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ABSTRACT 
 

PROCESS STUDY FOR THE DESIGN OF SMALL SCALE  
2 KELVIN REFRIGERATION SYSTEMS 

 
 

Peter N. Knudsen 
Old Dominion University, 2008 

Director: Dr. Ayodeji O. Demuren 
 
 

Helium refrigeration at temperatures below 4.5-Kelvin (K), but greater than 0.8-K 

typically employ a sub-atmospheric process utilizing a vacuum pumping system.  These 

types of helium refrigerators are of keen interest to present and future particle physics 

programs utilizing super-conducting magnet or radio-frequency technology.  As such, 

there is a need for small scale 2-K helium refrigeration systems (i.e., those that operated 

below the lambda temperature) in small laboratories and test facilities at this time.  This 

study establishes the key process parameter choices of flow ratio, heat-exchanger size, 

and supply pressure, and how they influence the overall system performance for various 

process configurations that do not utilize rotating machinery within the cold box (i.e., 

turbo-machinery for either cryogenic vacuum pumping or expansion) but do utilize a 

separate commercially available 4.5-K helium liquefier system.  Three 2-K process 

configurations are studied to determine the key process parameter values that yield the 

best performance.  These process configurations are compared to the commonly 

employed (but inefficient) direct vacuum pumping process, which typically uses a dewar 

as the 4.5-K liquid helium supply source.  It is found that the performance of these 

configurations is similar and substantially superior to direct vacuum pumping, providing 

an inverse coefficient of performance of around 1800 W/W. 
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1. INTRODUCTION 
 

1.1 Purpose of Study 

The normal boiling point (at 1 atmosphere, or ‘atm’) for helium is 4.22 Kelvin 

(K).  As such a cryogenic process using helium that operates below this temperature 

requires the condition of sub-atmospheric pressures (known in the field as processes 

below 4.5 K).  There are four methods typically used for providing refrigeration at 

temperatures below 4.5 K, but above 0.8 K.  They are direct vacuum pumping (i.e., 

wasting the sensible refrigeration available from the load to ambient temperature; no 

refrigeration recovery), and refrigeration recovery using either warm vacuum pumps, 

cryogenic centrifugal turbo-compressors (known in the field as ‘cold compressors’) or a 

combination of both warm vacuum pumps and cold compressors.   The term 

‘refrigeration recovery’ (as it is known in the field) means the attempt to utilize the 

sensible heat of the sub-atmospheric helium boil-off, resulting from the heat load, to 

improve the process’s efficiency.  In practice this requires the use of heat exchangers to 

reduce the load feed stream temperature (enthalpy) by utilizing the refrigeration from the 

sub-atmospheric helium boil-off stream.  For most common presently known 

applications, the technologies that require sub-atmospheric helium pressures operate at 

saturation temperatures of 1.8 to 2.2 K.  All of these shall be referred to as 2-K processes 

or 2-K systems. 

The study’s intended end objective is to provide a process design basis for a 

‘small’ 2-K refrigeration recovery unit (also referred to as a ‘2-K cold box’) working in 

conjunction with a commercially available 
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(1) 4.5-K helium liquefaction system (also referred to as the ‘4.5-K plant’)   

[1, 2].  This liquefier system includes its own compression and gas 

management system. 

(2) Helium vacuum pumping system. 

(3) Helium compression system. 

By ‘small’ it is meant nominal 2-K loads on the order of 100 Watts (W); i.e., 

requiring 4.5-K make-up mass flows from the liquefier system in the approximate 

magnitude of a couple of grams per second (i.e., about 2 g/s).  This study does not 

address processes using cold compression, as these are typically used on medium to 

larger systems [3, 4].  As such, there is no rotating machinery within the (envisioned) 2-K 

cold box; although the commercially available 4.5-K liquefaction system most certainly 

does employ rotating machinery (i.e., compressors and expanders).  The 2-K cold box in 

this study is intended only to utilize passive components such as heat exchangers and 

throttling valves. 

 

1.2 Study Goals 

(1) Identify possible 2-K process configurations utilizing the major sub-

systems mentioned (i.e., 2-K cold box, 4.5-K liquefier system, vacuum 

pumping system and compression system). 

(2) Establish the key process parameter choices for the selected process 

configurations. 

(3) Characterize the influence of the key process parameter choices on the 

overall 2-K system performance. 
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1.3 Literature Review 

Sam Collins at Arthur D. Little (ADL) made a test refrigerator in cir. 1967 that 

operated at 1.8 K and 30 W, used a commercial Collins-ADL helium liquefier (supplying 

to a 2-K cold box) and commercial vacuum pumps  [5, 6].  Rather than a helium supply at 

3 atm and 4.5 K more typical from present day helium liquefiers, the commercial Collins-

ADL liquefier supplied helium at 15 atm and 7.0 K to the 2-K cold box.  There are a 

number of 2-K systems that supported heat loads on the order of 100 W, but had the    

4.5-K liquefier and 2-K cold box conjoined [7-11] and others that used cold compressors  

[12-16]. 

However, to the author’s knowledge, from a literature review and discussions 

with those who have worked in the field for the past 35 years, the following can be stated: 

(1) No systematic process study was found identifying the key parameters and 

their influence on the performance of such 2-K systems of the type 

proposed to be studied. 

(2) It appears that there have been two 2-K systems built that are similar to the 

type proposed to be studied.  These are the Cryogenics Test Facility (CTF) 

at Jefferson Lab (JLab) and the TESLA test facility (TTF) at Deutsches 

Elektronen-Synchrotron (DESY) [17, 18].  The author was not able to 

confirm whether the TTF at DESY is still operating, or obtain 

performance data.  However, although at 14 years beyond its original end 

of use date, the CTF at JLab has been operating since 1989.  Both of these 

systems support a 2-K heat load on the order of 100 W, have a distinctly 

separate commercial 4.5-K helium liquefier (supplying super-critical 
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helium to the 2-K cold box) and do not use cold compressors.  Refer to 

TABLE 1.2.1 for a brief comparison summary. 

TABLE 1.2.1 – Similar 2-K Systems 
 

 JLab CTF DESY TTF 
Load 
Temperature 

2.0 K 1.8 K 

Heat Load 180 W (9 g/s) 200 W (10 g/s) 
4.5-K Plant Koch Model 2200 

 
Linde AG 
900 W at 4.5 K 
2 kW at 70 K 

Vacuum Pumps Kinney Lobe Blower,  
KMBD-8000 
Kinney Liquid Ring Pump, 
KLRC-2100S 

Leybold Lobe Blowers 
RA16000, RA13000, RA9001 
Leybold Rotary Vane Pumps, 
SV1200 
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2. THEORY & CHARACTERIZATIONS 

 

2.1 Process Study Optimization Goal 

Before undertaking a process study, it must be decided whether the primary 

optimization is for maximum overall efficiency or maximum system (load) capacity.  The 

latter is typically (but not always) the optimization objective when dealing with existing 

equipment, and the user is interested in obtaining the most capacity from what is 

installed.  The former seeks to minimize input power and utility consumption for a 

specified load and is more typically (but not always) of interest for new designs when 

equipment is to be either fabricated and/or selected from a range of choices.  Although 

there are other optimization goals for process design like maximum reliability, maximum 

availability and minimum maintenance, these are strongly influenced by specific project 

requirements such as end user needs, available project capital and funding allocations 

between operating and capital costs.  It is important to understand that these 

optimizations are not mutually exclusive.  Usually the process optimization of maximum 

overall efficiency results in the optimum condition (i.e., a global optimization).  If this is 

not the case, the process paths and/or process control philosophies should be re-evaluated 

to understand the reasons. 

Therefore, in this study we will seek to maximize the overall efficiency using 

typical realistic equipment performance that is not specific to any one manufacturer. 
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2.2 Process Parameters 
 

The process parameters for this study can be divided into two broad categories.  

The first category is those parameters that are at either constant values or have a fixed 

characterization.  The second category is those parameters that are varied either over 

some pre-determined range or set of proposed configurations.  These categories may be 

referred to as ‘fixed’ parameters and ‘varied’ parameters, respectively.  The varied 

parameters are proposed to be the key process parameters to characterize the overall 

performance of the 2-K system, as considered by this study. 

2.2.1 Fixed Process Parameters 
 

The overall efficiency of a 2-K system, of the type proposed to be studied, is 

strongly influenced by the following: 

(1) The precise load temperature.  For this study a load temperature (in the 

helium II bath) of 2.0 K, corresponding to a saturation pressure of 0.0310 

atm, will be assumed.  FIGURE 2.2.1 shows that the saturation pressure of 

helium is logarithmic with respect the temperature.  So, a linear change in 

temperature corresponds to an exponential change in pressure, which 

corresponds to a linear change in isothermal input power. 

(2) Overall Carnot efficiency of the commercial 4.5-K liquefier system 

includes not only the cold box but also its compression and gas 

management system.  For this study a constant value, specific to the 

particular process configuration and capacity, will be assumed.  The 

overall Carnot efficiency, which is the load exergy (or reversible power) 

per total input power, can vary considerably with the liquefier capacity 
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[19].  APPENDIX A shows recent unpublished data compiled by the 

author for selected 4.5-K plant efficiencies. 

 

FIGURE 2.2.1 – Helium Saturation Pressure vs. Temperature  

(3) Isothermal efficiency of the 2-K system compressor(s).  For this study a 

fixed characterization based upon the compressor (discharge to suction) 

pressure ratio will be used.  It is known that the pressure ratio is the 

primary independent variable for the isothermal and volumetric efficiency 

of oil-flooded rotary screw compressors [20].  Although the 2-K system 

compressors may be similar in type and/or size to the compression system 

(included in and) used by the 4.5-K helium liquefier system, they are not 

the same equipment. 
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(4) Isothermal efficiency of the vacuum pump system.  For this study a 

constant value will be assumed, because the (discharge to suction) 

pressure ratio across the vacuum pumping system remains almost the same 

for all cases.  The input power to the vacuum pumping system typically 

comprises (at least) 40 percent (%) of the total input power and total 

exergy losses for 2-K systems using refrigeration recovery. 

(5) Parasitic (non-load) heat in-leak into the process streams and components 

from radiation and support/piping conduction.  For this study a constant 

value of 55 W will be assumed.  The distribution of this heat in-leak is 

also important and has been divided (proportionally) according to the heat 

exchanger size.  This heat in-leak may be somewhat large, but it will also 

deter from a too optimistic performance projection. 

(6) Sub-atmospheric stream pressure drop from the load to the suction of the 

vacuum pumping system.  For this study a fixed characterization based 

upon the total sub-atmospheric stream heat exchanger NTU’s (as 

commonly referred to in engineering) will be assumed.  Pressure drop is 

proportional to flow length, and the heat exchanger NTU’s are roughly 

proportional to the same.  It is easily verified that the ratio of pressure 

drop to stream pressure is proportional to the irreversibility and exergetic 

loss.  However, more importantly, as the pressure drop increases the 

vacuum pumping system capacity to handle the sub-atmospheric flow 

from the 2-K load (proportionally) decreases.  As they should, past 
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designs have concerned themselves greatly with the heat exchanger 

designs for a minimal pressure loss in the sub-atmospheric stream. 

2.2.2 Varied Process Parameters 
 

As with the fixed process parameters mentioned, the overall efficiency of a 2.0-K 

system, as considered by this study, is also strongly influenced by the following: 

(1) Ratio of high pressure helium flow to sub-atmospheric helium flow in the 

main heat exchanger; also referred to as the ‘flow imbalance’ or ‘flow 

ratio’.  This will be ranged from 40 to 100%, as the solution allows. 

(2) Total heat exchanger NTU’s.  This will be ranged from 20 to 45 NTU’s at 

5 NTU increments.  The NTU’s for a heat exchanger roughly correspond 

to its effective length and the net thermal rating (also known as the ‘UA’) 

to its volume.  Since the overall process is fixed between ambient and the 

load temperatures, and the sub-atmospheric return flow is fixed, the heat 

exchanger cross-sectional area is roughly fixed.  So, for this study, the 

total NTU’s will be proportional to the total UA, which is the heat 

exchanger size.  Therefore, it is the sum total heat exchanger size that is 

being varied.  Total heat exchanger NTU’s greater than 45 were not 

studied due to the resulting excessive sub-atmospheric stream pressure 

drop.  

(3) Supply pressure to the 2-K cold box, from the compressor discharge.  This 

will be ranged from 6 to 18 atm, at 3 atm increments.  This determines the 

availability (i.e., exergy) supplied to the 2-K cold box and to some degree 

the input required for the compressor(s). 
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2.3 Helium’s Specific Heat Capacity and Heat Exchangers 

FIGURE 2.3.1 shows the specific heat (at constant pressure, labeled Cp, with units 

of Joules per gram per Kelvin, or J/g-K) for helium at selected pressures (labeled p).  As 

is well known from basic thermodynamics, the non-constancy of the specific heat is due 

to presence of the liquid-vapor ‘dome’ where the fluid ‘must impose the work of the 

latent heat on itself’ to keep the super-critical fluid enthalpy close to the liquid enthalpy 

at the same temperature.  This effect is most important and pronounced near the critical 

pressure (for helium, 2.245 atm) and tapers off quickly as the pressure increases.  This 

real fluid effect is quite beneficial, in that we can keep a load at a constant temperature by 

boiling off the liquid.  However, the variation in specific heat introduces additional heat 

exchanger irreversibility (that would not otherwise be present if it were an ideal gas).  So, 

a significant process design challenge is to deal with this specific heat variation in the 

most reversible manner possible.  As has been known for some time, the most reversible 

temperature difference distribution for a counter-flow heat exchanger with an ideal gas is 

a linear distribution [21].  This is considerably different from the logarithmic temperature 

distribution predicted using a constant overall heat transfer coefficient.  So, at the outset it 

would seem the challenge is quite difficult even theoretically.  However, in practice the 

exergetic loss due to the heat exchangers in the 2-K cold box (including the ambient air 

vaporizer) should only be in the order of 5% of the total input power.  To deal with the 

irreversibility due to a finite temperature difference in the heat exchangers, the length can 

be increased.  So, of the 5% total input power loss due to heat exchanger irreversibilities 

(mentioned above), about 13% (i.e., less than 1% of the input power) is due to the 

pressure loss, and of this (13%) about 98% (i.e., less than 1% of the input power) is due 
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to the sub-atmospheric stream pressure loss.  So, the sub-atmospheric pressure loss is 

essentially the source of all the heat exchanger exergetic loss due to pressure, but it is 

small.  As long as the heat exchangers are sufficiently long (i.e., at least 1 meter for every 

10 NTU’s for brazed-aluminum heat exchangers; [3]) and have adequate cross-sectional 

area for the sub-atmospheric stream (so that pressure loss is limited to no more than 25% 

of the load saturation pressure, due to available practical equipment limitations), the 

problems of variation of specific heat cause more theoretical consternation than is 

practically warranted. 

  

FIGURE 2.3.1 – Helium Specific Heat at Selected Pressures 

However, in general there is a considerable optimization trade-off between the 

heat exchanger length and cross-sectional area with respect to the overall effect on the 

process, due to the resulting heat exchanger pressure drop and (thermal) effectiveness.  

That is, for a fixed cross-sectional area, as the heat exchanger length is increased, the 
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irreversibility due to pressure drop will increase, but the irreversibility due to the 

temperature difference will decrease (as the heat transfer area increases).  The same is 

true for a fixed length, as the heat exchanger cross-sectional area is decreased (since the 

Reynold’s number and consequently the Colburn ‘j’ factor increases [22]).  The problem 

becomes process type-(e.g., 4.5-K liquefier, 2-K refrigerator) and equipment type-(e.g., 

brazed aluminum or spiral-wound finned heat exchangers) specific.  That is, to the 

overall process performance trade-off between the heat exchanger usage of the high 

pressure stream availability and minimizing the heat exchanger low pressure stream 

pressure loss (to not exceed some practical limit) vs. the increase in thermal performance 

(with a longer and/or small cross-section heat exchanger).  However, this topic is a 

treatise of its own. 

 

2.4 Model Component Characterizations 

2.4.1 Fluid Properties 

All fluid properties were evaluated using the commercially available code 

‘HePak’ (version 3.4) for helium properties and ‘GasPak’ (version 3.30) for nitrogen 

properties.  HePak can be used down to 0.8 K and includes helium II (super-fluid) 

thermodynamic and transport properties.  The real fluid properties were used in every 

calculation for both helium and nitrogen. 

2.4.2 4.5-K Helium Liquefaction System 

For large 4.5-K helium liquefiers (greater than about 50 g/s) the Carnot efficiency 

can be about 25% for a well match compressor system.  However, for 4.5-K plants 
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considered by this study, providing 2 to 3 g/s of liquefaction capacity, the Carnot 

efficiency is around 10% (see APPENDIX A).  As is usual of modern 4.5-K helium 

liquefiers the supply (from the liquefier) has been assumed to be 3 atm and 4.5 K.  This is 

super-critical fluid which is close to the liquid enthalpy for ease of flow distribution. 

2.4.3 Vacuum Pumping System 

An isothermal efficiency of 14.5% for the vacuum pumping system, comprised of 

a liquid-ring pump [23] and a lobe (roots)-blower [24], is based upon unpublished data 

from JLab’s CTF vacuum pumping system (see APPENDIX B).  This value is considered 

to be realistic (i.e., not too optimistic, but also not very conservative).  

2.4.4 Rotary Screw Compressor(s) 

The isothermal efficiency of the oil-flooded rotary screw compressor(s) was taken 

from published data [20] and unpublished data [25] from testing of small hermetically 

sealed oil-flooded rotary screw compressors (refer to APPENDIX C).  A linear 

characterization of the isothermal efficiency vs. compressor pressure ratio was used 

(which is a good approximation in the range of this study’s interest) as shown below: 

 ηiso = 0.6 – 0.0177*(pr,c – 3) (2.4-1)  

 With pr,c the ratio of discharge to suction pressure (i.e., compressor pressure 

ratio).  This characterization is valid for compressor pressure ratios between 3 and 18. 

2.4.5 Heat Exchangers 

A linear characterization of the pressure drop of the sub-atmospheric stream vs. 

heat exchanger NTU’s was used as shown below: 

 Δpl [atm] = (2.03x10-4)*NTU (2.4-2) 



 14

With ‘NTU’ being the NTU for each heat exchanger considered.  Since the total 

NTU’s ranged from 20 to 45 (in increments of 5), this also establishes the maximum sub-

atmospheric stream pressure drop for each total NTU case. 

 For the heat exchanger analysis, the integrated cooling curves were calculated.  A 

typical log-mean-temperature-difference (LMTD) analysis, assuming constant heat 

capacity rates, is not valid since the specific heat for helium can vary considerably below 

20 K.  To calculate the heat exchanger UA and NTU’s for varying specific heat, the 

methodology is to divide the heat exchanger into smaller sub-sections where the constant 

stream capacity assumption can be imposed as an average over the sub-section [26].  The 

calculation of the heat exchanger effectiveness is somewhat more involved.  This is due 

to the fact that, unlike a fluid idealized with a constant specific heat, the temperature 

pinch (i..e., the minimum temperature difference between streams) may not occur on the 

warm or cold end.  In fact, below 20 K, often the temperature pinch will occur at some 

location between the heat exchanger ends.  So, an iterative procedure is required to find 

the pinch point of a given heat exchanger.  The condition where the stream temperature 

difference at the pinch point is zero is the maximum possible duty (for the given inlet 

process conditions, stream pressure drop and heat in-leak). 

 

2.5 Exergy and Exergy Usage 

Exergy analysis [27], or availability analysis as it is sometimes called, is an 

extremely useful method for a consistent determination of the minimum required work 

(i.e., the reversible work) for a process, based solely on the process intensive 

thermodynamic properties.  The process may be any thermodynamic process, steady, un-



 15

steady, single fluid, multi-phase or chemical.  Using this method, the expenditure of the 

input power to its intended (useful) purpose(s) and non-useful process component losses 

may be studied.  For a study like this, such analysis is very useful in comparing losses of 

similar components used under different process conditions and configurations, as well 

as, identifying the major component loss contributors needing further study and/or 

technological innovation. 

Physical exergy is defined as follows: 

 ε = h – T0*s (2.5) 

With ‘h’ the enthalpy, ‘T0’ the absolute reference temperature and ‘s’ the entropy.  

The reference temperature, T0, is the absolute temperature for which there is zero 

availability.  Although, typically taken at 300 K, for cases where the process availability 

is provided by rotating machinery cooled by water whose heat is removed by evaporative 

cooling, the reference temperature is more precisely the environmental wet bulb 

temperature.  It should also be noted that exergy has the same units as energy.   

 

2.6 Measures of Process Performance 

 There are many constructs used to evaluate and compare process performance.  

The crucial elements in any construct are its clear definition and an adherence by the 

process engineer in its implementation.  The Carnot efficiency (ηC), and inverse 

coefficient of performance (COPINV) are such constructs. 

For this study, the Carnot efficiency is the ratio of the availability (i.e., the exergy 

flux for a steady state process) provided to the ‘load’ to the total input power required by 
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the process.  The availability to the load is also sometimes known in the field as the ‘load 

Carnot power’. 

The 2-K system ‘load’ interface is defined by the study to be between the 2-K 

cold box and sub-atmospheric helium II bath.  The supply interface to the load is two-

phase at the bath pressure and saturation temperature, and the return interface from the 

load is single-phase saturated vapor.  The study assumes a steady bath pressure, no mass 

accumulation and that all heat (electrical, radio-frequency loss generated, etc.) into the 

bath goes into boiling-off the liquid (rather than super-heating the vapor).  The total input 

power is the total equivalent electrical power supplied to the process. 

For cases involving liquid nitrogen (LN) pre-cooling, the LN is an input utility 

(like the electrical power) used to ‘pre-cool’ the make-up helium from ambient 

temperature down to approximately 80 K.  Some portion of the supplied LN is necessary 

for heat exchanger losses.  These losses are primarily due to finite stream temperature 

differences, but are also due to non-constant stream capacity (i.e., real fluid effects) and 

heat in-leak.  This utility provides supplemental refrigeration to what would otherwise 

have to be accomplished using additional helium flow that is compressed and expanded.  

The methodology to find the equivalent electrical input power is to take availability given 

by the LN pre-cooling and divide by an efficiency, known as the LN pre-cooling Carnot 

efficiency.  For this study, the LN pre-cooling Carnot efficiency is taken as 35%, as is 

typical for this application. 

Consistency of the interface locations and process conditions between the 4.5-K 

plant and 2-K system is important so that comparing performance parameters is 

meaningful.  For example, as in [5, 6], consider the case of the 2-K cold box supplying a 
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portion of its high pressure stream to the 4.5-K liquefier, to provide additional work 

extraction (e.g., say it is combined with other flow supplied to an expander) and 

refrigeration.  Even though this may be very beneficial to the overall process efficiency, 

in such a case the commercial liquefier is no longer a standard model.  This increases the 

total system cost considerably, since it requires re-engineering and introduces additional 

performance risks.  Also, it would become necessary to model several commercial 4.5-K 

liquefiers to properly evaluate the effect of the modifications on the 2-K system in overall 

performance and efficiency.  With the wide range of varied parameters being examined 

for this study, the kind of information that would be required of the manufacturers is 

considered proprietary  (e.g., compressor and turbine - flow and efficiency 

characterizations, heat exchanger sizes, and heat in-leaks).  Even if all this was done, the 

results may be invalidated as a manufacturer makes its own improvements and 

modifications to its commercial designs.  Therefore, since the optimization becomes 

manufacturer specific, this approach has been avoided. 

There are two (depending on the model configuration studied) interface locations 

between the 4.5-K liquefier and 2-K systems.  The first, as previously mentioned, is the 

helium supply at 3 atm and 4.5 K from the 4.5-K liquefier to the 2-K cold box.  The 

second is, depending on the model configuration studied, either a helium stream at 1.05 

atm and 300 K from the 2-K system (i.e., a fraction of the flow from the vacuum 

pumping system discharge) to the 4.5-K liquefier system, or a helium stream at 1.2 atm 

and 79.4 K from the 2-K cold box to the 4.5-K liquefier system.  In the latter case the 

Carnot efficiency of the 4.5-K liquefier system is increased by 1% to account for the 

refrigeration benefit given by the 2-K cold box stream.  This will be discussed later.  So 
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then, the equivalent input power required for the 4.5-K liquefier system is found by using 

the interfaces described, determining the reversible power required and dividing by the 

4.5-K liquefier system Carnot efficiency. 

The COPINV is the ratio of total input power (as discussed above) to the heat into 

the helium II bath (i.e., the ‘load’ or ‘heat load’).  It is a more practically apparent 

measure of performance than the Carnot efficiency.  Of course, the relationship between 

the COPINV and Carnot efficiency is the ratio of the availability to the load to heat into the 

bath.  Two different COPINV’s are used in this study.  The ‘real’ (or ‘total process’) 

COPINV  is based upon the total input power to the whole process.  That is, the total input 

power to the 4.5-K liquefier system, LN pre-cooling (if applicable) and the 2-K vacuum 

pumping and compressor system.  The ‘ideal’ (or ‘cold box’) COPINV  is based upon the 

availability to (i.e., the supply exergy flux minus the return exergy from) the 2-K cold 

box.  It does not include the power inputs used for the real COPINV, except that the 

availability provided by the LN pre-cooling (if applicable) is added to the availability 

provided to the 2-K cold box.  These two COPINV’s are helpful in examining the overall 

process exergy loss effects between the passive components (i.e., heat-exchangers and 

throttling-valves) and the active components (i.e., vacuum pumping system, compressor 

system and 4.5-K liquefier system). 

 The three varied process parameters are considered the key independent variables 

with which to study the COPINV.  As such the real COPINV  and ideal COPINV  are 

compared with respect to the flow ratio for each supply pressure and total heat exchanger 

NTU’s.  From this data, the conditions yielding the minimum real and ideal COPINV’s can 

be studied. 
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2.7 Traditional Sub-Atmospheric Helium Processes 

Small 2-K helium systems requiring less than 50 W (at around 2 K) for short 

duration testing, typically utilize direct (warm) vacuum pumping (with no refrigeration-

recovery) to produce the cold sub-atmospheric helium.  FIGURE 2.7.1 depicts such a 

process (labeled configuration C1).  The 4.5-K helium liquefier system (labeled 4.5-K 

Plant) could also be a liquid helium dewar.  However, as previously discussed, for the 

purposes of quantifying the equivalent input power a 4.5-K helium liquefier system is 

assumed to provide the 3 atm, 4.5 K helium make-up.  The liquid boil-off due to the 2-K 

heat load (which is not shown going) into the helium II bath (labeled LOAD) and the 

flash from the throttling valve (which is referred to as a Joule-Thompson, or JT valve, 

and labeled JT) is warmed (without recovering any of the sub-atmospheric stream’s 

refrigeration) close to ambient temperature (shown by an ambient vaporizer, labeled 

VAP).  It is then compressed to slightly positive atmospheric pressure (say, 1.05 atm) by 

the vacuum pumping system (labeled VPS).  From the vacuum pumping system the 

helium may be stored in gas bags (to be re-processed later) or sent back to the 

(compressor suction of the) 4.5-K plant. 

 

FIGURE 2.7.1 – Configuration C1 
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The ideal and real COPINV’s for a direct vacuum pumping process (as shown in 

FIGURE 2.7.1),  using  a 4.5-K liquefier system with a Carnot efficiency of 10% and a 

vacuum pumping system isothermal efficiency of 14.5% (plus a motor efficiency of 

90%), are about 700 W/W and 6500 W/W, respectively.  Introducing a small heat 

exchanger, as depicted in FIGURE 2.7.2 [28] (i.e., configuration C1-A), can significantly 

improve the process COPINV.  This heat exchanger (labeled HX-1) is intended to recover 

a portion of the highly valuable sub-atmospheric stream refrigeration between 2.0 K and 

4.5 K.  The ideal and real COPINV’s will decrease by 30% (to about 480 W/W and 4500 

W/W, respectively) using a heat exchanger (HX-1) with 2 NTU’s, but only (decrease) 

35% (to about 450 W/W and 4200 W/W, respectively) for a heat exchanger with 6 

NTU’s.  This process improvement is presented in FIGURE 2.7.3 as a plot of ideal and 

real COPINV’s with respect to HX-1 NTU’s.  This heat exchanger’s net effect is to reduce 

the enthalpy supplied to the load.  So, a small heat exchanger of at least 2 NTU’s is 

needed, and will improve the process performance considerably with a small pressure 

drop.  Note that since the reversible input power required for the 4.5-K liquefier system 

and vacuum pumping system is (essentially) constant, the real and ideal COPINV’s differ 

by a constant factor.  The process configurations studied assume this particular heat 

exchanger (though it may have a different label) to have 5 NTU’s.  This assures that the 

optimal process performance condition is not hindered by this coldest heat exchanger. 

These results provide an upper limit (worst case) on the COPINV values to expect 

from the process configurations to be studied and allude to the dramatic effect that 

possible process configurations using simple passive components (heat exchangers, JT 

valves, etc.) may have on the process performance.  As a lower limit (best case) on the 
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COPINV, the performance of large efficient 2-K systems employing cold compressors is 

noted to be about 900 W/W (for the real COPINV) [3]. 

 

FIGURE 2.7.2 – Configuration C1-A 
 

 

FIGURE 2.7.3 – Configuration C1-A HX-1 NTU’s vs. COPINV 
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2.8 Comparable 2-K Systems 

As mentioned previously, the CTF at JLab and TTF at DESY are the only two    

2-K systems found by the author that are comparable the objective of this study.  Of 

these, only performance data on JLab’s CTF is available (to the author).  TABLE 2.8.1 

summarizes the estimated performance parameters.   However, it should be mentioned 

that due to a (mis-)implementation of the piping system, the actual performance is 

considerably less than indicated.  As shown in TABLE 2.8.1, the performance of the 2-K 

system (if implemented properly) has a COPINV of about 3400 W/W and a Carnot 

efficiency of about 5%. 

TABLE 2.8.1 – JLab CTF Estimated 2-K Performance 

2-K Load 
  Temperature 2.09[K] 
  Pressure 0.040[atm] 
  Heat Load 140[W] 
  Mass flow 9.0[g/s] 
  Effective latent heat 15.5[J/g] 
  Exergy 24.5 [kW] 
4.5-K Liquefier System   
Compressors    
  Input power 270[kW] 
LN System    
  Mass flow 6.8[g/s] 
  Carnot efficiency 35.0%[-] 
  Equivalent input power 13.4[kW] 
Sub-Total 284 [kW] 
Vacuum Pumping System   
  Pressure ratio 42.8[-] 
  Isothermal efficiency 14.2%[-] 
  Input power 149 [kW] 
2-K Compressor System   
  Pressure ratio 13.8[-] 
  Isothermal efficiency 38.0%[-] 
  Input power 38.9 [kW] 
Overall 2-K System   
  Total input power 471 [kW] 
  COPINV 3368[W/W] 
  Carnot efficiency 5.2%[-] 
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3. PROCESS MODEL SIMULATION 

 

3.1 Model Simulation, Format and Parameters 

Microsoft Excel and Visual Basic were chosen as the software to perform the 

process calculations.  The fluid property routines are designed to be accessed as function 

calls from the worksheets.  The Visual Basic routines written (see APPENDIX D for 

code outlines), which are available from the author, include the heat exchanger integrated 

cooling curve (for variable specific heat) analysis for calculating the: 

(i) UA and NTU’s given inlet process conditions, pressure drops, heat in-leak 

and either warm-end or cold-end stream temperature difference. 

(ii) Outlet temperatures given inlet process conditions, pressure drops, heat in-

leak and either UA, NTU’s or effectiveness. 

(iii) Maximum possible duty given the inlet process conditions, pressure drops 

and heat in-leak. 

(iv) Common inlet or outlet temperature for a multi-stream heat exchanger 

(since these streams, although at the same temperature, may be at differing 

pressures). 

The structure of each process calculation sheet is set-up in a grid format, and 

called a process stream matrix.  That is, each process state point is designated by two 

indices.  The first is the stream name; e.g., ‘h’ for the high pressure stream to be cooled, 

‘l’ for the sub-atmospheric stream from the 2-K load, ‘N’ for nitrogen (where LN pre-

cooling is used), etc.  The second index is the ‘temperature level’ (T.L.) number, where 

an increasing temperature level number indicates a decreasing temperature.  So, in 
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general for the process stream matrix, moving from top to bottom represents a decreasing 

temperature, and moving from right to left represents an increasing pressure.  Each 

calculation sheet also has areas for the pertinent parameters and inputs for each 

component (load, heat exchanger, vacuum pumping system, compressor, etc.), the exergy 

usage, and model energy and exergy balance checks. 

The following are the parameters common to all model configurations to be 

discussed (some of which have not been mentioned previously); refer to APPENDIX E 

for a complete list of parameters. 

(1) High pressure stream total pressure drop equal to 0.35 atm.  The 

distribution of this pressure drop is proportional to the heat exchanger 

NTU’s. 

(2) 2-K system compressor suction pressure (and vacuum pumping system 

discharge pressure) equal to 1.05 atm. 

(3) 2-K system compressor suction and discharge temperature as well as 

vacuum pumping system discharge temperature equal to 300 K. 

(4) 2-K system compressor and vacuum pumping system motor efficiencies 

equal to 90%. 

(5) 5 NTU’s are used for the coldest heat exchanger, except for configuration 

C2-B. 

(6) LN pre-cooling system Carnot efficiency equal to 35%. 

Even though the primary focus of study is a 2-K helium refrigerator requiring a 

few grams per second of 4.5-K liquefaction make-up flow, in order to be consistent for 

comparison of the parameters in the study, all the analyses presented assume a total 
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return flow of 12 g/s at 0.0310 atm (i.e., 2.0 K).  As such, there will be cases where the 

make-up flow is greater than 2 to 3 g/s.  APPENDIX E is a complete list of the 

parameters and nomenclature used on the process sheets. 

 

3.2 Model Methodology and Checks 

 Each model configuration has three types of energy balance checks that are 

verified to be within an acceptable fractional error of tolerance; typically 1x10-8.  The 

first is that both the ‘hot’ and ‘cold’ heat exchanger stream duties are verified to be equal.  

Second, a control volume energy balance check is performed and verified to be zero.  

Third, an energy balance check between each temperature level and the load is 

performed.  This involves balancing the enthalpy flux, heat input and work output from 

that temperature level to the highest (coldest) temperature level number.  Also, an exergy 

check is performed between each temperature level and the load, involving balancing the 

exergy flux, and exergy losses (irreversibilities) from that temperature level to the highest 

(coldest) temperature level. 

 

3.3 Model Configuration C2-A 

Configuration C2-A [28] (FIGURE 3.3) consists of two heat exchangers, labeled 

HX-1 and HX-2.  The refrigeration of the sub-atmospheric helium flow, returning from 

the 2-K load, is recovered using the heat exchangers to nearly ambient temperature, 

warmed to 300 K using the ambient vaporizer and then compressed to atmospheric 

pressure (also referred to as ‘slightly positive pressure’) by the vacuum pumping system.  

A portion of the atmospheric helium flow is diverted to the 4.5-K plant, with the 
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remaining flow compressed by the (2-K system) compressor (labeled RSC).  Note that 

this compressor system is handling flow from the 2-K load and is not the same as the 

compressor system integrated into the 4.5-K helium liquefier system.  The super-critical 

4.5 K helium from the 4.5-K plant is injected between the two heat exchangers and 

downstream of JT-1. 

 

FIGURE 3.3 – Configuration C2-A 

 By diverting a portion of the flow compressed by the vacuum pumping system to 

the 4.5-K plant, a flow imbalance is created in HX-1.  As mentioned previously, this flow 

imbalance (or flow ratio) is one of the key varied parameters.  This flow imbalance serves 

to compensate for losses due to finite heat exchanger size, the higher heat capacity of the 

high pressure stream and the heat in-leaks.  For every case, the length of HX-2 is fixed at 

5 NTU’s.  In general, the temperature upstream of the 4.5-K plant injection may be 

considerably higher than 4.5 K.  Also, note that the throttling across JT-1 will often result 
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in a warmer temperature since the process conditions will usually result in a negative 

Joule-Thompson coefficient.  

 

3.4 Model Configuration C2-A-p 

Configuration C2-A-p [28] (FIGURE 3.4) is similar to configuration C2-A except 

that it uses liquid nitrogen (LN) to pre-cool the high-pressure stream, then sends the 80-K 

(instead of 300-K) helium into the 4.5-K plant.  HX-1 recovers a portion of the sub-

atmospheric flow refrigeration and the saturated nitrogen vapor sensible heat.  HX-2 is 

the LN boiler.  So, ignoring HX-1 and HX-2 (and the liquid nitrogen), configuration C2-

A-p would diagrammatically look just like C2-A.  Note that the 80-K high pressure 

helium is throttled before going to the 4.5-K plant.  This is a practical consequence of the 

difficulty in matching the pressures of the 2-K cold box and 4.5-K plant high-pressure 

streams (of which, the 4.5-K plant high pressure stream will usually be at a higher 

pressure).  The Carnot efficiency of the 4.5-K plant was increased by 1% (from 10% used 

on other configurations without LN pre-cooling, to 11%) as a consequence of the cooling 

provided by the 80-K helium sent to the 4.5-K plant.  Refer to APPENDIX F for the 

method used to estimate this increase. 

Obviously, at some (lower) flow ratio, the use of LN is not necessary.  The 

performance of this process configuration was not studied below this point.  It is 

important to mention that all configurations require purification of the sub-atmospheric 

flow.  This can be easily integrated into the C2-A-p process as compared to the others.  
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FIGURE 3.4 – Configuration C2-A-p 

3.5 Model Configuration C2-B 

Configuration C2-B [28], as shown in FIGURE 3.5, is similar to C2-A except that 

the coldest heat exchanger is sub-divided into HX-2A and HX-2B, where the high-

pressure flow is recycled through HX-2A/B to take advantage of the real fluid specific 

heat difference between the high and sub-atmospheric pressure streams.  Unlike HX-1, 

for a good portion of HX-2A/B, the specific heat of the high pressure stream is less than 

the sub-atmospheric stream.  Note that the cold injection from JT-1 and the 4.5-K plant 

injection are switched, depending upon whether the high pressure stream (‘h’) enthalpy 

out of HX-2B is less than or more than the enthalpy from the 4.5-K plant (which is 
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fixed).  The length of HX-2A/B is not fixed at 5 NTU’s, since this would over-constrain 

the problem.  Rather, the NTU’s of HX-2A plus HX-2B are prohibited from exceeding 5 

NTU’s, while the total heat exchanger NTU’s (for HX-1, HX-2A and HX-2B) are 

required to be as specified (i.e., recall that the total heat exchanger NTU’s is a varied 

process parameter). 

 

FIGURE 3.5 – Configuration C2-B 
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4. PROCESS MODEL RESULTS 

 

4.1 Optimal Performance 

FIGURES 4.1.1 to 4.1.6 [28] present the results of the ideal and real COPINV’s, for 

the three configurations shown in FIGURES 3.3, 3.4 and 3.5.  The COPINV’s in these 

figures are for the varying flow ratios (labeled ξhl) at a supply pressure of 12 atm, and for 

20, 25, 30, 35, 40 and 45 total heat exchanger NTU’s.  Though not presented, 

calculations were also made for supply pressures of 6, 9, 15 and 18 atm, in order to 

determine values yielding optimal performance.  The results at other supply pressures are 

quite similar in their nature and trend to those presented, in that the COPINV increases 

very quickly for flow ratios greater than the optimum flow ratio (which yields the 

minimum COPINV), but increases only gradually for flow ratios less than the optimum.  

For configurations C2-A and C2-A-p, the ‘knees’ of the (constant NTU) curves are 

sharper than are those for configuration C2-B. 

FIGURES 4.1.7 to 4.1.9 [28] and TABLES 4.1.7 to 4.1.12 present the optimum 

(minimum) ideal COPINV’s and their associated flow ratio values vs. the total heat 

exchanger NTU’s at various supply pressures (labeled ph,1) for configurations C2-A, C2-

B and C2-A-p, respectively.  FIGURES 4.1.10 to 4.1.12 [28] and TABLES 4.1.13 to 

4.1.18 present similar data but for the optimum (minimum) real COPINV.  Overall, the 

general and optimum performances of all three configurations are quite similar and 

relatively close.  However, it should be noticed that the optimum real COPINV’s for 

configuration C2-A-p are less than C2-A (and C2-B), but the optimum ideal COPINV’s for 

C2-A-p are greater than C2-A (and C2-B). 
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FIGURE 4.1.1 – C2-A Ideal COPINV vs. Flow Ratio (ξhl) 
 

 

FIGURE 4.1.2 – C2-A-p Ideal COPINV vs. Flow Ratio (ξhl) 
 

 

FIGURE 4.1.3 – C2-B Ideal COPINV vs. Flow Ratio (ξhl) 
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FIGURE 4.1.4 – C2-A Real COPINV vs. Flow Ratio (ξhl) 
 

 

FIGURE 4.1.5 – C2-A-p Real COPINV vs. Flow Ratio (ξhl) 
 

 

FIGURE 4.1.6 – C2-B Real COPINV vs. Flow Ratio (ξhl) 
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FIGURE 4.1.7 – C2-A Minimum Ideal COPINV vs. Total NTU’s 
 

 

FIGURE 4.1.8 – C2-A-p Minimum Ideal COPINV vs. Total NTU’s 
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FIGURE 4.1.9 – C2-B Minimum Ideal COPINV vs. Total NTU’s 
 

TABLE 4.1.7 – C2-A Minimum Ideal COPINV vs. Total NTU’s 

C2-A COPINV @ ph,1 = 
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 284.9 283.4 285.6 289.2 293.2 
25 267.8 266.6 268.8 272.2 276.8 
30 258.2 256.7 259.1 262.7 267.3 
35 252.8 251.3 253.6 257.4 261.2 
40 249.5 247.3 249.6 253.5 257.6 
45 247.7 245.3 247.8 251.6 255.5 

 

This is explained by recalling that the 4.5-K plant Carnot efficiency is higher for 

configuration C2-A-p, resulting in a lower real COPINV (as compared to configurations 

C2-A and C2-B).  Likewise, the exergy loss due to throttling the high pressure 80K 

stream from the 2-K cold box into the 4.5-K plant results in a higher ideal COPINV for 

configuration C2-B (as compared to configurations C2-A and C2-A-p).   



 35

TABLE 4.1.8 – C2-A Flow Ratio (ξhl ) at Minimum Ideal COPINV 

C2-A ξhl @ ph,1 =  
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 59% 62% 64% 65% 65% 
25 65% 68% 70% 71% 72% 
30 68% 72% 74% 75% 75% 
35 70% 74% 76% 77% 78% 
40 72% 76% 78% 79% 80% 
45 73% 77% 79% 81% 81% 

 

TABLE 4.1.9 – C2-A-p Minimum Ideal COPINV vs. Total NTU’s 

C2-A-p COPINV @ ph,1 = 
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 317.3 325.1 332.2 338.8 345.0 
25 291.8 296.2 302.0 307.8 313.9 
30 277.1 280.5 285.4 290.8 296.7 
35 269.0 272.0 276.6 281.7 287.5 
40 264.6 266.7 271.3 276.5 281.9 
45 264.4 264.1 268.7 273.4 279.2 

 

TABLE 4.1.10 – C2-A-p Flow Ratio (ξhl ) at Minimum Ideal COPINV 

C2-A-p ξhl @ ph,1 =  
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 48% 51% 52% 53% 53% 
25 59% 63% 64% 65% 66% 
30 65% 69% 71% 72% 73% 
35 68% 72% 75% 76% 77% 
40 70% 75% 77% 78% 79% 
45 73% 76% 78% 80% 81% 
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TABLE 4.1.11 – C2-B Minimum Ideal COPINV vs. Total NTU’s 

C2-B COPINV @ ph,1 = 
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 284.3 285.1 288.8 293.4 297.9 
25 269.2 269.5 272.9 277.2 281.8 
30 260.4 260.1 263.1 267.3 272.3 
35 254.9 254.1 257.3 261.6 266.3 
40 251.8 250.8 253.8 257.9 262.7 
45 250.1 248.3 251.2 255.0 261.1 

 

TABLE 4.1.12 – C2-B Flow Ratio (ξhl ) at Minimum Ideal COPINV 

C2-B ξhl @ ph,1 =  
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 63% 65% 66% 67% 66% 
25 67% 70% 71% 71% 71% 
30 69% 73% 74% 75% 75% 
35 71% 75% 77% 78% 78% 
40 73% 77% 78% 79% 80% 
45 74% 78% 80% 81% 81% 
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FIGURE 4.1.10 – C2-A Minimum Real COPINV vs. Total NTU’s 
 

 

FIGURE 4.1.11 – C2-A-p Minimum Real COPINV vs. Total NTU’s 



 38

 

FIGURE 4.1.12 – C2-B Minimum Real COPINV vs. Total NTU’s 
 

TABLE 4.1.13 – C2-A Minimum Real COPINV vs. Total NTU’s 

C2-A COPINV @ ph,1 = 
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 2327 2240 2221 2230 2266 
25 2130 2038 2014 2024 2056 
30 2021 1925 1900 1908 1936 
35 1953 1851 1824 1830 1866 
40 1913 1810 1781 1786 1815 
45 1888 1778 1747 1751 1787 
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TABLE 4.1.14 – C2-A Flow Ratio (ξhl ) at Minimum Real COPINV 

C2-A ξhl @ ph,1 =  
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 59% 63% 64% 65% 65% 
25 65% 69% 71% 72% 72% 
30 69% 73% 74% 75% 76% 
35 71% 75% 77% 78% 78% 
40 72% 76% 78% 80% 80% 
45 73% 78% 80% 81% 81% 

 

TABLE 4.1.15 – C2-A-p Minimum Real COPINV vs. Total NTU’s 

C2-A-p COPINV @ ph,1 = 
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 2326 2314 2329 2365 2420 
25 2070 2021 2021 2050 2102 
30 1922 1866 1860 1882 1928 
35 1841 1777 1769 1790 1833 
40 1794 1726 1718 1739 1780 
45 1774 1698 1686 1704 1746 

 

TABLE 4.1.16 – C2-A-p Flow Ratio (ξhl ) at Minimum Real COPINV 

C2-A-p ξhl @ ph,1 =  
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 49% 52% 53% 53% 54% 
25 59% 63% 65% 66% 66% 
30 65% 69% 71% 73% 73% 
35 69% 73% 75% 76% 77% 
40 71% 75% 77% 79% 79% 
45 73% 77% 79% 80% 81% 
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TABLE 4.1.17 – C2-B Minimum Real COPINV vs. Total NTU’s 

C2-B COPINV @ ph,1 = 
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 2278 2214 2208 2229 2270 
25 2114 2041 2029 2047 2086 
30 2016 1935 1920 1934 1972 
35 1956 1867 1848 1860 1896 
40 1918 1822 1799 1810 1850 
45 1895 1792 1766 1775 1813 

 

TABLE 4.1.18 – C2-B Flow Ratio (ξhl ) at Minimum Real COPINV 

C2-B ξhl @ ph,1 =  
Total 
Ntu's 

6 9 12 15 18 
[atm] [atm] [atm] [atm] [atm] 

20 64% 67% 68% 69% 69% 
25 68% 71% 73% 73% 73% 
30 71% 74% 76% 76% 77% 
35 73% 76% 77% 78% 79% 
40 74% 77% 79% 80% 81% 
45 74% 78% 80% 81% 82% 

 

The difference between the optimum real COPINV’s for configurations C2-A and 

C2-A-p indicates the sensitivity of the 4.5-K liquefier system Carnot efficiency (on the 

real process).  For instance, at a supply pressure of 12 atm and for total heat exchanger 

NTU’s of 40, the fractional difference between the real COPINV’s of the two 

configurations is about 3.5% for a 10% fractional difference in 4.5-K liquefier system 

Carnot efficiency. 

So, for (reasonable) heat exchanger sizes above 30 total NTU’s and supply 

pressures greater than 9 atm, the optimum flow ratio is roughly 70 to 80% with a 

corresponding ideal COPINV of 250 to 300 W/W and real COPINV of 1750 to 1950 W/W.  

The process performance at the optimum flow ratio and 45 NTU’s was a real COPINV of 



 41

roughly 1750 W/W for configurations C2-A and C2-B and a real COPINV of roughly 1690 

W/W for configuration C2-A-p.  The optimum process performance (i.e., minimum 

COPINV) is primarily governed by the total number of heat exchanger NTU’s and 

secondly by the supply pressure.  An increase in total heat exchanger NTU’s always 

increases the process performance. 

For the ideal process at the optimum flow ratio, a supply pressure of either 9 or 6 

atm always yielded better performance as compared to a supply pressure of 15 or 18 atm.  

For the real process at the optimum flow ratio, a supply pressure of 12 atm always 

yielded better performance as compared to a supply pressure of 18 or 6 atm.  The reason 

for the more favorable real process performance at a supply pressure of 12 atm, rather 

than the optimal and lower supply pressure of 9 or 6 atm for the ideal process, is that the 

real process optimal flow ratio was slightly higher.  This can be explained by recalling 

that the 4.5-K plant holds a larger influence on the real process efficiency than the 

compressor.  The 4.5-K plant input power is directly related to one minus the flow ratio; 

and the compressor input power is directly related to the supply pressure.  Keeping in 

mind that the real and ideal process optimums are not far from each other, at these close 

proximities the higher flow ratio is more influential on the real process, and the lower 

supply pressure is more influential on the ideal process. 

APPENDIX G presents the process sheet calculations for the real process 

optimum flow ratio with a total of heat exchanger size of 40 NTU’s and at a supply 

pressure of 12 atm. 
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4.2 General Results 

FIGURES 4.2.1 to 4.2.3 show the distribution of the availability (exergy) given to 

the 2-K cold box for configurations C2-A, C2-A-p and C2-B at the minimum real COPINV 

with total heat exchanger NTU’s of 40 and at a supply pressure of 12 atm.  These show 

that the exergy (usefully) used by the 2-K load is roughly 60% of the total availability to 

the 2-K cold box for configurations C2-A and C2-B and roughly 55% of the total 

availability to the 2-K cold box for configuration C2-A-p.  Unsurprisingly, the major loss 

component (for the 2-K cold box) is the warm(er) heat exchanger that is imbalanced (i.e., 

HX-1 in configurations C2-A and C2-B and HX-3 in configuration C2-A-p). 

 

FIGURE 4.2.1 – C2-A Availability Given to the 2-K Cold Box 
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FIGURE 4.2.2 – C2-A-p Availability Given to the 2-K Cold Box 

 

FIGURE 4.2.3 – C2-B Availability Given to the 2-K Cold Box 
 

FIGURES 4.2.4 to 4.2.6 show the distribution of the real process input power 

usage (useful and non-useful) for configurations C2-A, C2-A-p and C2-B at the 

minimum real COPINV with total heat exchanger NTU’s of 40 and at a supply pressure of 
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12 atm.  These show that the portion of input power actually (usefully) used by the 2-K 

load is roughly 8%.  In the case of configuration C2-A, the components comprising the 

major loss (i.e., un-useful usage of input power) are the vacuum pumping system at 

roughly 44%, the 4.5-K plant at roughly 37%, the compressor system at roughly 5%, and 

then the 2-K cold box (labeled 2-K CBX) comprising the balance of roughly 6%.  Losses 

for configuration C2-B are similar.  

 

FIGURE 4.2.4 – C2-A Real Process Input Power Usage 
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FIGURE 4.2.5 – C2-A-p Real Process Input Power Usage 
 

 

FIGURE 4.2.6 – C2-B Real Process Input Power Usage 

The 2-K cold box loss is higher for configuration C2-A-p (roughly 9% as 

compared to about 6% for C2-A and C2-B) due to LN system and JT-3 losses.  However, 

recall that the real COPINV of configuration C2-A-p is higher than C2-A or C2-B due to 
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the higher 4.5-K plant Carnot efficiency (despite the flow ratio at the optimum 

performance being less). 

FIGURES 4.2.7 and 4.2.8 present the cooling curves for configuration C2-A at 

the real process optimal flow ratio (78%) with total heat exchanger NTU’s of 40 and at a 

supply pressure of 12 atm.  As opposed to the typical constant fluid specific heat 

assumption (used in engineering heat exchanger analysis), these clearly show the non-

constant behavior of the real fluid.  TABLE 4.2 presents the distribution of exergy loss 

for these heat exchangers [27]. 

 

FIGURE 4.2.7 – C2-A HX-1 Cooling Curve 
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FIGURE 4.2.8 – C2-A HX-2 Cooling Curve 
 

TABLE 4.2 – C2-A HX-1 and HX-2 Exergy Loss Distribution 

  HX-1 HX-2 
Total Exergy Loss  [kW] 13.08 3.71 
Loss Due to Temperature Difference [-] 50.8% 66.3% 
Loss Due to Pressure Drop [-] 14.4% 6.1% 
Loss Due to Heat In-Leak [-] 34.9% 27.2% 

 

In FIGURE 4.2.7 (for HX-1) the range where the high pressure (labeled HP) 

stream capacity is greater than the sub-atmospheric (labeled LP) stream capacity is 

between (roughly) 13 to 7.5 K (for the HP stream), with the peak high pressure stream 

capacity at around 9 K.  The high pressure stream capacity is less than the sub-

atmospheric stream capacity for most of the heat exchanger length, but this is due to the 

flow imbalance.  Also, as one would expect, the sub-atmospheric stream capacity is 

nearly constant (for a very low pressure gas).  Notice that this cooling curve has two 

inflection points. 
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In FIGURE 4.2.8 (for HX-2) even though both high pressure and sub-atmospheric 

stream mass flow rates are equal, the high pressure stream capacity is less than the sub-

atmospheric stream for most of the heat exchanger length; except at the ends.  This 

accentuates the motivation for studying configuration C2-B.  Also, notice that this 

cooling curve has two inflection points. 

For configuration C2-B, it is worth noting that even though recycling the high-

pressure flow through JT-1 (referring to FIGURE 3.5) back through HX-2 reduces the 

total heat exchanger exergy loss by increasing the high pressure stream capacity, the 

throttling through JT-1 (at a lower temperature) costs more exergy than was saved. 

For configurations C2-A and C2-B, the sub-atmospheric stream temperature 

exiting the warmest heat exchanger (i.e., HX-1) is still quite cold (say roughly 240 K) and 

as such the ambient air vaporizer duty is roughly 25% of HX-1’s duty (see FIGURES 3.3 

to 3.5).  However, the exergy loss in the ambient air vaporizer (labeled VAP) is not 

significant (i.e., roughly, 0.1% of real process losses and 1% of ideal process losses).  

The reason for this becomes more apparent when studying a temperature-exergy plot [3].  

The slope on such a plot goes from infinite (i.e., a vertical line) to approximately minus 

10 K/(kJ/g) between 300 and 100 K.  So, in this temperature range, although there is a 

significant enthalpy change, there is a minimal change in availability.  Note that this is 

not a real fluid effect, rather it is a consequence of the second law of thermodynamics on 

the ideal gas behavior of the real fluid [27].  The requirement for the ambient air 

vaporizer is for the protection of the vacuum pumping system from low temperatures. 
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4.3 Practical Consideration of Results 

At this point, it is important to caution the process engineer in using this 

information in an actual application.  This study has assumed (for the purposes of 

generality and understanding of process behavior) that the 4.5-K liquefier, compressor 

and vacuum pumping systems are available in a continuum of capacities.  Of course, this 

is not the case, as these are only available in specific sizes.  That being so, this 

information is intended for the process engineer (rather than the applications engineer) so 

that process modeling and evaluation may proceed in an informed and efficient manner. 

Additionally, the following should be mentioned to clarify this study’s intended 

end objective: 

(2) Commercially available vacuum pumping systems require some 

modifications to compensate for helium’s high heat of compression.  This 

involves oil injection modifications not typically supplied or known to the 

vacuum pump manufacturers, and proper oil cooler sizing.  These systems 

typically consist of a roots (lobe)-blower and either a liquid ring pump or a 

rotary-vane pump [24]. 

(3) Commercially available compression systems also require some 

modifications to compensate for helium’s high heat of compression [20, 

29].  For present day applications, these systems are typically oil-flooded 

rotary screw compressors.  These compressors have originally been 

designed for environmental refrigeration, using common refrigerants (such 

as R-22 or R-134a).  As such, although the specific details are very 

different, the same kind of modifications required for the vacuum 
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pumping systems are also necessary for the commercial compression 

systems.  Again, many of these modifications are not typically supplied or 

known by manufacturers. 

(4) Although not part of this study, the importance of a proper oil removal 

system cannot be emphasized enough.  This includes bulk oil removal on 

the vacuum pumping systems and compression systems, as well as oil mist 

removal (by several stages of coalescers) and oil vapor removal (by 

activated carbon) [3].  Any fluid impurities (oil vapor, air, etc.) left in the 

circulating helium will freeze in the 4.5-K and 2-K plants.  A proper oil 

removal system is a relatively simple sub-system to design and fabricate, 

as compared to the cryogenic and rotating machinery sub-systems, but is 

quite often inadequately designed (in most present day applications). 

(5) Proper mechanical design to minimize the risk of air leaks into the sub-

atmospheric process stream(s) is crucial.  This includes the use of a guard 

vacuum, proper helium mass-spectrometer testing during fabrication and 

proper selection of mechanical joints and seals.  In this regard, oil-flooded 

vacuum pumping and compression equipment serve two purposes in 

dealing with helium’s high heat of compression and sealing.  Guard 

vacuum, as it is known in the field, is a vacuum placed in between an air 

seal and another sub-atmospheric process stream seal.  The guard vacuum 

is at a lower pressure than the sub-atmospheric process pressure. 

(6) A reoccurring theme in all the 2-K system literature review was problems 

with air leaks.  As a matter of practice, such leaks will happen, regardless 
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of the stringency of testing and robustness of the mechanical design.  

Therefore, for a practical process design it is prudent to assume that air 

leaks will be present at some low (ppm) level with occasionally high 

levels.  The practical process design that incorporates continuous 

purification (i.e., removal of air contamination) will be capable of 

significantly longer operating periods between complete warm-ups.  An 

integrated helium purifier system, to remove air contamination (from the 

helium) on the order of ‘parts-per-million’ (ppm), will greatly extend the 

4.5-K plant and 2-K cold box warm-up (to ambient temperature) cycle 

intervals.  A helium purifier is highly desirable in these small 2-K systems, 

which use warm vacuum pumps that may be required to run for extended 

periods. 

As a constructive example using the results presented, consider the following: 

(a) Specified:  2-K load of 174 W 

(b) Select configuration C2-A-p. 

(c) Select a supply pressure (to the 2-K cold box) of 12 atm. 

(d) Select a total heat exchanger size of 40 NTU’s 

(e) Read from FIGURE 4.1.11; at 40 NTU’s, the optimum flow ratio of 77% 

yields a real COPINV of about 1720 W/W. 

(f) Assume (for all cases) the enthalpy difference supplied to the load (i.e., 

the effective latent heat) is about 20 J/g. 

(g) Calculate a total refrigeration flow (from the load, to the VPS) = 174 [W] / 

20 [J/g] = 8.7 g/s. 
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(h) Calculate the required make-up flow from the commercial 4.5-K liquefier 

system = (1 – 0.77)*8.7 [g/s] = 2.0 g/s. 

(i) Calculate the total input power required = 1720 [W/W]*174 [W] / 1000 

[W/kW] = 300 kW. 
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5. CONCLUSIONS 

 

The proposed study goals set forth were achieved, that is; 

(1) Three possible 2-K process configurations were identified. 

(2) The key process parameters of flow ratio, total heat exchanger NTU’s and 

supply pressure to the 2-K cold box were established. 

(3) The influence of these key process parameter choices on the overall 

performance of the proposed 2-K system configurations was studied. 

With this accomplished, a process design basis for a small 2-K refrigeration 

recovery unit working in conjunction with a commercially available 4.5-K liquefier 

system, vacuum pumping system and compression system has been established.   

In addition, there are a number of important observations to be made from the 

results previously presented. 

(1) An ideal COPINV of about 250 W/W and a real COPINV of about 1800 

W/W appears achievable for a 2-K refrigeration-recovery process, 

operating in conjunction with a small commercially available 4.5-K 

liquefier system with a 10% Carnot efficiency.  This is about 2.8 times 

less than the ideal COPINV for direct vacuum pumping, and about 3.6 times 

less than the real COPINV for direct vacuum pumping (without a cold-end 

heat exchanger), but still 2.0 times greater than the real COPINV for a large 

efficient 2-K process utilizing cold compressors. 

(2) As previously mentioned, for a practical 2-K system it is imperative to 

incorporate purification to remove air (leak) contamination.  In this regard, 
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configuration C2-A-p lends itself most readily to a simpler integration of 

flow purification (though not explicitly shown in FIGURE 3.4) as 

compared to C2-A and C2-B.  The latter require separate purification units 

to process either the full flow or make-up flow to the 4.5-K plant.  The 

process engineer should take heed of a purification capability that is built 

into the small 4.5-K liquefier systems, as it is typically either inadequate 

or will seriously reduce the plant capacity during purification.  However, 

in configuration C2-A-p, purification of the entire flow stream (rather than 

just the make-up) is easily accomplished by incorporating carbon beds in 

the high pressure stream just after the flow  leaves the LN boiler (i.e., HX-

2 in FIGURE 3.4).  Also, by using LN pre-cooling, warm-end heat 

exchanger (HX-1 in FIGURE 3.4) under-performance (due to flow mal-

distribution and/or being under-sized) can be eliminated or greatly reduced 

in exchange for additional LN consumption.    This is an unpublished but 

extremely common problem in most cryogenic helium systems (that use 

LN pre-cooling).  As can be easily verified, generally, additional LN usage 

is less costly to the overall process performance than allowing the warm-

end heat exchanger under-performance to be carried to below 80 K, thus 

reducing system capacity. 

(3) For configuration C2-B, the blunter ‘knees’ in the curves shown in 

FIGURES 4.1.3 and 4.1.6 may provide a more stable process for designs 

with lower total heat exchanger sizes (say, 20 NTU’s and less), despite its 

greater complexity. 
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(4) The author acknowledges that the Carnot efficiency used for the LN 

system and the 4.5-K plant are site/project specific.  As such, this analysis 

can be easily re-performed for site/project specific efficiency values.   

(5) The influence of a small variation in the 4.5-K liquefier system Carnot 

efficiency was shown to have an even smaller influence on the real 

process overall performance. 

In summary, the process performance for handling a 2-K load on the order of 100 

W (i.e., about 2 g/s of make-up from the 4.5-K liquefier system) can be significantly 

increased over direct vacuum pumping by employing one of the process configurations 

studied.  The general advantage of these configurations is in the straightforward 

integration of these distinct and separate (sub-)systems (i.e., a 2-K cold box and 

commercially available 4.5-K helium liquefier system, vacuum pumping system and 

compressor system). 

Finally, some recommendations for further study are suggested as follows: 

(i) Characterization of isothermal efficiency (with respect to pressure ratio) 

for various vacuum pumping systems.  This would hopefully lead to a 

classification of pumping systems to use for various flow ranges and 

methods to improve the efficiency of these systems. 

(ii) Testing of alternate heat exchanger designs that are less expensive than 

brazed-aluminum plate fin heat exchangers but easier to manufacture and 

have less (sub-atmospheric stream) pressure drop than the spiral-wound 

finned-tubing ‘pancake’ type [5-8]. 
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Selected 4.5-K Helium Liquefier Performance Data 

 wL ΕL PT ηC 
 [g/s] [kW] [kW] [-] 
GM Cryocooler 0.014 0.0952 19.5 0.5% 
Linde 1600 1.97 13.6 124 10.9% 
Linde 1600 (Mod) 2.10 14.5 129 11.3% 
Linde 2200 (Mod) 3.92 27.1 206 13.2% 
CTF (Koch 2200) 5.35 37.0 307 12.0% 
CTI/Helix 1500W 11.0 76.0 807 9.4% 
SSC ASST-A 34.1 235.9 1582 14.9% 
     
Nomenclature:     
wL - net helium liquefaction flow [g/s]   
ΔεL - specific exergy for 4.5-K liquefaction = 6.91 [kJ/g] 
EL - load Carnot (reversible) input power [kW], = wL*ΔεL 
wLN - nitrogen mass flow [g/s], 1.3 [gph / (g/s)] or 4.9 [lph / (g/s)] 
ηLN - LN equivalent efficiency [-], = 35% (assumed in this study) 
ΔεLN - specific exergy for LN cooling, = 0.70 [kJ/g] 
ELN - LN cooling Carnot input power [kW], = ΔεLN*wLN 
PLN - equivalent input power for LN [kW], = ΕLN / ηLN 
Pm – total input electrical power [kW]   
PT - total input power (including LN) [kW], = Pm + PLN 
ηC - Carnot efficiency, = ΕL / PT  
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JLab CTF Kinney Vacuum Pump System Isothermal Efficiency Estimate 
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Data Used for RSC Isothermal Efficiency Characterization 
 

 pS pD pr ηi      
 [atm] [atm] [-] [-]  Nomenclature:   

Su
lla

ir
 - 

1st
 

St
ag

e 

1.04 2.47 2.375 55.8%  pS suction pressure  
1.04 3.06 2.942 59.4%  pD discharge pressure  
1.04 3.52 3.385 60.3%  pr pressure ratio = pD / pS 
1.04 4.02 3.865 59.1%  ηi isothermal efficiency 
1.06 4.54 4.283 58.2%      

          

H
ar

tfo
rd

 - 
LP

 
In

j. 

1.00 17.33 17.33 35.7%      
1.00 16.99 16.99 35.4%      
1.00 16.99 16.99 35.6%      
1.00 16.99 16.99 35.8%      
1.00 17.06 17.06 35.0%      

          

H
ar

tfo
rd

 - 
LP

 In
j. 1.05 17.33 16.52 36.8%      

1.10 17.33 15.78 37.5%      

1.10 17.33 15.78 37.3%      
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Visual Basic Code Outline for Heat Exchanger Cooling Curve Analyses 
And Process Sheet Calculation Outline 

 
Notes for process sheets: 
(i) Yellow background cells are inputs (specified or guessed). 
(ii) JT (throttling) valves are assumed to have zero heat leak (i.e., constant enthalpy 

process). 
(iii) Pressure field is completely specified (i.e., simultaneous solution of pressure and 

temperature fields is not required). 
(iv) SS means spread-sheet; VB means visual basic. 
 
C2-A Process Sheet (SS) 
• With Tl,5 specified (i.e., guessed) Th,3 calculated from HX performance routine (i.e., 

outlet temperature calculated based upon inlet conditions, pressure drops, heat in-leak 
and HX-1 NTU’s). 

• hh,5 calculated using (mixing) energy balance of hh,3 and 4.5-K plant enthalpy. 
• hh,6 calculated using energy balance of HX-2. 
• With the above calculated HX-2 NTU’s can be calculated. 
 
C2-A Solution Procedure Outline (VB) 
• For HX-1 NTU’s = 15 to 40 inc. 5 

• Set sub-atm stream HX Δp’s and heat in-leak distribution based upon HX NTU’s 
(including vaporizer) 

• For ph,1 = 6 to 18 inc. 3 atm. 
• Set Tl,5 = 3.25, ξhl = 40%, Δξhl = 0.01 
• Repeat 

• Repeat 
• Obtain Tl,5 (calc) – from HX performance routine (i.e., outlet temperature 

calculated based-upon inlet conditions, pressure drops, heat in-leak and 
HX-2 NTU’s). 

• Tl,5 (new) = λ* Tl,5 (calc) + (1-λ)* Tl,5 
• Iterate until specified tolerance achieved or max. no. iterations exceeded 
• If (calculated) heat load is < 0 then 

• ξhl = ξhl – Δξhl 
• Δξhl = α* Δξhl  (w/  α = 0.1) 

• Else 
• Record solution results 

• ξhl = ξhl + Δξhl 
• Iterate until (ξhl > max) or (Δξhl < min) 
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C2-A-p Process Sheet (SS) 
• Calculate Th,4 with ΔThN,4 specified and TN,3 known (i.e., saturated nitrogen vapor). 
• Calculate Tl,4 with ΔThl,4 specified. 
• HX-1 {i.e., HX-1(h) and HX-1(N)} and HX-2 NTU’s can be calculated with the 

above and specified ΔThl,1 and ΔThN,1. 
• hh,6 calculated using energy balance of HX-3 and specified hl,8. 
• hh,8 calculated using (mixing) energy balance of hh,6 and 4.5-K plant enthalpy. 
• hh,9 calculated using energy balance of HX-4 (i.e., load return enthalpy hl,9 is known 

and hl,8 is specified). 
• With the above calculated HX-3 and HX-4 NTU’s can be calculated. 
 
C2-A-p Solution Procedure Outline (VB) 
• For total HX NTU’s = 20 to 45 inc. 5 

• For ph,1 = 6 to 18 inc. 3 atm. 
• Set ΔThl,5, Tl,8 & ξhl to initial values (they vary w/ ph,1) 
• Set Δξhl = 0.01 
• Repeat 

• Call subroutine Match HX-1 NTU’s 
• If (calculated) heat load > 0 then record solution results 
• ξhl = ξhl - Δξhl 

• Iterate until (ξhl < min) or (error calculating TF) 
 
Subroutine  – Match HX-1 NTU’s 
• If required to match ΔThN,1 and ΔThl,1 then 

• Set ΔThN,1 = ΔThl,1 
• Call subroutine Calculate TF using reduced no. of iterations 
• Repeat 

• Use GoalSeek to set difference between HX-1(h) and HX-1(N) to zero by 
adjusting ΔThN,1 and using relaxation parameter. 

• Call subroutine Calculate TF  
• Iterate until specified tolerance achieved or max. no. iterations exceeded 
• Else 

• Call subroutine Calculate TF 
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Subroutine – Calculate TF 
• Repeat 

• Set HP and sub-atm stream HX Δp’s and heat in-leak distribution based upon HX 
NTU’s (including vaporizer) 

• Tl,8 (calc) – calculated from HX_Perf routine (i.e., outlet temperature calculated 
based-upon inlet conditions, pressure drops, heat in-leak and HX-4 NTU’s) 

• Using relaxation, Tl,8 (new) = λ2* Tl,8 (calc) + (1-λ2)* Tl,8 
• Tl,5 (calc) – from HX_Perf routine (i.e., outlet temperature calculated based-upon 

inlet conditions, pressure drops, heat in-leak and HX-4 NTU’s) 
• ΔThl,5 = Th,5 – Tl,5 
• Using relaxation, ΔThl,5 (new) = λ1* ΔThl,5 (calc) + (1-λ1)* ΔThl,5 

• Iterate until specified tolerance achieved or max. no. iterations exceeded 
 
C2-B Process Sheet (SS) 
• hh,7 and hhh,7 are calculated given ΔThl,7 (and load temperature Tl,7). 
• If (hh,7 < h4K,sup) then 

• 4.5-K plant injection between HX-1 and HX-2A 
• hh,7 injection between HX-2A and HX-2B 

• Else 
• hh,7 injection between HX-1 and HX-2A 
• 4.5-K plant injection between HX-2A and HX-2B 

• hl,6 calculated using energy balance on HX-2B 
• hl,4 calculated using energy balance on HX-2A/B 
• hl,2 calculated using energy balance on HX-1 
• With all the above calculated, all HX NTU’s can be calculated. 
 
C2-B Solution Procedure (VB) 
• For total HX NTU’s = 20 to 45 inc. 5 

• For ph,1 = 6 to 18 inc. 3 atm. 
• Set ΔThl,7 = 0.2, Δξhl = 0.01 
• Repeat 

• Set ξhl = 40% 
• Call subroutine Solve for Total No. HX NTU’s 
• If result not OK then 

• ξhl = ξhl – Δξhl 
• Δξhl = α* Δξhl  (w/  α = 0.1) 

• Else 
• Record solution results 

• ξhl = ξhl + Δξhl 
• Iterate until  (ξhl > max) or (Δξhl < min) 
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Subroutine – Solve for Total No. HX NTU’s 
• Set sub-atm stream HX Δp’s and heat in-leak distribution based upon HX NTU’s 

(including vaporizer). 
• Do specified no. of iterations: 

• Use GoalSeek to set difference between set total no. HX NTU’s and calculated no. 
HX NTU’s (from sheet) to zero by adjusting ΔThl,7 and using relaxation parameter. 

• If HX-2 NTU’s exceeds set maximum (of 5) then 
• Use GoalSeek to set difference between set HX-2 NTU’s and calculated no. 

HX-2 NTU’s (from sheet) to zero by adjusting ΔThl,7 and using relaxation 
parameter. 

• Set sub-atm stream HX Δp’s and heat in-leak distribution based upon HX NTU’s 
(including vaporizer). 

 
 
Function HX_T1 
 
Purpose: For HX’s with real fluids where the single unknown inlet or outlet 
temperature of a (multi-stream) HX consists of more than a single stream, the pressures 
and/or fluids of these (unknown temperature) streams are assumed to be different.  As 
such, they will have different enthalpies so that a direct solution (using an energy 
balance) is not possible.   Rather, an iterative solution is required.  By adjusting the 
unknown temperature to satisfy the HX overall energy balance the solution may be 
found. 
 
Background: 
Objective function (to find zero):  0 0T i iH m h H= ⋅ − =∑ &  
Where im&  is the mass flow rate (in [g/s]) of stream i and all hi’s (enthalpies [J/g] of 
stream i) are a function of a single unknown temperature T [K].  The enthalpy flux of all 
other known temperature HX streams is H0 [W].  It is important to be consistent with the 
signs (i.e., flow ‘in’ vs. ‘out’). 

For Newton’s method, the derivative of the objective function is,  ,
T

i p i
dH m C
dT

= ⋅∑ &  

Where ,p iC  is the specific heat at constant pressure of stream i (in [J/g-K]). 
 
Inputs: 
1. For unknown temperature streams: 
2. Fluid ID #’s. 
3. Mass flow rates, pressures. 
4. Initial temperature guess. 
5. Enthalpy flux of known temperature HX streams. 
 
Output: 
Stream temperature (T). 
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Outline: 
• Initially use Newton’s method but keep track of the sign of the objective function HT. 
• Flag when the solution has been bracketed (i.e., the sign of HT switches) 
• Check to see if solution is converging; i.e., 

• Abs(HT) < Abs(old HT) and, 
• If # iterations ≥ 10 also require (for a converging solution) that the ratio of the 

fractional tolerance (of T)  be L.T. max. allowed. 
• If # iterations ≥ 3 and (not converging) then 

• If bounded switch (from Newton’s method to) bi-section method 
• Else there is an error. 

• Iterate until (exceed max. # iterations) or (fraction tolerance of T < max.) 
 
Note: The motivation for switching from the Newton to bi-section method is to ensure 
that the solution will converge due to small discontinuities in the fluid enthalpy (as a 
result of fluid property routine ‘curve-fitting’).  Also, if the unknown temperature stream 
is two-phase, this routine will return the quality (since the temperature can be determined 
from the pressure). 
 
 
Function HX Anal 
 
Purpose: Calculate the (UA) and NTU’s of a real fluid (i.e., non-constant stream 
capacity) multiple stream (i.e., two or more streams) HX with all ‘hot’ streams at the 
same temperature and all ‘cold’ streams at the same temperature (i.e., two-temperature). 
 
Background: 
Consider a sub-division of a real fluid two-temperature multi-stream HX, over which the 
constant capacity assumption is to be applied: 

 
 
 
 
 
 
 
 

i 

i+1 

(h) (l) 
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If *
, 1R iC <  then ( ) ( )* *

,1i R in NTU Cθ = ⋅ −l  

If *
, 1R iC >  then ( )*

*
,

1 1i
R i

n NTU
C

θ
⎛ ⎞

= ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠

l  

If *
, 1R iC =  then * 1iθ =  (i.e., a balance HX) 

If *
,R iC = ∞  then ( )*

in NTUθ = −l  (i.e., a boiler) 
Where, 

,h iC  or ,l iC  [W/K] Stream (h) or (l) capacity at sub-division i 
*

,R iC  [-] As defined above 

Cmin [W/K] Minimum of ,h iC  or ,l iC  

,h ih  or ,l ih  [J/g] Enthalpy of (h) or (l) stream at sub-division i 

,h ihΔ  or ,l ihΔ   Enthalpy difference of (h) or (l) stream at sub-division i 

hm&  or lm&  [g/s] Mass flow rate (h) or (l) stream 
NTU [-] Number transfer units, as defined above 

,h iq  or ,l iq  [W] Duty of (h) or (l) stream at sub-division i 

,k iq  [W] Heat in-leak at sub-division i 

,h iT  or ,l iT  [K] Temperature of (h) or (l) stream at sub-division i 

,h iTΔ  or ,l iTΔ  [K] Temperature difference of (h) or (l) stream at sub-division i 

,hl iTΔ  [K] Difference between ,h iT  and ,l iT  
(UA) [W/K] Net thermal rating, as defined above 

*
iθ  [-] As defined above 
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Note: These equations precisely match the HX overall and sub-division energy 
balances; also, that qk,i is the heat in-leak (for the sub-division) and is part of the ‘hot’ 
stream (h) duty.    
 
Inputs: 
1. Number of HX sub-divisions. 
2. Number of ‘hot’ (h) streams. 
3. Number of ‘cold’ (l) streams. 
4. (h) stream inlet temperature. 
5. (l) stream inlet temperature. 
6. Either warm-end or cold-end stream temperature difference. 
7. Heat in-leak. 
8. If it is a boiler. 
9. Stream fluid ID #’s, mass flow rates, inlet pressures and pressure drops. 
 
Note: Two type of sub-division ‘temperature steps’ are allowed; either constant 
enthalpy (step) or constant enthalpy ratio (step).  The ‘pressure step’ and the heat in-leak 
distribution will match the temperature step type.  Enthalpy is used instead of 
temperature in order to accommodate the possibility of a phase change. 
 
Output: 
Outlet temperatures, total duty, (UA), NTU’s. 
 
Outline: 
• Solve for unknown temperature (i.e., (h) outlet if warm-end temperature difference 

given and (l) outlet if cold-end temperature difference is given). 
• Start at HX warm-end and successively solve for (l) stream outlet temperature (using 

routine HX_T1) for each sub-division using the sub-division energy balance and 
integrating (summing) the duty, (UA) and NTU’s. 

 
 
Function HX Perf 
 
Purpose: There are five different routines associated with HX Perf.  For a real fluid 
two-temperature multi-stream HX, the outlet temperatures are calculated given either 
(UA), NTU’s or thermal effectiveness, or, for the condition of minimum or maximum 
possible duty.   
 
Background: 
The temperature field for the entire HX can be found by solving a system of equations.  
Namely, the HX sub-division rate equation and the HX sub-division energy balance 
equation.  These are as follows: 
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* *
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Note: Refer to HX Anal for nomenclature and introduction to this background 
information. 
 
So, for N sub-divisions there are a total of ( )2 1N⋅ +  number of temperatures, 2 of which 
are known (specified), and there are a total of 2 N⋅  number of equations.  For a HX with 
three (3) sub-divisions the system of equations would look as follows: 

* *
,11 1 ,1

* *
,2,1 ,1 ,1

* *
,22 2

* *
,3,2 ,2

* *
,33 3 ,4

* *
,4,3 ,3 ,4

1 1
1

1 1 0
1 1 0

1
1 1

l h

hR R h

l

hR R

l l

hR R l

T T
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T
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T T
TC C T

θ θ

θ θ

θ θ

⎡ ⎤ ⎡ ⎤− − ⋅⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− −

⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥
− −⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥

− ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 

Of course, this is efficiently solved using a banded matrix solver. 
 
Inputs: 
1. HX parameter {i.e., (UA), NTU, effectiveness, max. duty, min. duty}. 
2. Value of HX parameter (N/A for max. and min. duty). 
3. Number of HX sub-divisions. 
4. Number of ‘hot’ (h) streams. 
5. Number of ‘cold’ (l) streams. 
6. (h) stream inlet temperature. 
7. (l) stream inlet temperature. 
8. Heat in-leak. 
9. If it is a boiler. 
10. Stream fluid ID #’s, mass flow rates, inlet pressures and pressure drops. 
 
Note: Two types of sub-division temperature steps are allowed, either constant enthalpy 
(step) or constant enthalpy ratio (step).  The pressure step and the heat in-leak 
distribution will match the temperature step type.  Enthalpy is used instead of 
temperature in order to accommodate the possibility of a phase change. 
 
Output: 
Outlet temperatures and duty. 
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Outline: For calculating outlet temperatures given either (UA) or NTU’s 
• Set up pressure profile and initial temperature profile (as if the stream capacity were 

constant). 
• Set up banded matrix. 
• Calculate temperature profile by solving banded matrix. 
• Update temperature field using relaxation technique. 
• Calculate sub-division duties. 
• Determine maximum sub-division duty fractional difference {between (h) and (l) 

streams}. 
• Determine maximum fractional difference (change) in temperature field. 
• Iterate until (exceed max. # iterations) or (fraction tolerance < max.) 

• Check fractional difference in total duty {between (h) and (l) streams}. 
• If solution did not converge then continue: 
• Calculate HX with maximum (and minimum) duty. 
• If temperature pinch is on warm-end then use warm-end temperature difference 
• Else use cold-end temperature difference. 

• Use the false-position (a bracketing) method (with solution bounds known) with the 
selected (warm-end or cold-end) temperature difference as the independent variable 
and the log of the (UA) or NTU’s (depending which one was specified as the input) 
as the dependent variable 

• Iterate until (exceed max. # iterations) or (fraction tolerance < max.) 
 
Outline: For calculating the outlet temperatures given the effectiveness 
• Calculate HX with maximum (and minimum) duty. 
• If temperature pinch is on warm-end then use warm-end temperature difference 
• Else use cold-end temperature difference. 

• Use the false-position (a bracketing) method (with solution bounds known) with the 
selected (warm-end or cold-end) temperature difference as the independent variable 
and effectiveness as the dependent variable 

• Iterate until (exceed max. # iterations) or (fraction tolerance < max.) 
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Outline: For calculating the HX with maximum duty 
• Calculate HX with 1 NTU to see whether pinch is on the warm-end or cold-end; 

whichever end is pinched will be assumed to be the end that is pinched for the 
maximum duty case (note:  it is not really important if it isn’t). 

• Calculate HX with minimum duty; this provides the upper boundary of the solution 
bracket. 

• To obtain the lower boundary stream temperature difference begin with a stream 
temperature difference equal to 10 times the max. allowed fractional error 
• Check to see if HX solution (using stream temperature difference) is valid (i.e., 

results in a solution without a temperature ‘cross-over’). 
• Check to see if stream temperature difference is less than maximum (i.e., it is ‘in-

bounds’) 
• Increment stream temperature difference by a factor of 10 
• Repeat until there is not a cross-over and it is in-bounds 

• Now have lower stream difference temperature bound 
• Use golden-section technique to find the solution; i.e., iterate until the fractional 

difference between a solution (no cross-over) and no solution (a cross-over) is 
acceptably small 

 
Outline: For calculating the HX with minimum duty 
• Use HX Anal to find HX with a duty equal to its heat in-leak 
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Nomenclature and Parameters Used for Process Calculation Sheets 
 

Common Process Configuration Parameters: 
wl,1 12[g/s] Sub-atmospheric (LP) stream flow rate 
ξhl   [non-dim.]Flow ratio, 40 to 100% 
ph,1   [atm] Cold box supply pressure, = 6 to 18, inc. 3 
pS, RSC 1.05[atm] RSC suction and VPS discharge pressure 
pL 0.031[atm] Load (saturation) pressure 
Th,1 300[K] Supply temperature 
TS, RSC 300[K] RSC suction and VPS discharge temperature 
Tl,1 300[K] VPS suction temperature 
TL 2[K] Load (saturation) temperature 
qLK,tot 55[W] Total HX heat in-leak 
p4K 3[atm] 4.5-K plant supply pressure 
T4K 4.5[K] 4.5-K plant supply temperature 
ηiso,VPS 14.5%[non-dim.]VPS isothermal efficiency 
ηiso,RSC  [non-dim.]RSC isothermal efficiency, = 0.6 - 0.0177*(pr,c - 3)
pr,c   [non-dim.]RSC pressure ratio (discharge to suction) 
ηC,LN2 35%[non-dim.]LN system equivalent Carnot efficiency 
Δph,tot 0.35[atm] High pressure (HP) stream total pressure drop 
Δpl,tot   [atm] LP stream total pressure drop, = .0002*Ntutot 
Ntutot   [non-dim.]Total (sum) HX NTU's, = 20 to 45, inc. 5 

 
Specific Process Configuration Parameters: 
Configuration: C1-A  
NtuHX-1 0 to 6[non-dim.] HX-1 NTU's 
   
Configuration: C2-A  
NtuHX-2 5[non-dim.] HX-2 NTU's 
ηC,4K 10%[non-dim.] 4.5-K plant system Carnot efficiency
   
Configuration: C2-A-p  
NtuHX-4 5[non-dim.] maximum HX-4 NTU's 
ΔThl,2 40[K] stream (h) to (l) ΔT at T.L. #2 
ΔThN,4 0.5[K] stream (h) to (N) ΔT at T.L. #4 
pN,3 1.2[atm] stream (N) pressure at T.L. #3 
ΔpN,HX-1 0.2[atm] HX-1, stream (N) pressure drop 
ηC,4K 11%[non-dim.] 4.5-K plant system Carnot efficiency
   
Configuration: C2-B  
NtuHX-2 5[non-dim.] maximum HX-2 NTU's 
ηC,4K 10%[non-dim.] 4.5-K plant system Carnot efficiency
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Abbreviations: 
RSC rotary screw compressor system 
VPS vacuum pumping system 
4.5-K Plant 4.5-K plant system (cold box + compressors) 
JT Joule-Thompson (throttling) valve 
HX heat exchanger 
VAP ambient vaporizer 
LOAD 2-K refrigeration load 
(h), (hh) high pressure (HP) streams 
(l) sub-atmospheric pressure (LP) stream 
(ll) low pressure (LP) streams (>= 1 atm) 
(N) nitrogen (liquid and vapor) stream 
T.L. # 'temperaure level' number 
LN liquid nitrogen 
  
Subscripts (partial list): 
C Carnot 
c compressor 
L load 
4K 4.5-K plant 
LK (heat) in-leak 
tot total 

 
Symbols:   
w [g/s] mass flow rate 
ξ [non-dim.]mass flow ratio 
p [atm] pressure 
Δp [atm] pressure difference (drop) 
pr [non-dim.]pressure ratio 
T [K] temperature (absolute) 
ΔT [K] temperature difference 
q [W] duty 
η [non-dim.]efficiency 
COPINV [W/W] inverse of coefficient of performance 
   
   
Subscripts:  
examples, wl,1 stream (l) mass flow rate at T.L. #1 
 ξhl,1 stream (h) to (l) mass flow ratio at T.L. #1 
 ΔThl,2 stream (h) to (l) temp. difference at T.L. #2 
 ΔpN,HX-1 HX-1, stream (N) pressure drop 
 NtuHX-1 HX-1 NTU's 
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APPENDIX F 
 
 

Estimate for Increase in 4.5-K Plant Carnot Efficiency for Configuration C2-A-p 
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APPENDIX G 
 
 
Process Calculation Sheets for Model Configurations at Optimum ‘Real’ COPINV 
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