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ABSTRACT 

ANALYSIS AND APPLICATION OF PERFECTLY MATCHED 

LAYER ABSORBING BOUNDARY CONDITIONS FOR 

COMPUTATIONAL AEROACOUSTICS 

Sarah Anne Parrish 
Old Dominion University, 2008 

Director: Dr. Fang Q. Hu 

The Perfectly Matched Layer (PML) was originally proposed by Berenger as an 

absorbing boundary condition for Maxwell's equations in 1994 and is still used ex­

tensively in the field of electromagnetics. The idea was extended to Computational 

Aeroacoustics in 1996, when Hu applied the method to Euler's equations. Since that 

time much of the work done on PML in the field of acoustics has been specific to the 

case where mean flow is perpendicular to a boundary, with an emphasis on Carte­

sian coordinates. The goal of this work is to further extend the PML methodology 

in a two-fold manner: First, to handle the more general case of an oblique mean 

flow, where mean velocities strike the boundary at an arbitrary angle, and second, 

to adapt the equations for use in a cylindrical coordinate system. These extensions 

to the PML methodology are effectively carried out in this dissertation. Perfectly 

Matched Layer absorbing boundary conditions are presented for the linearized and 

nonlinear Euler equations in two dimensions. Such boundary conditions are pre­

sented in both Cartesian and cylindrical coordinates for the case of an oblique mean 

flow. In Cartesian coordinates, the PML equations for the side layers and corner 

layers of a rectangular domain will be derived independently. The approach used in 

the formation of side layer equations guarantees that the side layers will be perfectly 

matched at the interface between the interior and PML regions. Because of the per­

fect matching of the side layers, the equations are guaranteed to be stable. However, 

a somewhat different approach is used in the formation of the corner layer equations. 

Therefore, the stability of linear waves in the corner layer is analyzed. The results of 

the analysis indicate that the proposed corner equations are indeed stable. For the 

PML equations in cylindrical coordinates, there is no need for separate derivations 

of side and corner layers, and in this case, the stability of the equations is achieved 



through an appropriate space-time transformation. As is shown, such a transforma­

tion is needed for correcting the inconsistencies in phase and group velocities which 

can negatively affect the stability of the equations. After this correction has been 

made, the cylindrical PML can be implemented without risk of instability. In both 

Cartesian and cylindrical coordinates, the PML for the linearized Euler equations 

are presented in primitive variables, while conservation form is used for the nonlin­

ear Euler equations. Numerical examples are also included to support the validity of 

the proposed equations. Specifically, the equations are tested for a combination of 

acoustic, vorticity and entropy waves. In each example, high-accuracy solutions are 

obtained, indicating that the PML conditions are effective in minimizing boundary 

reflections. 
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CHAPTER I 

INTRODUCTION 

The rise of computers in the mid-twentieth century revolutionized the way the world 

was run, and the field of mathematics was no exception to the changes. With the 

increased capabilities of computers, it soon became possible for mathematicians to 

solve problems that previously remained unsolvable, and a new branch of mathemat­

ics was born. In computational mathematics, the focus shifted toward developing 

new ways for the computer to accommodate mathematical problems. Because math­

ematics is relevant in practically every scientific discipline, most disciplines have a 

branch of study devoted exclusively to solving problems computationally. Among 

these are Computational Chemistry, Computational Biology, Computational Elec­

tromagnetics, Computational Fluid Dynamics, and Computational Aeroacoustics. 

Many fields in which a system can be studied mathematically can also be stud­

ied computationally. Often, the approach is to find the governing equations of the 

physical system, then find numerical solutions to the given equations using compu­

tational methods. For example, in Computational Electromagnetics (CEM), which 

uses numerical methods to solve problems dealing with electromagnetic fields and 

electromagnetic wave propagation, the solutions to Maxwell's equations are sought 

numerically. Computational Fluid Dynamics (CFD) uses numerical methods to solve 

problems involving fluid flows, and in general, solutions to the Navier-Stokes or Euler 

equations are found. Closely related to CFD is Computational Aeroacoustics (CAA), 

which focuses not only on the flow fields, but also on the related acoustic fields gen­

erated by and interacting with such flows. Again, solutions to the Navier-Stokes or 

Euler equations are found numerically. 

In each of these disciplines, a proper treatment at the boundaries becomes quite 

relevant to maintaining the accuracy of solutions. First, a treatment at physical 

boundaries must be designed to mimic actual physical properties on that boundary, 

as is done, for example, with the no-slip condition [1]. Secondly, a treatment of 

numerical (nonphysical) boundaries is equally important to maintaining accurate 

solutions that simulate the actual behavior of the system in the physical world. 

For example, when an open or infinite physical domain is truncated for numerical 

This dissertation follows the style of the AIAA Journal. 
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simulation, the solutions should accurately represent the physical behavior as if no 

outside surrounding boundaries are present. Without any condition on the boundary, 

waves would be reflected back into the domain. Therefore, boundary conditions are 

imposed at the numerical boundary that eliminate any spurious reflections off these 

numerical boundaries. Such conditions are therefore referred to as nonreflecting 

boundary conditions. 

The importance of boundary conditions in how they affect interior solutions, 

in particular for nonphysical boundaries, has led to a concentrated study on the 

boundary conditions themselves. Many types of nonreflecting boundary conditions 

have been developed, including characteristic boundary conditions [2-7], asymptotic 

boundary conditions [8-13], absorbing zone boundary conditions [14-23], and more 

recently, the Perfectly Matched Layer [24-44], which will be the focus of this work. 

Characteristic boundary conditions are based on the characteristics of the gov­

erning equations [45]. At each boundary, conditions are then given to accommodate 

either incoming or outgoing waves by separating positive and negative eigenvalues in 

the eigenvalue diagonal matrix of the characteristic decomposition of the Jacobian 

matrices of the governing equations. This type of boundary condition is the most 

commonly used nonreflecting boundary condition for Euler's equations [30]. Early 

efforts in the application of characteristic boundary conditions can be found in the 

works of Thompson [2] and Giles [3] in the late 1980's and early 1990's. A significant 

advancement came from Pionsot and Lele in 1992 [4], in which the work in [2] was 

generalized for use with the Navier-Stokes equations. Further examples are found 

in [5-7]. Characteristic boundary conditions work particularly well when waves exit 

the domain perpendicular to the boundary. Because the conditions are not exact, 

however, the method can introduce reflection errors [45]. Specifically, the reflection 

errors for the outgoing acoustic and vorticity waves, respectively, were found in [46] 

to be 

1 — cos (Angle of Incidence) 
1 — cos(Angle of Reflection) 

sin(Angle of Incidence) . 

orticity j _ cos(Angle of Reflection) 

When the angle of incidence is zero, the reflection error is also zero for both acoustic 

and vorticity waves, and the method is quite accurate. However, an increase in the 

angle of incidence will cause an increase in the reflection errors, which ultimately 
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results in a less accurate solution. Therefore, this type of boundary condition is 

most effective when the mean flow occurs at an angle close to zero or at least small 

enough to maintain a desired level of accuracy. This restriction on possible mean 

flow directions is the major limitation of the characteristic boundary condition. 

Asymptotic boundary conditions, as given, for example, in [8-13], are formed 

based on the asymptotic solutions of the governing equations. Numerical boundaries 

are assumed to be far enough from the source that asymptotic solutions are valid 

in the region near the boundary. Clearly, one downfall to this method is that the 

computational domain must be kept large enough to maintain the validity of such 

an assumption. Often times, this requires the use of a domain that is larger than 

necessary, resulting in decreased efficiency. 

With the absorbing zone technique [14-23], the domain is extended to include 

an additional surrounding zone, which is designed to decrease the amplitudes of the 

outgoing waves. In this way, boundary reflections will be minimized. Absorbing 

zones are alternately referred to as "sponge layers," "exit zones," or "buffer zones" 

[45]. Various methods of implementation exist for reducing the amplitudes of the 

outgoing waves. Among them are grid stretching [14-15], numerical filtering [15-17], 

and artificial dissipation and damping [18-20]. In [21], Bodony has recently given 

a generalization of Israeli and Orszag's work on dissipation and damping from [18]. 

Varying the convective mean velocity in the buffer zone has also been used as a means 

to minimize reflections [22-23], These methods can also be used in conjunction with 

one another for improved performance. With absorbing zones, however, solutions 

must be modified very gradually as the waves exit through the absorbing region. 

Quick changes to the solutions could result in reflections occurring within the zone 

itself [45]. 

The Perfectly Matched Layer (PML) could easily be considered an extension of 

the absorbing zone technique. With PML, the numerical boundary is surrounded 

by a nonphysical medium that is designed to absorb the outgoing waves exponen­

tially in time before they have a chance to reflect. Different from the absorbing 

zone techniques, however, the PML equations reduce to the governing equations on 

the interface between the interior and PML domains and are transparent to linear 

waves. They are therefore considered exact in a theoretical sense. Hence, they are 

appropriately termed "perfectly matched." Because of this, the width of the Per­

fectly Matched Layer is generally much smaller in comparison to absorbing zones 
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because a longer absorbing zone is often needed to fully damp the outgoing waves 

without causing internal reflections [45]. Due to the perfect matching, PML is the 

first method that can be considered reflectionless in theory. Clearly, errors still arise 

due to discretizations in time and space. However, because of this improved accuracy 

at the boundary, smaller overall error is generally observed. Waves are also absorbed 

independent of frequency and angle of incidence, an advantage over characteristic 

boundary conditions [29]. A more detailed explanation of the PML method is given 

in Section II. 1. 

The goal of this paper is to extend upon the previous capabilities of the Per­

fectly Matched Layer as an absorbing boundary condition, with specific application 

to Aeroacoustics problems. Up to this time, the majority of work done involving 

PML in the field of Aeroacoustics has focused on situations where the mean flow 

is perpendicular to a boundary, as has been done, for example, in [25-33]. While 

such work is necessary and useful, it is also important to accommodate the more 

general case where background flow strikes the boundary at an arbitrary angle. Such 

a capability is useful, for example, for an airfoil at a nonzero angle of attack. Chap­

ter III presents the PML boundary conditions designed for the case of an oblique 

background flow. Although several other approaches have arisen in the literature to 

handle the case involving oblique mean flow, none has been altogether satisfactory. 

A brief survey of such proposed methods is included in Section II.2.2 to highlight the 

differences with the approach given in the present work. Of specific importance in 

the present extension of the PML method is the technique of deriving horizontal and 

vertical side layers independently. This allows the stability requirements for both 

horizontal and vertical layers to be met simultaneously. Also of importance is the 

formation of dynamically stable corner layers, which are necessary for the success of 

the PML condition when an oblique mean flow is present. Another contribution to 

current PML formulations in acoustics is the derivation of a PML boundary condition 

in a cylindrical coordinate system. Most CAA and CFD references on PML include 

only the construction of PML equations for use in a Cartesian coordinate system. In 

some physical situations, however, the use of an alternative coordinate system can 

provide major simplifications to the study of the problem at hand. The cylindrical 

coordinate system is a commonly used alternative to Cartesian coordinates. Such a 

system is useful, for example, when dealing with radially symmetric problems. For 

this reason, the derivation of PML equations in cylindrical coordinates for use with 
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both primitive and conservation variables is given in Chapter IV. Similar to the 

PML in Cartesian coordinates, the difficulty in the formation of the cylindrical PML 

equations lies in maintaining stable solutions for all types of waves. The method pre­

sented in this work ensures that the stability requirement on the boundary condition 

is met. Further, the cylindrical PML will be designed to handle the more general 

case of mean flow in an arbitrary direction. This generalization is carried out by 

using a rotation of the original coordinate system. 
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CHAPTER II 

THE PERFECTLY MATCHED LAYER (PML) METHOD 

II. 1 INTRODUCTION TO PERFECTLY MATCHED LAYERS 

As mentioned above, when dealing with physical problems that have open domains, 

the need is great for highly accurate nonrefiecting boundary conditions, particularly 

in the field of acoustics. Since reflection errors introduced by the truncation of open 

domains can compromise the accuracy of solutions in the interior, it is vital that 

reflections at the boundary be eliminated or at least reduced to within an accept­

able level of error. Further, as the accuracy of spatial and temporal discretizations 

continues to improve, it is important that the accuracy of conditions on the bound­

aries increase accordingly. That in mind, the Perfectly Matched Layer (PML) has 

been shown effective in eliminating boundary reflections at high levels of accuracy. 

Therefore, such a method will be the focus of this work as it relates to problems in 

the field of Aeroacoustics. 

The Perfectly Matched Layer was initially proposed by Berenger as an absorbing 

boundary condition for electromagnetic waves supported by the Maxwell equations 

[24]. Hu extended the method to the field of acoustics by constructing a PML 

boundary condition for use with the Euler equations [29-30]. The concept behind 

the Perfectly Matched Layer method is relatively simple. As is shown in Figure 1, 

truncated domains are extended on the boundaries to include an artificial, nonphys-

ical domain or "layer" that absorbs incoming waves before they reach the numerical 

boundary. In essence, waves are damped before they have a chance to be reflected. 

This is done by introducing new equations in the so-called "perfectly matched layer" 

or PML region. Such equations will be designed to decrease the amplitude of in­

coming waves exponentially in time, while matching interior governing equations on 

the interface between interior and PML domains. Because of the perfect matching 

on the interface, PML boundary conditions are considered theoretically reflectionless 

for linear waves [24, 29-30]. 

The derivation of the PML equations involves little more than a complex change 

of variable applied on the spatial variable in the frequency domain [36, 38-39, 41]. 

For example, to design an absorbing layer for truncation in the x-direction, the PML 

change of variable will take the form 



FIG. 1: Diagrams of PML configurations for rectangular and circular domains. 
Dashed lines indicate the location of the interface between the interior and PML 
domains. 



x + 
% fx 

— (rxdx (3) 
CO Jxo 

where ax, the absorption coefficient, is a positive function of x only in the PML region 

and zero in the interior region. Such a transformation is applied in the frequency 

domain, and the resulting equations emerge upon returning to the time domain. As 

we will see in the next section, however, care must be taken before applying the 

PML change of variable in order to ensure the numerical stability of the equations. 

The system will be numerically stable provided there is consistency in phase and 

group velocities at the time the change of variable is applied [30]. A more thorough 

examination of this issue is discussed in the following section. 

II.2 THE IMPORTANCE OF DISPERSION RELATIONS 

II.2.1 ONE-DIMENSIONAL MEAN FLOW 

As mentioned previously, to ensure numerical stability, certain conditions must be 

met before the PML change of variable can be applied. Specifically, there must 

be consistency in the phase and group velocities. To understand this more clearly, 

consider the two-dimensional linearized Euler equations in Cartesian coordinates for 

the case of mean flow in the ^-direction: 

du du du 
dt dx dy 

0, (4) 

where 

u = 

(p) 
u 

V 

[p) 

, A = 

( U0 1 0 0 N 

0 U0 0 1 

0 0 U0 0 

y 0 1 0 U0 j 

, B = 

( 0 0 1 0 \ 

0 0 0 0 

0 0 0 1 

^ 0 0 1 0 ) 

(5) 

and p is density, u and v are velocity components, p is the pressure, and U0 is the 

mean flow Mach number in the x-direction. The dispersion relations of linear waves 

are found to be 

(w - U0kx)
2 - kx ky

2 = 0 (6) 

for acoustic waves and 
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w - U0kx = 0 (7) 

for vorticity and entropy waves. Holding ky constant, we can plot both of these curves 

for frequency u as a function of wavenumber kx, as shown in Figure 2. Since phase 

acoustic 

vorticity 
^s" entropy 

k 
X 

acoustic 

FIG. 2: Dispersion relations for mean flow in the x-direction only. Bold lines indicate 
inconsistent phase and group velocities. 

velocity is the ratio of frequency to wavenumber (vp = j*-), quadrant numbers will 

determine the sign of phase velocity, with quadrants I and III representing positive 

phase velocity, and quadrants II and IV representing negative phase velocity. Alter­

natively, since group velocity is the change in frequency with respect to the change 

in wavenumber (vg = Jp) , the sign of group velocity will be determined by the sign 

of the slope at a given point on the curve. The problem arises in quadrants II and 

IV, where portions of the curves for the acoustic waves have positive slope, i.e., pos­

itive group velocity, but reside in quadrants where phase velocity is negative. If this 

inconsistency remains uncorrected when the PML change of variable is applied, the 

resulting PML equations will produce exponentially growing solutions, rather than 

exponentially decaying ones. To see this more clearly, assume the wave solution is of 

the form 
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u(x,t) = Ae^**'^ (8) 

where A is constant. Upon making the PML substitution 

i 
x —> x H — / oxdx (9) 

Jxn 

the resulting solution is 

— \ P Jxn 
dx 

In the first exponential term, e Jxo , the sign of ^ will be determined by the 

sign of phase velocity, since the two are reciprocals of one another. Similarly, the sign 

of the integral / ax dx will be determined by the sign of the group velocity in the 
Jxo 

following way: a positive group velocity indicates a right-traveling wave and thus an 

increase of x in the positive direction. Since ax is a positive function, this will also 

correspond to a positive integral. Conversely, a negative group velocity will result 

in a decrease in x and ultimately in a negative integral. Therefore, as long as the 

signs of phase and group velocity are the same, the exponential term will be raised 

to a negative power and thus will be exponentially decreasing with the increase or 

decrease in x. However, if the signs of phase and group velocity are opposite, the 

exponent will be positive, and the term will grow exponentially with the change in x, 

causing the solution to grow exponentially as well. In such a case, however, a single 

space-time transformation, namely, 

t-+t + pxx (11) 

is effective in eliminating the inconsistency, where 

^ = T%s (12) 

The factor (3X is related to the locations of zero group velocity. After applying this 

transformation, the updated dispersion relations are given by 

( r=W) ̂  '(1 - uX ~ k«= ° (13) 

for acoustic waves and 
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1 
1_USJ

u-Uokx = 0 (14) 

for vorticity and entropy waves, and the signs of phase and group velocities become 

aligned, as shown in Figure 3. The PML change of variable can then be readily 

applied in the frequency domain without risk of instability. 

acoustic 

vorticity 
entropy 

acoustic 

FIG. 3: Dispersion relations after the space-time transformation. 

II.2.2 TWO-DIMENSIONAL MEAN FLOW 

In the case for mean flow in two dimensions, or oblique mean flow, correcting the 

inconsistencies in phase and group velocity is not as simple as applying a single 

space-time transformation, as was the case for flow in only one direction. To see this 

more clearly, consider again the linearized Euler equations, this time with nonzero 

mean flow in both the x- and y-directions. The equations remain the same as those 

given in (4)-(5), with only a modification to the B matrix, now given by 

B = 

/ V0 0 1 0 \ 

0 VQ 0 0 

0 0 V0 1 

V o o i v0 j 

(15) 
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where VQ is the mean flow Mach number in the y-direction. This gives rise to a 

change in the dispersion relations, as terms involving Vo will now appear. In this 

case, the dispersion relations are given by 

for acoustic waves and 

(u - U0kx - V0ky)
2 - kx

2 -ky
2 = 0 

ui - U0kx - V0kv = 0 

(16) 

(17) 

for vorticity and entropy waves. Again, holding ky constant, we can plot frequency ui 

versus wavenumber kx, as shown in Figure 4. As is seen in the figure, the nonzero VQ 

acoustic 

vorticity 
entropy 

acoustic 

FIG. 4: Dispersion relations for mean flow in both the x- and y-directions. Bold lines 
indicate inconsistent phase and group velocities. 

has caused a vertical shift in the curves. Again, there is inconsistency in the phase 

and group velocities for the acoustic waves, but now, in addition, an inconsistency is 

present for vorticity and entropy waves, indicated by the portion of the straight line 

that now passes through the second quadrant. In this case, no transformation has 

been found to remove both sets of inconsistencies. 

Attempts have been made to handle the case of two-dimensional mean flow, but 

none has been found completely satisfactory. For example, in [42], Appelo, Hagstrom, 
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and Kreiss present the PML equations for waves entering the PML domain at an 

oblique angle. However, the authors fail to provide a treatment for the corner layers. 

Diaz and Joly also address the issue of oblique mean flow but make efforts only in 

the analysis of acoustic waves [43]. Nataf, in [44], uses Smith-factorizations to form 

the PML equations for any direction of mean flow, but this approach has yet to be 

shown extendable to the nonlinear equations. As will be seen with the equations and 

examples below, the approach given in the present work is complete in its handling 

of acoustic, vorticity, and entropy waves for linear and nonlinear equations through 

a proper treatment of both side and corner layers. 

Specifically, the PML equations in Cartesian coordinates will be derived as fol­

lows: horizontal and vertical side layers will be formed independently of one another. 

Then for each type of side layer, a moving-frame change of variables can be used 

to effectively eliminate the mean flow in the transverse direction, which essentially 

reduces the mean flow down to one dimension. Because this change of reference 

does not affect the location of the Euler-PML interface, the PML equations for one-

dimensional mean flow are then valid as the side layer equations in the given frame 

of reference. The final equations emerge upon return to the original frame of ref­

erence. Because the moving-frame changes of variables used for the horizontal and 

vertical layers cannot be applied simultaneously, the corner layer equations will be 

constructed as a linear combination of the horizontal and vertical side layers. Because 

such a construction does not result in equations that are perfectly matched to the 

governing equations, the stability of the corner layer equations must be artificially 

enforced. In our case, this is done by appending additional terms to the unmatched 

corner layer equations. The PML region then consists of perfectly matched side 

layers and dynamically stable corner layers. 

The PML for cylindrical coordinates will also be given in the present study. Al­

though scarcely provided in the PML literature, they are important in many practical 

computations. The difficulty in formulating the stable PML for cylindrical coordi­

nates in the presence of an oblique mean flow also stems from inconsistencies in 

phase and group velocities. However, just as was possible in the Cartesian formu­

lation, there is a way to work around the stability problems. This time a different 

approach is taken: the PML are first derived for horizontal mean flow only. In this 

situation, stability is easily achieved with the use of a proper space-time transforma­

tion, as was outlined in Section II.2.1. Next, to extend the capability of the PML to 
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include an oblique mean flow, a rotation of coordinates is employed to align the hor­

izontal axis with the direction of mean flow. Because of the radial symmetry of the 

coordinate system, a rotation does not affect the location of the Euler-PML interface. 

Therefore, in the new rotated coordinate system, the PML are derived identically as 

in the case of horizontal mean flow, since under such a rotation, the mean flow occurs 

in only one dimension of the new coordinate system. Finally, upon returning to the 

original coordinate system, the cylindrical PML for an oblique mean flow emerge. In 

this case, there is no need to form separate equations for any particular region of the 

PML domain, as was done for the corner layers above. Therefore, with no artificially 

constructed equations, the entire layer will be perfectly matched across the interface. 
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CHAPTER III 

PML IN CARTESIAN COORDINATES FOR OBLIQUE MEAN FLOW 

III.l LINEARIZED EULER EQUATIONS 

III. 1.1 PROPOSED PML EQUATIONS 

Our first effort will be in deriving PML equations for the linearized Euler equations 

in Cartesian coordinates, given by 

du du du _ 
dt dx dy 

(18) 

where 

u = 

t P\ 
u 

V 

\p J 

( UQ 1 0 0 \ 

0 U0 0 1 

0 0 U0 0 

V 0 1 0 U0 j 

, B = 

( V0 0 1 0 \ 

0 V0 0 0 

0 0 V0 1 

î  0 0 1 V0 j 

(19) 

and p is density, u and v are velocity components, p is the pressure, and UQ and 

V0 are Mach numbers in the x- and y-directions, respectively. Because flow is two-

dimensional, x- and y-layers will be formed independently, and stable corner layers 

will subsequently be constructed. In this way, for the x- and y-layers, a moving-

frame change of variables can be used to simulate no flow in the transverse direction, 

making it again possible to remove the inconsistencies with a single space-time trans­

formation. Once phase and group velocities are consistent, we can proceed with the 

PML method, applying the PML changes of variable 

rx 

Jxn 
x + — I <rxdx, y —> y + 

UJ Jxo 

rv 
/ crydy 

Jva 
UJ Jyo 

(20) 

to form the x- and y-layer PML equations, respectively, where ax and ay are positive 

functions of x and y, respectively. Consequently, in the x-layer, ay = 0, and in the 

y-layer, ax = 0. This leaves only a needed treatment for the corner layer, where both 

ax and ay are nonzero. As we will see in this section and Section III.2, a combination 

of the equations for the x- and y-layers will be sufficient. Figure 5 shows a schematic 

of the proposed x-, y-, and corner layers. 
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FIG. 5: Proposed x-, y-, and corner layers. 

We begin by deriving the equations for the vertical :r-layers. First, a moving-frame 

change of variables will be employed to simulate no vertical flow, namely, 

x = x 

y = y-V0t 

i = t 

(21) 

(22) 

(23) 

which gives 
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d_ _ d_ 
dx dx 

— - — 
dy dy 

The equation (18) now becomes 

or 

where 

du chi 5u c?u 
di °dy dx dy 

du . du „ <9u . . 

W + A ^ + B oW = ° (28) 

Bo = B - Vol (29) 

and I is the four-dimensional identity matrix. The equation is now equivalent to 

those given in (4)-(5). Therefore, the stable PML equations for (28) will be identical 

to those for (4)-(5), which are given in [30] as 

du A du _ du _ <9qi „ A „ . . 
^ j + A — + B 0 — + a x B 0 ^ + (Txu + (rx/5 :cAu-0 30 
dt dx dy dy 

^ - u (31) 
dt v ' 

where again (5X is given by 

* " T^us ( 3 2> 
and terms involving cry are omitted since o-y = 0 in the x-layer. The variable qi is an 

auxiliary variable representing the antiderivative of u. Since the location of the ver­

tical Euler-PML interface remains unchanged after the moving-frame transformation 

is applied, equations (30)-(31) give valid x-layer equations. After transforming back 

to the original coordinates, x, y, and t, the resulting stable PML x-layer equations 

emerge: 
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du Adu ^du _ dcu n A „ . . 
— + A— + B— + axB0~ + axu + ax(3xAu = 0 (33) 
at arc ay ay 

£ + *£-» (34) 

A similar approach is used for the y-layer equations. Specifically, the moving-frame 

change of variables 

x — x — Uot (35) 

V = V (36) 

i = t (37) 

leads to 

du .du _du . da2 „ r* ~ , s 

a + kTx + % + a ^ + °«" + ^ B u = ° ^ 

•aT + ^ &T = u ( 3 9 ) 

with 

Ao = A - U0\ (40) 

and 

A = nW (41) 

where I is the identity matrix, and q2 is another auxiliary variable. This leaves only 

the need for corner layer equations, where both ox and ay are nonzero. By combining 

terms from the x- and y-layer equations, we propose a set of equations for the corner 

layer: 

9u , 9 u n 9 u A aq2 _ <9qi , , n „ _ . , 
-^ + A— + B— + ayA0-^- + axB0-^- + (ax + ay)u + axpxAu + ayPyBu = 0 (42) 

^ + V 0 ^ + . „ q i = u (43) 
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u (44) 

An important characteristic of these equations is that the x- or y-layer equations can 

be recovered automatically by setting either ay = 0 or ax = 0, respectively. It is also 

important to note that since the corner layer equations cannot be derived by applying 

the two moving frames (21)-(23) and (35)-(37) simultaneously, the interface between 

side and corner layers are not perfectly matched. Consequently, the terms unique to 

the corner equations, cryqi and cxq2 in equations (43) and (44), respectively, have 

been added for stability. A further analysis of stability is discussed in the following 

section. 

Given equations (42)-(44), specific forms for ax and ay remain to be chosen. For 

the purpose of our examples, the absorption coefficient for x will take on the form 

cr-r- = 0Y, 
x — XQ 

D 
(45) 

where xo is the location of the Euler-PML interface, D is the PML width, and <7max 

and a are extra parameters, the values of which will be chosen according to the 

example being considered. A similar expression will be used for ay. 

III. 1.2 THE STABILITY OF CORNER LAYERS 

Because corner layers were formed by combining side layers and are therefore not 

deemed perfectly matched, it is important to analyze the stability of the equations. 

To do so, we will substitute a solution of the form 

q i Qi 

\ q 2 / 

i(kxx+kyy—uit) (46) 

or more compactly 

U _ JJei(kxx+kyy-ut) (47) 

into the corner equations (42)-(44), where U is assumed constant. This yields the 

system 
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dU 
dt 

( A 0 (jyAo \ 

0 0 0 

V 0 0 U0\ J 

dV 
dx 

(B 

0 

Vo 

<rxBQ 0 ^ 

HI 0 

0 0 j 

au 
dy 

' (ax + ay)\ + axpxA + ayPyB 0 0 N 

0 ay\ 0 

V 0 0 ax\ ) 

where I is the four-dimensional identity matrix. Clearly, since 

U = 0 (48) 

the system reduces to 

au 
dt 

d\J_ 
dx 

—iuj\3 

ikx\J 

-z- = ikyU 
dy 

' (kx - iax(3x)A + (ky - iay(3y)B - i(ax + ay)\ kyayB0 

0 (kyV0 - icry)\ 

v 0 0 

(49) 

(50) 

(51) 

kxPyho \ 

(kxU0 - iax)\ J 

U 

or more simply, 

= wU (52) 

QU = wU (53) 

where Q is the matrix in equation (52). Then assuming ax and oy are constant, it 

is easy to recognize (53) as an eigenvalue problem for to, for given values of kx and 

ky. If the imaginary part, Wj, of any eigenvalue is positive, the wave amplitude will 

grow exponentially in time, resulting in an unstable system. However, if every u>j is 

nonpositive, the system will be dynamically stable. Figure 6 plots the contours of 

the maximum u>i over subsonic Mach numbers 0 < Uo, Vo < 0.95 and wavenumbers 

\kx\, \ky\ < 20 for absorption coefficients fixed at ax = ay = 2. No positive u>i is 

present, which supports the proposed stability of the equations. 
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Contours of Maximum co. 

FIG. 6: Contours of maximum imaginary parts, u>i, of eigenvalues for ax — ay — 2 
over varying Mach'numbers. 

Alternatively, we can assume the values of UQ and Vb are constant and examine 

the resulting eigenvalue problem for ui over varying values of ax and ay. The result of 

such an analysis is plotted in Figure 7. Again, over the range of values \ax\, \ay\ < 5 

and \kx\, \ky\ < 20 with UQ = VQ = 0.5, all u>i are nonpositive, indicating that the 

corner equations are stable. 

It is worth mentioning that the entire range of wavenumbers |fer|, |fcj,| < oo would 

normally be considered when analyzing the nondiscretized form of the equations. 

However, in practice, for finite difference schemes, wavenumbers larger than ^ will 

not be present, in accordance with the Nyquist limit. Therefore, for our analysis, 

since axAx « 2 is a usual assumption [29], it is also reasonable to assume that 

examining wavenumbers with magnitudes less than 20 should safely accommodate 

all practical choices of Ax. It is also important to recognize that only subsonic 

Mach numbers need be considered, since boundary reflections cannot exist for mean 

flow at supersonic speeds. This is because the speed of a supersonic mean flow 
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FIG. 7: Contours of maximum imaginary parts, Wj, of eigenvalues for JJQ = Vo = 0.5 
over varying absorption coefficients. 

would overcome the speed of waves that normally propagate in the opposite direc­

tion. Therefore, since no wave can travel against the mean flow, all waves, including 

potential boundary reflections, are carried out of the domain in the direction of the 

mean flow. 

III.1.3 NUMERICAL EXAMPLES 

Acoustic, Vbrticity, and Entropy Waves 

We will test the effectiveness of our equations (42)-(44) with a set of vorticity and 

entropy waves traveling with an oblique mean flow (U0, VQ) and an acoustic wave 

traveling with the speed of sound relative to the mean flow. The physical domain 

in consideration is [—50,50] x [—50,50] with a PML of width D padding the bound­

aries. The domain is discretized by Ax = Ay = 1, and absorption coefficients are of 
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the form (45) with ametx = 2 and a — 3. The seven-point fourth-order Dispersion-

Relation-Preserving (DRP) finite difference scheme, given in [11], is used for the 

spatial discretization, and periodic boundary closure schemes are chosen for deriva­

tives in x and y. This assumed periodicity at the boundary is valid in conjunction 

with the PML method because wave amplitudes have diminished to zero by the time 

waves reach the numerical boundary. For the time advancing method, the four-stage, 

second-order Low-Dissipation and Low-Dispersion Runge Kutta (LDDRK) scheme 

from [47] is chosen. The restriction At = -j^~^Ax is also enforced for stability. The 

wave components are initialized as follows: 

o 

p = e u ' 16 + 2^ e ( ' i6 , p = e v ' « (54) 
n=l 

« = I > - y „ ) e - ( ' " 2 > ( " " ) 2 ^ " ) 2 , v = -J2(x- Xn)e-^('-^'-^ (55) 
n=l n=l 

where (xi,y{) = (25,0), (£2,2/2) = ^(25,25), and (xs,y3) = (0,25) are the starting 

locations of the vorticity and entropy pulses, and (0, 0) is the initial location of the 

acoustic pulse. Mach numbers are taken as UQ — Vo = 0.5, and the PML width is 

D = lOAx, which, in this case, is ten percent of the width of the interior domain. It 

is important to recognize, however, that the PML width is independent of the size 

of the actual domain, which means an increase in the width of the interior domain 

would not require an increase in the PML width. Therefore, with an increase in the 

size of the total domain, the percentage of the domain allocated to the PML region 

would actually decrease. 

Figure 8 shows the contour plots of density at times t = 0,70,100, and 200. As is 

shown, after part of the acoustic pulse exits the upper corner of the domain, two of 

the entropy pulses exit the domain through the side layers, while the third exits out 

the corner layer. Reflection errors generated from this third pulse are expected to be 

greater than those of the other two pulses, as equations are not perfectly matched 

at the interface between side and corner layers. However, the magnitude of the 

error still remains acceptably small when compared with a reference solution. The 

reference solution in this case is found by computing solutions on the larger domain 

[-100,100] x [-100,100]. 

Solutions of density at the single point (45,45) are plotted for PML and reference 

solutions as a function of time in the top part of Figure 9. Very little discrepancy 
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-60 -40 

FIG. 8: Contours of density at times t = 0, 70, 100 and 200, showing three initial 
entropy waves and an initial acoustic wave located at the center, each of which exits 
the domain with little reflection. The mean flow Mach numbers are UQ = VQ = 0.5; 
PML width is D = 10Ax; and a = 3. 

is seen between the PML and reference solutions, indicating effective absorption of 

outgoing waves. The bottom of Figure 9 shows that the difference between the 

two solutions peaks at about 10~3. Figure 10 plots the reflection coefficients for 

density between the two sets of solutions along the points x = ±45, y = ±45, for 

varying values of absorption coefficient parameter a and PML width D. Reflection 

coefficients are calculated as the maximum difference between the PML and reference 

solutions normalized by the maximum amplitude of the outgoing wave. In this case, 

the orders of magnitude for the reflection coefficients are between 10 - 3 and 10 -2. As 

the PML width increases from D — lOAx to D = 20Ax, a decrease in reflection 
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FIG. 9: Top: PML and reference solutions of density at the point (45,45) as a 
function of time. Bottom: Difference between the two solutions versus time at the 
same point. 
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Reflection Coefficients for Density 
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FIG. 10: Reflection coefficients versus time for density p along x — ±45 and y — ±45 
for PML widths D = lOAx and D = 20Ax and absorption coefficient parameters 
a = 2 and a = 3. 

error is also noted. The effect of changing the a parameter is noticeable but not 

significant. 

The code for this and other numerical examples has been developed in C±± 

specifically for this work. For this example and the first example from Section III.2.3, 

the code was compiled and run using Microsoft Visual C++. For the remaining 

examples, the code was compiled with GNU C++ and run on Linux. Plots were 

created using MATLAB. 

D=10Ax, a=2 
D=10Ax, a=3 
D=20Ax, a=2 
D=20Ax, a=3 
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III.2 NONLINEAR EULER EQUATIONS 

III.2.1 DERIVATION OF P M L EQUATIONS 

A similar derivation will ensue for the nonlinear Euler equations. Side layers will be 

formed first, and stable corner layers constructed subsequently. The nonlinear Euler 

equations are given by 

du 
dt dx 

5Fi(u) aF2(u) 

dy 
0 (56) 

where 

u = 

and 

pu 

pv 

V Pe J 

h 

, Fi(u) = 

I pu \ 

pu2 + p 

puv 

\ phu J 

, F2(u) 

pv 

puv 

pv2 + p 

phv 

(57) 

e + - , p = ( 7 - l ) p ( e 
u2 + v2 

(58) 

where p is the density, u and v are velocity components, e is the energy, p is the 

pressure, and 7 is the specific heat ratio. Here, the conservation form of the equations 

is chosen, as is often done for the nonlinear case. A constant background flow of 

(Uo,Vo) is assumed. 

We begin the derivation of the z-layer equations somewhat differently than in the 

linearized case, by first splitting the solution into two parts as follows 

u = u + u (59) 

Here, u' is the fluctuating part of the variable, and u is the pseudo mean flow, as 

is shown in Figure 11. The part u must be time-independent and must therefore 

satisfy the steady Euler equations 

dFx(u) | c?F2(u) = Q (60) 
dx dy 

Note, however, that u does not have to be the actual mean flow, which is sometimes 

unknown. The part u' is time-dependent and will be the focus of our PML equations, 

since it is the part we seek to damp exponentially in time. By focusing only on the 
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FIG. 11: Schematic of u components. The time-independent pseudo mean flow is 
denoted by u, and u' represents the time-dependent perturbation. 

fluctuating part, we decrease computational effort by eliminating computation on the 

total variable u, which can be significantly larger than u'. After such a partitioning, 

the equations become 

du' | d{¥x - FQ | d(F2 - F2) = Q 

dt dx dy 
(61) 

where the shorthand notations Fi = Fi(u), Fi = Fi(u), F 2 = F2(u), F 2 = F2(u) 

have been used. We can now continue our effort in deriving the :r-layer equations by 

again introducing the moving-frame change of variables 

x — x 

y = y-V0t 

t = t 

(62) 

(63) 

(64) 

which gives 



29 

^ + - ^ — + — - a t = 0 (65) 

At this point the equation is equivalent to that with no vertical flow, and again we 

can employ previously established results, using the PML equations given in [33]: 

da' d(F1 - FO d(F2 - F 2 - VQu') „ , „ - . n 

a T + dx + dy + axqi + clMFl ~F l ) = ° (66) 

1?T + ^ ( F g T F l ) + a.Q! + ax/?x(F! - FO = 0 (67) 

where 

e, - ^ (68) 

and qi is an auxiliary variable. Here, because we are dealing with only the x-layer 

in two dimensions, terms involving ay and terms involving the third dimension have 

been dropped from the equations given in [33]. After rewriting these equations in 

the original coordinates for space and time, the z-layer equations emerge: 

^ + «2^)+22^)+ f f r t J + e A ( F l_p l )_0 (69) 

W + 8(Fl9x f ' ' + r ' | + '•* + aMF> ~ f l ) = ° (T0) 

In a similar manner, after using the moving frame 

x = x-U0t (71) 

y = v (72) 

i = t (73) 

the y-layer equations are found to be 

du' ^ F j - F Q <9(F2-F2) 

• ^ + g~x + Q-y + * » * + aMF2 ~ F s ) - ° ( 7 4 ) 

l£ + u^ + ̂ ^ + "** + ̂ ^ " F2) = ° (75) 
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where 

A, 
Va (76) 

l-Vi 
and q2 is another auxiliary variable. 

The construction of corner layer equations again reduces to combining terms from 

the x- and y-layer equations, then introducing additional terms for stability. Using 

such a method, the corner layer equations are formed as 

0u ' , d ( F i - F i ) d ( F 2 - F 2 ) 

dt + dx dy 
+ erxqi + (Tyq2 + (TxPx{Ti - F j ) + cry/3y(F2 - F 2 ) 

+axay(u - u) = 0 (77) 

aqi , a(F2 - FX) , . . dqi 

dt + dx " dy 

9q2 , 5 ( F 2 - F 2 ) 

+ Vvir" + (<** + ffw)Qi + CTx/?x(Fi - F x ) = 0 

dt dx dy 
+ iPx + 0j,)q2 + ^ /?y(F 2 - F 2 ) = 0 

(78) 

(79) 

In this case, the terms axay(u — u) , ayqi, and crxq2 have been added to equations 

(77), (78), and (79), respectively, to maintain the stability of the system. Again, upon 

setting ay or ax to zero, either the x- or y-layer equations can be quickly recovered. 

The next section tests the stability of the proposed corner equations. 

III.2.2 S T A B I L I T Y A N A L Y S I S F O R C O R N E R L A Y E R S 

As was done for the linear case, the stability of the corner layer equations for the 

nonlinear case will be tested by substituting 

( « \ 

qi 

/ u \ 

= e 
i(kxx+kyy—ut) 

qi (80) 

\ q2 J \ q2 J 

into the proposed equations (77)-(79), then analyzing the resulting eigenvalue prob­

lem for co. In this case, however, because there is no straightforward way to analyze 

the stability of nonlinear equations, we will look at a linearized form of the equations 

by assuming 

F i - F i = Au', F 2 - F 2 = Bu' (81) 
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where 

A = 

( UQ \ 0 0 \ 

0 U0 0 1 

0 0 U0 0 

V 0 1 0 t/0 / 

B = 

( VQ 0 1 0 \ 

0 V0 0 0 

0 0 V0 1 

V o o i y 0 / 

^ + ^ + B ^ + (ax + ay)q2 + ay/3yBu' = 0 

(82) 

A linearized form of equations (77)-(79) is then given by 

Q\x' Q\\' Q\x' 
-rrr + A — + B — - + axqx + avq2 + ox(3xAu' + aypyBu' + axcryu' = 0 (83) 

(84) 

(85) 

At this point, we can substitute the assumed wave form into the equations to analyze 

the stability. Again using the more compact notation 

TJ _ YJei(kxx+kvy-ut) (86) 

and remembering that 

we arrive at the system 

/ (kx-iax/3x)A + (ky-iayPy)B - \axa. 

V 
(kx-iaxPx)A 

(ky-iayPy)B 

dt 
dU 
dx 
dU 
dy 

iaxay\ 

—iu\5 

ikx\J 

iky\J 

—%ax\ 

(kyV0~i<7x-iay)\ 

0 

—iav\ 

0 

{kxUQ-i<Jx-iay)\ J 

(87) 

(88) 

(89) 

or 

wU 

QU = wU 

U 

(90) 

(91) 
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where Q is the matrix in (90), and I is the four-dimensional identity matrix. Equation 

(91) is then our resulting eigenvalue problem for u. If the imaginary part, Ui, of the 

eigenvalue is nonpositive for every eigenvalue, then the equations will be dynamically 

stable. 

The first effort in the analysis is to consider ax and ay as constants and examine 

the eigenvalues for velocities over the range 0 < Uo, VQ < 0.95. Figure 12 plots the 

contours of the maximum u^ for ax — ay = 2 over wavenumbers |fcx|, |fcj,| < 20. No 

positive uji is found, suggesting the corner equations are stable. The second effort 

Contours of Maximum a. 
i 

FIG. 12: Contours of maximum imaginary parts, ut, of eigenvalues for ax = ay = 2 
over varying velocities. 

is to consider UQ and V0 as constants and examine the eigenvalues for absorption 

coefficients in the range \ax\, \ay\ < 5. Figure 13 plots the contours of the resulting 

maximum uii for UQ = Vo = 0.5 over wavenumbers \kx\, \ky\ < 20. Again no positive 

Ui is found, which further supports the assertion that the corner layer equations are 

stable. 
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Contours of Maximum co. 

e 2.5h 

FIG. 13: Contours of maximum imaginary parts, a>j, of eigenvalues for UQ — V$ = 0.5 
over varying absorption coefficients. 

III.2.3 NUMERICAL EXAMPLES 

Isentropic Vortex 

We will test the nonlinear PML equations for an exact solution of the nonlinear Euler 

equations, a convecting vortex of the form 

( P(x,t) ^ 

v(x,<) 

V P ( X > * ) J 

( 0 \ 

V o J 

+ 

( Pr{r) \ 

—ur(r) sin 9 

ur(r) cos 9 

V Pr(r) J 

(92) 

where r = J(x — Uot)2 + (y — V^t)2, and for a given ur{r) and pr(r), the pressure 

pr(r) is given by 

- p r ( r ) = Pr(r) — (93) 
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This solution to the nonlinear Euler equations advects with constant velocity ([/0, Vo). 

For this example, we will assume a velocity distribution of the form 

ur(r) = ^ r e ^ 1 - ^ (94) 

where U'max is the maximum velocity of ur(r) at r = b. For isentropic flow, we enforce 

the relationship 

Vr = 'Pi (95) 
7 

which leads to the following density and pressure distributions: 

/ 1 , r 2 \ 1 / ( 7 - l ) 
Pr{r)=(l--{1-l)U'^e1-^) (96) 

1 / 1 , r 2 \ 7/(7-1) 
Mr) = - ( l - 5 ( 7 - l ) ^ 1 - * ) (97) 

Constant background velocity is taken to be (Uo,Vo) = (0.5,0.5), and in the above 

distributions, U'max = 0.25, b = 0.2, and 7 = 1.4. The PML width is D = lOAar, 

and the entire domain [—1.2,1.2] x [—1.2,1.2] is discretized by Ax = Ay = 0.02. 

Again the seven-point, fourth-order DRP scheme is used for spatial discretizations 

with periodic boundary closure schemes for derivatives in x and y. The four-stage 

LDDRK scheme is again used for time advancing, and the time step is restricted to 

At = Y^AX for stability. The PML absorpt ion coefficients, erx and ay, take the 

form of (45) with <rmax = 20 and a = 4. In the PML region, grid stretching with 
I - I 2 I - I 2 

stretch factors a(x) = 1 + 2 F-̂ fH and a(y) = 1 + 2 p^ 2 - is also added in the x-

and y-directions, respectively, to increase the efficiency of the absorption [40]. Just 

as with the absorption coefficients, XQ and yo are the locations of the PML-Euler 

interface for the x- and y-layers, respectively. 

Figure 14 shows the contours of ^-velocity at times t — 0, 1.5, 2.0 and 2.5. There 

are no apparent reflections. To test the accuracy, numerical solutions were compared 

with reference solutions computed on the larger domain [—6.2,6.2] x [—6.2,6.2]. The 

top plot of Figure 15 shows the time history of the v-velocity component of the 

numerical and reference solutions at the point (0.9, 0.9). Very good agreement is seen 

between the two solutions. The bottom plot of Figure 15 is the difference between 

the numerical and reference solutions at the same point as a function of time. The 



35 

FIG. 14: Isentropic vortex: Contours of w-velocity at times t = 0,1.5,2.0, and 2.5. 

magnitude of the difference is approximately 10~3. The reflection coefficient for v-

velocity is also calculated as the maximum difference between the PML and reference 

solutions along x = ±0.9 and y = ±0.9 normalized by the maximum amplitude of 

the given wave and plotted as a function of time, as shown in Figure 16. 

Satisfactory results are also achieved for various cases of higher strength vortices. 

Taking (U0,V0) = (0.2,0.2), vortex strengths U'max = 1.2J70,1.4Z70,1.6t/0 are tested. 

The maximum difference between PML and reference solutions for v-velocity is plot­

ted in Figure 17 for each case. For comparison, the differences for the cases of weaker 

vortices, f/̂ ax =
 0.25U0,0.5UQ, and l.OUo are also plotted. In general, the magnitude 

of the difference increases with the strength of the vortex. Note that when C/ĵ ax > UQ, 
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FIG. 15: Top: Solutions of v-velocity at the point (0.9, 0.9) as a function of time. 
Bottom: Difference between PML and reference solutions at (0.9, 0.9) as a function 
of time. 
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v-Velocity Reflection Coefficient 

It)"1 

0 2 4 6 8 10 
Time 

FIG. 16: Reflection coefficient for ^-velocity versus time along x = ±0.9, y — ±0.9 
for U0 = V0 = 0.5 and U'max = 0.25. 

part of the vortex has a velocity opposite to the uniform background flow. When 

r̂nax *s s m aU relative to UQ, difference levels are close to those of linearized cases. 

Flow Over a Circular Cylinder 

In this example, a circular cylinder of radius 0.5 is centered at the origin, and constant 

background flow is initially assumed. An overset grid approach, as explained in [48], 

is used to model viscous flow over a circular cylinder. A polar grid will be used around 

the cylinder to solve the Navier-Stokes equations. A Cartesian grid will capture the 

outgoing vortices shed off the cylinder, with the nonlinear Euler equations satisfied 

in the interior region, and the proposed PML equations satisfied in the PML region. 

A schematic of the overset grids is shown in Figure 18. Further references on overset 

grids and their applications are given in [49-51]. The polar domain is r € [0.5,1.5], 

9 € [0,2ir) with Ar = 0.02 and A9 — ^ . In this domain, the Reynolds number Re 
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FIG. 17: Maximum difference between PML and reference solutions of u-velocity 
versus time along x — ±0.9, y = ±0.9 for UQ — V0 — 0.2 and varying U'm!OC 

relative to the mean flow M = yJU$ + V0
2 is taken to be ^ = 150, and heat transfer 

terms are ignored. The interior Cartesian domain is [—2,6] x [—2,6] discretized by 

Ax = Ay — 0.04 and surrounded by a PML of width D — 40Ax. A sixteen-point 

interpolation scheme is used to update data between the two grids [48]. In both 

grids, the seven-point DRP and five-stage LDDRK schemes are used for spatial and 

temporal discretizations, respectively. Periodic boundary closure schemes are used 

for x, y, and 6 derivatives, and a separate third-order boundary closure scheme is 

used for r derivatives. Grid stretching is again used in the PML region with stretch 

factors identical to those given in the previous example. In this example, the time 

step is chosen to be At = ° '^Ar, and initial background flow is taken as 
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FIG. 18: Schematic of overset grids used. The polar grid is surrounded by a Cartesian 
grid. The Cartesian grid is then extended to include the PML region. 
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\P / 

/ 1 \ 

0.35 

0.35 

V h / 

(98) 

where again 7 = 1.4. For the PML absorption coefficients, ax and ay, amax = 20 and 

a = 4 are chosen in the form (45). 

Figure 19 shows the formation of the transient pressure pulse in a sequence of 

contour plots of density at times t = 2,3,4 and 5. It is clear that the outgoing wave is 
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FIG. 19: Flow over a circular cylinder: Contours of density during the formation of 
the transient pressure pulse. Times t — 2,3,4, and 5 are shown. 

being absorbed by the PML. Figures 20-23 show the final absorption of the transient 

pulse and the formation of vortices as flow moves over the cylinder. Contours for 

both the numerical and reference solutions are shown at times t = 6, 30, 35, and 

150. Reference solutions are calculated on the larger domain [—2,14] x [—2,14]. At 

t = 6, the transient pulse has just exited the domain. By t = 30, the first shed vortex 

is reaching the PML-Euler interface, and by t = 35, the vortex has been absorbed 

by the PML. At t = 150, vortices continue to exit the domain and appear to be 

absorbed well by the PML. 

To evaluate the effectiveness of the absorption of exiting waves, comparisons are 
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Reference Solution, t = 6 
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FIG. 20: Transient pressure pulse: Contours of density at time t = 6. 
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FIG. 21: Vortex shedding: Contours of density at time t — 30. 
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Reference Solution, t = 35 

0 2 4 

PML Solution, t = 35 

FIG. 22: Vortex shedding: Contours of density at time t = 35. 
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Reference Solution, t = 150 

PML Solution, t = 150 
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FIG. 23: Vortex shedding: Contours of density at time t = 150. 
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made between the PML and reference solutions at the single corner point (5.8,5.8). 

The top of Figure 24 shows the time history of u-velocity at that point. Very good 

agreement is seen between the PML and reference solutions for the transient pressure 

pulse, which is an indication of the effectiveness of the boundary condition. The 

bottom plot shows the difference between the two solutions at the same point as a 

function of time. For comparison, the differences for PML widths D = 20Ax and 

D = 60Ax are also included in the plot. Comparisons are also made over the range 

of values x = 5.8, y € [2,5.8] and x € [2,5.8], y = 5.8. Because the reference 

domain was only expanded on the right and top boundaries, comparison points were 

focused toward the upper right corner. Figure 25 plots the maximum difference 

between numerical and reference solutions as a function of time for PML widths of 

D = 20Aa;, 40Ax, and 60Ax. It is clear that the initial transient pressure pulse is 

absorbed well with little reflection for each PML width and that an increase in the 

width of the PML corresponds to a decrease in reflection error. 

In both Figures 24 and 25, as the vortices created by shedding begin to reach the 

edge of the domain, a significant increase in the maximum differences is observed. 

This can be attributed to the effects of domain truncation on the behavior of the 

physical system. If the domain is truncated too aggressively, the truncation can, in 

essence, cut off physical occurrences, such as turbulent-like behavior, that would have 

happened farther down stream from the source, and which, left unaltered, would 

have affected the solutions closer to the source. The solutions from the smaller 

truncated domain and the solutions from the larger domain are therefore representing 

slightly different physical situations in regards to the nonlinear behavior. This is most 

likely the cause of the discrepancies between the PML and reference solutions in the 

secondary portion of the error plots. Ideally, the PML solution would be computed 

on the larger domain, and a further expanded domain would be used for reference. 

However, due to time constraints and limitations on available computing resources, 

this work has not been carried out. Further, computations of such magnitude would 

most effectively be implemented with the use of parallel computing, which is outside 

the scope of this paper. Regardless, even for this latter portion, Figure 25 shows that 

an increase in PML width results in a general decrease in the maximum difference, 

behavior indicative of the perfect matching of the boundary condition. 
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Time History of v-Velocity, D = 40Ax 
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Pointwise Differences for (/-Velocity 
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FIG. 24: Top: Time history of w-velocity at the point (5.8,5.8) for PML of width 
D = 40Ax against a reference solution. Bottom: Differences between PML and 
reference solutions for v-velocity versus time at the point (5.8, 5.8) for PML widths 
D = 20A:r, 40Ax, and 60Ax. 
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v-Velocity Maximum Differences 
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Time 

FIG. 25: Maximum differences between PML and reference solutions for w-velocity 
versus time along x = 5.8, y € [2,5.8] and x 6 [2,5.8], y = 5.8 for PML widths 
D = 20Ax, 40Ax, and 60Ax. 
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CHAPTER IV 

PML IN CYLINDRICAL COORDINATES 

Because certain physical problems are better suited for representation in a cylin­

drical coordinate system, it is important to develop a PML boundary condition in 

cylindrical coordinates. Further, because interior schemes already exist in cylindrical 

coordinates, it is useful to provide a high-accuracy boundary condition to accompany 

these schemes. Despite its importance, however, very little work has been done on 

the cylindrical PML, particularly in the field of acoustics. In light of this, the present 

chapter will focus on providing the much needed boundary condition in the cylindri­

cal coordinate system, first for the nonlinear Euler equations in conservation form 

with horizontal mean flow, and second for the linearized Euler equations in primitive 

variables with horizontal mean flow. Both conservation and primitive variables are 

presented so that interior schemes that have already been implemented with either 

type of variable can easily incorporate the PML boundary condition. Finally, the 

cylindrical PML equations are generalized to accommodate mean flow in an arbitrary 

direction. The derivation differs from that of the Cartesian PML in that independent 

side and corner layers are no longer needed to handle an oblique mean flow. Once 

stability is achieved for the horizontal case, the stability for the oblique case will 

automatically follow. This results because the PML for the oblique case and that of 

the horizontal case differ only by a simple rotation of coordinates. Therefore, only a 

single set of equations is needed in the entire PML region. As will be seen, the stabil­

ity of the PML equations for horizontal mean flow follows from a proper space-time 

transformation, applied prior to the PML change of variables. Then, as mentioned, 

the equations for oblique mean flow are easily found with the single additional task 

of rotating the coordinate system. 

IV. 1 NONLINEAR EULER EQUATIONS IN CONSERVATION FORM 

IV.1.1 PML FORMULATION 

Our first effort in deriving PML equations for cylindrical coordinates will be for the 

case of flow in a single dimension, namely the ^-direction. The boundary condition 

will be derived for the nonlinear Euler equations in conservation form, given by 
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du 

~dt 
+ COS 

.aFi(u) sin0 0Fi(u) 
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dr 
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36 
+ sin( 

3F2(u) cos0 3F2(u) 
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89 

pv 

puv 
„2 

(99) 

pv +p 
y phv j 

(100) 

with 

h = e + -, p = ( 7 - l ) p ( e -
u2 + v2 

(101) 

and p is density, u and v are velocity components, e is the energy, p is the pressure, 

and 7 is the specific heat ratio. However, although our ultimate goal is to form PML 

equations in cylindrical coordinates, our derivation will begin with the nonlinear 

Euler equations in Cartesian coordinates, as given in (56). This time we assume a 

constant background flow of (Uo,0). We begin the derivation by partitioning the 

solution into two parts as follows: 

u = u + u' (102) 

where u' is the time-dependent component of u, and u is the time-independent 

component that satisfies the steady Euler equations (60). Again, this is done to 

minimize computational effort, as the size of the total variable u is often much larger 

than the size of the fluctuation u'. Equation (56) then becomes 

dW_ a ( F i -
dt dx 

Fi) d(F2 F2) 

By 
0 (103) 

where the shorthand notations Fi = Fi(u), Fi = Fj.(u), F 2 = F2(u), F 2 = F2(u) 

have been used. We now rewrite the equation in cylindrical coordinates to get 

du' | CQS0d(F1 - FQ sin9 OjF, - FQ ^ Qd{¥2 - F2) | cos9 d(F2 - F2) = Q 

dt dr r 89 dr r 89 
(104) 

where the well-known transformations 

8 8 sin 9 8 
dx dr r d9 

(105) 
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d . d cos 9 d 
dy dr r 86 

(106) 

have been used. Recall from Section II.2.1, that in the presence of mean flow, incon­

sistencies arise in the phase and group velocities of acoustic waves. These inconsis­

tencies must be corrected before the PML change of variable is applied, otherwise the 

system will not be stable. Because the mean flow is assumed only in the horizontal 

direction, the dispersion relations for the linearized form of equation (104) are the 

same as those given in (6) and (7), and a single transformation will therefore be suf­

ficient to remove any inconsistencies in the phase and group velocities. Specifically, 

the transformation (11) will be used, with x expanded as a function of r and 9, or 

i = t + pxr cos 9 

r — r 

(107) 

(108) 

(109) 

which gives 

d 
dt 

dr 
d 
89 

8 
di 
d a nd 

- -7TT + PxCOSV — 

dr H dt 
= —x — ^fsin^—-

89 dt 

(110) 

(111) 

(112) 

where 

Px = 
Un 

1-C/o2 

After applying such a transformation, our equation becomes 

du' * 
—- + cos 9 
dt 

8 ( F ' - f l )
+ & c o s 9 - a ( F ' - f ' ) 

dr dt 

(113) 

sin( aCFx-FO . ^ ( F x - F x ) 
— pxrsm ti­de dt 

+ sm( ^ ^ h & c o s ^ - ^ 
dr dt 
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cos 8 # ( F 2 - F 2 ) _ „ . , d ( P 2 - F 2 ) 
pxr sin 8-+^L " ^ . ^ - ^ f s i n f l ^ 2 . 2 J = 0 (114) 

f I de at \ v ' 
At this point, we are ready to apply the PML change of variable in the frequency 

domain. Our equation (114) in the frequency domain is 

(—Vjj)Vi' + COS# 
dr 

+ Pxcos8(-iu)){F1-F1) 

smf 0(Fi - FQ 

88 
/ 3 x f s i n ^ ( - ^ ) ( F 1 - F i ) 

+-

+ sin# 

COS0 

d(F2 - F2) 
df 

~d(F2 - F2) 

88 

+ Pxcos8(-iuj)(F2-F2) 

pxr sin 8{-iu)(F2-F2) = 0 (115) 

This time, the PML change of variable will be a transformation on the spatial variable 

r and is given by 

i r 
— / o>i 
Uj Jfn 

f —• f H / 0> df 
/ f0 

which gives 

The equation then becomes 

8 1 8 

dr 1 + i^dr 

(116) 

(117) 

(—iuj)u' + cos§ 
1 8(Ft - F t ) 

1 + i2t ar 
+ /3 i Ecos0(-iw)(F1-Fi) 

sin( 

Jfn 

9(-Fl F l ) f3x{r + - rafdf)sm8{-iu)(F1-F1) 
Jfn 88 CO Jfn 

+ sin( 
1 d(F2 - F2) 

i + 1 ^ af 
+ # c c o s # H w ) ( F 2 - F 2 ) 
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+-
cos( 

Jrn 
r + ZI. afdr 

>rn 

d(F2 - F2) 

d§ 
-Px(r + - [ cTfdr) sin 0(-iw)(F2 - F2) 

(118) 

To simplify the conversion back to the time domain, we introduce a decomposition 

of u' into two auxiliary variables, qi and q2. That is, 

u = qi + q2 (119) 

In this way, the equation for u' (118) can be split into individual equations for qi 

and q2 as follows: 

(—iw)qi + cos# 
1 9(F! - Fx) 

1 + i2* dr 
+ /3 x cos^(- iw)(Fi -F 1 ) 

+ sin( 
1 d(F2 - F2) 

1 + %&- dr 
+ (3xcosd{-iuj)(¥2-¥2) 0 (120) 

(-iw)qY suit 

f + if <?fdr 
Jrn 

d(~Fl F l j /3x(f + - / ' ( T f d r j s i n ^ - i w K F i - F i ) 
86 LO Jf0 

cost 

Jrn Irn 

d(F2 - F2) 

a<? 
-Px\r+- rafdr)sin9{-iu){F2-F2) 

\ Ul Jfn I 
= 0 

(121) 

The complex fractions can now be easily cleared by multiplying equations (120) and 

(121) respectively by (1 + i^-) and (r + ^ / at dr), which gives 
Jfn 

{—iU + <7f )<ll + COS 6 d{¥l
df

 fl) + (3X cos2 6(-iu + a,)(Fx - Fx) 

+ sinfl v 2 2y + /?x sing cos fl(-w + o>)(F2 - F2) = 0 (122) 

i ^ F x - F x ) 
-iwr + / a> df ) q2 — sin ( 

Jfa ) M #0 
+ /3X sin'2 6> ( - iwr + / afdr ] (Fx - Fi) 
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+ COS 0 ^ 2 . 2> - px cos 9 sin 6 l-itof + r a? dr) (F2 - F2) = 0 (123) 
09 \ Jfa J 

At this point, the equations can be converted back to the time domain, giving 

ra(Fi - Fj) 0qi ^ ^ F i - F i ) „ 9 -
T—— + a^qi + cos 6>——— + px cos 61 

Ot or 
dt 

+ af(F1-F1) 

+ sin fl-i-2—-HZ + /3X sin 0 cos 5 
d(F2 - F2) 

dt 
+ af{F2 - F2) = 0 (124) 

d& If f* 
Ot f \Jr0 

J af dr j q2 
s i n g a ( F i - F ! 

r 09 

+[3xsin29 
d(F ^ + i (£ „ * ) (F.-fO + 

cos g d(F2 - F2) 

r 09 

—f3xcos9sm9 
0(F2 - F2) , 1 / ft 

+ -(J\dr)(F2-F2) 0 (125) 
dt I \Jr0 

All that remains is to rewrite our equations in the original space and time coordinates, 

r = f, 6 = 6 and t = t — (3xf cos 0. Upon doing so, we arrive at the final equations 

for qi and q2: 

^ + arqi + cos6d { F l ~ fl) + pxar cos2 0 ^ -f1)+ s i n 9 ^ - ^ 
ot or or 

+/3xar sin 0 cos 0(F2 - F2) = 0 (126) 

5q_2 , 1 ( fr 

dt + / ?T 
J To 

dr)q2-
s i n 0 d ( F i - F i ) sin20 

09 
+ (3x

S-^[J\dr)(F1-F1) 

cos6d(F2-F2) cos 9 sin 9 
-Px

C-^^(iyrdr)(F2-F2) = 0 (127) 
r 09 r \Jr0 

Finally, the equation for u' can be recovered by adding equations (126) and (127): 

# u ' lffr , \ ^ ( F i - F O sin0 0 ( F i - F i ) o „ _ _ 
- + a r q i + - ( / a refrjq2+cos0 v ^ i ;

 aQ +/3xar cos2 9(F1-F1) Ot Or 09 
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sm29 / r \ - . nd(F2-F2) cos0 3 ( F 2 - F 2 ) 
+^[J\dr)iFl-Fl) + s i n O d ^ ^ + 86 

— cos 0 sin $ / /*'* \ — 
+[3xar sin 0 cos 0(F2 - F2) - (5X U ar dr) (F2 - F2) = 0 (128) 

cos 6 sin 6 

The equations valid in the PML region are therefore given by 

1 / r , \ ^ ( F i - F O s i n f i a ( F i - F i ) n *„,„*. 
+<TrQi+- / ardr)q2+cos9^-^- ^ ao +/Vr-cos 2g(Fi-Fi) 

r V7r0 / or r 86 

.sa?9 ( r \ _ . . d ( F 2 - F 2 ) c o s 0 3 ( F 2 - F 2 ) 

- cos 6 sin 6 f tr \ -
+ & a P s i n 0 c o s 0 ( F 2 - F 2 ) - # B U ar drJ (F2 - F2) = 0 (129) 

^ i + a r Q l + c o s ^ ( F l ~ F l ) + (3xar cos2 Ofr -F1) + s i n g 0 ( F a " F z ) 

OT or dr 

+(3xar sin 0 cos 0(F2 - F2) = 0 (130) 

1 / r , \ sm9 8(Fi - Fi) „ sin2 (9 ( r , \ _ = . 

cos#d(F2 - F 2 ) „ cosOsmB f rr , \ /T, =, . „ ,_„„. 

+—-LVja~*—r-GC**)^-*'-0 (131) 

Notice, however, because of the relationship (119) between u', qj, and q2, the equa­

tions (129)-(131) are not independent. Therefore, it is only necessary to store two of 

the three variables, since the third variable can easily be calculated once the values 

of the other two are known. For example, the second auxiliary variable q2 and its 

corresponding equation (131) could be eliminated by substituting 

q2 = u' - q! = u - u - qx (132) 

into the equation for u (129). The resulting PML formulation would then be 
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du \ ( r \ _ d ( F i - F i ) s i n ^ a ( F i - F i ) 
+ <rrq + - ( / <yr dr j (u — u — q) + cos 8 

dt r \Jro J dr r 89 

+(3xar cos2 0(Fi - Fx) + (3x^- ( £ ar dr) (F1 - Fj) + sin < ? ^ ^ - ^ 

cos9d(F2 - F2) „ . „ „,„ .=, N „ cos0sin0 / r , \ .„ - . + ~ dfl + / 9 ^ s m g c o s ^ ( F 2 - F 2 ) - / g a U ardr\ ( F 2 - F 2 ) = 0 

(133) 

% + arq + cosf l 0 ( F l " F l ) + & a r cos2 e(F, -tl) + sin g ^ " ^ ) 
ai or or 

+Pxar sin 6» cos 0(F2 - F2) = 0 (134) 

where q has replaced qi, and clearly the storage of only two variables is required. 

This type of simplification is recommended for improved efficiency. 
rr 

For the purpose of our examples, the integral functions / ar dr are found explic-
Jro 

itly rather than approximated numerically at runtime. 

IV. 1.2 NUMERICAL EXAMPLES 

Pressure Pulse with No Mean Flow 

We first test our boundary condition for a nonlinear pressure pulse with no mean flow. 

The domain in consideration is r € [0,5], 6 G [0, 2-K) with a circular cylinder of radius 

0.5 located at the center of the domain. To keep the grid spacing sufficiently small for 

larger values of r, an overset grid approach is again employed, as is shown in Figure 

26. This time, there will be three concentric cylindrical grids. With each transition 

from an inner grid to an outer grid, the length interval in the 6 direction is halved. 

So the length intervals are Ar = 0.03, and A6 = ^ , j~^, and ^ for each of the 

respective grids. The seven-point DRP scheme is again used for spatial discretizations 

with a periodic boundary closure scheme for 6 derivatives and a separate third-order 

boundary closure scheme for r derivatives. The five-stage LDDRK scheme is used for 

advancing time with At = r^4=Ar chosen for stability. The absorption coefficient 

will be taken as 
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FIG. 26: Overset grids include three concentric cylindrical grids. 

<jr 
r-r0 

D 
(135) 

where r0 is the location of the interface between Euler and PML regions. Parameter 

values are chosen as amax — 20 and a = 4, and a PML width D = 20Ar is chosen. 

The pressure pulse will start at the point (3,0) and is initialized as 

P 

u 

1 

0 

(136) 

(137) 
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v = 0 (138) 

p = I + e~ln(2)((x-3fV)/0.2^ ( 1 3 9 ) 

7 

with 7 = 1.4. Figure 27 shows the contours of pressure at times t = 0,2,5, and 

7.5. The wave appears to exit the domain with little reflection. To better assess the 

FIG. 27: Pressure pulse with no mean flow: Pressure contours at times t = 0,2,5, 
and 7.5. 

reflection error, the PML solution is compared with a reference solution, which is 

found by calculating solutions on the larger domain r £ [0,16], 9 € [0,2ir). The time 

history of pressure at a single point is plotted for both solutions in the top part of 

Figure 28. On the bottom, the difference between the two solutions is plotted as a 

function of time. Good agreement is seen between the two solutions, with maximum 

difference magnitude around 10~4. 
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PML Solution 
- e - Reference 

Pointwise Difference for Pressure 

FIG. 28: Top: Time history of pressure at a single point for the PML and reference 
solutions. Bottom: Difference between the two solutions at the same point as a 
function of time. 



59 

Pressure Pulse with Mean Flow 

Our equations will also be tested for a pressure pulse in the presence of mean flow. 

Flow is assumed in the horizontal direction only, which is seen in the initial condition 

as a nonzero x-component of velocity. The domain will again her £ [0,5], 6 E [0,2n). 

We again use overset grids, but this time a Cartesian grid, x E [—1,1], y E [—1,1], 

is added to the center of the domain to accommodate solutions at the origin, as is 

seen in Figure 29. Discretizations in time and space are identical to the previous 

FIG. 29: Overset grids include three concentric cylindrical grids with a Cartesian 
grid in the center. 

example, and we now take Ax = Ay = 0.04. In this example, the pressure pulse will 

be initialized at the center of the domain as 
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p = 

u = 

V -

p = 

= 1 + e-ln(2)(x2+j/2)/0.22 

= 0.5 

= 0 

= I + e-ln(2)(x2+y2)/0.2: 

7 

(140) 

(141) 

(142) 

(143) 

with 7 = 1.4. Figure 30 shows the contours of pressure at times t = 0,2,5, and 8 for 

a PML width of D = 20Ar. Again, the waves appear to exit with little reflection. 

FIG. 30: Pressure pulse with mean flow: Pressure contours at times t = 0,2,5, and 

Comparison with a larger domain reference solution, shown in Figure 31, validates 

the effectiveness of the boundary condition, with good agreement seen between the 

two solutions in the time history of pressure at the point (4.55,0) and the difference 

between the two solutions on the order of magnitude 10 -6 . 
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Time History of Pressure 

Pointwise Difference for Pressure 

FIG. 31: Top: Time history of pressure at a single point for the PML and reference 
solutions. Bottom: Difference between the two solutions at the same point as a 
function of time. 
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IV.2 LINEARIZED EULER EQUATIONS IN PRIMITIVE VARI­

ABLES 

IV.2.1 DERIVATION OF PML EQUATIONS 

To accommodate various interior schemes in CFD and CAA, we will also derive the 

cylindrical PML boundary condition for primitive variables. Primitive variables are 

most often used with the linearized form of the Euler equations, so the linearized 

form in cylindrical coordinates will be considered. The derivation of such equations 

was carried out by applying the transformations 

^-«"i~^^ (144) sin# d 
r d9 

cos 9 d Pi Pi 

— = s i n 0 — + ^ ^ (145) 
ay or r 08 

u = vrcos8 — vgsmd (146) 

v = vr sin# + vgcosO (147) 

to the linearized Euler equations in Cartesian coordinates (18) under the assumption 

that the mean flow (Uo, Vo) is constant. The resulting linearized equations are given 

by 

^P+yr^P + ^.2l + ^ 1 + 1 ^ + ^ = 0 (148) 
dt r dr r dd dr r 86 r 

dt r dr r 89 dr r 
8ve , _ dv0 vedve I dp vevr -^rJrvr-—- + —— + -—- + = 0 (150) 
dt dr r 86 r 89 r 

dp dp ve dp dvr 1 dve vr ^ - + v r — + — — + ^ - + - ^ - + — = 0 (151) 
dt dr r dd dr r dd r 

where p is the density, vr and v$ are the velocities in the r- and ^-directions, respec­

tively, and p is the pressure. These can be written in matrix-vector form as 

l + APg + ̂ l + ̂ O W 
where 
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u 

f p \ 
vr 

\ P ) 

A(*) = 

( vr 1 0 0 \ 

0 vr 0 1 

0 0 fv 0 

\ 0 1 0 vr ) 

B(9) 

/ wo 0 1 

0 ve 0 

0 0 

\ 0 0 1 

0 \ 

0 

1 

ve ) 

C(9) 

( 0 1 0 0 \ 

0 0 -ve 0 

0 ve 0 0 
(153) 

V o i o o y 
We note that p, vr, vg, and p in (152) are the perturbations to the mean flow, and 

that matrices A, B, and C depend on 0 because the cylindrical mean velocities vr and 

Vg are related to the Cartesian mean velocities Uo and VQ by 

vr = UQ cos 6 + Vb sin 6 (154) 

vg = —UQ sin 9 + VQ cos 9 (155) 

In this section, however, PML equations are only considered for a one-dimensional 

mean flow (UQ,0). The case of a general mean flow (UQ,VO) is addressed in the 

following section. 

To ensure consistency in phase and group velocities, we begin with a single space-

time transformation, namely 

which gives 

t 

r 

t + Pxf cos 9 

r 

d 

at 
a 
dr 
d 
89 

d 
dt 

9
 0 nd 

= ^+Px cos 0- j 
or dt 

- —T — PaTSin^ — 
89 dt 

(156) 

(157) 

(158) 

(159) 

(160) 

(161) 
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where 

Px 
Uo 

(162) 
1-C/o2 

Such a transformation is sufficient for removing the inconsistencies in phase and group 

velocities of the acoustic waves since we are dealing with one-dimensional mean flow. 

The equation then becomes 

du 

~dt 
+ A 

du ~<9u 

w + A c o s * a r + 4B 
r 

du ~du 
—- — pxr smO—-
09 dt 

+ TCu = 0 (163) 

For simplicity, matrices A(0), B(#), and C(9) are abbreviated as A, B, and C, respec­

tively. At this point, it is valid to apply the PML change of variable in the frequency 

domain without risk of instability. Writing the equation in the frequency domain, 

we have 

du » _, 
•7— + (5X cos 9{—iui)u 
or 

(-iw)u + A 

We can now apply the PML change of variable, given by 

r 
du * _ 
—- — Pxfsm6(—iuj)u 
d9 

f —> f + — I afdf 
u Jf0 

rr 

Jrn 

+ TCU = 0 (164) 
r 

(165) 

and our equation becomes 

(-iw)u + A 

1 

1 du 

1-M a df 
111 

+ f3x cos 9 (—iuj)u + 

rr 

U G* 
Jrn 

-B 
du ( i t * ~ 
—- — (3X I r H / Of dr I sin 9(—iu)u 
d9 V w Jfa Jrn 

-Cu = 0 

>rn 

(166) 

All that remains is to convert back to the time domain and finally back to the original 

coordinate system. To facilitate conversion back to the time domain, we split u into 

two auxiliary variables: 

u = qi + q2 (167) 

Our single equation for u can then be split into two equations, one for each of the 

auxiliary variables qi and q2, and as before, complex fractions can be easily cleared, 

resulting in 
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(—iu + Of )qi + A 
<9u ~ _ ~_ 
—r + /?x cos 6(—iu>)u + 3xOf cos 0u 
or 

(168) 

(-iw)q2 + -r / 0> df q2 + -B - J - /?xr sin0(-iu;)u - /3X / o> < df I sin 6u 

+ T C U = 0 
r 

The simple transition back to the time domain then results in 

<9qi 

at 
+ o>qi + A 

du ~du 
-^— + 6xcos6—x + Bxor cos du 
or dt 

= 0 

(169) 

(170) 

9q2 i / r 
at - / ot' 

r \Jf0 
d r ) q 2 + TB 

d u a - • adxi 

—- — ; i_r sin H 
86 

-on r \ 
(3xr sin 6—- — f3x [ or dr) sin 

dt \Jfo J 
i6u + T C U = 0 

r 

(171) 

Finally, in the original coordinates, t, r, and 6, we arrive at the final equations for 

qi and q2: 

<9q 
dt 

- + <rrqi + A 
dr 

+ (3xor cos du = 0 (172) 

+; ( £ ardr)q2 + lB^- & ( £ *r dr)sin eu dq 2 , 1 ( fr 

at + -Cu = 0 (173) 

The equation for u is easily recovered by adding equations (172) and (173). The 

PML equations are therefore given by 

^ + crrq1 + i ( £ a r d r ) q 2 + A 
du 
——h 0xor cos Ou 
dr + 

du 

"•(£• or dr ) sin 0u + - C u = 0 
r 

<9q 
dt 

- + orqi + A —- + pxOr COS 0U 
dr 

(174) 

(175) 

^^cc-*)^;Bfi-*a dft ^x\ <Jrdr\sm8u + - C u = 0 (176) 
r 
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Similar to the equations derived in the previous section, equations (174)-(176) are 

not independent. Eliminating one of the auxiliary variables results in the following 

equivalent but more efficient system of equations: 

du du 
dt 

+ <7rq + - ( / <?r drI (u - q) + A 
dr 

+ Px&rCOS 8u 

+iB 
r 

du 
- Px (j °r dr 1 sin 6u + -Cu = 0 

r 

dq 
dt 

+ ovq + A 
du 
dr 

+ (3xar cos 6u 

(177) 

(178) 

Here q2 has been eliminated, and qi has been replaced with q. 

Again, for numerical examples, the integral terms / ar dr are found explicitly 
Jro 

rather than approximated at runtime. 

IV.2.2 NUMERICAL EXAMPLES 

Acoustic, Vorticity, and Entropy Waves with a Horizontal Mean Flow 

We will test the equations developed in the previous section using an example of 

acoustic, vorticity, and entropy pulses traveling with a horizontal mean flow. The 

pulses are now initialized for the linearized equations as 

3 

—̂  
n = l 

p = e- ln(2)(x2+y
2) /0.22 + y - e - l n ( 2 ) ( ( x - x „ ) 2 + ( y - y „ ) 2 ) / 0 . ).22 

u = V ^ ( ? / + 1 ) e - l n ( 2 ) ( ( x - x „ ) 2 + (y-2 / n)2)/0.: 

n = l 
3 

I 
p — e 

J2(X- l)e-ln(2)((x-x„)2+(!/-3/„)2)/0.22 

ln(2)(x2+y2)/0.22 

(179) 

(180) 

(181) 

(182) 

where (xi,yi) — (2,0), (x2,2/2) = (1,1), and (#3,2/3) = (1, —1) are the initial locations 

of the vorticity and entropy pulses, and (0,0) is the initial location of the acoustic 

pulse. The domain is r € [0,5], 6 E [0,2TT) with a PML width of D = 20Ax. Mean 

flow is taken as (Uo, Vo) = (0.5,0). Grids and discretizations are setup exactly as they 

were in the second example of Section IV.1.2. The absorption coefficient, ar, takes 

the form (135) with amax = 35 and a = 2. Figure 32 shows the contours of density at 



67 

FIG. 32: Acoustic, vorticity, and entropy pulses with horizontal mean flow: Density 
contours at times t = 0,4,6, and 10. 

times t = 0, 4, 6, and 10. The waves appear to exit the domain with little reflection. 

The PML solution is compared with a reference solution from the larger domain 

r E [0,11], 9 € [0, 2TT). The top part of Figure 33 plots the PML solution of density 

at the single point (r, 6) = (4.55,0) against the corresponding reference solution as 

a function of time. Good agreement is seen in this case. The difference between 

these two solutions at the same point is plotted in the bottom of Figure 33, and 

the magnitude of the difference remains small for all given values of time. Figure 34 

shows the reflection coefficient for density as calculated by the maximum difference 

between the PML and reference solutions along the points r = 4.55,0 € [0,2n), 

normalized by the maximum wave amplitude, which in this case is simply unity. The 
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Time History of Density 
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FIG. 33: Top: Time history of density at the point (r, 9) = (4.55,0) for the PML 
and reference solutions. Bottom: Difference between the two solutions at the same 
point as a function of time. 
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peak magnitude for the reflection coefficient is close to 10 

Reflection Coefficient for Density 

Time 

FIG. 34: Reflection coefficient for density as a function of time, computed along the 
points r = 4.55, 6 G [0,2ir). 

IV.3 EXTENSION OF CYLINDRICAL P M L TO OBLIQUE MEAN 

FLOW 

IV.3.1 GENERAL A P P R O A C H 

Because of the radial symmetry in cylindrical coordinates, deriving the PML equa­

tions for an oblique mean flow is greatly simplified. As we will see, it involves only 

one extra step, an initial rotation of the coordinate system. Recall from Section II.2.1 

that the space-time transformation used to remove inconsistencies in phase and group 

velocities is valid only for one-dimensional mean flow, which in our derivation for the 

cylindrical equations was taken in the x-direction. Therefore, if mean flow is also 

present in the y-direction, that same transformation will not be effective in removing 

the inconsistencies. An easy way to work around this is to use a rotated coordinate 

system in which the horizontal axis is aligned with the direction of mean flow. The 
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mean flow will then be present in only one dimension of the new coordinate system, 

and a single transformation can again be used to correct the inconsistencies in phase 

and group velocities. Suppose we have a system with mean flow given by (Uo, Vo) 

where Uo and Vo are both nonzero. The resultant mean flow has a magnitude of 

M — JUQ + V0
2 in the direction of angle <j> = tan - 1 I — ) from the positive x-axis, 

as is shown in Figure 35. In such a situation, we will transform to a new coordinate 

y 

" o ' 

Vo 

X 

FIG. 35: Mean flow in two dimensions. 

system, (x', y'), in which the horizontal axis is aligned with the mean flow, as is shown 

in Figure 36. The mean flow in (x',y') is then (M, 0), which is clearly nonzero only 

in the x'-direction. With the mean flow reduced to one dimension, we can proceed 

as before in the derivation of the PML equations. Once the equations are formed 

in x' and y', the final step in the derivation will be to translate back to the original 

coordinates x and y. 

It should be mentioned that such an approach is not valid in Cartesian coor­

dinates, as the rotation of the coordinate system would affect the location of the 

interface between the Euler and PML regions, and the boundaries would no longer 

be aligned with the coordinate system. 
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FIG. 36: Rotated coordinate system. 

IV.3.2 PML FOR NONLINEAR EULER EQUATIONS IN CONSER­

VATION FORM 

Suppose we want to rederive the cylindrical PML equations for the nonlinear Euler 

equations (99) with an oblique background flow (UQ,V0). Using the rotated coordi­

nate system given above, our new cylindrical variables will be 

r' = r (183) 

6' = 6-4> (184) 

where 

0 = tan-1 ( ^ ) (185) 

which means 

d__d_ 
dr' dr 

(186) 
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_d__^_ 
de> ~ de 

(187) 

As mentioned above, the mean flow in the rotated coordinate system will be (M, 0), 

where 

M = yjm + V§ (188) 

Then, after the variable has been split according to (102), the governing equations 

in (r', 6') are simply 

dn' a ( F i - F i ) smffd^-ti) , . . , d ( F 2 - F 2 ) cos 0'd(F2 - F2) n •+cos0 ——— : -—— -+sin0 ——— H : —— = 0 
dt dr' 30' dr' 86' 

(189) 

Now to correct the inconsistencies in phase and group velocities, the following change 

of variables is used: 

t = t + (3r cos ( 

f — r' 

(190) 

(191) 

(192) 

where now, 

P = 
M _ y/U$ + V? 

1 - M2 1 - UZ - Vff 0 "0 

This leads to the equation 

—- + cos 6' 
dt or' dt 

(193) 

sin< ^ ( F i - F j ) . ^ ( F i - F x ) 
— pr sin 0 86' 8t 

+ sin( 
8^-^+0^S^-^ 

dr' dt 

+-
cos & £>(F2-F2) , . - , 3 ( F 2 - F 2 ) 

— pr sin 6 dd' dt 
(194) 
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The rest of the derivation is carried out identically as in the derivation given in 

Section IV.1.1 with r, 0, and (3X replaced by r', 6', and (3, respectively. The PML 

equations (129)-(131) in (r1, 6') are then given by 

+/?<V cos2 (?'(Fi - FO + / ? ^ ^ (Vf <V dr'") (Fj - FO + sin 0 ' ^ - | ^ 2 

+coBg;a(Fa-F8) + s i n ^ c o s ^ ( F 2 _ p } 
r a6" 

costf'sintf' / / ^ , ) , „ - ( , x 

-/? ( / ar, dr'\ (F2 - F2) = 0 (195) 

^ + a r , q i + cos ̂ ^ L Z l l ) + {,„„ C0S
2 0 '(F l - F l ) + sin ^ ( * W 2 ) 

at a r ar ' 

+/?<V sin 6»' cos 6>'(F2 - F2) = 0 (196) 

dt 
1 f fr' , \ s in^afFi - F i ) „sin20' / r' , \ , „ - . 

cos ff d(F2 - F2) „cos6»'sin 6' ( r' , . \ . „ - , „ ,„ . 

+ — ^ - ^ — 7 ^ - ( / , CT- dr J <F» ~ F 2 ) = ° ^197) 
At this point, all that remains is to rewrite the equations back in the original coor­

dinates r and 9. This is easily carried out, and the resulting equations are 

du \ ( r \ ln ^ d f F i - F O sin(0 - <£) a(Fx - F 0 

+/3 ( x r cos 2 (g-^) (F 1 -F 1 )+/3 S i n 2 ( g
r ~^ ) ( j T ^ r d r ) ( F ^ F O + s i n ^ - ^ ) ^ F z ) 

+ c o B ( g - 0 ) a ( F ^ - F a ) + ^ sin{9 _ 0 ) c o g ( e _ ^ ) ( F a _ F a ) 

_^coB(f l - f l r in (<?-0 Q £ ^ ^ ( F 2 _ . a ) = o ( i 9 g ) 
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^ + c77-q1+coS(g-^)0 ( F l
) 9 r

 F l ^ + / 3 ( T r c o s 2 ( g - 0 ) ( F 1 - F 1 ) + s m ( g - 0 ) 8 ( F 2 ^ F 2 ) 

+/?<xr sin(<9 - <£) cos(0 - <j>)(F2 - F 2 ) = 0 (199) 

cos(6> - 0) d (F 2 - F 2 ) „cos(0 - </>) sin(0 - <f>) ( r 

r 09 

where, again, 

costA - <b) sm(0 - <b) ( r , \ ._ - . „ /nnn. _ p v vj_^ vi y ffr dr j (Fa _ Fa) = 0 (200) 

and 

(f> = tan"1 (~) (202) 

Notice that since r and r' are equivalent and ar is a function of r only, oy and 

crr' are also equivalent. Notice also that the system can be reduced down to two 

variables by enforcing the relationship (119). It is also easy to see that if V0 = 0, 

equations (198)-(200) reduce to the equations derived for one-dimensional mean flow 

(129)-(131). 

IV.3.3 PML FOR LINEARIZED EULER EQUATIONS IN PRIMITIVE 

VARIABLES 

The PML boundary condition for the linearized Euler equations in cylindrical coor­

dinates (152) can also be reformulated to accommodate the case of an oblique mean 

flow (UQ, Vo), where, again, U$ and Vo are related to vr and v$ by (154)-(155). In or­

der to align the horizontal axis with the direction of mean flow, the following change 

of variables is again used: 

(203) 

(204) 
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where 

= tan 
-i[V0 

U0 

The governing equation (152) then becomes 

du „,„,^du 1„.„,. chi 1 _.„,. 

(205) 

(206) 

where A(#'), B(9'), and C(O') are the same as those given in (153) with 9 replaced by 

6' and mean flow (UQ, VQ) now given by (M, 0). Because the mean flow (M, 0) in the 

(r', 9') coordinate system is one-dimensional, the usiial transformation is chosen to 

align phase and group velocities, specifically, 

t = t + /3r' cos 9' 

r = r 

(207) 

(208) 

(209) 

where 

P = 
M y/uS + V? (210) 

1 - M2 1 - t/0
2 - V$ 

The remainder of the derivation exactly mimics the steps carried out in Section 

IV.2.1 with r, 9, and f3x replaced by r', 9', and (3, respectively. The PML equations 

(174)-(176) in (r', 9') are therefore given by 

du 
at r 

q2 + A(0') 

+^') 

Hilar,dr') 
\ ( r' \ 
- - / ? / oydr ' sin 0'u 
" V -A-' 7 

9u 
- + /?<v cos d'u 

du 
al' 

+ -C(0')u = 0 

5q. 
at 

- + ar,qi + A(6»') 
du 
Or' 

- + (3ari cos 9'u 

(211) 

(212) 

^ + ? {[• ar'dr) q2 + ?B{e,) [i& - " (/<' a"dr') s i n H + ? c { 0 > = ° 
(213) 

Finally, the equations are converted back to the original coordinates, r and 9, and 

become 
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<9u 

~dt 
+ CTrqi + ~ ( / °V dr) q2 + A(0) 

du 
——h (3<rr cos(8 — 6)u 
or 

+V) du 
~d6 

— j3 ( / <r rdr j sin(# — 4>)u + - C ( 0 ) u = 0 

dq 

at - + ovqi + A(0) 
<9u 
<9r 

+ (3ar cos(0 — 4>)u 

(214) 

(215) 

5q2 + l / r 
dt r \jro 

where 

(£ cr d r ) q 2 + ^ B ( 0 ) ^ - P { [ Or dr^j sin(9 - </>)u + - C ( 0 ) u = 0 (216) 
r 

P = 
yJUJ + Vo2 

(217) 

and 

= tan 
- i / ^ » 

U0 

(218) 

Here the mean flow has been rewritten in terms of the original coordinates as (UQ, VQ). 

Again, the equations are not independent because of the relationship (167) between 

u, q i , and q2 . Therefore, only two variables need to be stored at implementation. 

Upon setting V$ = 0 in (214)-(216), the equations (174)-(176) are recovered as 

expected. 
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CHAPTER V 

CONCLUDING REMARKS 

With steps being taken to improve the accuracy of solutions in the interior domain, 

the importance of improving accuracy at the boundary also continues to increase. 

With the Perfectly Matched Layer, it has been possible to derive high-accuracy 

boundary conditions that in turn preserve accuracy in the interior of the domain. 

In this work, Perfectly Matched Layer absorbing boundary conditions have been pre­

sented for the linearized and nonlinear Euler equations for an oblique mean flow and 

have also been adapted for use in a cylindrical coordinate system. The PML equa­

tions have been shown to be stable and have produced satisfactory numerical results. 

Further, the capability of PML for use with an oblique mean flow and cylindrical 

coordinates, as presented in this work, allows for a number of new configurations to 

be tested numerically. It also serves as a basis for the derivation of PML for increas­

ingly realistic configurations. As the number of applicable problems increases, the 

Perfectly Matched Layer as a nonreflecting boundary condition should continue to 

gain acceptance as the method of choice. 

In comparison with other nonreflecting boundary conditions, the Perfectly 

Matched Layer can be considered superior on multiple levels. The biggest advantage 

is that of improved accuracy. Because the boundary conditions are exactly matched 

to the governing equations, reflection errors originating from numerical boundaries 

are greatly decreased, and in turn, overall errors are much smaller. While the ac­

curacy of characteristic boundary conditions is comparable to that of PML in the 

case where waves exit the domain normal to the boundary or at small angles of 

incidence, that accuracy quickly diminishes as the angle of incidence is increased. 

Therefore, the case of oblique mean flow is much better handled with the Perfectly 

Matched Layer. Another advantage of PML is increased efficiency, particularly in 

comparison to asymptotic boundary conditions and absorbing zone approaches. Be­

cause asymptotic boundary conditions are based on solutions occurring far from the 

source, domains must be kept large enough to validate the use of such solutions, or 

the accuracy of the solutions will suffer. Absorbing zone domains are often larger 

than PML domains as well because solutions in the absorbing zone must be altered 

very gradually in order to prevent reflections from occurring within the absorbing 

zone itself. 



78 

Further, in comparison to other PML methods that have been introduced in 

previous works, the approaches presented in this work can also be considered more 

comprehensive. First, the PML boundary conditions are not limited to the case of 

normal mean flow but accommodate a mean flow at any angle in relation to the 

numerical boundary. Second, for the formulation in Cartesian coordinates, a proper 

treatment has been given for the necessary corner layers, which has not been done 

in previous attempts to handle an oblique mean flow. Such a treatment has been 

shown to be stable. The PML equations have also been formulated to handle all 

three types of waves supported by the Euler equations, rather than focusing on a 

single type of exiting wave. Furthermore, the Perfectly Matched Layer has also been 

derived for cylindrical coordinates, an important capability in the handling of many 

physical situations. 

Since the PML equations formulated for Cartesian coordinates and those given 

for cylindrical coordinates are both capable of absorbing waves traveling with an 

oblique mean flow, there are several things to consider when choosing between the 

two formulations. To start, it is clear that the geometry under investigation is an 

important factor in choosing one of the two formulations. The cylindrical equations 

might intuitively be chosen if the physical problem involves a circular cylinder or any 

other radially symmetric object. However, when using a cylindrical grid, an overset 

grid approach is often necessary to maintain appropriate grid spacing at distances 

farther from the origin of the coordinate system. The need for overset grids adds 

complication when programming the system. In this case, it may be just as effective 

to choose the formulation for Cartesian coordinates. 

In an alternate sense, however, the cylindrical PML formulation may be consid­

ered simpler in its use of only an r-layer equation, as opposed to the need for x-, 

y-, and corner layers. Furthermore, there is no concern about the interfaces between 

side and corner layers, which themselves can be a cause of wave reflections. The need 

to examine the stability of corner layer equations is also eliminated with the use of 

cylindrical coordinates. Therefore, the choice to use a cylindrical coordinate system 

versus a Cartesian coordinate system, or vice-versa, could to some extent be viewed 

as a trade-off between simplicity of derivation and simplicity of implementation. 

Regardless of the coordinate system chosen, the Perfectly Matched Layer has been 

shown, in this and other works, to be an accurate nonreflecting boundary condition. 

Whether dealing with linear or nonlinear problems, PML has proven effective in 
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the absorption of outgoing waves, as numerical results in the present work have 

demonstrated. 

Finally, it is important to point out that despite having accomplished the initial 

motivating goals, the present work is not entirely comprehensive in its handling 

of physical systems. First, having derived the PML for the Euler equations only, 

examples are limited to inviscid flow. At present, the PML have not been given to 

accommodate problems involving viscosity, mass diffusion, or thermal conductivity, 

as would be supported by the Navier-Stokes equations. The focus of this work has 

also been on the two-dimensional problem. Clearly, in most practical situations, three 

dimensions must be considered. Further, only a linear stability analysis has been 

provided. Such limitations, however, serve as a motivation for future work, which 

could include formulating the PML for the three-dimensional Navier-Stokes equations 

with an oblique mean flow. Even more generally, considerations could be made for 

a nonuniform mean flow, and various coordinate systems could again be examined. 

A more complete analysis of stability would also be ideal, with further consideration 

given to the nonlinear problem. Despite its limitations, however, the present work 

provides a solid framework for future endeavors in formulating a Perfectly Matched 

Layer that accommodates more of the complexities found in the physical world. 
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