Blood Glucose Responses to Type, Intensity, Duration, and Timing of Exercise

Sheri R. Colberg
Old Dominion University

Manuel J. Hernandez

Fatima Shahzad

Follow this and additional works at: https://digitalcommons.odu.edu/hms_fac_pubs
Part of the [Endocrinology Commons](https://digitalcommons.odu.edu/endocrinology-commons), and the [Endocrinology, Diabetes, and Metabolism Commons](https://digitalcommons.odu.edu/endocrinology-diabetes-metabolism-commons)

Repository Citation
https://digitalcommons.odu.edu/hms_fac_pubs/48

Original Publication Citation

This Article is brought to you for free and open access by the Human Movement Sciences at ODU Digital Commons. It has been accepted for inclusion in Human Movement Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
OBSERVATIONS

Blood Glucose Responses to Type, Intensity, Duration, and Timing of Exercise

The Big Blue Test (BBT) is an annual initiative by the Diabetes Hands Foundation to raise awareness of the importance of physical activity in managing diabetes. Individuals with diabetes voluntarily exercise and record self-monitored blood glucose levels. During the 2012 BBT, 5,157 diabetic participants (~90% insulin users) anonymously entered exercise type, duration, intensity, time elapsed since last meal, and blood glucose readings before and after one or more bouts of exercise separately through www.BigBlueTest.org or an iPhone app.

Based on a prior BBT (1), exercise choices were walking, running/jogging, cycling, conditioning machines, dancing, and other exercise (nonspecified). Intensity was moderate or vigorous. Duration was ≤10, 11–19, 20–29, or ≥30 min. The timing of exercise after the last meal was 30 min and 1, 2, or ≥3 h ago. Data were reported as mean ± SD.

Walking was reported most frequently (48.3%), followed by other exercise (18.7%), running/jogging (11.9%), cycling (8.8%), conditioning machines (6.4%), and dancing (5.7%). Overall, mean blood glucose levels were lower (−31.3 ± 47.1 mg/dL, 16.8%) after exercise, although only 75.8% decreased, 8.8% were unchanged, and 15.4% increased. Walking resulted in the smallest decrease (−25.0 ± 42.4 mg/dL) compared with nonspecified exercise (−33.5 ± 50.0 mg/dL), running/jogging (−40.1 ± 55.1 mg/dL), cycling (−42.4 ± 48.8 mg/dL), conditioning machines (−35.9 ± 48.8 mg/dL), and dancing (−37.4 ± 45.3 mg/dL, P < 0.05). Moderate exercise resulted in a mean decrease of −32.7 ± 44.1 mg/dL, whereas blood glucose only decreased −28.0 ± 53.6 mg/dL after vigorous activity of all durations (P < 0.05). Longer exercise duration generally resulted in increasingly greater decreases in blood glucose for exercise intensities combined (P < 0.05) and moderate exercise (P < 0.001) but not necessarily for vigorous exercise alone (Table 1). Exercise undertaken 1 and 2 h after eating led to a similar decrease (−40.1 ± 47.2 and −40.1 ± 45.9 mg/dL, respectively), but both were more than exercise done for either 30 min (−28.6 ± 50.6 mg/dL) or ≥3 h (−21.2 ± 44.0 mg/dL) afterward (P < 0.05). The largest decrease followed ≥30 min of exercise undertaken 1 h (−49.3 ± 53.1 mg/dL) or 2 h (−46.4 ± 49.8 mg/dL) after eating (P < 0.001) compared with 30 min (−34.3 ± 53.5 mg/dL) or ≥3 h (−19.6 ± 47.0 mg/dL).

Although the 2012 BBT confirms that participation in varying types, intensities, and durations of exercise generally lowers blood glucose levels, engaging in just a 10-s sprint before or after moderate activity can prevent a fall in glycemia in type 1 diabetes because of a greater release of glucose-raising hormones from intense activity, suggesting that exercise variations play a role in the expected response (2,3). However, most exercise that is longer in duration reduces blood glucose levels and may require regimen changes to prevent hypoglycemia (4). Because 50 min of moderate exercise undertaken 60 or 180 min after breakfast carries a similar risk of exercise-induced hypoglycemia (5), the timing of exercise after the last meal must be considered. In conclusion, varying types, intensities, and durations of exercise generally lower blood glucose levels in most individuals, although exercise of longer duration is likely most effective, and elapsed time since eating should be considered.

SHERI R. COLBERG, PHD
MANUEL J. HERNANDEZ, MENG
FATIMA SHAHIAD, BS

From the 1Old Dominion University, Norfolk, Virginia, and the 2Diabetes Hands Foundation, Berkeley, California. Corresponding author: Sheri R. Colberg, scolberg@odu.edu. DOI: 10.2337/dc13-0965 © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

Table 1—Mean change in blood glucose levels (mg/dL) by exercise intensity and duration

<table>
<thead>
<tr>
<th>Exercise Type</th>
<th>≤10 min</th>
<th>11–19 min</th>
<th>20–29 min</th>
<th>≥30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>All exercise</td>
<td>−19.7 ± 44.9*</td>
<td>−25.0 ± 34.4*</td>
<td>−30.9 ± 42.0*</td>
<td>−34.5 ± 51.7*</td>
</tr>
<tr>
<td>Moderate</td>
<td>−16.9 ± 43.8</td>
<td>−25.6 ± 32.9</td>
<td>−29.9 ± 40.2*</td>
<td>−39.0 ± 48.6*†</td>
</tr>
<tr>
<td>Vigorous</td>
<td>−25.1 ± 51.4</td>
<td>−22.1 ± 40.8f</td>
<td>−36.1 ± 49.9g*</td>
<td>−27.6 ± 55.5*f</td>
</tr>
</tbody>
</table>

Data are mean ± SD. *For all exercise, all values differ from one another (P < 0.05). For moderate and vigorous, †P < 0.001 vs. ≤10 min moderate, ‡P < 0.001 vs. 11–19 min moderate, §P < 0.001 vs. 20–29 min moderate, †P < 0.001 vs. ≥30 min moderate, and ‡P < 0.001 vs. 11–19 min vigorous.”