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Abstract

Verification is a crucial process to facilitate the identification and removal of errors within

simulations. This study explores semantic changes to the concept of simulation verification

over the past six decades using a data-supported, automated content analysis approach.

We collect and utilize a corpus of 4,047 peer-reviewed Modeling and Simulation (M&S) pub-

lications dealing with a wide range of studies of simulation verification from 1963 to 2015.

We group the selected papers by decade of publication to provide insights and explore the

corpus from four perspectives: (i) the positioning of prominent concepts across the corpus

as a whole; (ii) a comparison of the prominence of verification, validation, and Verification

and Validation (V&V) as separate concepts; (iii) the positioning of the concepts specifically

associated with verification; and (iv) an evaluation of verification’s defining characteristics

within each decade. Our analysis reveals unique characterizations of verification in each

decade. The insights gathered helped to identify and discuss three categories of verification

challenges as avenues of future research, awareness, and understanding for researchers,

students, and practitioners. These categories include conveying confidence and maintaining

ease of use; techniques’ coverage abilities for handling increasing simulation complexities;

and new ways to provide error feedback to model users.

1. Introduction

Verification facilitates the identification and removal of errors within the discipline of Model-

ing and Simulation (M&S) to increase credibility in the construction of a simulation. This pro-

cess helps model builders and users to identify whether unexpected behaviors appearing

within a simulation are manifestations of incorrect construction and helps to increase users’

confidence through the absence of errors. As the discipline has evolved over the past 60 years,

challenges have emerged, changed, and disappeared due to technological and methodological

advances combined with expansion into new application areas. New challenges continue to
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emerge for increasing users’ and stakeholders’ confidence in a simulation, for increasing scal-

ability of verification techniques across model components, and for developing new methods

for providing feedback to model users. An examination of how the characterization of verifica-

tion has evolved can provide insight into the perspectives that drive verification and provide

direction for future research.

Verification is the process of determining that a simulation is built correctly [1–3]. This

requires examining simulations’ structure, code, and behaviors to identify implementation

errors. More precise definitions range from the “debugging of the logic and code” of the simu-

lation [4], to “determining that a model, simulation, or federation of models and simulations

implementations and their associated data accurately represents the developer’s conceptual

description and specifications” [5], to “substantiating that the model is transformed from one

form to another with sufficient accuracy” [6–10].

Similar to conducting validation (e.g. determining that a simulation adequately reflects the

modeled system [11–13]), the results of verification reflect the absence of errors within the

constraints of the applied tests. Verification’s myriad foci areas have included analysis method-

ology, sample sizes, and replication [14] to big data, cloud computing, and decision support

[15]. Numerous methodologies and frameworks explicitly include verification [4, 6, 16–18]

and have evolved to include new efforts, including verifying against conceptual and reference

models [19, 20], integrating verification into the life cycle of modeling and simulation studies

[3, 21, 22], checking the simulation’s experimental design [23]. The presence of an error may

reveal itself through repeated occurrence across numerous runs. Occurrences that appear in a

low percent of runs may not reflect an actual error. Repeated testing across the simulation’

solution space is required to make this determination. Therefore, confidence increases by test-

ing larger portions of the solution-space [24] and examining the histories of the simulations

[25] leading to suspicious outcomes.

The challenges of differentiating errors from unexpected behaviors and in tracing events,

interactions, and outcomes back to the underlying model specifications will continue to

increase when dealing with systems of dynamic structure [26–28], human behaviors [29, 30],

initialization using unstructured data [31, 32], and network homophily across multiple dimen-

sions [33, 34]. Additionally, new challenges may emerge from continued methodological and

technological advances, such as dynamically allocating computational loads at runtime [35],

building and running simulations on the web [36–39], constructing hybrid simulations [40–

42], and endeavoring to lower the barrier of entry for M&S to encourage STEM research [37,

39, 43].

Several surveys have explored the use of verification in practice. A model builder survey

identifies verification as a largely trial and error activity with most respondents opting for

informal verification [44]. Surveys of Swedish companies [45] and Australian companies [46]

identify that software developers sparsely use structured approaches, instead using informal

unit tests. Surveys of concurrent programs [47] and software developers [48] identify that

object-oriented and unit testing are the most common techniques alongside code inspections

and walkthroughs. Collectively, these surveys agree that verification is commonly de-priori-

tized and neglected due to time pressure and that people often opt for the easier to use infor-

mal techniques. These surveys suggest that the available approaches may not be getting used in

practice because they are difficult to learn, their benefits are not clear, they are too time con-

suming to be applicable, and researchers are unaware of techniques outside of their own

domains.

Several studies have examined the historical progression of verification due to computa-

tional advances [49], contributions of individual researchers [50], and tactile concerns [14, 15].

In practice, verification suffers from time and resource requirements [7, 45, 46, 51, 52],
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familiarity and history of use [8, 45], and ease of use and learning curves [44, 46, 51]. Despite

its significance and a perceived loss in simulation credibility when not conducted [53], verifi-

cation is considered a lacking resource among modelers [7, 8, 54]. The multitude of terminolo-

gies, concepts, techniques, and methodologies along with their inconsistent definitions over

time reduce clarity for verification [6, 50, 55–57]. This is further compounded by challenges

resulting from: modelers having incorrect, incomplete, or contradictory knowledge about the

system; disagreement among stakeholders on how to solve the problem or which problem to

solve [58, 59]; conflicting baseline characteristics within the model [60]; simplifying the set of

system behaviors; difficulties in examining the combinations and sequences of events leading

to system level outcomes [61]; and model components changing over time [62, 63].

Understanding how verification has changed over time is important in facilitating healthy

growth of the M&S discipline and in identifying avenues for conducting research. To this end,

we conduct an exploratory study to examine how the concepts, defining characteristics, and

foci of verification has evolved over the past six decades. Our aim is to illuminate semantic

changes to verification as a term and to highlight that the primary role of verification is con-

stantly evolving to meet and address new challenges that emerge in the development, explora-

tion, and sharing of simulations. We then take our analysis a step further to compare the

current characterization of verification with published literature within the past decade to

highlight the current challenges for verification research. This study does not explore the

semantic evolution of validation or V&V as individual terms. Nor does this study provide a

comparative evaluation between verification, validation, and V&V.

We use content analysis to objectively evaluate the evolution of verification based on pub-

lished, peer-reviewed literature comprising a corpus of 4,047 publications spanning the last six

decades. Based on this analysis we identify and support the existence of three primary catego-

ries of verification challenges. Section 2 provides our methodology for constructing the corpus

and conducting our analyses. Section 3 provides a discussion of our results. We discuss the

current challenges and future research directions in Section 4 and conclude in Section 5.

2. Methodology

To investigate the role of simulation verification our methodology consists of the following

steps: (1) constructing a Corpus that provides relevant Modeling and Simulation articles; (2)

reducing this Corpus to a subset that specifically pertains to verification (resulting in a Verifi-

cation Corpus); (3) grouping articles by the decades in which they were published; (4) con-

ducting content analysis on the grouped Verification Corpus as a whole; (5) conducting

content analysis separately on each decade; (6) gathering insight into the evolution of verifica-

tion; and (7) identifying existing challenges to verification. Fig 1 displays our methodology.

Step 1: We establish our initial Corpus by collecting articles that specifically deal with simu-

lation topics, methodologies, theories, tools, or applications across academia and industry. Ini-

tially, this Corpus contains 20,905 publications between the years of 1963–1965 and 1968–

2015 in pdf, doc, and docx file formats. For the 4,424 PDF files obtained that were not

machine-readable, we used optical character recognition (OCR) to convert them into

machine-encoded text documents. Table 1 displays the publication sources, the range of publi-

cation dates for each source, the type of venue, and the total number of publications. For

sources without free access to all of their publications, we obtained only the publications that

were freely available that contained the term “verification”. These publications are indicated

by a “�” symbol within the fourth column of the table.

The selected journal venues cover a wide range of simulation topics that include both

American and European perspectives. SIMULATION: Transactions for the Society for Modeling
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and Simulation International and Simulation Modelling Practice and Theory focus on advance-

ments within Modeling and Simulation; System Dynamics Review focuses on advancements

in system dynamics towards societal, managerial, and environmental problems; Journal of
Simulation focuses on research within the fields of discrete-event simulation, system

dynamics, and agent-based modeling; Journal of Artificial Societies and Social Simulation
maintains an interdisciplinary focus on the exploration and understanding of social pro-

cesses; and Journal of Defense Modeling and Simulation maintains focus on simulations for

Fig 1. Methodology for forming the Verification Corpus and conducting analyses.

https://doi.org/10.1371/journal.pone.0232929.g001

Table 1. Corpus constructed to conduct the content analysis study.

Venue Venue Type Year Range

Retrieved

Total Articles

Obtained

Subset of Articles containing the term

“Verification”

System Dynamics Review Journal 1996–2014 23� 23

Journal of Simulation Journal 2007–2015 45� 45

Journal of Artificial Societies and Social Simulation Journal 1998–2015 666 92

Journal of Defense Modeling and Simulation: Applications,

Methodology, Technology

Journal 2004–2015 276 79

SIMULATION: Transactions of the Society for Modeling and

Simulation International

Journal 1963–1965 375 12

Simulation Modelling Practice and Theory Journal 1994–2015 317� 317

Winter Simulation Conference Conference 1968–1971, 1973–

2014

8933 1776

Simulation Interoperability Workshop Conference 1997–2014 4012 936

I/ITSEC Conference Conference 1968–2014 77� 77

System Dynamics Society Conference 1976–2014 5179 401

Computer Generated Forces–BRIMS Conference Conference 1997–2008 557 88

System of Systems Engineering Conference Conference 2006–2015 128� 128

Spring Simulation Conference Conference 2014–2015 317 73

Total Papers 20,905 4,047

� Indicates that only freely available papers were obtained.

https://doi.org/10.1371/journal.pone.0232929.t001
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military and defense. The selected conferences provide perspectives from modeling and

simulation researchers, practitioners, students, and members of the industry with emphases

on engineering, science, theories, methodologies, and applications. The venues are listed in

column 1 of Table 1.

Step 2: We take the initial Corpus and refine it to include only publications which contain

the term “verification” anywhere within their text. This reduced the Corpus to 4,047 publi-

cations including 653 publications that were OCR-converted PDFs. The final column of

Table 1 provides the total number of publications from each venue comprising the refined

Verification Corpus. Note, this simple filtering approach may yield articles that contain the

term verification only within their reference lists or author biographies. A benefit of auto-

mated content analysis is the assignment of a category for the baseline of the analysis. Since

concepts are examined with respect to their relative co-occurrence of the specified category,

the remainder of the each text is ignored. Therefore, text within these articles that does not

mention verification does not impact the frequency or prominence scores of the identified

concepts. The Verification Corpus may provide a slight over-approximation of the number

of verification articles, but these do not bias the analysis. Therefore, we do not apply addi-

tional manual effort for identifying and removing any such articles from the Verification

Corpus.

Step 3: We organize the publications within the Verification Corpus based on their decades

of publication. Table 2 displays the number of publications, the range of years, and the number

of venues represented within each decade.

Steps 4 and 5: We use content analysis to automatically search the Verification Corpus and

generate quantitative outputs. Content analysis creates content categories from a body of text

to identify the main themes and ideas in a systematic and objective manner [64–67] for inter-

preting the text as a whole [68]. This technique produces a ranked list of concepts for each

decade as well as a thesaurus that provides a list of terms frequently associated with each con-

cept that is not frequently associated with other concepts within the corpus.

We select Leximancer to conduct our analysis as it is a robust tool to identify concepts from

text and to calculate relative frequency, strength, and prominence values for every concept [69].

Relative frequency provides the conditional probability of a concept (CO) given a category (CA)

(i.e., how likely is it that the concept will be mentioned given the particular category) as shown

in Eq 1. Categories are identified as concepts that are highly interconnected to other concepts

within the corpus. For our study, we select verification as the only category; thus, all relative fre-
quency, strength, and prominence values are calculated with respect to only this category.

Strength provides the conditional probability of a category (CA), such as verification, given a

particular concept (CO), such as data, (i.e., the strength of the association between the category

and the concept) as shown in Eq 2.

P COjCAð Þ ¼
PðCO \ CAÞ

PðCAÞ
ð1Þ

P CAjCOð Þ ¼
PðCA \ COÞ

PðCOÞ
ð2Þ

Prominence is a function of the strength and frequency for each concept/category combina-

tion and reflects the importance of a concept within a specific category. Formally, prominence

is the joint probability of a concept A (ConA) given a category C (CatC) over the product of

marginal probabilities of the appearance of A and C within the text as shown in Eq 3. S1 Data
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displays the Leximancer configuration used for this study.

Prominence ConA;CatCð Þ ¼

ðco� occurrence count for A&CÞ
total number of context blocks in data set

� �

occurrence of A
number of context blocks

� �
�

occurrence of C
number of context blocks

� � ð3Þ

In Step 4, we conduct automated content analysis on the Verification Corpus. We use the folder

groupings from Step 3 to tags each concept with their publication decade which results in the same

set of concepts being scored in each decade and for the corpus as a whole. As a result, it becomes

possible to track the existence and prominence of concepts within different decades. We then extract

the list of concepts for each decade along with a thesaurus of terms that span the entire Corpus.

In Step 5, we conduct six separate content analyses using only the groups of publications

within each decade. This provides a unique set of prominent concepts for each decade. We

extract the concepts associated with verification along with each decade’s thesaurus. We utilize

these thesauri to evaluate each decade’s defining characteristics with respect to verification.

Step 6: Finally, we gather insight into the evolution of verification from five directions.

First, we utilize the thesauri to examine the terms that are frequently found in context with ver-

ification that are not found as frequently alongside other concepts within the Verification Cor-

pus. Second, we establish a baseline view of each decade by examining this Corpus as a whole

with publications tagged by their decades of publication. Third, we identify the prominent

concepts with respect to verification unique to each decade. Fourth, we identify how the defi-

nition of verification changes over time. Finally, we explore the effect of the appearance of the

term V&V on the prominence of verification. Table 3 summarizes our explorations to gather

insight with respect to the method and corpus used.

Table 2. Verification Corpus organized by decade.

Decade Years Included Number of Publication Venues Represented Number of “Verification” Publications All Publications

1960s 1964, 1965, 1968, 1969 3 27 500

1970s 1970–1979 3 100 799

1980s 1980–1989 3 253 1,584

1990s 1990–1999 8 822 5,018

2000s 2000–2009 11 1,724 8,353

2010s 2010–2015 11 1,121 4,651

Total Publications 4,047 20,905

https://doi.org/10.1371/journal.pone.0232929.t002

Table 3. Summary of the main goals, analysis method, and the component of the corpus used to provide the necessary data for Step 6 of the methodology.

Goal–Gain Insight into: Method Corpus Component

Identify the evolution of the Verification

Corpus’s concepts (Section 3.1)

Extract the Verification Corpus’s ranked concept list with each

publication within the Corpus tagged by its decade of publication.

Compare concept rankings across decades.

Verification Corpus

Identify prominences of verification,

validation, and V&V over the decades

(Section 3.2)

Compare the prominences of verification, validation, and V&V using

the ranked concept lists generated from the Verification Corpus’s

tagged publications.

Verification Corpus

Identify the evolution of verification’s

concepts over the decades (Section 3.3)

Extract and analyze the ranked concept list for each decade’s content

analysis conducted using only the publications within that decade.

Verification Corpus divided into six decades

using “verification” as the comparison category

Identify the defining characteristics of

verification each decade (Section 3.4)

Using the thesaurus generated from each decade’s content analysis,

analyze the terms commonly associated with verification.

Verification Corpus Thesauri from each of the

six decades using “verification” as the

comparison category

Identify challenges and future directions

for simulation verification research

(Section 4)

Explore common themes within the concepts and definitions

pertaining to verification over time to identify existing challenges.

Then, conduct a literature review to reflect the state-of-the-art.

The evolution of concepts and defining

characteristics identified from Sections 3.3 and

3.4

https://doi.org/10.1371/journal.pone.0232929.t003
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Step 7: We then identify challenge areas based on the insights gathered of the defining char-

acteristics from Step 6 and the concepts identified from Step 5. To reflect the current state-of-

the-art of these challenge areas, we reinforce our discussion with further reviews of existing

verification literature published within the past decade. These challenge areas point towards

open areas for innovation, development, and creation of future research for verifying simula-

tions and advancing simulation verification processes.

3. Results

We generate results in a top down progression starting with an overview examination of the

Verification Corpus’s prominent concepts (not categorized under verification) to gain insight

into the foci of the verification literature each decade. Then, we compare the prominence val-

ues of verification, validation, and V&V each decade to gain a baseline understanding of how

prominent verification is with respect to both of these concepts. Next, we examine the Verifi-

cation Corpus’s prominent concepts when classified with respect to verification to gain specific

insights into the evolution of verification over the decades. Finally, we examine the thesaurus

of verification’s related terms in each decade to gain an understanding of the evolution of veri-

fication’s defining characteristics.

Roughly 19.36% (4,047 of the 20,905 articles) of the overall articles pulled from the selected

M&S venues form the Verification Corpus. However, when looking at the venues which con-

tributed papers that were did not just contain verification this percentage drops to 17.02%

(3,457 out of 20,315 articles). This is not necessarily a negative observation as these articles

range from M&S applications and case studies to theory, methodology, and technology. A one

in five reporting rate may be due to a lack of standardized approaches for conducting and

reporting verification activities across modeling paradigms and methods. This finding sup-

ports the argument that verification is underutilized within the community and that simpler

means for conducting and communicating its results are needed (7, 8, 44, 54).

3.1 Evolution of concepts across the Verification Corpus

We conduct an analysis of the Verification Corpus using all decades simultaneously with each

publication tagged with its decade of publication. This ensures that all concepts within the Ver-

ification Corpus are examined with respect to their prominence within the corpus as a whole.

Frequency, strength, and prominence values are calculated with respect to all of the text in

order to normalize the prominence scores within the Verification Corpus. Concepts that do

not appear within certain decades (i.e. V&V) result in prominence values of zero during those

decades. A total of 102 prominent concepts appear. S2 Data contains the complete list of

ranked concepts for each decade along with their prominence scores.

The formation of the concept list includes each concept that has a prominence score of at

least 1.0 within any decade. This results in concepts showing prominence scores less than 1.0

within various decades, but always greater than 1.0 in at least one decade. For exploration, we

examine the concepts comprising the top 10% of each decade within the corpus as these pro-

vide insights into the main topics each decade. Table 4 displays the top 10% of prominent con-

cepts. The prominence rankings are used to explore the concepts in each decade. Prominence

scores are relative to “verification” as the specified category and are based on the total occur-

rences of each related term each decade. As a result, the range in the magnitude of concept

prominences is expected to differ each decade.

In the 1960s and the 1970s, the two most prominent concepts are computer and program.

These concepts reinforce a focus on the executable version of the model. These concepts per-

tain to what is going into and out of the simulation, the values (types and ranges) that a
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simulation uses and produces, and ensuring that these components are correctly contained

within the executable simulation. Additionally, the concepts of the 1970s display a shift in

focus towards the ability to conduct distributed simulation exercises across computer

networks.

In the 1980s, focus shifts towards the static components of a simulation, including the sys-
tem being modeled, the problem being addressed, and the structure of the simulation. Concepts

focusing on the production of data (i.e. distributions and functions) no longer appear in the

top 10%. While these concepts largely focus on model structure, they still fall within the over-

arching focus on the executable computer program.

Starting in the 1990s we witness a rapid change in prominent concepts. Computer and pro-
gram have been dislodged from the top-two positions. Verification is one of the most promi-

nent concepts of the 1990s and this is the only decade where both verification and test appear

in the top 10%. This decade focuses largely on implementation-specific concepts. Interface
emphases focus on implementing human-computer interactions for constructing simulators

or allowing user participation inside of simulations.

In the 2000s, computer and program disappear from the top concepts while the HLA

becomes the most prominent concept. Verification also disappears from the top 10% and is

replaced with the concept of V&V; thereby representing the shift from separately verifying and

validating simulations into a joint construct within the modeling process. The main focus

highlights the advancement of the theory and the science of Modeling and Simulation as its

Table 4. Verification Corpus’s top 10% most prominent concepts.

1960s 1970s 1980s

Concept Prominence Concept Prominence Concept Prominence

computer 5.638 computer 2.640 computer 1.859

program 2.830 program 2.569 program 1.626

group 2.500 total 1.829 input 1.479

function 2.474 distribution 1.572 output 1.419

output 2.111 simulated 1.527 production 1.281

social 2.058 rate 1.448 techniques 1.214

total 1.838 function 1.439 system 1.193

distribution 1.773 input 1.386 form 1.185

input 1.718 population 1.358 problem 1.171

value 1.625 output 1.331 structure 1.166

1990s 2000s 2010s

Concept Prominence Concept Prominence Concept Prominence

object 1.810 HLAa 1.527 social 1.711

HLA 1.373 V&V 1.302 population 1.680

interface 1.329 M&S 1.262 agent 1.593

program 1.287 architecture 1.249 policy 1.452

event 1.231 capabilities 1.220 power 1.393

execution 1.222 technology 1.207 average 1.387

verification 1.182 training 1.197 total 1.354

test 1.182 distributed 1.193 dynamics 1.338

computer 1.173 component 1.179 algorithm 1.304

software 1.172 effort 1.176 study 1.298

aThe High Level Architecture (HLA) is an IEEE Modeling and Simulation Interoperability Standard developed by the Defense Modeling and Simulation Office (DMSO)

and adopted by NATO [70]. The HLA facilitates specifying and exchanging information when creating a simulation by federating simulations.

https://doi.org/10.1371/journal.pone.0232929.t004
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own discipline. Training reflects a critical usage of simulations which can suffer from serious

repercussions if not properly supported by verification.

In the 2010s, computer and program now reside within the bottom 10% of the 102 concepts.

The focus shifts to the applications areas of Modeling and Simulation, including social systems,

population modeling, policy modeling, and power modeling. Dynamics of systems and outputs

are prominent features with specific attention given to simulation outputs with respect to aver-
ages and total values.

Overall, initially prominent concepts that fit with the traditionally accepted definition of

verification (i.e. computer, program, input, and output) lose prominence over time. To examine

how closely related each decade’s prominent concepts are to each other, we calculate the Pear-

son correlation coefficients for the prominence values across decades. Correlations close to

+/-1.000 indicate strong positive or negative relationships between concept prominences

across decades while correlations closer to 0.000 indicate weak relationships. Table 5 displays

the correlations of prominence values between each decade.

These correlations reflect that the perception of all 102 of the verification concepts are rela-

tively consistent from the 1960s through the 1980s. The 1960s, 1970s, and 1980s are highly cor-

related with each other, indicating a relative stability in the perceived importance of concepts

throughout this period. A change occurs in the 1990s that alters the perception of important

concepts, as indicated by the lack of correlation with the prior decades. This change corre-

sponds with the appearance of V&V as a concept in the 1990s and may indicate a loss of spe-

cific focus on verification due to the merging with validation into “V&V”. Furthermore, the

lack of correlation of the 2000s and 2010s with any other decade may indicative the lack of a

cohesive perception across the community on how to conduct or communicate verification

within their publications. Alternatively, this may reflect that new challenges, topics, or tech-

niques for conducting verification have emerged with have resulted in the creation of new con-

cepts or the resolution of previous concepts. A more in-depth look into each decade is needed

to examine how verification evolves throughout this period. We conduct this analysis in sec-

tions 3.4 and 3.5.

3.2 The prominence of V&V, verification, and validation over the decades

Following the dominating prominence of validation alongside verification beginning in the

1980s along with the strong intercoupling of the two terms within current verification litera-

ture, we explore the changing prominences of the concepts verification, validation, and V&V.

As a merged concept, V&V does not appear until the 1990s with a prominence of 0.0 showing

for the 1960s, 1970s, and 1980s. During the 1990s V&V is less prominent (1.037 prominence)

than verification (1.182 prominence) but more prominent than validation (0.982 prominence).

However, during the 2000s V&V becomes more prominent than both verification (1.074) and

validation (0.984) with a prominence of 1.302. In the 2010s, validation beats out the other

Table 5. Correlations of each decade’s concepts prominence values. Color intensity indicates the strength of correlation (green is positive and red is negative).

Decade 1960s 1970s 1980s 1990s 2000s 2010s

1960s - 0.749 0.558 0.028 -0.458 -0.033

1970s - 0.704 0.007 -0.663 0.064

1980s - 0.225 -0.633 -0.124

1990s - 0.196 -0.855

2000s - -0.556

2010s -

https://doi.org/10.1371/journal.pone.0232929.t005
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terms with V&V dipping and verification reaching its all-time low. Fig 2 displays the verifica-
tion, validation, and V&V prominence values during each decade. This reflects a correlation

between the appearance of V&V in the 1990s and a decline in prominence of verification over

the following decades.

The importance of the verification’s prominent position over that of validation in the 1960s

- 1980s is an indication that verification received more attention within the texts that men-

tioned both verification and validation. The closeness of the three prominence values from the

1990s through the 2010s may be a good indicator that publications are beginning to devote

equal amounts of space to both verification and validation or it may indicate that verification

and validation are equally receiving less attention. We take this as a promising sign that when

both terms are mentioned within a text that V&V is intended to convey both the correctness

of the implementation along with how well the simulation reflects the modeled system.

3.3 Evolution of verification concepts over the decades

We examine the temporality of the prominent concepts pertaining to verification using only

the publications within each decade. S3 Data provides the ranked concept lists and their corre-

sponding prominence values pertaining to “verification”. Since verification always has the

highest prominence with respect to itself within each decade, we exclude it from the following

lists and analyses.

We construct word clouds to visualize the varied foci of verification over time. Fig 3 pro-

vides a timeline-ordered configuration of these word clouds with each decades’ concepts spell-

ing out the word “verify”. The concepts within each letter reflect the corresponding decade

only. The size of each term reflects the relative frequency of that concept with respect to verifi-

cation within the corresponding decade. The specific values underlying the terms portrayed in

Fig 3 are provided within S3 Data under the column headers of “frequency with verification”

next to each decade’s concept list.

The word clouds for the 1960s and the 1970s internally contain fairly evenly sized words

which reflects evenly weighted prominence values across both decades. However, with the

appearance of validation in the 1980s all of the other concepts begin to be overshadowed by

the volume of co-occurrences of the term validation. This effect can be clearly observed

through visual inspection. In the 2000s, validation has become so large that the other terms are

very hard to discern. While the other terms are becoming easier to discern within the 2010s,

Fig 2. Prominence values of verification, validation, and V&V from the 1960s to the 2010s.

https://doi.org/10.1371/journal.pone.0232929.g002
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some of the more legible concepts are starting to reflect the definition of validation instead of

verification, such as training and support. This indicates an increasing importance on verifica-

tion techniques to directly support validation efforts. Table 6 provides the top 10% of concepts

each decade ranked by prominence.

Fig 3. Word clouds of concepts that frequently occur with verification each decade with word size indicating relative frequency within the corresponding

decade.

https://doi.org/10.1371/journal.pone.0232929.g003

Table 6. Top 10% of prominent verification concepts obtained through independent content analyses.

1960s 1970s 1980s

Concept Prominence Concept Prominence Concept Prominence

solution 8.449 design 6.072 Validation 10.795

results 6.331 results 5.188 Programming 2.980

analog 6.075 program 4.559 Development 2.912

method 5.503 test 4.518 Computer 2.834

described 5.043 process 4.497 Application 2.700

case 4.950 software 4.364 Model 2.634

given 4.455 provide 4.247 Process 2.623

logic 3.819 development 3.995 Design 2.551

work 3.819 techniques 3.869 Analysis 2.549

order 3.457 real 3.240 program 2.424

1990s 2000s 2010s

Concept Prominence Concept Prominence Concept Prominence

validation 20.908 validation 25.043 validation 17.138

M&S 2.933 effort 2.577 M&S 4.163

test 2.858 model 2.253 training 4.026

model 2.535 development 2.243 requirements 3.831

development 2.153 test 2.237 program 3.280

implementation 2.112 M&S 2.229 development 3.116

results 2.068 results 2.221 test 3.010

requirements 2.049 requirements 2.199 tool 2.486

behavior 2.018 process 2.186 engineering 2.384

process 1.983 activities 2.122 support 2.381

https://doi.org/10.1371/journal.pone.0232929.t006
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The 1960s maintain focus on the executable model with sub-themes, such as logic and

method combined with solution and results, pointing towards stronger relationships for pro-

ducing results. The 1970s reveal a stronger focus on the importance of model design. Concepts

focus on design, exploring the program and the software, along with connections to tests, pro-

cesses, and techniques used in verifying these components. The 1980s serves as the starting

point of validation as the single most prominent concept associated with verification. In the

previous two decades, prominence values are relatively close to each other reflecting a shared

level of importance between the concepts. The term validation now occurs so often alongside

verification that validation has become the dominating concept within the rankings.

The 1990s reveal an almost doubled prominence in validation over the previous decade.

Behavior, commonly associated validation, now appears as a prominent concept and reflects a

change in focus to testing simulation behaviors against the expected behaviors of the system.

Verification is often mentioned in the company of M&S which emphasizes its perceived

importance within the discipline. The prominence of validation reaches its peak in the 2000s.

Verification is now 10 times more likely to connect with validation than with the next most

prominent concept. The magnitude of the difference between the verification-validation

prominence value and the other top concepts reflects the strength of the bond formed within

the corpus and the blurring of verification’s identify within the publications. Effort appears as

the second most prominent concept and reflects the dependencies on time, money, and other

resources.

The 2010s highlight the importance of continued verification education and training for

modeling and simulation professionals. For models and simulations intended for use as sup-
port, tools, engineering, or training, it is critical that they undergo verification to ensure that

they are developed correctly and meet their baseline requirements before being used. Valida-

tion remains the most prominent concept. Additionally, the presence of concepts that are tra-

ditionally associated with validation, such as training and support, represent a shifting

perspective towards validation.

3.4 The defining characteristics of verification each decade

The prominent concepts identified within 3.3 provide unique looks into the perception of the

community on verification over time. Additionally, we want to get an idea for the definition

associated with verification in each decade in order to observe changes in the definition. Defini-

tions are made up of three parts, including the term, the class pertaining to the term, and its dis-

tinguishing characteristics [71]. For this examination, the term is “verification” and its class is “a

process”. We agree that verification is the process of making sure that the simulation is built

correctly; however, we seek to identify its distinguishing characteristics within each decade.

We utilize the thesauri generated from the independent content analyses to illuminate the

characteristics that comprise the meaning of verification. We exclude proper nouns, partial

and misspelled words, and mathematical terms from our analysis. The terms are listed starting

with the highest ranked within the thesaurus and proceed in descending order. S4 Data pro-

vides the complete thesaurus of terms pertaining to the concept “verification” from each

decade and their corresponding values.

• 1960s Terms include accounting, all-digital, advocates, assertion, coding, computer-asked,

discover, elaboration, harder, impossibility, influential, investigating, objection, precautions,

pretend, shooting, and spending.

These terms define verification as a discovery process that is application-oriented and spe-

cifically deals with digital computer code. A primary aspect involves checking assertions and
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alleviating cautions against the use of a simulation. Validation does not appear as a ranked

term under verification.

No specific instruction is provided on when to conduct verification tasks. With the empha-

sis on coding and the computer, code-based feedback appears to be the most common indica-

tor of errors in this decade.

• 1970s Terms include assurance, mathematical-logical, aleatory, and-validation, civilian,

compile-time, concurrency, consultants, digital, fault-free, in-program, machine-oriented,

multidisciplinary, non-synchronous, post-run, programmer-oriented, routinely, stuck-at-

(zero or one), designer’s, and multi-stage.

These terms define verification as a process of assuring users that a simulation works as

intended and is very reflective of software engineering practices. There is a clear association

with verifying a simulation’s mathematical, logical, programmatic, and hardware components.

Analyses appear to be primarily concerned with conducting verification either before a simula-

tion run starts or after it completes. Code appears to be the primary target of verification activ-

ities. Validation now appears in connection to verification. No simulation languages or

formalisms appear and nothing specifically connects to hybrid or multi-paradigm models.

This reinforces the claim that verifying hybrid models remains an open question [40, 42].

A focus on conducting verification after the simulation is completed running (post-run) as

well as at compilation (pre-run) is identified to explore errors pertaining to both the mathe-

matical and logical components of the simulation. Modelers focus on identifying errors due to

concurrency and look for areas where the model gets stuck on constant values. Verification

feedback appears to heavily rely on numerical indictors to convey errors.

• 1980s Terms include substantiating, validates, breakpointing, non-simulators, positivism,

accountability, behavior-mode, codify, computer-executable, deception, developer’s, empiri-

cists, falsificationist, histograms, instrumentation-based, non-simulationists, simulation-

related, walk-throughs, and substantiation.

These terms define verification as a process that ensures non-simulation experts can rely on

a simulation’s outputs as well as a collection of techniques for verifying correctness, such as

creating histograms or conducting walkthroughs. Verification is connected to validation and

depends on the simulation’s behavior compared against empirical evidence. The appearance

of positivism and empiricism reflect that driving schools of thought include verifying each of

the model’s assertions.

The verification process relies heavily on computer science techniques for checking code

and model structure. Techniques gain a focus on applying to the simulation during execution

and adds a requirement for instrumenting the simulation to provide the necessary data over

time. This indicates a combination of high simulation, statistical, and computer science knowl-

edge requirements on the person conducting verification. Feedback remains largely code-

based, but now also includes histograms for visualizing distributions using continuous data.

• 1990s Terms include validation, assuring, empiricism, substantiation, rationalism, structure-

oriented, substantiating, multi-step, methodical, post-construction, reproducible, software-

in-the-loop, approves, ascertaining, inconvenient, confrontational, critics, post-condition,

simulation-model, specificity, undocumented, audits, beta-testing, clarifies, data-input,

deductions, methodically, non-modelers, positivism, specification-oriented, unproductive,

visually-based, behaviors, bug-free, checkers, cross-validation, divergence, easy-to-under-

stand, laborious, peculiarities, situation-specific, t-statistic, unachievable, variability-sensitiv-

ity, and multistage.
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These terms define verification as a methodical process applied after the simulation con-

struction that focuses on providing evidence to critics that the simulation is free of bugs. A

number of specific tests are associated, including code audits, beta-testing, and hypothesis test-

ing using the t-statistic. While many of these tests are code specific, their metrics are situation

specific and deal with behaviors and divergence of simulated outputs against expected out-

comes. Verification is confronted with negative connotations as a result of completely verifi-

able simulations being unachievable, inconvenient, and confrontational. This problem

corresponds to high needs for data storage and analytical platforms that can process constantly

increasing volumes of simulation data [15].

Visually-based and easy-to-understand both appear as prominent characteristics. This

reflects a desire for intuitive feedback with easily sharable results; however, this also fits histori-

cally with the increasing ease in developing visual representations of data that computers are

yielding during the 1990s. The application of verification expands into new schools of science,

including rationalism and positivism.

The verification process targets model structure after the construction of the simulation.

Techniques now focus on comparing the simulation against its specifications as a metric for

success or failure. There is also an indication that tests are designed to be situation specific

which reflects the current perspective that V&V should test the model with respect to its

intended purpose [72, 73]. Feedback mediums reflected include numerical for statistical mea-

sures, code-oriented for computer science tests, as well as visual.

• 2000s Terms include validation, contingent, walkthroughs, ascertaining, formalization, con-

ceptual-model, empiricism, generalizable, non-statistical, rationalism, relativist, truthfulness,

accreditations, air-traffic, breakpoint, coder, comprehendible, disaggregating, domain-

experts, evaluative, extreme-conditions, foundationalist, machine-readable, makefiles,

multi-processor, negating, nonexistent, software-in-the-loop, specification-calibration, stan-

dardizes, sub-modules, terabyte, time-flow, tool-set, unsustainable, variability-sensitivity,

advises, alleged, back-propagation, battlespaces, behavior-sensitivity, computerization, cost-

risk, cost effectiveness, cross-element, cross-model, empirical-(strong/weak), interoperated,

kilobytes, non-repeatable, structural-strong, structure-oriented, and voids.

These terms define verification as comparing a simulation to its conceptual model, its for-

malization, and its structural components in addition to its code. Focus shifts off of empiricism-

based verification onto relativism and foundationalism techniques using non-statistical tech-

niques. Concerns arise with respect to utilizing multiple processors and generating data in

excess of terabytes. Decisions to conduct verification depend upon cost effectiveness consider-

ations. Techniques are split between verification, such as code walkthroughs and utilizing break

points, and validation, such as calibration and behavior sensitivity tests. This decade holds the

largest emphasis on the costs associated with verification. A high presence of informal verifica-

tion activities are revealed in this decade, as walkthroughs, face validation via subject matter

experts, and extreme-conditions tests are generally selected ad hoc and conducted informally.

The instruction indicated within this decade reflects a strong emphasis on computer science

techniques; however, model oriented techniques now also appear in the form of extreme con-

ditions testing and behavior sensitivity testing. The emergence of techniques which focus on

the model instead of its code reflects a maturation of M&S verification starting in this decade.

Feedback mediums reflected include numerical for examining model sensitivity, visual for

check model structure, and code-oriented.

• 2010s Terms include accreditation, statechart-assertions, time-constrained, afterthought,

execution-based, explainable, hides, inter-agent, non-bottlenecks, parameterization,
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stressful, tenuous, abduction, evidence-driven, examine, flow-time, implausible, inaccessible,

inexpensively, methodical, negated, non-simulation, painstaking, quickness, case-studies,

computerized, decision-oriented, design-time, drill-down, intra-agent, satisfiability, trace-

driven, and source-code.

These terms define verification as a critical resource for supporting and conveying credibil-

ity. Verification relies on examining the simulation while it executes and identifying areas of

bottlenecks. Credibility relies on examining how model assertions hold throughout a run and

exploring interactions between agents. Timing considerations for designing, conducting, and

evaluating tests verification activities are very prominent within this decade. An indication of

design of experiments is revealed through the presence of parameterization and methodical.
The instruction indicated within this decade reflects conducting verification in a methodi-

cal manner through model parameterization, conducting traces, and by producing evidence.

There is a need reflected for feedback to support providing insight on execution; however, spe-

cific feedback for conveying what is happening during execution is not clearly discernable.

Additionally, feedback mediums continue to reflect a focus on model structure and code.

4. Discussion: Challenges and future directions for simulation

verification research

Throughout the decades the core essence of verification remained the same; that is, the goal is

to convey a fault-free or error-free implementation of the computerized simulation. However,

our evaluation illuminates changes to the primary testing targets, primary technique categori-

zations, and feedback mediums for communicating results over time. Targets of verification

have relied on source code, model specifications, and defined structure. Technique categoriza-

tions have evolved from primarily code-oriented that are strongly rooted in software engineer-

ing or computer science (e.g. audits and walkthroughs) to model-oriented and simulation-

oriented that reflect the maturation of the M&S discipline (e.g. extreme conditions testing)

with considerations given to the correct correspondence identified between simulation struc-

ture and outcomes compared to the model design and known real-world values [20, 74].

The content analysis reveals a strengthening association to when, where, and how to conduct

verification over time. When reflects the myriad of points that simulations undergo verification

throughout the M&S process, such as by evaluating the simulation pre-runtime (e.g. static

code), evaluating occurrences during execution, or evaluating outputs after simulation execution

has completed. Where points to the simulation objects or data outcomes that facilitate evalua-

tion, such as evaluating specific sub-modules within the simulation, exploring the source code,

or testing specific model assertions. How relays the techniques and methodologies utilized to

identify errors, such as evaluating state-chart assertions, using extreme conditions tests, or meth-

ods for parameterizing the simulation to facilitate the execution of a design of experiments.

No evidence is found of verification aspects existing that are specific to any given modeling

paradigm, reinforcing conclusions presented by Sargent and Balci [50] and Brailsford, Eldabi

[75]. This finding reflects the common practice of ad hoc selection and application of V&V

techniques. A perspective shift could align the development of new techniques onto the under-

lying characteristics of the simulation to direct verification efforts. For instance, a common

approach to verifying ABMs is to use traces to follow the execution of agents throughout exe-

cution to determine the correctness of the model’s structure and accuracy of the outcomes of

the interactions [61, 72]. This generic definition relies on a model’s intended use to direct the

trace examination. Alternatively, if the trace methodology was designed to instead focus on

verifying time-based (i.e. an agent’s dynamic age increase triggering a static change in life sta-

tus) or resolution-based (agent, group, or population level) components within the simulation,
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this could result in a more generalized and reusable approach for conducting trace verification.

Ultimately, this could support reuse of techniques within modeling paradigms and contribute

to more consistent reporting methods.

The changes to the defining characteristics of verification in each decade reflect technologi-

cal and methodological advancements within the discipline [50] and occur as a result of tech-

nology advances creating new or solving existing problems [14, 15, 49, 76]. Verification costs

increase as a result of increasing system autonomy, complexity, and abilities to assess their

own status [77]. These characteristics reflect challenges pertaining to parallel execution, large

amounts of simulated data [15, 78], building and running models in the cloud [38, 39, 60, 79,

80], and tracing the occurrences of errors to their sources [61, 81, 82].

From the evolution of concepts identified in Section 3.3 and the defining characteristics

identified in Section 3.4, we identify the following three categories of verification challenges:

(1) the ever-present need to increase user confidence while facilitating ease of use; (2) the need

for increased coverage of verification techniques to handle increasing simulation complexity;

and (3) the need to further investigate and contribute advances in feedback mediums for con-

veying verification results. Explanations and sub-categorizations of each of these challenges

are explored in greater depth in the following three sub-sections and are supported by related,

current verification efforts. We explore the current state-of-the-art with respect to each of

these challenge areas by conducting a literature review of recent publications to identify their

current challenges. The goal is to inform current researchers, students, and practitioners on

existing challenges, to enable new researchers entering the domain of M&S, and to illuminate

avenues for future verification research.

4.1 Conveying confidence and facilitating ease of use

The prominent concepts from the Verification Corpus indicate a sustained theme of convey-

ing confidence and facilitating ease of use. As this is a driving premise of verification, this is

expected within the analysis. However, the changing characterizations of verification over

time reflect thematic differences within this theme. Concepts of test, requirements, analysis,
design, development, and results reflect the traditional verification aspects of determining that a

simulation has been implemented correctly. The defining characteristics across the decades

reveal insight into shifting focal points within this theme, such as investigating (1960s), con-

currency and fault-free (1970s), substantiating and accountability (1980s), substantiating and

assuring (1990s), truthfulness and accreditation (2000s), and accreditation and explainable

(2010s). The pursuit of confidence has ranged from searching for concurrency errors and

identifying software faults to substantiating adherence to requirements and design to establish

credibility and truth. Existing challenges pertaining to confidence and ease of use are explored

further to assess the current state-of-the-art.

Model stakeholders’ goals range from reducing costs within real world systems [83], to

increasing reliability for training [84] and healthcare scenarios [85], to gaining insight into

high risk or safety critical systems [86], as well as representing complex human behaviors [29,

87]. Verification supports these efforts by identifying or showing the absence of errors to

increase a simulation’s credibility and reliability [4, 6, 83] as well as its reuse [56]. Additionally,

this helps to prevent Type I and Type II validation errors [4, 88]. Nance and Sargent [49] point

out that users’ abilities to recognize errors and to understand how outputs are produced are

impaired when they are not part of the development process. Intuitive, transparent, and inter-

pretable means for conducting verification and communicating results to non-experts are

needed. Communicating reliability, credibility, and trustworthiness to lay users requires that

verification results contain the following properties:
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1. The results are easily understandable for the intended audiences

2. The results indicate all baseline testing assumptions, such as minimum sample size require-

ments, and convey that they are upheld without shifting the analytical burden onto the audience

3. The results reflect the testing conditions (e.g. the ranges of parameter values explored dur-

ing testing as part of the design of experiments)

Current challenges for conveying confidence and maintaining ease of use in verification:

• Communicating results to non-experts. While several cloud-based simulation approaches

support STEM education [37, 89] by making simulations more accessible to non-M&S

experts, emphasis is needed for facilitating students’ understanding of verification’s roles in

searching for errors as well as for establishing trust in the simulation. This process can be

facilitated through the creation of online verification tools that can verify specific compo-

nents or types of challenges. These tools and/or processes need to internally assess the adher-

ence of the data being verified to the underlying assumptions of the tests being applied.

Adherence or violations to these assumptions need to be clearly communicated alongside

the results to further support credibility in the simulation outcomes. By connecting assump-

tions directly with pass/fail results of testing, increased power can be achieved from testing

without requiring increased background knowledge of analytical techniques. Baseline

descriptive and sampling statistics should help to connect with non-experts, as these tech-

niques rely on rudimentary mathematics, probability, and statistics concepts [90].

Simulation environments, languages, and tools are becoming more prolific, easier to use,

and more robust thanks to the World Wide Web. Modelers experience significant advances in

simulation computing power through cloud computing [17]. Web-based model building rep-

resents a shift from model building to model assembling which requires new approaches for

dynamically checking the implementation [36]. This allows modelers to build more complex

simulations, build them faster, access them easily, make changes on-the-fly, and share them

with wide audiences. Current cloud-based simulation challenges pertain to the interoperability

and service architectures employed [38, 79, 91, 92]. As a result, greater V&V responsibilities

thereby transfer to the providers of the simulation environments to provide the necessary

capabilities for users to conduct tests that can reveal the presence of errors [38, 93].

• Creating and extending tools to aid in verifying specific components of simulations. Ver-

ification seeks to identify errors within an executable simulation; therefore, the processes,

techniques, and metrics of failure change depending on the modeling paradigm, simulation

platform, or programming environment used to construct the simulation. For instance,

Lynch [94] identifies roughly 110 verifiable properties from just 9 different DES node types

within the CLOUDES [39] simulation platform. A survey of academic, government, and

industry M&S professionals found that informal verification techniques are most commonly

utilized in practice with trial-and-error and visual inspection reported as the most common

approaches [44]. Future research efforts can focus on investigating, designing, and creating

new ways for simulation users to interact with simulation results in manners that potentially

maintains the functional aspect of conducting trial-and-error exploration that relies on

visual inspection. These tools should provide increased power in (1) identifying potential

errors, (2) assessing adherence to test assumptions, and (3) mitigating mathematical, simula-

tion, and statistical knowledge requirements.

• Communicating adherence to a test’s underlying assumptions, boundaries or require-

ments. Analytical tests, whether being used for verification, validation, or exploration, have
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underlying assumptions that must be met in order for the results to be valid. Therefore,

when generating and communicating results of testing, the assumptions of the test need to

appear with the results along with an indication of any violations in the test conditions. For

example, statistical tests applied to data samples need to contain a minimum number of

observations in order to presume that the sample is representative of its population. It is

commonplace for many statistical packages and tools to include the sample size of the data

included within a test function as part of the output along with a warning or error message if

the sample size does not meet the needed requirements. This greatly assists the user in deter-

mining whether the outcome can be considered credible. This same practice should hold for

all V&V and exploration tests applied to simulations.

4.2 Increasing coverage of techniques to handle increasing model

complexities

The prominent concepts from the Verification Corpus indicate a theme of verification cover-

age with respect to model complexities. Concepts of logic, software, techniques, process, and

behavior reflect differing levels and requirements of simulation space coverage in examining

simulation models. Defining characteristics within the decades include model explorations

and evaluations based on assertions (1960s), mathematical-logical components (1970s), break-

pointing and walk-throughs (1980s), structure-oriented and variability-sensitivity testing

(1990s), walkthroughs and extreme conditions testing (2000s), and execution-based and evi-

dence-driven evaluations (2010s). These characteristics pertain to differing artifacts within a

simulation, ranging from code to logical components to outcomes. Verifying each of these

pieces provides different levels and perspectives of credibility for the correct construction of a

simulation. Technological and methodological advances in model building, sharing, and in

verification contribute to evolving coverage challenges. Existing challenges pertaining to cov-

erage and increasing model complexities are explored further to assess the current state-of-

the-art.

Simulations cannot generally be proven to be completely free of errors; as a result, measures

of success are needed to determine if a simulation’s implementation can be regarded as credi-

ble. Credibility is only provided under the specific conditions tested and does not indicate a

lack of errors outside of the tested regions. Pass or fail criteria is generally based on the selected

techniques; however, measures can be based on requirements [20, 56], model design [1, 54, 56,

95], the conceptual models [19, 20, 56, 96, 97] as well as from the implementation [1, 19, 20,

54, 56]. The complexity of simulations continues to increase with respect to the number of

model components, the number of interaction points, the frequencies of interactions, the crea-

tion of hybrid models, the incorporation of big data and social media data, the use of dynamic

social network layouts, and dynamic model structure.

An effective experimental design can facilitate the verification phases by reducing the total

volume of simulation runs that need to be conducted, clearly capturing the scale and the scope

of the simulation being tested, and provide stronger support for any garnered insights. Deter-

mining adequate sample sizes in the experimentation phase strengthens model credibility [98]

by directly connecting with statistical sample size requirements and revealing how much of the

solution space has actually undergone verification. Designs commonly account for sampling,

replication, and blocking to represent all portions of the solution space [99]. Constructing a

design of experiments helps to reduce the scale of the experimentation through output pair

(simulation data points to real work data points) volume consideration to ensure that the min-

imum required numbers are met and that these numbers are not arbitrarily exceeded without
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purpose [100]. Sample sizes also need to be large enough to avoid the introduction of bias into

the interpretations [90, 101]. Therefore, it is important to know the coverage limitations and

constraints of selected verification techniques when dealing with complex simulations. Identi-

fying techniques in advance that can adequately cover the space within a single simulation run

(e.g. the simulation space) as well as the range of possible parameter combinations that can

occur across the aggregate simulation runs (e.g. the solution space) can yield significant time

savings and provide better support to model credibility.

Current challenges and future direction for verifying simulations of increased complexities

and scale:

• Communicating coverage across individual simulation spaces and the aggregate solution

space. The goal of verification is to identify the existence of errors within a simulation and to

help identify the source of the error. Creating a design of experiment to properly search the

solution space facilitates greater model credibility while reducing time requirements [102].

Sampling techniques provide great value in reducing the input space that needs to be

explored to gain significant insights into the internal operations of a model [103]. Many

sampling techniques exist including, Latin hypercube sample (LHS) [104, 105], sampling-

based Sensitivity Analysis (SA) [106], and optimization strategies [107, 108]. Extensive litera-

ture exists on topics of sampling; however, these discussions are uncommon within the joint

context of simulation verification.

In LHS experiments, a subset of input vectors from the solution space are selected and uti-

lized for analysis [103]. For small sample designs, values are selected individually and com-

bined at random. Large sample designs do not need to rely on conditional sampling and can

instead pull values directly from a grid design [109, 110]. Many other forms of LHS designs

exist that differ in how the sample combinations are generated and how many samples are gen-

erated, such as orthogonal and nearly orthogonal designs [99]. Diallo, Lynch [111] and Collins,

Seiler [104] both relied on LHS within their experimental designs to reduce the total number

of runs needed and save time generating data.

SA analyzes how uncertainty in the model output can be attributed to uncertainty in the

model input [112]. This helps to provide insights into the level of dependency that a model

output or set of outputs have with respect to one or more input parameters. Therefore, SA

evaluations can yield mismatches between the driving forces within a model and the corre-

sponding specifications from the model’s design. SA is particularly useful in examining the

extreme boundaries of the input space and revealing oddities then produced in the outputs

[105]. Additional exploration is required in the presence of correlated inputs to distinguish the

distribution of effect between correlated factors [113]. Numerous M&S studies utilize SA to

facilitate simulation space and solution space exploration (for example, see Duggan [114],

Thiele, Kurth [115], and Hekimoğlu and Barlas [116]).

Verification exist to identify and reveal errors within models of increasing complexities;

however, these techniques are rarely presented within the context of sample size requirements

and how they can contribute to the overall exploration of the solution space. Instead, this is left

to the discretion and experience of the people responsible for designing the experiment. As a

result, prerequisite statistical, mathematical, and simulation knowledge requirements are fur-

ther increased. Statistical debugging using elastic predicates and many-valued labeling func-

tions has been developed for the exploration of simulation using software engineering

principles and directly accounts for sample sizes when making verification determinations

[82]. Statistical debugging delves into complex simulation interactions without requiring a for-

mal mathematical model specification to identify and isolate locations of potential errors [61,

82, 111]. Diallo, Lynch [111] apply statistical debugging to sets of thousands of simulation
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outcomes pulled from an experimental design producing thousands of simulation runs per

batch. Utilizing the V&V Calculator [81], adherence to dozens of model specifications were

explored in each test and no violations were identified within the final testing set. These studies

show potential for addressing scalability, but additional research and techniques are needed.

The sampling considerations associated with selected techniques should be clearly understood

before attempting to execute an experimental design.

• Creating and extending techniques to verify temporal-based occurrences and interac-

tions. Agent-based Models experience challenges in handling networked direct interactions

between agents over time [117, 118]. Feldkamp, Bergmann [119] explore the role of knowl-

edge discovery for online analysis of simulation data. They further explore the role that inter-

active visualization can play in supporting the knowledge discovery process by adding

traceability to outcomes across experiment runs [120]. Time series plots are commonplace

for displaying quantitative changes over time with a single parameter or feature represented

by each line of the plot [121, 122]. Alternatively, sequences of static (e.g. time-sliced) visual

artifacts can be provided over numerous time steps to illuminate temporal changes across

parameters. For instance, Ahrens, Heitmann [123] utilize series of map-oriented density

plots to verify sea surface height errors from comparisons of separate model outputs. An

empirical evaluation of the trade-offs between the volume of visual artifacts provided to

users and the added value to the verification process is needed.

• Creating and extending techniques to verify spatial-based occurrences and interactions.

Spatial and abstract (non-spatial) data are handled differently with techniques developed

across numerous subfields, such as information visualization, graph visualization, and scien-

tific visualization [124]. Whether the data is univariate or multivariate places additional

complexities on the ability to coherently convey spatial information. Focusing on events

within the data raises the analysis to a higher level of abstraction and may require additional

categorization criteria for exploration [121]. However, the scale of the data being visualized

can cause representational errors by distorting relationships [125]. Spatial analytic capabili-

ties focus on spatial (e.g. geographic) relationships [123, 126], spatial density representations

[127, 128], patterns [129], and interaction points [130]. For example, consider the value pro-

vided by the visual techniques of radar charts and parallel coordinate plots. Radar charts

convey time-oriented, multi-dimensional population data to convey trends and trajectories

based on the input settings [29]. Parallel coordinate plots using color coded cluster represen-

tations have aided knowledge discovery by adding traceability to analyses involving multiple

simulation runs’ outcomes [120]. These techniques are valuable for revealing targeted insight

into multivariate data, but they do not scale well as they result in large volumes of visual arti-

facts that require manual inspection.

With an increasing variety of social media platforms and easily accessible information

posted directly by people about their daily lives, key events, and their likes and dislikes, there

are growing possibilities for connecting simulations directly into the “human” component of

data. Kavak, Vernon-Bido [31] explore the use of social media data in simulations as sources

of input data, for calibration, for recognizing mobility patterns, and for identifying communi-

cation patterns. Padilla, Kavak [32] use tweets to identify individual-level tourist visit patterns

and sentiment. These information sources can provide new routes towards developing popula-

tion-based behaviors and rules, but also lead to increased difficulties and needs for effectively

verifying simulations utilizing this information. Techniques and methods for identifying

errors due to interactions and interconnections between agents based on this type of data are

needed.
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Lynch, Kavak [128] explore the use of spatial plots and heat maps for identifying suspicious

outcomes within ABM execution. Sun, Xu [129] explore pattern formation comparisons to

reflect model credibility in the formation of vascular mesenchymal cells and lung develop-

ment. Courdier, Guerrin [130] use the Geamas Virtual Laboratory (GVL) tool to collect traces

of a biomass ABM for analyzing animal wastes management. These traces collect (1) sets of

exchanged messages between agents, or (2) a historical accounting of simulation execution per

agent or group of agents. Visualization tools inspect these traces and identify interactions that

lead to successful agent negotiations. Their visualization filters traces based on specific agents

or characteristics. However, the GVL tool becomes unwieldy for analysis of traces once exceed-

ing several dozen agents [130, 131]. Challenges associated with visual representations are fur-

ther explored in Section 4.3.

• Creating and extending techniques to verify network-based occurrences and interac-

tions. Models of increasing structural and behavioral complexities are creating challenges in

the ability to clearly interpret and trace the origins of occurrences within simulation runs.

This increases the difficulties in determining if system level behaviors within a simulation

are the result of the intricacies of these interactions or if they are due to an error in imple-

mentation. Such occurrences may be the result of non-linear actions of subgroups or local

networks [118, 129], changing model structures over time [28], or the scale of networked or

interconnected components [132]. Therefore, techniques need to differentiate between indi-

vidual-level, subgroup-level, and population-level occurrences [60, 120, 133] to provide

traceability between occurrences and model specifications. Network visualizations provide

power for data integrations and transformations in revealing ways that can confirm hypothe-

ses or identify new hypotheses by exploring the results of batches of experiments [125]. Net-

work representations provide connecting links between individuals or groups of individuals

and can include: social; kindred; online; neighborhood; workplace; religious; and many

other types of networks [130, 133–135].

Agent-based Modeling commonly relies on network structures to handle communications

between agents as well as handle agent-agent interactions in order to reveal system level behav-

iors [136, 137]. For example, verifying human interactions involves checking increasing orders

of magnitudes of socially and spatially oriented interactions [30, 34] and increasing quantities

of agents and options for modeling decision making [138]. Verifying safety-critical systems

deals with identifying issues pertaining to multiple internal layers for self-monitoring, safety

checks for maintaining flight paths and altitude [77, 139], and collision avoidance [140].

Epstein [141] develops a mathematical model incorporating, among other factors, social com-

ponents in order to explore the emergent dynamics of network structure. Dean, Gumerman

[142] illuminate the importance of demographic and environmental interactions in recreating

histories of sociocultural stability and variation among the Anasazi culture. In both Shults,

Lane [134] and Shults, Gore [135], a combination of statistical debugging and visual analytics

techniques are utilized to verify the personal-based and environmental-based interactions

within their respective models with respect to their intended model designs.

Node and edge graph visualizations are used to represent structure and weights within net-

work models. Node-link diagrams provide intuitive representations of contact relationships by

utilizing basic visual geometries to indicate connections. Sallaberry, Fu [143] show that decom-

posing a sequence of interactions within a social network yields insight into static network

structure as well as dynamic relationship formations and changes over time. Jacomy, Venturini

[144] provide an intuitive layout for visualizing relational, network data for facilitating explo-

ration through spatializing networks. Providing visual analytics that are easy to use, easy to

understand, and that facilitate exploration is critical for conveying credibility within simulated
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networks. For example, Xia, Wang [145] develop a graph-theoretical network visualization

toolbox, BrainNet Viewer, to provide ball-and-stick based representations of brain networks.

Easily configurable settings allow for adjustments of colors, sizes, and node/edge combinations

to allow for comprehensive exploration of models of the connectome information of the

human brain. BrainNet Viewer illustrates the need and value offered by easy to use tools that

aid in the interpretation of complex networks. Collectively, these works highlight the need for

greater depth in easily to apply tools and methods for exploring network dynamics in support

of the creation of or confirmation of hypotheses within these complex models.

4.3 Developing new feedback styles to support the identification of errors

The prominent concepts from the Verification Corpus indicate a theme of feedback mecha-

nisms pertaining to how insight is provided on the presence of errors. The prominent high-

level concepts pertaining to feedback are indicated through logic and behaviors. Determining

how, when, where, and why changes are occurring throughout the execution of simulation

provides valuable support in identifying the presence and location of potential errors and faults

within a simulation. The defining characteristics across the decades point to a changing reli-

ance on coding and computer-asked (1960s), compile-time and in-program (1970s), behavior-

mode and computer-executable (1980s), visually-based and variability-sensitivity (1990s),

non-statistical and behavior-sensitivity (2000s), and statechart-assertions and non-bottlenecks

(2010s). In general, these characteristics point to programmatic, visual, and statistical feedback

to support exploration in searching for errors. Existing challenges pertaining to feedback in

support of error identification are explored further to assess the current state-of-the-art.

The mediums used to convey model feedback impact the timeliness and effectiveness of

identifying errors based on how easy they are to interpret and how quickly the information

can be processed by the user. The defining characteristics of verification reflect an expansion

from code-based and numerical-based feedback mediums in the 1960s and 1970s to include

visual feedback by the 1980s. Many of the characteristics also focus on the verifying the simula-

tion post execution and point to the use of techniques that have steep learning curves. Verifica-

tion techniques that require in-depth knowledge of mathematical logic or statistics also serve

as a perceived barrier. The use of visual aids are commonly utilized to reduce this burden for

the intended audiences, when utilized appropriately [125, 146–149]. Although visual terms

were identified within the corpus, few identified studies have explored how to utilize visualiza-

tions, integrations of visualization, or combinations of sensory feedback (e.g. tactile, olfactory,

or audial senses) to enhance simulation verification. For assisting error identification, Vickers

and Alty [150, 151] and Lynch [94] have identified significant value in identifying errors using

audial feedback for software and simulations, respectively. Numerous studies have utilized

other sensory feedback to enhance the simulation experience [152–154], but they have not

explored specific applications of use in supporting the verification process. Visual analytic

approaches differentiate techniques’ abilities to account for univariate, multivariate, special

case, and temporal data types [120, 124], but a deep dive on how and when specific techniques

are applicable to existing verification challenge areas within simulations has not yet been

conducted.

Current challenges and future directions for providing feedback on verification outcomes:

• Providing usable, visual feedback of temporal analyses across the solution space. Time

series data provides difficulties in interpretation and visualization as the quantitative aspects

are not commonly conveyed along with the visual components and interpretation is left to

human perception [121]. Aigner, Miksch [124] suggest time, data, and representation as cat-

egorizes analyzing time-oriented data to provide tighter integration of visual and analytical
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methods. Multivariate data can lead to challenges in conveying interpretable outcomes that

clearly reflect temporal changes due to multiple dimensions, aggregations, or factor interac-

tions [120, 126]. Verification techniques need continued advancements for communicating

complex analyses resulting from aggregations of simulation runs and interaction points hid-

den within layers of interacting components within the simulation. Maintaining the chal-

lenges from Section 4.2, sample sizes of temporal analyses need to be conveyed along with

the data as techniques may truncate the time series and introduce bias [105]. Verification

tools need to facilitate navigation through the combination of the analytical space (the data

being analyzed) along with the exploration space (the simulation components producing the

data for verification purposes).

• Avoiding misrepresentation, misalignment, and misuse of feedback. Visualizations con-

vey information about the simulation; as such, it is important that the selected visualizations

do not distort the representation of model outcomes and decrease the usefulness of the

model [144, 155]. When incorporating visual components for V&V, several challenges exist

for misrepresenting the model. Vernon-Bido, Collins [156] discuss several challenges for

visualizing model results, including misrepresenting model components, misrepresenting

the magnitude of changes, and poor visualization choices resulting in additional levels of

added model complexity. Technical challenges are also important for visualizing simula-

tions, including usability, scalability, and integrated analysis of heterogeneous data [157].

Usability refers to designing visualizations that successfully contribute to the advancement

and use of visualization research. Scalability refers to how well visualization tools apply to

representing large data sets. Integrated analysis of heterogeneous data deals with visualizing

data obtained from various locations in various formats. The use of appropriate layering,

separation, and other visual markings can help to avoid unintended spatial interpretations

[125].

• Alternative feedback approaches. Verification can benefit from research advances targeted

at two dimensions of verification: (1) the point in time that verification is being applied; and

(2) the sensory feedback mechanism through which results are being communicated. For the

first category, technique classifications commonly focus on the level of mathematical formal-

ity required of the technique, ranging from informal to formal [1, 2, 7, 10]. Classifying the

level of mathematically formality is very helpful for the model builders, simulation testers, or

analysis teams that are responsible for selecting and implementing these tests and instru-

menting the simulations to facilitate testing. However, these techniques can become inacces-

sible to people without strong backgrounds in simulation, statistics, or mathematics. As an

alternative, it may be more appropriate to develop techniques based on whether a test is

intended to be applied to the simulation code, provide indicators during runtime, facilitate

input-output analysis, or conduct exhaustive, formal analysis. Runtime approaches may pro-

vide better short-term options for gaining acceptance by the M&S community by providing

informal, real-time support for revealing potential errors as they occur [77, 158], such as

through the use of animations and other visual representations [24, 62, 72, 156] as well as

through audial feedback [94]. Emerging runtime approaches help to pinpoint the locations

of errors through sound cues [159], spatial plots, and heat maps [128]. Such verification tech-

niques may yield greater value using visual analytics to communicate quantitative informa-

tion throughout a run while statistical indicators based on population samples may be more

appropriate for input-output experimental designs.

Secondly, the type of sensory feedback utilized to convey results can play a significant role

in facilitating understanding and acknowledgement in the existence of an error [94]. Visual
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feedback is well suited for communicating history [160], spatial information, and referability

[161, 162]. However, audial feedback can be more appropriate for communicating flow of con-

trol [163, 164], temporal and transient information [165], and conveying information based

on information that is not within field of view [166, 167]. A recent survey found a statistically

significant difference in the abilities of participants to correctly recognize the presence of an

error when using visual and audial feedback together over participants receiving only visual

feedback [94]. Further research is needed to explore effective sensory avenues for communi-

cating verification outcomes.

4.4 Study limitations

Our study contains limitations. The large number of publications comprising the Verification

Corpus gives the appearance that prominence values are always very low; however, this is

expected since the size of the Corpus directly affects the calculation of prominence. The num-

ber of publications represented each decade differs due to increasing numbers of publications

per decade which is in part due to more venues represented over time. We do not examine the

differences between the usage of verification between journal and conference venues although

this could serve as an interesting examination for future work. The Verification Corpus pro-

vides the opportunity to conduct a much deeper, informative comparison between the con-

cepts of verification and validation that could help illuminate their theoretical, practical, and

applied commonalities and differences; however, this is outside the scope of the objectives of

this work and is the focus of future work. Finally, content analysis describes only what is con-

tained within the body of text, it does not provide explanations for why something does not

appear; instead, it is up to the researcher to provide the explanation.

5. Conclusion

Academic publications serve as a medium for communicating and disseminating knowledge

within disciplines. As such, we construct a Verification Corpus consisting of 4,047 publications

and apply content analysis to explore the evolution of simulation verification. Over the past 60

years, we find support that verification foci have shifted from code- and hardware-oriented

concepts that are reflective of software engineering and computer science disciplines into

M&S-oriented concepts oriented on evaluating the connections between simulation imple-

mentation and model design. While foci have changed throughout the decades in response to

advances to the discipline, the overall objective of increasing credibility by conveying an error-

free simulation remains. Perceptions of high time requirements and a preference towards

informal techniques persist over time. Techniques have shifted from primarily mathematically

formal and statistically supported analyses towards less formal, less statistically supported anal-

yses. Additionally, we find no evidence of verification techniques, methodologies, or concepts

being specific to any single model paradigm. By examining the prominent concepts and defin-

ing characteristics of the past six decades, we identify the following categories of verification

challenges to inform current researchers, students, and practitioners in M&S, to enable new

researchers entering the field, and to suggest areas for continued verification research:

• Advancing methods for conveying simulation credibility while remaining easy to use, inter-

pret, and communicate;

• Providing clear and transparent connections between the application of verification and its

overall coverage of the simulation and solution space in response to increasing model com-

plexities; and
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• Investigating, creating, and employing new feedback mediums to effectively capture new

types of errors and to aid in communicating results.

These challenges reflect the current characterization of verification. They are also represen-

tative of analytic concerns resulting from technological advances and increasing data availabil-

ities due to increased connectivity of people through social media sites and applications. While

verification and validation provide complementary benefits to the modeling and simulation

process, our exploration focuses on highlighting verification’s concepts and illuminating the

fluidity of changes experienced in its prominent concepts over just ten-year periods. We look

forward to the many advances in verification research in response to these challenges as well as

the emergence of new challenges as a result of continued technological and societal advances.

Supporting information

S1 Data. Configuration of the Leximancer tool.

(PDF)

S2 Data. Ranked concept list obtained from the Verification Corpus.

(PDF)

S3 Data. Lists of concepts that are prominent alongside verification when we apply content

analysis to each decade’s publications independently.

(PDF)

S4 Data. List of thesaurus terms containing “verification” obtained from conducting sepa-

rate content analyses on each individual decade within the Verification Corpus.

(PDF)

Acknowledgments

We acknowledge and thank all of the societies, organizations, journals, and conferences that

permitted access to their publications and allowed for the construction of the Verification Cor-

pus, including: the Society for Modeling & Simulation International (SCS); the System

Dynamics Society; the Association for Computing Machinery (ACM); the Journal of Artificial

Societies and Social Simulation; Elsevier and Simulation Modelling Practice and Theory; the

Simulation Interoperability Standards Organization (SISO); the INFORMS Simulation Soci-

ety; the Operational Research Society; the Interservice/Industry Training, Simulation and Edu-

cation Conference (I/ITSEC); the Institute of Electrical and Electronics Engineers (IEEE); and

Old Dominion University for providing its students access to numerous publication outlets.

Author Contributions

Conceptualization: Christopher J. Lynch, Saikou Y. Diallo, Jose J. Padilla.

Data curation: Christopher J. Lynch.

Formal analysis: Christopher J. Lynch, Hamdi Kavak.

Investigation: Christopher J. Lynch, Hamdi Kavak.

Methodology: Christopher J. Lynch, Saikou Y. Diallo, Hamdi Kavak, Jose J. Padilla.

Project administration: Christopher J. Lynch.

Resources: Christopher J. Lynch, Hamdi Kavak.

Software: Saikou Y. Diallo.

PLOS ONE Exploring the past six decades of simulation verification using content analysis to reveal current challenges

PLOS ONE | https://doi.org/10.1371/journal.pone.0232929 May 13, 2020 25 / 33

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232929.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232929.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232929.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0232929.s004
https://doi.org/10.1371/journal.pone.0232929


Supervision: Saikou Y. Diallo.

Validation: Christopher J. Lynch, Hamdi Kavak.

Visualization: Christopher J. Lynch.

Writing – original draft: Christopher J. Lynch, Hamdi Kavak.

Writing – review & editing: Christopher J. Lynch, Jose J. Padilla.

References
1. Balci O. Verification, Validation, and Testing. In: Banks J, editor. Handbook of Simulation: Principles,

Methodology, Advances, Applications, and Practice. 1st ed. New York, NY: John Wiley and Sons,

Inc.; 1998. p. 335–93.

2. Sokolowski JA, Banks CM. Modeling and Simulation Fundamentals: Theoretical Underpinnings and

Practical Domains. Hoboken; NJ: John Wiley & Sons; 2010.

3. Sargent RG, editor An Overview of Verification and Validation of Simulation Models. Proceedings of

the 1987 Winter Simulation Conference; 1987 Dec 14–16; Atlanta, GA. New York, NY: ACM.

4. Schruben LW. Establishing the Credibility of Simulations. Simulation: Transactions of the Society for

Modeling and Simulation International. 1980; 34(3):101–5.

5. DoD. Department of Defense Standard Practice: Documentation of Verification, Validation, and

Accreditation (VV&A) for Models and Simulations. In: MSCO, editor. Washington, D.C.: Modeling

and Simulation Coordination Office; 2012. p. 1–50.
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