
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Human Movement Sciences Theses & 
Dissertations Human Movement Sciences 

Summer 8-2019 

The Effects of Anterior Cruciate Ligament Thickness, Knee Joint The Effects of Anterior Cruciate Ligament Thickness, Knee Joint 

Laxity, Activity Level, Neuromuscular Imbalances and Lower Laxity, Activity Level, Neuromuscular Imbalances and Lower 

Extremity Muscular Activation Patterns on Anterior Cruciate Extremity Muscular Activation Patterns on Anterior Cruciate 

Ligament Loading Ligament Loading 

Zachary A. Sievert 
Old Dominion University, zsievert@odu.edu 

Follow this and additional works at: https://digitalcommons.odu.edu/hms_etds 

 Part of the Biomechanics Commons, and the Exercise Science Commons 

Recommended Citation Recommended Citation 
Sievert, Zachary A.. "The Effects of Anterior Cruciate Ligament Thickness, Knee Joint Laxity, Activity Level, 
Neuromuscular Imbalances and Lower Extremity Muscular Activation Patterns on Anterior Cruciate 
Ligament Loading" (2019). Doctor of Philosophy (PhD), Dissertation, Human Movement Sciences, Old 
Dominion University, DOI: 10.25777/c24h-6t46 
https://digitalcommons.odu.edu/hms_etds/47 

This Dissertation is brought to you for free and open access by the Human Movement Sciences at ODU Digital 
Commons. It has been accepted for inclusion in Human Movement Sciences Theses & Dissertations by an 
authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/hms_etds
https://digitalcommons.odu.edu/hms_etds
https://digitalcommons.odu.edu/humanmovementsci
https://digitalcommons.odu.edu/hms_etds?utm_source=digitalcommons.odu.edu%2Fhms_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/43?utm_source=digitalcommons.odu.edu%2Fhms_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1091?utm_source=digitalcommons.odu.edu%2Fhms_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/hms_etds/47?utm_source=digitalcommons.odu.edu%2Fhms_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


 
 

THE EFFECTS OF ANTERIOR CRUCIATE LIGAMENT THICKNESS, KNEE JOINT 

LAXITY, ACTIVITY LEVEL, NEUROMUSCULAR IMBALANCES AND LOWER 

EXTREMITY MUSCULAR ACTIVATION PATTERNS ON ANTERIOR CRUCIATE 

LIGAMENT LOADING 

by 

Zachary A. Sievert 
B.S. May 2012, College of Mount St. Joseph 
M.S. August 2014, Old Dominion University  

A Dissertation Proposal Submitted to the Faculty of 

Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of 

DOCTOR OF PHILOSOPHY in EDUCATION 
HUMAN MOVEMENT SCIENCE 
OLD DOMINION UNIVERSITY 

August, 2019 
 
 

Approved by: 
 
 
Hunter J. Bennett (Chair)  
 
Joshua T. Weinhandl (Member) 
 
Laura Hill (Member) 
 
Stacie Ringleb (Member) 



ii 
 

ABSTRACT 
 

THE EFFECTS OF ANTERIOR CRUCIATE LIGAMENT THICKNESS, KNEE JOINT 
LAXITY, ACTIVITY LEVEL, NEUROMUSCULAR IMBALANCES AND LOWER 

EXTREMITY MUSCULAR ACTIVATION PATTERNS ON ANTERIOR CRUCIATE 
LIGAMENT LOADING 

 
Zachary A. Sievert 

Old Dominion University, 2019 
Chair: Dr. Hunter J. Bennett 

 There are numerous known mechanisms of anterior cruciate ligament (ACL) injury risk 

that span from knee joint laxity to landing mechanics. However, the relationship of these 

mechanisms to ACL loading during landing is unclear. In addition to landing mechanics, 

anthropological aspects such as ACL diameter, which can now be obtained via ultrasound, may 

also be an important mechanism for ACL loading. However, the relationship between ACL 

diameter to ACL loading and landing mechanics remains unknown. This study was conducted 

with three primary purposes. The first purpose of this study was to examine the inter and intra-

rater reliability of using ultrasound to measure the diameter of the full ACL and anteromedial 

bundle of the ACL. The second purpose was to examine the relationship between the 

anteromedial bundle diameter and lower extremity strength, whole body anthropometrics, and 

previous physical activity levels. The third purpose was to examine the relationship between 

simulated ACL loading and pre-activation electromyography of lower extremity muscles, 

anteromedial bundle diameter and knee joint laxity.  

 Two separate raters with differing levels of experience (low: Rater 1 and moderate: Rater 

2) used diagnostic ultrasound to image bilateral ACLs of twenty participants. Rater 1 also 

performed an additional imaging session with the same population. Interclass correlations were 

conducted to examine 1) intra-rater reliability between sessions for Rater 1 and 2) inter-rater 

reliability between the Raters 1 and 2. To address the second purpose of this study, anteromedial 
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bundle diameter, height, weight, strength measurements of the knee flexors, knee extensors, hip 

abductors, and hip adductors and previous physical activity were recorded for 17 participants.  

Pearson product correlations were conducted between anteromedial bundle diameter and the 

recorded variables. To address the third purpose of this study, 17 participants' pre-activation of 

lower extremity muscles, anteromedial bundle diameter and passive knee joint laxity were 

recorded. Next, participants performed single leg landings from a 40 cm height and a height 

equal to their maximal jumping capabilities. During landings, three dimensional kinematic and 

kinetic variables were recorded as well as electromyography (EMG) of the Rectus Femoris, 

Vastus Medialis, Vastus Lateralis, Medial Hamstring, Lateral Hamstring, Medial Gastrocnemius, 

and Gluteus Medius. Participant specific musculoskeletal models were generated for each 

participant. Three dimensional ACL loading was calculated using previously established 

equations. Pearson product correlations were then utilized to analyze the relationship of ACL 

loading to knee joint laxity, anteromedial bundle diameter and pre-activation of the lower 

extremity muscles.  

Moderate correlations were found for inter and intra-rater reliabilities. There were weak 

correlations found for the full ACL diameter during inter and intra-rater analyses. The current 

results show that the anteromedial bundle can be found and measured more reliably than the full 

ACL. There were no significant correlations between anteromedial bundle diameter and previous 

exercise activity levels. However, significant correlations were found with quadriceps and 

adductor strength values. Simulated ACL loading was only found to have significant correlations 

with lateral hamstring pre-activation for both 40 cm and relative drop landing heights. The 

current results suggest that the pre-activation of the hamstrings may influence ACL loading if the 

medial and lateral hamstring groups are activated disproportionately.  
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The results from these studies establish that the anteromedial bundle can be analyzed 

with moderate reliability from researchers utilizing ultrasound. Future research involving 

diagnostic ultrasound should consider analyzing the anteromedial bundle to increase reliability 

and generalizability of their results. Although it may be possible for stressors to cause 

hypertrophy in the ACL, few factors known to stress the ACL are significantly associated with 

the size of the anteromedial bundle diameter. Thus, the association between those mechanisms 

and ACL loading may not be as clear.  
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NOMENCLATURE 

EMG  Electromyography  

MVIC  Maximal Voluntary Isometric Contraction 

ACL  Anterior Cruciate Ligament 

PCL  Posterior Cruciate Ligament 

MCL  Medial Collateral Ligament 

LCL  Lateral Collateral Ligament 

GRF  Ground Reaction Force 

AM  Anteromedial Bundle of the ACL 

RF  Rectus Femoris 

VM  Vastus Medialis 

VL  Vastus Lateralis 

MH  Medial Hamstring 

LH  Lateral Hamstring 

MG  Medial Gastrocnemius 

GM  Gluteus Medius 

BW  Body Weight 

40 cm  40 cm landing height 

RH  Relative landing height 
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CHAPTER 1: INTRODUCTION 

BACKGROUND AND RATIONALE 

Anterior Cruciate Ligament (ACL) injuries are devastating and can require months to 

years for athletes to return to full participation in athletics, if they ever return to a pre-injury state 

at all (Ardern, Webster, Taylor, & Feller, 2011; Kvist, 2004; Griffin et al., 2006; Langford, 

Webster, & Feller, 2009). Through three-dimensional biomechanical analysis of kinematic and 

kinetic properties of human movement, it has been shown that there are mechanical and 

physiological factors (ACL injury risk factors) that influence the incidence of ACL injuries, such 

as reduced knee flexion angles, increased knee abduction angles, increased tibial translation, 

increased frontal plane loading, increased anteroposterior shear knee joint force, lower extremity 

muscular strength, muscular imbalances, hormonal changes, ligament size as well as many other 

biomechanical and physiological factors (Alentorn-Geli et al., 2009; Cochrane, Lloyd, Buttfield, 

Seward, & McGivern, 2007; Griffin et al., 2006; Hewett, Myer, Ford, et al., 2005; Myer, Ford, 

Palumbo, & Hewett, 2005).  

Disparity also exists between sexes in the incidence of ACL injuries.  Women are three 

times as likely to have an ACL injury compared to their male counterparts (Petushek, Sugimoto, 

Stoolmiller, Smith, & Myer, 2019). Women are thought to be more predisposed to ACL injury 

due to increased joint laxity during their menstrual cycle, anthropometric differences, Q-angle, 

pelvis width, femoral notch widths, muscular imbalances and differences in muscle activation 

and contraction timing compared to men (Deie, Sakamaki, Sumen, Urabe, & Ikuta, 2002; Eiling, 

Bryant, Petersen, Murphy, & Hohmann, 2007; Hewett, Myer, & Ford, 2006; G. D. Myer, Ford, 

Divine, et al., 2009; G. D. Myer, Ford, & Hewett, 2005; Park, Stefanyshyn, Ramage, Hart, & 

Ronsky, 2009).   
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Although there is a disparity in ACL injuries between men and women, both sexes have 

similar mechanical and physiological factors that increase the risk of ACL injuries. It has been 

shown that joint laxity increases injury risk at the knee in both men and women (Fremerey et al., 

2000; Griffin et al., 2000; G. D. Myer, Ford, Paterno, Nick, & Hewett, 2008; Shultz, Carcia, & 

Perrin, 2004). There are many potential causes of joint laxity that increase ACL injury risk, 

including a reduction in proprioception around the knee joint, muscular fatigue, muscular 

imbalances, activation patterns and hormonal factors (Fremerey et al., 2000; M. G. Hall, Ferrell, 

Sturrock, Hamblen, & Baxendale, 1995; Hurley, Rees, & Newham, 1998; McNair & Marshall, 

1994; D. Roberts, Ageberg, Andersson, & Friden, 2007; Rozzi, Lephart, & Fu, 1999; Rozzi, 

Lephart, Gear, & Fu, 1999).  The lack of proprioception may influence activation patterns of the 

lower extremity during dynamic tasks (Schultz, Miller, Kerr, & Micheli, 1984). As such, lower 

extremity muscular imbalances and muscular fatigue during dynamic activity increase ACL 

injury risk (Dunnam, Hunter, Williams, & Dremsa, 1988a; G. D. Myer, Ford, Barber Foss, et al., 

2009; Orchard, Marsden, Lord, & Garlick, 1997). Joint laxity, muscular fatigue, and muscular 

imbalances allow for greater translation and rotation of the tibia during dynamic activity, placing 

greater ACL injury risk on the athlete. Furthermore, pre-activation patterns of the lower 

extremity muscles before a dynamic task can influence ACL injury (Cowley, Ford, Myer, 

Kernozek, & Hewett, 2006).  

Measuring pre-activation patterns of lower extremity muscles can be beneficial in 

assessing potential ACL injury risk. Understanding the pre-activation of lower extremity muscles 

are key because ACL failure can occur under 50 ms after initial contact with the ground 

(Krosshaug et al., 2007). Understanding the pre-activation patterns of the lower extremity 

muscles can enhance our insight to the landing mechanics and how previous training, or previous 
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experience performing the task, may influence muscle contractions at the time of initial contact. 

Past research indicates that experience level influences pre-activation of the lower extremity 

muscles during dynamic tasks (Medina, Valovich McLeod, Howell, & Kingma, 2008). Pre-

activation of the lower extremities muscles can influence shear forces acting at the knee, 

potentially increasing ACL loading (Hewett, Zazulak, Myer, & Ford, 2005; Myer et al., 2005; 

Sell et al., 2007). This previous experience may either reduce potential injury risk or generate a 

potential injurious situation during landing. It has also been shown that within 50 milliseconds of 

initial contact with the ground, both peak GRF and peak tibial translation will take place (J. 

Hashemi et al., 2010; Kernozek & Ragan, 2008; Krosshaug et al., 2007; Pflum, Shelburne, 

Torry, Decker, & Pandy, 2004).  

Since the incidence of ACL injuries per year are extremely high (Griffin et al., 2006) and 

costs to repair ligamentous injuries are expensive, numerous studies have been conducted to 

attempt reduce ACL injury mechanisms. Studies have examined the kinematic and kinetic 

properties of various athletic maneuvers to assess ACL injury risk and how specific physical 

activity or training parameters can reduce ACL injury mechanisms (Alentorn-Geli et al., 2009; 

Cochrane et al., 2007; Deie et al., 2002; Eiling et al., 2007; Griffin et al., 2006; Hewett et al., 

2006; Hewett, Myer, Ford, et al., 2005; Myer et al., 2005; G. D. Myer, Ford, Divine, et al., 2009; 

G. D. Myer et al., 2005; Park et al., 2009). Multiple studies have also examined specific training 

techniques to improve lower extremity function and coordination, including resistance training, 

plyometric and dynamic stability exercises (Hewett, 2009; Hewett, Myer, Ford, et al., 2005; 

Hewett, Torg, & Boden, 2009; G. D. Myer, Ford, McLean, & Hewett, 2006).  

Individuals that are more physically active, performing more physically dynamic tasks 

such as plyometrics, resistance training, or all around sport training, may have reduced lower 
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extremity injuries (Myer et al., 2011). Individuals with lower physical activity levels prior to new 

dynamic activity or new training have a greater incidence of injury (Jennifer M Hootman et al., 

2002; Jones et al., 1993). Since resistance, plyometric and balance training have been shown to 

reduce ACL injury risk mechanisms in adults, the potential for reduction of ACL individuals in 

youth athletics may be equivalent. It has been shown that specific warm-up routines can prevent 

knee injuries in youth athletics (Olsen, Myklebust, Engebretsen, Holme, & Bahr, 2005). Athletes 

performing 10-15 minutes of an intervention program per practice had a 71% reduction of 

injuries during practice and an 80% reduction of within game injuries (Wedderkopp, Kaltoft, 

Lundgaard, Rosendahl, & Froberg, 1999). Furthermore, performing resistance, flexibility and 

balance training for 30-45 minutes three times a week for six weeks was effective at reducing the 

number of knee injuries throughout a soccer season (Emery & Meeuwisse, 2010). Research has 

also shown that strength training can alter lower extremity collagenous structures such as the 

Achilles tendon and patellar tendon (Kongsgaard et al., 2007). The amount of time and intensity 

at which people exercise is directly related to collagen adaptation (Kjær, 2004). In addition, 

prolonged intense exercise can increase the net collagen synthesis in collagen structures (i.e. 

tendon and ligament), which can help those collagen structures resist greater amounts of load 

(Kjær, 2004). Thus, further research is needed to investigate the relationship between physical 

activity measures, ACL diameter and ACL loading/injury risks. 

The gold standard for intracapsular examination of the knee is diagnostic arthroscopy 

(Mir, Sultan, & Bashir, 2015); however, the procedure is invasive and time consuming. Magnetic 

resonance imaging (MRI) allows medical professions the option to examine the intracapsular 

space of the knee with a less invasive and time consuming effort (Crawford, Walley, Bridgman, 

& Maffulli, 2007; Friemert et al., 2004). MRI has been shown to be viable and reliable measure 
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for knee injuries compared to arthroscopy when assessing: osteoarthritis, menisci injuries, ACL 

injuries and PCL injuries (Jah, Keyhani, Zarei, & Moghaddam, 2005; Lundberg, Odensten, 

Thuomas, & Messner, 1996; Oei, Nikken, Verstijnen, Ginai, & Myriam Hunink, 2003; Pessis et 

al., 2003). Although MRI is an effective tool, less invasive and more cost effective technologies 

such as diagnostic ultrasound are becoming more widely available. 

Diagnostic ultrasound can be a cost effective and feasible way to examine the 

intracapsular structures of the knee, such as the ACL (Chen et al., 2013; Mahajan, Chandra, 

Negi, Jayaram, & Hussein, 2015; Skovgaard Larsen & Rasmussen, 2000). Ultrasound has been 

shown to be reliable to diagnose injuries when compared to ultrasound and arthroscopy when 

diagnosing meniscal tears, medial and lateral collateral ligaments injuries, patellar tendon 

dysfunction, PCL injuries, and ACL injuries (Cho et al., 2001; Larsen & Rasmussen, 2000; 

Najafi, Bagheri, & Lahiji, 2006; C. S. Roberts, Beck Jr, Heinsen, & Seligson, 2002). Focusing on 

the ACL, recent work has found that ultrasound measurements of ACL are reliable compared 

with MRI (an intra-class correlation of 0.87; (Mahajan et al., 2015)). With the advances in 

ultrasound, analyses of ACL morphological parameters can be more readily available to 

researchers and used to relate knee mechanics with ACL parameters. Although ultrasound has 

been established as a reliable, less invasive measure compared to MRI, further investigation is 

needed. Specifically, research is needed to examine the intra and inter-rater reliability of 

ultrasound measures between researchers when MRI or arthroscopic comparisons are 

excluded/unavailable.  

Although many ACL injury mechanisms have been identified from the current literature, 

it appears further research is required to examine the relationships between ACL loading and 

these previously defined variables. Specifically, further research within ACL loading could 



18 
 

 
 

include measurements of ACL anthropometrics, muscle strength, muscle pre-activation patterns, 

knee laxity, and whole body anthropometrics. In addition, as the ability of ligaments to 

hypertrophy is unclear in humans, measurements of physical activity level could also provide 

important information regarding ACL morphology and loading. 
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SPECIFIC AIMS AND HYPOTHESES 

There are 3 primary purposes of this study, addressed by separate research aims and 

analyses:  

Aim #1: Identify the reliability of measuring the ACL through ultrasound through inter-rater and 

intra-rater reliability.  

Working hypotheses:  Measuring ACL diameter through ultrasound will produce an inter-

rater and intra-rater reliability measure with a minimal ICC of 0.6 and a desired ICC of 

0.8 with an α of 0.05 and β of 0.20.  

Aim #2: Identify the relationship between of physical activity levels, knee flexor strength, knee 

extensor strength, hamstring to quadriceps and hip abductor to adductor strength ratios and 

anthropometric measurements to the anteromedial bundle diameter of the ACL.  

Working hypotheses:  There will be a strong relationship (r≥0.7) between physical 

activity levels, knee flexor strength, knee extensor strength, hamstring to quadriceps 

strength ratio, hip abductors to adductor strength ratio, height and weight to the diameter 

of the anteromedial bundle of the ACL. It is also hypothesized that as physical activity 

levels increase strength of the lower extremity muscles will increase.  

Aim #3: Identify the relationship between ACL diameter, pre-activation of the lower extremity 

musculature and passive knee joint laxity to estimated ACL loading.  

Working hypotheses:  During drop landings, there will be an inverse relationship between 

ACL loading compared to ACL diameter and pre-activation of the lower extremity 

musculature. Next, there will be a direct relationship between ACL loading and passive 

knee joint laxity.   
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LIMITATIONS OF THE STUDY 

1. Utilizing ultrasound measures of the ACL without a “gold standard” comparison technique 

such as MRI or arthroscopy. Ultrasound has been previously establish as a reliable ACL 

measurement tool compared to MRI.  

2. Participant recollection of time spent exercising and the intensity at which the exercise was 

performed for the previous six months.  

3. The Rajagopal musculoskeletal model only utilizes a single degree of freedom knee joint, 

which has been validated for estimated joint contact forces of the lower extremities. 

4. The equation implemented for computing ACL loading only includes muscular 

contributions to the knee’s sagittal plane. Loads provided from the frontal and transverse 

plane are derived from inverse dynamics.  

 

DELIMITATIONS OF THE STUDY 

1. Only male participants will be included in this study. Therefore any findings may not be 

applicable to females.  

2. This study will only test specific muscles through EMG and isometric strength testing, 

while it is known that other muscles will cause alterations about the lower extremity.  

3. Participant’s previous experience performing the desired movements.  
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ASSUMPTIONS OF THE STUDY 

1. Participant responses were accurate when answering all questionnaires. During inverse 

dynamics it is assumed that all body segments are a perfectly rigid body.  

2. Participants will provide maximal effort during maximal voluntary isometric contractions. 

3. During inverse dynamics it is assumed that each joint is a frictionless pin joint. During 

inverse dynamics it is assumed that the moment of inertia remain constant during the 

movement. 

4. Participants will not experience peripheral fatigue from the study protocol.    

 

SIGNIFICANCE OF THE STUDY 

 ACL injuries are one of the most common knee injuries among athletic populations. 

Research has primarily focused on ACL injuries in women or the comparison of injury 

mechanisms between women and men. Few studies have focused on the exact mechanisms that 

are associated with ACL injuries in men alone. While men are less pre-disposed for ACL injuries 

then women, the mechanisms that are associated with the injury in men alone are unclear. 

Diagnosing ACL injuries or ACL anthropometrics also has complications. Although MRI is 

considered the “gold standard” for the evaluation of the ACL, it is expensive and time 

consuming. As technology improves, diagnostic ultrasound has begun to emerge as a potential 

tool to examine and evaluate the ACL. Few studies have evaluated the reliability of ultrasound 

measures of the ACL. Therefore, accomplishing the aforementioned aims will bring further 

knowledge to the diagnosis and evaluation of the ACL, the relationship between ACL size and 

known mechanisms that increases ACL loading and the relationship of ACL loading and ACL 

injury mechanisms in men.  
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CHAPTER 2: LITERATURE REVIEW 

ANATOMY OF THE KNEE 

The knee is complex system within the lower extremity, which makes human movement 

possible. There is slight debate on the exact type of joint the knee is. For example, the knee may 

be considered a dual or double condyloid joint (S. J. Hall, 2012; Hamill, Knutzen, & Derrick, 

2015; Loudon, Manske, & Reiman, 2013), condylar joint (Hamill et al., 2015), or modified 

Hinge joint (Biel, 2014; Hamill et al., 2015; Oatis, 2009; Tortora, 2012). Although textbooks 

may classify the joint differently, they all consider the knee to be a crucial component of lower 

extremity movement that allows for required mobility and extreme weight bearing activities (S. 

J. Hall, 2012; Hamill et al., 2015; Oatis, 2009; Tortora, 2012). The knee can have various joint 

classifications because of its ability to actively move in multiple planes of motion. For example, 

the knee can be considered a hinge, modified hinge, condylar or double condylar joint (Hamill et 

al., 2015; Loudon et al., 2013; Oatis, 2009).  

The knee is comprised of three primary bones: femur, tibia, and patella. Some will also 

consider the proximal portion of the fibula as part of the knee or have influence about the knee 

since it serves as an attachment site for muscles that articulate movement at the knee (Hamill et 

al., 2015; Oatis, 2009; Tortora, 2012).  The primary focus of this review of literature will be on 

the tibiofemoral joint, which is comprised of the tibia and the femur (Tortora, 2012), and the 

muscles and ligaments that place a crucial role in the stability, mobility and overall movement of 

the knee. There are four primary ligaments that increase the stability, maintain proper alignment, 

and decrease unwanted movements (Hamill et al., 2015; Oatis, 2009; Tortora, 2012). Two 

primary ligaments are extracapsular ligaments, medial collateral ligaments (MCL) and lateral 

collateral ligament (LCL). While the two primary intracapsular ligaments are the anterior 
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cruciate ligament (ACL) and posterior cruciate ligament (PCL). The MCL is comprised of two, 

superficial or anterior and deep portions (Ozkan, Akalan, & Temelli, 2007; Robinson, Bull, & 

Amis, 2005), and new research shows a possible third portion, the ligaments and joint capsule 

that comprise the posteromedial capsule (Robinson et al., 2005; Robinson, Bull, Thomas, & 

Amis, 2006).  The multiple bundles of the MCL help resist valgus forces, knee abduction, and 

internal and external rotation (J. C. Gardiner, Weiss, & Rosenberg, 2001; Hamill et al., 2015).  

The LCL is comprised single cord like bundle, which slackens as knee flexion increases and is 

responsible for resisting varus forces, adduction and external rotation (Hamill et al., 2015; 

Meister, Michael, Moyer, Kelly, & Schneck, 2000).   

The ACL is responsible for countering anterior translation and medial rotation of the tibia 

relative to the femur. The ACL is comprised of two bundles, an anteromedial and posterolateral 

bundle. Amis and Dawkins (1991) found there to be a third, intermediate bundle separating the 

posterolateral and the anteromedial bundles. However, the focus here will be on the two 

dominate ACL portions, the anteromedial and posterolateral bundles.  

The anteromedial and posterolateral bundles of the ACL have different functions to help 

support knee during flexion/extension and internal/external rotation. Each individual bundle of 

the ACL has different material properties, which allow for different strength and strain 

characteristics (Mommersteeg, Blankevoort, Huiskes, Kooloos, & Kauer, 1996). For example, 

the posterolateral bundle is tight or tense during knee extension while the anteromedial is tense 

during knee flexion. This suggests that the anteromedial bundle stabilizes the knee against 

anterior movement and rotation when the knee is flexed, while the posterolateral bundle 

stabilizes the knee at full extension (Kato et al., 2012). Thus, as the knee flexes and extends 

during a squat, loading of the two bundles will vary with as ACL length changes (Yoo et al., 
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2010). In the ACL, the anteromedial bundle is smaller than the posterolateral. In the first 30º of 

knee flexion, both bundles shorten and from there each bundle performs separate functions. The 

anteromedial bundle increases in length after 30º of knee flexion until 120º of flexion. The 

posterolateral bundle continues to decrease in length until 90-100º of flexion and then starts to 

increase in length (Amis & Dawkins, 1991).  

ACL INJURY PREVALENCE 

During a 10 year period following 17,307 patients, 7769 injuries to the knee were 

reported. Of the 7769 knee injuries, 3482 injuries involved internal structures of the knee. Out of 

the 3482 internal knee injuries 45.38% involved the ACL, 24.01% the medial meniscus, 17.58% 

the MCL, 8.16% the lateral meniscus, 2.53% the LCL, and 1.46% the PCL (Majewski, Susanne, 

& Klaus, 2006). Over a 16 year period, 15 NCAA sports were followed to diagnose injury rates. 

During this period, over 50% of all injuries were to the lower extremity and ACL injuries 

accounted for 3% of all injuries across all 15 sports (J. M. Hootman, Dick, & Agel, 2007). It is 

estimated that between 80,000-250,000 ACL injuries occur and 100,000 ACL reconstructions are 

performed annually in 15-25 year olds (Dick et al., 2007; Griffin et al., 2006). After an ACL 

injury and reconstruction a substantial amount of time may be needed for an athlete to return to 

pre-injury form, if they ever make it back to a high level of competition again.  On average, 50% 

of athletes that suffer a significant ACL injury require longer than 12 months to return to 

competition (Ardern, Webster, Taylor, & Feller, 2011; Kvist, 2004; Langford, Webster, & Feller, 

2009).  

In the occurrence of a full rupture of the ACL there are many options to repair the 

ligament. Patients have the option for various ACL reconstruction surgeries, including: a 

contralateral or ipsilateral patellar graft (Biggs, Jenkins, Urch, & Shelbourne, 2009), iliotibial 
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graft, semitendinosus and gracilis grafts (Silver, Tria, Zawadsky, & Dunn, 1991) along with 

single and double bundle replacement (Kaz, Starman, & Fu, 2007). After ACL surgery, with this 

possible 12 month recovery period, patients will require some form of rehabilitation to bring the 

reconstructed ACL back to the pre-injury state of the ACL or bring the reconstructed ACL to 

equal standards to the contralateral ACL (Biggs et al., 2009).   

Although various life events may play a role in deterioration of the surrounding 

articulating cartilage and bone within the knee joint, ACL reconstructions have shown to cause 

early signs of osteoarthritis, as soon as 10-11 years post injury (Bahr & Krosshaug, 2005; 

Kessler et al., 2008), but most patients will experience some degree of osteoarthritis between 12 

and 20 years post injury regardless of rehabilitation and reconstruction choices (Bahr & 

Krosshaug, 2005; L. S. Lohmander, Ostenberg, Englund, & Roos, 2004; Oiestad, Holm, 

Engebretsen, & Risberg, 2011; Von Porat, Roos, & Roos, 2004). Post ACL reconstruction may 

also lead to many other changes in the lower extremity. For instance, ACL reconstruction can 

alter lower extremity kinematics and kinetics and can lead to a subsequent ACL rupture. 

RISK FACTORS 

Through biomechanical analysis of 3D kinematic and kinetic properties of human 

movement, it has been shown that there are mechanical and physiological factors (ACL injury 

risk mechanisms) that influence the incidence of ACL injuries. These factors include: increased 

knee abduction angles, increased frontal plane loading, increased anteroposterior shear knee joint 

force, neuromuscular imbalances, fatigue,  hormonal changes, ACL thickness as well as many 

other biomechanical and physiological factors (Alentorn-Geli et al., 2009; Cochrane et al., 2007; 

Griffin et al., 2006; Hewett, Myer, Ford, et al., 2005; Myer et al., 2005). During activities where 

side step cutting, jumping and landing are prevalent, increased ACL injury risk may be present 
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due to neuromuscular imbalances that can lead to further altered mechanics. It has been shown 

that decreased neuromuscular control may lead to increased knee injuries (Ekstrand & Gillquist, 

1983), more specifically ACL injuries (Boden, Dean, Feagin, & Garrett, 2000; Hewett, Myer, 

Ford, et al., 2005; G. D. Myer et al., 2005). Furthermore, the time to achieve peak hamstring 

torque and quadriceps to hamstring strength ratios may influence ACL loading, since co-

contraction of the hamstring has been shown to reduce anterior translation of the tibia generated 

by contraction of the quadriceps (Ahmad et al., 2006; G. D. Myer, Ford, Barber Foss, et al., 

2009). Research has also shown that neuromuscular fatigue may be a contributing factor in non-

contact ACL injury (Chappell et al., 2005).  

It has been established that athletes should have a hamstring to quadriceps strength ratio 

of 0.50 to 0.80 to prevent lower extremity injury (P. Kannus, 1988a; P. Kannus & Jarvinen, 

1990). Others have predicted a more exact ratio of 0.60 hamstring to quadriceps strength ratio to 

prevent lower extremity injury (Dunnam et al., 1988a; Orchard et al., 1997). G. D. Myer, Ford, 

Barber Foss, et al. (2009) found that females with decreased hamstring strength compared to 

female and male controls had increased ACL injuries. The same female controls who did not 

have ACL injuries had equal hamstring strength as the male controls, but decreased quadriceps 

strength.  also found that females had decreased hamstring strength when compared to men of 

equal quadriceps strength. It appears that females also do not increase hamstring strength and 

torque during increased velocities of an isokinetic activity as compared to males performing the 

same activity (Hewett, Myer, & Zazulak, 2008).  

Muscular fatigue can also alter mechanics and muscle responses during activity. For 

example, it has been found that increased fatigue is associated with excessive external rotation 

(Schoenfeld, 2010). Additionally, isolated hamstring fatigue reduces joint coordination between 
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the knee and hip (Samaan, Hoch, Ringleb, Bawab, & Weinhandl, 2015), which have been 

assessed to increase ACL injury risk (Pollard, Heiderscheit, van Emmerik, & Hamill, 2005).  

Along with neuromuscular imbalances and muscular fatigue, reduced proprioception 

around a joint may decrease its functional ability. It has been shown that the ACL has 

proprioceptors that may influence mechanical functions of the lower extremity in injury 

prevention during dynamic tasks (Schultz et al., 1984). Proprioception can be defined as “the 

conscious perception of the orientation of different parts of the body with respect to another” or 

“the sense of rates of movement” (Jerosch & Prymka, 1996). It has been shown that as healthy 

patients age, a decrease in strength requires increased reliance on proprioception around a joint, 

which decreases the postural stability of the joint (Hurley et al., 1998). Evidence shows that ACL 

proprioceptors are more active, meaning increased signal transduction, at near full extension of 

the knee (Jerosch & Prymka, 1996).  Furthermore, it was found that participants that had 

hypermobility syndrome had a lack of proprioception compared to controls. It has been 

suggested that this lack of proprioception can lead to undesirable mechanics during activity (M. 

G. Hall et al., 1995). Therefore, participants or athletes that have hypermobility may be placed at 

increased ACL injuries near full extension of the knee. As athletes land or cut near full 

extension, the lack or proprioceptive ability will alter their ability to respond to perturbations of 

the joint. After injury or rupture to the ACL, proprioception around the knee may be altered (D. 

Roberts et al., 2007). After ACL reconstruction, some patients have a full return to athletics with 

no additional issues, while others may return to play and continue to have instability and 

increased laxity in the joint (Fremerey et al., 2000). Participants with more than average joint 

laxity have been shown to have a decrease in the hamstring reflex, particularly the bicep femoris, 

when controlled forward, internal and external perturbations were applied to the lower leg during 
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a weight bearing single leg stance (Shultz et al., 2004).  It has also been shown that after 

participation in athletics that involve prolonged dynamic movements can increase knee joint 

laxity (Steiner, Grana, Chillag, & Schelberg-Karnes, 1986).   

Architecture within the joint capsule may also play a role in ACL injuries.  Simon, 

Everhart, Nagaraja, and Chaudhari (2010) concluded that steeper lateral posterior tibial slopes 

and smaller intercondylar notches were more pronounced in patients with ACL injuries. 

Narrowing of the intercondylar notch has been associated with ACL injury, where a smaller 

intercondylar notch would cause the ACL to excessive stretch over the inner margin during 

dynamic task generating failure in the ACL (Uhorchak et al., 2003) and may increase injury risk 

(Good, Odensten, & Gillquist, 1991). The thickness of ACL can also be predictor of ACL injury 

risk, as participants with a non-contact ACL injury had smaller ACL than a matched control 

(Chaudhari, Zelman, Flanigan, Kaeding, & Nagaraja, 2009; Mahajan et al., 2015). It seems as 

though participants that had ACL injuries had a negative relationship between ACL diameter and 

weight. showing ACL diameter decreased with increased weight. However, the healthy matched 

controls had a positive relationship with ACL diameter to weight, showing increased ACL 

diameter increased with increased weight (Mahajan et al., 2015). Individuals who have suffered a 

non-contact ACL injury have been shown to have smaller ACL volume than healthy matched 

controls (Chaudhari et al., 2009; Simon et al., 2010), as well as a steeper lateral posterior tibial 

slope. Typically it has been found that women have smaller ACL thickness than men (A. F. 

Anderson, Dome, Gautam, Awh, & Rennirt, 2001; N. Chandrashekar, Slauterbeck, & Hashemi, 

2005; Charlton, St John, Ciccotti, Harrison, & Schweitzer, 2002; Dienst et al., 2007), and that the 

size of the ACL may be correlated to height (Charlton et al., 2002). However, when ACL size is 

corrected for lean body mass there is no significant difference between men and women (A. F. 
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Anderson et al., 2001). It has also been found that as height of male participants increases the 

size of the ACL increases, but this correlation may not be present in female participants (A. F. 

Anderson et al., 2001). When male and female participants are matched for height, women have 

significantly smaller ACL thickness (Dienst et al., 2007). Some research has shown that ACL 

thickness is correlated to the weight, and not height (Chaudhari et al., 2009; Mahajan et al., 

2015). Furthermore, it has been observed that athletes with stronger quadriceps muscles had 

larger ACL thickness (A. F. Anderson et al., 2001). It was found that during ACL reconstruction, 

graft thickness and diameter was correlated to both height and weight (Thomas, Bhattacharya, 

Saltikov, & Kramer, 2013). Although, ACL size and strength has been associated with height 

and weight, the relationship of estimated ACL loading and ACL size has yet to be established. 

Further research is needed to establish is ACL size is a factor to further consider for ACL injury 

risk during dynamic movements.  

PRE-ACTIVATION  

 Olsson, Jonsson, Larsson, and Nyberg (2008) have shown through functional magnetic 

resonance imaging that novice and experienced athletes will recruit different portions of the 

brain when asked to visualize the completion of an athletic task. The utilization of various 

portions of the brain may initiate different mechanics during actual athletic tasks. During athletic 

maneuvers, novice and experience participants also used different muscular recruitment 

strategies that generate different joint moments in the lower extremity (Sigward & Powers, 

2006). It has been suggested that the less experienced participants recruit a greater co-contraction 

pattern for a more protective strategy. Furthermore, previous experiences can influence 

mechanics to activities before they take place, such as pre-activation of muscle around joints or 
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reduction in joint moments (Beard, Kyberd, Fergusson, & Dodd, 1993; Besier, Lloyd, Ackland, 

& Cochrane, 2001).  

During landing maneuvers, pre-activation of the lower extremity musculature can 

influence mechanics during landing (Cowley et al., 2006; Gehring, Melnyk, & Gollhofer, 2009; 

Hewett, Zazulak, et al., 2005). It has been found that men and women utilize different pre-

activation strategies when performing drop landings (Gehring et al., 2009; Zazulak et al., 2005). 

Men were found to activate both the medial and lateral quadriceps, while also activating the 

lateral hamstring earlier than the medial hamstrings. Medina et al. (2008) demonstrated that pre-

activation differences were observed between athletes and non-athletes, but did not find 

significant differences in activation timing between men and female athletes. Medina et al. 

(2008) also found that there was no difference in activation timing of the medial and lateral 

hamstring in male participants. The peak and integrated signal as well as the timing of the pre-

activation of the lower extremity musculature during dynamic activities play a large role in the 

dynamics of landing. As athletes prepare for the landing, depending on gender and previous 

experience the activation of the lower extremity can change altering landing mechanics. This 

alteration of muscle pre landing activations may prepare the athletes lower extremity to handle 

force differently during landing thus altering ACL loading during landings. The extent of the 

relationship between pre-activation of the lower extremity and ACL loading is lacking from the 

current literature.   

EVENT TIMING 

It is thought that during dynamic activity excessive anterior translation of the tibia caused 

by forces generated by the quadriceps place the ACL at greater risk of injury (Withrow, Huston, 

Wojtys, & Ashton-Miller, 2006). It has been shown that during a drop landing the peak GRF 
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happens between 40-57 ms (Kernozek & Ragan, 2008; Pflum et al., 2004), while ACL injury or 

failure can take place between 17-50 ms (Krosshaug et al., 2007). It has been shown that the 

force generated by the quadriceps during a landing maneuver may not be the reason for 

excessive anterior translation of the tibia that result in ACL injury (J. Hashemi et al., 2010).  

Furthermore, during drop landings, fluoroscopy measurements show peak anterior tibial 

translations occur within 40-50 ms after initial contact, with peak GRF occurring around the 

same time frame (Torry et al., 2011).   

Raunest, Sager, and Burgener (1996) has shown that as load is applied to the ACL, 

proprioception from the ligament will increase activation of the hamstrings. The time frame 

between initial contact and peak ACL force and potential ACL injury is extremely small, small 

enough that conscious effort to counter movement is nearly impossible. It has been shown that it 

can take 89 ms to initiate a signal from intracapsular cruciate ligaments to induce a muscular 

response (Raunest et al., 1996). Muscle spindle response to achieve muscle response can take 50-

200 ms (Herzog, Scheele, & Conway, 1999). Komi (2000) suggest that an initiated response 

from a stretch in the muscle spindle can take 40 ms, while a muscular response will take an 

additional 50-55 ms. This timing information paints a picture that mechanics after about 50 ms 

after initial contact may not influence ACL injury during drop landings. This may suggest that 

ACL injury risk is associated with pre-activation of the lower extremity muscles, skeletal 

geometry, previous experience (previous physical activity) or training, and ACL thickness. The 

association between the aforementioned variables and ACL loading can provide more insight to 

the exact mechanisms that may contribute to ACL injuries.  
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EXERCISE 

During resistance training, the body will go through many neurological and 

morphological changes, some understood well, while others are not completely understood. 

During resistance training programs, the goal is to increase neuromuscular control, muscular 

strength, or muscular size. It has been shown that increases in muscular strength and 

neuromuscular control can reduce injury risk. A simple expression of muscle force can be 

equated to Fm = PCSA*σ (Enoka, 2008; Hamill et al., 2015; Kawakami, Abe, Kuno, & 

Fukunaga, 1995; McGinnis, 2013), or force is equal to the physiological cross sectional area 

times the specific tension of the muscle. During training, there are two ways to increase muscle 

force. The first way is to increase the PCSA of the muscle and the second is to increase the 

stimulation to the muscle by either strength of signal or rate coding (Enoka, 2008; Hamill et al., 

2015; McGinnis, 2013). To increase neuromuscular control, participants may include training of 

the proprioceptors around joints to increase motor control of joints by performing plyometric 

exercises.   

Research among adults has shown that during the first six weeks of resistance training 

there will be a dramatic increase in the neurological factors, such as: increased coordination of 

the central and peripheral nervous systems, neural stimulation to the agonist from the central 

nervous system (CNS) (Aagaard et al., 2000; Van Cutsem, Duchateau, & Hainaut, 1998), motor 

unit activation, increased conduction velocity and increased firing of the neurons (Folland & 

Williams, 2007; Kenney, Wilmore, & Costill, 2015), rate coding to the agonist group (Rich & 

Cafarelli, 2000), , inhibition of the antagonist muscles, synchronization of the signal from the 

CNS peripheral nervous system (Folland & Williams, 2007; P. F. Gardiner, 2011; Kenney et al., 

2015; Staron et al., 1994), and decreased inhibition of the agonist group (Aagaard et al., 2000).  
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As individuals complete resistance training programs and strength increases have been observed, 

less muscle activation will be needed to complete movements at similar loads from pre 

intervention (Ploutz, Tesch, Biro, & Dudley, 1994). After a resistance training program EMG 

activity of the lower extremity will be increased during maximal effort exercises (Aagaard, 

Simonsen, Andersen, Magnusson, & Dyhre-Poulsen, 2002; Aagaard et al., 2000).  Furthermore, 

it was also observed that resistance training can reduce coactivation of the antagonist muscle 

during isometric contractions (Carolan & Cafarelli, 1992). Along with changes in coactivation, 

there is evidence that suggests a decrease in Golgi tendon organ reflex of the agonist muscle 

during contraction after training (Aagaard et al., 2000). With training, alterations of activation 

patterns can change, this changes may play a key role in injury mechanisms during dynamic 

activities. 

With prolonged resistance training beyond six weeks, physiological and mechanical 

changes can be seen within the muscle, including: increase physiological cross sectional area 

(PCSA) through increase in size and number of fibers, increase in pennation angle, increase in 

enzyme number and size, and increased energy storage (P. F. Gardiner, 2011). It has also been 

found that prolonged dynamic resistance training can increase contractile velocity of the trained 

muscle group (Van Cutsem et al., 1998).  

ALTERATIONS TO KNEE LOADING 

The effects of resistance training on the knee is complicated and currently not 

comprehensively understood because of the coordinated actions of multiple lower extremity 

muscles and joints to perform dynamic activities. Numerous studies have shown training 

protocols targeting  resistance training, plyometric and dynamic stability exercises can reduce 

ACL injury rates in athletes (Hewett, 2009; Hewett, Myer, Ford, et al., 2005; Hewett et al., 2009; 
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G. D. Myer, Ford, McLean, et al., 2006). Hewett, Lindenfeld, Riccobene, and Noyes (1999) 

demonstrated that untrained female athletes are 2.4 to 3.6 times more likely to obtain a serious 

knee injury compared to female athletes who participated in a six week training program which 

consisted of: flexibility, plyometric and resistance training. Neuromuscular training that 

consisted of resistance, plyometric, core, balance and speed training can alter kinematics, 

particularly at the knee, of young athletes to reduce injury risk (Myer et al., 2005). Next, it has 

been shown that plyometric training alone can alter kinematics during athletic maneuvers to 

reduce injury risk in young athletes, and helps correct a quadriceps to hamstring imbalance  

within the non-dominate limb (Hewett, Stroupe, Nance, & Noyes, 1996). Snyder, Earl, 

O'Connor, and Ebersole (2009) found that after a six week resistance training program lower 

extremity kinematics and joint moments during running were altered from pre-training values, 

specifically reducing knee abduction moments. It may seem that physical training may alter 

forces during athletic maneuvers, but the specificity of training may also play a role in ACL 

injury prevention. 

During a 7 week training program, diagnosed high risk participants were able to reduce 

knee abduction moments while predetermined low risk participants did not alter any knee 

abduction moments (G. D. Myer, Ford, Brent, & Hewett, 2007). Completing a resistance training 

program has the ability to reduce forces and moments experienced during athletic maneuvers 

(Irmischer et al., 2004). During a two year program where sport specific stretching, resistance 

and plyometric training was administered as a warm up, the incidence of ACL injuries were 

reduced between the experimental groups. It was found that the stretching, plyometric and 

resistance training resulted in a significant decrease in ACL tears for the intervention group, two 

ACL injuries within the first year, where the control group with no intervention sustain 32 ACL 
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tears (Mandelbaum et al., 2005). Herman et al. (2008) found that after 9 weeks of just resistance 

training, lower extremity joint kinematics and kinetics were not altered. This information shows 

that the program of the resistance training, the type of resistance training, and the length of the 

resistance training play a role in the alterations of lower extremity mechanics during dynamic 

tasks.  

TENDON AND LIGAMENTOUS CHANGE DUE TO EXERCISE 

Living tissue has the ability to remodel itself, whether from inactivity, a decrease loading of the 

structure, or a loading of the tissue (Buckwalter & Grodzinsky, 1999; Hayashi, 1996).  It has 

been shown that exercise can alter ACL strength and stiffness while maintaining functional 

ability during exercise in rats (Cabaud, Chatty, Gildengorin, & Feltman, 1980). It was also found 

that the more frequently the rats were exercised, the more improvement in the ACL there was 

(Cabaud et al., 1980). In humans, exercise, cardiovascular training or resistance training, has the 

ability to induce change, strength, thickness, and organization of the collagen within ligaments 

and tendons (Buckwalter & Grodzinsky, 1999; Butler, Grood, Noyes, & Zernicke, 1978; 

Hayashi, 1996), which may be explained through Roux’s law of functional adaptation (Scheffler, 

Unterhauser, & Weiler, 2008). Through loading of the tendons and ligaments, alterations to 

collagen formation, proteoglycans and glycosaminoglycan production may be responsible for 

alterations observed within the tendons and ligaments (Buckwalter & Grodzinsky, 1999; 

Hayashi, 1996). It has been shown that ligament changes (length and thickness) occurs during 

growth and repeated stresses to the ligament in rabbits and rats (Cabaud et al., 1980; Dahners, 

Sykes, & Muller, 1989; Wood, Lester, & Dahners, 1998). Inversely, immobilization of the knee 

in rabbits and primates showed a reduction in net collagen in the ACL and tensile strength 

(Hayashi, 1996; Herpin, Raynier, Boutaud, Amiel, & Demange, 1990). Therefore, it is possible 
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an increase in size can increase the tensile strength of the ACL. In humans it has been shown that 

tendon stiffness may be alter due to resistance training (Kubo, Kanehisa, & Fukunaga, 2002; 

Markovic & Mikulic, 2010). Increases in patellar tendon thickness have been observed after 

participants performed heavy knee extension exercises for 12 weeks (Kongsgaard et al., 2007).   

During the same intervention, it was found that as the tendon did alter in thickness, the changes 

along the patellar tendon were different (Kongsgaard et al., 2007). The Achilles tendon has also 

been shown to have adaptations to occur from resistance and plyometric training (Kongsgaard, 

Aagaard, Kjaer, & Magnusson, 2005; Kubo, Kanehisa, Ito, & Fukunaga, 2001; Lenskjold et al., 

2015; Magnusson & Kjaer, 2003; Rosager et al., 2002). Research has shown that exercise has the 

ability to alter tendon thickness, but the exact relationship between tendon hypertrophy and 

muscle hypertrophy remains unknown. It has been suggested that as muscle hypertrophies, 

tendon will hypertrophy as well, the rate at which each will happen has yet to be determined. 

This increase in cross sectional area of the tendon may allow the tendon to resist more applied 

forces (Kongsgaard et al., 2007). It has been suggested that as continual strain has been applied 

to the ACL, it has the ability to hypertrophy as well (Simon et al., 2010).  

ANALYZING LIGAMENT STRUCTURE AND FUNCTION 

As technology advances new cost effective techniques are becoming available to examine 

soft tissue structures and diagnose injuries pertaining to joints (Chew, Stevens, Wang, 

Fredericson, & Lew, 2008; Larsen & Rasmussen, 2000; Lew, Chen, Wang, & Chew, 2007; C. S. 

Roberts et al., 2002).  Although arthroscopy is the gold standard diagnostic tool to diagnose 

intra-capsular damage (Crawford et al., 2007; Friemert et al., 2004),  other non-invasive options 

may be feasible. Using MRI to evaluate intra-capsular ligaments of the knee is a less invasive 

and more feasible option before utilizing arthroscopy (Crawford et al., 2007; Friemert et al., 
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2004).  Although MRI is more feasible to diagnose the damage to structures of the knee than 

arthroscopy, cartilage damage within the joint is more reliably diagnosed through arthroscopy 

(Friemert et al., 2004). Again, as technology progressed, MRI started replacing arthroscopy to 

diagnose and examine ACL injuries. Now if may seem as though diagnostic ultrasound is 

progressing forward to become more readily available tool to diagnose ACL injuries (Chen et al., 

2013; Dinnes, Loveman, McIntyre, & Waugh, 2003; Mahajan et al., 2015; C. S. Roberts et al., 

2002), particularly ACL injuries (Chen et al., 2013; Friedl & Glaser, 1991; Z. Khan, Faruqui, 

Ogyunbiyi, Rosset, & Iqbal, 2006; Larsen & Rasmussen, 2000; Mahajan et al., 2015; Suzuki et 

al., 1991). Ultrasound is a viable, cheaper alternative method to locate and analyze the size or 

thickness of the ACL at the tibial insertions site (Chen et al., 2013; Mahajan et al., 2015).  

Although studies have shown the feasibility of diagnosing an ACL injury with ultrasound, 

research is lacking on the ability of ultrasound to measure and examine the ACL. Further 

research is needed to establish that ultrasound is a reliable means to examine and measure the 

ACL. It also needs to be determine what is inter and intra rater amongst various researchers 

when utilizing ultrasound to examine ACL diameter.  

STATIC OPTIMIZATION AND OPTIMIZATION CRITERIA 

 During human activity there are multiple complex systems operating independently and 

in coordination with other systems. The coordinated actions of the central nervous, muscular and 

skeletal systems make dynamic motions possible. Examining human movement and the forces 

that drive this movement is critical for multiple disciplines; however, examining in vivo joint 

contact forces and muscle forces can be invasive and unnecessary, for some clinical evaluations 

(Erdemir, McLean, Herzog, & van den Bogert, 2007).  The use of modeling and simulation can 

give researchers the ability to estimate forces acting within the body and guide conclusions to 



38 
 

 
 

how forces influence human movement. The information from modeling and simulation can also 

provide valuable information to address poor mechanics or alter rehabilitation mechanisms to 

improve patient outcomes.  

When examining human motion, external forces are utilized to estimate net joint 

moments through inverse dynamics (Delp et al., 1990; Erdemir et al., 2007; Lin, Dorn, Schache, 

& Pandy, 2011; Zajac, Neptune, & Kautz, 2002). Although inverse dynamics is a useful tool to 

evaluate joint moments, the internal muscle forces driving the movement remain unknown. 

However, static optimization can derive muscle forces from the joint motions and moments. 

Static optimization is performed using musculoskeletal models that incorporate  physiologically 

relevant muscle properties and activation (F. C. Anderson & Pandy, 2001b; Delp et al., 2007; 

Erdemir et al., 2007). Opensim (Delp et al., 2007), an open source musculoskeletal modeling 

software, offers users multiple options to analyze human movement through various techniques 

from static optimization (Erdemir et al., 2007) to forward dynamics (Erdemir et al., 2007) and 

computed muscle control (Delp et al., 2007; Thelen & Anderson, 2006). With many options to 

utilize, multiple parameters must be taken into consideration to choose the appropriate 

optimization technique. For example, computational time varies between muscle activation 

estimation tools. Static optimization can be much more computationally efficient tool, while 

producing sufficient results in less dynamic tasks (F. C. Anderson & Pandy, 2001b) and during 

some more dynamic tasks such as running (Lin et al., 2011). Forward dynamics, computed 

muscle control and RRAs can be much more time consuming and may not produce significantly 

different results than static optimization.   

To solve for muscle activations and forces using static optimization, the joint moments 

must be first solved with an inverse dynamics approach. Inverse dynamics is calculated from the 



39 
 

 
 

experimental kinematic and force data, solving for the net joint moment about each joint of 

interest. The net joint moment is representative of all the muscle forces acting at that specific 

joint (Erdemir et al., 2007). From the net joint moment, muscle forces are estimated at each 

instance of time during the motion using a musculoskeletal model with predefined muscle lines 

of action and muscle force parameters. Individual muscle forces are solved using linear or non-

linear algorithm based upon a chosen criterion. Since the conception of modeling and simulation, 

many optimization criteria have been proposed. An optimization criteria must be used because 

the known joint moments produce an infinite number of possible muscle force solutions (Penrod, 

Davy, & Singh, 1974; Seireg & Arvikar, 1973).  

Estimating muscle forces through static optimization with different criteria was first 

proposed by Seireg and Arvikar (1973),  who proposed that the criteria can used singularly or as 

a weighted combination. Seireg and Arvikar (1973) provided examples of possible optimization 

criterion, such as minimizing: muscular force, muscular work, vertical reaction force through all 

lower extremity joints, and moments through all lower extremity joints.  It was concluded that 

since the potential optimization criterion are linear objectives, the solution to estimate muscular 

force can be solved with a linear solution. The estimated muscle force must also be related to 

their cross sectional area.  Seireg and Arvikar (1973) first proposed this optimization for simple 

motions such as standing upright, stooping, and forward and backward leaning.  Seireg and 

Arvikar (1975) continued their previous work by devising a model that could predict muscle 

forces during standing and walking.  

 Penrod et al. (1974) proposed a linear algorithm with what the authors propose as the 

optimal response principle, where the computation of the number of muscles attributing to the 

force need cannot be greater than the joints rotational degrees of freedom. Within this linear 
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algorithm, muscle effort (force) is minimized. However, this proposed solution is limited in 

predicting muscle forces. Penrod et al. (1974) recognized that within the solution, only two of 

four possible muscles were being activated to complete most tasks, while the fourth muscle 

within the system wasn’t activated in the completion of any task. The two muscle concept didn’t 

remain constant with the proposed optimal response theory because previous research shows that 

multiple muscles, are active during the resistance of opposing moments. Furthermore, the model 

has infinite force potential from the muscles. Penrod et al. (1974) also stated that a limitation to 

the linear algorithm is that it may not be useful in a healthy population.  proposed multiple 

problems that can arise from the previously defined? static optimization. The primary concern 

being that a linear algorithm approach with time independent calculations does not represent true 

human motion. Thus far, these models don’t take into account various physiological demands.  

 Crowninshield (1978) suggested a different optimization criteria, minimizing muscle 

stress. By minimizing muscle stress and placing maximal muscle force constraints in the model, 

a more synergistic physiological approach may be utilized in predicting muscle forces. As the 

muscle force constraints increase, a more synergistic solution was theorized to take place. When 

minimizing muscle stress and placing force production constraints, the model recruited muscles 

with larger physiological cross sectional areas and the larger moment arms. However, since force 

production constraints are in place, the muscle with the next largest physiological cross sectional 

area will be recruited as well, which better represents muscle recruitment patterns.  

Pedotti, Krishnan, and Stark (1978) estimated muscle forces from both previously 

derived and new optimization criteria, which include the minimization of: sum of muscle force, 

sum of squares of muscle forces, the sum of the ratio of actual force to maximal force 

capabilities, and the sum of squares of the ratio of actual force to maximal force capabilities. 
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When all four criteria are evaluated together over 11 lower extremity muscles used during 

walking, the differences in force estimation in the tibialis anterior, soleus, vastus, and iliacus 

were similar across optimization criterions. Within the Gluteus Maximus and Gastrocnemius, the 

criteria of minimizing the ratio of actual force to maximal force and the minimizing of the sum 

of squares of the ratio of the actual force to maximal force showed a larger estimation of force. 

The semimembranosus, semitendinosus, and biceps femoris showed a lower estimation of force 

from the criteria of minimizing the ratio of actual force to maximal force and the minimizing of 

the sum of squares of the ratio of the actual force to maximal force. Depending on the 

optimization criteria chosen, the estimation of muscle force can change.  

Crowninshield and Brand (1981) state that linear optimizations may be utilized out of 

convenience rather than physiological properties of muscle. and that it may be more appropriate 

to use nonlinear optimization criteria to more closely match physiological properties. 

Crowninshield and Brand (1981) utilized an optimization criteria of muscle endurance, which is 

muscle force over cross sectional area (muscle stress), over a time period. This study examined 

the influence of the nonlinear solutions of the summation of muscle stress raised from powers of 

1,2,3,4, and 100 around the elbow, and the summation of muscle stress cubed within a lower 

extremity model. Around the elbow, muscle stress raised to the 2,3, and 5 showed the ability to 

lower muscle stress and recruited more muscles to meet the demand placed on the system. The 

authors suggested that muscle stress cubed is a sufficient optimization criteria, but also that 

powers of 2 and 4 may be appropriate as there were slight variations in muscle force predictions 

between powers of 2, 3, and 4 but no changes within the number of muscles being activated.  

The use of musculoskeletal modeling can be an extremely useful tool to estimate joint moments, 

joint contact forces, and muscle forces. Depending on the optimization criteria, different 
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outcomes can be given. Based on previous works by Crowninshield and Brand (1981), muscle 

stressed squared may be the most appropriate option to utilize.  

MUSCULOSKELETAL MODELS 

There are numerous musculoskeletal models that can be utilized when performing static 

optimization. A commonly utilized lower extremity model utilized in musculoskeletal modeling 

is Gait2392 (F. C. Anderson & Pandy, 1999, 2001a; Delp et al., 1990; Yamaguchi & Zajac, 

1989). Gait2392 is an 8 segment lower extremity model that has 23 degree of freedom and 92 

musculotendon actuators and utilizes the Thelen2003 muscle model (Thelen, Anderson, & Delp, 

2003). The hip was designed as a ball and socket joint with 3 DOF. The knee is a one DOF joint 

that accounts for translation of the tibiofemoral joint as a function knee flexion and extension 

angles. The ankle was designed as a 1 DOF joint where the metatarsophalangeal and subtalar 

joints can be locked (Fox & Delp, 2010).  The Thelen2003 muscle models are developed as a 

series of lines from origin to insertion points. Via points are used to give the muscle the ability to 

wrap around anatomical landmarks when necessary. Although Gait2392 is useful for less 

dynamic tasks such as walking, the muscle geometry within the model does not allow for higher 

flexion angles at both the knee and hip joints. 

A more advanced model is the Lower Limb Model 2010, which is a 14 rigid body 

segment system that includes 44 Hill type musculotendon compartments in the Shutte1993 

muscle model (Schutte, Rodgers, Zajac, & Glaser, 1993). The pelvis has 6 DOF (rotations and 

translations in each plane of motion), the hip was designed as a 3 DOF ball and socket joint, the 

knee is a 1 DOF joint flexion and extension joint with a maximum flexion angle of 100°, and the 

ankle is a 1 DOF joint. The standard Lower Limb Model 2010 has the metatarsophalangeal and 

subtalar joints locked. Within the model there are 17 ellipsoidal wrapping objects around the hip 
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and knee to improve the accuracy of the muscle moment arms, physiology and muscle paths in 

the lower extremity. The adjustments made by Arnold, Ward, Lieber, and Delp (2010) in The 

Lower Limb Model 2010 were designed to provide a better representation of muscle parameters 

of force-length and muscle architecture compared to Gait2392. Although improvements were 

made within the model’s ability to generate physiological conditions with wrapping objects, the 

model is still limited by the amount of hip and knee flexion that can be utilized during dynamic 

activity. Furthermore, the model utilizes muscle parameters from elderly cadavers, which may 

not be representative of younger populations that researchers tend to utilize.  

The Rajagopal Model (Rajagopal et al., 2016), is comprised of 22 rigid body segments 

and 80 musculotendon Hill type compartments in the lower extremities within the Millard 

Equilibrium model (Millard, Uchida, Seth, & Delp, 2013). Muscle properties were based off of 

21 cadaver specimens and 24 young healthy young individuals’ MRIs. Like The Lower Limb 

Model 2010, The Rajagopal Model utilizes wrapping objects as well. However, all wrapping 

objects are cylindrical instead of ellipsoidal objects. The pelvis is designed to have 6 DOF of 

rotations and translations in each plane of motion, the hip was designed as a 3 DOF ball and 

socket joint, the knee is a 1 DOF joint, and the ankle, subtalar and metatarsophalangeal joints 

were designed as pin joints. During simulations, the authors set the subtalar and 

metatarsophalangeal joints at 0 degrees. The Rajagopal Model has increased joint range of 

motions. The hip allows for 10 degrees more extension, 30 degrees more flexion, 10 degrees 

more abduction and 20 degrees more adduction. At the knee the Rajagopal Model allows for 20 

degrees more flexion and at the ankle allows for 10 degrees more dorsiflexion.  
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ESTIMATING MUSCLE, CONTACT AND LIGAMENTOUS FORCES 

Musculoskeletal models can be utilized to calculate joint moments through inverse 

dynamics and use these moments to estimate muscle forces, followed by joint contact forces and 

ligamentous forces  (F. C. Anderson & Pandy, 2001a; Delp et al., 2007; Erdemir et al., 2007; Lin 

et al., 2011; Thelen & Anderson, 2006; Wesseling et al., 2015). Importantly for investigations of 

ACL injuries and injury mechanisms, musculoskeletal modeling can be employed to estimate 

tibiofemoral and ACL loading including muscle activations and forces. The predicted muscle 

forces can be used to predict tibiofemoral contact forces (shear and compressive) and ACL 

loading. Modeling muscles as an ideal force generator, the force production would be the product 

of muscle activation and maximum isometric force of muscle. When physiological parameters 

are introduced into the model, the muscle force estimation becomes more complex, where 

muscle length, contractile velocity, and muscle pennation angle must also be taken into 

consideration.  

To estimate three-dimensional ACL loading the previously estimated muscle excitations 

can be calculated to estimate muscle forces (Shelburne, Torry, & Pandy, 2005, 2006). The 

muscle forces of the three primary movers of the knee (the quadriceps, hamstrings and 

gastrocnemius) and the estimated knee joint reaction forces can be used to predict realistic ACL 

loads. McLean, Su, and van den Bogert (2003) estimated the forces transferred through the ACL 

by the anterior posterior directional forces produced from the quadriceps during side-step 

cutting. However, they did not include any other directional force within their calculation, which 

may underestimate ACL loading. Kernozek and Ragan (2008) proposed a solution to estimate 

ACL loading from sagittal plane moments, where the net moment of the knee is comprised to the 
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net moments generated by the moments acting on the lower leg by the moments of the ankle, 

hamstrings, quadriceps via patellar tendon and soleus. Using: 

𝑀𝑀𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑀𝑀ℎ𝑝𝑝𝑎𝑎 + 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑠𝑠𝑠𝑠 −  𝑀𝑀𝑝𝑝𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 

= 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑀𝑀ℎ𝑝𝑝𝑎𝑎 −𝑀𝑀𝑔𝑔𝑝𝑝𝑠𝑠𝑝𝑝. 

Then, along with the sagittal plane loading, frontal and transverse plane loading can be estimated 

from the net joint moments about the knee (Markolf et al., 1995; Markolf, Gorek, Kabo, & 

Shapiro, 1990). Using these equations, ACL loading from all three planes can be estimated:  

Adduction Moments (MAD): 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−𝐹𝐹𝐹𝐹 = −7.5003 𝑒𝑒(−0.041𝑥𝑥𝑀𝑀𝐴𝐴𝐴𝐴)𝑥𝑥 𝛩𝛩𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

Abduction Moments (MAD): 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−𝐹𝐹𝐹𝐹 = 3.8054 𝑒𝑒(−0.001𝑥𝑥𝑀𝑀𝐴𝐴𝐴𝐴)𝑥𝑥 𝛩𝛩𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

Internal Rotation Moments (MIR): 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−𝑇𝑇𝐹𝐹 = −24.57 𝑒𝑒(−0.045𝑥𝑥𝑀𝑀𝐼𝐼𝐼𝐼)𝑥𝑥 𝛩𝛩𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

External Rotation Moments (MER): 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−𝑇𝑇𝐹𝐹 = 8.6485 𝑒𝑒(−0.032𝑥𝑥𝑀𝑀𝐸𝐸𝐼𝐼)𝑥𝑥 𝛩𝛩𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 

FACL: 

𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−𝑆𝑆𝐹𝐹 + 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴−𝑇𝑇𝐹𝐹 

 

 There are numerous aspects of ACL injury risk mechanisms during landings that have 

been establish. As described above, anatomical influences, previous exercise or current exercise, 

landing mechanics, ground reaction forces, muscular strength imbalances, knee joint laxity, 

strength deficiencies, ligament size and properties and altered pre-activation EMG of lower 

extremity muscle influence the incidence of ACL injuries. Although there are numerous aspects 
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of ACL injury mechanisms that are understood, there are aspects of the ACL injury paradigm 

that are still not understood in men. A more complete understanding of ACL injury mechanisms 

in men is needed. Although MRI has been establish as the gold standard for assessing the ACL, 

diagnostic ultrasound has emerged as a tool that can reliably see and measure the ACL compared 

to MRI. Although ultrasound is reliable to MRI, further research is needed to establish reliability 

of researchers when MRI comparisons are not included in the study.  
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CHAPTER 3: METHODS 

PARTICIPANTS 

For Aim #1, a previous assessment of sample size requirements for investigations of 

reliability (Walter, Eliasziw, and Donner (1998)) was consulted. According to Walter et al. 

(1998), a minimum of 20 participants are needed to achieve a minimal ICC of 0.6 and a desired 

ICC of 0.8 with an α of 0.05 and β of 0.20 when the study design includes two raters and two 

measurements per limb per participant. For aim #2, an a priori power analysis based on 

significant correlations between ACL size and height (r=0.70; (Fayad, Rosenthal, Morrison, & 

Carrino, 2008)) indicated a minimum of 13 participants would be needed to find similar strength 

of relationship with a power of 0.80. For aim #3, a priori power analysis using a significant 

correlation between knee extensor and ACL strain (Russell, Palmieri, Zinder, & Ingersoll, 2006) 

indicated a minimum of 15 participants would be needed.  

Prior to participant recruitment, research approval from the Institutional Review Board of 

Old Dominion University was obtained. Upon arrival, each participant was informed of the study 

procedures, signed consent forms, and filled out an activity history questionnaire (see Appendix) 

to determine his level of fitness/activity based on ACSM guidelines: recreationally active (150 

minutes of moderate intensity exercise, 5 days by 30 minutes) or collegiately active (participate 

in collegiate athletics).  

EXPERIMENTAL PROTOCOL 

Aim #1 
To address Aim #1, ten female and ten male participants, ages 18-35, reported to the 

Neuromechanics Lab (ODU, Norfolk, VA, USA). After completion of consent forms, health 

history and activity level questionnaires, two ultrasound measurements of the ACL of each limb 
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were performed. Researchers were be stationed at two different medical examination tables. 

Each researcher independently placed the participant in the desired position, targeting the knee to 

be flexed to at least 90°. The researcher then took a measurement of the ACL via ultrasound 

(Fujifilm Sonosite, Bothell, WA), at the tibial insertion site (Chen et al., 2013; Mahajan et al., 

2015; Suzuki et al., 1991). The superior end of the transducer was placed at the distal portion of 

the patella and aligned with the patella tendon. The inferior portion of the transducer was rotated 

30° to the medial aspect of the tibia so that the inferior portion is on the medial aspect of the 

patella tendon and the superior portion is slightly lateral to the patella tendon (Chen et al., 2013; 

Mahajan et al., 2015; Suzuki et al., 1991). Once an appropriate image of the ligament was taken, 

the participant moved to the next researcher, where the process was repeated. Once all researches 

took appropriate images of the ligament, the process was repeated for a second time. Once the 

first round of images were collected for the two researchers, all participants were re-examined by 

researcher one. The second round of image collection was implemented to examine intra-rater 

reliability. Once all images were collected, each researcher measured their own images via 

ImageJ (NIH). ImageJ was globally calibrated by dimensions set on each image. Once the ACL 

had been identified in the image, the perpendicular distance from the edge of the superior and 

inferior border of the ligament was used to measure the ligament diameter. Once all images were 

measured, two way random absolute agreement ICCs were conducted for inter-rater and intra-

rater reliability using SPSS (v21.0, SPSS Inc., Chicago, IL).  

Aim #2 and Aim #3 
For Aims #2 and #3, 17 male participants, ages 18-35 were recruited for study.  

Participants reported to the Neuromechanics Lab (ODU, Norfolk, VA, USA) for all testing. Once 

all forms were completed, participants were asked to dress in spandex or tight fitting shorts and 

laboratory shoes. Participants’ height and weight were measured with a medical weight scale 
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with a height beam (Detecto, Webb City, MO, USA). Participants’ anteromedial bundle diameter 

were measured at the tibial insertion using a diagnostic ultrasound (Fujifilm Sonosite, Bothell, 

WA) (Chen et al., 2013; Mahajan et al., 2015; Suzuki et al., 1991) guided by previously defined 

procedures. To measure ACL thickness the participant will have their knee flexed more than 90°. 

The superior end of the transducer was placed at the distal portion of the patella and aligned with 

the patella tendon. The inferior portion of the transducer was rotated 30° to the medial aspect of 

the tibia so that the inferior portion is on the medial aspect of the patella tendon and the superior 

portion is slightly lateral to the patella tendon (Chen et al., 2013; Mahajan et al., 2015; Suzuki et 

al., 1991). Once ACL thickness was measured, participants’ knee joint laxity was measured 

using a KT 2000 (Medmetric, San Diego, CA) by a certified athletic trainer according in 

accordance with Snyder-Mackler, Fitzgerald, Bartolozzi, and Ciccotti (1997). Then, participant’s 

maximal jumping ability was be assessed. Before maximal jumps are recorded, participants were 

allowed a warm-up per their discretion. Participants were asked to perform three maximal jumps, 

where the optimal performance will be recorded for maximal jumping ability.  

Once ACL diameter, knee joint laxity, and jump height were determined, participants 

height and weight, the electromyography setup was performed. Before electrodes were placed on 

the muscle bellies, participant body hair were removed for the electrode placement, along with 

abrasions to remove epithelial cells. Once removed, the area was cleaned with alcohol. All 

electrodes were placed on the  gluteus medius, rectus femoris, vastus medialis, vastus lateralis, 

medial hamstring, lateral hamstring, tibialis anterior and medial gastrocnemius of the 

participants’ right leg, following the guidelines set by Cram, Kasman, and Holtz (1998). The 

placement for the gluteus medius was placed on the proximal third from the iliac crest to the 

greater trochanter. The rectus femoris electrode was placed halfway between the knee and the 
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anterior inferior ridge of the iliac spine. The vastus lateralis electrode was placed on the muscle 

belly at an oblique angle laterally from the midline of the thigh. The vastus medialis electrode 

was placed on the muscle belly above the knee cap and placed at an oblique angle medially from 

the midline. The medial and lateral hamstrings electrodes was placed on each muscle belly half 

way between the gluteal fold and the back of the knee. The tibialis anterior electrode was placed 

on the muscle belly just lateral to the tibia approximately one third of the distance between the 

knee and the ankle. The medial gastrocnemius electrode was placed on the muscle belly at an 

oblique angle medial to the midline so that the electrode runs perpendicular to the fibers. 

Electrodes were secured with pre-wrap (Mueller Sports Medicine, Prairie du sac, WI) and 

athletic tape (Collins Sports Medicine, Raynham, MA). Once all electrodes are secure, maximal 

isometric contractions (MVIC) of the knee extensors, knee flexors, hip abductors, hip adductors, 

ankle plantarflexors, and ankle dorsiflexors were recorded. During the MVIC testing, isometric 

strength was assessed for the hip abductors and adductors and for the knee flexors and extensors. 

10-second maximal voluntary isometric contractions (MVIC) were recorded for normalization of 

the electromyography data. MVICs of the knee extensors and flexors were completed with 

participants upright on a testing table and their knee flexed to 60 degrees (Alvares et al., 2015). 

Next hip abductor MVICs were collected, where participants were instructed to lay on their sides 

with the testing leg in a neutral alignment and abducted to 30 degrees (Fredericson et al., 2000). 

Participants were instructed not to rotate their body and to remain in the neutral alignment to 

maximize hip abductor MVIC. Lastly, ankle plantarflexor MVICs were collected with the ankle 

positioned at 0 degrees (Bojsen-Møller et al., 2004).  

For motion capture assessments, 18 retro reflective markers were placed bilaterally on 

anatomical landmarks, including the: acromioclavicular joint, most superior aspect of the iliac 
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crest, greater trochanter, and lateral and medial epicondyles of the femur, lateral and medial 

malleoli, and first and fifth metatarsals. Two elastic Velcro straps (McDavid, Woodridge, IL, 

USA) were placed on each leg, one on the middle of the thigh and the second on the middle of 

the shank. The Velcro straps will hold semi-rigid, molded Orthoplast plates (Johnson & Johnson, 

Raynham, MA, USA) with four tracking markers on each plate.  There was a tracking plate 

placed on the heel of each shoe, in between the scapulae, on the thighs of each leg, shanks of 

both legs, and a pelvis marker plate that was placed on an elastic Velcro strap around the waist.  

Once all markers, plates, and electrodes are placed on the body, participants will stand on 

a force plate while a static calibration trial is recorded. Once the calibration trial is collected, the 

anatomical markers were taken off. Participants will then be asked to complete five single leg 

landing with their dominate leg randomized from a 40 cm box and 5 landings from a box set 

equal to their maximal jumping ability. During landings, participants were instructed to land to 

their natural ability. If subject fell on both legs, and lost control during the landing, the trial was 

considered unsuccessful.  

Instrumentation 

 The instrumentation that was used to collect data in the study was an eight camera motion 

analysis system, Bertec force plates, and dynamometer and Delsys surface electrodes. ACL 

diameter was measured via ultrasound (Fujifilm Sonosite, Bothell, WA) while knee joint laxity 

was measured using a KT 2000 (Medmetric, San Diego, CA). The MVIC measurements for each 

muscle/movement were recorded using a portable fixed dynamometer (BTE, Hanover, MD, 

USA). Three-dimensional marker coordinate data was collected at 200 Hz using an eight-camera 

motion analysis system (Vicon, Centennial, CO, USA). All, force data was collected at 2000 Hz 

using two Bertec force plates (Bertec Co., Columbus, OH). All, and EMG data was collected at 
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2000 Hz. using a Trigno 16 wireless surface electrode electromagnetic system (Delsys Inc., 

Boston, MA, USA).  

Data Analysis 

 A kinetic model made of eight segments of a trunk, pelvis, right and left thighs, shanks 

and feet were created from the standing calibration trial (Weinhandl, Joshi, & O'Connor, 2010). 

Data reduction was performed using Visual 3D (Version 5, C-Motion, Inc.) for processing. The 

motion capture and GRF data were filtered using a low-pass fourth order Butterworth zero lag 

filter with a 15 Hz cut off frequency (Kristianslund, Krosshaug, & van den Bogert, 2012).   

Three-dimensional ankle, knee, and hip angles were calculated using a joint coordinate 

system approach (Grood & Suntay, 1983). The hip joint center was defined as 25% of the 

distance from the ipsilateral to the contralateral greater trochanter markers (Weinhandl & 

O'Connor, 2010). The knee joint center was defined as the midpoint between the lateral and 

medial markers on the condyles of the femur (Grood & Suntay, 1983). The ankle joint center was 

defined as the midpoint between the medial and lateral malleoli.  

Three-dimensional joint kinetics were calculated using a Newton-Euler approach (Bresler 

& Frankel, 1950) with body segment parameters estimated from (Dempster, 1955) and were 

reported in the distal segment reference frame. The EMG data were pre-amplified and high-pass 

filtered using fourth-order, zero lag, recursive Butterworth filter with a cutoff frequency of 20Hz 

to remove movement artifact. The signal was full-wave rectified and normalized to maximize 

recorded signal of each muscle over the trial. The full-wave rectified signal will then be low pass 

filtered with a cutoff frequency of 5 Hz to create a linear envelope. All EMG data will then be 

normalized against MVICs of the individual muscles.  Filtered marker coordinate and GRF data 

were imported into OpenSim (Version 3.3, SimTK, Stanford, CA). Participant specific kinematic 
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models were created from the base of The Rajagopal Model   by scaling to each participant’s 

height and mass. The inverse kinematics problem was solved using a least squares approach 

while accounting for constraint weights (Spoor & Veldpaus, 1980). Inverse dynamics was 

computed using the inverse kinematic and GRF data. Static Optimization (Steele, DeMers, 

Schwartz, & Delp, 2012) was used to estimate muscle forces at each time point using the sum of 

muscle stress squared . Next, the JointReaction analysis algorithm (Steele et al., 2012) was used 

with the muscle force and inverse dynamics data to estimate joint reaction forces during the 

landings. Lastly, three-dimensional ACL loading was calculated using previously established 

equations (Laughlin et al., 2011; Weinhandl et al., 2013), including the simulated sagittal plane 

forces, sagittal plane knee angles, and frontal and transverse plane moments from inverse 

dynamics.  

Statistical Analysis 

 For Aim #1, after all images are analyzed in ImageJ, two-way random ICCs were 

conducted for intra-rater (between images and sessions) and inter-rater reliability for both the full ACL 

and the AM bundle diameters using SPSS (v21.0, SPSS Inc., Chicago, IL).  When analyzing the 

reliability of measurements, moderate intra- and inter-rater reliability will have ICCs greater than 0.75 

and excellent reliability will have ICCs greater than 0.90 (Gellhorn & Carlson, 2013).   

For aim #2, Pearson correlations were performed to examine the relationship of the AM 

bundle diameter with time spent during high, moderate and low intensity exercise periods, knee 

flexor to knee extensor MVIC strength ratios, and hip abductor and hip adductor MVIC strength 

ratios. Three separate correlation analyses were conducted: 1) AM bundle diameter normalized 

to body weight (cm/BW) and strength variables in raw format, 2) diameter and strength variables 

normalized to body weight (cm/BW and N/BW (Hurd et al., 2011) respectively), and 3) diameter 
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normalized to weight (cm/BW) and strength variables normalized to body size (N/m0.67; (Jaric, 

Mirkov, & Markovic, 2005)). Relationships were considered weak, moderate, and strong 

relationships when the correlation coefficients (r) were < |0.30|, between |0.31| and |0.69|, and > 

|0.70|. The significance level was set a prior at p<0.05.  

During aim #3, correlation analyses were performed using SPSS (Version 26, IBM). 

Correlations between peak ACL loading (40 cm (BW), relative landing (BW), relative landing 

(BW/√RLH)) and anteromedial ACL diameter, pre-activation integrated EMG levels of seven 

lower extremity muscles, and passive knee joint laxity were examined. Relationships were 

considered weak, moderate, and strong relationships when correlation coefficients (r) were < 

|0.30|, between |0.31| and |0.69|, and > |0.70|. The significance level was set a prior at p<0.05. 



55 
 

 
 

CHAPTER 4: INTRA AND INTER RATER RELIABILIY OF ULTRASOUND 

MEASURES OF THE ANTERIOR CRUCIATE LIGAMENT 
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ABSTRACT  

Currently, magnetic resonance imagining (MRI) is the most common method of examining the 

anterior cruciate ligament (ACL).  Diagnostic ultrasound, a cost effective alternative to MRI, can 

locate and measure the ACL at the tibial insertion site, specifically measuring the entire ACL 

diameter, the anteromedial bundle (AM) and the posterolateral bundle. The purpose of this study 

was to determine intra and inter-rater reliability of ultrasounding ACL diameter and anteromedial 

bundle diameter in researchers with low to moderate ultrasound experience. We hypothesized 

that intra and inter-rater reliability of ACL and AM diameters would reach acceptable levels, a 

minimal intraclass correlation (ICC) of 0.6 and a desired ICC of 0.8 with an α of 0.05 and β of 

0.20.  Twenty volunteers were recruited for this study. During the ACL ultrasound measures, 

participants were seated with their knee flexed to 90°. Each rater recorded two images of both 

the right and left ACL and AM bundles. Next, all participants were re-examined by rater one for 

intra-rater reliability analyses. Two-way random ICCs were conducted for intra-rater (between 

sessions) and inter-rater reliability for both the full ACL and the AM bundle diameters using 

SPSS. Standard errors between sessions for Rater 1’s AM bundle and ACL diameters were less 

than 0.03 cm. Intra-rater reliability was higher in AM bundles compared to full ACL, 0.76 vs. 

0.59, respectively. In addition, standard errors between Rater 1 and Rater 2 were less than 0.03 

cm. Inter-rater reliability was higher in AM bundles compared to full ACL, 0.71 vs 0.41, 

respectively. The results of the study indicate researchers with low to moderate training with 

ultrasound measures can locate and measure the Anterior Cruciate Ligament. 

 



57 
 

 
 

INTRODUCTION  

Anterior cruciate ligament injuries (ACL) are devastating to athletes, where the 

repercussion of those injuries may impact joint health and performance for weeks to years later 

(Ardern, Taylor, Feller, & Webster, 2012, 2014; Ardern, Webster, Taylor, & Feller, 2011a, 

2011b; Caine, DiFiori, & Maffulli, 2006; Griffin et al., 2000; Griffin et al., 2006; Langford, 

Webster, & Feller, 2009; Maffulli, Longo, Gougoulias, Loppini, & Denaro, 2010). Current 

reports estimate 100-250,000 ACL injuries per year and suggest that surgical repairs cost 

between 1.5 billion dollars to 3 billion annually in the in the United States (Boden, Griffin, & 

Garrett, 2000; Griffin et al., 2006; Hewett, Myer, Ford, Paterno, & Quatman, 2016). A majority 

of ACL injury risk research focuses on assessing movement patterns and muscular imbalances 

that may perpetuate poor mechanical movement patterns associated with injury (Hewett, Ford, 

Hoogenboom, & Myer, 2010; Hewett & Johnson, 2010; Hewett et al., 1999; Hewett, Myer, Ford, 

et al., 2005; Hewett et al., 2016; Hewett, Zazulak, et al., 2005; Krosshaug et al., 2007; Laughlin 

et al., 2011; Levine et al., 2013; Myer et al., 2005; G. D. Myer et al., 2015; G. D. Myer, Ford, 

Barber Foss, et al., 2009). While assessing movement patterns are important, various 

anthropometric variables may also influence predisposition for ACL injuries. Identified 

anthropometric variables that may influence ACL injury risk include lower extremity alignment, 

Q-angle, pelvis width, femoral notch widths, and muscular imbalances (Deie et al., 2002; Eiling 

et al., 2007; Hewett et al., 2006; G. D. Myer, Ford, Divine, et al., 2009; G. D. Myer et al., 2005; 

Park et al., 2009). While these variables may be important evaluations of ACL injury risk, 

current research suggests that variation in ACL diameter (also referred to as width) may impact 

ACL injury risk (A. F. Anderson et al., 2001; Mahajan et al., 2015). As individuals perform 

dynamic tasks, a smaller diameter ACL may not be able to resist the amount of force or tibial 
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translation that a larger ligament may be able to handle. If the cross sectional area or the slack 

length of the ligament is increased, the amount of stress that the ligament can handle prior to 

failure may be increased (David, Grood, Noyes, & Zernicke, 1978). Diameter of the ACL may 

be pertinent to the evaluation of ACL injury predisposition, and may be useful in a pre-athletic 

screening evaluation or in further research into ACL injury risk mechanisms.  

Currently, magnetic resonance imagining (MRI) is the most accurate and reliable non-

surgical option to examine healthy joints and asses structural damage within joints (Crawford et 

al., 2007; Friemert et al., 2004; J. Hall et al., 2016). Furthermore, MRI is the most commonly 

used imagining technique to diagnose or confirm ligamentous injuries (J. Hall et al., 2016; 

Kocabey, Tetik, Isbell, Atay, & Johnson, 2004; Hwan-Mo Lee et al., 2000). Although MRI is 

might be reliable and accurate measurement tool, utilizing MRI is time consuming and can be 

expensive (Pobozy & Kielar, 2016). When diagnosing ACL rupture, MRI has a reliable accuracy 

at 80-94% (Kostov, Stojmenski, & Kostova, 2014; Tung, Davis, Wiggins, & Fadale, 1993). 

Inter-rater reliability is reduced when utilizing MRI to measure the ACL and its bundles lengths 

and widths. Cohen et al. (2009), found that the anteromedial bundle had an average length and 

width in the sagittal plane of 36.9±2.8 and 5.1±0.7 mm. In the frontal plane the average width 

was 4.2±0.8 mm. Cohen also reported that the intraclass correlations between the two raters 

using MRI was 0.42 and 0.51 for the sagittal plane and frontal plane widths of the anteromedial 

bundle, respectively. A cost effective and mobile (available in the field) alternative to MRI is 

diagnostic ultrasound.  

Diagnostic ultrasound is a reliable measure of tendon and ligament thicknesses within the 

human body, including: rotator cuff, Achilles, Iliopsoas, Quadriceps, Patellar, Pes Anserine, and 

Biceps Femoris tendons and Medial Collateral, Lateral Collateral, and Posterior Cruciate 
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ligaments (Cholewinski, Kusz, Wojciechowski, Cielinski, & Zoladz, 2008; Hodgson, O'Connor, 

& Grainger, 2014; K. Khan et al., 2003; Lalitha, Reddy, Reddy, & Kumari, 2016; Martinoli, 

2010; Prickett et al., 2003; Tsai, Chiang, & Lew, 2015; Ying et al., 2003). Recent research has 

shown that ultrasound is a viable alternative to MRI in locating and analyzing the length and 

diameter of the ACL at the tibial insertion site (Chen et al., 2013; Mahajan et al., 2015). 

Diagnostic ultrasound has also been utilize to diagnose ACL injuries (Chen et al., 2013; Friedl & 

Glaser, 1991; Z. Khan et al., 2006; Larsen & Rasmussen, 2000; Mahajan et al., 2015; Suzuki et 

al., 1991). However, there are many important methodological considerations for diagnostic 

ultrasound. 

When using diagnostic ultrasound several methodological aspects can impact accuracy 

and reliability. For instance, to obtain an appropriate measure of the ACL the plane of view must 

be considered. Previous research has utilized both posterior  and off-planar views where the 

transducer is rotated in multiple planes to obtain the best-quality image of the ACL (Chen et al., 

2013; Mahajan et al., 2015). Each one of these techniques provides potential obstacles to 

diagnoses. As the probe is rotated about multiple axes for one participant, the rotations about the 

axes may be slightly different for another participant. Furthermore, the off planar measurement 

may make it difficult to compare ultrasound measurements to MRI. Additionally, the level of 

expertise an individual has with using diagnostic ultrasound can affect their ability to accurately 

detect where the ACL and its boundaries lie . Although previous research has utilized MRI to 

validate ultrasound measures of the ACL, the presence of various structures or potential fibers 

within the image may make it difficult to identify the ACL for individuals with different levels of 

expertise. In support of ultrasound imaging, one study has indicated excellent inter rater 

reliability with an intraclass correlation (ICC) of 0.93 for experienced radiologists (Mahajan et 
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al., 2015).  However, many different practitioners within the realm of research use diagnostic 

ultrasound. Considering the infancy of imaging ACL anthropometrics using ultrasound, 

reliability should be assessed in practitioners with varying levels of expertise.  

Therefore, the purpose of this experiment was to determine intra- and inter-rater 

reliability of ultrasound measures of ACL diameter in researchers with low (Rater 1) and 

moderate (Rater 2) ultrasound experience. It was hypothesized that the intra- (Rater 1) and intra-

rater (Rater 1 & 2) reliability of ACL and AM bundle diameters would reach acceptable levels, a 

minimal ICC of 0.6 and a desired ICC of 0.8 with an α of 0.05 and β of 0.20.   

 

METHODS 

Participants 

According to Walter et al. (1998), 40 ACL images are required to achieve a minimal ICC 

of 0.6 and a desired ICC of 0.8 with an α of 0.05 and β of 0.20 to compare inter-rater reliability. 

Seven female and seven male participants, ages 18-35, from the surrounding community were 

recruited for the study. Twenty-eight knees (14 participants) were included in assessments by 

Rater 1. Ten (5 participants) of the twenty-eight knees were also measured by Rater 2. After 

arrival, participants were informed of the study procedures and consent for participation was 

obtained. Participants were excluded from the experiment if they had any previous lower 

extremity orthopedic surgery or had experienced any lower extremity injury within the previous 

six months. Participants were not allowed any amount of physical activity before the ultrasound 

measures were taken the day they came to be examined.  

Ultrasound Raters 
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 Both researchers had different levels of experience with ultrasound measures. Researcher 

one (Rater 1) has minimal experience with ultrasound, but has been practicing ultrasound 

techniques for the previous two years. The second researcher (Rater 2) has utilized and published 

work with ultrasound measures on soft tissue (Bennett, Rider, Domire, DeVita, & Kulas, 2014). 

To confirm each researcher was able to locate and measure the ACL, numerous practice sessions 

were performed using the portable diagnostic ultrasound unit (Fujifilm Sonosite, Bothell, WA). 

During each practice session, each researcher was responsible for positioning each participant, 

locating the ACL using the ultrasound probe, and obtaining an image of the ACL. All images 

obtained during practice sessions were visually compared to previous reports (Chen et al., 2013; 

Mahajan et al., 2015).  

Ultrasound Protocol 

Each rater was stationed at a different medical examination table throughout the lab 

space, where observation of the other rater's ultrasound measurements were undetectable. Each 

participant attended an ultrasound measurement session with each rater where two images of 

both the participant’s right and left ACLs were obtained. Each rater independently placed the 

participant in the desired position of knee flexion to at least 90°. Each rater then obtained a 

measurement of ACL diameter near the tibial insertion site (Chen et al., 2013; Mahajan et al., 

2015; Suzuki et al., 1991) using a portable diagnostic ultrasound unit (Fujifilm Sonosite, Bothell, 

WA). The superior end of the transducer was placed at the distal portion of the patella and 

aligned with the patella tendon. The inferior portion of the transducer was rotated 30° to the 

medial aspect of the tibia so that the inferior portion was on the medial aspect of the patella 

tendon and the superior portion was slightly lateral to the patella tendon (Chen et al., 2013; 

Mahajan et al., 2015; Suzuki et al., 1991). An image order of right, left, right, left was followed 
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to increase time between scans of the same limb and reduce familiarization with exact placement 

of the transducer. Once all images of the ligaments were obtained, each participant returned for a 

subsequent session with Rater 1 to be used in an intra-rater reliability measures assessment.  

Ultrasound Image Reduction 

Once all images were collected, each researcher independently measured ACL diameter 

on their own images via an open-source imaging software, ImageJ (Abràmoff, Magalhães, & 

Ram, 2004). First, all images were calibrated from pixels to centimeters in ImageJ. Next, the 

anterior and posterior borders of the ACL and AM bundle were identified as the endpoints of the 

illuminated lines on the image (Figure 1a & 1b). Diameter of the ACL/AM bundle was 

determined on each image by measuring a perpendicular line relative to the direction of the ACL 

fibers and extending from the anterior to posterior border of the ACL (Chen et al., 2013).  

Statistical Analyses 

Once all images were measured, two-way random ICCs were conducted for intra-rater 

(between images and sessions) and inter-rater reliability for both the full ACL and the AM 

bundle diameters using SPSS (v21.0, SPSS Inc., Chicago, IL).  When analyzing the reliability of 

measurements, "good" intra- and inter-rater reliability will have ICCs greater than 0.75 and 

excellent reliability will have ICCs greater than 0.90 (Gellhorn & Carlson, 2013). Bland Altman 

plots were constructed to present the amount of agreement between sessions (Rater 1) and 

between raters for both full ACL and AM bundle diameters (Giavarina, 2015). 

RESULTS  

Mean and one standard deviation of each rater's and each session's (Rater 1) ACL and 

AM bundle diameters are presented in Table 1. Mean differences between session 1 and 2 of  



63 
 

 
 

Rater 1’s AM bundle and ACL diameters were less than 0.03 cm (0.68 vs 0.66 cm and 0.86 vs 

0.84 cm, respectively). In addition, mean differences between Rater 1 and Rater 2 were less than 

0.04 cm (0.66 vs. 0.63 cm and 0.86 vs. 0.84 cm, respectively). 

Intra-rater and inter-rater reliability measures are presented in Table 2. Overall, intra-rater 

and inter-rater reliability were improved for AM bundle diameter measurements compared to full 

ACL diameter measurements. For AM bundles, ICC between sessions were 0.76 and between 

raters were 0.71. For the full ACL, ICCs only reached 0.59 and 0.41 between sessions and raters, 

respectively. Standard error of measurements were very small for all comparisons (<0.04 cm; 

Table 2). 

Bland Altman plots of intra and inter-rater measurements are provided in Figure 2 (full 

ACL) and Figure 3 (AM bundle). Bias between Session 1 and Session 2 were +0.02 cm for both 

full ACL and AM bundle diameters (Figures 2a and 3a). Reported measurements of full ACL 

diameter were generally larger in Session 1 compared to Session 2 when average measures were 

0.82 cm or higher (Figure 2a). No visual bias tendencies between sessions appear present for AM 

bundles (Figure 3a). Bias between raters (Rater 1 - Rater 2) were +0.03 and +0.01 cm for full 

ACL and AM bundle diameters, respectively (Figures 2b and 3b). For full ACL diameter, Rater 

1's positive measurement bias appears to occur when average ACL diameters were 0.85 cm and 

greater (Figure 2b). However, Rater 1's positive measurement bias for the AM bundle appears to 

occur when measures were below 0.65 cm (Figure 3b). 

DISCUSSION 

Assessing the ability, accuracy, and reliability of different raters is crucial for an in-vivo 

technique such as diagnostic ultrasound, especially when using ultrasound in newer assessments 

such as ACL diameter. Therefore, the purpose of this research was to examine the intra- and 
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inter-rater reliability in two low to moderately experienced ultrasound users on measurements of 

ACL diameter. We hypothesized that intra- and inter-rate reliabilities would reach acceptable 

levels, with a minimal ICC of 0.6 and a desired ICC of 0.8. Overall, intra-rater reliability reached 

levels of "good" agreement (ICC >0.75), while inter-rater reliability nearly reached "good" 

agreement (ICC = 0.71).  

There are numerous anatomical, muscular and neurological factors that may alter an 

athletes susceptibility to injury (Besier et al., 2001; Griffin et al., 2006; Hewett, Myer, & Ford, 

2005; Mendiguchia, Ford, Quatman, Alentorn-Geli, & Hewett, 2011). Diagnostic ultrasound can 

be used to examine intracapsulsar ligaments and has the potential for pre-screening athletes for 

overall ACL health and/or injury prevention measures. People that have sustained an ACL injury 

have smaller contralateral ACL size compared to healthy individuals (Mahajan et al., 2015), 

which can be detected using ultrasound. One of the major drawbacks to any screening 

measurement is the reliability within and between different raters. When utilizing ultrasound, 

small alterations to probe angle, shift, and rotation can lead to significant changes in the desired 

measurements (Gellhorn & Carlson, 2013).  Although there may be the potential for multiple 

sources of error that could lead to intra- or inter-rater unreliability in the acquisition and 

measurement of the ACL through ultrasound, this study found that the reliability of Rater 1 (rater 

with minimal experience) was a very good between separate images (ICC=0.86) and good 

between separate sessions (0.76). In addition, inter-rater reliability across two separate training 

levels (Rater 2 was moderately trained) was moderate to good (ICC=0.71). Thus, the results of 

this study suggest that using ultrasound to measure ACL diameter in a typical research setting 

(laboratories without access to radiologists) is a reliable alternative to MRI for assessing ACL 

diameter. 
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Previous work using ultrasound to measure diameter of the full ACL found average ACL 

diameter of healthy persons to be 0.83 cm (Chen et al., 2013) and 0.81 cm (Mahajan et al., 

2015). The current study’s measurements agree with the previous literature, with average ACL 

diameter measured from both raters as from 0.84 to 0.86 cm. In addition to full ACL diameter, 

both raters’ AM bundle diameters in this study agree with previous AM bundle diameters 

measured through intraoperative arthroscopy (Cohen et al., 2009). The current study’s AM 

bundle diameters ranged from 0.63 to 0.68 cm, which are similar to the previous intraoperative 

measurements of 0.68 cm (Cohen et al., 2009). Interestingly, this study also found increased 

reliability with AM bundles compared to full ACL diameter when using ultrasound. Thus, future 

work incorporating ACL diameters should consider analyzing the AM bundle in addition to full 

ACL diameter. 

Conclusion 

This study shows that two researchers with low to moderate training with ultrasound 

measures can locate and measure ACL width, with a moderate inter rater ICC 0.70 and a 

moderate intra rater reliability ICC of 0.85. This study has comparable reliability when compared 

to Mahajan et al. (2015), which utilized two well experienced radiologists which had a strong 

interclass ICC of 0.93 when measuring ACL diameter at the tibial insertion site. This is a 

forward step in the potential to utilize ultrasound as a prescreening mechanism for lower 

extremity injuries. With training, it may be possible that medical professionals performing 

prescreening tests, may be able to locate and reliably measure the diameter of the ACL utilizing 

ultrasound. This potential utilization could save time and money compared to utilizing MRI in 

indicated the diameter of the ACL in patients.   
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TABLES AND FIGURES 

Table 1. Anterior cruciate ligament diameter (cm) measures for each session and rater: mean±std. 

 N AM Diameter 
(Mean±Std) 

Full ACL Diameter 
(Mean±Std) 

Rater 1 (Session 1) 56 0.68±0.08 0.86±0.06 
Rater 1 (Session 2) 56 0.66±0.07 0.84±0.05 

Rater 1 (Subset) 20 0.66±0.09 0.86±0.08 
Rater 2 20 0.63±0.07 0.84±0.05 

Note: AM: Anteromedial bundle of ACL; Full ACL: ACL diameter including both AM and posterolateral 
bundles.   

 

Table 2. Intra-rater and inter-rater reliability measures for AM bundle and full ACL diameters.  

 
 

Absolute Agreement 

(Single, Average) 

Consistency 

(Single, Average) 
F, P SEM (cm) 

A
M

 B
un

dl
e Intra-rater (Sessions) 0.76, 0.87 0.79, 0.89 8.7, <0.001 0.01 

Intra-rater (Measures) 0.86, 0.92 0.86, 0.92 13.1, <0.001 0.02 
Inter-rater 0.71, 0.83 0.70, 0.83 5.7, <0.001 0.03 

Fu
ll 

 A
C

L 

Intra-rater (Sessions) 0.59, 0.74 0.63, 0.77 4.4, <0.001 0.01 
Intra-rater (Measures) 0.81, 0.89 0.81, 0.90 9.7, <0.001 0.01 

Inter-rater 0.41, 0.58 0.44, 0.61 2.5, 0.024 0.02 

Note: AM: Anteromedial bundle of ACL; Full ACL: ACL diameter including both AM and 
posterolateral bundles; F, P: f-statistic and p-values for intraclass correlations; All intraclass 
correlations were two-way random; SEM: standard error of measurement. 
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Figure 1. Ultrasound image of full ACL (1a) and AM bundles (1b) for one subject. 

Figure 1a. 
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Figure 1b.  

 

Figure 1 Caption. The full ACL (Figure 1a) and AM Bundle (Figure 1b) are outlined by white arrows on 
the figures. The dashed line between the arrows are the measurement that were taken for the diameter of 
the ACL and AM bundle. TIB is the tibia and PA is the Patella.  
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Figure 2. Bland-Altman plots of ACL diameters comparing sessions (2a) and raters (2b). 

 

Figure 2a. 

 

Figure 2b. 

Figure 2 Caption: Intra-rater comparisons of full ACL diameter are provided in 2a. Inter-rater 
comparisons are provided in 2b. The X and Y-axes present the mean diameter of the two sessions and the 
differences in diameter measurements between the two sessions for Rater 1, respectfully. Dashed lines 
represent the 95% confidence intervals of agreement. Solid lines are the mean difference. Bias is the 
difference between the mean difference and the x-axis at zero. 
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Figure 3. Bland-Altman plots of AM bundle diameters comparing sessions (3a) and raters (3b). 

Figure 3a. 

 

Figure 3b. 

 

Figure 3 Caption: Intra-rater comparisons of AM bundle diameter are provided in 3a. Inter-rater 
comparisons are provided in 3b. The X and Y-axes present the mean diameter of the two sessions and the 
differences in diameter measurements between the two sessions for Rater 1, respectfully. Dashed lines 
represent the 95% confidence intervals of agreement. Solid lines are the mean difference. Bias is the 
difference between the mean difference and the x-axis at zero. 
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CHAPTER 5: AN EXAMINATION OF THE RELATIONSHIP BETWEEN ACL 

DIAMETER AND MUSCLE STRENGTH, ANTHROPOMETRICS, AND PHYSICAL 

ACTIVITY LEVELS  
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ABSTRACT 

Anterior Cruciate Ligament (ACL) injuries are a common injury to the knee. The size of the 

ACL has been shown to influence how much load the ACL can handle. Various anthropometric 

variables, strength measurements, and physical activity or previous training has been shown to 

influence ACL loading. In accordance to Roux’s Law of functional adaptation, increased healthy 

loading over time may increase the size of ligament structures. Therefore the purpose of this 

study was to examine the relationships of the knee flexors, extensors, hip abductors and hip 

adductors strengths, hamstring to quadriceps strength ratio, hip abductor to hip adductor strength 

ratio, anthropometric measurements of height and body mass, and previous physical activity 

levels to the diameter of the AM bundle of the ACL. It was hypothesized that there will be a 

strong relationship between strength measurements, strength ratios, height, weight and previous 

physical activity levels with the diameter of the AM bundle of the ACL. During data collection, 

ACL measurements were taken via ultrasound, while participants were seated with their 

examined knee was flexed to 90°. Next, muscular strength measurements were taken while 

performing a maximal voluntary isometric contraction measured by a portable fixed 

dynamometer. Once all data was collected, correlations were performed on each of the 

independent variables to ACL diameter. It was found that the main significant correlations to 

ACL diameter were the knee extensor and hip adductor strength values. There were no 

significant correlations between activity level and AM ACL diameter. As strength of the knee 

extensors and hip adductors increase, ACL size increases. As a person has greater strength in 

both muscle groups, the increased strength may cause continuous loading from these muscle 

groups which may lead to increases in ACL size.   
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INTRODUCTION  

 Physical activity is a crucial part of maintaining positive health outcomes throughout all 

stages of life (Hu et al., 2005; Hyland, Sodergren, & Singh, 1999; Laforge et al., 1999; Pate et 

al., 1995; Riise, Moen, & Nortvedt, 2003; Warburton, Nicol, & Bredin, 2006). In youth 

populations, 10-19 year olds (Cuff, Loud, & O'riordan, 2010), physical activity may include 

running, resistance training, plyometric exercises or any sport specific drills that may be utilized 

to increase performance or reduce injury risk (Hewett, Myer, Ford, et al., 2005; Hewett et al., 

2009; G. D. Myer, Ford, Brent, & Hewett, 2006; G. D. Myer, Ford, McLean, et al., 2006; Snyder 

et al., 2009). With youth athletics, significant injuries may increase an individual’s risk of 

degenerative diseases and could eventually lead to poor movement mechanics later in life 

(Schroeder et al., 2015).  Anterior Cruciate Ligament (ACL) injuries comprise 45% of all 

injuries sustained to the internal structures of the knee (Majewski et al., 2006). Injuries and 

repairs of the ACL have lasting effects for years after competition has ceased (Daniel et al., 

1994; L. Lohmander, Östenberg, Englund, & Roos, 2004; L Stefan Lohmander, Englund, Dahl, 

& Roos, 2007; Roos, 2005). 

 The incidence of ACL injuries is extremely high in athletic populations ranging from 15-

25 years old (Dick et al., 2007; Griffin et al., 2006). ACL injuries may increase due to several 

mechanical factors, such as increased knee abduction angles, increased tibial translation, 

increased frontal plane loading, increased anteroposterior shear knee joint force, absolute 

muscular strength, muscular strength imbalances muscular fatigue, joint laxity, Q-angle, pelvis 

width, femoral notch widths and ACL size (Alentorn-Geli et al., 2009; Cochrane et al., 2007; 

Deie et al., 2002; Eiling et al., 2007; Griffin et al., 2006; Hewett et al., 2006; Hewett, Myer, 

Ford, et al., 2005; Myer et al., 2005; G. D. Myer, Ford, Divine, et al., 2009; G. D. Myer et al., 
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2005; Park et al., 2009). When examining muscular strength, many studies have indicated that 

muscular imbalances between the hamstring and quadriceps increase ACL injury risk (Ahmad et 

al., 2006; P. Kannus, 1988a; P. Kannus & Jarvinen, 1990; G. D. Myer, Ford, Barber Foss, et al., 

2009). This decrease in strength reduces the ability of the hamstrings to resist anterior tibial 

translations during dynamics tasks. In addition, weakness of the hip abductors is associated with 

frontal plane motion of the knee, e.g. increased femoral adduction, which increases ACL injury 

risk (Claiborne, Armstrong, Gandhi, & Pincivero, 2006; Powers, 2010). Previous research 

indicates athletes with reduced ACL injury risk have hamstring to quadriceps strength ratios of 

0.50 to 0.80 (P. Kannus, 1988b; P Kannus & Järvinen, 1990). Other researchers have predicted a 

more exact 0.60 hamstring to quadriceps strength ratio to prevent lower extremity injury 

(Dunnam, Hunter, Williams, & Dremsa, 1988b). 

 ACL size has also been associated with increased ACL injury risk (Mahajan et al., 2015). 

For example, a larger body weight with a smaller ACL size may increase risk of ACL failure 

(Mahajan et al., 2015). In addition, ACL size significantly affects its ability to withstand loading, 

with smaller ACL's having reduced capacity to dissipate/withstand forces (Mahajan et al., 2015). 

Increases in ACL size are associated with increased body weight (Chaudhari et al., 2009; Fayad 

et al., 2008). There are inconsistencies on the relationship between ACL size and height of 

participants. Participants with increased height may have larger ACL size (Naveen 

Chandrashekar, Mansouri, Slauterbeck, & Hashemi, 2006); however, other research has found 

there is no relationship between height and ACL size (Chaudhari et al., 2009; Mahajan et al., 

2015).  

 ACL size is commonly analyzed through MRI due to its accuracy and reliability (Kostov 

et al., 2014; Rayan, Bhonsle, & Shukla, 2009); however, recent studies have demonstrated 
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ultrasound reliability and feasibility of examining and measuring the ACL (Chen et al., 2013; 

Mahajan et al., 2015; Paczesny & Kruczyński, 2011). The ACL is comprised of two primary 

bundles, the anteromedial (AM) and posterolateral (PL)(Amis & Dawkins, 1991). Recent 

research using diagnostic ultrasound has also been able to accurately identify the AM and PL 

bundles of the ACL (Hsiao, Chang, & Özçakar, 2016). Recently, we found the AM bundle is a 

more reliable measure than full ACL diameter amongst researchers with various levels of 

training.  For healthy adults, the size of the AM bundle is approximately 0.68 cm (Hsiao et al., 

2016), whereas the full ACL diameter is approximately 0.80 cm (Chen et al., 2013; Mahajan et 

al., 2015). 

 Ligaments and tendons have the ability to undergo remodeling via changes in the 

production of collagen, proteoglycans and glycosaminoglycan in response to stress (Buckwalter 

& Grodzinsky, 1999; Hayashi, 1996). Physical activity can alter tendon properties over time 

(Kongsgaard et al., 2005; Kubo et al., 2002; Kubo et al., 2001; Lenskjold et al., 2015; 

Magnusson & Kjaer, 2003; Markovic & Mikulic, 2010; Rosager et al., 2002). The ability to 

show or confirm hypothesized alterations to ligament is more complicated. A lack of physical 

activity in animals results in decreased size of the ACL (Hayashi, 1996; Herpin et al., 1990). 

Inversely, an increase in stress applied to the ACL can show signs of hypertrophy in animals 

(Cabaud et al., 1980; Dahners et al., 1989; Wood et al., 1998). It has been suggested that a 

continual strain applied to the ACL in humans would cause a similar hypertrophic response to 

that seen in animals (Simon et al., 2010). The most feasible way of applying stress to muscles, 

ligaments, and tendons in the human body is through exercise. Grzelak, Podgorski, Stefanczyk, 

Krochmalski, and Domzalski (2012), found that high performance weightlifters had increased 

ACL and PCL size compared to healthy controls. Although the direct response of ACL size to 
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physical activity/loading was not assessed, the previous study indicates that a link may exist 

between physical activity and ACL size. Furthermore, performing exercises that focuses on 

dynamic movements such as plyometrics, muscular strength and neuromuscular control may 

apply appropriate stress to the lower body and reduce injury risk (Enoka, 2008; Hamill et al., 

2015; Kawakami et al., 1995; McGinnis, 2013). These training aspects may influence 

adaptations to musculature around the hip and knee, and potentially the ACL. However, the 

relationships of muscular strength, physical activity, and anthropometric measures to ACL size is 

unknown. 

 Therefore, the purpose of this study was to examine the relationships of the knee flexors, 

extensors, hip abductors and hip adductors strengths, hamstring to quadriceps strength ratio, hip 

abductor to hip adductor strength ratio, anthropometric measurements of height and body weight, 

and previous physical activity levels to the diameter of the AM bundle of the ACL measured via 

ultrasound. It was hypothesized that there will be a strong relationship (r > 0.7) for quadriceps 

strength, adductor strength, hamstring to quadriceps strength ratios, hip abductor to adductor 

strength ratios, height, weight and previous physical activity levels with the diameter of the AM 

bundle of the ACL. We also predicted that higher activity levels would be related to larger 

strength ratios. 

 

METHODS 

 Seventeen male participants (age: 24.8±3.3 yrs., height: 1.78±0.07 m, weight: 

806.49±107.04 N) ages 18-35 were recruited and participated in this study, which was approved 

by the university institution review board. After arrival, each participant was informed of the 

study's protocol, signed consent forms, and filled out health history and activity level 

questionnaires. A priori power analysis was conducted that showed 13 participants were needed 
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to find significant correlations between ACL size and height with a power of 0.80 with an r of 

0.70 (Fayad et al., 2008). Participant inclusionary criteria included: age 18-35 years, individuals 

who participate in exercise and had no prior lower extremity injuries within the last six months 

and no ACL injuries. All participants were required to have participated in at least the minimal 

requirements for physical activity stated by American College of Sports Medicine (ACSM) 

guidelines: 150 minutes of moderate intensity exercise weekly. Participants completed 

questionnaires to determine their level of physical activity per week for the previous six months. 

The answers to the questionnaires were self-reported about their exercise activity, intensity level 

and the amount of time completing exercise at either a low, moderate or high intensity exercise 

(Table 2.).  

 Next, the AM bundle diameter of each participant’s right knee was measured at the tibial 

insertion using a diagnostic ultrasound (Fujifilm Sonosite, Bothell, WA) (Chen et al., 2013; 

Mahajan et al., 2015; Suzuki et al., 1991). To measure ACL diameter, participants’ right knee 

was flexed to a position of 90° (Chen et al., 2013) or greater (Suzuki et al., 1991). The superior 

end of the transducer was placed at the distal portion of the patella and aligned with the patellar 

tendon. The inferior portion of the transducer was rotated 30° to the medial aspect of the tibia so 

that the inferior portion was on the medial aspect of the patella tendon and the superior portion 

was slightly lateral to the patella tendon (Chen et al., 2013; Mahajan et al., 2015; Suzuki et al., 

1991). Once ACL images were captured using ultrasound, images were then analyzed in ImageJ 

(Abràmoff et al., 2004). First, all images were calibrated from pixels to centimeters in ImageJ. 

Next, the anterior and posterior borders of the AM bundles were identified as the endpoints of 

the illuminated lines on the image (Figure 4). The diameter of the AM bundle was measured on 



78 
 

 
 

each image using a perpendicular line relative to the direction of the bundle fibers and extending 

from the anterior to posterior border of the ACL. 

 Maximal voluntary isometric contraction (MVIC) testing was completed on the right 

lower extremity (quadriceps, hamstrings, hip abductor, and hip adductors) of each participant 

using a portable fixed dynamometer (Portable Evaluator, BTE, Baltimore, MD) (Kollock Jr, 

Onate, & Van Lunen, 2010). All joint positions were measured using a goniometer. All muscle 

groups were tested three times. Participants were asked to maximally contract for 10 seconds and 

were given two minutes of rest between each trial. The peak force was recorded for each trial and 

then averaged and normalized. Specific protocols for each muscle tested are explained below.  

 For quadriceps and hamstring testing, participants were seated in an upright position and 

secured to the testing chair (Alvares et al., 2015). Participants were strapped to the testing chair 

to ensure little movement from the rest of the body as participants maximally contracted the 

desired muscle group. The portable fixed dynamometer was secured to the lower right leg 

directly above the participant’s medial malleolus. The knee was flexed to 60 degrees (Alvares et 

al., 2015). During quadriceps testing, participants were instructed to extend the lower leg against 

the dynamometer as forcibly as possible. During hamstring testing, participants were instructed 

to flex the lower leg maximally against the dynamometer. During hip abductor and adductor 

testing, participants were instructed to lay on the left side, with legs, hips and knees in neutral 

positions and the right hip abducted to 30 degrees (Fredericson et al., 2000). The dynamometer 

was wrapped around the participant’s lower right leg directly above the medial malleolus. 

Participants were instructed to remain on their side and not to rotate their upper body while 

keeping their hip in a neutral sagittal plane alignment as they maximally abducted or adducted 

against the dynamometer.  
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Statistical Analysis 

 Pearson correlations were performed to examine the relationship of the AM bundle 

diameter, which was normalized to body weight due to influence body weight has on ligament 

size (A. F. Anderson et al., 2001) with time spent during high, moderate and low intensity 

exercise periods, knee flexor to knee extensor MVIC strength ratios, and hip abductor and hip 

adductor MVIC strength ratios (all in N/BW). Because both body weight and “body size” can 

influence muscle forces (Jaric et al., 2005), we performed three separate correlation analyses: 1) 

AM bundle diameter normalized to body weight (cm/BW) and strength variables in raw format, 

2) diameter and strength variables normalized to body weight cm/BW and N/BW (Hurd et al., 

2011), respectively, and 3) diameter normalized to weight (cm/BW) and strength variables 

normalized to body size (N/kg0.67; (Jaric et al., 2005)). Relationships were considered weak, 

moderate, and strong relationships when the correlation coefficients (r) were < |0.30|, between 

|0.31| and |0.69|, and > |0.70|. The significance level was set a prior at p<0.05.  

RESULTS 

 The mean and one standard deviation of AM Bundle diameters was 0.64±0.08 cm.  

Correlations of exercise times and strength variables with AM bundle diameter are presented in 

Tables 3 and 4. Statistically significant correlations are stated below based on the normalization 

factors that were utilized for the AM bundle and strength measurements.  

AM Bundle Diameter per BW (cm/BWs) 

 A moderate negative correlation of height and normalized AM bundle diameter was 

found (r=-0.494, p=0.044). A moderate negative correlation was also found for hip abductor to 

adductor strength ratio and AM bundle diameter (r=-0.521, p=0.032, Table 4). 

AM Bundle Diameter per BW (cm/BWs) and Strength per BW (BWs) 
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 When the AM bundle diameter and dynamometer force were normalized to BW there 

were strong correlations between diameter and extensor (r=0.653, p=0.005; Table 4) and 

adductor (r=0.659, p=0.005; Table 4) force. In addition, a moderate correlation was found with 

flexor force and AM bundle diameter (r=0.527, p=0.030; Table 4). 

AM Bundle Diameter per BW (cm/BWs) and Strength per Body Size (kg0.67) 

  When dynamometer muscle force was normalized to body size, N/kg0.67 (Jaric et al., 

2005), there were significant moderate correlations between AM bundle diameter and extensor 

(r=0.577, p=0.015) and adductor dynamometer muscle forces (r= 0.585, p=0.014; Table 4).  

DISCUSSION  

 The purpose of this study was to investigate the relationship between AM bundle 

diameter via ultrasound to knee extensors and flexors forces, hip abductor and adductor forces, 

hamstrings/quadriceps strength ratios, hip abductor/adductor strength ratios, height, weight and 

previous physical activity. We hypothesized AM bundle diameter would have a strong positive 

relationship with knee extensor and adductor strength, knee and hip strength ratios, height, 

weight and time spent exercising. Our hypotheses were partially rejected, as only two strong 

relationships between tested variables and AM bundle diameter were found (knee extensor and 

hip adductor forces normalized to body weight). Although we found multiple moderate 

relationships when strength variables were normalized, no significant relationships were found 

between physical activity and AM bundle diameter. 

 There are several known factors that can increase ACL injury risk during dynamic tasks: 

increased knee abduction angles, increased frontal plane loading, absolute muscular strength, 

muscular strength imbalances and ACL size (Alentorn-Geli et al., 2009; Cochrane et al., 2007; 



81 
 

 
 

Deie et al., 2002; Eiling et al., 2007; Griffin et al., 2006; Hewett et al., 2006; Hewett, Myer, 

Ford, et al., 2005; Myer et al., 2005; G. D. Myer, Ford, Divine, et al., 2009; G. D. Myer et al., 

2005; Park et al., 2009). Muscular strength imbalances play a role in ACL injury mechanism, 

where reduced strength of the hamstrings cannot effectively counteract the force produced from 

the quadriceps during dynamics tasks, increasing the chance of ACL rupture (Hewett et al., 

2006). This concept could also be true of the hip musculature. If individuals lack the strength 

needed in the hip abductors, the abductors may not be effective at counteracting any inwardly 

directed movement of the femur during dynamic tasks (Brent, Myer, Ford, Paterno, & Hewett, 

2013; Homan, Norcross, Goerger, Prentice, & Blackburn, 2013; Jacobs, Uhl, Mattacola, Shapiro, 

& Rayens, 2007). This study found no significant correlation of knee flexor to extensor strength 

ratio to AM bundle diameter. However, we did find a significant correlation in hip abductor to 

adductor strength ratio and AM bundle diameter. These results are surprising as previous 

research indicates the balance between opposing muscle groups surrounding both the knee and 

frontal plane hip joints influence ACL loading (Arendt & Dick, 1995; Leetun, Ireland, Willson, 

Ballantyne, & Davis, 2004). It could be assumed that as individuals complete dynamic activities, 

i.e. sports or training, a larger disparity in muscular imbalances could place more stress on the 

ACL. Although ligaments may have the potential to hypertrophy, an increase in muscular 

imbalances may generate increased translations of the lower extremity stressing the ACL and 

potentially generate growth (Scheffler et al., 2008). , found a significant correlation between 

ACL volume and peak extensor torque at 60°/sec, where individuals with larger peak extensors 

torques had a positive relationship with ACL size. Interestingly, this study found positive 

relationships between extensor and flexor forces with AM bundle diameter. Thus, increased 

overall strength surrounding the knee joint appears to be correlated with larger ACL size.  
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 We also found that individuals who had increased adductor strength had larger AM 

bundle diameter. It is commonly reported that decreased hip abductor strength may place more 

stress on the ACL during dynamic tasks (Brent, Myer, Ford, Paterno, & Hewett, 2013; Homan, 

Norcross, Goerger, Prentice, & Blackburn, 2013; Jacobs, Uhl, Mattacola, Shapiro, & Rayens, 

2007). The lack of abduction strength and control against less desired hip adduction can place the 

knee in positions that may increase ACL loading. Whereas an increases in hip adductor strength 

may lend to increased hip adduction during dynamic tasks. This inwardly directed femur may 

lead to increased ACL stress during dynamic tasks, which may lead to growth of the AM bundle. 

Future work should consider investigating the relation between ACL loading, landing patterns 

and ACL diameter. 

 Since increases in collagen synthesis/adaptations increase as exercise intensity and 

mechanical loading increase (Kjær, 2004; Matyas, Anton, Shrive, & Frank, 1995; Wren, 

Beaupre, & Carter, 2000), it was assumed the more time spent performing intense exercise or the 

more time spent exercising in general would increase the AM bundle diameter. High 

performance weightlifters have been shown to have increased ACL and PCL size compared to 

healthy controls (Grzelak et al., 2012). Grzelak et al. (2012) commented that the weightlifters 

had begun weightlifting before and/or during the onset of puberty and it is assumed they 

continued to train through the completion of their study. The current study examined the 

relationship between time spent exercising at various intensities, including overall exercise time, 

and the AM bundle diameter of the ACL. We found no significant correlations between ACL 

diameter and previous physical activity. Thus, standard measures of minutes of physical activity 

likely are not specific enough detail differences ACL anthropometric measures. Future work 
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should consider comparing ACL anthropometrics amongst several athletic/non-athletic 

populations to enhance our understanding of the influence of activity level on the ACL. 

Conclusion   

 This study provides insight to the relationship between knee extensor, hip adductor, 

quadriceps to hamstring strength ratios, hip abductor to adductor strength ratios and physical 

activity levels with the diameter of the AM bundle of ACL. Overall, quadricep, hamstring, and 

hip adductor forces are positively related to AM bundle diameter. Physical activity level, 

measured in minutes, is not related to AM bundle diameter. Thus, surrounding knee and hip 

musculature appear to be important factors for ACL size differences amongst males.  
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TABLES AND FIGURES.  

 
Table 3. Average Exercise Times in minutes per week and Correlation r and p values to  

AM Bundle Diameter Normalized to BW (cm/N). 

  
High Intensity 

 

 
Moderate 
Intensity 

 
Low Intensity 

 
Total Exercise  

Average ± 1 Std. 
 

231.74 ± 123.62 
 

 
70.88 ± 60.94 

 
70.00 ± 70.36 

 
372.65 ± 146.32 

Correlation Coefficient 
Significance Level 

r = 0.187 
p = 0.473 

r = 0.159 
p = 0.543 

r=-0.492 
p=0.45 

r = -0.012 
p = 0.962 

Note: Intensity measured in minutes of activity. 
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Table 4. Average Dynamometer Strength Measurements and Correlation r and p values to AM Bundle Diameter Normalized to BW (cm/N). 

 
  Quadriceps Hamstrings Adductors Abductors 

 
Fo

rc
e 

(N
) 

 

Average ± 1 Std. 747.85 ± 
167.22 

364.79 ± 
67.72 

367.79 ± 
87.80 

130.19 ± 
32.71 

Correlation Coefficient 
Significance Level 

r = 0.317 
p = 0.214 

r = 0.061 
p = 0.817 

r = 0.328 
p = 0.199 

r = -0.277 
p = 0.380 

 
Fo

rc
e 

(B
W

) 
 

Average ± 1 Std. 0.94 ± 0.28 0.46 ± 0.11 0.47 ± 0.13 0.16 ± 0.04 

Correlation Coefficient 
Significance Level 

r = 0.653 
p = 0.005 

r = 0.527 
p = 0.030 

r = 0.659 
p = 0.004 

r = 0.311 
p = 0.225 

 
Fo

rc
e 

(N
/m

0.
67

) 

 

Average ± 1 Std. 39.51 ± 10.35 19.21 ± 4.16 19.42 ± 5.21 6.80 ± 1.56 

Correlation Coefficient 
Significance Level 

r = 0.577 
p = 0.015 

r = 0.419 
p = 0.094 

r = 0.582 
p = 0.014 

r = 0.135 
p = 0.606 

Note: N: Newtons BW: body weight (N); m0.67: equation from Jaric et al. 2005, m: height in meters. 
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Table 5. Average Dynamometer Strength Ratios and Correlation r and p values to AM Bundle Diameter Normalized to BW (cm/N). 

 
  Hams/Quads Ab/Add 

 
Fo

rc
e 

(N
) 

 

Average ± 1 Std. 0.50 ± 0.10 0.37 ± 0.10 

Correlation Coefficient 
Significance Level 

r = -0.314 
p = 0.220 

r = -0.521 
p = 0.032 

 
Fo

rc
e 

(B
W

) 
 

Average ± 1 Std. 0.48 ± 0.41 0.34 ± 0.28 

Correlation Coefficient 
Significance Level 

r = -0.417 
p = 0.096 

r = -0.304 
p = 0.236 

 
Fo

rc
e 

(N
/m

0.
67

) 

 

Average ± 1 Std. 0.50 ± 0.10 0.36 ± 0.10 

Correlation Coefficient 
Significance Level 

r = -0.417 
p = 0.096 

r = -0.304 
p = 0.236 

Note: N: newtons BW: body weight (N); m0.67: equation from Jaric et al. 2005, m: height in meters.
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Figure 4. Ultrasound imaging of the AM Bundle of the ACL.  

 
 
Figure 4 Caption: “Tib” is the tibial location. The white arrows outline the AM bundle.   
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CHAPTER 6: RELATIONSHIP BETWEEN ACL LOADING AND ACL DIAMETER, 

KNEE JOINT LAXITY, AND MUSCLE ACTIVATIONS DURING DROP LANDINGS 
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ABSTRACT  

Research has demonstrated that there are numerous mechanisms that cause Anterior Cruciate 

Ligament injuries. However, research is inconclusive about the injury mechanisms that are 

directly correlated to ACL loading. Therefore the purpose of this study was to find the 

relationship between ACL loading and ACL diameter, knee joint laxity, and muscle activations 

during 40 cm and relative height drop landings. Participant passive knee joint laxity, 

anteromedial bundle diameter and EMG were collected. Visual 3D and Opensim were utilized to 

calculate inverse dynamics. Static optimization was used to solve for joint reaction forces. ACL 

loading was then calculated utilizing methods from previous establish literature. It was found 

that simulated ACL loading is moderately correlated to lateral hamstring pre-activation during 40 

cm (r = 0.53) and relative landing heights (r = 0.58). It was also found that ACL loading is 

correlated to the ratio of medial hamstring to lateral hamstring pre-activation during 40 cm (r = -

0.57) and relative landing heights (r = -0.576). The results indicate that lateral hamstring 

activation is significantly related to ACL loading and that many previously defined factors such 

as passive knee joint laxity, anteromedial bundle diameter and pre-activation EMG of the 

quadriceps and gastrocnemius are not correlated to simulated ACL loading.  
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INTRODUCTION 

 Throughout the past decade, research has found many anthropometric, kinematic and 

kinetic variables may increase an individual's risk of anterior cruciate ligament (ACL) injury. 

Anatomical/anthropometric variables that can influence ACL injury risk include smaller ACL 

diameter, and increased joint laxity and various (Baratta et al., 1988; Chaudhari et al., 2009; 

Cowley et al., 2006; Fremerey et al., 2000; Gehring et al., 2009; Griffin et al., 2000; Hewett, 

Zazulak, et al., 2005; Mahajan et al., 2015; G. D. Myer et al., 2008; Shultz et al., 2004). In 

addition, research using motion capture and force data have found several kinematic and kinetic 

factors that may increase risk of ACL injury: increased knee abduction angles, increased frontal 

plane loading, increased anteroposterior shear knee joint force and increased ground reaction 

forces (Alentorn-Geli et al., 2009; Boden, Dean, et al., 2000; Boden, Sheehan, Torg, & Hewett, 

2010; Cochrane et al., 2007; Griffin et al., 2006; Hewett, Myer, Ford, et al., 2005; Myer et al., 

2005). Although numerous factors can influence ACL loading, it is also important to examine 

anthropometrics of the ACL to determine if any relationships exist with ACL loading.  

 The orientation of the ACL allows it to resist multi planar motion and forces. Although 

the largest contributor to ACL loading arises from the sagittal plane, adverse frontal and 

transverse plane moments also contribute to ACL loading (A. Kiapour & Murray, 2014; A. M. 

Kiapour et al., 2014). Markolf et al. (1995) found anterior tibial forces combined with internal or 

external rotation moments and adduction or abduction moments can alter ACL loading. Using in 

vitro testing, maximal load capacity of the ACL has been determined in both younger cadavers 

(≤30 years; 2160 N) and in older cadavers (≥60 years; 658 N) (Woo, Hollis, Adams, Lyon, & 

Takai, 1991). Recently, focus has also shifted to predicting ACL loading during dynamic tasks 

such as landing. Pflum et al. (2004), estimated ACL loading at be 253 N (0.4 BW) at 40 ms after 
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initial contact during 60 cm height drop landings. Kernozek and Ragan (2008), also found 0.15 

BW peak ACL loading during landings from a 0.60 m drop height. Drop landings from 37 cm 

resulted in an average peak ACL loading of 440 N (0.71 BW) during “soft landings” and 496 N 

(0.80 BW) during “stiff landings” (Laughlin et al., 2011). During dynamic movements where 

ACL injury risk may be increased due to increased loading, ACL size can play a role in the 

ability to resist excessive loading and translation of the tibia.   

 ACL size can determine the amount of force, strain, and loading that the ACL can handle 

(Chaudhari et al., 2009; Javad Hashemi et al., 2011). The number of collagen fibers can be 

increased in larger ACLs, which can allow the ligament to resist increased loading (Chaudhari et 

al., 2009; Javad Hashemi et al., 2011). Multiple studies have found that individuals who have 

suffered an ACL injury have smaller contralateral ACL size compared to healthy controls of 

equal body weight and height (Chaudhari et al., 2009; Mahajan et al., 2015). ACL size may be 

utilized as a pre-screening measurement to assess ACL injury potential in athletic populations 

(Mahajan et al., 2015). For instance, if an individual has a larger body weight but a smaller ACL 

diameter, they may be at increased ACL injury risk. Although a smaller ACL may increase 

injury risk, laxity in the knee may also negatively influence ACL loading and injury risk.  

 During landings, individuals with increased knee joint laxity may be more susceptible to 

ACL failure (Fremerey et al., 2000; Griffin et al., 2000; G. D. Myer et al., 2008; Shultz et al., 

2004). Combined with increased peak ground reaction forces and tibial translation, increased 

joint laxity may allow for greater translation and rotation of the tibia during landings, increasing 

ACL injury risk. Potential influencers of joint laxity include reduced proprioception, muscular 

imbalances, decreased muscular strength, poor activation patterns during dynamic tasks, 

muscular fatigue and poor neurological control (Claiborne et al., 2006; Fremerey et al., 2000; M. 
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G. Hall et al., 1995; Hurley et al., 1998; Jerosch & Prymka, 1996; McNair & Marshall, 1994; D. 

Roberts et al., 2007; Rozzi, Lephart, & Fu, 1999; Rozzi, Lephart, Gear, et al., 1999).  

 The incidence of ACL failure occurs during a time period too fast for conscious response 

(Krosshaug et al., 2007). ACL failure, peak tibial translation, and peak GRFs occur from 17-50 

ms after initial contact (Kernozek & Ragan, 2008; Krosshaug et al., 2007; Torry et al., 2011), 

whereas maximal muscle forces may require 300-400 ms (Savelberg, 2000; Zatsiorsky & 

Prilutsky, 2012). Thus, pre-activation of the surrounding musculature is required to assist in 

dissipating injurious forces to reduce the likelihood of ACL failure (Cowley et al., 2006; Gehring 

et al., 2009; Hewett, Zazulak, et al., 2005). Increased pre-activation and co-contraction around 

the knee (e.g. hamstring and quadricep musculature) can increase knee joint stiffness and 

stability, which can reduce load on passive structures of the knee such as the ACL (Ford, Van 

den Bogert, Myer, Shapiro, & Hewett, 2008; Palmieri-Smith, Wojtys, & Ashton-Miller, 2008). 

Increased co-contraction will also reduce unwanted frontal plane movements at the knee 

(Claiborne et al., 2006; Horita, Komi, Nicol, & Kyröläinen, 2002). Although co-contraction is 

desired to reduce unwanted movements around the knee, uneven activations can be produced 

among medial and lateral musculature, leading to increased ACL loading (Sell et al., 2007). In 

addition to knee musculature, increases in gluteal activation (controlling frontal plane movement 

of the femur) may increase frontal plane control of the knee (Claiborne et al., 2006), reducing 

knee valgus positions and the likelihood of knee injury or knee ligamentous damage (Palmieri-

Smith et al., 2008; Russell et al., 2006). The activation of lower extremity muscles, joint laxity 

and the size of the ACL all cohesively contribute to knee movement while resisting unwanted 

forces and translation. However, no previous research has examined the relationships between 

ACL loading and the previously defined parameters within the same cohort.  



93 
 

 
 

 Therefore, the purpose of this study was to examine the relationship between ACL size, 

knee joint laxity, and pre-activation levels of the lower extremity muscles to estimated ACL 

loading. We hypothesized that during drop landings, 1) there would be inverse relationships 

between ACL loading and ACL diameter and muscle pre-activation and 2) a direct relationship 

between ACL loading and knee joint laxity during drop landings. 

METHODS 

Participants 

 The Old Dominion University Institutional Review Board approved this study. Seventeen 

male participants (average height: 1.78 ± 0.07 m, average weight: 806.49 ± 107.04 N), aged 18-

35 years old were recruited using flyers/advertisements and by word of mouth. An a priori power 

analysis was conducted, which determined that 15 participants were needed to achieve a power 

of 0.80 for a correlation of quadriceps pre-activation and ACL strain (Russell et al., 2006). 

Inclusion criteria for participants, determined by questionnaire, were: no lower extremity injuries 

within the last six months that impeded exercise, no lower body injuries that required orthopedic 

surgery, and must have met ACSM’s guidelines for moderate intensity exercise (150 minutes a 

week). Upon arrival, all participants were informed of the study protocol and signed consent 

forms.  

Protocol  

 First, ACL thickness was measured at the tibial insertion using a diagnostic ultrasound 

(Fujifilm Sonosite, Bothell, WA) (Chen et al., 2013; Mahajan et al., 2015; Suzuki et al., 1991). 

To measure ACL thickness, participants’ right knee were flexed to a position of 90° or greater. 

The superior end of the transducer was placed at the distal portion of the patella and aligned with 

the patellar tendon. The inferior portion of the transducer was rotated 30° to the medial aspect of 
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the tibia so that the inferior portion was on the medial aspect of the patella tendon and the 

superior portion was slightly lateral to the patella tendon (Chen et al., 2013; Mahajan et al., 2015; 

Suzuki et al., 1991). Next, the anteromedial bundle of the ACL was identified and was measured 

on each image using a perpendicular line relative to the direction of the anteromedial bundle 

fibers (Hsiao et al., 2016).  

 Next, passive knee joint laxity was measured using a KT-2000 arthrometer (MEDmetric 

Corp, San Diego, CA, USA). Participants were supine with their knee flexed to 30°. Testing and 

procedures were performed to the manufacturers guidelines (Rohman & Macalena, 2016; 

Snyder-Mackler, Fitzgerald, Bartolozzi III, & Ciccotti, 1997). Three tests were performed for the 

participant’s dominant leg (determined as which leg was preferred to kick a ball with).  First, the 

arthrometer was zeroed; then, an experienced certified athletic trainer performed an anterior 

pull/force. The average of the three tests were used for analyses. After knee joint laxity was 

measured, participants' bilateral maximal jumping ability was recorded. Participants were asked 

to perform three jumps, reaching upwards towards a target overhead. Jump height was calculated 

using impulse-momentum relationship. The optimal performance was recorded for maximal 

jumping height. 

Once ACL diameter, knee joint laxity, and jump height were determined, a Delsys Trigno 

wireless electromyography (EMG) system (Delsys, Inc.) and eight electrodes were used to 

measure muscle activations. Electrodes placement sites were prepped by shaving hair, abrading 

hairless skin, and cleaning the skin with alcohol. All electrodes were placed on the muscle bellies 

of the right leg rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), medial 

hamstring (MH), lateral hamstring (LH), medial gastrocnemius (MG) and gluteus medius (GM). 

All electrodes were placed by the guidelines set by Cram et al. (1998). The rectus femoris 
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electrode was placed midway between the patella and the anterior portion of the inferior ridge of 

the iliac spine. The vastus lateralis electrode was placed on the muscle belly at an oblique angle 

away from the midline of the anterior thigh. The vastus medialis electrode was placed on the 

muscle belly above the patella and at an oblique angle medially from the center of the thigh. The 

medial and lateral hamstrings electrodes were placed on each muscle belly half way between the 

gluteal fold and the back of the knee. The medial gastrocnemius electrode was placed on the 

muscle belly at an oblique angle medial to the midline so that the electrode is perpendicular to 

the fibers. Lastly, the gluteus medius electrode was placed in the middle of the superior third of 

the distance between the iliac crest and the greater trochanter.   

After electrode placement, three 10-second maximal voluntary isometric contractions 

(MVIC) were recorded for normalization of the electromyography data. MVICs of the knee 

extensors and flexors were completed with participants upright on a testing table and their knee 

flexed to 60 degrees (Alvares et al., 2015). Next hip abductor MVICs were collected, where 

participants were instructed to lay on their sides with the testing leg in a neutral alignment and 

abducted to 30 degrees (Fredericson et al., 2000). Participants were instructed not to rotate their 

body and to remain in the neutral alignment to maximize hip abductor MVIC. Lastly, ankle 

plantarflexor MVICs were collected with the ankle positioned at 0 degrees (Bojsen-Møller et al., 

2004).  

Eighteen reflective markers were placed bilaterally on anatomical landmarks, including 

the acromioclavicular joint, the most superior aspect of the iliac crest, the greater trochanter, the 

lateral and medial epicondyles of the femur, the lateral and medial malleoli, and the first and fifth 

metatarsals.  Four tracking markers attached to rigid shells were secured to the trunk, pelvis, 

thighs, and shanks using Velcro straps. Additional tracking plates were placed on the posterior 
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heel of each shoe. After EMG and motion capture preparation, participants stood on a force plate 

while a static calibration trial was recorded. Next, participants were asked to complete five single 

leg landing trials each with their dominant leg for two testing conditions: from a 40 cm box and 

from a box set equal to their previously measured bilateral maximal jumping ability.  

Data Analyses  

 Motion capture and GRF data were imported into Visual3D Biomechanical Software 

Suite (Version 5, C-Motion, Inc.) for processing. The motion capture and GRF data were filtered 

using a low-pass fourth order Butterworth zero lag filter with a 15 Hz cut off frequency 

(Kristianslund et al., 2012). An eight-segment kinematic model was created based on the 

standing calibration trial. Three-dimensional knee joint kinetics were calculated using a Newton-

Euler approach (Bresler & Frankel, 1950) with body segment parameters estimated from 

Dempster (1955) and reported in the distal segment reference frame. Frontal and transverse plane 

waveforms for each trial and participant were exported for analyses. 

 EMG data were pre-amplified and high-pass filtered using fourth-order, zero lag, 

recursive Butterworth filter with a cutoff frequency of 20 Hz to remove movement artifact  (De 

Luca, Gilmore, Kuznetsov, & Roy, 2010). The signal was full-wave rectified and then low pass 

filtered with a cutoff frequency of 5 Hz to create a linear envelope. EMG signals during landing 

were normalized against the peak value of each MVICs of the individual muscles. Integrated 

EMG was measured from 100 ms before initial contact to initial contact. The integrated signal 

was calculated for the VM, VL, RF, MH, LH, MG, GM. Then the ratios of MH/LH and VM/VL 

were analyzed. The ratios of medial muscle to lateral muscle were taken as a 1:1 ratio (da 

Fonseca, Vaz, de Aquino, & Brício, 2006; Hamstra-Wright et al., 2006).    
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 Next, the filtered marker coordinate and GRF data were imported into an open source 

modeling software, OpenSim (Version 3.3, SimTK, Stanford, CA). Subject specific kinematic 

models were created from the base Rajagopal2015 model  by scaling to each participant’s height 

and mass. The inverse kinematics problem was solved using a least squares approach while 

accounting for constraint weights (Spoor & Veldpaus, 1980). Inverse dynamics were computed 

using the inverse kinematic and GRF data. Static Optimization (Steele et al., 2012) was used to 

estimate muscle forces at each time point using the sum of muscle stress squared . Next, the 

JointReaction analysis algorithm (Steele et al., 2012) was used with the muscle force and inverse 

dynamics data to estimate joint reaction forces during the landings. Lastly, three-dimensional 

ACL loading was calculated using previously established equations (Laughlin et al., 2011; 

Weinhandl et al., 2013), including the simulated sagittal plane forces, sagittal plane knee angles, 

and frontal and transverse plane moments from inverse dynamics. Peak ACL loading for the 40 

cm and relative height landings were normalized to body weight (BW). In addition, ACL loading 

during relative height landings were normalized to the product of body weight and the square 

root of participants' relative landing height (RLH) (Hass et al., 2005). 

Statistical Analyses  

 Correlation analyses were performed using SPSS (Version 26, IBM). Correlations 

between peak ACL loading (40 cm (BW), relative landing (BW), relative landing (BW/√RLH)) 

and anteromedial ACL diameter, pre-activation integrated EMG levels of seven lower extremity 

muscles, and passive knee joint laxity were examined. In total, three Pearson Product 

Correlations were conducted. Relationships were considered weak, moderate, and strong 

relationships when correlation coefficients (r) were < |0.30|, between |0.31| and |0.69|, and > 

|0.70|. The significance level was set a prior at p<0.05. 
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RESULTS 

 During the 40 cm single leg drop landings, participants experienced an average peak 

ACL loading of 1758.89 ± 369.50 N and normalized peak ACL loading of 2.18 ± 0.37 BW. 

Relative height drop landings were from an average height of 43.37 ± 5.92 cm. During the 

relative height landing, participants experienced a peak ACL loading of 1604.94 ± 337.82 N and 

normalized peak ACL loadings of 2.00 ± 0.41 BW and 3.05 ± 0.63 BW/√RLH. The average 

anteromedial ACL diameter was 0.63 ± 0.08 cm. Participants had an average right knee joint 

laxity of 2.89 ± 1.47 mm. All integrated EMG signals for both 40 cm and relative landings are 

reported in Table 6. Simulated activations from the Rajgopal2015 model and measured EMG of 

the lower extremity muscles are in Figure 5 for the relative landings and Figure 6 for the 40 cm 

landings. The simulated activations of the lower extremity muscles show similar patterns 

compared to the measured EMG of the same lower extremity muscles during the relative and 40 

cm landings. 

 No significant relationships were found between ACL loading and ACL diameter or knee 

joint laxity (all p>0.05; Table 7). There were significant moderate associations between lateral 

hamstring activation and ACL loading: 40 cm (BW; r = 0.53, p = 0.04), relative landing per unit 

body weight (BW; r = 0.58, p = 0.02), and relative landing per unit body weight and landing 

height (BW/√RLH; r = 0.59, p = 0.02; Table 6). No other significant relationships were found 

between ACL loading and individual muscle activations. However, significant moderate 

relationships were found between the ratio of medial hamstring to lateral hamstring integrated 

pre-activation EMG signal and ACL loading: 40 cm (r = -0.570, p = 0.021), relative landing per 

unit body weight (BW; r =  -0.576, p = 0.019), and relative landings per unit body weight and 

landing height (BW/√RLH; r = -0.560, p = 0.024; Table 6).  
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DISCUSSION 

 The purpose of this study was to examine the relationship between ACL size, knee joint 

laxity, and pre-activation levels of the lower extremity muscles to estimated ACL loading. We 

hypothesized that during drop landings, 1) there would be inverse relationships between ACL 

loading and ACL diameter and muscle pre-activation and 2) a direct relationship between ACL 

loading and knee joint laxity during drop landings. We found that normalized ACL loading for 

the 40 cm (BW) and relative height landings (BW & BW/√RLH) had no significant relationship 

with anteromedial ACL diameter or passive knee joint laxity. Normalized peak ACL loadings 

had moderate significant relationships with lateral hamstring pre-activation and the ratio of 

medial to lateral hamstring activation. No other significant relationships between ACL loading 

and muscle activations were found. 

 A larger ACL can withstand increased mechanical loading, strain, shear forces, and tibial 

translations (Lipps, Oh, Ashton-Miller, & Wojtys, 2012). If ACL size is smaller across 

participants with equal mass, the smaller ACL may experience higher shear loads and have a 

greater risk of failure (Javad Hashemi et al., 2011). However, this study found no significant 

correlation between ACL size and ACL loading during drop landings from two heights. 

Similarly, Javad Hashemi et al. (2011) found that ACL volume and area had no significant 

influence on predictions of load at failure of the ACL. Although previous assessments of ACL 

size have found significantly smaller ligaments in those with a previous ACL injury (Chaudhari 

et al., 2009; Mahajan et al., 2015), ACL size alone does not appear to be a significant factor of 

ACL loading.  

 This study also aimed to determine the relationship between joint laxity and ACL 

loading.  We found no correlation between passive knee joint laxity and peak ACL loading 
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during drop landings from either relative or absolute drop landing heights. Similar to the current 

work, previous research by Sernert et al. (1999) found poor correlations between dynamic 

stability tests, such as the hop test, and passive knee joint laxity. Thus, athletes with increased 

joint laxity may not necessarily have increased ACL loading during dynamics task. It is possible 

that the influence of passive joint laxity may be negated as muscles contract, providing stability 

across the joint during dynamic task. Rozzi, Lephart, and Fu (1999), note that as knee joint laxity 

is increased, proprioceptive feedback was decreased during an open chain knee extension test. 

Although this proprioceptive feedback delay may be present, the time in which ACL failure 

happens during landings may be too fast for proprioceptive feedback to influence actions during 

high impact landing tasks (Burke, Dickson, & Skuse, 1991). Given the results of the current 

study and those of other published work (Hung-Maan Lee, Cheng, & Liau, 2009; Snyder-

Mackler, Fitzgerald, Bartolozzi III, et al., 1997), passive joint laxity does not have a direct 

relationship with ACL loading during dynamic tasks.  

 From a neuromuscular perspective, pre-activation of lower extremity musculature 

surrounding the knee joint should be related to ACL loading during drop landings. However, we 

found that only the lateral hamstring had a significant association with normalized peak ACL 

loading. During knee flexion angles ≥60 degrees, hamstring forces can counteract quadriceps 

force and reduce ACL loading (Li et al., 1999). However, an increase in lateral hamstring 

activation can increase the joint space of the medial compartment, increasing shear forces of the 

knee and subsequently increasing ACL loading (Hewett, Zazulak, et al., 2005; Myer et al., 2005; 

Sell et al., 2007). Combined the previous reports, injury prevention and rehabilitation protocols 

targeting the ACL should monitor lateral hamstring activation during at-risk tasks.  
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When activation of the medial and lateral musculature of the thigh is disproportionate, 

ACL loading can increase (Sell et al., 2007). The current study found that the ratio of medial to 

lateral hamstring pre-activation had a moderate positive relationship with normalized ACL 

loading. Previous research has found women are at a greater risk of ACL injury when they have 

disproportionate medial to lateral hamstring activation compared to men (Rozzi, Lephart, Gear, 

et al., 1999). From the findings in this study, it appears that men are also more susceptible to 

increased ACL loading if the medial and lateral hamstrings are activated unevenly. Previous 

research has also found disproportionate VM to VL activations can increase ACL loading (Sell et 

al., 2007). However, the current study found no significant correlation to ratios of the VM to the 

VL integrated pre-activations and ACL loading. 

 Our hypothesis that GM pre-activation would have an inverse relationship with ACL 

loading was not supported. We found no correlation between normalized ACL loading and GM 

pre-activation levels. Palmieri-Smith et al. (2008) found that pre activation of the GM had no 

influence on participant’s valgus knee joint angles during landings from single leg hops. Russell 

et al. (2006) also found that gluteus activation at initial contact did not influence frontal plane 

knee angles during drop landings at initial contact. The authors (Russell et al. (2006)) noted that 

during the landings, as knee flexion reached its maximum, GM activation increased, suggesting 

that the GM may play more of a hip and femur stabilizer. Since the knee is typically positioned 

at reduced knee flexion angles at initial contact or during maximal ACL loading, it appears as 

though the gluteus medius has little influence over knee positions, knee loading, or ACL loading 

at those positions. 

Limitations  
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 There are limitations to consider with this work. First, physical activity levels (time and 

intensities) were recorded using questionnaires, which are subject to participants' ability to recall 

this information accurately for the previous six months. Future work may consider monitoring 

activity levels using accelerometers and tracking participant exercise times and intensities. 

Second, the Rajagopal2015 model  utilizes a single degree of freedom knee joint, where tibial 

translations and rotations are a function of knee flexion angles. Although we analyzed ACL 

loads using tri-planar loading (sagittal plane loading from the simulations coupled with frontal 

and transverse loads from inverse dynamics) from previously validated prediction equations 

(Laughlin et al., 2011; Weinhandl et al., 2013), future work may consider implementing more 

sophisticated musculoskeletal models to determine tri-planar knee loads. Lastly, we chose to use 

ultrasound to measure ACL diameter. Although this is a reliable and accurate measurement tool 

for ACL anthropometrics (Chen et al., 2013; Mahajan et al., 2015; Suzuki et al., 1991), future 

work may consider magnetic resonance imaging or other diagnostic systems.  

Conclusion 

Current research is inconclusive on the exact mechanisms of ACL injury or excessive 

loading in males. This study found that ACL injury risk mechanisms such as increased joint 

laxity, ACL diameter, pre-activation of the rectus femoris, vastus lateralis, vastus medialis, 

medial hamstring and the medial gastrocnemius, and current physical activity level are not 

strongly related to ACL loading. The only strong relationships found were between pre-

activation level of the LH and activations levels of medial to lateral hamstring ratios and 

normalized ACL loading. Although mechanisms spanning pre-existing anthropometrics to 

landing mechanics have been previously shown to influence injury risk, many of these factors 

appear to not directly influence ACL loading during drop landings. 
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TABLES AND FIGURES 

Table 6. Pearson Product Correlation and significance levels between ACL loading and muscle activations. 

PACL 
 

RF 
 

VM 
 

VL 
 

MH 
 

LH MG GM MH/LH 

40 cm (BW) 
 

r=0.065 
p=0.810 

r=0.019 
p=0.944 

r=-0.103 
p=0.703 

r=0.181 
p=0.503 

r=0.526 
p=0.036 

r=-0.337 
p=0.202 

r=-0.33 
p=0.212 

r=-0.506 
p=0.036 

         
RH (BW) 

 
r=0.179 
p=0.507 

r=0.112 
p=0.678 

r=0.003 
p=0.99 

r=0.213 
p=0.429 

r=0.582 
p=0.018 

r=-0.07 
p=0.72 

r=0.26 
p=0.31 

r=-0.576 
p=0.021 

         
RH (BW/√RLH) 
 

r=0.033 
p=0.905 

r=-0.051 
p=0.853 

r=-0.046 
p=0.865 

r=0.241 
p=0.368 

r=0.587 
p=0.017 

r=-0.161 
p=0.551 

r=-0.042 
p=0.878 

r=-0.560 
p=0.024 

Note: Rectus Femoris (RF); Vastus Medialis (VM); Vastus Lateralis (VL); Medial Hamstring (MH); Lateral Hamstring (LH); Medial 
Gastrocnemius (MG); Gluteus Medius (GM); BW: bodyweight; RH: relative height; RLH: relative landing height.  
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Table 7. Pearson product correlation and significance levels between ACL loading and joint laxity and 
AM bundle diameter. 

PACL  
 

Joint Laxity AM Diameter 

40 cm (BW) 
 

r=-0.252 
p=0.347 

r=0.001 
p=0.969 

   
RH (BW) 
 

r=-0.247 
p=0.357 

r=0.034 
p=0.897 

   
RH (BW/√RLH) 
 

r=-0.196 
p=0.468 

r=0.043 
p=0.870 

Note: BW: Body Weight; RH: relative landing height.  
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Figure 5. Ensemble muscle activations measured using electromyography compared to simulations during relative height drop landings. 

 

Figure 5 Caption. Muscles included in figure are: Rectus Femoris (RF), Vastus Medialis (VM), Vastus Lateralis (VL), Medial Gastrocnemius 
(MG), Medial Hamstring (MH), and Lateral Hamstring (LH). Black lines are electromyographic recordings of each muscle and grey lines are the 
simulated activations. 
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Figure 6. Ensemble muscle activations measured using electromyography compared to simulations during 40 cm drop landings. 

 

Figure 6 Caption. Muscles included in figure are: Rectus Femoris (RF), Vastus Medialis (VM), Vastus Lateralis (VL), Medial Gastrocnemius 
(MG), Medial Hamstring (MH), and Lateral Hamstring (LH). Black lines are electromyographic recordings of each muscle and grey lines are the 
simulated activations. 
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CHAPTER 7: CONCLUSION 

Numerous aspects of ACL injury mechanisms during landing and cutting tasks exist: 

mechanics, muscle strength, and activation patterns. Morphological parameters of the ACL, such 

as ACL diameter, could also be important factors for ACL loading and injury. Thus, this 

dissertation set out to determine the relationships of these known factors of ACL injury with 

ACL loading during drop landing tasks. This dissertation also sought to determine the reliability 

of using ultrasound to measure ACL diameter in a research setting. 

Aim #1 examined the intra- and inter-rater reliability of ultrasound of ACL diameter. The 

results of Aim #1 show that researchers with varying ultrasound experience can measure 

diameter of the full ACL with low to moderate reliability. During examination of the ACL, the 

distal portion of the ligament was notably difficult to identify, which could explain the lower 

agreement of the intra and inter-rater reliabilities. As the ACL is made of two separate bundles, 

of which the anteromedial (AM) bundle has been previously examined using diagnostic imaging, 

this work also examined reliability of measuring the more superficial AM bundle. The AM 

bundle had more clearly defined superior and inferior borders, which resulted in increased the 

intra and inter-rater reliabilities (reaching “good” levels of reliability). This work is a first step in 

providing support for the usage of diagnostic ultrasound for imaging of ACL anthropomorphic 

measurements such as ACL diameter in common research settings (e.g. raters with moderate to 

low experience). 

Aim #2 focused on the relationship of strength measurements and physical activity levels 

with ACL diameter measured via ultrasound. Moderate positive associations were found between 

ACL size and quadriceps strength and adductor strength. ACL size was also significantly 

negatively correlated to hip abductor to adductor strength ratios. No significant correlations were 
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found with any time spent exercising at high, moderate, or low exercise intensities. Previous 

literature has established that an increase in quadriceps strength or diminished hamstring strength 

can result in increased ACL loading. The same has also been found with hip abductor and 

adductor musculature. With an imbalance of hip adductor strength to hip abductor strength, the 

knee may be placed in a position where the ACL is stressed more. It is also speculated that this 

increase in quadriceps and adductor strength may cause more healthy stress in the ACL. This 

healthy stress may cause ACL hypertrophy. Thus, this work appears to agree with the previous 

literature in that increased quadriceps and hip adductor are related to increased ACL size, 

possibly due to healthy ACL loading. Further research is needed to examine if other influences 

of increased ACL loading or increased ACL stress is related to increase in ACL size.  

The third and final aim of this dissertation examined the relationship between ACL 

loading with ACL diameter, passive knee joint laxity and pre-activation of the Rectus Femoris, 

Vastus Lateralis, Vastus Medialis, Lateral Hamstring, Medial Hamstring, Medial Gastrocnemius, 

and Gluteus Medius. This study found that only pre-activation of the Lateral Hamstring and the 

pre-activation ratio of the Medial to Lateral Hamstring were related to ACL loading. The 

increase in pre-activation of the Lateral Hamstring has the ability to open the medial 

compartment of the knee joint during landing, placing the knee and ACL at increased risk of 

injury. The lack of significant relationships found between ACL loading, quadriceps activation 

and knee joint laxity are surprising as numerous previous studies have found ACL injuries are 

related to increased quadriceps activation, reduced hamstrings activation and increased knee joint 

laxity.   

The current study shows that ultrasound can be utilized and reliable between multiple 

researchers that are not trained radiographers. It also shows that ultrasound is more reliable when 
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measuring and assessing the anteromedial bundle of the ACL compared to the full ACL. Further 

research may need to examine ways to improve the reliability of measuring the full ACL when 

utilizing ultrasound when MRI or arthroscopic means are unavailable. ACL size also needs to be 

further examined. More evidence is needed to examine if the ACL of humans can be 

hypertrophied and if any other ACL injury mechanisms or activities are correlated to ACL size. 

The current study sheds more light on injury mechanisms directly correlated to ACL injuries. As 

this study has found, numerous ACL injury risk mechanism were not directly correlated to ACL 

loading or ACL. Further work may need to examine if other ACL injury risk factors are 

correlated to ACL loading.  
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Appendix A: Informed Consent Document 
 

INFORMED CONSENT DOCUMENT 
OLD DOMINION UNIVERSITY 

PROJECT TITLE: The reliability of ultrasound measure on ACL thickness 
  
 
 
INTRODUCTION 
 
The purposes of this form are to give you information that may affect your decision whether to say YES or NO to 
participation in this research, and to record the consent of those who say YES. This project is being carried out to 
determine the reliability of ultrasound measures on ACL thickness. The research will be conducted at Old Dominion 
University in the Neuromechanics Laboratory.  
 
 
RESEARCHERS 
 
Johanna Hoch, PhD, Responsible Project Investigator, Assistant Professor, College of Health Sciences, School of 
Physical Therapy and Athletic Training, Old Dominion University 
 
Hunter Bennett, PhD, Assistant Professor, Darden College of Education, Department of Human Movement Sciences, 
Old Dominion University 
 
Zach Sievert, Graduate Student, Department of Human Movement Sciences, Old Dominion University 
 
Cortney Armitano, Graduate Student, Department of Human Movement Sciences, Old Dominion University 
 
 
DESCRIPTION OF RESEARCH STUDY 
 
 
The purpose of this study is to test the reliability of ultrasound measure on ACL thickness. A total of 40 participants 
will participate in this study.  You will report to the Neuromechanics Laboratory, SRC 1007, for one, 30 minute 
testing session.  
 
At the beginning of the testing session you will be informed of the study procedures and you will provide written 
consent in accordance with institutional guidelines. During the visit to the lab, you will be asked to fill out a Medical 
History and Physical Activity Questionnaire. This includes questions pertaining to age, physical activity, lower body 
injury(ies), recent head injury(ies), or any medications that may cause dizziness, etc.  
 
Once you have completed the medical history and physical activity questionnaire to determine eligibility, 
researchers will measure your height and weight. Once completed you will be asked to sit in an upright position on 
an examining table. Next, you will be asked to bring one foot up on the table so that you are flexed at the hip and 
have knee flexion between 90 degrees and maximal knee flexion. Once in the proper testing position, researchers 
will apply ultrasound gel to your knee and researchers will use the ultrasound probe to take images of the 
intracapsular space.  
 
EXCLUSIONARY CRITERIA 
 
To be eligible to participate you must be physically active three days a week for at least 30 minutes. 
 
You will not be able to participate in the study if you: 

o have suffered any injuries to the lower extremities within the last six months. 
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o have ever had surgery to your knees. 
o are pregnant or think you may be pregnant. 

  
 
 

RISKS AND BENEFITS 
 
RISKS:   
 

If you decide to participate in this study, then you may experience general and/or minor skin irritation due to the 
ultrasound gel.  It is also possible, although unlikely, that you may experience musculoskeletal soreness or  injury 
such as a strain through constant high knee flexion. 
 
To reduce the above risks, care will be taken when applying and removing the ultrasound gel.  If you feel any 
soreness or irritation while participating in this study, please tell the investigators as soon as possible.  The 
investigators will provide you with the appropriate information for treating these problems, based on our level of 
expertise.  If you are injured while participating in this research study, you will initially be provided care by the 
investigator(s) and will then be referred to the Student Health Services (students) or your personal physician (non-
students) for follow-up care.  
  
There is a small risk of loss of confidentiality. To minimize this risk all information gathered from you will be 
confidential in nature and stored in the laboratory of the principle investigator (SRC 1007).  Only the principal 
investigator and research personal will have access to these files. 

 
BENEFITS:   
 

There are no direct benefits from participating in this study. The information obtained in this study will expand 
our knowledge base leading to beneficial changes in the future  

 
 
 
COSTS AND PAYMENTS 
 
The researchers are unable to give you any payment for participating in this study.  Students in Exercise Science 
courses may be offered extra credit for participation per individual course policy.  Total point value for participation 
will be determined by course instructor.  Students in courses offering extra credit for research participation may receive 
extra credit of equal point value by completing an alternative assignment 
 
 
 
NEW INFORMATION 
 
If the researchers find new information during this study that would reasonably change your decision about 
participating, then they will give it to you. 
 
 
 
CONFIDENTIALITY 
 
The researchers will provide confidentiality to all documents regarding patient information, including questionnaires 
and test results, by storing information in a safe, locked location. The results of this study may be used within reports, 
presentations or publication; but all personal identifiers will be disregarded. However, your records may be 
subpoenaed by court order or inspected by government bodies with oversight authority. Following the completion of 
the study, all subject information will be destroyed. 
WITHDRAWAL PRIVILEGE 
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In the event that you no longer wish to participate, you have the right to discontinue participation for this study. Even 
if you initially wish to participate you can withdraw at any time. Your decision will not affect your relationship with 
Old Dominion University or cause a loss of benefits to which you might otherwise be entitled. In addition, the 
researcher has the right to withdraw your participation if they find potential problems with your continued 
participation. 
 
COMPENSATION FOR ILLNESS AND INJURY 
 
If you participate, then your consent in this document does not waive any of your legal rights. In the event that you 
are harmed or injured from participating in this study, neither Old Dominion University nor the researchers are able 
to give you any compensation, including money, insurance coverage, or free medical care. In the event that you suffer 
any injury from participation in this study, you may contact Dr. Johanna Hoch at (757) 683-6131, Zach Sievert at 
(757)-683-3048, Dr. George Maihafer, the current IRB chair, at (757) 683-4520, or Office of Research (757) 683-
3460 at Old Dominion University. 
 
VOLUNTARY CONSENT 
 
By signing this form, you are saying several things.  You are saying that you have read this form or have had it read 
to you, that you are satisfied that you understand this form, the research study, and its risks and benefits.  The 
researchers should have answered any questions you may have had about the research.  If you have any questions later 
on, then the researchers should be able to answer them: 
 
Dr. Johanna Hoch   (757) 683-6131 
 
Zach Sievert   (757)-683-3048 
 
If at any time you feel pressured to participate, or if you have any questions about your rights or this form, then you 
should call Dr. George Maihafer, the current IRB chair, at 757-683-4520, or the Old Dominion University Office of 
Research, at 757-683-3460. 
 
And importantly, by signing below, you are telling the researcher YES, that you agree to participate in this study.  The 
researcher should give you a copy of this form for your records. 
 

 
 
 
 Subject's Printed Name & Signature                                                    

 
 
 

Date 
 
INVESTIGATOR’S STATEMENT 
I certify that I have explained to this subject the nature and purpose of this research, including benefits, risks, costs, 
and any experimental procedures.  I have described the rights and protections afforded to human subjects and have 
done nothing to pressure, coerce, or falsely entice this subject into participating.  I am aware of my obligations under 
state and federal laws, and promise compliance.  I have answered the subject's questions and have encouraged him/her 
to ask additional questions at any time during the course of this study.  I have witnessed the above signature(s) on this 
consent form. 
 

 
 
 
 Investigator's Printed Name & Signature 

             
 
 

Date 
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INFORMED CONSENT DOCUMENT 
OLD DOMINION UNIVERSITY 

PROJECT TITLE: The Effects of Physical Activity on ACL Loading and Size. 
  
 
 
INTRODUCTION 
 
The purposes of this form are to give you information that may affect your decision whether to say YES or NO to 
participation in this research, and to record the consent of those who say YES. This project is being carried out to 
determine the effects of several currently available hip joint center prediction methods on assessing walking, running, 
and jump landing tasks. The research will be conducted at Old Dominion University in the Neuromechanics 
Laboratory.  
 
 
 
RESEARCHERS 
 
Hunter Bennett, PhD, Assistant Professor, Responsible Project Investigator, Department of Human Movement 
Sciences, Old Dominion University 
 
Zachary Sievert, Graduate Student, Department of Human Movement Sciences, Old Dominion University 
 
Cortney Armitano, Graduate Student, Department of Human Movement Sciences, Old Dominion University 
 
DESCRIPTION OF RESEARCH STUDY 
 
 
The purpose of this study is to determine the effects of physical activity levels on ACL loading and size. A total of 
100 male participants will participate in this study.  You will report to the Neuromechanics Laboratory, SRC 1007, 
for one, 1 hour and 30 minute testing session.  
 
At the beginning of the testing session you will be informed of the study procedures and you will provide written 
consent in accordance with institutional guidelines. During the visit to the lab, you will be asked to fill out a Medical 
History and Physical Activity Questionnaire. This includes questions pertaining to age, physical activity, lower body 
injury(ies), recent head injury(ies), or any medications that may cause dizziness, etc.  
 
Once you have completed the medical history and physical activity questionnaire to determine eligibility, 
researchers will measure your height, weight, and shoe size. You will be instructed the put on spandex shorts and the 
provided laboratory shoes. All participants will be asked to sit in a position with their knee flexed between 90 
degrees and maximal knee flexion as researchers measure ACL thickness with diagnostic ultrasound. Passive knee 
joint laxity measures will also be performed by a licensed athletic trainer, where participants will be asked to lay in a 
supine position with the knee flexed to 30 degrees as the athletic training measures joint laxity with a KT-2000 
arthometer.. Researchers will then palpate the thickest portion of your quadriceps, hamstrings, calf, and glute 
muscles. Next, the skin above the muscle will be abraded, cleaned with alcohol wipes, and have passive muscle 
electrodes attached. Isometric strength testing of the knee extensors and flexors as well as the hip abductors and 
adductors will be recorded. Retro reflective motion capture markers will be attached to Velcro straps placed around 
your trunk, pelvis, thighs, lower legs, and shoes so that the motion capture system can track movements of your 
trunk and lower extremity during several tasks. You will then be asked to perform landings from a box with height 
equal to your jumping ability, from a height of 40 cm, as well as a jump land jump cut maneuver. 
 
 
EXCLUSIONARY CRITERIA 
 
You will not be able to participate in the study if you: 
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o have suffered any injuries to the lower extremities within the last six months. 
o have diagnosed joint disease 
o have ever had major lower extremity surgery or joint replacement. 

 
RISKS AND BENEFITS 
 
RISKS:   
 
If you decide to participate in this study, risks are considered minimal. The jumping and landing to be tested in this 
study are no different from what you would perform in normal daily movements or moderate exercises. It is possible 
the skin above each muscle tested using electromyography may be irritated due to abrasions or cleaning with alcohol 
wipes during the skin preparation process. 

 
 

In consideration of all risks, the researchers will be present and interactive during all tasks.  Should any injury occur 
during the course of testing, standard first aid procedures will be administered as necessary. At least one researcher 
with a basic knowledge of athletic training and/or first aid procedures will be present at each test session.  If you feel 
any injury while participating in this study, please tell the investigators as soon as possible. If you are injured while 
participating in this research study, you will initially be provided care by the investigator(s) and will then be referred 
to the Student Health Services (students) or your personal physician (non-students) for follow-up care.  
  
There is a small risk of loss of confidentiality. To minimize this risk all information gathered from you will be 
confidential in nature and stored in the laboratory of the principle investigator (SRC 1007).  Only the principal 
investigator and research personal will have access to these files. 
 
BENEFITS:   
 
There are no direct benefits from participating in this study. The information obtained in this study will expand our 
knowledge base leading to beneficial changes in the future.  
 
COSTS AND PAYMENTS 
 
The researchers are unable to give you any payment for participating in this study.  Students in Exercise Science 
courses may be offered extra credit for participation per individual course policy.  Total point value for participation 
will be determined by course instructor.  Students in courses offering extra credit for research participation may receive 
extra credit of equal point value by completing an alternative assignment 
 
NEW INFORMATION 
 
If the researchers find new information during this study that would reasonably change your decision about 
participating, then they will give it to you. 
 
CONFIDENTIALITY 
 
The researchers will provide confidentiality to all documents regarding patient information, including questionnaires 
and test results, by storing information in a safe, locked location. The results of this study may be used within reports, 
presentations or publication; but all personal identifiers will be disregarded. However, your records may be 
subpoenaed by court order or inspected by government bodies with oversight authority. Following the completion of 
the study, all subject information will be destroyed. 

WITHDRAWAL PRIVILEGE 
 
In the event that you no longer wish to participate, you have the right to discontinue participation for this study. Even 
if you initially wish to participate you can withdraw at any time. Your decision will not affect your relationship with 
Old Dominion University or cause a loss of benefits to which you might otherwise be entitled. In addition, the 
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researcher has the right to withdraw your participation if they find potential problems with your continued 
participation. 
COMPENSATION FOR ILLNESS AND INJURY 
 
If you participate, then your consent in this document does not waive any of your legal rights. In the event that you 
are harmed or injured from participating in this study, neither Old Dominion University nor the researchers are able 
to give you any compensation, including money, insurance coverage, or free medical care. In the event that you suffer 
any injury from participation in this study, you may contact Dr. Hunter Bennett at (757) 683-4387, Zach Sievert at 
(757)-683-3048, Dr. Tancy Vandecar-Burdin, the current IRB chair, at (757) 683-3802 (tvandeca@odu.edu), or Office 
of Research (757) 683-3460 at Old Dominion University. 
 
 
 
VOLUNTARY CONSENT 
 
By signing this form, you are saying several things.  You are saying that you have read this form or have had it read 
to you, that you are satisfied that you understand this form, the research study, and its risks and benefits.  The 
researchers should have answered any questions you may have had about the research.  If you have any questions later 
on, then the researchers should be able to answer them: 
 
Dr. Hunter Bennett   (757) 683-4387 
 
Zachary Sievert   (757)-683-5676 
 
If at any time you feel pressured to participate, or if you have any questions about your rights or this form, then you 
should call Dr. Tancy Vandecar-Burdin, the current IRB chair, at 757-683-3802 (tvandeca@odu.edu), or the Old 
Dominion University Office of Research, at 757-683-3460. 
 
And importantly, by signing below, you are telling the researcher YES, that you agree to participate in this study.  The 
researcher should give you a copy of this form for your records. 
 

 
 
 
 Subject's Printed Name & Signature                                                    

 
 
 

Date 
 
INVESTIGATOR’S STATEMENT 
I certify that I have explained to this subject the nature and purpose of this research, including benefits, risks, costs, 
and any experimental procedures.  I have described the rights and protections afforded to human subjects and have 
done nothing to pressure, coerce, or falsely entice this subject into participating.  I am aware of my obligations under 
state and federal laws, and promise compliance.  I have answered the subject's questions and have encouraged him/her 
to ask additional questions at any time during the course of this study.  I have witnessed the above signature(s) on this 
consent form. 
 

 
 
 
 Investigator's Printed Name & Signature 

             
 
 

Date 
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Appendix B: Medical History & Physical Activity Questionnaire 
 

Medical History & Physical Activity Questionnaire 
 
Please answer the following questions to the best of your ability: 

Gender: 
☐Male ☐Female 

 
Race/ethnicity (please check all that apply): 

☐American Indian/Alaska Native  
☐Asian 
☐Native Hawaiian or other Pacific Islander 
☐Hispanic or Latino 
☐Black or African American 
☐White 

 
Which leg would you use to kick a ball? 

☐Right ☐Left  
To be completed by investigator: 

Age:                yr Height:                 m Mass:                 kg    
 
Medical History Questionnaire 
For your safety, a list of conditions that would make you unable to participate in this study has been 
prepared.  Please read this list carefully and consider whether any of the conditions apply to you.  If any 
of these conditions are true for you, you will not be able to participate in this study.  For each condition, 
please indicate “yes” or “no” if this is true or not for you. 
 
☐Yes   ☐No Are you currently physically active at a moderate level for at least 30 

minutes/day, at least 3 days of the week? 
 
☐Yes   ☐No Do you have a medical condition that may impair your balance performance (i.e. 

concussion, neurological impairments, etc)? 
 
☐Yes   ☐No Are you taking medications/drugs that may make you dizzy or make you tired 

(i.e. cold medications, sleeping medications, muscle relaxants)? 
 
☐Yes   ☐No Have you ever had a lower extremity injury that caused you to decrease the 

amount of physical activity you undertake? If yes, please complete the following: 
 ☐Yes   ☐No   Hip injury(ies) 
  If yes, approximately how many injuries?_________________________ 
 ☐Yes   ☐No   Knee injury(ies) 
  If yes, approximately how many injuries? _________________________ 
 ☐Yes   ☐No   Ankle/foot injury(ies) 
  If yes, approximately how many injuries? _________________________ 
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☐Yes   ☐No Have you had, in the last 6 months, a lower extremity injury that caused you to 
decrease the amount of physical activity you undertake? 

 
☐Yes   ☐No Do you currently have any lower extremity pain or injury(ies)? 
 
☐Yes   ☐No Have you ever had major orthopedic surgery on your lower extremities? 
 
☐Yes   ☐No Are you pregnant or do you have reason to believe that you may be pregnant? 
 
 
 
Physical Activity Questionnaire 
 

1. On average, how many days a week have you exercised over the past six months?  
 

_____ days per week 
 

a. During your exercise periods, how many days did you spend performing strenuous or 
vigorous activity (heart beating rapidly)  such as heavy lifting,  running, jogging, hockey, 
football, soccer, basketball, or vigorous long distance bicycling? How much time is spent 
performing vigorous activity?  

 
_____ days per week    _____ minutes per week 

  
b. During your exercise periods, how many days did you spend performing moderate 

activity (Not Exhausting) such as fast walking, baseball, tennis, easy bicycling, 
volleyball, badminton, or easy swimming? How much time is spent performing moderate 
activity? 
 
_____ days per week    _____ minutes per week 

 
c. During your exercise periods, how many days did you spend performing mild activity 

(Minimal Effort) such as leisurely walking, bowling, or golf? How much time is spent 
performing mild activity? 

 
_____ days per week    _____ minutes per week 

 
2. How many times per week do you participate in a resistance training?  

 
_____ days per week 
 

a. How many times per week do you perform lower extremity resistance training?   
 
_____ days per week 
 

b. How many exercises do you perform that specifically utilize knee flexors and extensors?  
 

Flexor exercises _________                                  Extensor exercises_________ 
 

3. How many times per week do you perform cardiovascular exercises?  
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_____ days per week 
 

a. How many times per week while performing cardiovascular activities are you performing 
cutting, jumping, and landing maneuvers?   
 
_____ days per week 
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