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ABSTRACT

ANALYSIS OF MULTIVARIATE DATA USING 
KOTZ TYPE DISTRIBUTION

Kusaya Plungpongpun 
Old Dominion University, 2003 

Director: Dr. Dayanand N. Naik

Most of the inferential statistical methods for multivariate data are developed under 

the fundamental assumption that the data are from a multivariate normal distribution. 

Unfortunately, one can never be sure a set of data is really from a multivariate normal 

distribution. There are numerous methods for checking (testing) multivariate normal

ity, but based on many published and our own simulation studies, provided in the first 

chapter of this dissertation, we observe that these tests are generally not very power

ful, especially for smaller sample sizes. Hence it is always beneficial to have alternative 

multivariate distributions available along with the methodology for using them.

In this dissertation, we focus on a probability distribution, called the Kotz type 

distribution, which has fatter tail regions than that of multivariate normal distribution 

and has its probability density function (pdf) in the form

/(x , fJ-, £ )  =  c |  £  |-2 exp { - [ ( x - z i y s - ^ x - z i ) ] * } ,

r(£)
where fi € 5RP, £  is a positive definite matrix and c =   ̂  ̂ . Using this distribution

as the basis we have developed statistical methods for performing various statistical 

inferences for multivariate data. Our main contributions in this dissertation are the 

following:

(i) Various characteristics of this distribution, such as, its moments, the marginal, 

and conditional distributions in specific forms, and a simulation algorithm for 

simulating samples from this distribution are provided.

(ii) Estimation of the parameters of this distribution using the maximum likelihood 

method under different assumptions of one and more populations, and under 

different covariance is performed. An interesting and important observation is
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that the maximum likelihood estimators derived under this distribution are the 

generalized spatial median (GSM) estimators of C. R. Rao (1988).

(iii) Using the asymptotic distribution of the estimates, multivariate analysis of vari

ance (MANOVA) is performed and simultaneous confidence intervals for contrasts 

are constructed and illustrated on data sets.

(iv) Finally, discrimination and classification rules under a Kotz type distribution are 

derived and compared with the rules based on a multivariate normal distribution 

using estimated expected error of misclassification. It is concluded that the ex

pected error of misclassification can be reduced by using the methods developed 

here when the underlying distributions are not multivariate normal, but are of 

Kotz type distributions.
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CHAPTER I

INTRODUCTION

Before doing any statistical modelling, it is crucial to verify if the data satisfy the 

underlying distributional assumptions. Multivariate normal distribution plays an im

portant role in analysis of multivariate data. This is especially true in the analysis 

of mean vectors and multivariate regression where the multivariate analysis of vari

ance (MANOVA) is used. Most of the techniques of multivariate statistical analysis 

are based on the assumption that the data are generated from a multivariate nor

mal distribution. Further, the normal distribution is often a useful approximation to 

the true population distribution. Hence it is important for a practitioner to be able 

to determine whether the data that are being used for statistical inference are from 

multivariate normal distributions, if not exactly at least approximately.

The aim of this chapter is two-fold. First, if possible, to provide a practitioner, a 

single most powerful and easily usable test, or at least a small group of tests, for testing 

multivariate normality and secondly, to provide a brief overview of the chapters in the 

thesis. To achieve the first aim, we have reviewed state of the art literature on the topic 

of tests for multivariate normality and conducted our own extensive simulation studies. 

Based on published work and our studies we are able to provide a set of three tests: 

two tests based on already well known Mardia’s measures of skewness and kurtosis and 

a third one which is recently proposed Henze-Zirkler test. However, we conclude that 

all the three tests are needed to definitely conclude that the multivariate normality 

holds. An overview of the chapters in the thesis is provided at the end of this chapter.

1.1 Tests for M ultivariate Norm ality

In a series of recent articles Mecklin and Mundform (2002, 2003a, 2003b) and Henze 

(2002) reviewed and summarized the procedures and tests for multivariate normality, 

The model journal used for this dissertation is Statistica Sinica.
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developed by researchers over the years, into the following 5 categories.

(I) Procedures based on graphical plots or correlation coefficients (due to Healy 

(1968), Gnanadesikan and Kittenring (1972), Gnanadesikan (1977), Cox and 

Small (1978), Koziol (1982), Tsai and Koziol (1988), Ahn (1992), Singh (1993), 

Fang et al. (1998), Liang and Bentler (1999) and Beirlant et al. (1999)).

(II) Tests based on skewness and kurtosis measures (due to Mardia (1970), Malkovich 

and Afifi (1973), Small (1980), Isogai (1982), Bera and John (1983), Mardia and 

Foster (1983), Srivastava (1984), Koziol (1983, 1986, 1989), Isogai (1989), Mardia 

and Kent (1991), Mori et al. (1993), Jarque and Mckenzie (1995) and Kariya 

and George (1995)).

(III) Goodness-of-fit tests (due to Weiss (1958), Malkovich and Afifi (1973), Hawkins 

(1981), Moore and Stubblebine (1981), Koziol (1982), Royston (1983), Machado 

(1983), Fattorini (1986), Paulson et al. (1987), Ward (1988), Quiroz and Dudley 

(1991), Mudholkar et al. (1992), Romeu and Ozturk (1993, 1996), and Kariya 

and George (1995)).

(IV ) Consistent procedures based on the empirical characteristic function (due to 

Csorgo (1986), Baringhaus and Henze (1988), Henze and Zirkler (1990), Ghosh 

and Ruymgaart (1992), Bowman and Foster (1993) and Naito (1996)).

(V) Miscellaneous procedures (due to Loh (1986), Hasofer and Stein (1990), Kuwana 

and Kariya (1991), Smith and Richardson (1993), Zhu et al. (1995), Zhu et al. 

(1997), Kariya et al. (1999), Slate (1999), and Liang et al. (2000)).

Based on analytical and several empirical and simulation studies, Henze and Zirkler 

(1990), Henze (2002) and Mecklin and Mundform (2002) identified only 13 of the fol

lowing tests as useful tests. These are, tests based on Mardia’s multivariate skew

ness and kurtosis measures, based on the Mardia-Foster statistic and the Mardia- 

Kent statistic, Royston’s multivariate Shapiro-Wilk test, the Romeu-Ozturk test, the 

Mudholkar-Srivastava-Lin extension of Shapiro-Wilk test, the Henze-Zirkler empirical 

characteristic function test using asymptotic critical values, Hawkins’ exension of the
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3

Anderson-Darling test, Koziol’s extension of the Cramer-von Mises test, the Paulson- 

Roohan-Sullo version of the Anderson-Darling test, Singh’s test of the correlation of 

the beta plot with classical estimates of mean and variance, and Singh’s test of the 

correlation of the beta plot with robust M-estimates of mean and variance using the 

empirical critical values. Based on further simulation studies Mecklin and Mundform 

(2002, 2003a, 2003b) concluded that Henze-Zirkler test is the best. However, Henze 

and Zirkler (1990) and Henze (2002) concluded that Henze-Zirkler test is the best, 

but the descriptive use of multivariate measures of skewness and kurtosis derived by 

Mardia (1970) is recommended as omnibus invariant tests for multivariate normality 

(Henze, 2002). In the following, we provide some details about these three procedures 

and conduct a detailed simulation experiment to compare them.

However, many times multivariate normality of a set of multivariate data can be 

assessed using Q — Q plots, and these plots along with the univariate tests for testing 

normality of the marginals should be routinely adopted. Univariate tests are discussed 

in details in many books and review articles. For example, see Shapiro, Wilk and Chen 

(1968), Lin and Mudholkar (1980), and D’Agostino (1986). A Q-Q plot can be drawn 

using the following procedure. See Khattree and Naik (1999) for details and computer 

programs in SAS.

Let Xj, j  = 1,..., n  be a random sample from a multivariate normal distribution 

A/p(/x, S ). Then

zj =  S “ 2 (xj — / a ) ,  j  =  1, ...,n are i.i.d. Np(0,1) 

and hence each <5j =  z'jZj

= -  R ) 'S _1 (xj -  p), j  = 1,..., n

independently follows a chi-square distribution with p degrees of freedom. The quantity 

Sj is the squared Mahalanobis distance between Xj and its expectation pt. If the 

observations x'-s are from a Np(pt, S ) then the distances (the sample versions of squared 

Mahalanobis distances)

d] = (xj -  x ) 'S _1 (xj -  x), j  = 1, ...,n
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4

will approximately be distributed as a chi-square on p degrees of freedom. Hence the 

ordered d? values are plotted against quantiles of p degrees of freedom of chi-square 

distribution.

When the plot approximately looks like a straight line passing through the origin 

at a 45° angle with the horizontal axis, it can be assumed that the observations come 

from a multivariate normal population.

Mardia (1970) proposed tests for multivariate normality based on generalizations 

of the univariate skewness and kurtosis measures respectively given by

(3ip =  £ [ ( x - / * ) '£ _ 1 ( y - /x ) ] 3, 

and P2p = £ [ ( x - a O 'S T 1 (x -  ju)]2,

where x  and y  are identically and independently distributed p variate random vectors 

with mean pb and variance covariance (dispersion matrix) S . For the multivariate 

normal distribution, (3\p =  0 and f32p =  p(p +  2).

For a sample Xi, ...,x n of size n, the estimates of Pip and f32p can be obtained as

^  = ^2 i t  9%’
j , k = 1 j , k = 1

fop =  ^  =
j =  i j =  i

where r j =  S „ 2 (xj -  x), gjk = (xj -  -  x), d, = y/gj], j, k =  1,..., n, x  =

7 £j=i xi and Sn = n E"=i(XJ -  x)(x! -  x)'-
Then Mardia (1970)’s tests for multivariate normality are based on K \  and K 2, 

where for large samples under the null hypothesis of multivariate normality,

is   ribip 2 ,
-**1  ̂ ^  Xp(p+i)(p+2) and

6  6

k 2 =  ^ ~ p ip \ 2)
j~8 p (p + 2 ) j 2

Henze and Zirkler (1990) generalized Baringhause-Henze procedures (Baringhaus 

and Henze (1988)) that extended Epps and Pulley test (Epps and Pulley, 1983) for 

univariate normality based on empirical characteristic function to the multivariate case. 

The Henze-Zirkler test statistic is based on a non-negative functional that measures
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5

the distance between two distribution functions, the hypothesized function (which is 

the multivariate normal) and the observed function. In order to have the statistic be 

consistent, the functional, say Dn,+ must equal to zero if and only if the observed data 

is from the multivariate normal distribution. The non-negative functional considered 

is

Dn,/3 ~
mp

4+(t) -  e x p ( - i | | t | |2)  ^ ( t )  dt,

where (3 denotes a positive number,

1 n
'l'n(t) =  — ^ ex p (it'r j)  (t e Kp)

.7 =  1

is the empirical characteristic function of the scaled residuals r,- defined by S„ 2 (x^ — x) 

and

M * )  =  ( W 2) 2 exp ( ”“ ^ r ) > t e 3 ? p,

stands for the weighted function to be the multivariate normal distribution N p(0, (32l p). 

Henze and Zirkler (1990) suggested the smoothing parameter f3 to be

1 /  2 P +  1 \  p + 4

7 2  V
/3 = (3v{n) =  —  ( J ;  ) r n?+*, 

so that it changes slowly with n.

Then Henze-Zirkler test statistic for testing multivariate normality is given by 

Tn>/3 =  nD nJh where

Dn,0 — exp(~yllri - rfcll2)
j,k—1

1 n
-  2(1 + f32)~i -  J ^ e x p f  

n \j= 1

a 2
2(1 +  (32)

||r ,||2) + ( l  +  2 /J2)" ! ,

with ||rj — rfc||2 =  (xj -  x fe)'Sn (x^ -  x fc) =  gj5 -  2 gjk +  gkk and ||r, 9jj ■
For p > 1, and (3 > 0, Henze and Zirker (1990) provide mean and variance of the 

asymptotic distribution, Tg(p), of Tnip as

p(32 p (p +  2)/34n
E

Var

Tp(p) =  1 — (1 +  2/32)— 2 1

T M 2 (1 +  4 /?2) 2 +  2(1 +  2 (32) - p

1 +  2/32 2(1 +  2(32)2
2pf341 +

and

3p (p +  2)(38
+

( 1  +  2 (32)2 4(1 +  2f32)A J
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4  uj(py
Zp(3A p {p  + 2)ps
2u){(3) 2u}{P)2

where uj((3) =  (1 +  /52)(1 +  3/32).

Further, Henze and Zirkler (1990) approximated the distribution of Tp(p) by the 

lognormal distribution with the parameters p,piP =  E  Tp(p) and afj p = Var Tp(p) . 

That is, the (1 — a) quantile of the asymptotic distribution of Tn>/3 , tha t is, of Tp(p), is 

given by

<lp,p(1 -  a ) -  p p J l  + exp

where T ” 1 (.) is the inverse of standard normal distribution function.

1.1.1 Power Studies

As we have noted, large number of tests for evaluating univariate and multivariate 

normality are available in the literature. However, there is no one test that is optimal 

for all possible deviations from normality. The usual process adopted to detect the 

sensitivity of these tests is to perform power studies where the tests are applied to a 

wide range of non-normal populations for a variety of sample sizes, levels of significance 

etc. Hence for our simulation study, we first determine the approximate upper a% 

cutoff points of the null distribution of Mardia’s tests based on K \  and K 2 and Henze 

and Zirkler test, Tn<p for [3 = 0.5, 1, 3 and [3 depending on n  and p, using Monte 

Carlo simulation method based on 50,000 simulations on a variety of sample sizes, n  =  

20, 30, 50, 100, the dimension p =  3, 5, and the significance levels a  =  0.01, 0.05, 0.1. 

The results are given in Tables 1.1 - 1.4. In each table, the last row (except for the last 

three columns in which /? depends on n) is the y 2 with Ap+1fip+2) degrees of freedom, 

N({), 1 ) and lognormal approximation to the empirical quantiles of tests based on k i ,  

K 2 (Table 1.1, 1.3) and Tn>Jg (Table 1.2, 1.4) respectively. It shows that our approximate 

cutoff points are very close to the empirical quantiles.

Next, to compare the power of the Mardia’s tests with Henze-Zirkler test, we 

perform the following simulation study. Five thousand samples from a variety of p- 

dimensional continuous distributions are used under the same above combinations of
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Table 1.1: The approximate and empirical percentage points of K \  and K 2 of size I —a 

and sample sizes n  for p — 3.

1 -  a

K i k 2

0.90 0.95 0.99 0.90 0.95 0.99

n — 20 13.196 15.428 20.654 0.234 0.559 1.245

n  — 30 14.222 16.659 22.595 0.465 0.852 1.682

o11e 14.988 17.518 23.439 0.702 1.132 2.067

n =  100 15.660 18.234 23.978 0.918 1.366 2.352

<10,p f1 -  “ ) 15.987 18.307 23.209 1.282 1.645 2.326

Table 1.2: The approximate and empirical percentage points of Tn$  of size 1 — a, 

sample sizes n  and parameters (3 for p =  3.

0  -  0 .5 0  =  1 0  =  3 0  =  0 3 ( n )

1 — a 0 .90 0.95 0 .99 0 .90 0 .95 0 ,99 0.90 0 .95 0 ,99 0 .9 0 0 .95 0 .99

n  =  20 0 .0 9 7 0 .112 0 .1 4 5 0 .6 1 3 0 .6 7 0 0 .7 9 0 1 .054 1.092 1.172 0 .7 5 6 0 .8 1 9 0 .9 5 3

n  “  30 0 .1 0 0 0 .1 1 4 0 .1 5 0 0 .6 1 4 0 .671 0 .8 0 2 1.055 1,093 1.175 0 .801 0 .8 6 7 1.010

ri =  50 0 .1 0 2 0 .118 0.151 0 .6 1 6 0 .6 7 6 0 .805 1 .057 1.094 1 .169 0 .8 5 2 0.921 1 .067

n  =  100 0 .1 0 4 0 ,1 2 0 0 .1 5 5 0 .6 1 9 0.681 0 .821 1.061 1.098 1.171 0 .9 1 5 0 .985 1 .137

<10,3 ( !  ~  « ) 0 .1 0 6 0.121 0 .1 5 6 0 .6 2 0 0 .6 8 4 0 .8 2 3 1 .062 1.096 1 .165

n, p and a. We use the above obtained approximate cutoff points as an approximate 

critical value for a level a  test based on K\ and K2 and Tn^ .  The number of rejections 

are counted. We have implemented all the calculations using IML procedure of SAS. 

The SAS programs are provided in Program 1 in APPENDIX.

However, in Tables 1.5 - 1.10, power estimates of the six tests are presented. Inter

pretations of the entries in each of these tables are provided in the following categories. 

Group 1: Multivariate normal distribution.

In this case, the null hypothesis is true, so each test should reject at about the 

nominal probability a. We notice that four Henze-Kirkler tests based on different 

parameters j3 have a rejection rate below or close to the a  level but the Mardia’s 

skewness and kurtosis measures based on K i and K 2 tests have a rejection rate slightly 

above the a  level for p = 3 and 5.
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Table 1.3: The approximate and empirical percentage points of K \  and K 2 of size I —a  

and sample sizes n  for p =  5.

1 — a

Kx k 2

0.90 0.95 0.99 0.90 0.95 0.99

n =  20 38.467 42.029 49.048 -0.176 0.102 0.643

n =  30 41.450 45.569 54.156 0.151 0.484 1.145

n  =  50 43.576 47.733 56.797 0.468 0.833 1.595

n  =  100 45.139 49.230 58.408 0.769 1.168 2.022

10,p i1 ~  a ) 46.059 49.802 57.342 1.282 1.645 2.326

Table 1.4: The approximate and empirical percentage points of Tn$  of size 1 — a, 

sample sizes n  and parameters 0  for p =  5.

m0IICO. 0  -  1 • 
II CO 0  =  0 5 (n )

1 -  a 0 .90 0 .95 0 .99 0 .90 0 .95 0 .99 0 .90 0 .95 0 .99 0 .9 0 0 ,95 0 .99

n  ~  20 0 .186 0 .2 0 0 0 .2 2 9 0 .8 1 3 0 .8 4 3 0 .9 0 5 1.008 1.018 1 .044 0 .8 8 0 0 .9 0 9 0.971

n  — 30 0 .192 0 .2 0 7 0 .241 0 813 0 .8 4 7 0 .9 2 0 1 .013 1 .020 1 .042 0 905 0 .9 3 7 1 .005

n  =  50 0 .1 9 5 0 .211 0 .2 4 6 0 .8 1 4 0 .8 4 7 0 .919 1 ,014 1.021 1 .037 0 .9 3 2 0 .963 1 ,026

n  =  100 0 .1 9 7 0 .2 1 4 0 .2 4 9 0 .8 1 4 0 .8 4 8 0 .9 2 4 1.015 1.021 1 .035 0 .9 6 1 0.991 1 .053

I f i , 3 ( !  “  Q ) 0 .201 0 .2 1 7 0 .2 4 9 0 .8 1 4 0 .8 4 9 0 .9 2 0 1.015 1.021 1.031

G ro u p  2: p variate t distribution.

In group 2 we generate samples from multivariate t distribution (as described in 

Johnson and Kotz, 1972) with 1, 2 and 5 degrees of freedom for p =  3 and 5.

The t distributions are symmetric and have very high kurtosis compared to normal. 

However, the t  distributions are closer to normal when degree of freedom increases, 

especially, t with degree of freedom > 30.

The Mardia’s kurtosis test based on K 2 performs very well compared to the other 

tests and the next best test is T0 .5 . The Mardia’s skewness test based on K\  performs 

better for large n.

G ro u p  3: p variate chi — square distribution.

We generate samples from multivariate chi — square distribution with 5 and 10 

degrees of freedom for p =  3 and 5. Note that chi — square distribution is skewed
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to the right. We find that T0 .5 test is generally superior to K 1 test and most of the 

Henze-Zirkler tests except T3 perform better than the K 2 test.

Group 4: p variate Gamma distribution.

We generate samples from multivariate gamma distribution (as described in Ron- 

ning (1977)) with the scale parameter fixed at 1. These gamma distributions are skewed 

to the right and have high kurtosis. However, the gamma distributions, for fixed scale 

parameter, become closer to normal as shape parameter increases and hence it is ex

pected that the power will decrease.

It shows that the test based on T0 .5  performs very well compared to the other tests. 

K i test is comparative to T0 5 test when sample size increases. K 2 and T3  tests perform 

poorly in this group.

Group 5: p variate Exponential distribution, Exp( 1).

In this group we generate samples from multivariate Exponential distribution with 

the scale parameter =  1. The performance of the tests based on T0 .5 and T\ are better 

than other tests and K i test is comparable to T0 .5  and T\ when n increases. K 2 test 

does not perform well for small n.

Group 6: p variate Contaminated normal and Exp( 1) distribution, |iV (0,1) +  

\E xp{  1).

In this group, K 2 test is superior to others but T0 .5  and Kx tests perform better 

when n is large.

Group 7: p variate Contaminated normal and t(5) distribution, ^ N (0 ,1) +  |t(5).

In this group the K 2 test performs well compared to other tests and more sensitive 

for detecting normality with n  for most cases. K i and T0 .5  tests perform better with 

large n and p.

Group 8: p variate Contaminated normal and x 2 (5) distribution, |iV (0 ,1) +  | x 2 (5)- 

It appears that the Henze-Zirkler tests except T3 perform well compared to K \ test. 

K 1 test is comparable to Henze-Zirkler tests when n =  100.

Group 9: p variate K otz type distribution.

We generate samples from Kotz type distribution (as described later in Chapter 2). 

Kotz type distribution is symmetric and heavy-tailed. Here the K 2 test performs well 

when compared to other tests and T0 .5 test performs better when p increases, but K \
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test does not perform well.

1.1.2 General Comments and Concluding Remarks

Rejection rates for Mardia’s skewness and kurtosis measures based on K \  and K i  that 

are above the a  level for small n  indicate a problem with Type I error rate. The power 

comparisons among six tests show that the power performance of Henze-Zirkler test 

varies considerably with the parameter (3. Choice j3 =  0.5 gives a very strong test 

against skewed distributions. T3 appears inferior among Henze-Zirkler tests. Perhaps 

a smaller value of /3 would do better, in general. Thus T3 is not recommended.

The Mardia’s skewness test based on K \  test and T0 .5  test have much the same 

sensitivity with K i is slightly inferior for some cases. The power performance of K \ test 

depends on the tail behavior of X, that is, K i  test is consistent against all distribution 

satisfying j3\p > 0 (Henze and Zirkler, 1990).

The test based on K i  is consistent against all alternative distributions satisfying 

Pip ^  p(p+2). Our simulation results show that K i  test is generally inferior to T0 .5  test 

if the distribution is light-tailed, but performs better against heavy-tailed distributions, 

like Kotz type distributions.

In conclusion, it is clear that the Henze-Zirkler test based on T0 .5  performs reason

ably well compared to the other tests for most cases. However, K \ and K 2 tests are 

comparative to T0 .5  for some cases.

Thus, a practitioner may use a combination of the three tests, namely, Mardia’s 

skewness and kurtosis measures based on K 1 , K 2 and Henze-Zirkler tests and use the 

strategy that all these tests must declare multivariate normality for claiming that the 

data really come from multivariate normal distribution.
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Table 1.5: Monte Carlo power estimates of Ki,  A 2, T0 .5 , Ti, T3  and Tn>p. Tests of sizes

a = 0.01 against multivariate normal, Cauchy, t, y 2  and gamma distributions.

A lte r n a tiv e n p = 3 p = 5

JCi k 2 T o .5 T i t 3 T n ,P A i k 2 ^ 0 .5 T i t 3

JVp ( 0 , I ) 20 0 .0 0 9 0 .0 1 0 0 ,0 0 9 0 .008 0 .0 0 9 0 ,0 0 8 0 .011 0 .0 0 8 0 .0 1 0 0 .0 0 9 0 ,0 1 0 0 .0 0 9

30 0 .011 0 .011 0 .010 0 .0 0 9 0 .0 0 9 0 .011 0 .0 1 2 0.011 0 .0 0 9 0 .0 0 9 0 .0 0 9 0 .0 0 8

50 0 .0 1 3 0 .0 1 2 0.011 0 .0 1 0 0 .0 1 0 0 .0 1 0 0 .011 0.008 0 .0 0 9 0 .0 0 9 0 .0 0 8 0 .0 1 0

100 0 .0 0 8 0 .0 1 0 0 .008 0 .0 0 9 0.011 0 .0 0 9 0 .0 0 9 0 .008 0 .0 1 0 0 .011 0 .0 0 9 0 .0 1 0

p-  v a r ia te 20 0 .961 0 .9 7 9 0 .9 6 9 0 .975 0 .9 3 5 0 .9 7 3 0 .9 9 5 0 .998 0 .9 9 5 0 .9 9 2 0 .8 9 2 0 .9 9 0

C a u c h y 30 0 ,9 9 2 0 .9 9 9 0 .9 9 6 0 .998 0 .9 9 4 0 .9 9 8 0 .9 9 9 1.000 0 .9 9 9 1 .000 0 .991 1 ,000

50 0 .9 9 9 1 ,000 1.000 1.000 1.000 1 .000 1 .000 1.000 1 .000 1 .000 1 .000 1 .000

100 1 .000 1.000 1.000 1.000 1.000 1 .000 1 .000 1.000 1 .000 1.000 1.000 1 .000

p -v a r ia te 20 0 .7 1 5 0 .7 8 2 0 .7 1 8 0 .6 9 5 0 ,4 6 2 0 .6 6 9 0 .8 7 5 0 .904 0 .851 0 .7 7 2 0 .3 2 8 0 .7 4 4

t(2 ) 30 0 ,8 7 2 0 .9 3 7 0 .8 9 3 0 .886 0 .7 1 0 0 .8 6 8 0 .9 7 0 0 .988 0 .9 6 9 0 .9 4 8 0 .6 7 3 0 .9 3 8

50 0 .9 6 6 0 .9 9 5 0 .986 0 .988 0 .9 3 6 0 .9 8 3 0 .9 9 9 1.000 0 .9 9 9 1 .000 0 .9 5 6 0 .9 9 8

100 0 .9 9 6 1 .000 1 .000 1.000 1 .000 1 .000 1 .000 1.000 1 .000 1 .000 1 .000 1 .000

p-  v a r ia te 20 0 .231 0.271 0 .2 2 0 0 .158 0 .0 5 4 0 .1 3 5 0 .3 6 6 0 .393 0 .315 0 .1 8 2 0 .0 3 4 0 .1 5 6

t(5 ) 30 0 .3 6 0 0 .4 4 2 0 .3 4 6 0 .2 5 9 0 .0 9 3 0 .2 1 4 0 .5 5 2 0 .637 0 .502 0 .3 2 3 0 .0 6 2 0 .2 8 3

50 0 .5 5 0 0 .7 0 6 0 .557 0 .466 0 .1 8 0 0 .3 8 7 0 ,7 9 8 0 .908 0 .7 7 7 0 .6 5 6 0 .1 6 3 0 .5 8 2

100 0 .731 0 .9 5 0 0 .829 0 .793 0 .4 3 9 0 .7 0 7 0 .9 4 0 0 .996 0 .971 0 .9 5 2 0 .4 8 9 0 .9 1 3

p- v a r ia te 20 0 .2 2 3 0 .1 4 3 0.281 0 .2 4 6 0 .0 7 0 0 .2 1 0 0 .2 1 8 0 .140 0 .3 0 0 0 .2 0 4 0 .0 2 8 0 .1 7 2

X2 (5) 30 0 .481 0 .2 6 3 0 .602 0 .5 1 8 0 .1 4 0 0 .4 3 6 0 .4 8 7 0.291 0 .6 0 4 0 .4 2 8 0 .0 4 4 0 .3 4 9

50 0 .8 3 9 0 .4 5 3 0 .9 1 3 0 .8 5 3 0 .3 3 6 0 .7 5 5 0 .8 6 8 0.511 0 .9 4 3 0 .8 3 4 0 .1 1 6 0 .7 2 4

100 1 .000 0 .7 4 3 1,000 0 .9 9 8 0 .8 2 0 0 ,9 8 7 1 .000 0 .840 1.000 1.000 0 .441 0 .9 9 2

p - v a r ia te 20 0 .1 0 7 0 .0 7 2 0 .1 2 6 0 .100 0 .0 2 9 0 .0 8 4 0 .0 8 7 0.051 0 .101 0 .0 6 4 0 .0 1 8 0 .0 5 3

X2 (10) 30 0 .2 0 2 0 .1 1 9 0 .259 0 .1 8 7 0 .0 3 6 0 .1 4 2 0 .1 8 8 0 .1 1 7 0 .2 3 3 0 .1 2 7 0 .0 2 3 0 .0 9 9

50 0 .4 9 0 0 .2 0 9 0 .575 0 .428 0 .0 8 4 0 .3 1 0 0 .4 9 5 0 .244 0 .589 0 .3 6 2 0 .0 3 5 0 .2 6 0

100 0 .9 2 2 0 .3 9 4 0 .953 0 .861 0 .2 6 9 0 .6 8 6 0 .9 5 4 0.461 0 .975 0 .8 3 7 0 .0 8 5 0 .6 5 6

p-  v a r ia te 20 0 ,311 0 .1 9 3 0 .381 0 .3 4 4 0 .1 0 9 0 .3 0 2 0 ,3 0 3 0 .195 0 .3 9 3 0 .2 8 5 0 .0 4 0 0 .251

G (2 , 1) 30 0 .5 9 3 0 .3 2 8 0 ,7 0 8 0 .6 4 4 0 .2 2 7 0 .5 6 6 0 .6 1 6 0 .374 0 .7 3 8 0 .5 7 3 0 .0 7 6 0 .491

50 0 .9 3 0 0 .5 4 6 0 .968 0 .935 0 .5 0 3 0 .8 7 9 0 .9 5 3 0 .6 4 7 0 .981 0 .9 3 3 0 .2 0 4 0 .871

100 1 .000 0 .841 1.000 1.000 0 .9 4 8 0 .9 9 9 1 .000 0 .926 1.000 1 .000 0 .6 9 8 0 .9 9 9

p- v a r ia te 20 0 .0 9 5 0 .064 0 .118 0 .0 9 7 0 .0 2 5 0 .0 8 0 0 .0 8 9 0 .056 0 .115 0 .071 0 .0 2 3 0 .061

G (5 , 1) 30 0 .2 0 7 0 .1 1 0 0 .258 0 .1 8 7 0 .041 0 .1 4 7 0 .1 9 0 0.111 0 .243 0 .1 2 9 0 .021 0 .1 0 5

50 0 .4 8 2 0 .2 1 3 0 .5 7 5 0 .4 3 3 0 .0 8 5 0 .3 0 9 0 .4 9 8 0 .228 0 .591 0 .3 6 4 0 .0 3 5 0 .2 6 3

100 0 .9 2 0 0 .3 9 5 0.951 0 .8 6 2 0 .2 6 8 0 .6 8 5 0 .9 5 7 0 .469 0 .9 7 6 0 .8 6 2 0 .0 9 2 0 ,6 7 5
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Table 1.6: Monte Carlo power estimates of K \, K 2l T0 .5 , T\, T 3  and TUil3 .  Tests of sizes 

a  =  0.01 against Exp(  1), contaminated normal and Exp(l). contaminated normal and 

t(5), contaminated normal and %2 (5), and Kotz type distributions.

A lte r n a tiv e n p = 3 P - 5

K l k 2 T o .5 T i t 3 k 2 T o .5 T i t 3

p - v a r ia te 20 0.631 0 .421 0 .7 4 6 0 .751 0 .4 1 0 0 .7 1 3  . 0 .6 4 7 0 .456 0 .7 6 7 0 .691 0 .1 5 4 0 .6 4 7

E x p ( l ) 30 0 .8 9 4 0 .6 0 9 0 .9 5 9 0 .9 5 6 0 .7 3 3 0 .9 3 5 0.931 0.713 0 .9 7 4 0 .9 4 6 0 .3 8 0 0 .9 2 3

50 0 .9 9 8 0 .8 4 2 1.000 1 .000 0 .9 7 8 0 ,9 9 9 0 .999 0.923 1 .000 1 .000 0 .8 3 2 1.000

100 1 .000 0 .9 9 0 1.000 1.000 1 .000 1 .000 1.000 0 ,998 1 .000 1 .000 1 .000 1.000

p-  v a r ia te 20 0 .1 6 9 0 .2 0 0 0 .161 0 .1 2 5 0 .0 6 3 0 .1 1 0 0 .1 8 8 0.197 0 .1 6 2 0 ,0 9 8 0 .0 2 9 0 .0 8 9

1 J V (0 ,1 ) 30 0 .2 8 3 0 .3 3 2 0 ,2 7 8 0 .2 2 0 0 .1 1 3 0 .1 9 4 0.327 0 .387 0 .2 8 0 0 .1 7 0 0 .0 4 9 0 .1 4 7

+  J .E x p ( l ) 50 0 .4 3 3 0 .5 4 2 0 .4 3 7 0 .3 9 5 0 .2 2 6 0 .353 0.559 0 .655 0 .5 2 0 0 .3 9 6 0 ,1 1 4 0 .346

100 0 .6 8 9 0 ,8 4 6 0 .7 4 2 0 .7 5 5 0 .6 1 2 0 .7 3 3 0 .828 0.930 0 .8 4 7 0 .8 0 0 0 .3 6 2 0 .745

p -v a r ia te 20 0 .1 0 5 0 .104 0 .0 8 7 0 .051 0 .0 1 9 0 .0 3 9 0 .105 0.097 0 .0 8 6 0 .0 3 7 0 .0 1 5 0 .0 3 0

A jV (O .l) 30 0 .1 6 5 0 .185 0 .141 0 .0 7 3 0 .0 2 3 0 .055 0 .1 9 7 0 .207 0 .1 5 0 0 .0 5 5 0 .0 1 7 0.041

+  i ‘ (5) 50 0 .2 7 7 0 .3 4 6 0 .2 3 7 0 .1 2 8 0 .0 3 2 0 .0 9 0 0 .3 3 7 0 .403 0 .2 5 9 0 .1 0 6 0 .0 2 8 0 .076

100 0 .4 2 3 0 .6 0 2 0 .3 9 6 0 .2 4 5 0 .0 6 6 0.161 0 .5 4 4 0.714 0 .4 6 2 0 .2 5 2 0 .0 3 9 0.169

p-  v a r ia te 20 0 .2 9 9 0.168 0 .4 2 7 0 .4 7 6 0.201 0.441 0,280 0 .161 0 .4 2 7 0 .3 7 9 0 .0 6 5 0 .3 3 9

5 » ( 0 , 1 ) 30 0 .5 6 5 0 .2 5 4 0 .7 5 2 0 .7 7 5 0 .4 3 2 0 .738 0 .572 0 .289 0 .771 0 .7 1 2 0 ,1 4 6 0 .648

+  5 X 2 (B) 50 0 .929 0 .441 0 .9 8 4 0 .9 8 3 0 .8 1 2 0 .9 7 0 0.944 0 .516 0 .9 8 9 0 .9 7 9 0 .4 1 5 0 .9 5 8

100 1 .000 0 .728 1 .000 1 .000 0 .9 9 9 1 .000 1 .000 0 .820 1.000 1 .000 0 .9 4 5 1 .000

p- v a r ia te 20 0 .1 6 4 0 .219 0 .1 4 6 0 .122 0 .051 0 ,1 0 7 0 .158 0 .187 0 .1 3 5 0 .0 7 5 0 .021 0.063

K o tz  T y p e 30 0 .2 2 9 0 .3 3 7 0 .2 2 4 0 .181 0 .0 8 9 0 .164 0.266 0 ,375 0 .2 1 9 0 .1 4 0 0 .0 3 7 0 .128

50 0 .3 5 9 0 .5 9 4 0 .3 9 3 0 .3 9 4 0 .191 0 .3 6 0 0 .4 1 7 0 .639 0 .391 0 .3 1 7 0 .081 0.276

100 0.461 0 .8 7 9 0 .6 6 2 0 .7 3 6 0 .4 8 2 0 .6 9 9 0 .6 1 7 0 .924 0 .7 4 0 0 .7 2 7 0 .2 5 6 0 .6 5 7
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Table 1.7: Monte Carlo power estimates of Ky, K2, T0 .5 , Ti, T3 and Tn.p. Tests of sizes

a — 0.05 against multivariate normal, Cauchy, t, y 2 and gamma distributions.

A lte r n a t iv e n p = 3 p —5

K i k 2 ^  0.5 T i T Z K i k 2 T0.5 T i t 3 T n ,0

JVp ( 0 , I ) 20 0 .0 4 6 0 .0 5 3 0 .0 4 8 0 .0 4 7 0 .045 0 .0 4 8 0 .055 0.056 0 .0 5 0 0 .0 5 0 0 .051 0 .0 5 0

30 0 .0 5 2 0 .0 5 4 0 .0 5 0 0 .0 4 6 0 .0 4 4 0.046 0.051 0 .050 0 .0 4 8 0 .0 4 3 0 .0 4 6 0 .0 4 3

50 0 .050 0 .0 5 2 0 .0 4 6 0 .0 4 3 0 .0 4 8 0 .045 0 .0 5 0 0 .048 0 .0 4 4 0 .0 4 8 0 .0 4 5 0 .0 4 9

100 0.050 0 .0 5 4 0 .0 5 0 0 .0 5 0 0 .0 4 5 0 .0 4 4 0 ,0 5 8 0 .0 4 6 0 .0 5 0 0 .0 4 6 0 .0 4 5 0 ,0 4 8

p- v a r ia te 20 0 .9 8 0 0 .9 9 2 0 .9 8 2 0 .9 8 3 0 .9 5 7 0 .9 8 2 0 .9 9 7 0 .998 0 .9 9 8 0 .9 9 5 0.942 0 .9 9 4

C a u c h y 30 0 .9 9 6 0 .9 9 9 0 .9 9 8 0 .9 9 8 0 .9 9 5 0 .9 9 8 1 .000 1.000 1 .000 1 .000 0 .9 9 7 1.000

50 1 .000 1 .000 1 ,000 1 .000 1 .000 1 .000 1 .000 1.000 1 ,000 1 .000 1 .000 1 .000

100 1 .000 1 .000 1 .000 1 .000 1 ,000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000 1 .000

p -v a r ia te 20 0 .8 3 3 0 .8 9 0 0 .8 3 6 0 .7 9 9 0 .6 0 9 0 .7 7 7 0 .9 3 6 0 .958 0 .9 2 6 0 .8 5 9 0 .5 2 4 0 .8 4 0

t(2 ) 30 0 .9 3 0 0 .9 7 4 0 .9 4 5 0 .9 3 9 0 .812 0 .9 2 7 0 .9 8 9 0 ,996 0 .9 8 6 0 .9 7 6 0.791 0 .9 6 8

50 0 .985 0 .9 9 9 0 .9 9 5 0 .9 9 4 0 .9 6 5 0 .993 1 .000 1 ,000 1 .000 1 .000 0 ,9 7 4 0 .9 9 9

100 0 .999 1 ,000 1 .000 1.000 1 .000 1 .000 1 .000 1 .000 1 .000 1.000 1 .000 1 .000

p-  v a r ia te 20 0 .413 0 .4 2 6 0 .3 7 7 0 .2 8 8 0 .1 2 7 0.251 0 .543 0.592 0 .4 9 9 0 .311 0 .1 2 0 0 ,2 7 8

t(5 ) 30 0 .5 4 3 0 .6 3 8 0 .5 2 3 0 .4 2 5 0 .1 9 6 0 .3 6 3 0 .7 2 2 0 .808 0 .6 8 3 0 .5 0 8 0 .1 7 2 0 .4 5 6

50 0 .675 0 .8 4 5 0 .691 0 .6 1 4 0 .3 1 8 0 .548 0 .8 9 0 0,964 0 .881 0 .7 7 5 0 .3 0 3 0 ,7 0 7

100 0 .832 0 .9 8 3 0 .9 1 0 0 ,891 0 ,6 0 2 0 .8 2 7 0 .9 8 0 0 .9 9 9 0 .991 0 .9 8 2 0 .6 4 7 0 .9 6 2

p-  v a r ia te 20 0 .436 0 .298 0 .5 3 4 0 .4 7 9 0 .1 9 8 0 .4 3 4 0 .4 0 7 0 305 0 .5 0 9 0 .3 9 3 0 .1 1 2 0 .3 5 5

X2 (5) 30 0 .7 0 7 0 .4 4 0 0 .801 0 .7 3 8 0 .309 0 .661 0 .688 0 .470 0 .7 9 6 0 .6 5 0 0 .1 4 9 0 ,5 7 3

50 0 .9 5 4 0 .641 0 .981 0 .9 5 5 0 .571 0 .911 0 .9 9 6 0 .702 0 .9 8 7 0 ,9 3 9 0 .2 9 5 0 .8 7 6

100 1.000 0 .8 7 3 1 .000 1.000 0 .9 3 2 0 .998 1 .000 0 .933 1 .000 1 .000 0 .6 8 5 0 .9 9 8

p -v a r ia te 20 0 .253 0 .181 0 .2 9 7 0 .2 4 5 0 ,1 0 0 0 .2 1 7 0 .2 1 6 0 .1 6 7 0.271 0 ,1 8 4 0 .072 0 .1 7 0

to O 30 0 .4 3 7 0 .2 6 7 0 .5 0 6 0 .4 1 4 0 .1 4 5 0 .3 4 3 0 .3 8 0 0 .256 0 .4 6 3 0 .3 0 9 0 .0 7 8 0 .2 5 7

50 0.721 0 .3 7 4 0 .7 8 0 0 .6 5 9 0 .230 0 .5 3 9 0 .7 1 7 0 .414 0 .8 0 2 0 .6 0 0 0 .1 1 5 0 .4 7 6

100 0 .9 7 8 0 .5 9 2 0 .991 0 .9 5 8 0 .486 0 .8 6 4 0.991 0 .663 0 .9 9 8 0 .9 5 3 0 .2 5 0 0 .8 5 2

p - v a r ia te 20 0 .536 0 .3 6 8 0 .6 2 5 0 .5 8 4 0 .2 5 5 0 .535 0 .5 2 2 0 .3 8 7 0 .6 2 6 0 .5 0 0 0 .1 4 9 0 .4 6 2

G (2 , 1) 30 0 .802 0 .5 3 5 0 .8 8 1 0 .8 2 7 0 .4 2 5 0 .771 0 .8 0 9 0 .5 7 8 0 .9 0 0 0 .7 7 5 0 .202 0 .711

50 0.981 0 .7 2 2 0 .9 9 4 0 .9 8 4 0 .7 2 6 0 .9 5 8 0 .9 8 5 0 .792 0 .9 9 6 0 .9 8 0 0 .4 1 7 0 .9 5 3

100 1 .000 0 .9 3 5 1 .000 1 .000 0 .9 8 7 1 .000 1 .000 0 .974 1 .000 1 .000 0 .8 5 6 1 .000

p- v a r ia te 20 0 .2 5 3 0 .1 8 3 0 .2 9 2 0 .2 4 2 0 .0 9 6 0 .216 0 .2 1 9 0 .1 7 0 0 .2 6 6 0 .1 9 5 0 .0 7 5 0 .178

0 ( 5 ,  1) 30 0 .4 1 0 0 .2 5 2 0 .4 8 9 0 .3 9 7 0 .1 3 7 0 .325 0 .3 9 3 0 .2 5 7 0 .4 7 2 0 .3 0 7 0 .0 7 9 0 .2 5 5

50 0 .703 0 .3 6 8 0 .7 6 7 0 .6 5 3 0 .2 2 9 0 .5 4 0 0 .721 0 .4 1 4 0 .7 9 8 0 .5 9 9 0 .123 0 .4 8 0

100 0 .981 0 .5 7 9 0 .9 9 0 0 .9 5 2 0 .4 8 9 0 .8 5 9 0 .9 8 9 0 .666 0 .9 9 6 0 .9 4 6 0 .2 4 6 0 .8 4 4
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Table 1.8: Monte Carlo power estimates of Ki, K2l T0 .5 , Ti, T3 and Tn Tests of sizes 

a — 0.05 against Exp(l) , contaminated normal and Exp(l) ,  contaminated normal and 

t(5), contaminated normal and x 2 (5), and Kotz type distributions.

A lte r n a tiv e n p = 3 p = 5

K X k 2 T o .5 T i r 3 * 1 k 2 T o .5 T i t 3

E x p ( l ) 20 0 .816 0 .5 9 5 0 .8 9 8 0 .891 0 .6 2 3 0 .8 6 8 0 .8 1 9 0 .6 5 4 0 .9 0 4 0 .849 0 .3 6 7 0 .820

30 0 .974 0 .7 8 3 0 .9 9 2 0 .991 0 .8 7 9 0 .9 8 4 0 ,9 8 7 0 .8 6 2 0 .9 9 7 0 .9 8 6 0 ,602 0 .9 7 5

50 1.000 0 .9 3 6 1 .000 1.000 0 .9 9 5 1.000 1 .000 0 .9 7 4 1 .000 1,000 0 .9 2 9 1 .000

100 1.000 0 .9 9 7 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1 .000

p- v a r ia te 20 0.332 0 .3 8 3 0 .3 1 8 0 .2 4 7 0 .158 0 .2 2 4 0 .3 7 8 0 .420 0 .3 3 9 0 .211 0 .112 0 .194

£ * ( 0 , 1 ) 30 0 .444 0 .5 3 3 0 .4 3 4 0 .3 6 2 0 .2 2 9 0 .3 3 3 0 .5 2 2 0 .6 0 2 0 .4 8 0 0 .321 0 .1 3 6 0 .288

+ ± E x p (  1) 50 0 .6 1 7 0 ,7 5 4 0 .6 2 7 0 .5 9 4 0 .424 0 .5 6 2 0 .7 2 0 0 .8 1 6 0 .6 8 7 0 570 0 .2 6 4 0 .5 2 6

100 0 .813 0 .9 4 2 0 ,8 5 7 0 .8 8 3 0 .775 0 .8 7 4 0 .9 1 0 0 .9 8 0 0 .9 2 7 0 .903 0 .538 0 .865

p -v a r ia te 20 0 .215 0 .2 3 4 0 .1 9 5 0 .1 3 7 0 .070 0 .1 2 0 0.231 0 .241 0 .2 0 4 0 .109 0 .0 7 0 0 .099

jJ V ( O .l ) 30 0 .3 0 5 0 .3 4 7 0 .2 7 3 0 .1 8 4 0 .0 8 6 0 .1 4 6 0 .3 4 7 0 .3 8 2 0 .2 9 9 0.151 0 .071 0 .1 2 9

+  2 ‘ (5) 50 0 .4 0 8 0 .5 0 8 0 .3 7 5 0 .2 5 2 0 .111 0.191 0 .4 8 7 0 .5 7 6 0 .4 1 8 0 .2 2 4 0 .0 8 0 0 .1 7 4

100 0 .561 0 ,7 5 2 0 .5 4 9 0 .4 0 2 0 .1 6 0 0 .2 9 9 0 .691 0 .840 0 .6 4 0 0 .4 1 7 0 .111 0 .3 0 7

p -v a r ia te 20 0 .564 0 .3 3 4 0 .6 8 8 0 ,7 1 6 0 .408 0 .6 8 7 0 .5 0 0 0 .3 2 8 0 .6 6 6 0 .6 0 0 0 .200 0 .566

jJ V ( O .l ) 30 0 .795 0 .4 4 7 0 .9 2 0 0 .9 1 9 0 .6 4 9 0.891 0 .7 8 6 0 .4 9 3 0 .9 1 5 0 .875 0 .324 0 .843

+  4 x 2 (5) 50 0 .983 0 .6 2 5 0 .9 9 8 0 .9 9 7 0.931 0 .9 9 3 0 .9 8 7 0 .7 1 0 0 .9 9 9 0 ,9 9 5 0 .6 5 5 0 .9 8 9

100 1.000 0 .8 6 0 1 .000 1 .000 0 .9 9 9 1 .000 1 .000 0 .9 2 0 1 .000 1 .000 0 ,9 8 3 1.000

p- v a r ia te 20 0 .3 3 4 0 .4 1 7 0 .3 0 0 0 .2 4 8 0 .1 3 7 0 .2 3 0 0 .351 0 .4 2 4 0 .3 0 8 0 .1 9 3 0 .1 0 4 0 .1 7 9

K o tz  T y p e 30 0 .425 0 .5 8 0 0 .4 1 6 0 .3 5 9 0 .2 0 4 0 .3 2 6 0 .4 6 4 0 .6 0 0 0 .4 0 8 0 .2 7 9 0 .1 1 7 0 .2 4 3

50 0 .5 4 2 0 ,7 9 5 0 .5 8 2 0 ,5 7 0 0 .3 5 0 0 .5 2 9 0 .6 2 8 0 .8 3 3 0 .6 0 7 0 .502 0.195 0 .4 5 2

100 0.662 0 .9 6 5 0 .8 1 9 0 .8 6 5 0 .663 0 .8 4 5 0 .7 7 9 0 .9 8 6 0 .8 6 3 0 .8 5 2 0 .425 0 .8 0 2
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Table 1.9: Monte Carlo power estimates of Ki, K 2 , T0 .5 , Ti, T3 and Tn^.  Tests of sizes

a = 0.10 against multivariate normal, Cauchy, t, y 2 and gamma distributions.

A lte rn a tiv e n p =  3 p = 5

K l k 2 T o .5 T i t 3 T n ,l3 K \ k 2 T o .5 T’l T 3 T« ,/)

JV p(O .I) 20 0 .1 0 0 0 .1 0 2 0 .0 9 6 0 .100 0,096 0 .0 9 8 0 .0 9 7 0 .1 0 0 0 .0 9 4 0 .0 9 6 0 .1 0 0 0 .0 9 4

30 0 .1 0 2 0 .0 9 9 0 .0 9 7 0 .098 0.098 0 .0 9 7 0 .0 9 7 0 .096 0.095 0 .0 9 2 0 .094 0 .0 9 4

50 0 .0 9 5 0 .0 9 4 0 .0 9 6 0 .096 0 .0 9 6 0 .0 9 8 0 .101 0 .092 0 .0 9 8 0 .1 0 0 0 .1 0 6 0 .0 9 9

100 0 .0 9 9 0 .1 0 3 0 .1 0 0 0 .0 9 8 0 .0 9 2 0 .0 9 8 0 .091 0 .0 8 7 0 .1 0 0 0 .095 0 ,0 9 6 0 .0 9 6

p -v a r ia te 20 0 .9 8 6 0 .9 9 5 0 .9 9 0 0 .989 0 .9 6 5 0 .9 8 8 0 .9 9 8 0 .9 9 9 0 .9 9 8 0 .998 0 .9 6 6 0 .9 9 6

C a u c h y 30 0 .9 9 8 1 .000 1 .000 1.000 0 .998 1 .000 1 .000 1.000 1.000 1.000 0 .9 9 8 1 .000

50 1 .000 1 .000 1.000 1.000 1.000 1.000 1 .0 0 0 1,000 1.000 1 .000 1.000 1.000

100 1.000 1 .000 1 .000 1.000 1 .000 1.000 1 .000 1.000 1.000 1.000 1.000 1.000

p -v a r ia te 20 0 .8 6 9 0 .9 2 5 0 .865 0 .8 3 6 0 ,6 6 3 0 .8 2 3 0 .9 5 7 0 .975 0 .9 4 8 0 .8 9 3 0 .6 3 8 0 .8 7 7

t(2 ) 30 0 .9 5 6 0 .9 8 4 0.961 0 .956 0 .846 0 .9 4 3 0 .9 9 3 0 .999 0 .992 0 .9 8 4 0 .8 4 2 0 .9 7 7

50 0 .9 9 0 1 .000 0 .9 9 7 0 .9 9 7 0 .974 0 .9 9 6 1 .000 1.000 1.000 0 .9 9 9 0 .9 8 4 0 .9 9 9

100 0 .9 9 9 1 .000 1 .000 1 .000 1.000 1.000 1 .0 0 0 1 .000 1.000 1.000 1.000 1.000

p- v a r ia te 20 0 .5 0 6 0 .5 8 0 0 .4 8 3 0 ,3 7 5 0 .2 0 2 0 .3 4 0 0 .6 4 4 0 .701 0 .5 8 8 0 .4 0 3 0 .2 0 6 0 .3 6 7

t(5 ) 30 0 .6 3 0 0 .7 4 3 0 .6 1 5 0 .509 0 ,2 6 7 0 .4 5 3 0 .8 0 6 0 .881 0 ,7 6 0 0 .5 8 7 0 .2 5 6 0 .5 3 9

50 0 .7 7 0 0 .8 9 9 0 .7 7 3 0 .698 0 .409 0 .6 3 2 0 .9 2 2 0 .9 7 7 0 .913 0 .8 2 7 0 .3 9 7 0 .7 7 6

100 0 .8 7 9 0 .9 9 0 0 .9 4 2 0 .925 0 .690 0 .8 8 0 0 .9 8 6 0 .999 0 .996 0 .9 8 8 0 .7 3 0 0 .9 7 8

p - v a r ia te 20 0 .5 6 6 0 .4 0 8 0 .6 4 7 0 .5 9 6 0 .2 7 8 0 .5 5 2 0 .5 3 7 0 .412 0 .638 0 ,5 1 2 0 .2 0 0 0 .4 6 5

X2 (5) 30 0 .7 9 5 0 .5 3 2 0 .8 6 7 0 .8 0 8 0 .4 2 3 0 .751 0 .7 9 7 0 .5 8 4 0 .8 7 8 0.761 0 ,2 4 7 0 .6 9 2

50 0 .9 7 3 0 .7 1 6 0 .9 8 8 0 .9 7 4 0 .6 8 0 0 .9 4 0 0 .9 8 0 0 .792 0 .9 9 4 0 .9 6 4 0 .412 0 .9 2 5

100 1 .000 0 .9 2 2 1 .000 1 .000 0 .9 5 9 0 .9 9 9 1 .000 0 .958 1.000 1.000 0 .7 7 2 0 .9 9 9

p -v a r ia te 20 0 .3 7 2 0 .281 0 .4 2 6 0 .360 0 .1 6 9 0 .3 2 3 0 .3 3 4 0 .2 6 4 0 .382 0.291 0 .1 4 9 0 .2 6 7

X2 (10) 30 0 .5 4 2 0 .3 5 7 0 .6 1 4 0 .520 0 .228 0 .451 0 .5 1 5 0 .368 0 .5 7 9 0 .4 4 9 0 .151 0 .3 8 5

50 0 .8 1 2 0 .4 7 2 0 .8 6 0 0 .768 0 .3 4 0 0 .6 6 4 0 .821 0 .5 2 7 0 .8 8 4 0 .708 0 .2 0 4 0 .5 9 9

100 0 .9 9 2 0 .6 7 9 0 .9 9 5 0 .9 7 8 0 .6 3 0 0 .921 0 ,9 9 7 0 .7 5 5 0 .9 9 9 0 .9 7 0 0 .351 0 .8 9 8

p -v a r ia te 20 0 .6 6 8 0 .4 7 6 0 .7 5 0 0 .701 0 .3 6 0 0 .6 4 7 0 .621 0 .485 0.721 0 .6 0 5 0 .2 3 6 0 .5 6 5

G (2 , 1) 30 0 .8 6 4 0 .6 1 3 0 .9 2 6 0 .893 0 .5 4 4 0 .8 4 9 0 .8 7 4 0 .675 0 .940 0.861 0 .3 0 4 0 .811

50 0 .9 9 2 0 .801 0 .9 9 7 0 .992 0 .814 0 .9 7 7 0 .9 9 5 0 .8 6 7 1.000 0 .9 9 2 0 .5 3 7 0 .9 7 2

100 1 .000 0 .9 5 9 1 .000 1 .000 0 .993 1 .000 1 .0 0 0 0 .988 1 .000 1.000 0 .9 1 7 1 .000

p -  v a r ia te 20 0 .3 6 2 0 .2 7 2 0 .4 0 7 0 .3 5 2 0 .178 0 .3 2 2 0 .3 2 8 0 .269 0 .395 0 .3 0 3 0 ,1 4 4 0 .2 7 6

G (5 , 1) 30 0 .5 4 6 0 .351 0 .6 1 4 0 .513 0 .2 2 4 0 .441 0 ,5 1 3 0 .3 6 4 0 .5 9 3 0 .4 5 0 0 .1 5 7 0 .3 9 3

50 0.811 0 .4 8 0 0 .8 6 4 0 .7 6 2 0 .3 3 9 0 .6 5 7 0 .8 0 9 0 .5 2 3 0 ,8 7 7 0 .7 0 8 0 .1 9 9 0 .6 0 2

100 0 .9 9 0 0 .6 7 4 0 .9 9 6 0 .9 7 8 0 .6 2 0 0 .9 1 5 0 .9 9 6 0 .758 0 .999 0 .9 7 5 0 .3 5 9 0 .9 1 0
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Table 1.10: Monte Carlo power estimates of K i, K 2 , T0 .5 , Ti, T3  and Tn>p. Tests of sizes 

a  =  0.10 against Exp(  1), contaminated normal and Exp(l), contaminated normal and 

f(5), contaminated normal and x 2 (5), and Kotz type distributions.

A lte r n a tiv e n p - 3 p = 5

K i k 2 T 0.5 T i t 3 T n . f i K t * 2 T 0.5 T i 7 3 7  n ,fi

E x p ( l ) 20 0 .8 9 2 0 .6 9 6 0 .9 4 5 0.936 0 .7 2 5 0 .9 2 3 0 .8 9 5 0.757 0 ,9 5 0 0 .9 0 5 0 .4 8 0 0 .8 8 4

30 0 .9 8 9 0 .8 5 2 0 .9 9 7 0.994 0 .9 2 3 0 .9 9 0 0 .9 9 3 0.901 0 .9 9 9 0 .9 9 4 0 .7 1 7 0 .9 8 9

50 1 .000 0 .9 6 2 1 .000 1.000 0 .996 1 .000 1 .000 0 .985 1.000 1 .000 0 .9 5 6 1 .000

100 1 .000 1 .000 1 .000 1 .000 1.000 1 .000 1 .000 1.000 1.000 1 .000 1 .000 1 .000

p -v  a r ia te 20 0 .4 3 8 0 .5 1 7 0 .4 1 7 0 .353 0 .2 3 6 0 .3 2 9 0 .4 7 9 0 .539 0 .4 2 9 0 .2 9 3 0 .1 8 5 0 ,2 7 0

§ N ( 0 , 1 ) 30 0 .5 5 8 0 .6 6 8 0 .5 4 0 0 .476 0 .3 4 0 0 .4 4 2 0 ,6 3 6 0 .712 0 .5 8 5 0 .4 3 2 0.231 0 .3 9 5

+  | B x p ( l ) 50 0 .7 0 5 0 .8 3 8 0 .7 0 8 0 .676 0 .5 1 5 0 .6 4 8 0 .7 9 8 0 .882 0.771 0 .6 5 6 0 .3 4 5 0 .6 0 9

100 0 .8 6 8 0 .9 7 2 0 .912 0 .926 0 .842 0 .9 2 0 0 .9 4 9 0 .990 0 .978 0 .932 0 .651 0 .9 0 8

p - v a r ia te 20 0 .2 9 9 0 .3 2 2 0 .2 8 0 0 .2 0 3 0 .1 1 4 0 .1 8 0 0 .3 2 0 0 .3 3 7 0 .2 9 8 0 .1 8 0 0 .1 2 2 0 .1 6 2

f jV ( O . l ) 30 0 .3 8 2 0 .4 3 9 0 .3 5 9 0 .265 0 .148 0 .2 2 4 0 .4 3 7 0 .480 0 .3 8 2 0 .2 2 2 0 .1 2 7 0 .1 9 0

+  4 * (5 ) 50 0 .5 0 5 0 .6 0 5 0 .4 6 9 0 .347 0 .1 8 4 0 .2 8 5 0 .5 8 7 0 .663 0 .529 0 .3 0 7 0 .1 4 9 0 ,2 5 9

100 0 .641 0 .8 2 6 0 .6 3 6 0 .505 0 .242 0 .3 9 3 0 .7 6 2 0 .894 0 .722 0 .5 0 3 0 .1 9 2 0 .3 9 4

p - v a r ia te 20 0 .671 0 .4 3 4 0 .803 0 .8 1 9 0 .523 0 .7 9 3 0 .6 1 8 0 .449 0 .7 6 3 0 .7 0 9 0 .3 3 4 0 .6 7 7

b ( o , i > 30 0 .8 8 5 0 .5 6 6 0 .9 5 6 0 .9 5 3 0.761 0 .9 3 7 0 .8 7 9 0 .596 0 .9 5 9 0 .9 3 2 0 .4 5 2 0 .9 0 4

+ i x 2 (s ) 50 0 .9 9 7 0 .7 2 7 0 .9 9 9 0 .9 9 9 0 .9 5 8 0 .9 9 8 0 .9 9 6 0 .786 1 .000 0 .9 9 7 0 .7 4 9 0 .9 9 5

100 1 .000 0.921 1.000 1,000 1 .000 1 .000 1 .000 0 .955 1 .000 1 .000 0 .9 9 3 1 .000

p -v a r ia te 20 0 .4 4 8 0 .5 5 2 0 .4 1 5 0 .336 0 .2 0 4 0 .3 0 3 0 .4 6 0 0 .534 0 .4 0 6 0 ,2 6 5 0 .1 7 4 0 .2 4 8

K o tz  T y p e 30 0 .5 4 3 0 .7 1 3 0 .539 0 .468 0 .285 0 .4 3 2 0 .5 8 0 0 .713 0 .5 1 9 0 .3 6 8 0 .1 9 2 0 .3 3 6

50 0 .631 0 .8 6 8 0 .666 0 .6 5 7 0 .4 3 6 0 .6 1 6 0 .7 2 5 0 .903 0 .6 9 7 0 .5 8 9 0 .2 7 6 0 .5 4 8

100 0 .751 0 ,9 8 7 0.891 0 .9 1 9 0 .7 5 0 0 .8 9 5 0 .8 5 6 0 .992 0 .9 1 3 0 .891 0 .5 0 7 0 .8 4 8
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1.2 Overview of Thesis

As we noted, most of the inferential statistical methods for multivariate data are de

veloped under the fundamental assumption that the data are from multivariate normal 

distribution. Unfortunately, as we speculated in this chapter, one can never be sure 

that a set of data is really from a multivariate normal distribution. As we observed, 

there are numerous methods for checking (testing) multivariate normality, but based 

on many published and our own simulation studies we conclude that these tests are 

generally not very powerful, especially for smaller sample sizes. Hence it is beneficial 

to have alternative multivariate distributions available along with the methodology for 

using them.

In this dissertation, we focus on a probability distribution, called Kotz type distri

bution, which has fatter tail regions than tha t of multivariate normal distribution and 

has its probability density function (pdf) in the form

/(x ,/u ,E ) =  c | E  |~s exp {—[(x — /x)/E _1(x — £t)]^},

r(£)where u  £ E  is a positive definite matrix and c =  —w2— .^ 27:2 r(p)
Since, for p =  1 this pdf reduces to that of a double exponential distribution we may 

consider this as a multivariate generalization of double exponential distribution. How

ever, this is not a multivariate double exponential distribution, because its marginals 

are not double exponential distributions.

In Chapter 2, adopting the Newton-Raphson method for optimization we derive 

the maximum likelihood (ML) estimates of location parameter and covariance matrix 

under a variety of covariance structures, such as, AR(1 ), equicorrelation, and unstruc

tured covariance structures. The optimization process gives unique ML estimates in 

the feasible regions under covariance structures. The ML estimate of the location pa

rameter under the assumption of Kotz type distribution is same as the generalized 

spatial median (GSM) defined by C. R. Rao (1988). Goodness-of-fit tests using multi

variate skewness and kurtosis measures for Kotz type distribution are proposed using 

the results of Baringhaus and Henze (1992) and Henze (1994). The ML estimates of 

the parameters under Kotz type and multivariate normal distributions are compared
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using different criteria. As expected, the ML estimates under Kotz type distribution 

do better than normal ML estimates when the data are simulated from Kotz type 

distribution and vice versa.

In Chapter 3, the likelihood ratio tests are applied for testing the hypothesis of 

the location parameters. Further, using the asymptotic distribution of these estimates, 

construction of the simultaneous confidence intervals for linear combinations of the 

location parameters is shown.

Finally, in Chapter 4, we use Kotz type densities for determining classification rules 

that minimize the expected cost of misclassification under equal prior probabilities and 

equal misclassification costs. The classification rule under a common variance covari

ance matrix is same as the normal based method except that the parameter estimates 

used are the ML estimates of the parameters under Kotz type distribution. The perfor

mance of sample classification functions are evaluated using a nearly unbiased estimate 

of the expected actual error rate calculated from Lachenbruch’s holdout procedure un

der the equal prior probabilities and equal misclassification costs. The classification 

rules under Kotz type distribution perform quite well as compared to those based on 

multivariate normal distribution.
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CHAPTER II

A KOTZ TYPE DISTRIBUTION AND ESTIMATION OF

PARAMETERS

2.1 Introduction

In this chapter we introduce a multivariate probability distribution, named Kotz type 

distribution, which will be focus of our study. In the following subsections we provide 

the definition and properties of this distribution.

2.1.1 Definition

Probability density function of Kotz type distribution of a p x 1 random vector is given

by

/ ( x , / j , £ )  = c  | £  | " 2  exp { —[(x — ^t)/S “ 1(x — / i) ] i}, /J .E W ,  £  p. d. (2 .1 )

u r ( f )where c =  —w1— .
27r5r(p)

We note that this distribution has fatter tail regions than that of multivariate 

normal distribution and hence can be an alternative model to the multivariate normal 

distribution.

The above pdf has appeared at many places in the literature in different forms. For 

example, the pdf is a special case of the following families of distributions:

(i) Multivariate distributions proposed by Simoni (1968)

Simoni (1968) has considered generalizations of the univariate Subbotin distri

bution. These have the pdf proportional to

ex p {-^ [(x  -  £)'A (x -  C)35}, 

where A is p. d. and r  > 1. For r  =  1 one obtains our multivariate distribution.
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(ii) Elliptically symmetric distributions (Johnson, 1987)

D efin ition . Let x  be a p x 1 random vector, pi be a p x 1 vector in Kp, and 

X be a p x p non-negative definite matrix. Then x  has an elliptically contoured 

distribution, denoted by ECp(pi, X, g) if the characteristic function 0 x_ ^(t) of 

x  — jLt is a function of the quadratic form t 'X t  as 0 x_^(t) — 0 ( t 'X t) . This form 

can be written as

0 x - / x ( f )  =  e x p ( i t ' / i ) 0 ( t ' X t )

for some function ip.

Therefore, the elliptically symmetric distributions denoted by ECp(pi, X, g), have 

the pdf in the form

/(x )  =  fcp|£ |~ ^ [ (x  _  ^t)'S"1(x -  /*)], 

where g is a one-dimensional real-valued function independent of p and

p U I )
k" i ? r ( i  +  i ) 2 1+*^

For our distribution g(t) =  exp{—M}.

(iii) Power exponential distributions by Gomez, Gomez-Villegas and Marin (1998) 

D efin ition . A random vector x  has a p-dimensional power exponential distri

bution, denoted by P E p(pb, X, f3), with pu, X and (3, where pt € 5?p, X is a p x  p 

positive definite symmetric matrix and (3 € (0, 0 0 ). Its density function is

/(x , pi, X, (3) = fc|X|- 2 e x p { - i[ (x  -  /z)'X_1(x -  n ) f } ,  

where k — —=----
' 2(3̂

For (3 = \  one obtains our distribution. This function is actually the pdf of an 

elliptically contoured random vector ECp{pL,H, g).

(iv) Kotz type distributions proposed in Fang, Kotz and Ng (1990)

D efin ition . If x  ECp(pL,H,g) and the density generator g is of the form

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



21

g(u) =  CpUN~l exp(—rus), r, s > 0, 2N  +  p > 2 then we say that x  possesses a 

symmetric Kotz distribution. The pdf of x  is given by

/ ( x , ^ , £ )  =  cp | £  |"3 [(x — /x,)'E_1(x — /x) ] iV _ 1  exp { -r [ (x  -  / r ) '£ _1(x -  /x)]s},

s r ( f )  2N+p-2where c„ =  -p— r  2a . p n%r(2N+p-2)

When N  =  1, 5  =  \  and r — I the distribution reduces to our distribution.

Although this distribution can be called by any of these different names, for con

venience of presentation, we have refered to this distribution in this thesis as a Kotz 

type distribution. Since for p = 1, this pdf reduces to that of a double exponential 

distribution we may consider this as a multivariate generalization of double exponen

tial distribution. However, this is not a multivariate double exponential distribution 

because, its marginals are not double exponential distributions.

Many researchers have discussed statistical inference using elliptical distributions 

(Fang and Anderson, 1990). This particular distribution however, is not considered in 

their studies. No general theory of elliptical distributions applies to this distribution 

because the joint pdf of independent samples, x i, ...,x n from this distribution cannot 

be written in the form of elliptical distributions.

In the following subsections we will provide various characteristics of Kotz type 

distribution, such as, moments, the marginal, and conditional distributions. A simu

lation algorithm and goodness-of-fit tests for Kotz type distribution are also provided. 

Estimation of parameters of this model using maximum likelihood method under a 

variety of covariance structures, such as, AR(1), equicorrelation and unstructured co- 

variance is also discussed. We show that the MLE of the location parameter under the 

assumption of Kotz type distribution is same as the generalized spatial median (GSM) 

defined by Rao (1988). We provide computational algorithms and computer programs 

to compute the estimates.

2.1.2 Moments and Other Properties

In the following we provide the expected value, variance covariance matrix, and Mar- 

dia’s measures of skewness and kurtosis of the distribution given in (2 .1 ) using some
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formulae in Baringhaus and Henze (1992).

E{x) =  pi,

Var(x) =  ( p + l ) S ,

flip — 0, Mardia’s multivariate skewness measure,

fl2„ — Mardia’s multivariate kurtosis measure.
( p + 1 )

By Proposition 2.2 of Gomez, Gomez-Villegas and Mann (1998), if x  has a pdf as 

in (2 .1 ) then its characteristic function is

1 r oo ____

=  f ( p ) ' J  ^p(r ^/ t /S t )rP_le_rdr>

where ^ ( x )  =  cosx, ^ p(x) =  i ^ 2^  expjix cos 9} sinp ~ 2 ddO, for every p > 1 and
7r3 F(£2-)

R  is an absolutely continuous positive random variable whose density function is

fRW = T{pj

2.1.3 Marginal and Conditional Distributions

Suppose x  is partitioned as x  =  (xj^, x ^ ) ',  where X(i) =  (xx, ...,Xfc)', X(2) =  (xfc+x, ..., 

xp)' with k < p and similarly, pi =  (pi'^, pt'^)’ with p i^  =  (//x, ..., pk)' and pt^2) =
( s  s  \  

^ 2 1  S 2 2 ) ’
where S n  is a k x k p. d. matrix and S 2 2 is a p — k x p — A; p. d. matrix and 

S X2 =  ^21 ■ Thsn

1. X(X) has an elliptically symmetric E C k ( p ^ ,  £11, g i )  distribution with

<h(t) = t P 2 f  u> * ( 1  — 1 e v C  dco.
Jo/ 0

The marginal characteristics of X(X) are

£ ( x (x)) =  p {1),

V ar(x(x)) =  (p +  1 )S 1X,

/ M X(X)) =  °> and
fc(/c +  2)(p +  3)

fl2  p (X (X)) =    .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



23

2. The conditional distribution of X(2) given X(i) is elliptically contoured 

ECp-kifa. i> S 2 2 .i, 5 2 .i), where

R>2 .1  =  P(2) + '£'2 i '£u  (x-(i) -  

S 2 2 .1  =  ^ 2 2  — 5j2 iS  n1 S i 2 , and

y2 .i(t) =  exp { -[ i  +  (x(i) -  ^ (1))/S 111 (x(i) -  a*(1))]2 }.

2.2 Sim ulation Algorithm

In this section we propose an algorithm for simulating data from Kotz type distribution. 

Naik and Patwardhan (1991) had used a similar method for simulating data from a 

bivariate Kotz type distribution. We shall use that method to generate a random 

sample from a p-variate Kotz type distribution. The proposed algorithm is given in 

the following steps.

S tep  1. Simulate y ' =  (yi, ...,yp) having the density

Kotz type distribution given in (2.1).

The simulation of y  is achieved by using the polar coordinate transformation,

yx = R  cos 0\

y2 =  R  sin Q\ cos 0 2

yp_ i =  R  sin 6 1 sin 02  ■ ■ ■ sin f?p _ 2 cos #p_ 1

yp =  R  sin sin 02 • • • sin 0P _ 2  sin 0P_ x,

where Oj £ [ 0 ,7r) for 1 < j  < p — 2 and #p_ 1 £ [ 0,27r). The Jacobian of the

transformation is / ? p _ 1  H j=i sinp--7-1(#7).

For an odd num ber p, R  and 6 j ,  j  — 1, ...,p — 1, are independently distributed 

with the probability density function given by

where — 0 0  < y, < 0 0 , and c =  —« . Note that / ( y) is the standardized version of

9(r ) =  rP *e r 1 that is, R  ~  G(p, 1) and
r (p)
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S(0 i) =

9 ^ 2 ) = 

g{Q 3) =

3 (^4 ) =

v - 2  

2

2 p-3

r(p-4)---3- l i 
I- (p — 3) • • • 4 • 2 J saW 2^ )

sinp 3 (32)
7T ( p  — 3)! 

p  — 4 [ ( p  — 6 )  • • • 3 • 1 
( p  — 5) • ■ • 4 • 22

2 p- 5

sinp~4 (33)

( ¥ ) '
sinp-5(«4)

7r (p — 5)!

3 ( ^ - 2 )

3(0p-i)

=  ~ sin($p_2) 
1

27T

For an even number p, R  and 6 j ,  j  — 1, ...,p — 1, are independently distributed 

with the probability density function given by

1
g(r) =

3 (01) =  

g(Q 2) =

3(^3) =

3 ( 0  4) =

t (p)

2 p- 2

rp 4e r , that is, R  ~  G(p, 1) and

( ¥ ) !
7T (p — 2)! sinp- 2 (0 !)

P - 3 
2

2p-4

(p — 5) • • • 3 • 1
L (p — 4) • • - 4 * 2 J

1 2

sinp~3 (32)

7r (p — 4)! sinp ($3)

p  — 5 (p — 7) • • • 3 • 1
L(p — 6) • • • 4 • 2 sinp 5 ( $ 4 )

1
3 (0 P- 2 ) =  ^ sin(3p_2)

3(0P-i)

We note that E (y) =  0 and V ar(y ) =  (p +  1)1.

1

2t t '

Of course any uniform random number generating algorithm can be successfully 

used with the inverse cumulative distribution function to generate pseudo-random non- 

uniform distribution.
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To simulate 9 ~  g(9), we use the bisection method that is one of the three popular 

numerical inversion algorithms for G{9) =  17(0,1).

Algorithm: Find an initial interval [a, 6 ] to which the solution belongs.

REPEAT
A ,_ (a+6)
U 2

IF G{9) < U THEN a <- 9 

ELSE b <r- 9

UNTIL b — a <25  

RETURN 9 

Here 5 is a small number where 5 > 0.

S tep  2. Obtain x ' =  (xx, ...,xp) having the distribution (2.1) by making the transfor

mation x  =  Ty +  fx, where / /  =  ( / i j , ..., /xp) and T 'r  =  E. Note tha t E(x)  =  fx and 

U(x) =  (p + 1 )E.

For example, to generate a 5-variate (p = 5) random vector x ' =  (x1;.... .1 5 ) having the 

distribution (2 .1 ), first we simulate y '  = (2/1 , ...,2/5 ) which has the density

/ ( y) =  g^ 2  ~ 00 < yt < 00,

where
yi — R  cos 6 \

P2  =  R  sin 6 1  cos 6 2  

? /3  =  R  sin 9\ sin 92 cos 93 

2 /4 =  R  sin 9\ sin 92 sin 9% cos (94 

2 /5 =  R  sin 9\ sin 92  sin 92 sin 04

and R  and 93 are independently distributed with

=  — r 4 e- r , that is, R  ~  G (5 ,1) and 

=  |  sin3((9i)

= -  sill2 ( )
7T

=  ^ s in ( 0 3)

2 tt

g ( r ) 

9(61 )

9(6 2) 

9(6 3) 

9 ( 6  a)
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where 9j G [ 0 ,7r) for j  = 1,2,3 and 94 G [ 0,27r). Then we obtain x by making the 

transformation x  =  Ty +  jj, for fixed pt and T.

In the later sections, we will use this simulation algorithm to generate data from 

the distribution (2 .1 ) and discuss estimation of parameters.

2.3 Goodness-of-fit Tests for K otz Type D istribu

tion

We shall provide goodness-of-fit tests for Kotz type distribution using results by Bar- 

inghaus and Henze (1992) and Henze (1994).

Baringhaus and Henze (1992) have derived the asymptotic distribution of Mardia' s 

skewness measure, b4p under any elliptically symmetric distribution. The asymptotic 

distribution of Mardia’s skewness measure is a weighted sum of two independent y 2 

variates. That is,

Tlb\p ► CXiXp T Q?2Xp(p-iHp+4) ;
6

where

3
at\ =  —

P

0-2

-  2 m 4 +  p(p + 2 )
p +  2  

6 n%6

and

P(P + 2)(p +  4)'

For the distribution given in (2.1), m 4  =  , and m 6  =  ptp+2 )(p+3 )(p+4 )(p+5 )^

Henze (1994) has derived the asymptotic distribution of Mardia's kurtosis mea

sure, &2p under any elliptically symmetric distribution. The asymptotic distribution of 

Mardia’s kurtosis measure is

b2p - p ( p + l ) ( p  + 2){p + 3^j 1V(0, t 2 ) ,

where r 2 =  r 8  -  r\ +  ^r4(rf  -  r 6).

For the distribution given in (2.1),

rk =  E[Rk] = p(jp +  l)(p  +  2 )(p +  3 )...(p + {k  -  1)), k > l

These facts can be used to test for this distribution.
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2.4 Estim ation of Parameters

The importance of the model as an alternative to the normal model can be seen because 

of the following. Reconsider the density given in (2.1)

/(x , £ )  =  c | £  |"3 exp { - [ ( x -  /x )'£_1(x -  /x)]i}, pi e  £  p.d.

First, we note that this distribution has fatter tail regions than that of multivariate 

normal distribution. Secondly, if we observe x i , ..., xn iid sample from this distribution 

then the joint pdf of x i , . . . ,x n does not belong to the class of so called elliptically 

symmetric distributions. Thus, when there is more than one sample from /(•) above, 

the MLEs of pi and £  are not the same as those in the multivariate normal case. But 

for those elliptically symmetric distributions for which the joint pdf of X i,..., x„ is also 

elliptically symmetric, the MLEs of pi and £  (except for a constant) are the same as 

those for multivariate normal distribution. See Fang and Anderson (1990).

Let x i , . . . ,x n be a random sample from Kotz type distribution. Then the log- 

likelihood function is given by
n ---------------- ------ ---------------------

In % £ )  =  n I n c - |  ln |£ | -  ^  y  ( x j - - / x ) '£ _1(xi - /x)
i= 1

The MLEs of /x and S  are obtained by minimizing
n  ------------------------------------------

I  In I £  I +  V (x* -  /x y x r^ X i  -  p i )
i= 1

w.r.t. pi and £  simultaneously.

When £  =  I, the solution to the above problem or the MLE of pi is the spatial 

median introduced by Haldane (1948) and for general £  it is generalized spatial median 

introduced by Rao (1988) and studied by Naik (1993).

2.4.1 Generalized Spatial Median (GSM)

In this section we consider the estimation of the location parameter pi of the Kotz type 

distribution given in (2.1). Haldane (1948) defined the spatial median of the points 

Xi, ...,xn, as a point pi e  which minimizes
n n

X! HXi ~ /4I = Y I
i=1 i=1
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with respect to /x. For p > 1, the vector jj, is unique except when all the mass of

the distribution is concentrated on a line (Haldane (1948) and Ducharme and Mila-

sevic (1987)) and is invariant under orthogonal transformation but not under affine 

transformation (Brown (1983) and Ducharme and Milasevic (1987)).

Rao (1988) defined two generalized spatial medians which are invariant under affine 

transformation as follows

1. A vector /x which minimizes

\ / ( x* - / * ) ;S-1 (xi - /x )  (2 .2 )
i = 1

with respect to /x, where S is the usual sample variance covariance matrix.

2. A vector /x which minimizes

£  ln |E | + ; W ( x i - / x ) '5 r 1 (xi - ,x )  (2.3)
i= 1

simultaneously with respect to /x and E.

Thus, we note tha t the MLE of /x under the assumption of Kotz type distribution 

of Xi, ...,x„ is same as the generalized spatial median defined by Rao (1988).

2.4.2 Computation of GSM and £

Let x i, ...,xn be a random sample from (2.1). Then the log-likelihood function can be 

written as
n  ------------------------------------------

In L(/x,S) =  n I n c —^  In |E | -  J ]  J ( x ,  -  -  /x). (2.4)
i = 1

For a fixed general covariance structure E , Naik (1993) first showed estimation of 

p, which minimizes Ym=i V (x * — At)/S _1(xj — /x) w.r.t. pL by making transformation

=  G ^1Xj and v  =  G _1 /x,

where E  =  GG'. Thus, he obtained the generalized spatial median v  and then obtained

/x =  Gu.
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Next the MLE of X is obtained as the matrix X which minimizes (2.3) with respect 

to X as a solution to the non-linear equations given by

E  =  1 (x* ~  A)(xj ~  A)'
n  i=i \ / ( x i -  A y S _1( x j - / i )

Solving these equations generally requires computational algorithms. We have 

adopted SAS’ IML procedure for writing the computer programs. The Newton  — 

Raphson method was used for optimization and to get the estimates. The optimization 

gives unique ML estimates in the feasible regions under certain covariance structures. 

The GSM results are similar to that of Gower’s algorithm (Gower, 1974).

Note that maximizing (2.4) simultaneously with respect to all parameters pi = 

(/xi,.... /ip)' and parameters that appear in X, is equivalent to minimizing (2.3) simul

taneously with respect to pi and X. The steps involved in our optimization procedure 

are the following:

S tep  1 . Take the initial values for pi and X, say jx =  x  and X =  S (for general 

covariance structure) or when X =  X(0) is a structured covariance matrix depending 

on the parameter vector 0, take X =  X(0), where 0 is the vector of initial estimators 

obtained using the sample. For example, if X =  X(cr, 5), (equicorrelation structure 

with cr as the common standard deviation and 8  as the correlation coefficient) take 

cr2 =  the p-sample pooled variance and 8  =  the average of the p-sample correlation 

coefficients.

S tep  2 . Using initial values and the optimization procedure, minimize (2.3) to get 

pi and X.

S tep  3. Taking ft  and X as the initial values repeat Step 2. Continue until 

termination rules for all the estimators are met.

For example, for equicorrelation structure, continue until

l l / A+i - Abl l  < <u,

I d j+ id r1 -  1 | < e2,

I 8 i+1 — 8 i | < £3 ,

where e \  =  £2  =  £3  =  10-3, (say) and o i :  and <5* are the estimators of p i { , <7j, and 8 i  

respectively at the ith iteration.
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2.4.3 Computation of GSM and £  under Different Covariance 

Structures

The computation of GSM can become easy under simpler structures of S . In the fol

lowing we present computation formulae for different structures.

The General Covariance Structure:

(a n  & 1 2  ••• (rip \
& 1 2  ^ 2 2  C2P

.

p @2p ■ ■ • @pp )

— (o'ij ),

where for i , j  =  1 , ...,p, > 0  if i = j  and aK1 G if i /  j .
Naik and Patwardhan (1991) showed computation of GSM for the bivariate case 

under the general covariance structure,

<j\ p a xa 2 
pCF\(72 o \

The ML estimators of p, a \ , a\  can be obtained by solving the following three equations 

simultaneously.

fSli-Al WS21-A2 \
' (7l

<T2

+ ( i - ?■>)•£ "  “  ’ - p Y . ' / Q *
i=i v Q i  i=1

1 1 ^ ( x u - P i ) 2 -  p 9 ; ( x u - P i ) ( x 2i - f i 2)

0

H'LJ H a 2 \'A'Lt r'ZJ n_ _ _
1 r i y / i  - p * j r (  V Q l

1 1 ^ , ( X 2 i ~  P2)2 -  P ^ (X U ~  Pl)(X2i~ p2)
a 2 -----n

,____________________________‘ " G J i ___ ^ _________ T IL  =  0

V 1 -  p2 h t  ' ^ i

where

f X \ i  p l \ 2 o  t x l i  P l \ / X 2i p 2 ^  ( X 2 i T 2 ^ 2 1
Qi =  ( ) -  2 p(--------- )(----------- ) +  (----------- ) , i  =  l , ..., n.

(Tl (Ti (72 U2

It was shown by Naik and Patwardhan (1991) that there is at least one real solu

tion for each of these equations, when —1 < p < 1. For a p-variate case we have used
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optimization algorithm and SAS software to find the estimates.

The Diagonal Covariance Structure:

The structure £  =

\  0  0

where an > 0 for i =  1, ...,p can be used and the ML estimates can be easily obtained.

0 . . 0 \
022 • . 0

0 . CTpp J

The Equicorrelation Structure:

This structure, sometimes known as the compound symmetry structure or the intr

aclass correlation structure, has the same correlation coefficient, say 6 . The covariance 

matrix has the form,

£  =  a 2 [(1 -  (5)Ip +  <5JP]

<t2 V{5).
(  1 8  . •

o <5 1 . . 5
a

V 6 <5 . • 1  /

The determinant and inverse of £  respectively are

|E | =  (<T2 ) ' [ ( 1  -  i r ' O  +  (p - 1 )«)] and

y - l  _   1_[t ________ _̂_____ T 1
cr2(l — S) ( l - { p - l ) d ) p1,

where a 2 > 0 , — D -  < 5 < 1 , that ensure £  to be the positive definite matrix, and 

Ip is an identity matrix of order p and J p is a p x p matrix of all ones.

Naik (1993) derived the estimators of //. and £ ; tha t is, of /x, a and 6  by maximizing 

the log-likelihood function of the distribution with respect to /x, cr and 5. The MLE 

of a and 8  were obtained by solving the following non-linear equations:
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n
(p -  i)(xj -  A)'(x » -  A) -  [ I ' t e  -  A) ] 2 =  0

i=1

for 5, and

for d.

Here Qi{5) =  [1 +  (p -  l)<5](x; -  /V)'(xi -  p.) -  <5[(x* -  fi) 'l]2.

However, in this thesis we directly use the optimization algorithm to compute these 

estimates. In addition, we have implemented the algorithm under the following struc

tures.

The First Order of Autoregressive Structure, A R ( 1 ):

This covariance structure is often used in time series models. It also includes 2 

parameters, a and p and the structure is given by

a
1  — p2

(  1 P ■ ■ ■ 1 \
■2 p 1  pP~ 2

\ p p - 1 ( f ~ 2 ■■■ 1  /

where V(p) = p^ i, j  =  1, a 2 > 0, — 1 < p < 1.

The determinant and inverse respectively are

and

5 T 1 =  [Ip +  ^ C x - p C V j ,
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where

( 0 0 0 . . 0 0 0
0 1 0 . . 0 0 0
0 0 1 . . 0 0 0

0 0 0 . . i 0 0
0 0 0 . . 0 1 0

^ 0 0 0 . . 0 0 0

C o =

/  0  1 0  

1 0  1 

0  1  0

0 0 0 
0 0 0 

\  0  0  0

0  0  0  \  
0 0 0 
0 0 0

0  1  0  

1  0  1  

0  1 0 /

(2 .6)

The Circular Covariance (1):

These structures are sometimes useful for modelling certain types of physical phe

nomenon. For example, see Khattree and Naik (1994). The form of the structure, for 

example, for p =  4 and p =  5 are:

1 pi p2 pi
Pi 1 Pi P2

P2  Pi 1 Pi
Pi P2 Pi 1

and E  =  a
{ 1 pi P2 P2 pi

pi 1 pi P2 p2

p2 pi 1 P2

p2 P2 pi 1 Pi
pi P2 P2 pi 1

where a > 0  and — 1  < pi < 1 , i = 1 , 2 .

The Circular Covariance (2):

Another form of Circular Covariance structure that was used by Hartley and Naik 

(2001) has the form for p =  4 and p =  5:

E  =
f  1

P 
P2 

\  P

P
1

P
P
1

P

P \  
P2 

P 
1 /

and E  =  a

(  1 p p2 p2 p \
p 1 p p2 p2

p2 p 1 p p2

P2 p2 p 1 p
\  p p2 p2 p 1 )

In this case, a > 0 and — 1 < p < 1.
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A Special Case General Structure:

Sometimes the interest may be in fitting the general correlation structure, that is, 

S  =  R, where

R =

/  1 Pl2 Pl3
Pl2 1 P23

'  P i p  P 2 p

P i p  \  
P 2 p

1 /

and - 1  < pi:j < 1 , i , j  =  l,...,p .

2.5 Exam ple

To illustrate the estimation of pi and £  under a variety of covariance structures, we 

select the Board data consisting of four different measures of stiffness on each of n =  30 

boards. The first measurement x i involves sending a shock wave down the board, the 

second measurement x 2 is determined while vibrating the board and the last two mea

surements x 3 and x 4 are obtained from static tests. These data are taken from Table 

4.3 in Johnson and Wichern (1998, p. 198) and displayed in Table 2.1. First, using 

the methods discussed in Chapter 1, we tested for normality of these data and we 

found that the data are not multivariate normal. Then we used goodness-of-fit tests 

for Kotz type distribution and found that the Board data are from Kotz type distri

bution with p-value =  0.0897 for Mardia’s skewness measure and p-value =  0.6627 for 

Mardia’s kurtosis measure. Next, we provide sample statistics, namely, sample mean, 

x, covariance matrix, S, and correlation matrix, R, and then provide ML estimates of 

the parameters involved.
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Table 2.1: Board data: measurements on stiffness.

Observation no. Xl x 2 x 3 x 4

1 1889 1651 1561 1778

2 2403 2048 2087 2197

3 2119 1700 1815 2222

4 1645 1627 1110 1533

5 1976 1916 1614 1883

6 1712 1712 1439 1546

7 1943 1685 1271 1671

8 2104 1820 1717 1874

9 2983 2794 2412 2581

10 1745 1600 1384 1508

11 1710 1591 1518 1667

12 2046 1907 1627 1898

13 1840 1841 1595 1741

14 1867 1685 1493 1678

15 1859 1649 1389 1714

16 1954 2149 1180 1281

17 1325 1170 1002 1176

18 1419 1371 1252 1308

19 1828 1634 1602 1755

20 1725 1594 1313 1646

21 2276 2189 1547 2111

22 1899 1614 1422 1477

23 1633 1513 1290 1516

24 2061 1867 1646 2037

25 1856 1493 1356 1533

26 1727 1412 1238 1469

27 2168 1896 1701 1834

28 1655 1675 1414 1597

29 2326 2301 2065 2234

30 1490 1382 1214 1284
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The sample mean, covariance matrix, and correlation matrix, respectively are 

(l906.1, 1749.5333, 1509.1333, 1724.966?y,x  =

S =

/  105616.30 94613.531 87289.710 94230.728 \

94613.531 101510.12 76137.099 81064.363

87289.710 76137.099 91917.085 90352.384

V 94230.728 81064.363 90352.384 104227.96 /

/  1
0.9137620

R

0.9137620 0.8859301 0.8981212 \

1 0.7882129 0.7881034

0.8859301 0.7882129 1 0.9231013

\  0.8981212 0.7881034 0.9231013 1 /

In the following we provide ML estimates of p, and parameters of £  under various 

structures for £  for the example.

Under General Covariance Structure for  £ ,  we have p + parameters to estimate. 

A =  (1850.4159, 1691.1202, 1481.2977, 1685.424y,

£  =

(  91485.308 81017.783 77644.475 86380.137 \

81017.783 75470.307 69361.802 77060.054

77644.475 69361.802 70111.928 75515.426

\  86380.137 77060.054 75515.426 85505.102 /

Under Diagonal Covariance Structure for  £ ,  we have 2p parameters to estimate. The 

estimation results are

A -  (l852.7454, 1685.772, 1474.3039, 1681.4894y,

£  =

(  14678.514 0 0

0 13766.555 0

0 0 14022.531

V 0 0 0

0  

0  

0

16301.33 )
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Under Equicorrelation Structure for  £ ,  we have p 4-2 parameters to estimate. The 

estimation results are

<7 =  139.29078,

6  = 0.8898684,

/  19401.922 17265.158 17265.158 17265.158 \

17265.158 19401.922 17265.158 17265.158
S  =

17265.158 17265.158 19401.922 17265.158

\  17265.158 17265.158 17265.158 19401.922 /

Under the First Order of Autoregressive Structure, A R (1) for  £ ,  we have p + 2 param

eters to estimate. The estimation results are

<5 =  62.804267, 

p = 0.8946798,

/  19766.542 17684.726 15822.166 14155.772 \

17684.726 19766.542 17684.726 15822.166
S  =

15822.166 17684.726 19766.542 17684.726

\  14155.772 15822.166 17684.726 19766.542 /

Under the Circular Covariance (1) Structure for  S , we have p +  3 parameters corre

sponding to and a  > 0 and — 1 < pi < 1,7 =  1, 2. The estimation results are

£7 112.65213
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so E  =

/  12690.502 10151.132 9763.4154 10151.132 \

10151.132 12690.502 10151.132 9763.4154

9763.4154 10151.132 12690.502 10151.132

\  10151.132 9763.4154 10151.132 12690.502 /

Under the Circular Covariance (2) Structure for E , we have p + 2 parameters to 

estimate. The estimation results are

fi =  (l850.1956, 1692.4255, 1480.7527, 1689.693^7, 

a =  115.34328, 

p = 0.7292725,

so E

(  13304.072 9702.2945 7075.6168 9702.2945 \

9702.2945 13304.072 9702.2945 7075.6168

7075.6168 9702.2945 13304.072 9702.2945

\  9702.2945 7075.6168 9702.2945 13304.072 /

Finally, under a Special Case General Structure for E , we have p +  siE-H parameters 

to estimate. The estimation results are

A =  1856.2708, 1691.7989, 1481.0653, 1689.4673 ,

(  1 0.5246036 0.4518808 0.5346612 \

0.5246036 1 0.371565 0.4128659

0.4518808 0.371565 1 0.550590

\  0.5346612 0.4128659 0.550590 1 /

We have used this example to illustrate the computation of the MLE’s under var

ious covariance structures. All the computations are done using programs written in 

SAS/IML software. The SAS program for computing the MLEs for pb and the general 

covariance S  is provided in Program 2 in APPENDIX.
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2.6 Comparisons of ML Estim ates Betw een K otz  

Type and Norm al Populations

For non-normal distribution, theoretical expressions for the bias, square root of mean 

squared error and Pitm an Nearness probability of the ML estimates are not generally 

available but they can be estimated using simulation.

In this section, we want to compare the performance of the ML estimators of p  

and £  under the Kotz type distribution with those under normal distribution when 

the data are simulated from normal and Kotz type distributions. We can expect the 

ML estimators under Kotz type distribution to do better than normal ML estimators 

when the data are simulated from Kotz type distribution and vice versa.

To compare the ML estimates under Kotz type population with those under normal 

population, it is desired to estimate the bias, square root of mean squared error and 

Pitman Nearness probability of estimates of p  and £ . We shall focus on the compar

isons of ML estimates of p  and £  using these three criteria based on 1000 random 

samples of various sample sizes n  and variates p generated from Kotz type and normal 

populations.

As we have discussed earlier, the ML estimates of p  and £  under the general 

covariance structure are the GSM p  and £  for Kotz type population and they are 

x  and Sn for normal population. When the simulation of data is from Kotz type 

population, we compute p^ =  (ji\v .... pPj)' and £ j  as Kotz type ML estimates of p  

and £  and 5tj = (xi j , ..., xPj)' and as normal ML estimates of p  and £  for

the j th simulation, j  =  1,..., 1000. However, when the simulation of data is from 

normal population, we compute Xj, Sn] as normal ML estimates of p  and £  and p-, 

(p + l ) £ j  as Kotz type ML estimates of p  and £  for the j th simulation, j  =  1,..., 1000. 

A reason for doing these adjustments is that K ar(x) =  £  if x  ~  Np(p, £ )  and 

Var(x)  =  (p +  1 )£  if x  is distributed as Kotz type.

Also for convenience of presentation, suppose all the u — p(p̂ l> unknown parame

ters in £  are placed in a vector (a i , ..., <t„) (or s i , ..., s„ are the corresponding elements 

of Sn) and the estimates of (J% for the j th simulation is denoted by atJ (or s,j). Then
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we have the following formulae for computation.

(i) Bias:

The estimated bias for /z :

bias(fi) =

bias(x) =

The estimated bias for £  :

For Kotz type distribution,

biases) =

bias(— —̂rSn) = 
p + 1

For Normal distribution,

a ^   ̂ (/h M*)2)
\  i = 1

\ i= 1

\
Y  (^i — cr<)2,
Z=1

\ V  St -  ° i ) 2.>  + 1 ;Z=1

b i a s ( S n ) =

\ Y  ((p+^  ~ ai) ’
i= 1

\
J ]
i = l

where for any estimate, 9 =  *s the average value of the estimate

from all 1000 simulations.

(ii) Square root of mean squared error (root MSE): 

The estimated root MSE for /z :

root u s m  _  ( f t , - * ) ’
V iooo
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root MS E ( x )  =

The estimated root MSE for £  : 

For Kotz type distribution,

root MSE(YP) =

1000

E v  / A \2
i= i£ i= i  ( v i j - v i r

1000

root M S E ( — j7 j S n) 

For Normal distribution,

'E U  E g T  ( A ^  -  ^ ) 2 
1000

root M S E (  (p i ) £ )  =  ^
E r . i E ‘™  ((P +  i K j - ^ ) : 

1000

root M S E ( S„) = V
V''*7 v̂ lOOO / \oEi=:iEj=i K S j j - a i Y  

1000

(iii) Pitman Nearness (PN) Probability :■

For Kotz type distribution, the estimate of Pitman Nearness probability of (i 

relative to x  is computed as

PN(p,, x) =  ^  (# o f  times IP j  ~  » \ \  <  llx t  -  P \ \ in 1000 samples^,

where

P\

:lx  -  H\\ =

^  {fii ~  Hi) 2  and

y  (x i -  H if
i= 1

and the estimate of Pitman Nearness probability of £  relative to is computed

as

1
P N C S ,  -S„) =  ■■■- f# o f  times

v p  +  1 '  1000
in 1000 samples j ,
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where

I E -  El

p + 1

\
\

Y  {cri -  cTj)2 and
i = l

i = l  ^

For normal distribution, the estimate of Pitman Nearness probability of x  

relative to fi is computed as

PiV(x, fa) =  ^  (# o f  times IIxj -  /x|| < HA,- -  1̂1 in 1000 samples^,

where

|M~M|

\ Y  {Xi -  Hi) 2  and
i = l

\ i = l

and the estimate of Pitman Nearness probability of Sn relative to (p+ 1)E is computed

as

P N ( s n,(p + l)Y ^  = (# o f  times ||Sraj- E | |  < ||(p + l)E j- E || in 1000 samples), 

where

| S „ - E |

| | ( p + l ) E - E | |  =

Y '  (Si ~  and
i=1

\  i= l

The comparison results for all three measures are provided in the following tables. 

When the data are simulated from Kotz type population, the estimates of bias for 

MLEs under Kotz type population appear to be smaller than those for MLEs under 

normal population with the following relationship (see Tables 2.2 - 2.3):

bias(fa) < bias(x.),
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biasCE) < biasi——rS n).
p +  1

The estimates of root M S E  for MLEs under Kotz type population also appear to 

be smaller than those for MLEs under normal population with following relationship:

root MSE(fx) < root MSE(5t),

root M S E (E )  < root M S E (  rS n).
p +  1

Moreover, the estimates of Pitman Nearness probability of MLEs under Kotz type 

population relative to MLEs under normal population are greater than 0.5. Thus,

we can conclude tha t the ML estimators under Kotz type distribution do better than

normal ML estimators when the data are simulated from Kotz type distribution.

Table 2.2: The estimates of bias and root MSE for ft and x  and Pitm an nearness

probability of fi relative to x  for Kotz type samples.

p n Bias(x.) root MS E( ( i ) root M S E ( x ) P W (£ ,x )

2 20 0.0327292 0.0429589 1.2266231 1.4047429 0.629

30 0.0264755 0.0479547 0.9710988 1.1197025 0.632

50 0.0263113 0.0357640 0.7372502 0.8777592 0.631

100 0.0063597 0.0139617 0.5297203 0.6464303 0.663

5 20 0.1504333 0.1609594 7.4264586 7.9686126 0.618

30 0.3864212 0.4112645 6.2005286 6.6546604 0.623

50 0.1438450 0.1533291 4.7531360 5.1423876 0.611

100 0.1152852 0.1342547 3.3385742 3.6247224 0.647

When the simulated data are from normal population, the estimates of bias for 

MLEs under Kotz type population appear to be greater than those for MLEs under 

normal population with the following relationship (see Tables 2.4 - 2.5):

bias{5t) < bias(£i;), 

bias( Sn) < bias(^(p+ 1)X^.

The estimates of root M S E  for MLEs under Kotz type population also appear to be 

greater than that for MLEs under normal population with the following relationship:

root MSE(~x) < root M S E { f i ),
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Table 2.3: The estimates of bias and root MSE for £  and and Pitm an nearness

probability of £  relative to ~-j-S ri for Kotz type samples.

p n Bias^S) B i a s i ^ S n ) root MS E { f t ) root M S E ( ^ yS„) P tV (S ,5i I Sn)

2 20 0.2173286 0.6136360 4.5729571 4.6180806 0.580

30 0.0594558 0.2972934 3.6564364 3.8758817 0.603

50 0.0397885 0.2024529 2.8092322 3.0098940 0.595

100 0.0423176 0.0496837 1.9725625 2.1130978 0.571

5 20 2.5227599 7.5841423 59.32383 59.885291 0.558

30 1.3631267 4.8771157 47.940337 48.826692 0.578

50 0.8710543 1.4684184 37.831514 39.230765 0.603

100 0.6455298 1.4271476 25.851964 27.179129 0.616

root M S E ( S n) < root M S E ^ { p +  1)£^.

Moreover, the estimates of Pitm an Nearness probability of ML estimators under 

normal population relative to ML estimators under Kotz type population are greater 

than 0.5. Thus, we can conclude that the ML estimators under normal distribution 

do better than Kotz type ML estimators when the data are simulated from normal 

distribution.

Table 2.4: The estimates of bias and root MSE for ft and x  and Pitm an nearness 

probability of x  relative to fi for normal samples.

P n Bias((i) Bias(x) root MSE(f i ) root M S E ( x ) PJV(x, A)

2 20 0.0419632 0.0250159 0.9201970 0.8175815 0.598

30 0.0235707 0.0146184 0.7436633 0.6521578 0.613

50 0.0103899 0.0067315 0.5750868 0.5067936 0.620

100 0.0036084 0.0033503 0.4029865 0.3635994 0.600

5 20 0.0685258 0.0337121 3.5255275 3.3563840 0.589

30 0.0653346 0.0331537 2.8187549 2.6684190 0.614

50 0.0612400 0.0431314 2.1983321 2.0978606 0.580

100 0.0313821 0.0227773 1.5524146 1.4771821 0.600
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Table 2.5: The estimates of bias and root MSE for (p +  1)E and Sn and Pitman 

nearness probability of Sn relative to (p +  1)E for normal samples.

p n B i a s [ { p  +  1 )S ) Bias(  Sn) root M S E ^ ( p +  1 ) e ) root M S E ( Sn ) p j v ( s „ , ( p + i ) £ )

2 20 1.5617102 0.4167722 4.3717427 3.2530058 0.599

30 1.4783830 0.3349251 3.7999676 2.8374782 0.602

50 1.7676229 0.1653396 3.2272657 2.1500709 0.654

100 1.7092323 0.1373975 2.5760868 1.5487331 0.711

5 20 7.6239726 6.9183541 56.9054100 49.532877 0.594

30 9.5955013 4.6867674 48.4888900 41.584469 0.584

50 8.5435641 4.2156948 35.7407750 31.135813 0.589

100 10.706864 1.7581084 28.4005960 23.347784 0.632

2.7 Concluding Remarks

We have considered one of the multivariate heavy-tailed distributions which has fatter 

tail regions than that of multivariate Normal distribution and the family of these 

distributions is called the Kotz type family. We have shown that the estimators of /x 

obtained by maximizing the log-likelihood function of Kotz type distribution is same 

as the generalized spatial median of pi introduced by Rao (1988). The estimators of /x 

and £  under a variety of covariance structures, namely the general covariance, AR(1), 

the equicorrelation and unstructured covariance structures are provided. Also we have 

provided a simulation algorithm for generating samples from Kotz type distribution by 

using the polar coordinate transformation and bisection methods. Next, we performed 

a simulation experiment to compare the ML estimates of /x and £  by using three 

measures, bias, root M S E  and Pitman Nearness probability under Kotz type and 

Normal samples. Based on all the three criteria and using the results provided in 

Tables 2.2 - 2.5 we conclude that if we use normal ML estimates when the data are 

from Kotz type population we will lose out on efficiency, estimators will be more biased 

and further they will be inferior according to Pitm an Nearness probability criteria as 

well.
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CHAPTER III

STATISTICAL INFERENCE USING KOTZ TYPE

DISTRIBUTION

3.1 Introduction

In this chapter we shall use the concepts and results from Chapter 2 to develop tech

niques for analyzing multivariate data. We consider statistical inferences about location 

parameter of the Kotz type distribution(s) under variety of covariance structures, in

cluding the general and AR(1) structured covariances. To save space however, here and 

in the subsequent chapter, we have presented the results only for the general and AR(1) 

structured covariances. In the following sections we shall discuss testing of hypotheses 

about one or more population parameters of the Kotz type distribution. We use the 

likelihood ratio method for the large samples to test the hypotheses. We also apply 

the asymptotic distribution of GSM for finding simultaneous confidence intervals. The 

results are illustrated using numerical examples.

3.2 Testing of H ypothesis for One Population U n

der the General Covariance Structure

We will provide the likelihood ratio test for testing of hypothesis on location param

eter of one multivariate population under a general covariance structure. Likelihood 

ratio tests have several optimal properties for reasonably large samples and they are 

particularly convenient for hypothesis formulated in terms of multivariate parameters.

Let X i,..., x„ be a random sample from Kotz type distribution with the parameters 

/x and S . Let 6  = {/ii, ,a n , ■ ..., crp_ ilP, crpp)' be the vector of all unknown

parameters and let L( 6 ) be the likelihood function given the samples X i,..., x„. Suppose 

under the null hypothesis H q : 0 € © o ,  where © o  C  © and ©  is the parameter space.
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Under H0, let 8  =  (pi,...,/xp , a n , ..., a ip, ..., crp._i,p, <7pp)' be the MLE of 8 . Then the 

maximum likelihood function under H 0  is given by

L( 8 ) =  cn|£ | 2 exp I -  n)  J- .
2 = 1

Under 6  € © (that is, under no restrictions on 0), let 6  — ( p i , fip , a n , ..., dip, 

dp_ iiP, appy  be the MLE of 8 . Then the maximum likelihood function under no restric

tion is given by

m fi| S eXp i  -  ^ 2  V (x ‘ ~  A )'£ f a  ~ A)
2 = 1

Then the likelihood ratio test of H 0  : 0 G © 0 rejects H0  in favor of H x : 0 0  © 0 if

A L ( 0 )A =  < c,
m

that is, if

A = | S |

| S |

exp \ -  E L i
i—i

Xi -  / / ) '£  (xj (xi -  /*)'£  (xj -  A)
;- l  ,

< c,

where c is a suitably chosen constant.

When the sample size n  is large,

—2 In A =  —2 In ̂  approximately distributed as x i

random variable, where the degrees of freedom, r  =  (dimension of ©) - (dimension of 

©o).

E xam ple  3.1. In the following, we illustrate this procedure for testing three specific 

hypotheses by taking the Board data considered in Chapter 2. The considered hy

potheses are just for an illustration tha t various linear hypotheses like these can be 

easily tested using these methods and not for any specific relevance for the example in 

hand. For this data set p =  4, n  =  30. The hypotheses and the results from testing 

are as follows:
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(i) Test H 0  : /x =  0 vs. H x : pi ^  0.

Under H q, the maximum likelihood estimate of /x is /x =  0. The asymptotic 

distribution of —2 ZnA ~  x l

The test statistic =  —2 InA =  110.14185. The P-value =  P[x\  > 110.14185] < 

0.0001. Hence we reject H 0 and conclude that /i ^  0 .

(ii) Suppose we want to test Ho : pi — M2 =  • • • =  M4 =  7  (say) vs. H x : fx is 

arbitrary. That is, test H q : /x =  j l  vs. H x : fx ^  y l ,  where 1 =  (1,..., 1)'. 

Under L/o, M =  7 l ,  where 7  is the MLE of 7 .

The test statistic =  - 2  ZnA =  54.197907. Using - 2  ZnA ~  xi) we find that the 

P-value is < 0.0001. Hence we reject H q.

(iii) Next for illustration, suppose we want to test that the last two components of fx
" Mi ”

vs. H x : ix is arbitrary.M2
0
0

are zero. That is, H q : /x =

Under # 0 7  M =  (mi>M2 >0 >0 )' and the test statistic =  —2 ZnA == 178.72292. 

Using — 2 ZnA ~  xi> we n° te P-value < 0.0001. Hence once again we reject H q.

3.3 Testing of H ypothesis for One Population U n

der A R (1) Structure

Let x i, ...,x n be a random sample from Kotz type distribution with the parameters fx 

and £  and 0  =  (/xi,..., p p , cr, p)'  be the vector of all unknown parameters and let L { 0 )  

be the likelihood function. Suppose under the null hypothesis Hq : 0 G © 0 , where 

© 0  C ©.

Under Hq,  let 0 =  (jxf, a ,  p)' be the MLE of 0. Then the maximum likelihood function 

is given by

L{0) =  c" ^  1 2 exp |  - ' j r  )J{xi -  Axj'i^flp +  ^ C i  -  pC 2](xi -  fx)

— c

l - p 2!

(5:2)p

4=1

1 - p 2 i=1
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where C x and C 2 are as defined in (2.5), (2.6) and

A u  =  ( x j  -  j l ) '  ( x j  -  /x ) ,

A2i =  ( X i  -  j l ) '  C l (X j -  /x ) ,

A 3i =  (X i -  n y  C 2 (X i -  /x ) .

Under 0 € 0 ,  let 0 =  (pf, a, p)' be the MLE of 6  e  0 .  Then the maximum likelihood

function is given by

(d2)^ '

2 J ^  “  .
2 —  1

L{8 ) = cn

=  c

1 - p 2

(d2f

eXP 1 Y! V “  A)'v^[Ip +  P2C! -  pC 2] (xj -  /x)

1 — p2 exp < —z V 5 i< +  P2 B 2i ~  PB 3 i > ,
2 = 1

where

B u =  (xj -  £)' (xj -  /x),

B 2i =  (xj -  /x)' Ci (xj -  /x),

#3; =  (X j -  /x ) ' C2 (X j -  j x ) .

Then the likelihood ratio test of Hq : 0 6 ©o rejects Hq in favor of Hi : 0 ©o if

A L & )A =  —W- <  c,
m

that is, if

= ( § r ( b ? r

exp { - E I L i  l y jA i i  + p1 A 2i - p A 3i -  \ y j B u  + p2 B 2i -  pB3i } < c,

where c is a suitable constant.

When the sample size n is large,

—2 In A =  —2 ln^ *s aPProxim ately distributed as x l
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random variable, where the degrees of freedom, r =  (dimension of ©) - (dimension of 

©o).

E xam ple  3.2. In the following once again we illustrate this procedure for testing three 

specific hypotheses by taking the Board data. The hypotheses and the results from 

testing are as follows:

(i) Test Ho : H = 0 vs. Hi : /x ^  0.

Under Ho, the maximum likelihood estimate of /x is /x =  0 and the asymptotic 

distribution of —2 In A ~  x l

The test statistic =  —2 InA — 228.5621. The P-value =  P[x\ > 228.5621] < 

0.0001. Hence we reject H 0 and conclude tha t /i /  0.

(ii) Next, we want to test H 0 : pi =  P2  =  ••• =  P4 =  7 (say) vs- H\ : fj, i s  arbitrary. 

That is, H 0 : [i = 7 I  vs. H \ \  7 I , where 1 =  (1,..., 1)'.

Under H0, Jx =  7 I ,  where 7  is the MLE of 7 .

The test statistic =  - 2  InA = 108.22776. Using —2 InA ~  we 

P-value is < 0.0001 leading to rejection of H0.

(iii) Next, suppose we want to test that the last two components of fx are zero. That 
" Hi

vs. H\ : /x  is arbitrary.is, H0  : /x  = V-2
0
0

Under H0, fx = (pi, Jx2, 0,0)' and the test statistic =  —2 InA = 209.20829. 

Using —2 InA ~  xi> we n° te P-value < 0.0001. Hence once again we reject Hq.

3.4 Testing of H ypothesis for Several Populations 

Under the General Covariance Structure

Suppose Xji, Xj2 , ..., Xjni is a random sample of size n; from Kotz type population with 

the parameters /x , and X,, i =  1, ...,<?. The random samples from different g popula

tions are assumed to be independent.

Let /Xj — (piii A6 2 ; P*p) and let <Xj ( , 1 1 ? •••> ^i,ipi &i,p—\,pi @i,pp) , ^

1, ...,g.
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Let 6 =  (n[ , ..., )Li'g, a [ , ..., cr'g)' be the vector of all unknown parameters.

(i) Test H 0 : /xx =  f i 2 — ■ ■ • =  n g = /x under th e assum ption S i  =  S 2 =

• ■ • =  S ff =  S , that is, (Ti  =  ■■■ — crg =  a ,  where a  — ( a n , < x i p , c r p_ i iP, (JppY ■ 

Under H0, let 0 = ( j i ,a ' ) '  be the MLE of 0. Then the maximum likelihood function 

is given by
9 n

L(0) =  c(Ei ni)| S | - ^  ex p i y (x ij  - p ) ' £
I  i=1 j= l

Under 6  £ ©, let 0 = ( j i [ , j i ' g,'E )' be the MLE of 0 € ©, that is, under no 

restrictions. Then the maximum likelihood function is given by
9 rii

L(0) = cc ?ni)| S | - ^  ex p i - A i ) 'S  \ x i j ~  Ai) [ •
I i= i j =i J

Then the likelihood ratio test of H 0  : 0 € ©o rejects Ho in favor of Hi : 0 @o if

A L WA =  —Ue < c,
m

that is, if

(£f "i)
A iSi

| S |

exP | -  E f= i E " l i  \A x o - a O 's  -  V W  -  A,-)'s j < c.

(ii) Test Hq : i ix = n 2 = "  ' — V-g = H w hen S^’s are different, th at is, 

w hen are different.

Under H0, let 0 = ( j i ,  5^,..., a 1)' be the MLE of 0. Then the maximum likelihood 

function is given by

9  ( a m  j------------------ j-------------1
V  ( x p  -  j i ) ' T

i= 1 t  *=1 j= 1
L(0) =  c(E?ni)J ^ |S i |  ?  e x p < - ^ ^ y ( x i i - p ) 'S i

Under no restrictions, that is, 0 G ©, let 0 =  (pt^,..., ji'g, E 1;..., E fl)' be the MLE of 0.

Then the maximum likelihood function is given by
g f  g ni

L(0) = ce ?ni)p j |S i |  "2 e x p ^ - 5 ^ J ^ \ / ( x i j - / i i),E j 1(xi j - / i i)
i= 1 V, i—1 j —1
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Then the likelihood ratio test of H 0 : 6  £ © 0 rejects H 0 in favor of Hi : 8  §£ ©o if

AA =  — < c,

that is, if

Lie)

A =  FT9 I"

e x p ( - E L r  E?=i
- —l

Xjj (xjj aO y (Xy /ij) (xjj /ij) < C,

where c is a suitably chosen constant. 

When the sample size n  is large,

2 In A =  —2 ln (^ W ^) is approximately distributed as Xr

random variable, where the degrees of freedom, r  =  (dimension of 0 )  - (dimension of 

©o).

In the following, we illustrate the procedure for testing the equality of several pop

ulation means using the Football helmet data given in Example 3.3. Before testing the 

equality of the means, we first test the equality of the variance covariance matrices. 

The hypotheses and the results from testing are provided in the example below. 

E xam ple  3.3. D ata on three variables, Xi =  eye-to-top-of-head measurement, x 2 =  

ear-to-top-of-head measurement, and x 3 =  jaw width are given for three groups of 

players, namely, high school football players, college football players, and nonfootball 

players. There are 30 observations in each group. The data are displayed in the follow

ing Table 3.1. The helmet data collected as part of a preliminary study of a possible 

link between football helmet design and neck injuries (see Rencher, 2002, Table 8.3, 

pp. 280 - 281). The hypotheses and the results from testing are as follows:

(i) Test Ho : E i =  S 2 =  S 3 =  S.

The test statistic =  —2 InA =  13.054878. Using —2 InA ~  Xi2 > P~value =  

0.3650646. Hence, we do not reject H 0  and conclude that the variance covariance 

matrices are the same for the three groups.
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Table 3.1: Helmet data for football players (HS: high school, C: college and NF: non

football).

HS C NF

Xl X2 x 3 X l x 2 X3 Xl x 2 X3

12.5 14 11 10.3 13.4 12.4 7.4 13 12

12 16 12 12.8 14.5 11.3 10.5 13.8 11.5

10 13 12 11.4 14.1 12.1 9.7 13.3 11.5

13.5 15 12 11 13.4 11 8.5 12 11.5

13 15.5 12 9.6 11.1 11.7 11.5 14.5 11.8

12 14 13 9.9 12.8 11.4 13 13.4 11.5

13.5 15.5 13 10.2 12.8 11.9 10.8 12.8 12.6

13 14 13 8.8 13 12.9 11.1 13.9 11.2

13.5 14.5 12.5 10.5 13.9 11.8 11.5 13.4 11.9

13 15 13 10.4 14.5 12 10.6 13.7 12.2

14 14.5 11.5 11.2 13.4 12.4 10.4 13.5 11.4

13 16 12.5 9.2 12.8 12.2 10 13.1 10.9

14 14.5 12 11.8 12.6 12.5 12 13.6 11.5

14 16 12 10.2 12.7 12.3 10.2 13.6 11.5

13.5 15 12 11.2 13.8 11.3 11.3 13.6 11.3

15 15 12 9.4 14.3 12.2 10.5 13.5 12.1

12 14.5 12 9.8 13.8 12.6 9.9 14 12.1

13 14 12.5 10.1 14.2 11.6 11 15.1 11.7

12.5 14 12.5 12 12.6 11.6 12.1 14.6 12.1

12 14 11 9.9 13.4 11.5 11.7 13.8 12.1

12 13 12 9.9 14.4 11.9 11.8 14.7 11.8

14.5 14.5 13 9.1 12.8 11.7 10.8 13.9 12

14 15.5 13.5 8.6 14.2 11.5 11.3 14 11.4

13 15.5 12.5 8.2 13 12.6 10.4 13.8 12.2

12 13 12.5 9.8 13.8 10.5 10.2 13.9 11.7

14.5 15.5 12.5 9.6 13 11.2 12.4 13.4 12.1

14.5 16.5 13.5 8.6 13.5 11.8 10.7 14.2 10.8

13 16 10.5 9.6 14.1 12.3 13.1 14.5 11.7

13.5 14 12 9 13.9 13.3 12.1 13 12.7

12.5 14.5 12.5 10.3 13.8 12.8 11.9 13.3 13.3
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(ii) Next, we want to test H 0 : n x — ix2 =  n 3 =  f i , given S i  =  S 2 =  £ 3  =  S ,  that is,

test H 0 : jii =  /Lt2 =  =  Ab given <7i =  <r2 =  0 - 3  =

where <r =  (0 1 1 , <J\p, ..., Cp—1 ^, Cpp ) .

Under H0, let 0 =  ( j l ' , a')’ be the MLE of 0. Then the maximum likelihood function

is given by

L(0) = c(̂ i ni)|S | ^  exp <! -  V  (x o -  ~  A*) \
I i=1 j=1 J

Under 0 6 0 ,  let 0 =  (&,[, p,'2, Abu ^  )' be the MLE of 0 € 0 .  Then the maximum 

likelihood function is given by

3 rii

3

L(0) =  c(E?ni)|S | ^ r 1 e x p i A , ) ' S  -  £*) f •
I i= 1 j=i J

Therefore, the resulting likelihood ratio test is to reject Ho if 

- v
A =  f l  "

l|£ | J____________ ______________________ _____________________________

e x p  | -  E i = i  E " l i  \ / ( x P ' - A ) ' ^  \ x i j - f i )  -  \ J (Xij -  \ x i j -  -  A<) <  C,

where c is a suitable constant.

When the sample size n  is large,

—2 In A =  —2 ln ( ^ |g j ) approximately distributed as x l -

The test statistic =  —2 InA =  91.70311. The P-value =  P[xI > 91.70311] < 0.0001. 

Hence we reject H q and conclude that at least some fi\s are different.

3.5 Testing of H ypothesis for Several Populations 

Under A R (1) Structure

Suppose Xji, x,2, ..., x ini, i = 1 ...,g are random samples of size from g indepen

dent Kotz type distributions with the parameters Ab and E*, i = 1, We assume 

that S ’.s have AR(1) structures with different variance and correlation parameters.
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Hi = (fin, fj-ip)', i =  1 , - , 9 -  Let 0 = ( n1! , ( T g, p - L , p gy  be the

vector of all unknown parameters

(i) Test Hq ■ p i x =  p i 2 — ■ ■ = pi„ = pi w hen S i  =  S 2 =  • • • =  S 9 =  £ ,  th at

i s  a a 2 an d  px = ■■■ = pg = p.

Let 0 = (pi[, ...,jxg, <j, p ) '  be the unrestricted MLE of 0 € ©. Then the maximum 

likelihood function is given by

L(0) = u 2)p
i-P2

where

d Uj = (x ij -  Hi)' (x y -  A<), 

D 2,ij =  ( x i j  -  A,;)' Ci ( x ^  -  Ai),

D 3 tij (xi, -  Ai)' C2 ( x i j  -  At),

and C i and C 2 are defined in (2.5), (2.6).

Under Ho, let 0 =  (p t, a, p)' be the MLE of 0. Then the maximum likelihood function 

is given by

where

U2)p
1 -p2

« p  { - »  E L  e ; i ,

J5i,ij =  (xi:7- -  A)' (xp -  p i ) ,

^2,ij (xp ^ )  C l (Xjj |i),

^3,tj =  (x<j -  A)' C 2 (xj, -  A)-

The resulting likelihood ratio test rejects H 0 if
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A
(E ni)p

V* 2 I 1- ? ](72 A -p2.

e x p { - E L i E ”l i  b V E hij +  P*E2,ij -  pE3,ij -  \ \ / D U] + P2 D2,ij -  pD^ij |  < c,

where c is a suitable constant.

(ii) Test H 0 : y,x =  /x2 =  • • • =  ptg =  A* w hen <rf s and Pj’s are different.

Under 0 6 ©, let 0 = fig, <7i,...,<rg, pi,... ,pg)' be the MLE of 0. Then the

maximum likelihood function is given by

l {0) =  c(£!rw) n f =i (A2)p
1-Pi

exp { -  E?=i £  E j i i  V D hi3 + p2i D2 ,i j -p iD 3̂ y

Under H q, let 0 =  ( f t ,  a i , . . . , c r g , p i , . . . , p g)’ be the MLE of 0. Then the maximum 

likelihood function is given by

L(0) =  c(£!ni) []S=1 (°fr
1

exp |  -  E L i  ^  E " i i ) / £ 1 , 0  +  |  •

Now the resulting likelihood ratio test rejects Ho if

A = n M (§ fH b f)]“

eXP { — Ei=l E j  =  l Wi x / ^ l . O  d" Pi^2,ij ~ PiEojj — \ J D \  ij +  ()\ D2 ij — piD^ ij ^  <  C,

where c is an appropriate constant.

When the sample size n is large,

—2 In A =  —21n^ | " | )  *S aPProximat ely distributed as x l
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random variable, where the degrees of freedom, r — (dimension of 0 )  - (dimension of 

© o).

Exam ple 3.4. In the following, we illustrate this procedure for testing the equal

ity of several population means using the Football helmet data considered in Example 

3.3. Before testing the equality of means, we first test the equality of the variance 

covariance matrices. The hypotheses and the results from testing are as follows:

(i) Hq : E i =  E 2 =  £ 3 =  E. That is, H 0 : af = = aj = a 2 and p\ — p2 = Pz =  P-

The asymptotic distribution of —2 InA ~  xl- The test statistic =  — 2 InA = 

2.3775286. The P-value =  0.666692. Hence, we do not reject IIq and conclude 

that a common AR(1) structure can be used for the three groups.

(ii) Next, we want to test H 0  : pbx =  fx2 =  A*3 =  A*) given S i =  E 2 =  E 3 =  S .

The test statistic =  —2 InA = 153.46125 . Using —2 InA ~  x i, we note that 

P-value < 0.0001. Hence once again we reject Ho and conclude that at least one 

Hi is different from the others.

3.6 Sim ultaneous Confidence Intervals for Linear 

Functions of a Single M ean Under the General 

Covariance Structure

If Hq : pi — 0 is rejected, it may be of interest to provide confidence intervals for the 

individual components or for certain linear functions of /r. Using the same arguments 

and derivations as in Huber (1981), Ducharme and Milasevic (1987), and Naik (1993), 

the asymptotic distribution of GSM, ft, can be summarized in the following theorem.

Theorem  3.1 Let x%,...,a\ be a random sample from Kotz type distribution with 

parameters n  and S  and p, and E  be the ML estimates of fx and E . Then

V n ( £ -  AO N (0 , E A ^ B A - 1?,),
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where

B E
( x -  n ) ( x -  /a)/ 

( x — ( x —n)  

1
--1 ,

and

A  =  E  ,

\ x — /z)'E ( x —pi)

Further B and A can be estimated by

£  = l y \  (a% -  A)(»i -  A)'
n ^

( x - p i ) ( x - f x ) '  ' 

( x — /x)'E  { x —pi)'

- l ,

i = i  (a* -  A)'E -  A)

1 " i En t̂=i

1 -  f a -  p, )(xi  -  p, y

\ x i - p , )
1

( x i - f i y E  ( a % - A ) .

Using Theorem 3.1 we can summarize 100(1 — a)% confidence interval for any p,, 

where f i  =  ( p i , p p)' as follows:

P ro p o s itio n  3.1 I f  fi and E  are the ML estimates of pL and E , then 100(1 — a)% 

confidence interval for  p* is given by

( P i  %a/2 \ l  " ? P i  T  Za j  2 \ j  ' J ? i  1 } . . . ,  p ,
V V n  V n  /n

where t* =  the diagonal element of r  =  E A  JEL4 E , and zaj 2 is the upper 

100(1 — a / 2 )th percentile of the standard normal distribution.

The following proposition provides simultaneous confidence intervals for a set of m  

linear functions of p.

P ro p o s itio n  3.2 Using Theorem 3.1, the 100(1 — a)% Bonferroni simultaneous con

fidence intervals for m  linear functions of p\s, are given by

(
/-  / ~ ol^TOi \  , .

—  Z a / 2 m  Y  “  j Z a / 2 m  y  ~  I > ^ 1 ,  777 ( 3 - 1 )

where a\s are vectors of known constants and za/ 2m — is the upper 100(1 — a / 2 m) th  

percentile of a standard normal distribution.
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P roo f. For a fixed a, a 'fi is a linear function of the n\s and using Theorem 3.1 we 

have the large sample distributon of a 'jx as:

a '/l  iV(aV, a 'r a ) .

Then 100(1 — a)% Bonferroni simultaneous confidence intervals for the linear func

tions a [n, ...,a 'mn  are clearly given by

In the following we construct simultaneous confidence intervals for the components 

of the mean vector in Board data of Example 3.1.

(i) The 95% Bonferroni simultaneous confidence intervals for the individual —

1,..., 4 as given by (3.1) are:

f h  .
\ H i ~  2.05/2(4) Y +  2.05/2(4)

where r, is the ith diagonal element of r  defined in Proposition 3.1. For our data, 

the 95% Bonferroni simultaneous confidence intervals for /a, , i =  1,...,4 are:

Hi G (1715.813, 1985.0188),

Hi € (1565.0283, 1817.212),

H3 e  (1361.8197, 1600.7757),

Hi e  (1553.4839, 1817.3641).

(ii) Using Proposition 3.2, the 95% Bonferroni simultaneous confidence intervals for 

Hi — Hk) I < k = 1,..., 4 are given with the choices a ;x =  (1 ,—1,0,0), a'2 =  

(0 ,1 ,—1,0), and a^ =  (0,0,1, — 1) as

H i -  H2 € (100.17677, 218.41464),

H i -  ^  e  (148.81812, 270.82676),

H i - H i  e  (-265.3922,-142.8604).
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(iii) The 95% Bonferroni simultaneous confidence intervals for /i3,/i4 are given with 

the choices a x =  ( 0 , 0 ,1 , 0 ) ,  and a!2 — ( 0 , 0 ,0 ,1 )  as

(1370.2547, 1592.3408),

(1562.7987, 1808.0494).

3.7 Sim ultaneous Confidence Intervals Under A R (1) 

Structure

Using Proposition 3.2, the 100(1 — a)% Bonferroni simultaneous confidence intervals 

for m  linear functions of n\s are given by

a ' r a , -  , „ / a ' r a ,
Z a j l m  y ^ j T Z i —a j 2 m  y n  J  ’ * l,...,m, (3-2)

where ajs are vectors of known constants, zaj2m =  is the upper 100(1 — a / 2 m) th 

percentile of a standard normal distribution, and r  =  £ A  B A  £  with 

S  =  yz^V (p) and V(p) =  j, k = 1,

In the following examples, we illustrate finding the simultaneous confidence intervals 

for linear functions of n\s on the Board data considered in Example 3.2.

(i) The 95% Bonferroni simultaneous confidence intervals for the individual i =

1...., 4 using (3.2) with the successive choices a x =  (1,0,0,0), a^ =  (0 ,1,0,0), a3  = 

(0,0,1,0), and a!A =  (0,0 ,0 ,1) are given by

Hi e  (1740.2172, 1978.4096),

/x2 e  (1581.5249, 1807.0114),

Us e  (1379.4298, 1590.7865),

H* e  (1567.8883, 1809.2085).

(ii) The 95% Bonferroni simultaneous confidence intervals for /it — //*,, I < k =

1...., 4 are given with the choices a x =  (1, —1,0,0), a2  — (0,1, —1,0), and a!3 =  

(0 ,0 ,1, —1) as

H i -1 * 2  e  (99.01871, 231.07178),
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g 2 -  fi3 G (139.92105, 278.39899), 

U s - H i  G (-265.6623,-141.2182).

(iii) The 95% Bonferroni simultaneous confidence intervals for /j.3 , /X4 are given with 

the choices =  (0,0,1,0), and =  (0,0,0,1) as

(1386.8905, 1583.3258),

(1576.4067, 1800.6901).

3.8 Sim ultaneous Confidence Intervals for Several 

Population M eans

Let X ji,X j2, ..., x ITli, i =  1, ,.,g, be g independent random samples of size n t each from 

Kotz type distributions with parameters and E.(, i = 1,..., g. Suppose the tests have 

revealed that a significant difference exists between the population means. In order 

to pinpoint the differences we construct simultaneous confidence intervals on various 

contrasts of difference between any two mean vectors. The following proposition pro

vides distributional results that enable constructing simultaneous confidence intervals 

for linear combinations of g ’̂ s.

(i) A ssum e th a t  E i  =  • • • =  =  E , tha t is, cti =  • • • =  a g =  <r, where

<T (<711, . . . ,  (Tip, . . . ,  <7p—p p ,  <7pp) ■

P ro p o sitio n  3.3. Let Xu, a^2, be a random sample of size Ui from Kotz type

distribution with parameters pLi and E*, i = The random samples from dif

ferent g populations are independent. We assume that E i  =  • • • =  E p =  S . Using 

Theorem 3.1 and Proposition 3.2, the 100(1 — a)% Bonferroni simultaneous confidence 

intervals for m  linear combinations of g,l — g,v, I < I' =  1,..., g are given by

«*fc(Al “  M  ±  za/2m \ a'k( — Tl +  — f;/)o fc, fc =  1 , ..., 771 (3.3)
V ni

where a’ks are vectors of known constants, zaj 2m is the upper 100(1 — a / 2 m )th  per

centile of the standard normal distribution, Ti =  S A , B iA i 12, i = 1,1' = l , . . . ,g
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and
Tli

f a j  ~  A iX ^ j  -  A i)' 

=1 {^kj ~  A i ) ^  {x ij ~~ Ai)

-I

^-En • Z—/
Hl i=l { V (a%j -  A i)'S  ^  -  A«)

t e j  -  A i ) ( x i j  -  A i ) '
( X i j  -  A i ) ' S  (a%j -  A i)

P roo f. For a fixed a, a'/x, is a linear function of the /xj-s and using Theorem 3.1 and 

Proposition 3.2 we have

a ' (Ai-Ai ')  W ( a ^ j  - /v)> aX~"h + — Tv)a]\  ri( n (/ j

Then 100(1 — a)% Bonferroni simultaneous confidence intervals for the linear func

tions &'k(Hi — Hv) are clearly given by

a'k(Hi -  Hi>) ±  z a / 2 m  \ / a fc(—'Ti + — Tv)&k, k = l , . . . ,m , I < l '  = l,.. . ,g . □ni ni>

(ii) A ssum e th a t  E^s a re  d ifferen t, th a t  is cr\s a re  d ifferen t.

P ro p o s itio n  3.4. Let Xn,Xi2 , ...,a%ni be a random sample of size n, from Kotz type 

distribution with Hi and Ej, i = 1,..., g. The random samples from different g popu

lations are independent. We assume that E-s are different. Using Theorem 3.1 and 

Proposition 3.2, the 100(1 — a)% Bonferroni simultaneous confidence intervals for m  

linear combinations of Hi ~  Hvi I < I' — 1, ■■■, g are given by

a'k(Hi -  A/0 ±  Za/2m \ dk(— TI +  —  f v)ak, k = l , ..., m  (3.4)
V n i n v

where aks are vectors of known constants, zaj2m is the upper 100(1 — a / 2 m )th per

centile of the standard normal distribution, T t = E iA i B^Ai E i, i =  1,1' =  1 ,...,g

and

(;̂  -  HiffXij -  HiY

Ui =i {Xij -  Hfi'% l (xij -  Ai

A,
rn

1 E71 ■ /  ^

Ul j=1 ( v  (xij -  Ui)'% -  Ai

^  {Xij A  i ) i Xij A  i)
_ x

(xij — Hi ) ' ^i  (®tj  A i ) .
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Since we reject the hypothesis of equality of means in Example 3.3, Section 3.4, we 

want to find simultaneous confidence intervals for linear functions of /i, — I < I' —

1,...,3. Let /Uj =  (mu, Mv>y> i = 1 , 3 .  Then with the choices, a'x =  (1,0,0), a2 =  

(0,1,0), and a '3 = (0,0,1) using (3.3), the 95% Bonferroni simultaneous confidence

intervals for /iy  — //2j, j  =  1,..., 3 are:

Mn -  M21 e  (2.2932274, 3.9341077),

M1 2 -M 2 2  e  (0.4294995, 2.0009086),

M13-M23 € (-0.212608,0.923095).

The 95% Bonferroni simultaneous confidence intervals for j  =  1 , 3  are:

M n-M si e  (1.3875155,3.1273591),

M12-M32 e  (0.3040446, 1.6128665),

M1 3 -M 3 3  e  (-0.000264, 1.0659512).

The 95% Bonferroni simultaneous confidence intervals for /x2:) — M3ji  J — 1, •••> 3 are:

M2 1 -M 31 e  (-1.709631, -0.002829),

M2 2  -  M3 2  e  (-0.835963, 0.3224655),

M2 3  -  M3 3  e . (-0.374984, 0.7301842).

3.9 Simultaneous Confidence Intervals for Several 

Population lyieans Under A R (1) structure

As before, suppose we have independent random samples from g Kotz type distribu

tions with parameters Mi and We assume that H-s have AR(1) structures.

(i) A ssum e th a t  £ i  =  ••• =  £<, =  £ ,  that is, ex2 =  ••■ =  cr2 =  er2 and

Mi = ' •' =  Pg =  p-

Using Proposition 3.3, the 100(1 — a)%  Bonferroni simultaneous confidence intervals 

for the linear functions of a(,(jz; — n v), I < V =  1, are given by

-  M  ±A*/2m \ / a fc(—T̂{ + — T j / ) a fe, f c = l , . . . , 7 7 l  (3.5)ni nit
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where a^s are vectors of known constants, za/2m is the upper 100(1 — a / 2 m)th  

percentile of the standard normal distribution, r* =  S A j B ,Aj E, i = 1, 1' = 1, g 

and

B ,
rii

&

rii: £
J=1 *ij -  A i)'S  -  AA

(xij -  Ai)(xjj -  Ai)7

-  A<);s  -  A,)

(ii) A ssum e that Ej.s are different, that is a /’s and p\s are different.

Using Proposition 3.4, the 100(1 — a)% Bonferroni simultaneous confidence intervals 

for the linear functions of a'fe(/ij — //;,), I < I' =  1,..., g, are given by

a'fc(A; -  A /') ±  Za/2m \  I — Tj +  — T /')a fc> fc =  1, ..., 771n; ni>
(3.6)

where a^.s are vectors of known constants, za/2 m is the upper 100(1 — a / 2 rn)th 

percentile of the standard normal distribution, r* =  E^A^ B jA j  E j, i — 1,1' = 1 , ..., g 

and

-  A i ) ( x i j  -  A i ) '
-• ' ‘•t

B. =
rii 4 - ' - l ,

,-=i -  A J 'S , (xi, -  Ai)
ni

j=i

1

i— 
-■

<:£1

1

1

, V ( X i j - » i ) ' %  -  Ai ) { X i j  -  { X i j  -  » i ) .

In Example 3.4, we rejected the hypothesis of equality of means. In the following 

example, we want to find simultaneous confidence interval for linear functions of g } — 

Hv, I < V =  1,...,3. W ith the choices a'x = (1,0,0),a'2 = (0,1,0), and a'3 =  (0,0,1) 
using (3.5), the 95% Bonferroni simultaneous confidence intervals for — g 2j,  j  =

1,..., 3 are:

Mil -  M21 e (2.3546585, 3.9408238),

M12 -  M22 e (0.4765961, 2.0264683),

M i s  -  n23 e (-0.216871, 0.9422181).
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The 95% Bonferroni simultaneous confidence intervals for p ij -  n ^ ,  j  — 1, ...,3 are:

Mii -  M3 i e  (1.3531563, 3.2021812),

I^i2 —1̂ 32 e  (0.3352931, 1.6503519),

At 13-^33 e  (0.0230982, 1.0618578).

The 95% Bonferroni simultaneous confidence intervals for //2j — A*3j, J =  1, , 3 are:

M21 -  m  e  (-1.756473, 0.0163278),

/^ 2 2  — ju3 2  €E (—0.808331, 0.2909115),

H2 3  -  1*33 G (-0.377271, 0.7368803).

3.10 Concluding Remarks

We have considered inferences about location parameters of the Kotz type distribu

tion^) under the general covariance and AR(1) structures. We have discussed testing 

of hypotheses about one or more population parameters of the Kotz type distribu

tion using the likelihood ratio test for the large samples. We have also applied the 

asymptotic distribution of GSM for finding simultaneous confidence intervals for linear 

combinations of /il- .s.' V
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CHAPTER IV

DISCRIMINATION AND CLASSIFICATION ANALYSIS 

USING KOTZ TYPE DISTRIBUTION

4.1 Introduction

The statistical methods for estimation, hypothesis testing, and simultaneous confidence 

intervals under Kotz type distribution have been shown in the preceding chapters. In 

this chapter, we shall consider this distribution for determining classification rules 

which minimize the expected cost of misclassification under equal prior probabilities 

and equal misclassification costs. The procedures we develop will be same, in spirit, 

as the multivariate normal distribution based rules. In fact, the rule under common 

variance covariance m atrix is same as the normal based method except that the pa

rameter estimates used are the ML estimates of mean and variance under the Kotz 

type distribution. We will show sample classification procedures under the general 

covariance and AR(1) structures. Computation of misclassification probabilities using 

cross validation are also provided.

4.2 Separation and Classification for Two Popula

tions

Let /i(x ) and / 2 (x) be the probability density functions of a p x 1 random vector X 

under populations IR and n 2 respectively. Let f I be the sample space and R\  C Vt 

be the set of x  values for which we classify objects into IIi and R2 — fl — Ri be the 

remaining x  values for which we classify objects into II2 -

The conditional probability P ( j / i ) of classifying an object into 11̂  when it is from 

n , is
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P ( j / i )  = P {X  e  Rj/Ui)
9

fi(x)dx, with P (i/i)  = 1 -  h j  =  1, 2 and i ±  j.
,R3 j=1

Let pi be the prior probability of 11, such that pi + p2 =  1.

L
P(the object is correctly classified into IL) =  P (the object comes from IL

and is correctly classified into 11*)

-  P (X  e  R i/U ^P ill i)

= P (i/i)pu i = 1,2.

P (the object is misclassified to 11,) =  /-’(the object comes from Ilj

and is misclassified to Ilj)

=  P (X  €

= P(Ui)Vi, i ' j  = ! , 2  a n d i #  j.

The costs of misclassification can be defined by a cost matrix

Classify into:

IE n 2

Ill 0 c( 2/1)

n 2 c(l/2) 0
True Population:

We shall consider the expected cost of misclassification (ECM) given by

ECM =  c(l/2 )P (l/2 )p2  +  c(2 /l)P (2 /l)Pl.

R esu lt 4.1 The regions Ri and R 2 that minimize the ECM are defined by the values 

x  for which the following inequalities hold, that is,

Ri ■ T 7 4  ^  and '■ otherwise.f 2(x) c (2 /l) pi

Under equal prior probabilities and equal misclassification costs, these regions re

duce to

/i(xR x :
/a(x)

> 1 and R 2 : otherwise. (4.1)
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4.2.1 Classification Rules Under Kotz Type Distributions and 

General Covariance Structure

We now assume that /i(x )  and / 2(x) are Kotz type densities with parameters /xx, 

S i  and / i 2, respectively. We consider two cases based on whether the variance 

covariance matrices are equal or not. First we shall consider the case of equal variance 

covariance matrices. That is,

C a se  1. S i  — S 2 =  S

Suppose the Kotz type densities of X  for populations II i and II2 are given by 

/i(x) =  c | S  |~3 exp { - [ ( x -  #*£]*}> V i €  S  p. d.,i =  1,2,

r ( E )
where c =  — v .

27rSr(p)
Suppose X n ,x i2 , ...jXiru and X2 i ,x 22 , ...,x 2ri2 are two random samples of sizes n\ 

and n 2 from Kotz type populations, III and II2 with unknown parameters Vi and V 2 

and a positive definite common variance covariance matrix (p +  1 )S , respectively, with 

the conditions n x+ n 2 — 2 >  p. Then the minimum ECM regions determined by samples 

of sizes n\ and n2 respectively from (4.1) are simplified to

Ri  : exp { \ J (x /xx) 'S  X(x -  fa )  +  t / ( x  -  /r2)/S _1(x -  /x2) } > 1 

and R 2 '■ otherwise.

Given these regions R\ and R 2, the sample classification rule proceeds as in the 

following result.

R e su lt  4 .2  Let the populations IK and II2 be Kotz type populations with equal general 

covariance matrices. Then the linear classification rule that minimizes the ECM under 

equal prior probabilities and equal misclassification costs is as follows:

Allocate xo, a new observation vector to be classified, to lit if

( £ 1  -  £ 2)'^  ^  -  ^ ( £ 1  -  £ 2)'^  + £ 2) > °> (4-2)

where fix, £ 2  and ^  are MLEs of /x1, V 2 and S  respectively.

Allocate xq to H2 otherwise.
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We note that this rule is similar to the rule based on the normal densities except 

that here we estimate /xl5 p 2 and S  differently; that is, by the optimization method 

mentioned in Chapter 2.

C ase 2. S i  ^  S 2

Suppose the Kotz type densities of X  for populations II j and n 2 are given by

Let x n ,x i 2 , ...jXinj and X2 i,X 2 2, ...,X2n2 be two random samples of sizes n\ and n2 

from Kotz type populations III and n 2 with unknown parameters /xx, S i  and f i2, 

S 2, respectively, with n x — 1 > p and 712 — 1 >  p. Then the minimum ECM regions

given in the following result.

R esu lt 4.3 Let the populations IR and II2 be Kotz type populations with unequal 

general covariance matrices. Then the non-linear classification rule that minimizes the 

ECM under equal prior probabilities and equal misclassification costs is as follows: 

Allocate Xq to IR if

/i(x) =  c | S i | » exp { -[(x  -  M<)'Si * ( x -  /*i)]s}> e  5RP, 'Si p. d .,i = 1,2

where c =  —v3—  
2ns r(p)

determined by samples of sizes n\ and n 2 respectively from (4.1) are simplified to

Ri

R 2  : otherwise.

Given the regions IR and R 2, we can construct the sample classification rule as

> 0

(4.3)

that is, if

where , ^1 and ^ 2  are MLEs of p b 1 , / x 2 , S  1 and S 2 respectively.

Allocate Xq to Ii2 otherwise.
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E xam ple  4.1. For illustration, here we consider Fisher’s famous Iris data. The two 

species of Irises we have selected are Iris Versicolor and Iris Virginica and the data are 

displayed in Table 4.1. Data on four variables, x x =  sepal length, x 2 =  sepal width, 

X3 =  petal length and X4  =  petal width are available. There are 50 observations in 

each sample. These data have appeared in many places, but we have taken the data 

from Table 11.5 of Johnson and Wichern (1998, pp. 715 - 716).

These data were found to have unequal covariance matrices and hence we used Case 

2 to illustrate our procedure. Next, we computed the MLEs of Mi, ^ 1  anc  ̂ ^ 2  under

Kotz type distributons. The results are as follows:

n x (Iris Versicolor) : rq  =  50,

Ax =  (5.9301907, 2.7846629, 4.2389524, 1 .3164927)',

S i =

/  0.0651039 0.0220169 0.0426881 0.0135329 \

0.0220169 0.022449 0.0206865 0.0101087

0.0426881 0.0206865 0.0489653 0.0167524

V 0.0135329 0.0101087 0.0167524 0.0088665 /

an d  S x =

(  39.706180 -1 8 .4 8 8 0 2  -3 7 .5 6 5 7 4  31.451537 \

-1 8 .4 8 8 0 2  101.38476 8.9867497 -1 0 4 .3 5 0 3

-3 7 .5 6 5 7 4  8.9867497 94.079695 -1 3 0 .6 6 4 1

\  31.451537 -1 0 4 .3 5 0 3  -1 3 0 .6 6 4 1  430.62776 )

I I2 (Iris V irginica) : 712 =  50,

A2 =  (6.5506952, 2.9737207, 5.5073221, 2 .0322709)',

(  0.0836885 0.0193137 0.0613979 0.0109602 \

0.0193137 0.021707 0.0147842 0.0108312

0.0613979 0.0147842 0.0625200 0.0110904

\  0.0109602 0.0108312 0.0110904 0.0175368 /
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Table 4.1: Iris data: Iris Versicolor and Iris Virginica.

Iris V e rs ic o lo r Iris V irg in ic a

S e p a l le n g th S e p a l w id th P e ta l  L e n g th P e ta l  w id th S e p a l  le n g th S e p a l w id th P e ta l  L e n g th P e ta l  w id th

7 .0 3 .2 4 .7 1.4 6 .3 3.3 6 .0 2 .5

6 ,4 3 .2 4 .5 1.5 5 .8 2 .7 5.1 1.9

6 .9 3.1 4 .9 1.5 7.1 3 .0 5 .9 2.1

5 .5 2.3 4 .0 1.3 6 .3 2 .9 5 .6 1.8

6 .5 2.8 4 .6 1.5 6 .5 3 .0 5 .8 2 .2

5 .7 2.8 4 .5 1.3 7 .6 3 .0 6 .6 2.1

6 .3 3.3 4 .7 1.6 4 .9 2 .5 4 .5 1.7

4 .9 2 .4 3 .3 1.0 7 .3 2 .9 6 .3 1.8

6 .6 2 ,9 4 .6 1.3 6 .7 2.5 5 .8 1.8

5 .2 2 .7 3 .9 1.4 7 .2 3 .6 6.1 2 ,5

5 .0 2 .0 3 .5 1.0 6 .5 3.2 5.1 2 .0

5 .9 3 .0 4 .2 1.5 6 .4 2 .7 5 .3 1.9

6 .0 2 .2 4 .0 1.0 6 .8 3.0 5 .5 2.1

6.1 2 .9 4 .7 1.4 5 .7 2.5 5 .0 2 .0

5 .6 2 .9 3 .6 1.3 5 .8 2.8 5.1 2 .4

6 .7 3.1 4 .4 1.4 6 .4 3.2 5.3 2 .3

5 .6 3 .0 4 .5 1.5 6 .5 3 .0 5 .5 1.8

5 .8 2 .7 4 .1 1.0 7 .7 3 .8 6 .7 2.2

6 .2 2 .2 4 .5 1.5 7 .7 2 .6 6 .9 2.3

5 .6 2.5 3 .9 1.1 6 .0 2 .2 5 .0 1,5

5 .9 3 .2 4 .8 1.8 6 .9 3 .2 5 ,7 2 .3

6.1 2.8 4 .0 1.3 5 .6 2.8 4 .9 2 .0

6 .3 2.5 4 .9 1.5 7 .7 2.8 6 .7 2 .0

6.1 2.8 4 .7 1.2 6 .3 2 .7 4 .9 1.8

6 .4 2 ,9 4 .3 1.3 6 .7 3.3 5 .7 2.1

6 .6 3 .0 4 .4 1.4 7 .2 3.2 6 .0 1.8

6 .8 2 .8 4 .8 1.4 6 .2 2.8 4 .8 1.8

6 .7 3 .0 5 .0 1.7 6.1 3.0 4 .9 1.8

6 .0 2 .9 4 .5 1.5 6 .4 2.8 5 .6 2.1

5 .7 2 .6 3 .5 1.0 7 .2 3.0 5 .8 1.6

5 .5 2 .4 3 .8 1.1 7 ,4 2.8 6.1 1.9

5 .5 2 .4 3 .7 1.0 7 .9 3.8 6 .4 2 .0

5 .8 2 .7 3 .9 1,2 6 .4 2.8 5 .6 2 .2

6 .0 2 .7 5 .1 1.6 6 .3 2.8 5.1 1.5

5 .4 3 .0 4 .5 1.5 6.1 2.6 5 .6 1.4

6 .0 3 ,4 4 ,5 1.6 7 .7 3.0 6.1 2.3

6 .7 3.1 4 .7 1.5 6 .3 3.4 5.6 2.4

6 .3 2 .3 4 .4 1.3 6 .4 3.1 5 .5 1.8

5 .6 3 .0 4 .1 1.3 6 .0 3 .0 4 .8 1.8

5 .5 2 ,5 4 .0 1.3 6 .9 3.1 5 ,4 2.1

5 .5 2 .6 4 .4 1.2 6 .7 3.1 5 .6 2.4

6.1 3 .0 4 .6 1.4 6 .9 3.1 5.1 2.3

5 .8 2 .6 4 .0 1.2 5 .8 2 .7 5.1 1.9

5 .0 2 .3 3 .3 1.0 6 .8 3 .2 5.9 2.3
5 .6 2 .7 4 .2 1.3 6 .7 3 .3 5 .7 2.5

5 .7 3 .0 4 .2 1.2 6 .7 3.0 5.2 2 .3

5 .7 2 .9 4 .2 1.3 6 .3 2.5 5 .0 1.9

6 .2 2 .9 4 .3 1.3 6 .5 3.0 5 .2 2.0

5.1 2 .5 3 .0 1.1 6 .2 3.4 5 .4 2.3

5 .7 2 .8 4.1 1.3 5 .9 3.0 5.1 1.8
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/  45.953273 -15.75067 -42.84096 8.1010053 \

 1 -15.75067 77.428683 4.3874471 -40.75300
and So =

-42.84096 4.3874471 59.427269 -13.51723

\  8.1010053 -40.75300 -13.51723 85.678729 j

If Xq =  (x'oi,.... .X0 4 ) is data on a new specie, then we have the distance from 

xq to i ix as

Xo -  Ai)'Si ( x o - A i )

/  39.70618 . . .  31.451537 \  /  x ox -  5.9301907 \  ,
[(201 -5 .9 3 0 1 9 0 7 ,...,x oi -  1.3164927)' I : : I I : j ] 2

\  31.451537 . . .  430.62776 I  V ^04 -  1-3164927 J

and distance from xq to f i2 as

x 0 -  (xo -  i i 2)

.1010053 \  /  xoi -6.5506952 \  ,
=  (soi -  6.5506952,..., x 04 -  2.0322709)'

45.953273 ..

8.10i0053 . . .  85.678729 J  \  x 04 -  2.0322709

The rule that minimizes the ECM under equal prior probabilities and equal mis

classification costs is given by “ allocate Xo to Iris Versicolor specie (IIi) if the 

distance from x 0  to (ix plus \  In | S i  |=  —8.496731 is smaller than or equal to the 

distance from xo to /i 2 plus | l n  | E 2 |=  —7.519708.” Otherwise, allocate xo to Iris 

Virginica specie (II2 ).

4.2.2 Under AR(1) Structure

Sometimes when the data are repeated measures of a single variable or when they are 

of time series type then instead of using a general variance covariance matrix, a special 

structure like AR(1) may be more appropriate. In this section, we provide discriminant 

functions under AR(1) structure.

Suppose the Kotz type densities of X  for populations II1 and n 2 are given by

f i ( x)  = c ( M \  2 exp { -  — J ( x  -  Hi)’ [Ip +  p f C i  -  p iC 2] (x -  }, i = 1, 2 ,
^ P i
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where c = r (f)
27r§r(p) , C i and C 2 are defined in (2.5), (2 .6 ).

C ase 1. S i  =  =  S , that is, <j\ = e \ = a2 and pi = P2 = p-

Let x n , X1 2 , ..., x l n i  and X2 1 , x 2 2 , x 2n2 be two random samples of sizes n\ and n 2 from 

Kotz type populations 1 1 1  and II2 with unknown parameters pil and / / 2  and a positive 

definite common covariance matrix (p +  1)S, respectively, with n i + n2 — 2 > p. Then 

the minimum ECM regions determined by samples of sizes n i and n2 respectively from 

(4.1) are simplified to

Ri exp { — — \ / Dn  +  fPD2 1  — pDz\ +  — \J D l2 +  p2D22 — P-D32} > 1 
a  a

and R 2 : otherwise.

Here

D n  =  ( x - A i ) ' ( * ~  A i ) ,

D 2 i  =  ( x -  A i ) '  C i  ( x -  A i ) ,  

D 31 = ( x  -  A i ) '  C2 (x -  A i ) ,  

d 12 =  ( x -  f i2y  ( x -  a 2), 

D22 =  ( x - A 2) ' C i  ( x - A a ) .  

L>32 =  (X -  A 2)'  C 2 (X -  A 2)-

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Given these regions R\ and R 2, we can construct the sample classification rule as 

given in the following result.

R esu lt 4.4 Let the populations IR and n 2 be Kotz type populations with equal AR(1) 

structured covariance matrices. Then the linear classification rule that minimizes the 

E C M  under equal prior probabilities and equal misclassification costs is as follows: 

A llo ca te  to  ITi if

— ~ \J D u  +  P2D2\ — pDsx +  — 1 /£ > 1 2  +  p2D22 — A D 3 2  > 0  a a

This classification function is equivalent to allocating Xq to IR if

(Ai -  A2)/£Co + /S2(Ai -  ~ p(Ai -  C2*a -  k > 0, (4.10)
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where f i1, fi 2 and p are MLEs of n 1, /z2 and p respectively and Ci and C2 are as in 

(2.5) and (2.6) and

1 1  1 
k  =  Tj(Ai “  A 2) / ( A i  +  A 2) +  ~  +  A 2) +  2 ^ ( A i  -  A 2) ' C a ( A i  +  A 2)-

Allocate Xq to n 2 otherwise.

C ase 2. S x ^  S 2, that is, and p,),s are different.

Let x n ,x i2, ...,x ini and x 2 i ,x 22, . . . , x 2t12 be two random samples of sizes ni and n 2 

from Kotz type populations, IIi and II2 with unknown parameters f i 1. S i  and /x2, 

S 2, respectively, with ni — 1 > p and n 2 — 1 > p. Then the minimum ECM regions 

determined by samples of sizes n\ and n 2  respectively for (4.1) are simplified to

i.2̂  _£ ,-y _  A2x _I

*  = i _______________

exp {— — J D \ \  +  p\D 2 i — p i£*31 +  ~ \ j  £fi2  +  P2 R 2 2  — P2 D 3 2  } > 1
f T i  V (To  V01 v cr2

and R 2 : otherwise.

Given these regions Ri and A2, we can construct the sample classification rule as 

given in the following result.

R esu lt 4.5 Let the populations IR and Il2  be Kotz type populations with unequal 

AR(1) structured covariance matrices. Then the non-linear classification rule that 

minimizes the ECM under equal prior probabilities and equal misclassification costs is 

as follows:

Allocate x$ to IR if

~ \ J  D 12 P 2 D 22 — P 2 D 32 ~~ ~ \ /  D u  +  P 1D 21 — P 1 -D31 — k  >  0 ,
<72 v <7\

where iR i, IR i, An,-D 12, £ > 2 2 and D 3 2 are as in (4 .4 ) - (4-9) and

Alternatively, allocate xq to IR if
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\ J D n  +  P1-D 21 -  P 1 D 3 1 + - i n ( ^ ^ ^ 2 )  — y \ ] - ^ 12 +  P 2 D 2 2  — P 2 D 3 2 + 2  ^ ( ^  ^ ^ 2 )  

(4.11)

otherwise, allocate xq to II2 .

E x am p le  4.2. Although, AR(1) structure may not be appropriate for this example, 

we illustrate this procedure using Iris data of Example 4.1. These data were found to 

have unequal AR(1) covariance matrices and hence we used Case 2 to illustrate our 

procedure. Next, we computed the MLEs of / ix, p 2, oq, a2, pi and p2 under Kotz 

type distributions. The results are as follows:

IIi (Iris Versicolor) : n x =  50,

f i x =  (5.9048405, 2.7879834, 4.2520208, 1.3172935)',

<3q =  0.1523249 and px =  0.5391383.

Il2 (Iris Virginica) : n 2 =  50,

fi2 =  (6.5320442, 2.9815112, 5.4915763, 2.04259659)',

6 2  =  0.1909728 and p2 = 0.389897.

Substituting these values in (4.11), we obtain the non-linear classification rule that 

minimizes the ECM under equal prior probabilities and equal misclassification costs is 

as follows:

Allocate x 0  to Iris Versicolor specie (n x) if

5^9^28 ( D 12 + 0.15201967£>22 -  0.389897T>32) 5

-  o 1523249 ( d u +  0.290670106T>2i -  0.5391383£>3i)  2 +  0.815193 > 0 , 

where D xx, D2X, D3X, D X2, D 22 and H 3 2  are as given in (4.4) - (4.9).

Allocate x 0 to Iris Virginica specie (n 2) otherwise.
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4.2.3 Evaluating Classification Functions for Two Populations

Because parent populations are rarely known, we consider the error rates as a measure 

of judging the performance of any classification procedure. The performance of sample 

classification functions can be evaluated by calculating the actual error rate (AER) 

given by

A E R  —  p i  [  / i ( x ) d x  +  P2 f  / 2 ( x ) * c ,
J i?2 ^ Rl

where R\ and R2 are the classification regions determined by samples of sizes n\ and 

ri-2 respectively.

The AER indicates how the sample classification function will perform in future 

samples. In general, it cannot be calculated because it depends on the unknown density 

functions /i(x )  and / 2 (x). However, a nearly unbiased estimate of the expected actual 

error rate (E (A E R )) can be calculated by using Lachenbruch’s holdout procedure 

under the equal prior probabilities and equal misclassification costs (see Lachenbruch 

and Mickey (1963)). Constructing the error-rate estimates do not require distributional 

assumptions and can be calculated from what is called as confusion matrix. This 

procedure is sometimes referred to as jackknifing or cross-validation. For nx and n 2 

observations from Kotz type populations Hi and n 2 respectively, the confusion matrix 

has the form

Actual membership

Predicted membership

nx n 2

nx nic n\M = ni -  n \c nx

n 2 n2M =  n2 -  U2C n2c n2

where

rtic — number of H, items correctly classified into II, items, i = 1 ,2  

riiM = number of n , items misclassified into fl, items, j  — 1 , 2  and i ^  j.

A nearly unbiased estimate of the expected actual error rate, E (A E R )  is given by

(H)  , (H)

E (A E R ) = n l M  +  n 2M

Tli + n 2
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where are the number of holdout (H) observations misclassified in the i th group, 

i =  1 , 2 .

When we adopted the Lachenbruch’s holdout procedure using Kotz type densities, 

we obtained the confusion matrix as follows: (III: Iris Versicolor, II2 : Iris Virginica).

Predicted membership 

III II2

Actual membership

IIi

n 2

46 4

1 49

50

50

and consequently, E (A E R )  =  ~  =  0.05.

When we adopted the quadratic discriminant rule under multivariate normal distri

butions with unequal covariance matrices, we obtained the confusion matrix as follows:

Predicted membership 

IIi II2

lb

Actual membership
n 2

47 3

1 49

50

50

and consequently, E (A E R )  =  Too =  0.04.

However, Iris data were found to have come from multivariate normal distributions 

with unequal covariance matrices. In general, for the data tha t satisfy multivariate 

normal distribution assumption, the error rate seems to be lower for the rules based 

on multivariate normal densities than those based on Kotz type densities.

It would be interesting to compare these two error rates, tha t is, the two error rates 

based on multivariate normal and Kotz type distribution assumptions when the data 

are from Kotz type distributions. For this purpose, we adopt the following samples
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simulated from Kotz type densities.

E xam ple  4.3. We generate data with four variables and 30 observations each from 

two Kotz type populations 1 1 1  and II2 with the following means and variance covariance 

matrices; where

^  = (5.9301910, 2.7846634, 4.2389532, 1.3164930y,

S i  =

(  0.0651017 0.0220158 0.042686 0.0135321 \

0.0220158 0.0224482 0.0206853 0.0101082

0.042686 0.0206853 0.0489631 0.0167515

V 0.0135321 0.0101082 0.0167515 0.0088661 I

V-2 = (6.5506954, 2.9737208, 5.5073221, 2.0322710)',

S 2  =

f  0.0836884 0.0193137 0.0613978 0.0109602 ^

0.0193137 0.021707 0.0147842 0.0108312

0.0613978 0.0147842 0.0625199 0.0110904

V 0.0109602 0.0108312 0.0110904 0.0175368 I

The SAS program to compute the estimates and discriminant rule is provided in 

Program 3 in APPENDIX.

The Lachenbruch’s holdout procedure using Kotz type densities provides the fol

lowing confusion matrix:

Predicted membership 

IIi II2

Actual membership

IK

n 2

3 0 0

1 2 9

3 0

3 0

and consequently, E (A E R ) = A =  0.0167.

When we adopted the quadratic discriminant rule under multivariate normal distri

butions with unequal covariance matrices, we obtained the confusion matrix as follows:
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Predicted membership 

IIi II2

IIi

Actual membership
n 2

29 1

1 29

30

30

and consequently, E (A E R )  =  ~  =  0.0333. This rate is considerably higher than 

0.0167. Thus, the discriminant function using Kotz type densities is a better measure 

of performance and can achieve effective classification when the samples are from Kotz 

type populations.

4.3 Separation and Classification for Several Pop

ulations

Let /, (x) be the probability density function of a p x 1 random vector X  under popu

lation H , i =  1 ,..., g.

Let pi = the prior probability of population flj,

c(j/i)  — the cost of allocating an object into IIj when it comes from IT,

Rj =  the set of x ’s classified into flj

and P ( j / i ) — P(classifying an object into Ilj when it is from IL)

r  9
= / /i(x )dx  with P (i/i)  =  1  -  P (j/i)-

J r * j = 1,

We shall consider the expected cost of misclassification,

g g
E C M  =

i=l j = 1, j ^ i

as our criteria for assessing various classification procedures.
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R esu lt 4.6 The classification regions that minimize the ECM are defined by allo

cating x  to population Uj , j  — 1 , g for which

9

Pifi(x) c (j/i) ,
i= 1 , ij ĵ

is smallest.

Under the equal prior probabilities and equal misclassification costs allocate x 0, a 

new observation, into population Ilj if

f j (x0) > /j(x 0), for i = 1 , i ±  j.

Alternatively, allocate Xo into population f l 7 if

ln /j(xo) > ln /j(x 0), for i = 1 , ...,g, i ^  j.

See Johnson and Wichern (1998) for proofs and other details.

4.3.1 Classification Rules Under Kotz Type Distributions and 

General Covariance Structure

We now assume that /,(x ) is a Kotz type density with parameters ( j l 1 and 2 j ,  i —  

l,...,g . We consider the two cases, of equal and unequal covariance assumptions.

C ase 1. Hi =  X 2  =  ... =  2 9  =  2 .

The Kotz type densities of X  for population II, with parameters pil and a common 

variance covariance matrix (p +  1 )2 , i =  1 ,..., g are given by

/ i ( x )  =  c | 2  | - a  exp { - [ ( x -  /Lq)'£_1(x -  & ) ] * } ,  m  S  p. d., i =  1 , ...,g,

where c =  Fi 2  ̂ .
27r 5 r  (p)

Let Xji, Xj2 , Xjni be random samples of sizes rq from /,;(.) with — 1) > p.

We provide the classification rule below.

R esu lt 4.7 Let the populations IL, i =  be Kotz type populations with equal
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general covariance matrices. Then the classification rule that minimizes the ECM un

der equal prior probabilities and equal misclassification costs is as follows:

Allocate Xq to II, if

dj(xo) =  max di(x0),
1 < i < g

where

di ( tCo) =  l n f i ( x o )  =  -  ^ l n | S |  -  Y ( x 0 1( x 0 - p , i ).

This classification function is equivalent to allocating Xo to Ilj if

djiixo) =  dj(xo) -  di(xo)

= (Aj ~  A i)'S \  -  ~(fij  -  & ) '£  \ p , j + fif) > 0, for i = 1, ...g, i ±  j,

(4.12)

where pLl, fbJ and £  are MLEs of /i,. and £  respectively.

The result is obtained by following similar steps as in Johnson and Wichen (1998). 

We note that this rule is similar to the rule based on the normal densities except that 

here we estimate and £  by the optimization method mentioned in Chapter 2.

C ase 2. £ j ’s a re  d ifferen t

The Kotz type densities of X  for population IIj with parameters and £*, i = 1,..., g 

are given by

/i(x) =  c | £ i  |"5 exp { - [ ( x - ^ y S - ^ x - M i ) ] ^ } ,  Vi t W ,  £ i P■ d., i = l, . . . ,g,  

where c =  --S i.1 .
2 7 r 5 r  (p)

Suppose Xji, Xj2 j ...,Xjni are random samples of sizes n, from /,(.) with n, — 1 > 

p, i — 1..... g. Then we have the following result.

R esu lt 4.8 Let the populations II,, i =  1, ...,g be Kotz type populations with unequal 

general covariance matrices. Then the classification rule that minimizes the ECM un

der equal prior probabilities and equal misclassification costs is as follows:

Allocate xq to IL,- if

dj(xq) =  max d^xf) ,
1 < i < 9
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where di{ xq) = Infi(xo) = -  \  In | E* | -  V {xq -  fif)' S i ( xq -  Ai), i = 1, 9-
- - 1

This classification function is equivalent to allocating Xq to Ilj if 

djiixf) =  dj(xo) -  di(xo)

®i  -  M ' S ,  \ x o  -  M  -  f x o  -  f r j Y S j  '(a») -  M  -  J  -  ° '

(4.13)

that is, if

xo — f i j f S j  (a ô — A  j )  +  ^ ln I | is smallest, (that is, if  \nf j(xo) is largest) 

where A,;, Ai; and are MLEs of /_t7, /i,j; S , and T,j respectively.

E xam ple  4.4. For illustration of the results we once again consider Fisher’s Iris 

data, but now with all the three species. The three species of Irises data considered 

are Iris Versicolor (n 2), Iris Virginica (n 3) displayed in Table 4.1 and Iris Sesota (nx) 

displayed in Table 4.2 respectively. Data on four variables, x i =  sepal length, x 2  =  

sepal width, x 3 =  petal length and x 4  =  petal width for 50 observations each from the 

three species are available. Again, we have taken the data from Table 11.5 of Johnson 

and Wichern (1998, pp.715 - 716). These data were found to have unequal covariance 

matrices and hence we use Case 2  to illustrate our procedure.

Here we provide ML estimates of // and S  and the discrimination rule for the new 

group that we included in this example (as compared to Example 4.1).

n 4 (Iris Setosa) : n\ = 50,

5.0003585, 3.4047069, 1.4585232, 0.2283304J ,

S i

/  0.0276767 0.0213725 0.0033927 0.0020632 \

0.0213725 0.0301198 0.0023413 0.0022393

0.0033927 0.0023413 0.0057416 0.0009577

\  0.0020632 0.0022393 0.0009577 0.0021534 /
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Table 4.2: Data on Iris Setosa.

S e p a l  le n g th S e p a l w id th P e ta l  L e n g th P e ta l  w id th

5.1 3 .5 1.4 0.2
4 ,9 3 .0 1.4 0.2
4 .7 3 .2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3 .6 1.4 0.2
5.4 3 .9 1.7 0.4

4 .6 3 .4 1.4 0,3

5 .0 3 .4 1.5 0.2
4 .4 2 .9 1.4 0.2
4.9 3.1 1.5 0,1
5.4 3 .7 1.5 0.2
4 .8 3 .4 1.6 0.2
4.8 3 .0 1.4 0,1
4 .3 3 .0 1.1 0.1
5.8 4 .0 1,2 0.2
5 .7 4 ,4 1.5 0 .4

5 .4 3 .9 1.3 0 .4

5.1 3 .5 1.4 0.3

5 .7 3 .8 1 .7 0.3

5.1 3 .8 1.5 0.3

5.4 3 .4 1.7 0.2
5.1 3 .7 1.5 0.4

4 .6 3 .6 1.0 0.2
5.1 3.3 1.7 0.5

4 .8 3 .4 1 .9 0.2
5.0 3 .0 1.6 0.2
5.0 3 .4 1.6 0.4

5.2 3 .5 1.5 0.2
5.2 3 .4 1.4 0.2
4 .7 3 .2 1.6 0.2
4.8 3.1 1.6 0.2
5.4 3 .4 1.5 0.4

5 .2 4.1 1.5 0.1
5.5 4 .2 1.4 0.2
4.9 3.1 1.5 0.2
5.0 3 .2 1.2 0.2
5.5 3 .5 1.3 0.2
4.9 3 .6 1.4 0.1
4.4 3 .0 1.3 0.2
5.1 3 .4 1.5 0.2
5.0 3 .5 1.3 0.3

4 .5 2 .3 1.3 0.3

4.4 3.2 1.3 0.2
5.0 3.5 1.6 0,6
5.1 3 .8 1.9 0 .4

4 .8 3 .0 1.4 0.3

5.1 3 .8 1.6 0.2
4.6 3 .2 1.4 0.2
5.3 3 .7 1.5 0.2
5.0 3 .3 1.4 0.2
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and =

/ 83.726660 -56.73314 -24.62621 -10.27257 \

-56.73314 74.871435 7.4663227 -26.82105

-24.62621 7.4663227 197.70168 -72.09592

V -10.27257 -26.82105 -72.09592 534.18177 /

If Xq =  (xqi, X0 4 ), then we have

x 0 -  A i ) ' ^  ( x 0 -  / t j )  +  |  I n  | E i

83.72666 . . .  -10.27257 \  /  x 0i -  5.0003585 \  t
=  (zoi -  5.0003585,..., x 04 -  0.2283304)'

9.700359,

-10.27257 . . .  534.18177 J \  x 04 -  0.2283304

x0  -  £ 2 ) ^ 2  ^Xq -  £ 2 ) +  5  In | %

xoi -  5.9301907,..., x 04 -  1.3164927)'

-  8.496731,

39.70618 . . .  31.451537 \  /  x oi -  5.9301907 \  t

31.451537 . . .  430.62776 /  V a;04 -  1.3164927

[(*01 -  6.5506952, .. . ,x 04 -  2.0322709)'

7.5197089.

and Y (x0  -  £ 3 ) 'E 3 (x0  -  £ 3 ) +  § In | S 3 |

45.953273 . . .  8.1010053 \  /  x ol -  6.5506952

3.1010053 . . .  85.678729 /  \  x q 4  —  2.0322709

The rule that minimizes the ECM under equal prior probabilities and equal mis

classification costs is given by “ allocate x 0  to II,, if the distance from xo to £  ■ plus 

|  In | E j |, j  =  1, 2, 3 is smallest.”
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4.3.2 Under AR(1) Structure

The Kotz type densities of X  for populations 11, with parameters /x* and E*, i =  1 , g, 

are given by

f i ( x )  = c ( ^ \ )  2 exp { -  — J ( x -  fii)' [Ip +  C j -  piC2]
VI — CTi v

where c =  —r ^ —, Ci and C 2 are as in (2.5), (2.6).
2-7T 5 r (p)

C ase 1. S i  =  E 2 =  ... =  E fl =  E , that is, of =  a \ — ... — <r2g = a2 and

p\ — P2 =  ••• — pg — P-

Suppose Xji,Xj2, .■ ■, x*n. are random samples of sizes n, from f , ( . )  with Yli=i(n i ~

1) >P-

R esu lt 4.9 Let the populations 11*, i =  1 &e Koiz type densities with equal

AR(1) covariance matrices. Then the estimated minimum ECM rule under equal prior

probabilities and equal misclassification costs is as follows:

Allocate Xo to II, if

dj(xo) =  max dfixf),
1<*<9

where dfixo) =  - l y j D u  +  p2D2l -  pD3i and

Du = ( x o - f i i ) ' ( x o - f a ) ,

D 2i =  ( x q  -  A*)' C i  (x q  -  A*),

Dzi =  (a*, -  A*)' C2 (xo -  fii).

This classification function is equivalent to allocating x q  to IL* if

dji(xo) = (fij -  fiifixo +  p2{fij -  fiifCxXQ -  p([ij -  fLi)’C2xo - h > 0 ,  (4.14)

where fi3, f i , , a and p are MLEs of fx3, /x*, a and p respectively and

h  =  ^ ( A j  -  A i ) ' ( A i  +  A i) +  \ p 2& 3  ~  A*) / C i ( A j  +  A*) +  ~  A A ' C M +  A*)-

C ase 2. E*’s a re  d ifferent, that is, a2’s and p\s are different.
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R esu lt 4.10 Let the populations R ,  i =  1 be Kotz type densities with unequal 

AR(1) covariance matrices. Then the estimated minimum ECM rule under equal prior 

probabilities and equal misclassification costs is as follows:

Allocate xq to Ylj if

dj(xo) -  max dfixo),
1 < i < 9

where dfixq) =  - 4 l n ( ^ f ^ )  -  K y jD u +  p-D2i -  ptD3l.

This classification function is equivalent to allocating Xq to Tij if

d jfixo) =  — \lD u  + PiD2i — PiDoy, — — J D i j  +  p*D2j — PXD3] — kx > 0
(7 {  v  (J  j

where kx =  § l n ( | | )  +  \  l n ( ^ | ) ,  

that is, if

1 /---------------------------  1 /  (<7?)p \
~jr \ j D ij +  p2jD 2j -  PjD3j +  -  ln^— J j  is smallest. (4.15)

E xam ple  4.5. We illustrate this procedure by using the Iris data considered in Ex

ample 4.4. The MLEs for Iris Sesota group and the classification rules are provided

below.

Eli (Iris Sesota) : n x = 50,

f ix = (5.0105823, 3.4134009, 1.4686691, 0.2409602)', 

ax =  0.1077129 and px =  0.456636.

If Xq =  (xoi,..., £ 0 4 ), then we have

3 7  (-Du +  p\D 2X -  P iA n ) + 4  I n ( ^ r )

=  0 .1 0 7 7 1 2 9  ( ^ n  +  0.208516436D2i -  0.456636D31)  2 -  8.796221

( ^ 1 2  +  P 2 D 2 2  —  P 2 - D 3 2 )  + | l n ( ^ j )

=  0.1523249 ( ^ 1 2  +  0.290670106D22 -  0.5391383^32) 2 -  7.355241

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



87

j ;  (̂ 13 + P3D 23 -  h D 3z) 2 + \  ln( T ^ l )

=  01969728 (^13 +  0.1520194367723 -  0.38989677733)  2 -  6.540048

The rule tha t minimizes the ECM under equal prior probabilities and equal mis

classification costs is given by

allocate x 0 to IJj if j : ( D i j  +  pjD2j -  PjD3j  ̂2 +  \  ln^^fi?-j, j  =  1, 2, 3 is smallest.

4.3.3 Evaluating Classification Functions for Several Popula

tions

In a similar way as in the case of two populations, we can judge the performance of 

the discriminant function by evaluating the error rate using Lachenbruch’s holdout 

procedure.

If is the number of misclassified holdout observations in the ith group, i = 

1, ...,g then an estimate of the expected actual error rate, E(AER) ,  is given by

(H)
E( AER)  -  UiM .

E L i n i

For Example 4.4, that is, for the Iris data, we adopted the Lachenbruch’s holdout 

procedure using Kotz type densities, and obtained the following confusion matrix (IIi: 

Iris Setosa, LE: Iris Versicolor, n 3: Iris Virginica).

P re d ic te d  m em bersh ip

IIi n2 n3

Ill 50 0 0 50

Actual membership II2 0 46 4 50

n3 0 1 4 9 50

and consequently, E ( AER )  =  3I 5  =  0.0333333.

When we used the multivariate normal densities for the same example, the sample 

quadratic classification rule provided the the confusion matrix as follows:

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



P re d ic te d  m em bersh ip  

IIi IE  II3

IE 50 0 0 50

A ctu a l m em bersh ip  II2 0 47 3 50

n 3 0 1 49 50

and consequently, the estimate of the expected actual error rate =  0.0267. It shows that 

the discriminant function using Kotz type densities provides slightly higher error rate 

than that using quadratic discriminant rule based on multivariate normal distributions 

with unequal covariance matrices. Once again, this could be due to the fact that the 

Iris data are found to follow multivariate normal distribution.

To evaluate the performance of the discriminant rules when data are from Kotz 

type distributions we consider the simulated data in the following example.

E xam ple  4.6. We generate data with three variables for 30, 35 and 40 observations 

from three Kotz type populations IE, II2 and II3 with the following means and variance 

covariance matrices respectively where

=  ( 5 .OO6 , 3.428, 1.462y,

S i

(  0.121764 0.097232 0.016028 ^ 

0.097232 0.140816 0.011464 

\  0.016028 0.011464 0.029556 /

H2 = (5.936, 2.77, 4.26y,

(  0.261104 0.08348 0.17924 \ 

0.08348 0.0965 0.081

\  0.17924 0.081 0.2164 /

/x3 =  (6.588, 2.974, 5.552)',
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/  0.396256 0.091888 0.297224 \

£ 3 =  0.091888 0.101924 0.069952 .

\  0.297224 0.069952 0.298496 /

Now for these data the Lachenbruch’s holdout procedure using Kotz type densities 

provides the following confusion matrix.

Predicted membership

IIi n 2 n 3

Ill 30 0 0 30

Actual membership II2 1 29 5 35

n 3 0 7 3 3 40

and consequently, E( AER)  =  ^  =  0.1238.

When we used the sample quadratic classification rule under multivariate normal 

densities with unequal £,: for the same example, we obtained the confusion matrix as 

follows:

Predicted membership

iii n 2 n 3

IIi 29 1 0 30

Actual membership II2 1 28 6 35

n 3 0 9 31 40

and consequently, the estimate of the expected actual error rate =  0.1619. This rate 

is considerably higher than 0.1238. Thus, the discriminant function using Kotz type 

densities performs better and can achieve effective classification when the samples are 

from Kotz type populations.
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4.4 Concluding Remarks

Before implementing a sample classification rule, multivariate normality of the data 

should be checked. If multivariate normality holds, then already well established pro

cedures based on normality can be utilized for classification. If normality fails and 

Kotz type distribution assumption holds, then we can use the discrimination function 

rules based on Kotz type densities that we have developed in this chapter as an al

ternative procedure. If we are not sure about the appropriateness of using normal or 

Kotz type densities, rules based on both the densities can be constructed and the one 

tha t provides smaller error rate can be used.
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APPENDIX

P R O G R A M  1: This program is to compute the power comparison between 

Mardia’s skewness and kurtosis measures and Henze-Zirkler test.

options ls=70 nodate; 

proc iml;

countl=0; count2=0; count3=0;

count4=0; count5=0; count6=0;

seed=0;

sample=5000;

n=100;

ql_95= 18.234;

q2_95= 1.366;

qtnb_5_95= 0.120;

qtnbl_95= 0.681; 

qtnb3_95= 1.098;

qtnb_n_95= 0.985; 

p=3;

kappal=j(sample,1 ,0 ) ;  

kappa2=j(sample,1 ,0 ) ;  

tnb_5=j(sam ple,1 ,0 ); 

tnb l= j(sam ple ,1 ,0 ) ;  

tnb3=j(sample,1 ,0 ) ;  

tnb_n=j(sample,1 ,0 ) ;

* compute b e ta  fo r  HZ s t a t i s t i c ;  

t t l = (  (2*p + l ) / 4  )* * ( l / (p + 4 ) ) ; 

tt2=n**( 1 / (p+4));

b e ta _ n = ( l / s q r t ( 2 ) ) * t t l* t t2 ;  p r in t  beta_n; 

beta_5=0.5; p r in t  beta_5; 

b e ta l= l ;  p r in t  b e ta l ;  

beta3=3; p r in t  beta3;
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* generate  new normal samples; 

do k=l to  sample;

z=j ( n ,p ,0 ) ; 

x = j ( n ,p ,0 ) ;

g _ m a tr ix = j(n ,n ,0 ) ; new g_m atr ix= j(n ,n ,0 ); 

x = n o rm a l(rep e a t(see d ,n ,p ) ) ; 

d fch i=p*(p+l)*(p+2)/6 ; 

q=i(n) -  ( l / n ) * j ( n , n , l ) ; 

s= ( l /n )* t(x )* q * x ; 

s_inv= in v (s ) ;  

g_matrix=q*x*s_inv*t(x)*q; 

do i= l  to  n; 

do j= l  to  n;

n e w g _ m atr ix [ i , j ]= g _ m atr ix [ i , i ]  -2 * g _ m a tr ix [ i , j ]+ g _ m a tn x [ j  , j ]  ; 

end; 

end;

b e ta lh a t= (  sum(g_matrix#g_matrix#g_matrix) ) / (n * n ) ;  

b e ta2 h a t= trace (  g_matrix#g_matrix ) /n ;  

kap p a l[k ]= n * b e ta lh a t/6;

kappa2[k]=(be ta2hat -  p*(p+2)) / sqrt(8*p*(p+2)/ n ) ; 

i f  (kappal[k] > ql_95) then 

countl=countl+ l; 

i f  (kappa2[k] > q2_95) then 

count2=count2+l;

* compute tnb,HZ s t a t i s t i c  fo r  b e ta0 .5 ;

terml=sum( exp( -0.5*(beta_5**2)*newg_matrix ) ) / (n**2);  

t l= - (2 /n )* ( l+ b e ta _ 5 * * 2 )* * ( -p /2 ) ;

t2 = tra c e (  exp( -0 .5*(beta_5**2/(l+beta_5**2))*g_m atrix  ) ) ;  

te rm 2 = tl* t2 ;

term 3=(l+2*beta_5**2)**(-p/2); 

tnb_5[k]=n*(term l + term2 + te rm 3 );
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* compute tnb.HZ s t a t i s t i c  fo r  b e ta l ;

terml=sum( exp( - 0 .5 * (betal**2)*newg_matrix ) ) / (n**2);  

t l= - (2 /n )* ( l+ b e ta l* * 2 )* * ( -p /2 ) ;

t2 = tra c e (  exp( -0 .5 * (b e ta l* * 2 /( l+ b e ta l* * 2 ))* g _ m atr ix  ) ) ;  

te rm 2=tl* t2 ;

te rm 3= (l+ 2*beta l**2)**(-p /2 ); 

tn b l[k ]= n * (te rm l + term2 + te rm 3 );

* compute tnb.HZ s t a t i s t i c  fo r  be ta3 ;

terml=sum( exp( -0.5*(beta3**2)*newg_matrix ) ) / (n**2);  

t l= - (2 /n )* ( l+ b e ta 3 * * 2 )* * ( -p /2 )  ;

t2 = tr a c e (  exp( -0 .5*(beta3**2/(l+beta3**2))*g_m atrix  ) ) ;  

te rm 2=tl* t2 ;

term3=(l+2*beta3**2)**(-p/2) ; 

tnb3[k]=n*(term l + term2 + te rm 3 );

* compute tnb.HZ s t a t i s t i c  fo r  b e ta _ n , ;

terml=sum( exp( - 0 .5 * (beta_n**2)*newg_.matrix ) ) / (n * * 2 );  

t 1 = - ( 2 /n ) * ( l+beta_n**2)**( - p / 2 ) ;

t2 = tr a c e (  exp( -0 .5*(beta_n**2/(l+beta_n**2))*g_m atrix  ) ) ;  

te rm 2=tl* t2 ;

term 3=(l+2*beta_n**2)**(-p /2); 

tnb_n[k]=n*(term l + term2 + te rm 3 ) ; 

i f  (tnb_5[k] > qtnb_5_95) then

count3=count3+l; 

i f  ( tn b l[k ]  > qtnbl_95) then

count4=count4+l; 

i f  (tnb3[k] > qtnb3_95) then 

count5=count5+l; 

i f  (tnb_n[k] > qtnb_n_95) then  

count6=count6+1;

end;

power_blp=countl/sample;
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power_b2p=count2/sample; 

power_tnb_5-count3/sample; 

power_tnbl=count4/sample; 

power_tnb3=count5/sample; 

power_tnb_n=count6/sample; 

t i t l e 2  ’Power f o r  normal d a ta ’ ; 

p r in t  seed; p r i n t  p;

p r i n t  ’The number o f ’ sample ’samples of s i z e ’ n; 

p r i n t  ’by (1) us ing  kappal, kappa2, t n b ’ ;

p r in t ’Based on skewness: ’ countl power_blp;

p r in t ’Based on k u r to s is :  ’ count2 power_b2p;

p r in t ’Based on H e n z e -z irk le r : ’ count3 power_tnb_5;

p r in t ’Based on H e n ze -z irk le r : ’ count4 power_tnbl;

p r in t ’Based on H e n z e -z irk le r : ’ count5 power_tnb3;

p r in t ’Based on H enze-z irk le r: ’ count6 power_tnb_n;

q u i t ;
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P R O G R A M  2: This program is to compute MLEs for n  and general covariance

S .

op tions  ls=70; 

proc iml;

/*  L og-like lihood  fu n c t io n :f_ h a  */

s t a r t  f_ha(x) g lo b a l (d a ta ,o p tn ,c o n ,x b a r ,p ,n ) ;

t = j ( n , 1 ,0 ) ;  v = j ( p ,p ,0 ) ; d = j(p ,p ,0 ) ;

sum=0.;

p i= 3 .1416;

c = l . / (2 * p i ) ;

k = l ;

do i= l  to  p; 

do j= l  to  p;

i f  ( i<= j) then do;

v [ i ,  j]=x[p+k] ; 

v [j , i]= x [p + k ]; 

k=k+l; 

end;

end;

end;

varcov=v;

* check i f  the  varcov i s  pd; 

c a l l  e igen(lam bda ,u ,varcov); 

d=diag(lambda); 

do i= l  to  p;

i f  (d [ i , i ]< = 0 )  then  d [ i , i ] =0.0001; 

end;

varcov=u*d*t(u); 

inv_var= inv(varcov); 

d e ts ig = d e t(v a rco v ) ;

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



102

do i= l  to  p;

xbar [ i ]= x [ i ]  ; 

end;

* use o r ig in a l  da ta  of X; 

do i= l  to  n;

d i f f = d a ta [ , i ]  -  xbar; 

t t =  t ( d i f f ) * in v _ v a r * d i f f ; 

t [ i ] = s q r t (  t t  ) ;  

sum=sum + t [ i ] ; 

end;

f_ha=n*log(c) -  (n /2 )* lo g (d e ts ig )  -  sum; 

r e tu r n ( f _ h a ) ; 

f i n i s h  f_ha;

/*  Main program */

n=30;

p=4;

cc=p*(p+l)/2 ;

par_ha=p+cc; par_hol=cc; par_ho2=l+cc; 

par_ho3=2+cc;

d a t a = j ( p ,n ,0 ) ; x b a r = j ( p , l , 0 ) ;

x_ha0=j(par_ha,1 ,0 ) ;  muopt_ha=j(p,1 ,0 ) ;

v l = j ( c c , 1 ,0 ) ;  v = j(p ,p ,0 ) ;

a _ h a t= j ( p ,p ,0 ) ; b _ h a t= j (p ,p ,0 ) ; asym_mu=j(p,p,0);

sigma2=0; rho=0;

suml=0; sum2=0; sum3=0;

alpha=0.05;

x_ho l0= j(par_ho l,1 ,0 ) ;

x_ho20=j(par_ho2,1 ,0 ) ;  muop_ho2=j( 1 ,1 ,0 ) ;  

x_ho30=j(par_ho3,1 ,0 ) ;  muop_ho3=j(2 ,1 ,0 ) ;  

sigma=0;

a sy _ lm u l= j(p ,p ,0 ) ; h l= j ( p - 1 ,1 ,0 ) ;
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asy_lmu3=j(3 ,3 ,0 ) ;  h 3 = j ( 3 , l ,0 ) ;  

a sym l= j(p ,1 ,0 ) ;  lo w l= j (p ,1 ,0 ) ;  

asyra2=j(p,1 ,0 ) ;  low 2=j(p-1 ,1 ,0 )  

asym3=j( 3 ,1 ,0 ) ;  low3=j(3 ,1 ,0 ) ;  

s l = j ( p , 1 ,0 ) ;

* board da ta ;  

tda ta={  1889 1651 1561 1778,

2403 2048 2087 2197,

2119 1700 1815 2222,

1645 1627 1110 1533,

1976 1916 1614 1883,

1712 1712 1439 1546,

1943 1685 1271 1671,

2104 1820 1717 1874,

2983 2794 2412 2581,

1745 1600 1384 1508,

1710 1591 1518 1667,

2046 1907 1627 1898,

1840 1841 1595 1741,

1867 1685 1493 1678,

1859 1649 1389 1714,

1954 2149 1180 1281,

1325 1170 1002 1176,

1419 1371 1252 1308,

1828 1634 1602 1755,

1725 1594 1313 1646,

2276 2189 1547 2111,

1899 1614 1422 1477,

1633 1513 1290 1516,

2061 1867 1646 2037,

1856 1493 1356 1533,

u p l= j ( p ,1 ,0 ) ;

; up2= j(p -1 ,1 ,0 ) ;  

u p 3 = j ( 3 , l ,0 ) ;
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1727 1412 1238 1469,

2168 1896 1701 1834,

1655 1675 1414 1597,

2326 2301 2065 2234,

1490 1382 1214 1284};

d a ta = t ( td a ta ) ;

x b a r= ( l /n ) * d a ta * j ( n ,1 ,1 ) ;  

q=i(n) -  ( l / n ) * j ( n , n , 1); 

s s= ( l / (n - l ) )* d a ta * q * td a ta ;  

do i= l to  p;

sigma2=sigma2 + s s [ i , i ] ;  

end;

sigma2=sigma2/p;

* i n i t i a l  value of (mu,sigma) under Ha; 

k = l ;

do i= l  to  p; 

do j= l  to  p;

i f  (i<= j) then  do;

v l[k ]= ss  [ i , j ] ;

k=k+l;

end;

end;

end;

x_haO=xbar//vl; 

tx_haO=t(x_haO);

optn={l 2}; * f o r  maximizing ;

con_ha={. . . .

l . e - 6  . . .

l . e - 6  . . 

l . e - 6  . 

l . e - 6 ,
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• >;

c a l l  n lp n ra (rc ,x _ h a res ," f_ h a" ,x _ h aO ,o p tn ,co n _ h a );

* Save r e s u l t  in  xopt_ha, fopt_ha ; 

xopt_ha=x_hares; 

fopt_ha=f_ha(xopt_ha);

p r in t  rc ;  

p r in t  xopt_ha; 

p r in t  fopt_ha;

* Solve fo r  muopt,sigmaopt under Ha; 

do i= l  to  p;

m uopt_ha[i]=xopt_ha[i]; 

end; s igop_ha=xopt_ha[p+ l:par_ha]; p r i n t  muopt_ha sigop_ha; 

♦Compute th e  optimal covariance us ing  th e  optimal va lues of 

MU,SIGMA; 

k=l; do i= l  to  p;

do j= l  to  p;

i f  ( i<= j) then  do;

v [ i , j ] =xopt_ha[p+k]; 

v [ j , i]=xopt_ha[p+k]; 

k=k+l; 

end;

end; 

end; 

bigsopt=v; 

p r in t  b ig s o p t ; 

q u i t ;
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PR O G R A M  3: In this program, we are computing A P E R  and E( AER )  using 

Kotz type densities for unequal general covariances for p=4 and g=2.

options ls=70; 

proc iml;

/*  L og-like lihood  fu n c tio n :f_ h a_ l  * /

s t a r t  f_ha_ l(x )

g lo b a l ( d a t a l , d a ta 2 , o p tn ,

con,p ,p i ,p 2 ,n ,n l ,n2 , g ) ; 

v _ l= j ( p ,p ,0 ) ; v _ 2 = j(p ,p ,0 ) ;

t l = j ( n l , l , 0 ) ;  t 2 = j ( n 2 ,1 ,0 ); 

suml=0.; sum2=0. ; 

x b a r= j (p 2 , l ,0 ) ;  d = j(p ,p ,0 ) ;

p i= 3 .1416; 

c = l . / (2 * p i ) ;

* f in d  Sigmal; 

k l = l ;

do i= l  to  p; 

do j= l  to  p;

i f  ( i<= j) then  do;

v_l [ i ,  j]=x[p2+kl] ; 

v_l [j ,i]=x[p2+kl] ; 

k l= k l+ l ; 

end;

end;

end;

varcov l= v_ l;

* check i f  the  varcovl i s  pd; 

c a l l  e igen(lam bda ,u ,va rcov l);  

d=diag(lambda);
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do i= l  to  p;

i f  (d [ i , i ]< = 0 )  then  d [ i , i ] =0.0001; 

end;

varcov l= u*d* t(u ); 

inv_varl=  in v (v a rc o v l) ; 

d e t s ig l= d e t ( v a r c o v l ) ;

* f in d  Sigma2; 

cc=p*(p+l)/2; 

k2=cc + 1;

do i= l  to  p; 

do j= l  to  p;

i f  ( i<= j) then  do;

v _ 2 [ i ,  j]=x[p2+k2] ; 

v _ 2 [ j , i]=x[p2+k2]; 

k2=k2+l; 

end;

end;

end;

varcov2=v_2;

* check i f  the  varcov2 i s  pd; 

c a l l  e igen(lam bda,u ,varcov2); 

d=diag(lambda);

do i= l  to  p;

i f  (d [ i , i ]< = 0 )  then d [ i , i ] =0.0001; 

end;

varcov2=u*d*t(u); 

inv_var2= inv (varcov2 ); 

d e ts ig 2 = d e t(v a rco v 2 ) ; 

do i= l  to  p2;

x b a r [ i ]= x [ i ]  ; 

end;
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* use o r ig in a l  d a ta  of X; 

do i= l to  n l ;

d i f f l = d a t a l [ , i]  -  x b a r [ l :p ] ;  

t t l =  t ( d i f f l ) * i n v _ v a r l * d i f f 1; 

t l [ i ] = s q r t (  t t l  ) ;  

suml=suml + t l [ i ] ;  

end;

do i= l  to  n2;

d if f2 = d a ta 2 [ , i]  -  x b a r [p + l :p 2 ] ; 

t t2 =  t ( d i f f 2 )* inv_var2*d iff2; 

t 2 [ i ] = s q r t (  t t 2  ) ;  

sum2=sum2 + t2  [ i ] ; 

end;

sum=suml+sum2;

sum _sig=nl* log(detsig l)  + n 2 * lo g (d e ts ig 2 ) ; 

f_ha_l=n*log(c) -  (l/2)*sum _sig  -  sum; * maximized fn  ; 

r e tu r n ( f _ h a _ l ) ; 

f i n i s h  f_ha_l;

s t a r t  check_d is t(da ta ,m uop t, i n v s i g l , in v s ig 2 ,

d e t s i g l , d e t s ig 2 , i , p , g l , g2 ,nl2_m);

d i f f = j ( p , l , 0 ) ; 

nl2_m=0;

d i f f  = d a t a [ , i ]  -  m u o p t[ ,g l] ;

d i s t s q l  = s q r t (  t ( d i f f ) * i n v s i g l * d i f f  ) + 0 .5 * lo g ( d e t s ig l ) ;

d i f f  = d a t a [ , i ]  -  muopt[,g2];

d is tsq 2  = s q r t (  t ( d i f f ) * in v s ig 2 * d iff  ) + 0 . 5 * lo g (d e ts ig 2 ) ;

i f  (d is tsq 2  < d i s t s q l )  then  nl2_m = 1; 

f i n i s h  check_dist;

s t a r t  get_xbar_sigm a(m uopt_ha,invsig l, in v s ig 2 ,

d e t s i g l , de ts ig2 ) 

g l o b a l ( t d a t a l , t d a t a 2 ,d a t a l , d a ta 2 ,
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c c ,p ,p 2 ,n l ,n 2 ,g ) ; 

v l  = j ( c c , l , 0 ) ;  v2 = j ( c c , l , 0 ) ;  

m uopt_ha=j(p ,g ,0); 

v v l= j ( p ,p ,0 ) ; v v 2 = j(p ,p ,0 ) ; 

x b a r l = j ( p , l , 0 ) ; 

x b a r2 = j(p ,1 ,0 ) ;

* f in d  sample means fo r  2 groups; 

x b a r l= d a ta l [ ,+ ] / n c o l ( d a t a l ) ; 

xbar2=data2[ ,+ ] /n c o l ( d a ta 2 ) ;

* f in d  sample var-cov m atrix ; 

q l= i(n l )  -  ( l / n l ) * j ( n l , n l , l ) ; 

q2=i(n2) -  ( l / n 2 ) * j ( n 2 , n 2 , l ) ; 

s s l = ( l / ( n l - l ) ) * d a t a l * q l * t d a t a l ; 

ss2=( 1 / ( n 2 - l ) ) *data2*q2*tdata2;

ss=( (n l - l ) * s s l+ ( n 2 - l ) * s s 2 ) / ( n l+ n 2 - 2 ) ;

* f in d  the  i n i t i a l  va lues  fo r  sigma2; 

k l= l;

do i= l to  p; 

do j= l  to  p;

i f  (i<=j) then  do;

v l [ k l ] = s s l [ i , j ] ;

k l= k l+ l ;

end;

end;

end;

k 2 = l ;

do i= l  to  p; 

do j= l  to  p;

i f  (i<=j) then  do;

v2 [k2 ]= ss2 [i ,  j ]  ; 

k2=k2+l;
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end;

end;

end;

* i n i t i a l  value of ( m u l l , . . ,mul5,mu41,. . . ,mu45,

s ig m a l , . . . ,s igm a3);

xbar=xbar1/ /x b a r 2; 

sigma_po=vl//v2; 

x_ha_10=xbar// sigma_po; 

tx_ha_10=t(x_ha_10);

optn={l 0>; * fo r  maximizing ;

con_ha={ . . . .

l . e - 6  . 

l . e - 6  . 

l . e - 6  . 

l . e - 6

l . e - 6  . 

l . e - 6  . 

l . e - 6  . 

l . e - 6 ,
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• >;

c a l l  n lp n ra (rc ,x _ h a re s ," f_ h a_ l" ,x _ h a_ 1 0 ,o p tn ,co n _ h a ) ;

* Save r e s u l t  in  xopt, fop t ; 

xopt_ha=x_hares; 

fop t_ha=f_ha_l(xopt_ha);

* Solve f o r  m u lo p t , . . . ,mu2opt, s ig m a lo p t , . . . ,sigma3opt; 

do i= l  to  g;

muopt_ha[ , i]= xop t_ha[ ( ( i -1 )* p )+1:p * i ] ;

end;

* f in d  Sigmal; 

k l = l ;

do i= l  to  p; 

do j= l  to  p;

i f  ( i<= j) then  do;

v v l [ i , j]= xop t_ha[p2+ k l]; 

vvl [ j , i]= xop t_ha[p2+ kl]; 

k l= k l+ l ; 

end;

end;

end;

* f in d  Sigma2; 

cc=p*(p+l)/2; 

k2=cc + 1;

do i= l  to  p; 

do j= l  to  p;

i f  ( i<= j) then  do;

vv2[i , j ]= xop t_ha[p2+ k2];
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v v 2 [ j , i]=xopt_ha[p2+k2];

k2=k2+l;

end;

end;

end;

s ig l= v v l ;

in v s ig l=  i n v ( s ig l ) ;  

d e t s i g l = d e t ( s i g l ) ; 

sig2=vv2;

invsig2= in v (s ig 2 ) ;  

d e ts ig 2 = d e t( s ig 2 ) ; 

f i n i s h  get_xbar_sigma;

/*  Main program */ 

g=2;

p=4; p2=2*p;

cc=p*(p+l)/2; 

par_ha=p2+2*cc;

td a ta l= {  5.7806923 2.9711524 4.7236083 1.5028512,

5.4164124 2.8093463 4.1048688 1.3894683, 

5.8224671 2.6413571 4.1156555 1.2004034, 

5.915706 2.7520598 4.4367974 1.3211563, 

7.0615442 3.1057031 5.0010325 1.4469908, 

5.5535799 2.922983 4.5625164 1.4017037,

6.0405752 2.5955045 4.2735683 1.2460578, 

5.9646149 2.6004935 3.6010724 1.1288722, 

6.1000764 2.7878842 4.1367692 1.2718204, 

5.9264868 2.8248937 4.2337807 1.3092521, 

5.6443527 2.3811418 4.2256821 1.2690787, 

5.9006483 3.1013458 4.1848988 1.4086161, 

6.6374569 2.7429361 4.1684296 1.1353632, 

5.4346199 2.4490424 4.0686659 1.1920723,
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tdata2={

5.686537 2.7037714 

5.5398378 2.9877456 

6.5792779 2.8897342 

5.7580576 2.6495915 

5.7195076 2.7513127 

6.2880095 2.7209261 

5.6827247 2.9219009 

5.9629738 2.8588019 

5.2534427 2.8480558 

5.7880453 2.7655088 

6.4859478 3.2043381 

5.9656021 3.0616776 

5.8308631 2.8428823 

6.3202378 2.9035702 

6.246117 3.2109154 

5.284534 2.5278402 

6.8462112 3.046601

7.1805166 3.3370394 

6.2938092 3.0646918 

6.0491458 2.8742568 

5.5687688 2.9170615 

5.5103595 3.1343121 

5.4857636 3.3183748 

6.4811978 3.3335411 

6.4331137 2.874984

8.4994476 3.2233767 

6.4880198 3.1290922 

6.356663 2.8471859 

6.6537091 3.3155046 

6.5688772 3.0201839 

7.357926 2.6389793

4.3215518 1.3376282, 

4.1977785 1.4275273, 

4.3448149 1.2068549, 

4.3011515 1.2496377, 

3.8838301 1.2760272, 

4.5542073 1.4095898, 

4.2515982 1.4155149, 

4.3858777 1.3956366, 

4.1071094 1.2321512, 

4.1234011 1.2536415, 

4.2138811 1.3666392, 

4.1505009 1.312617,

4.0287503 1.2345323, 

4.2867455 0.9928669, 

4.0325683 1.3407778, 

3.9808005 1.1471642}; 

5.9178479 1.8842269, 

5.9864498 2.2277146, 

5.3058226 2.0478006, 

5.4588787 2.4409555, 

4.7702703 1.8806772, 

5.6372549 2.315888,

4.9128641 2.2565673, 

5.3803565 1.8987372, 

5.3741692 1.758083,

7.3671073 2.534746,

5.2651431 2.1074788, 

5.8390458 2.4549109, 

5.5364078 2.2072308, 

5.7733679 2.3116469, 

6.7314072 1.5106304,
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5.0316135 1.8806569 4.4691248 2.1438683, 

6.8310662 2.9633427 5.7297421 2.0299421, 

5.6569992 2.8223333 4.8557879 1.9384321, 

5.5815036 1.9986782 4.5067316 1.9977182, 

7.2810534 3.317477 5.83851 1.8618643,

5.2051024 2.4717544 4.6737335 1.1315235, 

6.8058637 3.1057605 5.9300564 2.0530363, 

6.6884489 2.758086 5.5829555 1.9810277,

6.418012 3.0816724 5.6730993 1.9943875, 

6.7143569 3.0428895 5.7003529 2.0546334, 

6.3792509 2.8108183 5.6470089 1.7982288, 

6.1085266 2.6748243 5.1651656 2.0292148, 

4.4734502 3.2315595 3.769565 1.9606387,

5.9880721 2.8316502 5.1363329 2.1609173, 

7.4433548 2.6297364 6.5193664 1.7712821};

s i g l = j ( p , p , 0 ) ; 

s ig 2 = j ( p ,p ,0 ) ;

n l= n ro w ( td a ta l ) ; n2=nrow (tdata2); 

n=nl+n2;

d a t a l = j ( p , n l , 0 ) ; d a ta 2 = j (p ,n 2 ,0 ) ; 

d a t a l = t ( t d a t a l ) ; 

d a ta 2 = t ( td a ta 2 ) ; 

nl2_mm = 0; n21_mm = 0 ;

run get_xbar_sigm a(m uopt_ha,invsig l, in v s ig 2 , 

d e t s i g l , d e t s i g 2 ) ; 

s i g l  = i n v ( i n v s i g l ) ; 

s ig2 = in v ( in v s ig 2 ) ;

p r in t  muopt_ha s i g l  in v s ig l  s ig2 invsig2  ; 

do i  = 1 to  n l ;

run c h e c k _ d is t(d a ta l ,m u o p t_ h a , in v s ig l , invs ig2 , 

d e t s i g l , d e t s i g 2 , i , p , 1 ,2 ,nl2_m);
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nl2_mm = nl2_mm + nl2_m; 

end;

n ll_ t= n l -  nl2_mm ; 

do i  = 1 to  n2;

run check _ d is t(d a ta2 ,m u o p t_ h a ,in v sig 2 , in v s ig l , 

d e t s i g 2 ,d e t s i g l , i Jp ,2 Jl,n l2 _ m ); 

n21_min = n21_mm + nl2_m; 

end;

n22_t=n2 -  n21_mm ; 

count_mm=nl2_mm + n21_mm ; 

aper=count_mm/n; 

p r in t  ’The confusion m a tr ix ’ ; 

p r in t  ’C la s s i fy  a s ’ ; 

p r in t  ’ Popl Pop2’ ;

p r in t  ’True Pop’ n l l _ t  nl2_mm ; 

p r in t  ’ ’ n21_mm n22_t ;

p r in t  ’APER’ aper; 

s t o r e _ d a ta l= td a ta l ; 

s to re _ d a ta2 = td a ta2 ; 

n o l= n ro w (s to re_ d a ta l) ; 

t d a t a l = j ( n o l - 1 ,p ,0 ) ; 

n l l_ t r u e  = 0; nl2_miss = 0; 

do i  = 1 to  nol; 

k = 0;

do j  = 1 to  n o l;

i f  i  ~= j  th en  do;

k = k + 1;

td a ta l [ k , ]  = s to re _ d a ta l  [j ,] ; 

end;

end;

d a t a l = t ( td a t a l ) ;
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n l= n c o l ( d a ta l ) ; n=nl+n2;

run get_xbar_sigm a(m uopt_ha,invsigl, invs ig2 ,

d e t s i g l , d e t s i g 2 ) ; 

run c h e c k _ d is t ( t ( s to re _ d a ta l ) ,m u o p t_ h a , in v s ig l , in v s ig 2 ,  

d e t s i g l , d e t s i g 2 , i , p , 1 ,2 ,nl2_m); 

nl2_miss = nl2_miss + nl2_m; 

end;

n l l_ t r u e  = nol -  nl2_miss ; 

t d a ta l= s to r e _ d a ta l ; 

d a t a l = t ( t d a t a l ) ; 

n l= n c o l ( d a ta l ) ; 

no2=nrow (store_data2); 

td a ta 2 = j ( n o 2 - l ,p ,0 ) ; 

n22_true = 0; n21_miss = 0; 

do i  = 1 to  no2; 

k = 0;

do j = 1 to  no2;

i f  i  ~= j  then  do;

k = k + 1;

td a ta 2 [k , ]  = s to re _ d a ta 2 [ j , ] ;  

end;

end;

d a ta 2 = t ( td a ta 2 ) ; 

n2= nco l(da ta2 ); n=nl+n2;

run get_xbar_sigm a(m uopt_ha,invsigl, in v s ig 2 ,

d e t s i g l , d e t s i g 2 ) ; 

run c h ec k _ d is t( t ( s to re _ d a ta 2 ) ,m u o p t_ h a , in v s ig 2 , in v s ig l ,  

d e t s i g 2 ,d e t s i g l , i , p , 2 , 1 ,nl2_m); 

n21_miss = n21_miss + nl2_m; 

end;

n22_true = no2 -  n21_miss ;
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count_miss=nl2_miss + n21_miss ;

to t= n o l + no2 ;

ex_aer= coun t_m iss /to t;

p r i n t  ’The confusion m a tr ix ’ ;

p r in t  ’C la ss ify  a s ’ ;

p r in t  ’ Popl Pop2’ ;

p r i n t  ’True Pop’ n l l _ t r u e  nl2_miss;

p r i n t  ’ ’ n21_miss n22_true;

p r in t  ’The e s tim ate  of E(AER)’ ex_aer;

q u i t ;
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