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The transmission of cholera involves both human-to-human and environment-to-human pathways that
complicate its dynamics. In this paper, we present a new and unified deterministic model that incorporates
a general incidence rate and a general formulation of the pathogen concentration to analyse the dynamics
of cholera. Particularly, this work unifies many existing cholera models proposed by different authors.
We conduct equilibrium analysis to carefully study the complex epidemic and endemic behaviour of the
disease. Our results show that despite the incorporation of the environmental component, there exists a
forward transcritical bifurcation at R0 = 1 for the combined human–environment epidemiological model
under biologically reasonable conditions.

Keywords: cholera model; stability; epidemic and endemic dynamics

1. Introduction

Despite many clinical and theoretical studies [1,14,19,21,38,41,42,52] and tremendous adminis-
trative efforts and interventions,1 cholera remains a significant threat to public health in developing
countries. In the year 2006 alone, about 240,000 cholera cases were officially notified to the World
Health Organization (WHO), with Africa accounting for the majority of these cases. Recent
cholera outbreaks in Haiti (2010–2011), Nigeria (2010), Kenya (2010), Vietnam (2009), Zim-
babwe (2008–2009), Iraq (2008), Congo (2008), and India (2007) continue leading to a large
number of infections and deaths and receiving worldwide attention.1,2,3

Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. Its dynam-
ics are complicated by the multiple interactions between the human host, the pathogen and the
environment [41], which contribute to both direct human-to-human and indirect environment-
to-human transmission pathways. A deep understanding of the disease dynamics would provide
important guidelines to the effective prevention and control strategies [6,16]. Mathematical mod-
elling, simulation and analysis offer a promising way to look into the nature of cholera dynamics,
and many efforts have been devoted to this topic. Below, we briefly review some representative
mathematical models proposed by various authors.
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Capasso and Paveri-Fontana [2] introduced a simple deterministic model in 1979 to study a
cholera epidemic in the Mediterranean. They considered a population of bacteria and a pop-
ulation of infected humans, with infectivity modelled under a saturation condition. Pourabbas
et al. published an SIRS cholera model [43] in 2001, representing human-to-human transmis-
sion with a time-dependent infectivity coefficient β(t), so that the incidence rate was given by
β(t)I (where I denotes the infected). Also in 2001, Codeço proposed a model [5] that explicitly
accounted for the environmental component, i.e., the V. cholerae concentration in the water sup-
ply, denoted as B, into a regular SIR epidemiological model. The incidence was modelled by a
logistic function, a(B/(K + B)), where a is the contact rate with contaminated water and K is
the half-saturation rate (i.e., ID50, the infectious dose in water sufficient to produce disease in
50% of those exposed). Ghosh et al. in 2004 published an SIS model [11], which included both
the concentration B of vibrios and the density E of environmental discharge that contributes to
the growth of the vibrio population. The model had both human-to-human and environment-to-
human transmission modes with the incidence given by βI + λB, where β and λ are corresponding
contact rates. In 2006, Hartley et al. [12] extended Codeço’s work to include a hyperinfectious
state of the pathogen, representing the ‘explosive’ infectivity of freshly shed V. cholerae, based
on the laboratory measurements that freshly shed V. cholerae from human intestines outcom-
peted other V. cholerae by as much as 700-fold for the first few hours in the environment [1,38].
They modelled the incidence factor by βL(BL/(κL + BL)) + βH(BH/(κH + BH)), where βH and
βL are the hyperinfectious (HI) and less-infectious (LI) ingestion rates, and κH and κL are the HI
and LI half-saturation rates. This model was also analysed by Liao and Wang [33]. Most recently,
Mukandavire et al. [40] proposed a model to study the 2008–2009 cholera outbreak in Zimbabwe.
The model considered both human-to-human and environment-to-human transmission pathways;
the incidence factor was represented by βe(B/(K + B)) + βhI with βe and βh being the rates
of vibrio ingestion from the environment and the human–human interaction, respectively. This
work demonstrated the importance of the human-to-human transmission in cholera epidemics,
especially in places such as Zimbabwe, a land-locked country in the middle of Africa. In addi-
tion, Tien and Earn [51] in 2010 published a water-borne disease model which also included the
dual-transmission pathways, with bilinear incidence rates employed for both the environment-to-
human and human-to-human infection routes. No saturation effect was considered in the work of
Tien and Earn.

All these models have their own strength and weakness; some models only track the human
population dynamics directly and represent the V. cholerae population in a separate manner,
whereas some other models tend to focus on the environmental components while neglecting direct
human-to-human transmission. The dynamics of bacterial growth in water are assumed to be linear
in all the aforementioned works. Meanwhile, many of these studies lack rigorous mathematical
analysis which accounts for part of the reason that cholera dynamics has not been well understood
so far. Indeed, the interaction between V. cholerae and susceptible human population could be
more complicated than being linear or logistic. Furthermore, the bacterial growth outside of
human hosts does not have to follow linear dynamics. For example, Jensen et al. [18] proposed a
mathematical model to investigate the control of cholera outbreaks with respect to bacteriophage.
The incidence was modelled as π(B/(Ck + B))7, a highly nonlinear function. The growth of V.
cholerae is also nonlinear (a quadratic function in B) in their model.

Two major differences among these models, as mentioned above, are how the incidence rate
is determined and how the environmental vibrio concentration is formulated. Hence, the goal of
the present paper is to propose a unified cholera model that allows general nonlinear incidence
factors and general representation of the pathogen concentrations. Based on this general model,
we will conduct a careful mathematical study to explore the complex cholera dynamics so as
to improve our understanding of the fundamental disease transmission mechanism. We will par-
ticularly investigate the stability property in both the epidemic and endemic dynamics through
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equilibrium analysis. Within this general framework, we will be able to unify existing models in
the analysis and simulation.

The remainder of this paper is organized as follows. In Section 2, we introduce the generalized
model and state the necessary assumptions. In Sections 3, we derive the basic reproduction number
using the next-generation matrix approach, followed by the global stability analysis of the disease-
free equilibrium (DFE) in Section 4. We show the existence and uniqueness of the endemic
equilibrium in Section 5, and conduct the endemic stability analysis in Section 6. We then briefly
study in Section 7 several existing models as special cases of our proposed framework. Finally,
we draw conclusion and provide discussion in Section 8.

2. Model and notations

We construct the following differential equations for the cholera dynamics based on the
combination of a regular SIR model and an environmental component:

dS

dt
= bN − Sf (I , B) − bS, (1)

dI

dt
= Sf (I , B) − (γ + b)I , (2)

dR

dt
= γ I − bR, (3)

dB

dt
= h(I , B), (4)

where, as usual, S, I , and R denote the susceptible, the infected, and the recovered populations,
respectively, and B denotes the concentration of the vibrios in the contaminated water. The total
population N = S + I + R is assumed to be a constant. The parameter b represents the natural
human birth/death rate, and γ represents the rate of recovery from cholera. In this generalized
model, f (I , B) is the incidence function that determines the rate of new infection. For exam-
ple, f (I , B) = a(B/(K + B)) in Codeço’s model [5], f (I , B) = βI + λB in the model of Ghosh
et al. [11] and f (I , B) = βe(B/(K + B)) + βhI in the model of Mukandavire et al. [40]. Finally,
the function h(I , B) describes the rate of change for the pathogen in the environment which can
be either linear or nonlinear.

If we set

X = (S, I , R, B)T, (5)

then the above equations can be put in a vector form as

d

dt
X = F(X). (6)

Remark 2.1 We allow B to be either a scalar or a vector in this system in order to facilitate more
general formulation. For example, if we consider both the HI and LI states of the vibrios, then we
may write B = [BH, BL]. In such a case, it is understood that

dB

dt
=

⎡
⎢⎣

dBH

dt
dBL

dt

⎤
⎥⎦ , h(I , B) =

[
hH(I , B)

hL(I , B)

]
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and

∂f

∂B
=

⎡
⎢⎢⎣

∂f

∂BH

∂f

∂BL

⎤
⎥⎥⎦ ,

∂2f

∂B2
=

⎡
⎢⎢⎢⎣

∂2f

∂B2
H

∂2f

∂BH∂BL

∂2f

∂BL∂BH

∂2f

∂B2
L

⎤
⎥⎥⎥⎦ ,

∂h

∂B
=

⎡
⎢⎢⎣

∂hH

∂BH

∂hH

∂BL

∂hL

∂BH

∂hL

∂BL

⎤
⎥⎥⎦ , etc.

Remark 2.2 We write a vector V ≥ 0 (≤ 0) if each component of V is ≥ 0 (≤ 0). We write a
matrix A ≥ 0 (≤ 0) if A is positive (negative) semidefinite.

To make biological sense for our model, we assume that the two functions f and h satisfy the
following conditions for I ≥ 0, B ≥ 0:

(a)

f (0, 0) = 0, h(0, 0) = 0,

(b)

f (I , B) ≥ 0,

(c)
∂f

∂I
(I , B) ≥ 0,

∂f

∂B
(I , B) ≥ 0,

∂h

∂I
(I , B) ≥ 0,

∂h

∂B
(I , B) ≤ 0,

(d) f (I , B) is concave; i.e., the matrix

D2f �

⎡
⎢⎢⎣

∂2f

∂I2

∂2f

∂I∂B
∂2f

∂B∂I

∂2f

∂B2

⎤
⎥⎥⎦

is negative semidefinite everywhere.
(e) h(I , B) is concave; i.e., the matrix D2h is negative semidefinite everywhere.

The assumption (a) ensures the existence of a unique DFE for system (6), i.e.,

X0 = (N , 0, 0, 0)T. (7)

The assumption (b) ensures a positive incidence rate. The first two inequalities in assumption (c)
state that increased infection and pathogen concentration lead to higher incidence rate (owing to
higher level of transmission), whereas the third inequality states that increased infection results
in higher growth rate for the pathogen in the environment (owing to higher shedding rate). The
last inequality in assumption (c) indicates a positive net death rate of the vibrios. Condition (d) is
a common assumption for nonlinear incidence [17,24,39]. In our model, this condition regulates
f (I , B) as a biologically realistic incidence based on a consequence of saturation effects: when
the number of the infective, or the environmental pathogen concentration, is high, the incidence
rate will respond more slowly than linearly to the increase in I and B. Similar arguments lead
to the condition (e), which is an additional assumption we introduce for the regulation of the
environmental function h(I , B).

Furthermore, we assume that the equation h(I , B) = 0 implicitly defines a function B = g(I),
which satisfies the following condition:

(f)

g′(I) ≥ 0, g′′(I) ≤ 0, for I ≥ 0.
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This assumption states that the pathogen concentration increases with the number of the infected,
while the rate of increase will be below linear when the infected population is high owing to
saturation effects.

Based on the assumption (b), it is straightforward to see that if any component of (S, I , R)

becomes 0, then the derivative of this component will be non-negative. Meanwhile, as (d/dt)(S +
I + R) = 0, S(t) + I(t) + R(t) will remain a constant (i.e., N) for all t ≥ 0. Hence, the following
result can be easily established.

Lemma 2.3 If S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 and S(0) + I(0) + R(0) = N , then S(t) ≥ 0, I(t) ≥
0, R(t) ≥ 0 and S(t) + I(t) + R(t) = N , for all t ≥ 0.

Remark 2.4 Lemma 2.3 ensures that the solution of the model system (1)–(4) is biologically
feasible for all times. Mathematically speaking, the solution domain

D̄ = {(S, I , R) | S ≥ 0, I ≥ 0, R ≥ 0, S + I + R = N}
is a positively invariant set in R

3.

3. Next-generation matrix analysis

We start our analysis by determining the basic reproduction number, R0, of our proposed model.
Based on the work of van den Driessche and Watmough [53], R0 is mathematically defined as
the spectral radius of the next-generation matrix. In our system (1)–(4), only I and B are directly
related to the infection. Following the approach of van den Driessche and Watmough [53], we
write ⎡

⎢⎣
dI

dt
dB

dt

⎤
⎥⎦ =

[
Sf (I , B)

0

]
−

[
(γ + b)I
−h(I , B)

]
= F − V , (8)

where F denotes the rate of appearance of new infections, and V denotes the rate of transfer of
individuals into or out of each population set.

The next-generation matrix is defined as FV−1, where F and V are 2 × 2 Jacobian matrices
given by

F = DF(X0) =
[

N
∂f

∂I
(0, 0) N

∂f

∂B
(0, 0)

0 0

]
, V = DV(X0) =

[
γ + b 0

−∂h

∂I
(0, 0) − ∂h

∂B
(0, 0)

]
,

where X0 is the DFE defined in Equation (7). After some algebra, we obtain

V−1 = −1

γ + b

⎡
⎣ −1 0(

∂h

∂B
(0, 0)

)−1
∂h

∂I
(0, 0)

(
∂h

∂B
(0, 0)

)−1

(γ + b)

⎤
⎦

Hence, the next-generation matrix is

FV−1 = −1

γ + b

⎡
⎢⎢⎢⎢⎣

−N

⎡
⎢⎢⎣

∂f

∂I
(0, 0) − ∂f

∂B
(0, 0)(

∂h

∂B
(0, 0)

)−1
∂h

∂I
(0, 0)

⎤
⎥⎥⎦ N(γ + b)

(
∂h

∂B
(0, 0)

)−1
∂f

∂B
(0, 0)

0 0

⎤
⎥⎥⎥⎥⎦ .
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Its spectral radius ρ(FV−1) = max1≤i≤2 |λi|, where λi denotes the ith eigenvalue, can be easily
found. Therefore, we obtain the basic reproduction number as

R0 = N

γ + b

[
∂f

∂I
(0, 0) − ∂f

∂B
(0, 0)

(
∂h

∂B
(0, 0)

)−1
∂h

∂I
(0, 0)

]
. (9)

By our assumption, h(I , B) = 0 defines an implicit function B = g(I) with g′(I) ≥ 0. Using
implicit differentiation, we obtain ∂h/∂I + (∂h/∂B)g′(I) = 0, which yields

g′(I) = −
(

∂h

∂B

)−1
∂h

∂I
(10)

for I ≥ 0. Substituting Equation (10) into Equation (9), we obtain

R0 = N

γ + b

∂f

∂I
(0, 0) + N

γ + b

∂f

∂B
(0, 0)g′(0) � Rhh

0 + Reh
0 . (11)

Equation (11) clearly shows that R0 depends on two factors: one is due to human-to-human trans-
mission (Rhh

0 ) and the other is due to environment-to-human transmission (Reh
0 ). If (∂f /∂I)(0, 0) =

0, then R0 = Reh
0 ; if (∂f /∂B)(0, 0) = 0, then R0 = Rhh

0 . In general, both Rhh
0 and Reh

0 con-
tribute to the basic reproduction rate. Biologically speaking, R0 measures the average number
of secondary infections that occur when one infective is introduced into a completely suscep-
tible host population [16,53,54]. In Equation (11), the term 1/(γ + b) represents the expected
time of the infection, (∂f /∂I)(0, 0) represents the unit human-to-human transmission rate and
(N/(γ + b))(∂f /∂I)(0, 0) measures the total number of secondary infections caused by the
human-to-human transmission. Similarly, the product (∂f /∂B)(0, 0)g′(0) represents the unit
environment-to-human transmission rate, and (N/(γ + b))(∂f /∂B)(0, 0)g′(0) measures the total
number of secondary infections caused by the environment-to-human transmission.

Remark 3.1 It can be easily verified that this derivation of R0 holds true no matter B is a scalar
or vector. In case B is a vector, (∂h/∂B)(0, 0) is a matrix (see Remark 2.1) and ((∂h/∂B)(0, 0))−1

represents its inverse.

Based on the framework explained by van den Driessche and Watmough [53], we immediately
obtain the result below regarding the local asymptotical stability of the DFE.

Theorem 3.2 Let R0 be defined in Equation (11). The DFE of the system (1)–(4) is locally
asymptotically stable if R0 < 1, and unstable if R0 > 1.

4. Global stability of DFE

To study the global asymptotic stability of the DFE, we need the following result introduced by
Castillo-Chavez et al. [3].

Lemma 4.1 [3] Consider a model system written in the form

dX1

dt
= F(X1, X2),

dX2

dt
= G(X1, X2), G(X1, 0) = 0,

(12)

where X1 ∈ R
m denotes (its components) the number of uninfected individuals and X2 ∈ R

n

denotes (its components) the number of infected individuals including latent, infectious, etc;
X0 = (X∗

1 , 0) denotes the DFE of the system.
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Also assume the conditions (H1) and (H2) below:

(H1) For dX1/dt = F(X1, 0), X∗
1 is globally asymptotically stable;

(H2) G(X1, X2) = AX2 − Ĝ(X1, X2), Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ 	, where the Jacobian A =
(∂G/∂X2)(X∗

1 , 0) is an M-matrix (the off-diagonal elements of A are non-negative) and 	

is the region where the model makes biological sense.

Then the DFE X0 = (X∗
1 , 0) is globally asymptotically stable provided that R0 < 1.

Theorem 4.2 The DFE of the model (1)–(4) is globally asymptotically stable if R0 < 1.

Proof We adopt the notations in Lemma 4.1 and verify the conditions (H1) and (H2). In our
model, X1 = (S, R)T, X2 = (I , B)T and X∗

1 = (N , 0)T. The uninfected subsystem is

d

dt

[
S
R

]
= F =

[
bN − bS − Sf (I , B)

γ I − bR

]
(13)

and the infected subsystem is

d

dt

[
I
B

]
= G =

[
Sf (I , B) − (γ + b)I

h(I , B)

]
(14)

When I = B = 0 (i.e., X2 = 0), the uninfected subsystem (13) becomes

d

dt

[
S
R

]
=

[
bN − bS

−bR

]
(15)

and its solution is

R(t) = R(0) e−bt , S(t) = N − (N − S(0)) e−bt .

Clearly, R(t) → 0 and S(t) → N as t → ∞, regardless of the values of R(0) and S(0). Hence,
X∗

1 = (N , 0) is globally asymptotically stable for the subsystem

dX1

dt
= F(X1, 0).

Next, we have

G = ∂G

∂X2
(N , 0, 0, 0)X2 − Ĝ

=
⎡
⎢⎣N

∂f

∂I
(0, 0) − (γ + b) N

∂f

∂B
(0, 0)

∂h

∂I
(0, 0)

∂h

∂B
(0, 0)

⎤
⎥⎦ [

I
B

]
−

⎡
⎢⎣N

∂f

∂I
(0, 0)I + N

∂f

∂B
(0, 0)B − Sf (I , B)

∂h

∂I
(0, 0)I + ∂h

∂B
(0, 0)B − h(I , B)

⎤
⎥⎦ .

Obviously, A = (∂G/∂X2)(N , 0, 0, 0) is an M-matrix based on the assumption (c). It remains to
show Ĝ ≥ 0. The assumption (d) implies that the surface f = f (I , B) is below its tangent plane at
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any point (I0, B0) ≥ 0; that is,

f (I , B) ≤ f (I0, B0) + ∂f

∂I
(I0, B0)(I − I0) + ∂f

∂B
(I0, B0)(B − B0). (16)

Particularly, setting (I0, B0) = (0, 0) and using the assumption (a), we obtain

f (I , B) ≤ ∂f

∂I
(0, 0)I + ∂f

∂B
(0, 0)B, (17)

for all (I , B) ≥ 0. A similar argument leads to, according to the assumption (e),

h(I , B) ≤ ∂h

∂I
(0, 0)I + ∂h

∂B
(0, 0)B. (18)

Hence, Ĝ ≥ 0 for I ≥ 0, B ≥ 0.
Based on Lemma 4.1, the DFE X0 = (N , 0, 0, 0) is globally asymptotically stable when R0 <

1. �

Corollary 4.3 If R0 < 1, then limt→∞ X(t) = X0 for any solution X(t) of the system (1)–(4).

5. The endemic equilibrium

Theorem 4.2 completely determines the global dynamics of our model when R0 < 1. The epi-
demiological consequence is that the number of the infected, no matter how large initially, will
vanish in time so that the disease dies out. In contrast, the disease will persist when R0 > 1. To
investigate the resulted long-term dynamics, we turn to the endemic analysis in what follows.

The theorem below shows the existence and uniqueness of the endemic equilibrium.

Theorem 5.1 For the model system (1)–(4), there exists a unique positive endemic equilibrium
if R0 > 1, and there is no positive endemic equilibrium if R0 < 1.

Proof By our assumption, h(I , B) = 0 defines an implicit function B = g(I). Meanwhile, by
setting the right-hand sides of Equations (1) and (2) to zero, we obtain

S = bN

b + f (I , g(I))
, I = Sf (I , g(I))

(γ + b)
, (19)

which yields

I = H̃(I) � bNf (I , g(I))

(γ + b)[b + f (I , g(I))] . (20)

Now the question is whether H̃(I) has a non-trivial fixed point on (0, ∞).
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Clearly, H̃(I) ≥ 0 for I ≥ 0, and H̃(0) = 0. Let us denote P(I) = f (I , g(I)). Then

H̃ ′(I) = bN

γ + b

(b + P(I))P′(I) − P(I)P′(I)
[b + P(I)]2

= bN

γ + b

bP′(I)
[b + P(I)]2

, (21)

where

P′(I) = ∂f

∂I
+ ∂f

∂B
g′(I) ≥ 0 (22)

due to assumptions (c) and (f). Thus, H̃ ′(I) ≥ 0 for I ≥ 0. In particular,

H̃ ′(0) = N

γ + b
P′(0) = R0. (23)

Next, we have

H̃ ′′(I) = b2N

(γ + b)[b + P(I)]3
[(b + P(I))P′′(I) − 2(P′(I))2], (24)

where

P′′(I) = ∂2f

∂I2
+ 2g′(I)

∂2f

∂I∂B
+ (g′(I))2 ∂2f

∂B2
+ ∂f

∂B
g′′(I)

= [
1, g′(I)

]
⎡
⎢⎢⎣

∂2f

∂I2

∂2f

∂I∂B
∂2f

∂I∂B

∂2f

∂B2

⎤
⎥⎥⎦

[
1

g′(I)

]
+ ∂f

∂B
g′′(I). (25)

Based on the assumption (d), the matrix

⎡
⎢⎢⎣

∂2f

∂I2

∂2f

∂I∂B
∂2f

∂I∂B

∂2f

∂B2

⎤
⎥⎥⎦

is negative semidefinite. Meanwhile, g′′(I) ≤ 0 due to the assumption (f). Thus, P′′(I) ≤ 0. Con-
sequently, H̃ ′′(I) ≤ 0 for all I ≥ 0. Therefore, H̃(I) is increasing and concave on (0, ∞) with
H̃(0) = 0.

Clearly, if H̃ ′(0) = R0 > 1, there is a unique positive fixed point I∗ for H̃ (Figure 1(a)). If
H̃ ′(0) = R0 < 1, there is no positive fixed point for H̃ (Figure 1(b)). �

Remark 5.2 The same result that holds in case B is a vector, say, B = [BH, BL] . In fact, we can
write g(I) = [gH(I), gL(I)]T and g′(I) = [g′

H(I), g′
L(I)]T. It is then straightforward to verify that

P′(I) = ∂f

∂I
+

[
∂f

∂BH
,

∂f

∂BL

] [
g′

H
g′

L

]
= ∂f

∂I
+ ∂f

∂B
g′(I) ≥ 0,
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Figure 1. Two typical scenarios for the function H̃(I) defined in Equation (20): (a) when H̃ ′(0) > 1, the curve y = H̃(I)
has a unique intersection with the line y = I for I > 0; and (b) when H̃ ′(0) < 1, the curve y = H̃(I) has no intersection
with the line y = I for I > 0.

which takes the same form as (22). Meanwhile,

P′′(I) = ∂2f

∂I2
+ 2

[
∂2f

∂I∂BH
,

∂2f

∂I∂BL

] [
g′

H
g′

L

]

+ [g′
H, g′

L]

⎡
⎢⎢⎢⎣

∂2f

∂B2
H

∂2f

∂BH∂BL

∂2f

∂BL∂BH

∂2f

∂B2
L

⎤
⎥⎥⎥⎦

[
g′

H
g′

L

]
+

[
∂f

∂BH
,

∂f

∂BL

] [
g′′

H
g′′

L

]

= [1, g′
H, g′

L]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂I2

∂2f

∂I∂BH

∂2f

∂I∂BL

∂2f

∂I∂BH

∂2f

∂B2
H

∂2f

∂BH∂BL

∂2f

∂I∂BL

∂2f

∂BH∂BL

∂2f

∂B2
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ 1

g′
H

g′
L

⎤
⎦ +

[
∂f

∂BH
,

∂f

∂BL

] [
g′′

H
g′′

L

]

which matches Equation (25).

Corollary 5.3 Let X(t) be a non-trivial solution of system (1)–(4). Also assume R0 > 1. If
limt→∞ X(t) = X∞ exists, then X∞ = X∗, the positive endemic equilibrium.

Proof The assumption limt→∞ X(t) = X∞ exists which implies that limt→∞ X ′(t) = 0, which
can be shown easily by the standard ε − δ argument.

Taking the limit t → ∞ in system (1)–(4), we obtain F(X∞) = 0. Hence, X∞ must be an
equilibrium point of the system. Since R0 > 1, the DFE is unstable (see Theorem 3.2) and the
system has a unique non-trivial equilibrium X∗ based on Theorem 5.1. Therefore, X∞ = X∗. �

Remark 5.4 Note the assumption that lim
t→∞ X(t) = X∞ exists in Corollary 5.3. This condition

can be (largely) leveraged through our stability analysis in what follows.

(a) 

y 

0 

y = I 

,. 

(b) 

y 

0 

y= I 

y = R(J) 
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6. Stability of the endemic equilibrium

6.1. Local stability

Now that we have established the existence of the unique positive endemic equilibrium X∗, we
proceed to show that X∗ is locally asymptotically stable.

The Jacobian matrix of the model system (1)–(4) is

JB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b − f (I , B) −S
∂f

∂I
(I , B) 0 −S

∂f

∂B
(I , B)

f (I , B) S
∂f

∂I
(I , B) − (γ + b) 0 S

∂f

∂B
(I , B)

0 γ −b 0

0
∂h

∂I
(I , B) 0

∂h

∂B
(I , B)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

At the endemic equilibrium X∗ = (S∗, I∗, R∗, B∗), the components satisfy

I∗ = 1

(γ + b)

bNf (I∗, B∗)
b + f (I∗, B∗)

, (27)

S∗ = bN

b + f (I∗, B∗)
, (28)

R∗ = γ

b
I∗, (29)

0 = h(I∗, B∗). (30)

For the convenience of algebraic manipulation, we denote

F = f (I∗, B∗), E = ∂f

∂I
(I∗, B∗), P = ∂f

∂B
(I∗, B∗), Q = ∂h

∂B
(I∗, B∗), T = ∂h

∂I
(I∗, B∗).

From the assumptions (b) and (c), F ≥ 0, E ≥ 0, P ≥ 0, T ≥ 0, whereas Q ≤ 0. Evaluated at X∗,
the Jacobian matrix (26) becomes

J∗
B =

⎡
⎢⎢⎣

−F − b −S∗E 0 −S∗P
F S∗E − (γ + b) 0 S∗P
0 γ −b 0
0 T 0 Q

⎤
⎥⎥⎦ .

The characteristic polynomial of J∗
B is

Det (λI − J∗
B) = (λ + b)[(λ + b)(λ − S∗E + γ + b)(λ − Q)

+ F(λ + γ + b)(λ − Q) − (λ + b)S∗PT ].

The equilibrium X∗ is locally asymptotically stable if and only if all roots of the above polynomial
have negative real parts. Obviously, λ = −b is a negative root. To investigate the other three roots,
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we expand the expression in the square brackets to obtain a cubic equation

a0λ
3 + a1λ

2 + a2λ
1 + a3 = 0, (31)

with

a0 = 1, (32)

a1 = F − Q + 2b + γ − ES∗, (33)

a2 = b2 − FQ + Fb + Fγ − 2Qb − Qγ + bγ + EQS∗ − PS∗T − ES∗b, (34)

a3 = −Qb2 − FQb − FQγ − Qbγ + EQS∗b − PS∗Tb. (35)

To ensure that all roots of Equation (31) have negative real parts, the Routh–Hurwitz stability
criterion [23] requires

a1 > 0, a2 > 0, a3 > 0, a1a2 > a0a3. (36)

We shall prove all the four inequalities in Equation (36). To that end we first establish the following
lemma:

Lemma 6.1 At the endemic equilibrium X∗, we have

b + γ − ES∗ ≥ 0 (37)

−Q(b + γ ) ≥ PTS∗ − EQS∗. (38)

Proof Based on our assumption (d), we have known that the inequality (16) holds at any given
point (I0, B0) ≥ 0. In particular, if we set (I0, B0) = (I∗, B∗), i.e., the positive endemic equilibrium,
we obtain

f (I , B) ≤ f (I∗, B∗) + ∂f

∂I
(I∗, B∗)(I − I∗) + ∂f

∂B
(I∗, B∗)(B − B∗), (39)

which holds for all (I , B) ≥ 0. Substitute B = B∗, I = 0 and Equation (39) becomes

0 ≤ f (0, B∗) ≤ f (I∗, B∗) − ∂f

∂I
(I∗, B∗)I∗. (40)

Using Equations (27) and (28) and inequality (40), we obtain

b + γ − ES∗ = (b + γ ) − ∂f

∂I
(I∗, B∗)S∗

= bNf (I∗, B∗)
[b + f (I∗, B∗)]I∗ − ∂f

∂I
(I∗, B∗)

bN

b + f (I∗, B∗)

= bN

[b + f (I∗, B∗)]I∗

[
f (I∗, B∗) − ∂f

∂I
(I∗, B∗)I∗

]

≥ 0, (41)

which establishes the result in Equation (37).
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Next, based on the assumption (e), the function h(I , B) is concave at the point (I∗, B∗). Thus

h(I , B) ≤ h(I∗, B∗) + ∂h

∂I
(I∗, B∗)(I − I∗) + ∂h

∂B
(I∗, B∗)(B − B∗). (42)

Note that h(I∗, B∗) = 0, h(0, 0) = 0. Substitute I = B = 0 into Equation (42) to obtain

∂h

∂I
(I∗, B∗)I∗ + ∂h

∂B
(I∗, B∗)B∗ ≤ 0. (43)

Since (∂h/∂B)(I∗, B∗) ≤ 0 due to the assumption (c), the inequality (43) yields

B � B∗ + (∂h/∂I)(I∗, B∗)
(∂h/∂B)(I∗, B∗)

I∗ ≥ 0. (44)

Now, substitute the point (I , B) = (0, B), which is in the biologically feasible domain of our
model, into the inequality (39) to obtain

0 ≤ f (0, B) ≤ f (I∗, B∗) − ∂f

∂I
(I∗, B∗)I∗ + ∂f

∂B
(I∗, B∗)

(∂h/∂I)(I∗, B∗)
(∂h/∂B)(I∗, B∗)

I∗. (45)

Combining the inequality (45) and the facts: S∗f (I∗, B∗) = (γ + b)I∗, (∂h/∂B)(I∗, B∗) ≤ 0, we
obtain

−Q(b + γ ) = − ∂h

∂B
(I∗, B∗)(b + γ )

≥ ∂f

∂B
(I∗, B∗)

∂h

∂I
(I∗, B∗)S∗ − ∂f

∂I
(I∗, B∗)

∂h

∂B
(I∗, B∗)S∗

= PTS∗ − EQS∗, (46)

which establishes the result in Equation (38). �

Based on Lemma 6.1, we are now ready to proceed to Equation (36).

Lemma 6.2 At the endemic equilibrium X∗, all the four inequalities in Equation (36) hold.

Proof First, using the inequality (37), we obtain

a1 = F − Q + 2b + γ − ES∗

= f (I∗, B∗) − ∂h

∂B
(I∗, B∗) + 2b + γ − ∂f

∂I
(I∗, B∗)S∗

> (b + γ ) − ∂f

∂I
(I∗, B∗)S∗

> 0. (47)

Next, using both results in Equations (37) and (38), we obtain

a2 = b2 − FQ + Fb + Fγ − 2Qb − Qγ + bγ + EQS∗ − PS∗T − ES∗b

= b(b + γ − ES∗) + (−Qb − Qγ − PS∗T + EQS∗) + (Fb + Fγ − FQ − Qb)

> 0. (48)
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Similarly, we have

a3 = −Qb2 − FQb − FQγ − Qbγ + EQS∗b − PS∗Tb

= b(−Qb − Qγ + EQS∗ − PS∗T) + (−FQb − FQγ )

> 0. (49)

Finally, note that a1 = F − Q + 2b + γ − ES∗ > −Q > 0 and that

(−Q)a2 − a0a3 = (Q2b + Q2γ − EQ2S∗ + PTQS∗) + (FQ2 + Q2b + PS∗Tb) > 0. (50)

It is thus clear to see a1a2 > a0a3 holds. �

Therefore, based on the Routh–Hurwitz stability criterion, we have established the following
result:

Theorem 6.3 When R0 > 1, the endemic equilibrium of system (1)–(4) is locally asymptotically
stable.

6.2. Linear global stability

To prove the global asymptotic stability of the endemic equilibrium, the key is to show the non-
existence of periodic orbits. This is generally difficult for high-dimensional model systems, as
the classical Poincaré–Bendixson framework [13] is no longer valid in high dimensions. For
some special cases, however, our model (1)–(4) can be reduced to a two-dimensional autonomous
system in S and I , and classical dynamical system theory can be applied. Below, we present two
simplified cases with linear and bilinear incidence rates, respectively.

First, we assume that the incidence f (I , B) = C, where C > 0 is a constant. Our model is then
reduced to a two-dimensional linear system

dS

dt
= bN − (C + b)S, (51)

dI

dt
= CS − (γ + b)I . (52)

In such a case, our assumption (a) is not valid so that there is no DFE. The epidemiological
implication is that the pathogen concentrations and/or the infected numbers are at such a high
level that the infection is certain to those exposed. There is a unique positive endemic equilibrium
of the system (51) and (52):

S∗ = bN

C + b
and I∗ = bCN

(C + b)(γ + b)
. (53)

Since system (51) and (52) is linear, its exact solution can be easily found as

S(t) = bN

C + b
+

(
S(0) − bN

C + b

)
e−(C+b)t

I(t) = bCN

(C + b)(γ + b)
+ k1 e−(C+b)t + k2 e−(γ+b)t

with

k1 = C

γ − C

(
S(0) − bN

C + b

)
, k2 = I(0) − bCN

(C + b)(γ + b)
− C

γ − C

(
S(0) − bN

C + b

)
.
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It is clear to see that S(t) → S∗ and I → I∗ as t → ∞, regardless of the initial values of S and I .
Hence, the endemic equilibrium (S∗, I∗) is globally asymptotically stable.

In the second case, we assume f (I , B) = CI , where C > 0 is a constant. The original system
(1)–(4) is then reduced to

dS

dt
= F1(S, I) = b(N − S) − CIS, (54)

dI

dt
= F2(S, I) = CIS − (γ + b)I , (55)

which represents a regular SIR model with a normal bilinear incidence. The endemic equilibrium
of this simplified model is

(S∗, I∗) =
(

γ + b

C
,

bN

γ + b
− b

C

)
. (56)

Note that R0 = (N/(γ + b))C (see Equation (11)). Hence I∗ = (bN/(γ + b)) − b/C > 0 due to
R0 > 1. Applying the Dulac’s criterion [13,15,27] and introducing an auxiliary function P(S, I) =
1/I , we obtain

∂

∂S
(PF1) + ∂

∂I
(PF2) = −

(
C + b

I

)
< 0,

which holds everywhere in the region

D = {(S, I) | S > 0, I > 0, S + I < N}. (57)

Hence, there is no periodic solution in D and the endemic equilibrium (S∗, I∗) is globally
asymptotically stable.

When the incidence rates become nonlinear, system (1)–(4) generally has dimensions higher
than two. For several special types of cholera models with nonlinear incidence rates, the global
endemic stability was analysed in detail in a recent work [50]. These linear and nonlinear results
motivate the speculation that the endemic equilibrium X∗ of system (1)–(4) is globally asymptot-
ically stable in general (provided R0 > 1). The proof for the general model has not been resolved
yet, and we plan to explore this topic in our future research.

6.3. Bifurcation diagram

Our stability analysis of the DFE and the endemic equilibrium shows a supercritical bifurcation
with respect to the parameter R0. The results are summarized by the following theorem:

Theorem 6.4 Under the assumptions (a)–(f), model system (1)–(4) has a forward transcritical
bifurcation at R0 = 1.

Remark 6.5 Theorem 6.4 states that for biologically feasible incidence and pathogen functions,
our cholera model does not exhibit backward (or subcritical) bifurcation [4,7,44,47] and the
endemic level is continuously depending on R0. A value of R0 slightly above 1 will, regarding
long-term dynamics, only lead to a low endemic state. This has important implications for the
prevention and intervention strategies for cholera, as reducing, and keeping, R0 below 1 would
be sufficient to eradicate the disease in the long run.

--- ---
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Figure 2. The bifurcation diagram of I vs. R0 which shows a transcritical bifurcation at R0 = 1.

A bifurcation diagram for I vs. R0 is sketched in Figure 2. At the DFE, I = 0 is stable for R0 < 1
and unstable for R0 > 1. At the endemic equilibrium,

I = H̃(I) = H̃(0) + H̃ ′(0)I + Q(I), (58)

where H̃(I) is defined in Equation (20) and where

Q(I) =
∞∑

m=2

H̃m(0)

m! Im. (59)

Since H̃(0) = 0, H̃ ′(0) = R0, we obtain

I = R0I + Q(I), or R0 = 1 − Q(I)

I
. (60)

Based on Equation (60), when I is small, R0 ≈ 1 − (H̃ ′′(0)/2)I (notice H̃ ′′(0) ≤ 0), which
is approximately a straight line passing the bifurcation point (R0, I) = (1, 0). When I → ∞,
(dR0/dI) → ∞, so that the endemic equilibrium curve becomes more and more horizontal.

7. Examples

Our generalized models (1)–(4) can unify many existing cholera models [5,11,12,18,40,43,51],
so that these different models can be studied and applied through a single unified framework.
Below, we briefly discuss three representative models.

7.1. The model of Codeço

This model is given by

dS

dt
= n(H − S) − a

B

κ + B
S, (61)

dI

dt
= a

B

κ + B
S − rI , (62)

dB

dt
= eI − (mb − nb)B, (63)

Stable endem ic equilibrium 

Stable DFE unstable DFE 

- ---~-------------------------~ 
O 1 Ro 
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where H stands for the total population, and mb − nb > 0 represents the net death rate of vibrios.
In this model, the incidence is f (I , B) = a(B/(κ + B)) and the pathogen function is h(I , B) = eI −
(mb − nb)B. Only the environment-to-human transmission mode is considered in this formulation.

It can be easily verified that the assumptions (a)–(f) all hold for system (61)–(63). Hence, all the
analytical results presented so far can be applied to this model. In particular, the basic reproduction
number R0 is determined by Equation (11):

R0 = N

γ + b

[
∂f

∂I
(0, 0) + ∂f

∂B
(0, 0)g′(0)

]

= Nae

κ(γ + b)(mb − nb)
,

which agrees with the result obtained earlier [5].

7.2. The model of Mukandavire et al.

This model is based on the following differential equations:

dS

dt
= μN − βeS

B

κ + B
− βhSI − μS, (64)

dI

dt
= βeS

B

κ + B
+ βhSI − (γ + μ)I , (65)

dR

dt
= γ I − μR, (66)

dB

dt
= ξ I − δB. (67)

The incidence is f (I , B) = βe(B/(κ + B)) + βhI , and h(I , B) = ξ I − δB. Both environment-to-
human and human-to-human transmission modes are included in this model. It is straightforward
to verify the assumptions (a)–(f); in particular,

D2f =
⎡
⎣0 0

0
−2κβe

(κ + B)3

⎤
⎦ and D2h =

[
0 0
0 0

]

are both negative semidefinite for all I , B ≥ 0. Based on Equation (11), the basic reproduction
number is

R0 = N

γ + b

[
βh + βe

κ

ξ

δ

]
= N

δκ(γ + b)
(κδβh + ξβe).

The same result was obtained in the work of Mukandavire et al. [40].

7.3. The model of Hartley et al.

The model explicitly incorporates both the HI and LI states of V. cholerae, and takes the form

dS

dt
= bN − βLS

BL

κL + BL
− βHS

BH

κH + BH
− bS, (68)

dI

dt
= βLS

BL

κL + BL
+ βHS

BH

κH + BH
− (γ + b)I , (69)

dR

dt
= γ I − bR, (70)
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dBH

dt
= ξ I − χBH, (71)

dBL

dt
= χBH − δLBL. (72)

Here

B = [BH, BL], f (I , B) = βL
BL

κL + BL
+ βHS

BH

κH + BH
, and h(I , B) =

[
ξ I − χBH

χBH − δLBL

]
.

The assumptions (a)–(f) can be similarly verified. For instance,

∂f

∂B
=

[
βHκH

(κH + BH)2
,

βLκL

(κL + BL)2

]
> 0,

∂h

∂B
=

[−χ 0
χ −δL

]
< 0 (negative definite).

Meanwhile,

D2f =

⎡
⎢⎢⎢⎣

0 0 0

0
−2βHκH

(κH + BH)3
0

0 0
−2βLκL

(κL + BL)3

⎤
⎥⎥⎥⎦

and D2h = 0 are both negative semidefinite for all I ≥ 0, B ≥ 0. The basic reproduction number
for this model is

R0 = N

γ + b

[
∂f

∂I
(0, 0) + ∂f

∂B
(0, 0)g′(0)

]

= N

γ + b

[
0 +

(
βH

κH
,
βL

κL

) (
ξ/χ

ξ/δL

)]

= Nξ

γ + b

(
βH

κHχ
+ βL

κLδL

)

which exactly matches the result given by Hartley et al. [12].
A quantitative comparison of these three models is made by applying each of them to study

the epidemic and endemic cholera dynamics in a hypothetical community with a total population
of N = 10, 000. The initial condition is set as I(0) = 1, S(0) = N − 1, R = B = 0; i.e., one
infective initially enters the wholly susceptible community. The parameter values are based on
the cholera data published on Zimbabwe [35,40]1,2,3. Figure 3 shows the simulation results of the
infection curves for the three models. The first peak in each curve represents the cholera outbreak
triggered by the initial infection. Among the three, the model of Hartley et al. shows the highest
infection number because of its explicit incorporation of the HI state of the vibrios, whereas the
model of Codeço exhibits the lowest epidemic value as it considered only in the environment-
to-human transmission pathway with an LI state of the pathogen. After the first cholera peak, all
the three infection curves decline and show several outbreaks with decaying magnitudes, before
they finally rest at their endemic equilibria. The model of Mukandavire et al. exhibits a few
more epidemic oscillations than the other two models because of its explicit inclusion of both the
environment-to-human and human-to-human transmission modes which lead to longer epidemic
dynamics. We found the endemic infection equilibria are I∗ .= 0.88, 0.75, 0.92 for the model of
Codeço, that of Mukandavire et al., and that of Hartley et al., respectively, implying relatively low
endemicity. If we scale up these numbers using the realistic population size in Zimbabwe (about
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Figure 3. Simulation results for a hypothetical community with a total population of N = 10, 000, using three different
cholera models: (a) the model of Codeço [5]; (b) the model of Mukandavire et al. [40]; and (c) the model of Hartley et al.
[12]. The initial condition is I(0) = 1, S(0) = N − 1, R = B = 0. After the major cholera outbreak (i.e., the first peak)
caused by the initial infection, each infection curve exhibits several small-scale epidemic oscillations and finally converges
to the endemic equilibrium over time. The endemic values are I∗ .= 0.88, 0.75, 0.92 for the three models, respectively.

13.3 million in 20101), we obtain that the endemic infection numbers would be about 1164, 992,
and 1217, respectively, based on these model predictions.

8. Discussion

We have presented a generalized mathematical cholera model and conducted an analysis for the
epidemic and endemic dynamics. By introducing general incidence and pathogen functions, our
model can unify cholera studies into a single framework of modelling, simulation, and analysis.
Meanwhile, new model development and analysis can be possibly made in the same framework
as well.

l A ... -
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For simple SI epidemiological models with constant population, Lajmanovich and Yorke [25]
proved that the DFE is globally asymptotically stable when R0 < 1, and there is a unique endemic
equilibrium which is globally asymptotically stable when R0 > 1. Such a prototypical R0 threshold
behaviour has since been extensively studied for many infectious diseases with various SI, SIR,
SEI and SEIR models (see [4,16,28,30,31,37,46,55], among others).

The complication of cholera dynamics lies in the coupling between human hosts and envi-
ronmental components which leads to a combined human–environment epidemiological model.
Nonetheless, the stability analysis in the present paper shows that under biologically feasible con-
ditions, a regular (i.e., forward) transcritical bifurcation occurs at R0 = 1. Specifically, we have
established that for R0 < 1, there is a unique DFE which is both locally and globally asymptotically
stable; this equilibrium becomes unstable when R0 > 1. Meanwhile, there is a unique positive
endemic equilibrium which is locally asymptotically stable when R0 > 1. This is important for
the prevention and intervention strategies against cholera outbreaks, as reducing and keeping R0

below 1 would be sufficient to eradicate the disease in the long term.
It remains to show the global asymptotic stability for the endemic equilibrium of our unified

cholera model. This is generally difficult for high-dimensional nonlinear systems, such as ours
in (1)–(4). Lajmanovich and Yorke [25] carefully constructed two Lyapunov functions [20] to
prove the global asymptotic stability of the DFE and the endemic equilibrium. However, the fact
that there is no systematic way to find Lyapunov functions poses a challenge to the application
of this approach to general nonlinear systems. Quite a few efforts [9,10,27,36,45,47,48] have
been devoted to extend the classical Poincaré–Bendixson framework [13] to high-dimensional
systems, using theory of monotone flows, competitive systems, and Lipschitz manifolds, etc.,
though such extensions are in general highly non-trivial. Finally, in a series of papers, Li and
co-workers [28,29,31,32] analysed the global stability of high-dimensional endemic equilibria
based on the theory of monotone dynamical systems and geometric approaches. Similar work of
epidemiological global dynamics was also conducted in earlier studies [30,39,55]. Some of these
approaches were applied in a recent work [50] to analyse several special types of cholera models.
These studies provide useful directions for our future work on the global endemic stability of the
most general cholera model.

In addition, the cholera model and analysis proposed in this paper can be extended in a number
of ways. For example, climatic impacts (such as rainfall, monsoon, flood, drought, and water
temperature) on cholera epidemics [22,34] can be studied by incorporating seasonally variational
factors into the incidence function f . Meanwhile, several recent studies [8,18,41] have suggested
that cholera dynamics is closely related to the prevalence of bacteriophages in the environment;
the effects of those vibriophages on cholera can be easily added to the environmental function
h in our model. Furthermore, prevention and intervention strategies, such as vaccination, water
sanitation, hydration therapy, and antibiotic treatment, can be naturally represented by modifying
the two functions f and h in our model, so as to seek possible optimal control strategies [26]
against cholera outbreaks.
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Notes

1. World Health Organization web page: www.who.org.
2. Center for Disease Control and Prevention web page: www.cdc.gov.
3. Wikipedia: en.wikipedia.org.
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