
Old Dominion University
ODU Digital Commons

Physics Faculty Publications Physics

2016

Hadron Resonaces from QCD
Jozef J. Dudek
Old Dominion University, jdudek@jlab.org

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs

Part of the Physics Commons

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty
Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Repository Citation
Dudek, Jozef J., "Hadron Resonaces from QCD" (2016). Physics Faculty Publications. 21.
https://digitalcommons.odu.edu/physics_fac_pubs/21

Original Publication Citation
Dudek, J. J. (2016). Hadron resonances from QCD. In EPJ Web of Conferences (Vol. 113, p. 01001). EDP Sciences.

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs/21?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Hadron Resonances from QCD

Jozef J. Dudek1,2,a for the Hadron Spectrum Collaboration

1Department of Physics, Old Dominion University, Norfolk, VA 23529, USA
2Theory Center, Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA.

Abstract. I describe how hadron-hadron scattering amplitudes are related to the eigen-
states of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can
be determined from correlation functions computed using lattice QCD, and the corre-
sponding scattering amplitudes extracted. I review results from the Hadron Spectrum
Collaboration who have used these finite volume methods to study ππ elastic scattering,
including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent
extension to the case where an external current acts is also presented, considering the
reaction πγ? → ππ, from which the unstable ρ → πγ transition form factor is extracted.
Ongoing calculations are advertised and the outlook for finite volume approaches is pre-
sented.

1 Introduction

Quantum Chromodynamics presents us with a unique challenge within the Standard Model – the
observed spectrum of strongly interacting particles, hadrons, does not appear to trivially follow from
the basic quark and gluon fields whose interactions are described by the QCD lagrangian. Indeed the
observed experimental spectrum shows a degree of regularity yet to be explained from first principles,
and, to date, seems to lack states one might expect within QCD where the gluonic field plays an active
role: glueballs and hybrid mesons.

The excited spectroscopy of QCD is the study of resonances – excited hadrons are not asymptotic
states, they decay rapidly to lighter stable hadrons, and appear in experiments as enhancements in the
scattering of these stable hadrons. It follows that to rigorously study the excited spectrum of QCD we
should calculate scattering amplitudes and examine their resonant content.

Lattice QCD is a first-principles approach to the theory which considers the quark and gluon
fields on a finite discretized grid of points, computing correlation functions as the average over a
set of Monte-Carlo generated field configurations. The spectrum of eigenstates for example can be
determined by considering the Euclidean time dependence of two-point correlation functions using
operators having the quantum numbers of hadrons, constructed from quark and gluon fields. Lattice
QCD is thus a controlled approximation in which the artificially introduced scales, the lattice spacing
and the lattice volume, can be varied, and ultimately the true theory reached in the appropriate limits.
In practice many calculations also opt to work with values of the light-quark mass parameter larger
than that found experimentally, thus reducing the computational cost.
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By necessity Lattice QCD calculations are done in a finite Euclidean volume, and in such a box,
where asymptotic states cannot be prepared, there is no scattering in the usual sense, so it is not im-
mediately obvious how one is to go about computing scattering amplitudes. Fortunately, it is the case
that the discrete spectrum of states in a finite volume is determined by the scattering amplitudes, and
by computing the spectrum in one or more volumes, we may hope to determine these scattering am-
plitudes. Then by examining the energy dependence of these amplitudes, we may find their resonant
content and make statements about the excited spectrum of QCD.

2 Scattering amplitudes & the spectrum in a finite volume

The effect of a finite periodic boundary on the spectrum of eigenstates of a quantum system can be
illustrated by considering non-relativistic quantum mechanics in one space dimension. Free particles
of definite momentum are described by plane-wave wavefunctions, eipx, and application of a periodic
boundary condition at x = L indicates that free-particle momentum must be quantized in units of
2π
L . For two identical particles interacting via an arbitrary finite-range potential, applying the bound-

ary condition to a scattering solution outside the range of the potential, cos
(
p|x| + δ(p)

)
, leads to a

condition p = 2π
L −

2
Lδ(p), which determines the allowed discrete values of momentum (and hence

energy) in terms of the elastic scattering phase shift, δ. It follows that the discrete spectrum at any
given volume, L, contains information about the scattering amplitude in infinite volume.

The more complicated case of elastic scattering in a quantum field theory in 3 + 1 dimensions,
having a cubic periodic boundary, was worked out by Lüscher for the rest frame, and extensions to
moving frames appeared later [1–5]. Conceptually the result is similar to that above, with some slight
complications arising because the cubic symmetry of the boundary is not commensurate with the
angular-momentum basis we use to characterize partial waves. These complications can be handled
by considering the reduced symmetry group of the boundary, at rest or boosted, which has a finite
number of irreducible representations.

Going beyond elastic scattering, the formalism for coupled-channel scattering has been derived
independently in a number of differing approaches to field theory [6–9], all leading to the same con-
dition relating the scattering t-matrix to the discrete spectrum of states in a finite volume:

det
[
t−1(E) + i ρ(E) −M(E, L)

]
= 0. (1)

The determinant is over the space of open scattering channels1, and ρ(E) is the phase space matrix
for these channels, with M(E, L) being a matrix of known, essentially kinematic, functions. The
discrete values of E(L) which solve this equation provide the spectrum of QCD in this finite L× L× L
volume. It follows that a first-principles calculation of this spectrum in one or more volumes could
yield information about t(E), and we turn our attention to lattice QCD as the tool to determine the
spectrum.

3 Determining the spectrum using lattice QCD

Two-point Euclidean correlation functions have a spectral representation,〈
0
∣∣∣Oi(t)O

†

j (0)
∣∣∣0〉 =

∑
n

e−Ent
〈
0
∣∣∣Oi

∣∣∣n〉 〈
0
∣∣∣O j

∣∣∣n〉∗, (2)

1and over the partial waves subduced into the particular irreducible representation under consideration
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where the discrete spectrum of eigenstates of QCD having the quantum numbers of the operators Oi, j

appears. These operators should be constructed from the basic discretized quark and gluon fields of
lattice QCD, and ideally to determine the spectrum efficiently we would like to make the values of〈
0
∣∣∣Oi, j

∣∣∣n〉 as large as possible for the low-lying states we are interested in. This can be achieved by
developing operators which ‘closely resemble’ the eigenstates.

A set of operators which have been shown to efficiently interpolate ‘single-meson’ states [10–
13] take the form ψ̄Γ

←→
D . . .

←→
D ψ, i.e. a (smeared) quark bilinear featuring Dirac gamma structure

and some number of gauge-covariant derivatives. Operators resembling a pair of mesons can be
constructed as products of the bilinears presented above, e.g.

∑
~p1~p2

C(~p1, ~p2) π(~p1) π(~p2) where
π(~p) ∼

∑
~x ei~p·~xψ̄Γψ(~x ) where Γ is such that the bilinear has pseudoscalar quantum numbers and over-

laps strongly with the ground state pion. The generalized Clebsch-Gordan coefficients, C(~p1, ~p2), are
chosen to ensure that the operator transforms in the desired irreducible representation of the reduced
rotational group.

Calculation of correlation functions using these operators can be done in an efficient manner using
the distillation technology first presented in Ref. [14]. A spectrum of excited levels can be extracted
from a matrix of correlation functions, computed using a basis of operators of the type described
above. The variational best estimate for the spectrum is obtained by solving the generalized eigen-
problem [15–17],

C(t) un = λn(t) C(t0) un, (3)

where the eigenvalue λn(t)→ e−En(t−t0) supplies us with the energy of the nth state.

4 Elastic ππ scattering and the ρ resonance

One of the simplest scattering problems in hadron physics is ππ in isospin-2, where experimen-
tally there are found to be no low-lying resonances. The minimal quark content of this channel is
uud̄d̄ and a suitable basis of operators resembles pairs of operators capable of interpolating pions:∑
~p1~p2

C(~p1, ~p2) π(~p1) π(~p2). The Hadron Spectrum Collaboration computed [13] finite volume en-
ergy spectra in a calculation where the light-quark masses took a value such that mπ = 391 MeV.
The spectra were obtained on three different volumes and in several different moving frames. Using
the elastic Lüscher formalism and its moving frame extensions, phase shift values spanning the entire
elastic region (below 4π threshold) for S and D waves were obtained as presented in Figure 1. The
results show the same qualitative features as experiment, that of a weakly repulsive interaction which
is strongest in S -wave.
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Figure 1. Elastic scattering phase
shift in degrees for isospin-2 ππ in
S -wave and D-wave plotted as a
function of cm-frame momentum.
Scattering length parameterizations
describe the energy dependence.
Computed with quark masses
corresponding to a pion mass of 391
MeV. Figure taken from [13].
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A slightly less simple scattering problem is ππ in isospin-1, where on the basis of experiment, we
expect a vector resonance, the ρ. A suitable operator basis for the computation of correlation functions
supplements the “ππ-like” operators presented previously with ψ̄Γψ operators likely to overlap well
with a tightly-bound qq̄ state (as we expect the ρ to dominantly be). Computation [18] on the same
set of lattices as described above leads to the elastic scattering phase shift presented in Figure 2. The
energy dependence of the scattering amplitude can be described well by a relativistic Breit-Wigner
form corresponding to a single isolated resonant state. The small width Γ ∼ 12 MeV of the extracted
resonance is a result of the small phase space for decay of an 855 MeV resonance into two 391 MeV
pions. If we define a ρ → ππ coupling via Γ =

g2
R

6π
p3

m2
R
, the extracted coupling has value gR = 5.70(11),

which is compatible with the experimental value [19] of ∼ 6.0(1), in line with the expectation that it is
almost quark mass independent [20], and only the phase space is changing as the pion mass decreases
to its physical value.
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Figure 2. Elastic scattering phase
shift in degrees for isospin-1 ππ in
P-wave plotted as a function of
cm-frame energy. A relativistic
Breit-Wigner parameterization
describes the energy dependence.
Computed with quark masses
corresponding to a pion mass of 391
MeV. Figure taken from [18].

A recent calculation [21]2 performed with lighter quark masses such that mπ = 236 MeV is pre-
sented in Figure 3 where we observe the expected increase in width, decrease in ρmass, and negligible
change in gR.
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Figure 3. Elastic scattering phase
shifts in degrees for isospin-1 ππ in
P-wave plotted as a function of
cm-frame energy. Comparison of
calculations performed with quark
masses corresponding to pion masses
of 391 MeV and 236 MeV. Figure
taken from [21].

2this calculation also considered coupled channel amplitudes into KK, finding essentially no coupling at low energies.
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5 Coupled-channel πK, ηK scattering

Refs [22, 23] from the Hadron Spectrum Collaboration present the first lattice QCD calcula-
tion to extract coupled-channel scattering amplitudes, considering the strangeness-1, isospin-1/2
channel, which at low energies features πK and ηK scattering. Spectra were extracted from
correlation functions computed with operators resembling πK (

∑
~p1~p2

C(~p1, ~p2) π(~p1) K(~p2)), ηK
(
∑
~p1~p2

C(~p1, ~p2) η(~p1) K(~p2)) and qq̄-like constructions (ψ̄Γψ). Some example spectra are shown in
Figure 4 where we see that a large number of energy levels can extracted, even in cases of approximate
degeneracy, with good statistical precision.
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Figure 4. Spectrum of QCD eigenstates with strangness-1 and isospin-1/2 extracted from lattice QCD calcula-
tions on three volumes (163, 203, 243) with quark masses such that mπ = 391 MeV. (a) Rest frame spectrum in
A+

1 irrep (dominated by JP = 0+). (b) Spectrum in a frame moving with one unit of lattice momentum in the irrep
A1. Red, green lines show the positions of non-interacting πK, ηK energy-levels respectively. Figure taken from
[22, 23].

Extraction of the coupled-channel t-matrix from these levels is challenging. At any given energy
the unitarity preserving, time-reversal invariant t-matrix is described by 1

2 N(N +1) real numbers. This
means that Equation 1, which relates the finite volume spectrum to the t-matrix features 1

2 N(N + 1)
unknowns for each energy level and this clearly cannot be solved on a level-by-level basis.

An approach to get around this problem is to parameterize the energy dependence of the t-matrix
and to attempt to describe the entire spectrum of states, even in multiple different volumes, by varying
parameters until the best match to the lattice QCD spectrum is obtained. This was done in [22, 23],
trying a varied set of parameterizations based upon the K-matrix, and consistent results for the energy
dependence of the amplitudes were obtained. An example is presented in Figure 5 for S -wave, P-wave
and D-wave scattering, where the amplitudes are expressed in terms of phase shifts and an inelasticity
parameter defined below:

tπK,πK = 1
2i ρπK

(
η e2iδπK − 1

)
, tηK,ηK = 1

2i ρηK

(
η e2iδηK − 1

)
, tπK,ηK = 1

2√ρηK ρπK

(√
1 − η2 ei(δπK+δηK )

)
(4)

The πK P-wave amplitude is found to feature a bound state only slightly below threshold – that
this K? does not appear as a resonance as it does in experiment is a consequence of the quark mass
used, for any smaller light quark mass, the state would appear above threshold with a decay width into
πK.

21st International Conference on Few-Body Problems in Physics

01001-p.5



-30

 0

 30

 60

 90

 120

 150

 180

0.7

0.8

0.9

1.0
 1000  1200  1400  1600

 1000  1200  1400  1600

-0.02

-0.01

0

0.01

0.02

 910  920  930  940  950

-30

 0

 30

 60

 90

 120

 150

 180

 1000  1200  1400  1600

0.7

0.8

0.9

1.0
 1000  1200  1400  1600

Figure 5. Coupled channel πK, ηK amplitudes determined at mπ = 391 MeV. (a) Phase shifts and inelasticity in
JP = 0+ partial wave. (b) πK phase shift for JP = 1− in threshold region – zero crossing of p3 cot δ1 corresponds
to a vector bound state. (c) Phase shifts and inelasticity in JP = 2+ partial wave – rapid increase in πK phase
indicative of a narrow tensor resonance, essentially decoupled from the ηK channel. Figure taken from [22, 23].

The S -wave t-matrix shows only very weak coupling between the πK and ηK channels. The
gradual increase in the πK phase shift around 1400 MeV corresponds to a pole singularity far into the
complex plane which may be identified with a broad scalar resonance. The experimental K?

0 (1430),
which decays to πK and not ηK may be related to this state. Another S -wave singularity is also present
causing the relatively rapid rise in phase shift at πK threshold. This pole lies on the real axis, below
the threshold on the unphysical sheet and is thus considered a virtual bound state. Suggestions from
unitarized chiral perturbation theory are that the experimental resonance singularity known as the κ
may become just such a virtual bound state as the mass of the pion is increased [20].

The determination of the JP = 2+ amplitude is somewhat less rigorous owing to the neglect of
the ππK channel in this first calculation. Nevertheless a consistent description of the finite volume
spectrum can be obtained considering only πK and ηK scattering, and the extracted amplitude shows
decoupling of the two channels and a clear narrow tensor resonance decaying to πK. This state is
likely related to the experimental K?

2 (1430).

6 πγ?→ ππ and the unstable ρ transition form factor

An extension of the finite volume formalism to deal with the case where external currents are present
(building upon the ideas outlined in [24]) has recently appeared [25, 26], suggesting that the finite
volume matrix elements of the current which can be extracted from three-point correlation functions
can be related to their infinite volume counterparts.

The development of the distillation technology needed to efficiently calculate the required three-
point correlation functions in the case of the vector current relevant to electromagnetic amplitudes was
presented in [27], and the first calculation of an electromagnetic scattering amplitude, πγ?→ ππ, has
very recently appeared [28]. In this paper, the Hadron Spectrum Collaboration determined matrix
elements of the type

〈
π
∣∣∣ψ̄γµψ∣∣∣ππ〉 on a lattice of volume ∼ (2.4 fm)3 with mπ = 391 MeV and from

these extract the scattering amplitude illustrated in Figure 6. The ρ resonance which couples to both
γπ and ππ clearly dominates the amplitude, and the transition form factor for unstable ρ → πγ? was
extracted as a function of photon virtuality, Q2, in a rigorous manner from the residue of the ρ pole
singularity in the complex energy plane.
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Figure 6. Upper panel: Amplitude for
πγ? → ππ in P-wave as a function of
cm-frame energy at two values of
photon virtuality – the bump due to
the ρ resonance. Lower panel: the
corresponding amplitude for elastic
scattering ππ→ ππ. Both computed
on a 203 lattice with mπ = 391 MeV.
Figure taken from [28].

7 Outlook

Combining carefully constructed operators with efficient correlation construction technology and vari-
ational analysis techniques, it has proven possible to extract large numbers of discrete excited states
from lattice QCD calculations. Novel approaches have been applied to extracting scattering ampli-
tudes from these spectra, particularly in the coupled-channel case where unitarity preserving param-
eterizations are required. Non-resonant and resonant cases have been considered, and recently we
have seen the important extension to the case of coupling to external currents, opening up the possi-
bility of considering photo/electro-production amplitudes, weak meson decays and other more exotic
situations.

Ongoing calculations within the Hadron Spectrum Collaboration include meson-meson scatter-
ing systems featuring charmed mesons [29, 30], as well as other coupled-channel systems in the light
quark sector such as πη, KK̄ in which the a0 resonance appears. Obvious future extensions of these
calculations include systems with baryons, e.g. N? resonances in πN scattering, as well as other radia-
tive transitions, including those between charmonium resonances [31, 32] which are well measured
experimentally. A formalism to deal with three-hadron scattering amplitudes will be required to study
higher-lying resonances, and progress is being made in developing the appropriate theory [33–36].
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