑇; 

 

 

(B1) 

𝑝(ℎ𝑗𝑙𝑡
(𝑙) = 1) = 𝜎 (𝑤𝑟𝑗𝑙

(𝑙)𝑇ℎ𝑡
(𝑙+1) +𝑤𝑓𝑗𝑙

(𝑙)𝑇ℎ𝑡−1
(𝑙) + 𝑤𝑔𝑗𝑙

(𝑙)𝑇ℎT
(𝑙−1) + 𝑏𝑗𝑙

(𝑙)), 

𝑓𝑜𝑟 1 < 𝑙 < 𝐿 𝑎𝑛𝑑 𝑡 = 1 𝑡𝑜 𝑇 𝑤𝑖𝑡ℎ ℎ𝑇
(𝑙=1)

= 𝑣; 

 

(B2) 

and, 

                                  𝑝(ℎ𝑗𝑙
(𝑙) = 1) = 𝜎 (𝑤𝑟𝑗(𝑙+1)

(𝑙+1) 𝑇ℎ𝑡
(𝑙+1) + 𝑏𝑗𝑙

(𝑙)), 

                                              𝑓𝑜𝑟 𝑙 = 1 𝑎𝑛𝑑 𝑡 = 1 𝑡𝑜 𝑇; 

 

(B3) 

The recognition model is specified as, 

𝑞(ℎ𝑗𝑙𝑡
(𝑙) = 1) = 𝜎 (𝑢𝑔𝑗𝑙

(𝑙) 𝑇ℎ𝑇
(𝑙−1) + 𝑢𝑓𝑗𝑙

(𝑙) 𝑇ℎ𝑡−1
(𝑙) + 𝑐𝑗𝑙

(𝑙)), 

𝑓𝑜𝑟 𝑙 = 2, … , 𝐿 𝑎𝑛𝑑 𝑡 = 1,… , 𝑇 𝑤𝑖𝑡ℎ ℎ𝑇
(𝑙=1) = 𝑣; 

(B4) 

where, the recognition model parameters 𝜑 are specified as 𝑈𝑓
(𝑙) ∈ ℝJl×Jl, 𝑈𝑔

(𝑙) ∈ ℝJ(l−1)×Jl and 

𝑐(𝑙) ∈ ℝJl. Additionally, ℎ0
(𝑙)

 needed for 𝑝(ℎ1
(𝑙)), 𝑝(ℎ1

(𝑙)|ℎ1
(𝑙+1)) and 𝑞(h1

(l)|h𝑇
(l−1)) are defined as 

zero vectors. 
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In order to utilize the NVIL algorithm [12] we calculate the variational lower bound as follows, 

£ =  ∑ 𝔼𝑞𝜑
(𝐻(𝐿)|ℎ(1))

[𝑒𝑡]
𝑇
𝑡=1 ; 

(B5) 

where, 𝑒𝑡 is expressed as, 

𝑒𝑡 = ∑ [∑ (
𝐽𝑙
𝑗𝑙=1

𝛹𝑗𝑙𝑡
(𝑙)ℎ𝑡

(𝑙) − log(1 + exp(𝛹𝑗𝑙𝑡
(𝑙)))]𝐿

𝑙=2  + ∑ (
𝐽𝑙
𝑗𝑙=1 & 𝑙=1

𝛹𝑗𝑙𝑡
(𝑙)ℎ(𝑙) −

log(1 + exp(𝛹𝑗𝑙𝑡
(𝑙))) − ∑ [∑ (

𝐽𝑙
𝑗𝑙=1

𝛽𝑗𝑙𝑡
(𝑙)ℎ𝑡

(𝑙) − log (1 + exp (𝛽𝑗𝑙𝑡
(𝑙)))]𝐿

𝑙=2 ; 

(B6) 

where, 

𝛹𝑗𝑙𝑡
(𝑙) = 𝑤𝑓𝑗𝑙

(𝑙)𝑇ℎ𝑡−1
(𝑙) + 𝑤𝑔𝑗𝑙

(𝑙)𝑇ℎT
(𝑙−1) + 𝑏𝑗𝑙

(𝑙), 

𝑓𝑜𝑟 𝑙 = 𝐿 𝑎𝑛𝑑 𝑡 = 1,… , 𝑇; 

 

(B7) 

𝛹𝑗𝑙𝑡
(𝑙) = 𝑤𝑟𝑗𝑙

(𝑙)𝑇ℎ𝑡
(𝑙+1) + 𝑤𝑓𝑗𝑙

(𝑙)𝑇ℎ𝑡−1
(𝑙) + 𝑤𝑔𝑗𝑙

(𝑙)𝑇ℎT
(𝑙−1) + 𝑏𝑗𝑙

(𝑙), 

𝑓𝑜𝑟 1 < 𝑙 < 𝐿 𝑎𝑛𝑑 𝑡 = 1,… , 𝑇 𝑤𝑖𝑡ℎ ℎ𝑇
(𝑙=1) = 𝑣; 

(B8) 

 

Subsequently, for parameter updates the gradients of the D-SRBN model are computed using 

chain rule of backpropagation through time (BPTT). 

  

𝛹𝑗𝑙𝑡ℎ
(𝑙) = 𝑤𝑟𝑗(𝑙+1)

(𝑙+1) 𝑇ℎ𝑡
(𝑙+1) + 𝑏𝑗𝑙

(𝑙), 

𝑓𝑜𝑟 𝑙 = 1 𝑎𝑛𝑑 𝑡 = 1,… , 𝑇; 

and, 

(B9) 

𝛽𝑗𝑙𝑡
(𝑙) = 𝑢𝑔𝑗𝑙

(𝑙) 𝑇ℎT
(𝑙−1) + 𝑢𝑓𝑗𝑙

(𝑙) 𝑇ℎ𝑡−1
(𝑙) + 𝑐𝑗𝑙

(𝑙), 

𝑓𝑜𝑟 𝑙 = 2, … , 𝐿 𝑎𝑛𝑑 𝑡 = 1,… , 𝑇 𝑤𝑖𝑡ℎ ℎ𝑇
(𝑙=1) = 𝑣. 

 

(B10) 
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