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Abstract  The purpose of this investigation was to evaluate the effect of melatonin on glycemic control and oxidative 
stress (OS) in adults with type 2 diabetes (T2D). Fourteen subjects with T2D (10 female, 4 male; 52.5 ± 5.0 years) were 
randomly assigned to melatonin (MEL) or p lacebo groups (PLA) for 42 days, in a crossover design. Subjects ingested 10 mg 
of MEL or an identical placebo (PLA) 30 minutes prior to sleep. Fasting blood draws occurred at  baseline, 42 days, and 84 
days. Plas ma malondialdehyde, a marker o f OS, significantly decreased on MEL (-6.25±2.10 nmol/ml) compared to PLA 
(0.72±3.30, p=0.028). The change in hemoglobin A1c showed a total improvement of 0.33% fo llowing MEL 
supplementation compared to PLA (-0.24±0.23 % for MEL vs. 0.09±0.21 % for PLA, p=0.01), although no significant 
changes were noted in  fasting plas ma g lucose or lipid  levels. Daily melatonin may dimin ish OS and enhance glycemic control 
in adults with T2D. 
Keywords  Melatonin, Oxidat ive Stress, Type 2 Diabetes, Hemoglobin A1c 

 

1. Introduction 
It is commonly accepted that oxidative stress plays a 

significant role in the pathogenesis of type 2 diabetes 
mellitus (T2D)[1] and, according to the “unifying hypothesis” 
of Brownlee may, in  fact, be the single most critical factor 
contributing to complicat ions of T2D[2]. Oxidative stress 
can be broadly described as an imbalance between reactive 
oxygen species (ROS) production and the cellular ability to 
reduce these potentially harmful substances through 
antioxidant defenses. At physiological levels ROS are 
important cellular signaling molecules and a normal 
byproduct of cellular metabolism. Under optimal conditions 
ROS molecules are rig idly controlled by endogenous 
antioxidant defenses, effectively nullifying any deleterious 
effect. T2D, however, represents a disease state in which 
there is an imbalance between antioxidative resources and 
oxidant (free rad ical) p roduction, largely driven by 
hyperglycemia that results in a state of oxidative stress.  

Melatonin is the primary secretory product of the pineal 
gland  and  is  most  frequent ly  associated  with  circad ian 
rhythms and the sleep cycle[3]. Melatonin, however, is also a 
potent and unique antioxidant[4] that has demonstrated an 
amelio rat ive effect  upon oxidat ive st ress in human  and  
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animal models of T2D[5, 6, 7, 8]. Given the localization of 
its receptors in the suprachiasmatic nucleus (SCN) of the 
hypothalamus, the body’s primary circadian pacemaker, 
melatonin plays a major role in modulating both the 
sleep-wake cycle and circadian rhythms in humans[9]. The 
hypothalamus is also the dominant brain region responsible 
for sensing and responding to blood glucose levels[10] and 
controlling their circadian rhythm[11, 12]. However, 
hypothalamic act ivity is reduced[13] and melatonin 
secretion frequently attenuated and phase-delayed in 
individuals with T2D[14]. This melatonin deficit may 
contribute to nocturnal elevations in  hepatic glucose 
output[14]. Deficits in hypothalamic activ ity, specifically 
SCN output, may direct ly contribute to the 
pathophysiological development and exacerbation of T2D 
[13, 14] via autonomic dysfunction and oxidative stress. As 
the main synchronizer of the body’s biological clock, 
melatonin has demonstrated a restorative ability on SCN 
output[15] and sleep, which may improve autonomic 
nervous system (ANS) balance[16] oxidative stress[6, 17, 18] 
and glycemic control[14, 19] in T2D. 

A plethora of studies using animal models and human cell 
lines provide intriguing evidence of the effectiveness of 
melatonin at improving glycemic control[20, 21], increasing 
endogenous antioxidant defenses[22, 23, 24] and decreasing 
oxidative stress[25, 26, 27, 28, 29]. To date, however, only a 
limited  number of studies have investigated the potential ro le 
for melatonin in improving oxidative balance and glucose 
regulation in-vivo in T2D. Thus, the purpose of this 
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investigation was to evaluate the effect of a commercially 
available preparation of melatonin on both oxidative stress 
and glycemic control in adults with T2D. 

2. Materials and Methods 
Fourteen subjects (10 female, 4 male; 52.5 ± 5.0 years) with 
uncomplicated T2D (duration of 7.4 ± 5.3 years) were 
randomly  assigned to a melatonin group (MEL) or placebo 
group (PLA) for 42 days, followed  by 42 days in the 
alternate group in a crossover design. Exclusionary criteria 
included sleep apnea or other sleep disorders, congestive 
heart failure, myocardial infarction, arrhythmia or any 
cardiovascular event in the previous year, liver disease, 
kidney disease, orthostatic hypotension, or d iagnosis of 
previous or current psychiatric disorder. Ten of the subjects 
were currently taking oral glucose-lowering drugs and four 
subjects were diet only. Each subject maintained their 
treatment regimen for the length of the investigation. 
During each supplementation period, subjects ingested 
either 10 mg of commercially available melatonin in 
capsule form (Quality Supplement and Vitamins, Inc., Ft. 
Lauderdale, FL) 30-60 minutes prior to sleep or an  identical 
capsule (Capsuline, In., Pompano Beach, FL) containing 
white flour. Fasting blood draws occurred  on three 
morn ings: prior to supplementation, after 42 days, and after 
84 days. This study was approved by the Old Dominion 
University Institutional Review Board, and all subjects 
provided signed informed consent prior to participation. 

2.1. Blood Chemistry Analyses 

Blood samples were collected in heparinized tubes, in 
duplicate, by a trained phlebotomist from the antecubital 
vein using standard venipuncture technique. Lip ids, fasting 
glucose and hemoglobin A1c were immediately analyzed 
using enzymatic assays (Cholestech Corp., Hayward, CA 
and Siemens Healthcare Diagnostics, Tarrytown, NY, 
respectively). Thereafter, samples were frozen and stored 
prior to spectrophotometric analysis of malondialdehyde 
(Zeptometrix Corp., Buffalo, NY). 

2.2. Statistics 

Significant differences were analyzed using a 2-way 
ANOVA with repeated measures on one factor (time), 
whereas one-tailed, paired t-tests were used to assess change 
from baseline between groups. Results are presented as mean 
±SEM. Data analyses were performed with PASW 17.0 
(SPSS, Chicago, IL). Results were considered to be 
statistically significant if p < 0.05. 

3. Results 
Levels of p lasma malondialdehyde (MDA) were 

significantly lower fo llowing supplementation for MEL 
(-6.25±2.10 nmol/ml) compared to PLA (0.72±3.30, 

p=0.028) (Figure 1). This equates to a 55% reduction in 
MDA following melatonin supplementation. 

 
*Significant decrease vs. Baseline (p<0.05) 

Figure 1.  Change in MDA Concentration Following 6 weeks of MEL or 
PLA 

 
*Significant decrease vs. Baseline (p=0.01) 

Figure 2.  Change in A1c % following 6 weeks of MEL and PLA 

There was a significant decrease in A1c levels following 
42 days of melatonin supplementation (-0.24±0.23%, 
p=0.01). In contrast, following 42 days of placebo there was 
a slight, but significant, increase in A1c (0.09±0.21 %, 
p=0.01). Collectively this demonstrated a total improvement 
of 0.33% (Table 1). 

Table 1.  Effects of Daily Treatment with 10 mg MEL for 6 weeks vs. PLA 

 Baseline Post MEL Post PLA 
HbA1c (%) 7.26 ± 0.30 7.02 ± 0.33* 7.35 ± 0.37 

Fasting Plasma 
Glucose 
(mmol/L) 

7.88 ± 0.62 7.36 ± 0.53 7.84 ± 0.99 

Total Cholesterol 
(mmol/L) 4.43 ± 0.31 4.43 ± 0.33 4.43 ± 0.35 

LDL Cholesterol 
(mmol/L) 2.54 ± 0.27 2.38 ± 0.24 2.58 ± 0.29 

HDL Cholesterol 
(mmol/L) 1.11 ± 0.09 1.15 ± 0.09 1.07 ± 0.09 

Triglycerides 
(mmol/L) 1.56 ± 0.18 2.06 ± 0.42 1.78 ± 0.30 

MDA (nmol/ml) 11.5 ± 1.64 5.2 ± 1.22* 12.2 ± 3.30† 
MEL, melatonin; PLA, placebo. All values are mean ± SEM, 
*Post MEL is significantly less than Baseline (p<0.05) 
†Trend toward Post PLA being significantly higher than Post MEL (p=.055) 
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No significant changes were noted for total cholesterol, 
high density lipoprotein, low density lipoprotein , triglycerid
es or fasting plasma glucose. No adverse effects were 
reported. 

4. Conclusions 
Similar to an imal and  human  in-v itro data, this 

investigation demonstrated an ameliorative effect of 
melatonin supplementation on malondialdehyde, a common 
marker of oxidative stress. It also demonstrated that a single 
daily dose of 10 mg of melatonin significantly decreased 
overall glycaemia (i.e ., A1c values) in indiv iduals with T2D, 
thereby adding to the limited amount of in-vivo evidence 
demonstrating a potential role of melatonin in improving 
glycemic control in this population.  

Hyperglycemia present in T2D is a contributing factor to 
both a proinflammatory state and oxidative stress. T2D is 
also characterized by a reduction in antioxidative capacity[6]. 
It is widely accepted that oxidative stress plays a significant 
role in  the pathogenesis of diabetes complications[1, 2]. 
While there is a strong theoretical background advocating 
the use of conventional antioxidant therapy to improve 
antioxidative status and oxidative stress, studies using 
supplemental v itamins C, E and beta-carotene have yielded 
disappointing results[30]. Given the lackluster performance 
of conventional antioxidants in addressing health-related 
outcomes induced by oxidative stress, it has been suggested 
that a new antioxidant approach to oxidative stress should 
focus on increasing intracellular antioxidant defenses and 
controlling free radical formation at its source[1]. The “holy 
grail” o f antioxidants would be capable of directly 
scavenging free radicals, but more importantly, it would also 
be capable of: a) stimulat ing antioxidative enzymes, b) 
directly promoting glutathione synthesis, and c) reducing 
production of free radicals in the mitochondria. Human 
in-vitro studies have shown that melatonin reduces oxidative 
stress and up-regulates endogenous antioxidative defense[31, 
32, 33]. Furthermore, melatonin has a demonstrated ability 
to neutralize oxidative stress in humans across a broad 
spectrum of conditions includ ing malaria, post-surgery, 
new-born asphyxia and Alzheimer’s disease but, more 
importantly, in vascular disease and atherosclerosis as 
well[34]. 

Melatonin differs from conventional antioxidants by 
serving both as a direct scavenger of ROS as well as a potent 
stimulator of endogenous antioxidant enzymes[4] v ia 
upregulation of gene expression for glutathione peroxidase, 
glutathione reductase, catalase, and superoxide dismutase[31, 
35]. Importantly, it also affects the production of free 
radicals in the mitochondria[36], along with alleviating 
inflammat ion, possibly by inhibiting NF-κB, a key protein 
involved in inflammation[37]. This has potentially  profound 
implications as the “unify ing hypothesis” proposed by 
Brownlee[2] suggests that hyperglycemia-induced overprod
uction of the free radical superoxide, which occurs as a result 
of inefficiency in  the electron transport chain, is the primary 

mediator of vascular damage in T2D. Therefore, 
any substance which enhances the efficiency o fmitochondri
al respiration (thereby decreasing the production of 
superoxide at the source) may p lay a significant role in the 
reduction of complications that result from T2D. 

Interestingly, reductions in plasma melatonin are 
independently associated with T2D[14]. A recent large-scale 
investigation, a case-control study nested within the The 
Nurses’ Health Study, adds corroborating evidence demonst
rating a greater risk of development of T2D associated with 
decreased nocturnal melatonin secretion[38]. Consequently, 
this reduction in circulat ing melatonin, which is associated 
with significantly higher levels of oxidative stress and 
reduced antioxidant activity[6], is a likely result of an 
increased consumption of melatonin due to hyperglycemia 
precipitating increased levels of oxidative stress[39].  

Relatively few studies have investigated the effect of 
exogenous melatonin on oxidant status and/or markers of 
oxidative stress in vivo in humans. Nevertheless, the few 
studies that have investigated this have demonstrated results 
similar to the present investigation. For example, a  study 
involving young (35.9±2.3 yr) and elderly (79.4±.0 yr) 
healthy, normoglycemic populations found significant 
increases in superoxide dis mutase and glutathione reductase, 
markers of antioxidative status, in healthy young and elderly 
subjects and a significant decrease in  malondialdehyde, a 
marker o f lipid peroxidation, in  young (10%) and elderly 
(20%) subjects following 30 days of melatonin supplementa
tion at 5 mg/day[40]. Moreover, there was greater than a 
two-fold increase in serum melatonin levels for both youth 
and elderly population’s post - supplementation.  

The sole prior study that has investigated the effect of 
melatonin on oxidative stress in vivo in T2D was conducted 
in elderly patients[6]. Similar to the present investigation, a 
daily dose of melatonin (5 mg/day) for 30 days resulted in a 
substantial reduction in malondialdehyde (-20%), as well as 
an increase in superoxide dismutase (+16%), an important 
intracellular antioxidant defense, and serum melatonin 
increased by 70%. 

While there is an abundance of research in animal models 
demonstrating melatonin plays a significant ro le in glucose 
homeostasis[41, 42], there is a paucity of clinical trials 
investigating this effect in humans. Nevertheless, the limited 
human research has yielded intriguing results. For example, 
Hussain et al.[19] found that 90 days of supplementation of 
10 mg melatonin, in combination with zinc (50 mg/day) 
significantly decreased fasting plasma glucose (-23%) and 
A1c (-29%) in indiv iduals with T2D. 

While it is firmly established that oxidative stress is a 
significant contributing factor to the pathogenesis of T2D 
current therapy remains primarily aimed at  pharmacological 
intervention to decrease endogenous glucose production, 
enhance insulin secretion, or decrease insulin resistance. The 
current treatment strategy, however, is less than optimal. 
Diabetic complications are a direct result of hyperglycemia 
and its associated oxidative stress, but only 37% of patients 
with T2D maintain an optimal g lucose level[43]. Strategies 
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that target oxidative imbalance and proinflammation may 
have the potential to ameliorate, delay, and/or prevent 
T2D[44]. 

There is a  growing body of evidence indicating that 
melatonin may play a multi-faceted role in the treatment of 
T2D. However, a paucity of clin ical trials has investigated 
the impact of melatonin supplementation on oxidative status 
and glycemic control in  a d iabetic state. By resetting the 
suprachiasmatic nucleus, improving sleep, restoring 
circadian rhythmicity and reducing oxidative stress, 
melatonin may prove to be a low-cost adjunctive therapy in 
the treatment and prevention of T2D and its complicat ions. 
Given the prevalence and rapid growth of diabetes and the 
totality of ev idence linking melatonin to reduced oxidative 
stress and increased antioxidant defenses, further 
investigation into the possible mechanisms and use of this 
unique antioxidant appear warranted. 
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