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ABSTRACT

GENERALIZED COMPTON AMPLITUDES 
IN QUANTUM CHROMODYNAMICS

Ignati Grigentch 
Old Dominion University, 2000 

Director: Dr. A. V. Radyushkin

In this dissertation we describe results of our studies of generalized Compton 

amplitudes. YVe have calculated the one-loop corrections to the amplitude in 

the coordinate representation in terms of nonlocal string light-ray operators. 

YY’e have also developed a consistent approach to the problem of constructing 

the gauge invariant Compton amplitude and obtained an expression for the 

explicitly gauge invariant amplitude which includes all the generalized target- 

mass corrections.
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One-Loop Corrections To 

Compton Amplitude

1
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Chapter 1

Introduction

Quantum chromodvnamics has been one of the most challenging frontiers of 

the modern physics for the last three decades.

Before the constituent quark model was introduced ([1], [2]) there were 

only several phenomenological models used to describe the strong interaction 

of hadrons. The quark model was able to give a successful classification of 

the whole spectrum of hadrons specifying their quantum numbers. The main 

postulate of the model states that both barvons (strongly interacting fermions) 

and mesons (strongly interacting bosons) consist of more fundamental particles 

called quarks. Quarks interact with each other by means of gluon exchange.

An important impact on the development of the theory of strong interac­

tions was data on deep inelastic scattering (DIS) which led to the creation of 

the parton model ([3, 4, 5]). This data shows that inside the nucleons there is 

a cloud of quasi-free point-like particles or partons. Their quantum numbers 

coincided with the quantum numbers of the quarks.

‘The style specifications used in this thesis follow those of Physical Review D.

2
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CHAPTER 1. INTRODUCTION 3

The next big step was the introduction of a new quantum number, the 

color ([6 , 7, 8]). Color was necessary to describe baryons and mesons as bound 

states of quarks.

Compton scattering provides a unique tool for studying internal struc­

ture of hadrons. A general Compton amplitude probes hadronic structure by 

two electromagnetic currents. In quantum chromodvnamics. the photons cou­

ple to the quarks of the hadron. The photon-quark vertex is pointlike only 

in the simplest approximation: gluon interactions produce radiative correc­

tions which may be uncalculable within the perturbative QCD framework, if 

the relevant Feynman integrals are dominated by regions of soft momenta. 

Still, it is possible to preserve the simple almost pointlike structure of the 

photon-quark coupling by incorporating the asymptotic freedom property of 

QCD and choosing a specific kinematics in which the behavior of the rele­

vant amplitude is dominated by integration regions where momenta are large. 

In the coordinate representation, this corresponds to a situation when the 

separation between the two photon vertices of the Compton amplitude is 

light-like. In other words, the leading asymptotic behavior in the momen­

tum space is governed by the leading light-cone singularity of the product 

of two electromagnetic currents J ,i(0)Ju(z). The light-cone operator product 

expansion was originally applied to the forward virtual Compton amplitude 

[11. 1‘2, 13, 14, 15, 16, 17, 18, 19, 20, 21], whose imaginary part gives the cross 

section of deep inelastic scattering, the classic process for measuring the parton 

distribution functions. Another example of a light-cone dominated Compton­

like amplitude is the form factor 7*7 —► tt0 [22, 26, 29], which describes the 

process providing the cleanest information about the pion distribution ampli­

tude [28, 30]. Recently, a lot of attention was focussed on studies of deeply
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CHAPTER 1. INTRODUCTION 4

virtual Compton scattering [31. 32. 41. 42, 46, 47] which can provide informa­

tion about so-called skewed [33, 32] and double [43. 44] parton distributions. 

The leading large-Q2 behavior of deeply virtual Compton scattering (DYCS) 

is also governed by the light-cone singularities of the coordinate representa­

tion version of the Compton amplitude [32, 41. 42], As shown in [45], the 

light-cone singularities of the Compton amplitude play an important role in 

the description of the wide-angle real Compton scattering (WACS). It should 

be emphasized that in the coordinate representation, the Compton amplitudes 

for all four processes mentioned above are identical, despite the fact that in 

the momentum representation each of these processes has its own rich struc­

ture, visibly different from that of the other ones. Hence, the study of the 

generalized Compton amplitude in the coordinate representation provides the 

basis for a unified approach to several basic hard processes.

The advantages of the coordinate representation become especially clear 

when one needs to calculate corrections to the leading-order (or handbag) 

approximation. In particular, the calculations of the one-loop radiative cor­

rections to DIS [9], 7*7 -*■ ir° form factor [26, 29, 30], and DVCS [41, 46] rep­

resent calculations of three different processes. In this dissertation, we show 

that one can perform the calculation of just the generic Compton amplitude in 

the coordinate representation. All the nontrivial procedures: renormalization 

(subtraction of the UV divergences), factorization (separation of contributions 

due to short and long distances) are performed at this stage. The next step 

is to perform parametrization of the long-distance part (matrix element of 

a light-cone operator) in terms of the relevant parton functions. Mathemat­

ically, this corresponds to taking the relevant Fourier transform. The final 

result strongly depends on the kinematics of the process under study: all the
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CHAPTER 1. INTRODUCTION o

differences between the expressions for specific processes appear at this stage. 

This feature of our approach gives an opportunity to perform a nontrivial 

“quality control” for the results of these complicated calculations. In particu­

lar, we demonstrate that our expression for the one-loop Compton amplitude 

reproduces the classic DIS results by Bardeen et al. [9].

The coordinate representation of the Compton amplitude can be used as 

a starting point for a calculation of the target-mass corrections. These cor­

rections are purely kinematical. and for this reason, they can be calculated 

exactly. For DIS. the nucleon mass corrections (m2/ Q 2)N can be calculated 

within the Nachtmann-Georgi-Politzer formalism [17. 25]. In DVCS, in addi­

tion to the nucleon mass, one should deal with the invariant momentum trans­

fer t, which also leads to exactly calculable kinematic (t / Q2)‘w corrections. A 

self-consistent treatment of the O(t) terms is very important. In particular, 

the asymptotic expressions for the DV'CS amplitudes [31. 32] were derived un­

der assumption that the 0 ( t / Q 2) terms can be neglected. A straightforward 

use of these expressions in the t ■£ 0 case leads to inconsistencies: the DV'CS 

amplitude is not EM gauge invariant [48], i.e., the EM current conservation is 

apparently violated. In the second part of this dissertation, using the coordi­

nate representation and double distribution formalism [34, 43, 44], we obtain 

the expression for the tree-level DVCS amplitude which includes all the gener­

alized target-mass (m 2/ Q 2)N and (t / Q 2)N corrections. We also show that this 

expression is electromagnetic (EM) gauge invariant. Hence, this expression 

can serve as a starting point for self-consistent phenomenological applications 

for the DVCS process, such as calculations of the DV'CS cross section and, 

especially, the single-spin asymmetry [31, 48] which is proportional to t and 

for this reason cannot be reliably obtained from the asymptotic expressions of
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CHAPTER 1. INTRODUCTION 6

refs. [31. 32] valid only in the t —» 0 limit.

This dissertation is organized as follows:

In the first part of the thesis we consider Compton scattering amplitude 

in the coordinate representation. First we write the lowest order (tree level) 

amplitude in the coordinate representation and show how the transition to the 

more traditional momentum representation is done. Then we calculate one- 

loop correction. We give a detailed description of the calculation technique of 

Feynman integrals in the coordinate representation. We use the dimensional 

regularization and the minimal subtraction scheme. We write the amplitude 

in terms of non-local string light-ray operators.

Next we perform factorization and extract the Wilson coefficient function. 

Calculated in the coordinate representation the latter has a great advantage 

of being universal for many different processes. Therefore the one-loop cor­

rections found in the coordinate representation can be used for analysis of 

DIS. DVCS, WACS etc. In the last two chapters of the part I of the thesis 

we present two examples to illustrate this, a forward process (deep inelastic 

scattering) and a non-forward process (Compton scattering). For the latter 

we explicitly calculate both real and imaginary parts using the methods of 

the theory of generalized functions. Some interesting formulas derived in the 

process of the calculations are listed in the appendices.

The goal of the second part of this thesis is to obtain an explicitly gauge 

invariant expression for the virtual Compton scattering amplitude. We intro­

duce a modified symmetric parametrization of a non-forward matrix element 

in the coordinate representation. We derive a condition which provides gauge 

invariance of the modified parametrization. This condition leads to a system 

of differential equations which are solved.
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CHAPTER 1. INTRODUCTION i

Then we perform Fourier transformation and derive an expression for the 

Compton amplitude in the momentum representation. We show that obtained 

amplitude is indeed explicitly gauge invariant.
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Chapter 2

Notations

A few words about used notations are in order.

Through out the paper we use

u =  1 — u. (1)

Notation

(pq) (2)

means the scalar product of two Lorentz vectors p and q. The same notation 

is used for both d—dimensional and four-dimensional vectors.

The "hat”

k =  * V  (3)

means contraction of Lorentz vector k  and a Dirac gamma matrix.

A generalized '‘plus” function (functional, to be precise) is defined

as

[  dx 1 ^ -  F(x)  =  f  d x g { x (4) 
J x — a ,  J x  — a

F(x) -  F{a)

8
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CHAPTER 2. NOTATIONS 9

where a probe functions F(x),  as usual, have a compact support, and point of 

singularity, x  =  a is inside the limits of integration.

We use T til/(z) and T tll'{q,p) for the Compton amplitude in the coordinate 

and the momentum representation respectively.

Notation M ^ { z )  is reserved for the contribution of the diagram pictured 

on the figure n.
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Chapter 3

Tree Level (Born) Diagrams

3.1 Tree Level Diagrams in Coordinate Rep­

resentation

The perturbative expansion for the Compton amplitude starts at zero order 

in the strong coupling constant, with the purely QED diagrams in which the 

photons interact with the quarks.

The expressions for two (s- and u-channel) tree level (or Bom) diagrams 

in the coordinate space (see Fig.l ) are simply given by the quark propagator 

switched between the initial and final quark fields, with the quarks being 

treated as massless fermions.

As all the loop calculations are to be performed in a d-dimensional space­

time to exploit the benefits of dimensional regularization, here we also write 

the expression for the massless fermion propagator in a d-dimensional space- 

time:

10
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CHAPTER 3. TREE LEVEL (BORN) DIAGRAMS  11

5(21 “  “2) “  2tt‘*/2( - ( z 1 - ^ ) 2)d/2‘ (0)

a) b)

FIG. 1: Tree level (Born) diagrams: a) s-channel and 6) u-channel

This leads to

27T‘' / 2 ( - S 2)«'/2 ( 6 )

(7)

and
i v ( ± ) ( b { z ) Y z i um

27rd/2( _ r 2)d/2

for each of the two tree level diagrams. The summation over the quark color 

indices is implied.

Using the following gamma-matrix formula ([51])

7 * 7 V  =  ( s ' V "  +  3 ° V "  -  <rgati) V3 + ( 8 )

we express the original bilocal quark operators in terms of more convenient 

ones, which have only one Lorentz index (basically, it is a decomposition on 

16 gamma matrices basis, see [53]), e.g., ^ (0)7^ { z )  and ^ (0)7075^ (2) in case 

of the s-channel diagram.
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CHAPTER 3. TREE LEVEL (BORN) DIAGRAMS 12

The next complication arises from the fact that these operators contain 

higher-twist contributions: their Taylor expansion would contain local oper­

ators which are not automatically symmetric with respect to interchange of 

their indices.

To isolate the leading twist part we are interested in, we use the formulas 

given in Ref.[27]:

f a a z W v i p z ) ]  =  J^dt  w(ottz)zv(fltz)  (9)

\ i p{az)YlbV>(.fo)] =  ^  J  dt p{atz)z75p(3tz) ,  (10)

where the notation =  indicates that the leading-twist parts of the left hand 

side and the right hand side coincide.

Here for the first time we encounter the non-local string operator:

[  dt u,'{atz)zu)(0). (11)
Jo

The term '‘string” is used because the argument of p takes all the values 

on the “string” from 0 to z.

As a result, the contribution of the tree level diagrams to the Compton 

scattering amplitude can be expressed in the form

r r w  =

 ̂i£‘'tia‘i zadi3 Jq (w(0)z75p{tz) + p(tz)z77p{0)) dt

+  +  zTdT -  g ^( zd )  } jf  ‘ (p(Q)zw(tz) -  P{tz)zp{0)) dt j , (12)
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CHAPTER 3. TREE LEVEL (BORN) DIAGRAMS 13

in which the p. u symmetric and antisymmetric parts are now explic­

itly separated and all the nonperturbative information is accumulated in the 

matrix elements of operators of the two types:

Now, only twist-2 operators (symmetric and traceless) appear in the Taylor 

expansion of these bilocal operators on the light cone z1 =  0 .

3.2 Tree Level Diagrams in Momentum Rep­

resentation

The next step in our analysis is to specify the form of the hadronic matrix 

element dictated by the relevant hard process and parametrize it in terms of 

the relevant nonperturbative (parton) functions. Let us list here the most 

important examples:

•  Studying the 7*7 —> 7r° transition form factor, one arrives at the matrix 

element (x(p) | 10) parametrized by the pion distribution amplitude,

•  The deep inelastic scattering (DIS) cross section can be calculated 

through the imaginary part of the forward virtual Compton amplitude. 

In this case, one would deal with the matrix elements (N(p ) | CV,.i I N(p))  

parametrized by spin-averaged f ( x )  or polarized g(x) parton densities, 

respectively.
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CHAPTER 3. TREE LEVEL (BORN) DIAGRAMS 14

• In the case of deeply virtual Compton scattering (DVCS) one would 

get nonfonvard matrix elements (N(p') 1O y,\ \ N(p))  which can be 

parametrized in two alternative ways: through double F(x.  y; t) or

skewed T q(X)  parton distributions.

The double distributions (DDs) have hybrid properties: they look like par­

ton densities with respect to their first argument x  and like distribution am­

plitudes with respect to the second argument y. Therefore the DVCS example 

contains two other ones as limiting cases and it is instructive to analyze the 

DVCS am plitude to illustrate how the transition from the coordinate to the 

more traditional momentum representation and parton description can be ob­

tained.

In the DVCS case, there are initial and final nucleons (with momenta p and 

p' respectively), an initial highly virtual photon (with momentum q.q2 «  0) 

and a final real photon (with momentum q'.q12 = 0).

The nonforward matrix element of the Oy  operator can for instance be 

parametrized in terms of double distributions F ( x , y ; r2) (see [34] and [44] for 

further details):

(p'\  0 (0) H ' { z )  -  i b ( z ) z i ) {0) |p )  =

= u(p')zu(p)fo d x j *  dy F(x,  y) (etxpz~ ^ z -  , (14)

where r =  p  — p' is the momentum transfer.

Here we neglected 0 ( z 2) terms and terms vanishing in the r  -¥ 0 limit. The 

latter include the hadron helicity flip term proportional to u(p')(zf  — rz)u(p) 

and the Polyakov-Weiss term [49] proportional to (rz)u[p')u{p) and containing 

a single integration over y. For our illustration purposes we do not need these
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CHAPTER 3. TREE LEVEL (BORN) DIAGRAMS 15

terms here. This topic is covered in greater details in the second part of this 

thesis.

Consider the / /H  u symmetric part of the DVCS amplitude. Taking d = 4 

and using the parametrization written above for the two tree-level diagrams 

we obtain

Now, in order to get the amplitude in momentum representation 

(i.e.calculate the Fourier transform) we multiply this expression by e~iqz and 

perform the integration /  d lz.

Introducing the shorthand notations

11 =  - x p - y r

12 =  x p - y r

k\ =  —q +  tl i

k-2 =  — Q +  tU, ( 16)

taking the derivative d13 and performing integration over ~ we get

2T (? ,p )  =

i +  c r y *1 -  a"”!,”9} j )  d t j )  d x j '  dy F(x, y)

,s ( g «  2 2k%4
‘1 T 2 7a ~  _  ‘2 12  ZT~k\ k\ )  2 V *2 )) ( 17)
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CH APTER 3. TREE LEVEL (BORN) DIAGRAMS 16

One can clearly see one of the advantages of the coordinate representation 

notations: its simplicity compared to the momentum representation.

Note that the integrand is a rational function of t. Therefore the artificial

extra integration we introduced to single out the leading twist can be done

explicitly.

Here we restrict ourselves to the even simpler case in which the nucleon 

mass and the invariant momentum transfer, r2, are neglected:

pn -  p2 =  r1 =  0 . (18)

The skewedness £ in this case coincides with the Bjorken variable

= <19'
As discussed in [34], in the Bjorken limit, the hard subprocess amplitude 

in (17) depends only on the special combination .Y =  x  -I- Qy of the variables 

x  and y  :

7 T (« ,p )  =

s { « V  +  , V  -  +  £  W ? } «  ^  I '  dt [  d x j ‘  dy F(x. y)

i i  t (  x - o  t x  1
[C + t ( X - 0  t x -  c (C +  i ( X - 0 )2 {tX  -  C)2. 

where we dropped all terms vanishing in this limit.

Subsequent integration over t results in

(20)

7 T ( « , P )  =

_ l _ 5 { , v + , v _ 9^ + ^ 2p, r t  } „  x

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



CHAPTER 3. TREE LEVEL (BORN) DIAGRAMS 17

x  [  dx f  dy F(x. y)
JO jo

1
( 2 1 )

X - C  X

To derive this formula we used the approximation ur/llu ~  p*1. In this approxi­

mation we can rewrite the above amplitude expressed through the momentum 

of the outgoing photon. qr as follows

r n . p )
tuqu

■2(P9)

x [  dx [  dy F(x, y) 
Jo Jo

1 1
( 2 2 )A'-C -V

Furthermore, we can integrate F{x. y) over y which converts it into the skewed 

parton distribution F^ (.V).
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Chapter 4

One-Loop Corrections

There are four distinctive types of the diagrams which contribute at one-loop 

to the Compton amplitude in the coordinate representation. They are

•  handbag or box diagram

• vertex correction diagram with the vertex located at the origin

•  vertex correction diagram with the vertex located at the point z

•  self energy diagram.

Besides, each diagram comes in two channels: s —channel and u—channel 

(crossed diagram). So that we have 8 diagrams in total.

18
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CHAPTER 4. ONE-LOOP CORRECTIONS 19

4.1 Handbag (Box) Diagrams

We start the study of the one-loop QCD corrections to the tree level diagrams 

with the so called handbag or box diagrams. Fig.2 makes these names self- 

explanatory.

FIG. 2: Handbag (box) diagrams: a) s-channel and b) u-channel.

These two diagrams have a very similar structure. To be specific, we will 

concentrate on the calculation of the s-channel box diagram.

In the Feynman gauge, its contribution in the coordinate representation is 

given by

- V C M  =  / < * !  /  < ? 2 l D ( Z ,  -  ) X

x i ( . - ,h " S ( ! i ) 7 ' S ( - ! ) r S ( :  -  s ih ° w ( z 2), (23)

where D(z\ — z-i) is a massless boson propagator in a d-dimensions:

(24)4jr<J/2( _ ( . ,  _ 2, ) 2)4/2- r
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With the chosen coordinate labeling, it is more convenient to start with 

the integral over z t . Below, we give a rather detailed discussion of how we 

calculate this integral to illustrate the basic techniques of dealing with the 

Feynman integrals in the coordinate representation. In fact, for massless par­

ticles. the Feynman integrals in the momentum and coordinate representation 

are remarkably similar.

Just like in the momentum representation, the first step is to combine 

the denominator factors of two Ci-dependent propagators by means of the 

d-dimensional Feynman formula:

 r W T O  =  / V „  +  (25)

The next standard step is to carry out the shift of the integration variable

C| —> Ci +  UZo.

However, even after this change, the external quark field v(ci -I- uz2) still 

depends on the integration variable z\. This is a new feature specific for the 

Feynman integrals in the coordinate representation. At this point, it is worth 

emphasizing that for the given operator product the coefficient function is 

process independent and hence does not depend on the target. Therefore, any 

target can be chosen. For our purposes it is the best to choose the massless 

on-shell quarks as the target. In the coordinate representation that implies 

the following condition on the quark field operator:

g J ? * > W = 0 . (26)

In the same manner as the momentum-space on-shell condition p2 =  0 sub­

stantially simplifies momentum loop integrations, the equation (26) plays an

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



CHAPTER 4. ONE-LOOP CORRECTIONS 21

important role in the calculations in the coordinate representation performed 

in the present dissertation.

To make use of the on-shell condition (26) we expand the quark field op­

erator into the Taylor series around the point uz2 :

ip'(Zl + UZ2) =  il'(llZ2) +  y*,Q(uZ2) +  ~f (uc>) +  . . . . (27)

An important result, which is easy to verify, is that integration over 

causes the contraction of the indices of the derivatives. Therefore all but the 

first two terms of the Taylor expansion would contain dz and vanish due to 

the on-shellness condition:

il\aa(z) =&iP(z)  = 0 . (28)

The two nonvanishing terms can be integrated easily and the result is

( -1 )  r l (il{uz2)z l r ( f - l )  uip^{uz2) r ^  -  2)
Sir*/* JQ U ( - z2)d/2-i 2 { - z Z y i 2- 2

This expression should be integrated over z2 along with

- <r (l))2
4 ^ ( _ 2 2)d/2 {d -  A W z - f  (z - z2) + 2 ( z -  z2) r z r

- 2 1 ^ z ( z - z 2) + 2 z 1l' l f i ( z - Z 2 )

+4 (z -  Zo) ~ { z ~  Z - T f ^ Z ^  +

(z -  z2) -  (z -  z2)
1

(29)

( - ( z - z 2m 2‘ (30)
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Note that due to the symmetry of the box diagram, the second term in 

Eq.(29) does not contribute at the leading twist level.

The result for the Diagram 2a (s-channel box) is

J - i )  r ( f ) r ( f - i )
327Td{ - z 1)d~i

r i . r i . A n d - 2 )/ au / dv u u'(uvz)
Jo Jo

■2a t~) =  9

d — 4
+  Z» Y  _  g ^ ' Z

i + (d-6) (l _ U 2- Li  ̂U 2 V7 z Y  -  Y n

+ 2 (d -  2) x  

v(vz).  (31)

Again, we can rewrite this expression in terms of the light-rav string oper­

ators using the formula (9). However, because of the subtleties of defining the 

7s matrix in d dimensions, we prefer to leave the /i <-»• u antisymmetric term 

"as is’’ , keeping it in the form of the commutator of gamma matrices until 

we will return (after necessary renormalization subtractions) into the physical 

4-dimensional space. This transformation gives

dv x
32tt L d u l

- (  - )  y zuqh _  g(ivz  ip (uv tz )zu j (v t z )

2 z^z”
d - 4

+  2{d -  2) V -sT

-f v(d — 6) ^1 — w(uuz)

U’{uvz)z‘d(uz)

ip{vz)  ̂ (32)Y zY  ~ ' f z r f

for the Diagram 2a.

The result for the Diagram 2b (u-channel box) differs only in the overall
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sign and the interchange of both the vector indices ( / 1  <-> u) and arguments of 

quark spinors v,  w :

i - 1)
-*3rw

Jo Jo dv |  4*̂  -  3*“';] +  2(d -  2) x

i  +  (d -  6 ) ( l  -  j i - j )  [ V .V  -  7" i7"] |  «>(uf:).(33)_

In terms of the light-ray string operators expression for the Diagram 26 

reads

2(d -  2) 0 
d - 4

^  • d ] £ d t  tP{uvtz)zv{utz)

+  2(d -  2) v
\2z»zv 

-2 ~  9fiv

+ v(d — 6) 1̂ — j z ~ l )  ^ ( vz)

We note here that while two structures.

v{vz)zw{uvz)

ip(uvz)- U 2.  ̂V is “ Li7^27 — 7 z~r (34)

[zrer +  -  g ^ z  ■ d\ (35)

and

{■fi-r -  - n r ]  (36)

exactly reproduce the tensor structures of the tree level diagrams, the loop 

integration also created a completely new tensor structure:
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(37)

4.2 Vertex Correction Diagrams

In the coordinate representation, QCD gluon-exchange corrections to the 

QED vertices produce two distinct types of Feynman integrals, depending 

on whether the vertex is at the origin or at the space-time point 2. Let us first 

calculate loop corrections for the vertex at the origin (see Figure 3).

In this case, it is easier to start with the integration over which is applied
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FIG. 3: Gluon corrections to the vertex located at the origin.

The Feynman integral for the diagram Fig.3a is given by

A C W  =  /  /  < ^2  0 (2 , -  r2) X

X *(21)7“5(.-1)7 ''5 (-2 2)7“S(2, -  2)7*V(2). (38)
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to exactly the same integral as in (29). iN'ow, as the diagram is clearly asym­

metric, both terms in (29) would contribute into the leading twist. Performing 

the second integration along with the remaining part gives the following result 

for the Diagram 3a (s—channel):

M SU z)  =

J  (-> r (t) r .ri f ( d  \  ( u l d/2 -  l )  r _ _ .

1 6 L dU |  r (̂ 2 ~ 2J ~ ~d/2  — 1 ~ W(0)] r ^ W{z)

+ r ( ^ ~ 1 )  +  ^ U Z ^  ~  u I _ d / 2 )

+  r l - - l U { u z ) z > ‘f v ( z ) +

9 167Td( —22)- z 2)d~3 Jo
du v^{uzYf^w{z)  x

{ d / 2 - 2 ) u  +  u2- d/2
1 + r U - ‘

U~ a,m — V
• (39)d /2 - 1  ' ~ \ 2  ' )  d — 2

At this stage of our analysis, it becomes convenient to introduce the pa­

rameter c, c =  d — 4/2, which describes the difference between the dimension 

d of the fictitious space-time in which we perform our calculations and 4, the 

dimension of the physical d =  4 space-time. As always integrals, divergent at 

d =  4, would yield the poles in e, in dimensional regularization. With this the 

above expression can be rewritten in a little bit simpler form:

. _ 2( - ‘) r (f ) r( f- i)
30 9 I6ird( - z 2)d~2 X

I (u l~d/2 — l )  _
-  d p ~ _  1 H’{uz) -  Z ' f v i z )  +ibtu.z)z'/ Y v { z )  +s:du

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



CHAPTER 4. ONE-LOOP CORRECTIONS 26

TTTJ ( " 7 ^  +  -  M “2I -  <5(0 )]u‘ drl'j +  - 4 ^ x
167Trf

1 — u ’’ u"
 +  1 — - (40)

There are two types of poles in the last expression. The second (trivial) pole

^  corresponds to the UV divergence of the diagram and is removed by the 

vertex renormalization. The other type corresponds to the IR divergence and 

is caused by the fact that we used massless propagators in the loop integral.

The Feynman integral for the u-channel vertex correction diagram (see 

Fig.3a) is given by:

, ,(0 r(f)r(g -  i)
= 9  l6 ^ , r -2 ><

r i r  i  (vi ~ d / 2 — i )  _

Jo dv  7 rf/ 9  -  1— t i { z Y f z Y [ r t { u z )  -  «f(0)] + H'{z )YzuiD{vz) +

d 3 0 (z)' f z ' f  +  -tl>{yz) -  [ib(vz) -  c (0 )]cl d/2
2 — d

( - i )  r (f)r( f - i )  f i 

( - z 2)d- 3d - 1)

167Td

[  dvih(z)')llV v(vz) Jo
1 — V £ . U s V

— -  + 1 ~ —  - 0 • (41)

The other vertex correction diagram has vertex at the point z “wrapped” 

by the loop. This leads to the different integrals.

The Feynman integral for the diagram Fig.4a is given by

A C M  =  /  r f * ^  D(ZI -  z2)x

x ^ ( 0 )7 ,'S ( - 2 2)7‘, S ( Z2 -  j ) 7 » S ( 2 -  ; , ) 7 a * (-7 ) . (42)

Again we first calculate the integral over Zi

i r (f)r(f- i)  r ______(~ ~ ______
8ird J a 1 ( - ( z  -  z 0 2)d>2 ( - (Z !  -
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a)

F I G .  4 : G l u o n  c o r r e c t i o n s  t o  t h e  v e r t e x  l o c a t e d  a t  t h e  p o i n t  2.

(_1) f1. (  {z -=■>)* U-iuZ-2 + uz) r ( f - i )  
~8^n-Jo  ( - ( 2  -  z2y-yi2->

a v , t { u z -2 +  uz)  r ( ^  -  2)
+ 2 ( - ( . _ - 2 )2)«i /2-2

T h i s  e x p r e s s i o n  s h o u l d  b e  i n t e g r a t e d  o v e r  z2 a l o n g  w i t h

- g2 ( r ( j ) f  m r h
4^ ( - 4 ) ^ ( - ( z  -  Z2 ) - ) d/2

(6 - d )  (2 - 2,) 7 V

- 4(2  -  =2r 7 *  +  4 ( 2  -  22 ) V  -  4  (2 -  2, )  g *

T h e  i n t e g r a t i o n  o v e r  z2 r e s u l t s  i n

W- H  = r ( € r (l - l)
9 167rd ( _ , 2 ) r f - 2

i dv  

d - 3  -

1 (V di2 — 1) _
7  __ t — t/’( 0 ) 7 I/2 7 /1[u r('t;2) -  u ;(2 )] +  0 ( 0 ) 7 *'z»ib{vz)  4-

2 — d m - r h "  ( — +  w(vz)  — [lp{uz) — 1p(z ) \v l d/2 +
1 6 ?rd
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(-Or(f)r(f-i)
[  dvi)(Q)Y$,n{vz)

J 0

The corresponding u —channel diagram gives:

1 — t’ “ v  e V (- 1    — . (45)

fJo
du

L Ul-d/2  _  l )  _

7 ~ J/9 - 1 — M uz) -  0(~)]7P~7J/̂ (O) + w(us)3^7*V(0) +

d - 3  / ^ ( 2)
2 -  d I £ + -  [^(«2) -  t/>(z)]ul d/'2J 7/1i 71/ i'>(0)

1 -  u-;

+ 3"

+ 1  -

a - u

167rd 

• (46)
*T(g)r(f-l) ri  _

4.3 Self Energy Diagram

The last and the simplest one is the so called self energy diagram depicted on 

the figure Fig.5.

v  v

a) b)

FIG. 5: Self energy diagrams: a) s —channel and b) u—channel.

The Feynman integral for the diagram Fig.5a is given by
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z ) =  J ddzv / dd~ i D ( z i -  z->)x 

x ^ ( 0 y ^ S i - Z o . y r S i z ,  -  cl )7QS(2l -  z ) ^ ( z )  (47)

In the self energy diagrams the gluon-fermion loop is interwined with no 

vertices. Because of that, the result of integration exactly reproduce the tensor 

structure of the tree level diagram.

For the .s-channel self energy diagram we get

A - i )  r ( f ) r ( s  -  i) .  1

-WSrW =  9 3 2 ^ 7’ <48>

and the corresponding crossed (u-channel) self energy diagram gives

M ™ ( Z )  =  g 32 ^ 3 7 ^ -2  7- (-19)

For this diagram the pole 7 corresponds to pure UV divergence of the loop 

integral.
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Chapter 5

Coefficient Function

5.1 Compton Amplitude and Operator Pro­

duct Expansion

The Compton amplitude for non-forward scattering of a virtual photon off a 

hadron is given by

T„Ap , p' , i ) =  ‘ I  {p/,S, \T iJ„lz)MO))\p ,S) .  (50)

where q is the momentum of the virtual photon, — q2 =  Q2 > > 0 .

The factorization theorem (see [35],[36],[37],[38],[39],[40],[34].[42],[41]) 

states that in quantum chromodynamics the later can be factorized in two 

parts: the hard one, depending on large momentum Q, and the soft one, de­

pending on small momenta p.p' (for the sake of simplicity we omit vector 

indices here):

30
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T(p,pf,q) -  (Q,ii2,g2) Ai (p,p',(i2,g2) . (51)
i

Here fj. is a scale dividing large and small distances (also called a factoriza­

tion scale) and g2 is a (renormalized) coupling constant. Due to the asymptotic 

freedom of quantum chroraodynamics. the hard part can be found by means 

of the perturbation theory and the soft part contains non-perturbative effects.

In terms of coordinate representation this corresponds to light-cone gener­

alization of Wilson’s operator product expansion (OPE) ([10],[ll],[21]-[25]).

The operator product expansion expresses the singularities of the operator 

products as a series of nonsingular operators with the coefficients being singular 

complex numbers (for the introduction see [57]):

0 { x ) 0 [ y )  =  £ C j ( x  ~  y)-Mx, y), (52)
i

where C\(x — y) is a set of singular C-number functions (coefficient func­

tions) and Ai(x,y)  denotes a family of non-singular (in the limit x  —»■ y) 

non-local operators. In our case they would be the string light-rav operators. 

These non-local operators can in turn be expanded into a Taylor series of local 

operators. For the string light-ray operators operator product expansion (52) 

takes the form of convolution:

^ 2 C i { x  -  y ) ®  Ai { x , y )  =
i

[  du [  dv 9{v > u) C i (x  — y,  u, u)^,(x. y.  u, c). (53)
Jo Jo

To carry out the factorization procedure and separate the contributions 

corresponding to coefficient functions from operators, we follow the method
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described in [9] (see also reference [26]).

Let us outline it briefly. We can write our OPE symbolically as

T(g2) = C(g2)A(g2). (54)

In the one-loop approximation the functions involved are given by

< V )  =  i + T^ c < "  + . . .

A(g2} =  1 +  l f ^ 4<"  +  "  -  (55)

We insert these three equations into Eq.(54) and keep only terms of order g2 

to obtain

1 + if^ " 1 = 1 + +1& " ■  <56>
The coefficient function in one-loop approximation can be found as

<v>= i +^ (i> - 4 ? ’ <57>
hence, to find the coefficient function, we need to perform the following steps

1. calculate the one-loop corrections to the virtual Compton amplitude

2. find non-local operators, A(g'2)

3. subtract the latter from the former.

While one-loop corrections to the virtual Compton amplitude were calcu­

lated in chapter 4, the non-local string operators can be found as the product 

of the tree-level operators contracted with the evolution kernel Bqq(u. v) (see
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(59) below) and a pure pole term, p. This simplicity is one of the advantages 

of using the dimensional regularization.

The light-ray quark-quark evolution kernel B qq(u ,v ) can be found as the 

coefficient of the pure pole terms:

\ J  du J  dv B(u > u) [Bqq(u, v) tp(uz)dtu/u’(vz)^ ^  . (58)

The sum of all diagrams leads to the result first obtained in [20] and in 

[27]. In the symmetric notation employed here the evolution kernel was first 

obtained in [34].

B m{u, v ) =  g2 I +
LuJ +

6(v) + <$(u) ~  . (59)

As the same £• is used to regularize both UV and IR behaviour the last 

term of (59) removes the total UV divergence.

5.2 Coefficient Function in Coordinate Repre­

sentation

We use a minimal subtraction scheme, in which renormalization is done by 

removing pure poles, When the limit c/ —► 4 is taken the expression of the 

type

j ( - 2r  - 1 (so)

leads to the logarithm function in the result. Parameter fj, is inserted to make 

the argument of the logarithm dimensionless: \n{z2fi2). We also use shorthand 

notation for the combination 6 =  7e + ln7r, where 7e is Euler-Mascheroni 

constant. This combination is common for the dimensional regularization.
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The above factorization procedure for both s-channel and u-channel hand­

bag diagrams gives

I g~ y*l
„ T7 TTT / du / dv 9('U > u) X16tt4( - c 2)2 Jo Jo v ’

2 \gT  -
2 z»zu

v(uz)zU(vz) — ii>(uz)H'(vz)^

+  [ln (s 'V ) + S -  l] il{uz) [ z ^ f  +  zu^  -  g^z]  it,(vz)

-  [ in (c V ) + 6  -  l] 0 (uz) [ z ^ f  + zv’f  -  g^z]  *!>(vz)

+  ̂  ^ln(r2/z2) +  S +  3] w(uz) [7 ' ' ^  — 7 /127J/] w{uz)

[ln(~ V )  + 5  +  3] w{uz) [ Y h u ~  7 t/27/1] ${vz)  |

The sum of both vertex correction and self energy diagrams (including 

crossed diagrams) results in

(61)

i g f  r
, T7— / du / dv 9(v > u) x 16tr‘( - z 2)2 Jo Jo v ’

lnu +  u (1 +  S -I- ln(c2/z2))
6 (v)

+ £(u)
lnu -I- v ( l  +  S +  ln(;r2̂ 2))

+

[d}{uz)YzY^{vz)  -  ijj(uz)7 *tz'y,/ip{vz)y) 

(U{iiz)7l'z7*xi){vz) — ■y(uz)7flz7,'ii)(vz))
+

+  S(u) S(v) - (w(uz)7u Z7^U{vz) — ijj(uz)7tl Z7U iLjvz)^

+

4 — 6 — In {zZfx2)

— S(v) [jp{uz)zu7^U[vz) -  U(uz)zti7 l'il;(vz)^

— 6(u) [xb{uz)ztl7 ‘'w{vz) — ip{uz)zv7 *l ij}{vz)} |

— ^ ^ ( i n u  +  f )  x

|  ^ ( u z W ^ z )  -  ip(z)7 ,1ip^(uz) +  ^ I#l(fiz)7"0(O) -  fp(Q)7 l/(/;^{uz) j  (62)
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In order to single out the leading twist contribution and extract the co­

efficient functions associated with the different tensor structures we rewrite 

expressions (61) and (62) in terms of light-ray strings operators. That can be 

done with the help of the following formulas:

A j
[i/’(Qz)7 ,it>(d2)] =' J  dt ip{citz)zw(3tz) (63)

[u{az)Y''f^tp{3z)j = j f  dt v{atz)z~fctD{fltz) (64)

^ ( c ) 7M«/’,l,(Qc)j =  i  (Z>„ -  du) d*1 J  dt ip(tz)zw(atz) (65)

v{ctz)\ =  —dyd*1 [  dt ii;{0)zv(atz),  (66)
1 a  J o

where again the notation =  indicates that the leading-twist parts of the 

left hand side and the right hand side are the same.

Here du = ^  and V u is the derivative of the string operator with respect 

to the total translation. It is defined as

V v w(az)Ow{!3z) =  [ijj(az +  x)Ow(3z  4- -c )] .^  - (67)

Using Eqs.(63) - (66) the sum of all four factorized diagrams and their 

crossed counterparts can be rewritten in terms of non-local light-ray string 

operators as follows
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* -  [ ' du f ' d v  9(v > u) f ' d t-‘(-■r2)2 Jo Jo Jo167T*(—z 2 ) ’2

(C(u, v) +  2) (xp(utz)z^v(utz)  +  U{utz)z''f?,U{vtz)}

+ (C(u, v) -  2) z»&  +  zud» -  g ^ z  ■ d 

X (ip{utz)zil){vtz) — tp(utz)zw(utz))

(U{utz)zii)(vtz) -  U’{utz)zu.'{vtz))J : pgr + +

ttt7 [  du f  dv 9(v > u) 2 
z l Y  Jo Jo <r- 9  -M -7U

-2167r 4 ( —z 2 )'2

X [jp{uz)zU{vz) -  w(uz)z'lH(vz)') +

*& ! M ' I t 1!)
('Ui{utz)zw{tz) -  ip(tz)zv(utz))

+ (^ (u f2) i^ ( 0) -  0 (0)zv{utz)"j > , (68 )

where

C(u. v) =  ln(22/i02) |  1 +  d'(u) 

21n u +  u,

u
LuJ

+  S(u)
v

Lt/J
6(u) S(v)

+d'(u)
2 u

S(u)
2\nv +  u 

2v
+  £ (u)< )»  +  l (69)

and ln(22̂ 2) +  S =  In(z2^o2)-

In the expression (68) the first structure gives the coefficient function cor­

responding to the antisymmetric non-local operator 0^(0 ,  z) (see Eq. (13)) 

and the rest are the coefficient functions corresponding to different tensor 

structures going along with the symmetric non-local operator Gy{0 . z).

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Chapter 6

Examples

6.1 Deep Inelastic Scattering

Calculations of the coefficient function in the coordinate representation has a 

great advantage of being process independent. Once computed in the coordi­

nate space the coefficient function can be applied to different processes. One 

just needs to introduce a proper parametrization of the corresponding matrix 

elements (see [34] for details) and perform transformation to the momentum 

space.

To illustrate this procedure and compare our results with those obtained in 

well known the paper by Bardeen ef al. [9], we consider the relatively simple 

case of the deep inelastic scattering (DIS) (for the good introduction to the 

topic see [55] and [56]).

The cross section of the DIS process can be calculated as an imaginary 

part of the forward process matrix element i.e. the matrix element between 

the states with the same momentum (see [50]).

37
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In this case the derivative with respect to the total translation, vanishes 

because it is proportional to the transferred momentum (the difference of the 

initial and final momenta). This allows us to recombine terms in (68) and. as 

a result, we are left with only two string operators:

ii’{utz)zip(vtz) -  tp(utz)zil'{vtz) (70)

U>(utz)z7 sip(vtz) +  n'(u.tz)z~^n;{utz). (71)

Therefore only two functions are needed to parametrize their matrix ele­

ments. Here we restrict ourselves to the first one.

For zero transferred momentum, the parametrization of the matrix element 

depends only on (p z ) and simply reads

(p| v(uz)zw(vz)  -  w(uz)zii>(vz) \p) =

2 (pz)  j^ d x  /O r )  ') _  c - .* (p * ) ( i -« -« 0  j  _ ( 7 2 )

We proceed as follows

• (i) substitute the above parametrization of the forward matrix element 

into our general result (68)

• (ii) calculate all derivatives

•  (iii) perform Fourier transformation /  d'lZ  e~iqZ (where q is the momen­

tum of the incoming photon, q2 =  — Q2)

• (iv) Expand the result as the series of powers of xujg. with

-  1 2 p ' q ™ub =  —  =  5“  ( ' 3)
x b  <r

is the inverse Bjorken variable
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(v) introduce the moments /„  of the distribution function f (x )  defined

as

f n = [  dxxn 1 f(x):  (74)
Jo

perform integration over u, v, t and x.

The intermediate calculations are quite long and tedious so that we list 

here only the final expressions for different diagrams.

For the box diagram the above procedure would result in

l i !  V  F ■ n f  ^  n 2  1  (  1____n \  i q i i q V  2
n k -L. B 1 (P9)2 "(« +  1) Vn -  1 2 / +  n + 1

JW, 1 ft Q2 . . 1\1
- g*  r r  -  ar — ----------7  I n -    -  >  T  +  rt +  -  > .  ( < 0 )

n(n +  1) n(n +  1) \  47~f.iE2 “  A: n )  J

with
^  P^P1' 2 uu f - r t
d = -----}--- i--------, ,  - 9  ■ ( ' 6(pq) ((p<i))-

And the other three diagrams would lead to

1 g l  V* f  n f P^PU 2 1 ( l  p v 1
| ( ( P ? ) ) 2 , ( " - 1 ) V 2  J  9 n

Structures with cancel each other and the sum is expressed in terms 

of two gauge invariant tensor structures: dP" (defined above) and

eT =  -  t £ . .  (78)
r
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And the final result is given by

2i 9 
47
H /t  n = 2 f4. ..

£  f n * B n { e , w C ' n  +  d ' u ' C d n } ,  (79)
= 2 , 1. ..

with moments of two coefficient functions

C e  =  —^ n —

~ h i k2 U ( °  + i) 2) h i k 2 2n
1 *> (  1 3 n l \ 0 2

( n ( n  + l) + 2 ~ 2 ^ k )  (80)

The notation ln4ff̂ . ,  is a shorthand for 7e +

This result exactly reproduces the one obtained in the paper by Bardeen 

et a l .  [9].

See appendix B for some of less obvious formulas which have been derived 

for the above calculations.
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6.2 Nonforward Process

As another example, let us consider a non-forvvard process. For the sake of 

simplicity here we restrict ourselves to only one tensor structure, g ^ .

To extract the g^-te rm  it is enough to use just the following simplified 

parametrization for the matrix element.

with

and

(p'\ w(uz)zw{vz) -  (l'(uz)zii>{uz) |p) =

(p + p1)- z JQdx JQ dyF{x.y)  (elt' s -  e,<2S)

11 =  xp  (1 — u — v) — r ( u  — y{ 1 — u — v)) 

l-i =  — xp (1 -  u — v) — r  (u +  i/(l — a — u) ) .

(81)

F\x. y) =  Fa(x, y) + Fa(x. y). (82)

The contribution of the two box diagrams to the p ^ - te rm  is then

gT  +
2 z^z"
(~z2)

(P + P')-z 
(~z*y

(e‘llZ — e,/21) -

_  ^ u (p + p')-z lnz2p r  ^ ih; _  e,,2̂
(83)

( - ^ ) 2

The integration over t is exactly canceled by the effect of {z ■ d ) operator: 

it can be replaced with (t - J^) and integrated by parts. Note that this is not 

true for the general case, zadf).

Now we should perform the Fourier transformation /  dAz  e_‘ qz of the last 

expression.
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The relevant integrals are

f  ,4 ik, z“ ln(—z2g2 +  is) 2tt2&q (  ( —k2
] i z e  ( _ , 2  +  ie)2 (84)

f  m ik- Stt'2*"d z e   ---- ----- —  =  ——-------------------------------- 85)
V (— ’T2 + /£-)2 —k2 — l£

/ d4’ e‘fcl—— ■ ~___ =
J ~ (-z* +  ie)3

rr- ( kag ^  +  k»gau +  kugafl 2kak^ku \
- j {  I F ^  + (86)

We introduce the same notations we previously used for tree-level non­

forward case (see chapter 3). The skewedness C (coincides with the Bjorken 

variable):

c =  3 5 )  ■ <87)

and a special combination A' of the variables x  and y :

AT =  x  + Qj,  (88)

Integration over u and u results for the two box diagrams in

> { * < * « * £ $ + *<*•<>}- (89»
where

Sl (X, o  =  +  N A - - C 4 - f e H J n ( - C 4 - f e )  m
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* ( . Y , 0  -  ln3(A' i t v - ' o <C~ k )  +

+ ln2 (C - . Y - f e ) _ - l ^ ( C (91)

The calculation for the remaining three diagrams is quite similar. The only 

difference is that the non-trivial kernel gives many different integrals over u 

and v some of which can not be integrated in terms of elementary functions 

(All these integrals are listed in the appendix C). These special contributions 

(dilogarithm function) however cancel each other and the result reads

* {'"^7 S3<a’-° + • <92>
with

S 3 { x ' 0  = U x ^ +
IS

i

+ [x X
1

X  - (  + i e )  H
, , -A ' +  ie

m
C, A ie )  A — C 4" i‘

(93)

C , V _  3 I M X - ■£) -  3 , In(C -  - Y -  ie) -  3 \  , 
S | (  =  2 {  X - i e  +  . Y - C  +  «• j

C In2 (C—.V — ie) -  In2 (C -  ie)
2 X

- l ( ________
2 \ X - Q + i

X - Q + i e
+

C ln2(C~ ie) — In2 (AT — ie)
2 { X - Q

1 i ) l n ^ £ ± i £  3
A )  —C +  ie 2 \ X  — ie

X - i e

H ) Xa-c <94>
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Combining (89) and (92) the final result can be written as

uu 1 52 (P +  P') ■<! f vj  [ \ ,  ty \
a w ^ w r L d x l  d v F [ z - ‘j ) ‘Kpq)

X ^(-V .C ) +«Ss(A '.C)| • (95)

where

5 , ( I , 0  =  Si(A'! ()  +  S3(.Y,() =  
3 / 1  1 \  1

+ + In
.V -  ie

2 \A  — is X  — C, -¥ is )  A — ie C, — is
1

In X  -  C +  ie
A -  C + ie —C 4" is

(96)

5 b(.V ,0  =  5s(.Y ,0 +  5 ,(X C ) =
3 , .Y 1 ln2(C -  -Y -  ie) -  ln2(( -  ie)

■In— +  - -
2 ( . Y - 0  C 2 A' -  C + ie

3 ^  X  -  £ -+- is 1 In2 (A' — is) — In2 ((,' — is)
2A  -C  +  is 2 X  -  is
o /  1 1 \  In (C -  ie) -  3

+ 3 T?— “  +  T?— 7 ’ . (97)\  A  — is A — Q +  is J 2

Note that both 5 .4(A, C) and 5s(A , C) have poles at A =  £ and A  =  0. 

Therefore, even for the real double distribution function F, the amplitude of 

the process would be complex. Because its real and imaginary parts have 

different physical meaning it would be instructive to calculate them. To do 

it, we treat the amplitude as a functional of the distribution function F  and 

our coefficient functions 5,i(A, 0  and S b ( X , Q  as generalized functions. See 

Appendix C for details of this calculation. The real and imaginary parts of
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the coefficient functions (and of the amplitude as long as F  is real) are given 

bv

R e 5 , ( A \ 0  = 1 ,„-Y . r l ° i - V - q - l n <  
x  C ' . Y - C

7r
- T S ( X - C )

=  6 ( X - Q \ n C
1 - C

6(X  -  0

- v - c

3 .

+
-  -  0  (98)

R e  S B(A\C) =

+
2 ( -V- C)  C 

9(X -  C)
2(.Y -  0

7T

~9

- I m  <Se (A \0
7T

+
3

- v - c

In2 X  — In2 C 
2A'

7r

l ( s { X - 0  ( l n C - 3 ) - i f f ( A ’ - o )  

0 ( A - C ) l n | A - C |
- V - C

+ ± 6 ( X - Q  (ln2C - l n 2 ( l - 0 ) .

+  j S ( x  -  0

(99)
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Gauge Invariant Compton 

Amplitude
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Chapter 7

Symmetric Parameterization

7.1 Gauge Invariance of Nonforward Comp­

ton Amplitude

There have been numerous studies of different parametrizations of off-diagonal 

matrix elements (see [31],[32],[34],[33]). Our objective is to obtain full ex­

plicitly gauge invariant amplitude for Deeply Virtual Compton Scattering 

(DVCS). We start working in the process independent coordinate represen­

tation and modify the existing parameterization for the non-forward matrix 

element in such a way that it explicitly reveals gauge invariance of the corre­

sponding process. Then we perform transformation to the momentum space 

and calculate the DVCS amplitude.

If we take the result (22) for the DVCS amplitude derived in the p2 =  pn = 

r2 — 0 limit:

rr(q,p) =

47
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( 100)

and try to extend it to general nonforward kinematics case when r2 ^  0. we 

can see that the amplitude satisfies the EM gauge invariance condition with 

respect to final photon, q,vT =  0. Though q ' ^ T ^  also vanishes, the EM gauge 

invariance requires q ^ T ^  =  0 which is satisfied only if r ^ T ^  =  0. However, 

for symmetric part of T^u we have

Note that Cp" — ru ~  rvL + 0 { r 2). Hence, the amplitude is gauge invariant only 

with 0 ( r 2) accuracy, i.e. the correct gauge invariant amplitude should contain 

extra 0 ( r 2) terms, possibly, structures different from those present in (100).

These terms originate from two sources. First, one should write down all 

the terms which appear in Eq.(17), including 0(rri2) and 0 ( r 2) ones. Second, 

one should use a more accurate parametrization for the nonforward matrix 

element

including with it subleading 0 ( z 2) and 0 (z4) terms in the right hand side. 

These terms also produce 0 ( r 2/ Q 2) corrections.

The necessity of having 0 ( z 2) terms in the right hand side of (102) can be 

seen from the fact that the left hand side of this equation satisfies D’Alembert

( 101)

(p'\ <l’{Q)zip{z) -  ib(z)zip(0) |p) =  

u{p')zu{p)J^ dxj^ dy F{x, y) (<’e i x { p z ) - i y { r z )  _  &-ix{pz)~iy(rz)
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equation:

□ . (p'l tp(0)Hi=) -  ^(z)zw(Q) |p) =  0 (103)

due to equation of motion D f  =  0. However, applying CL operator to the 

right hand side one gets the terms containing (xp +  yr)2 and (xp — yr)2 which 

vanish only if p2 =  r 2 =  (pr) =  0.

Note that =  xp  +  yr  and ko = xp  — yr play the role of the parton 

momenta. Therefore, the restriction k2 = 0. k% =  0 just states that quarks 

(partons) are on-shell. As it is well-known, the on-shellness of external par­

ticles is a crucial element in proof of EM gauge invariance of the scattering 

amplitude. If the external lines are off-shell, the amplitude in general is not 

gauge invariant. This implies that if we want to construct a gauge invariant 

expression for DVCS (or any other nonforward) amplitude, we should require 

that parametrization of nonforward matrix element satisfies D'Alembert equa­

tion. As we will see below, this can be reached by adding 0 ( z 2), 0(z '1) etc 

terms in the right hand side of relevant parametrization. Fortunately, it is not 

necessary to compute the whole series of 0 ( z n) corrections. Since, the Born 

amplitude has ~  structure, only 0 ( z 2) part of operator (matrix element) 

contribution should be included: the next powers of z2 would cancel the quark 

propagator singularity (z2 in the denominator) resulting in the 5A(q — xp — yr) 

terms which produce zero contribution.

7.2 Modified Parametrization

The starting point for our analysis is the following symmetric parameterization 

of the non-forward matrix element of the flavor-singlet operator (see [34] and
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[44]) *

( p -  r\ |p )  =

[ '  dx  / ' " W da e - « r2)- l^ 2l x 
7 - 1  7 - l  +  |x|

|u (p  -  r)Zu(p)f{x.a)  +  u(p -  r)u(p)2{PZ)h(x,  a ) } , (104)

with P  being the average nucleon momentum. 2P  =  p — r + p.

We modify it by adding extra terms with the next powers of Z 2 to each 

distribution: *

New functions ( /2, /.t, h2 and h4) keep many properties of the original sym­

metric distributions.

In particular, the support area for both original and modified distribution 

functions is the same. It is shown on the Fig.6 .

*As argued by M. Polyakov and C. Weiss [49], it makes sense to write the (PZ )-

independent terms as a separate integral over a single variable a rather than to include

them into a singular part of distribution function. Due to the fact that this integrals is an

additive term all analysis below remains valid.
fThe numerical coefficients have been chosen for the sake of simplicity of the

amplitude in the momentum representation.

d a e -^PZ)-*ArZ) ) ~a{p_ r)Z[  dx I  dae  lx{PZ) l<(rZ) j  u(p -  r)Zu(p) f {x .a )  + ^ - f 2 +
7 - i  7-i+|x| 4 32

+  u(p -  r)u(p) 2{ P Z ) h ( x , a ) -  i . (105)
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- /

FIG. 6: Support area for distribution functions.

The double distribution functions /  and h (and />, ho etc) obey the fol­

lowing boundary conditions

f {x,  1 -  |:r|) = f { x , - 1  +  |a:|) =  0

h(x, 1 -  |x|) =  h ( x . - 1  +  |x |) =  0. (106)

Due to hermiticity and time-reversal invariance of non-forward matrix el­

ements, the double distributions are even functions of a  :

f { x , a )  = f { x , - a )

h(x,a)  =  h ( x , - a ) ,  (107)

and (for the flavor-singlet case) are odd functions of x  :

f ( x , a )  =  - f { - x , a )

h(x,a)  =  - h ( —x,a) .  (108)
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Other properties of symmetric double distributions were discussed in [44].

The operator

o ( - f . f )  = ^ ( | ) W (- | ) (109)

can be expanded in series in powers of Z2 :

O = O twist" 2 +  Z2Otwist- ‘ +  . . .  . (110)

Each term in this expansion possesses certain twist (twist of the operator is 

its dimension minus its spin)(see [10] - [18]). For the Compton amplitude in 

the momentum representation this corresponds to the expansion in the inverse 

powers of the large parameter Q2 (for the case of the DVCS q2 =  — Q2 is the 

momentum of the virtual photon).

If the functions parametrizing contributions due to different twists to 

Compton amplitude are dynamically independent, contributions for each par­

ticular twist should be gauge invariant. We will consider the leading-twist 

contribution, i.e. assume that matrix elements of higher twist operators van­

ish.

So that when one uses parametrization (104) or similar to calculate Comp­

ton scattering amplitude, the result of this calculation is usually rather long, 

and the task of demonstrating its gauge invariance is quite complicated.

The central idea beyond the modified parametrization (105) is that the 

new functions / 2(x, a ), /i2(x, a ) , / 2(x, a) and h,t(x. a ) are not independent but 

rather to be specified in such a way that the right hand side of Eq.(105) have 

only terms of the certain twist. As a result the Compton amplitude will be 

explicitly gauge invariant.

The condition
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twist—2
=  0 ( 111)

cuts out terms of the leading twist. Imposing this condition on the right 

hand side of parametrization (105) we will determine the extra functions 

( / : and A.,)-

At first glance it may seem that it would be enough to restrict ourselves to 

the Z 2 order ( /2,A2) in the modified parametrization (105). It indeed would 

be true if all we have to deal with were matrix element of ^(y)Zf/;(—f ) op­

erator. However (due to its tensor structure) the expression for the Compton 

scattering process also contains derivatives of this operator. Hence the next 

order (Z4) terms should be included. We will return to this issue in more 

detail in chapter (9).

In the lowest order in Z2, the condition (111) leads to the system of partial 

differential equations for functions / 2 and /t2:

In the next order in Z 2. the condition (111) gives a similar pair of partial 

differential equations for functions /.( and A.(:

These equations can be solved. The solutions for the first pair / 2 and /i2

are

(x &  +  a £ )  M * . a) =  MX f{x.  a) -  (P x  +  r f  ) 2 ^  

{x lk  +  a ~k -  l ) ^ (x ,  a ) =  -  (PX +  r f  ) 2 / (x . a).
( 112 )

[x lk  +  Q0? ”  X) =  M x  / 2(x .a) -  (P x  +  r f ) "  h2(x,a)

[x ei + ai k - 2) “ ) =  -  (■Px +  r f ) 2 f 2 & Q )-

(113)
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(114)
h2(x, a)  =  dt [Px + r | )  t §|(£.r, ta) — Mx f { tx ,  ta) 

f 2(x ,a)  = [Px  +  r f ) "  dt f ( t x . ta ) .

For the second system of equations the solutions for functions f 4 and h4

are

(.Px 4- r f  ) h2(tx, ta) -  ^ f 2( tx , ta)h4(x,a)  =  f f ° d t  

. U x ,  a)  = ( P x  +  r f  ) 2 / “  f  h( t x .  ta).
(115)

Here we note the fact that while the functions f 2(x.a)  and f 4(x,a)  depend 

only on one original distribution f (x .a ) .  the functions h2(x.a)  and h4(x,a),  

which correspond to the scalar structure uu in our parametrization. are derived 

from both /(x , a) and h(x,a).
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Chapter 8

Kinematics of the Process

For the purpose of building a gauge invariant amplitude vve found that it 

is more convenient to express the amplitude in terms of the average photon 

(Q) and nucleon (P) momenta rather than in terms of the initial and final 

momenta.

The main reason for that is when the amplitude is expressed in terms of 

these momenta the gauge invariance conditions for the incoming and outgoing 

photons would be similar and we can take full advantage of this symmetry.

VVe adopt the notations according to figure 7.

Q-r/2

> <
Q+r/2

-Z/2 Z/2

P+r/2 P-r/2

FIG. 7: Kinematics of the process.

55
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In general, for n independent vectors the amplitude is a function of (n2 + 

ri)/2 independent scalar variables. In our case, there are four momenta but 

only three of them are independent due to the energy-momentum conservation. 

Thus the formula gives 6 independent invariants.

Moreover, the on-shell conditions for the outgoing photon momentum and 

both initial and final nucleon momenta effectively reduce the number of dy­

namic variables to 3.

Any three non-vanishing variables can be used. For our purposes we choose 

r2. (Q P ) and (Qr ) to be the dynamic variables.

From on-shell conditions for the initial and final nucleons (respectively)

( p  + 0 ‘ =  m 2 (116)

(P- 0  = (U7)
and from the outgoing photon on-shell condition

( < ? + j ) 2 =  0 (118)

we express the remaining three variables

(Pr)  =  0 (119)

Q 2 =  ~ ( Q r )  -  j  ( 120)

2
P 2 = m 2 -  j .  (121)

The Dirac equation gives two more conditions on the spinor "sandwiches" 

of momenta P  and r  :
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uPu  =  muu  (122)

and

uru =  0 . (123)
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Chapter 9

Fourier Transformation

Once the parametrization of the matrix element is set, the next step of our 

analysis is to calculate the Compton amplitude in the more traditional momen­

tum representation by performing an appropriate Fourier transformation. The 

latter has direct physical meaning since particle physics experiments measure 

either energy or momentum of the interacting particles.

If p and p' =  p — r are the initial and final nucleon momenta and q is 

the incoming photon momentum (see figure 7) we can re-express the Fourier 

transformation (see [54],[50] ) in terms of our variables as follows

j  d 'Ze- ‘(,z| (  p -  r| e (0 )Z e(Z ) -  i i Z ) Z , M )  \p \  =

I (  p -  r| * ( | ) Z w ( ~ \ )  ~  IP )  =

j  d 'Z e -* ™  t f ( |  ) Z v ( - j )  -  e > ( - j ) Z ^ ( § )  l ^ + j )  ■ (124)

For the sake of simplicity, we are going to restrict ourselves to the sym­

metric part of the amplitude, T f ^ .
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As it was shown in chapter (3) of this thesis, the tree-level diagrams for 

Compton amplitude in the coordinate representation give rise to the following 

expression:

T ^ { Z )  =
'd\ c i ( f b-iri’l-j) .r(d\ M l )  . . . . .
v2 j  2 ~ " « ( -Z 2)''/2 1 \ 2  j  2nd'r‘ ( - Z 1)d.rl ' 1 1

By means of formulas (9) and (10). the symmetric part of the last expres­

sion can be written in terms of the non-local string light-ray operators.

The Fourier transformation to the momentum space reads (we put d. to be 

equal to 4)

T ^ [ Q , P , r )  =
i  f  p ~ l ( Q Z )  (  "j r l

(  P - \ I w ( - \ | ) Z W - a |)  -  < : '( - a |) Z « , ( a |)  |P + 5  ) .  (126)

To proceed, we substitute our modified parametrization of the hadronic 

matrix element (105) into the last equation and calculate the derivative over 

Z Q :

T ? * ( Q , R r )  =

3- i A Z ( P x + r Q / 2 )

- i Q Z

( ^ F )

[ i d x r \ a [ id- ±
y _ ,  “ y 0 a

( e A2Z2 \  ~ ( x 1 \
U7 u ( /  4— -—f 2J + u Z u Z  ( •y /z  4 f i j  +

uu ^2P ah -  iZ ° \h 2 -  +

i uZu ba ( f  + + i uu ba f 2 { P Z ) h -  i ^ h 2 . (127)
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We dropped all the terms with the powers greater than Z 4 in the numerator 

because we have just Z 4 in the denominator. Now it becomes clear why we

Basically, we just need to substitute the above integrals into our equation 

(127) for the Compton amplitude. However, at this point the expressions 

become very long and complicated. To proceed further, we take advantage of 

modern system of symbolic computation.

For this purpose, we used the symbolic processing language REDUCE 

which was found to be very useful for both time efficient and error-proof calcu­

lations. There is also a special package for calculations with the Dirac gamma 

matrices in REDUCE. The long output of REDUCE program was ported to 

the simple Perl (Practical Extraction and Report Language) program which 

transformed it directly into the LATEX format.
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had to include both Z 2 and Z 4 terms in the parametrization: the presence of 

the derivative in the equation (126).

Fourier transformation involves six different integrals over Z  :

( - Z 2 ) 2 

Z aei(kz)

( - z 2)

Z aZ (}Z' ,ei(kZ)

( 128 )



Chapter 10

Gauge Invariance

10.1 Representation in Terms of Internal Mo­

menta k and b

Our goal is to obtain the gauge invariant Compton scattering amplitude ex­

pressed in terms of external momenta P, r and Q. All the data measured in a 

Compton scattering experiment are some combinations of these momenta and 

their quadratic forms.

However we found it to be quite useful to perform an intermediate step - 

express the amplitude in terms of two ’’internal” momenta, k and b.

These momenta are defined as follows:

bP =  —A (^xP° +

I f  =  bP - Q 0. (134)

Written in terms of these vectors, the expression for the amplitude is rela­

tively short. This allows us to simplify the analysis of its gauge invariance.
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This demonstrate another advantage of using a program for the symbolic 

calculations: instead of redoing all the algebraic manipulations vve just need 

to change one REDUCE operator. Moreover, calculation of the contraction of 

the amplitude and the average photon momenta Q* can be done in the same 

simple fashion.

The expression for the amplitude is

s s j £ W > / .r ^ ‘ta ( * “Tr + T r )  in s )

The scalar part, 7^", is a coefficient of uu term and depends on both 

f (x .  a ) and h{x.a)  functions. It reads

rr =
- 4 kttku-j^ (2f2k 2m \ 2x  -F Qf^m\Ax  4- h2kA +  2/i.(ArA2)

- { f f k 1' +  k»bu) ^  ( f k 2m \ x  +  2f 2m \ 3x  -  2hk2{Pk) + h2k2A)

- 2  (6'*P*' +  P'*6*')A
rC

-2  ( F F '  +  p/*Jfc*')A 
kz

' 5x^ f k 2m \ x  ({bk) -  A:2) +  f 2m \ 3x  (2{bk) -  A:2) + 2 /4mA5 

+hk2 (k2{Pb) +  A;2(PA;) -  2(bk)(Pk)) + h2k2{bk)A +  h4A:2A3) .  (136)

The other structure, 7^". contains terms with gamma matrices {u~<u) and 

depends only on the distribution f (x ,  a) :

T ^  =

- 8 kflk‘' ^ ^ - ( f 2k2 +  3 /4A2) -  2(6^ku +  k ^ ^ i f k 2 + 2 /2A2)
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+9 ‘" j l ( f k 2 ( 2 ( b k ) - h 2) + f - A'“' - j f  U h2 {2<~bk) -  k 2) +  r-‘>? (4(Mr) -  k2) +  4/4A1) 

(6 '7" +  4 'y ,) « ^ ( / * 2 +  M J)

(A:'-:" +  * V ) t i  i  (/A-1 +  3 /2A-.\j +  4/iA'1) .— u (137)

We note the fact that while the second amplitude is indeed expressed 

only in terms of vectors k, b, their squares and their scalar product, the scalar 

one. T f 1*, depends also on the average nucleon momentum P. This is caused, 

of course, by the fact that this momentum was explicitly introduced in the 

scalar part of our parametrization (105).

10.2 Demonstration of Gauge Invariance

In our symmetric notations the standard condition of gauge invariance of the 

amplitude (see for example [50])

For the symmetric part of the amplitude which we consider here it splits 

into two independent conditions on Q and r  :

f
q^TfU/ = 0 

q l T ^  =  0
(138)

becomes

(139)

( r r % *  = 0
(140)
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Below vve consider Q^T^m condition in greater details.

The scalar part of this condition (a coefficient of uu term in Q ^ T ^ )  is 

given by

Q " b

4

f k AmXx (b2 — k2) +  fo ^m X ^x  (lb2 +  4(bk.) — 3k2) 

+ 2 f imXc‘x  (§(bk) — 5*2)

+hkl {k2(bP) -  2b2(Pk)  +  k2(Pk) +  k2(pQ))

+h2A:4A (fe2 +  2(6*) -  2k2) + 64*2A3 (4(6*) -  3k2)

f k AmXx {k2 -  t>2) +  2 f2k2mXi x  (3*2 — b2 — 2(bk)) 

+ 12f 4m \ 5x  (k2 -  (bk)) + 2hki {,b2( P k ) -  k2(bP)) 

+h2k*X {3k2 -  62 -  2(6*)) + 4/i4*2A3 (* 2 -  (6*)A3)

+

+

o » h2p —
p  k 2

A:2 -  62 .

The other part contains terms with gamma matrices. It reads

/ 62*4 +  f 2k2A2 (262 + 4(6*) -  3k2) 

+12(6*)/,A4 -  8 / ,*2A4

/ 62*4 + 2 f2k2X2 (62 + 2(6*) -  2k2) 

+12(6*)/.,A4 -  10/.,*2A4 

f k A {b2 -  k2) +  / 2*2A2 (62 +  2(6*) -  3k2) 

+4(6*)/4A4 -  4 /4*2Al

“  *8

U.''ju U

*6

(141)

(142)

To verify that all calculations were done correctly and the result is indeed 

gauge invariant we need to show that both expressions vanish when the dis­

tribution functions / 2(x, a ) and f 2(x ,a)  satisfy (114) and (115), respectively.
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As an example vve consider the expression with 7 —matrices. It contains 

three tensor structures which are linearly independent and hence every coeffi­

cient should be equal to zero.

Let us consider as an example the second one. containing bu :

which holds true due to the relation between vectors k and b. It will be crucial 

for our proof as it enables us to perform calculations in terms of composite vec­

tors k  and b without touching underlying true vectors P  and r. This simplifies 

the resulting expressions significantly.

In chapter 7 we established the relations between the functions f{x.  a). 

/o(x, a) and f \ (x ,  a) and expressed the two latter through the integrals of the 

base function f ( x ,a ) .  The most natural way to show that (143) is zero would 

be to substitute the expressions (114) and (115) into it.

However, it is usually easier to deal with differential expressions than with 

the integral ones. So, instead of expressing f 2(x, a) through f{x ,  a) we go 

backwards and express f ( x , a )  as a function of f 2(x ,a)  in the first term of

2^  (  b2f k l +  262M '2A- 4- 4[bk)f2k2X2

At this point, we derive the following formula

(144)

(143) using (112):

(145)
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To get rid of partial derivatives, vve recall that this expression is actually 

wrapped by integrals over x. a  and A. Integrating it by parts, we get

C A2 (  d d \
/  dx da2bt' — [ l - x — - a — ) f , ( x . a )  =

J-i  V-i+|X| kr \  ox d a )
r  1 /-i-|x|

dx a
J-1 J - l+lxl- l + | j

A2
+  2/ 1( . . a ) j r l i  +  i +  L +  4 + a ^ ) 4r

There are no surface terms due to the boundary conditions [106]. 

Exploiting formula (144) the last expression can be rewritten as

r l A-\x\ /  1
dx da 8X~buf-j(x.a) f 77 —

J - 1 -/-l+|x| '  V*
(bky 
k6

(146)

(147)

Now vve repeat the above procedure with /> : combine (147) and the terms 

with / 2 from (143) and express them through / j  by means of (114)

2 (-Ur -  4(Wk) +  4(6fe) +  21<2 -  4k2) =

, . J A 2b2 ,„A262 ( n a a \ , ,  ,
46 —  =  46 —  ^ - x - - a - j / 4(x ,a). (148)

Once again we integrate it by parts over x and a  :

r l  r l - \ x

/ dxJ -1 j-i+ p  

/ > / . ' da
l+|x| 4b̂ xi{4 vai ) h
+*f^a4{4+x̂ +â ) br (149)
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Using formula (144) to calculate the partial derivatives, we note that the 

result exactly cancels the remaining ( /4) terms in (143):

4bÛ r  (5*2 -  6(6/t) ) +  ( 12(6A') ~ 10A;2) =  °- (15°)

Exactly the same calculations can be (and were) performed for every tensor 

structure in the projection (142). We found that it is indeed zero when the 

relations between the distribution functions are taken into account.

Similar calculations for the scalar structure of the projection (141) are a bit 

more complicated due to the presence of both /  and h functions in it. More­

over, there exists an explicit P  term in the scalar part of the parametrization 

(105), for this reason the second projection cannot be expressed in terms of 

just two vectors b and k. This fact is reflected in the equation for h->(x.a): it 

contains not only a uniform differential operator x j j  + but also a single 

partial derivative over x. Hence formula (144) is not sufficient for performing 

the integration by parts.re-expressing h(x .a)  through h2(x .a)  and so on. To 

this end we derived another formula

r X ( k  =  2 n X ^ -  i m

which helps to demonstrate gauge invariance of the scalar structure.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Chapter 11 

Resulting Compton Amplitude

The resulting expression for the explicitly gauge invariant Compton Scattering 

amplitude is

^ r rfv > 0 “(a,,7r+7r) (i52>
The scalar part of the amplitude, {Q, P. r ) . is a coefficient of uu term 

and depends on both f ( x ,  a) and h(x. a) distributions. It reads

g T
4 k6

r r ( Q , P r )  =

2 f k 2mXx(4m2X2x 2 — 4 k2 4- 4(QP)Ax 4- 2(Qr)Xa 4- r2X2(a2 — x2)) 

4-4/ 2mA3x(4m 2\ 2x 2 — 2k2 4- 4(QP)Ax 4- 2(Qr)Aa 4- r 2A2(a 2 -  x 2)) 

+l6fxmX5x  4- hk2(—l6k2m2Xx — 8k2 (QP)  4- 4krr2Xx 4- 16m4A3x3 

+32m2(QP)X2x2 4- 8m2(Qr)X2xa  — 4m2r2A3x3 4- 4m2r 2A3x (a 2 — x 2) 

+16(Q P)2Ax +  8{QP)(Qr)Xot -  4 (Q P )r2A2x2 4- 4 (Q P )r2A2(a 2 -  x2) 

—2(Qr)r2X2x a  — r 4A3x (a 2 — x2)) 4- 2/i2A:2(4m2A3x 2 4- 4(QP)A2x

4-2(Qr)A2a  4- r 2A3(a2 -  x2)) 4- 8/i4fc2A3

68
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—AQ^QU—  2f2k2mX2x  +  6f4mXAx + h2k'1 +  2h4k2X2

_ 2 pup * \ x
~¥

—rttru
\ ty 2 A -Q t

J k 8'

2mX2x 2( f k A +  4f2k2X2 +  6/4 A4) +  hk'l(4m2 X2x 2

—4 k2 + 4{QP)Xx — r2X2x 2) +  4h2kAX2x  +  Ah4k2Xlx 

2 f k lmXx +  8 /o^m A 3x +  12 f 4mX5x

+hk'l(4m2Xx + 4(QP) -  r2Xx) +  Ah2kAX + Ah4k2X2

-  (  P*QV +  C t P v )  ^  2mX2x 2( f k l +  6 f2k2X2 + l2 f4X4)

+/iA:4(4rn2A2x2 — 2 k2 +  A(QP)Xx — r2 X2x2) 

+x(6h2kA X2 +  8/14 A:2 A4)

-  (  P»rv + rftPu Y ^ -  2mX2x 2{ f k A + 4f 2k2X2 +  6/ , A4)

+ h k i{4m2X2x 2 -  2k'2 +  4{QP)Xx + r2X2x2) 

+4x{h2kA X2 +  h.\k2Xl)

-  (  Q»rv + r»Qu j  ^  2fk*mXx + 12/2/t2mA3x + 24/, mA5*

+ h k l(-lm2Xx +  4{QP) -  r2Xx) +  6h2kAX 4- 8/i.,A:2A3 . (153)

The other structure, T f v (Q , P. r ) , contains terms with gamma matrices. 

(u.'yu). This part of the amplitude depends only on the distribution f { x .a )  :

T?u {Q,P,r)  =

uQu
2k6

—SQ^Q

f k 2(4m2X2x 2 — 2 k2 +  4(QP)Ax +  2(Qr)Xa 

+r2 X2( a 2 — x 2)) +  2 / 2A2(4m2A2x2 — k2 +  4(QP)Ax 

+2(Qr)Ac* +  r2X2(a 2 -  x2)) +  8/ 4A4

uQu X2
k8

f 2k  4- 3 /4A
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—4 P " P
„ uQu A2ar

~TS

- rr^r
u uQu A2or 

~ka

- 2  (  P“Q- +  Q '-P1' )

- 2  (  P - r -  +  r - P -  )

j  “Q 11 XCl

f k A +  4 f->k~X~ 4-  6  / .{ A 1 

/ A 4 4-  4 / 2A2A2 +  6 / 4 A4

/ A 4 +  6 / 0  A:2 A2 - I - 1 2 /4  A4 

/ A 4 +  / 2 A2 A2 +  6 /4 A 4 

f k 4 +  6 / 0  A--2 A~ 4-  1 2 /4  A4 

/A -4 4- 2 / 2 A2 A2 4- 2 /4 A 4

A8
Ax

- ( V

+ 2 S ( P V  +  P V ) ^

+ u (  Q 'V  +  Qv~f  )  u 1  [ /A4 4- 3 /2A2A2 +  4 / tA4 

+-fi( P V  + r V  )  u ^  [ /A4 +  2/ 2A2A2 +  2 / ,A4 (154)

This result allows for any given parametrization (which is set by a model on 

distribution functions f { x . a )  and h(x,a))  of the nonfonvard matrix element 

to calculate auxiliary distributions / 2, / .\ .h2 and /14 and then construct the 

explicitly gauge invariant amplitude.
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Chapter 12

Discussions and Conclusion

The main results obtained in this thesis are

1. Developed a method of calculating the one-loop corrections for the gen­

eralized Compton scattering amplitude terms of nonlocal string light-ray 

operators in the coordinate representation.

2. Calculated a generic one-loop Compton amplitude in the coordinate rep­

resentation which can be used for many different processes:

•  deep inelastic scattering

•  7*7 f°rm factor

•  deeply virtual Compton scattering

•  wide angle real Compton scattering.

3. Calculated coefficient function in one-loop approximation.

4. As an example of application of the developed technique reproduced a 

result for DIS obtained by Bardeen et al. [9].

71
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5. As another example calculated one-loop corrections for the case of non­

forward process.

6. Developed a technique of separating the real and imaginary parts of the 

Compton amplitude by means of the methods of the theory of generalized 

functions.

7. Developed a consistent approach to the problem of constructing the 

gauge invariant Compton amplitude.

8. Obtained an expression for the explicitly gauge invariant Compton am­

plitude which includes all the generalized target-mass (m2p/Q 2)N and 

{t/Q2)N corrections.

In conclusion we note that the next logical step in the analysis of the 

generalized Compton amplitude is to calculate an explicitly gauge invariant 

amplitude in the one-loop approximation.
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Appendix A 

Integral Formulas

This appendix lists the integral formulas which were derived for calculation of 

the one-loop corrections in chapter 4.

In this appendix the following notation is used in the formulas below.

(z ■ d ) ib(az) =  z ^ t ^ a z ) .  (155)

where w ^ a z )  (which is quite common in general relativity) means the 

derivative calculated at x  =  az.

[  du f  dv u v2 dt2{z ■ d)xb{uvz) =  
Jo Jo

jl—d/2 _

d / 2 - 1

/•l j;1 rf/2 —
=  JQ d v ~/i/2  — i  ~  ^ ( ° ) I  ( 1 5 6 )

f  du [  dv v u2 d/2(z ■ d)ip((l — uv)z) = 
Jo Jo

r i ul~d/2 -  1
=  JQ d u ' i  _ d / 2 ~  ( 1 5 7 )d / 2
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[  du [  dv ul d/2ip(uvz) =  
jo Jo

=  L  d “ i n  - 1 W ” J ) "  m l "  j p r z i  (158)

[  du [  dv a1 dl2w({ 1 — uv)z) — 
Jo Jo

-p-d/2 _  j_r  I u l - ^ / 2 _  1 f i , ! - )

=  I  du d / 2 - 1  |Vl(“ z) ~  “’(;)l ~  d J o A  ( 1 5 9 )

[  du f  dv u v2 d̂ 2(z ■ d)ib(uvz) =
Jo Jo

r 1 4- (d -  4 k tl~'i/'2
=  Jo dv [v>(us) -  0(0)] 7 j —  . (160)

Note that the last term is O (e) . Also 0(0) can be dropped out (compare 

to the next one):

[  du [  dv v u2~d/2(z ■ d )0 ((l — uv)z) =
Jo Jo

r l 2 4- ( d -  \ ) u {~d/2
=  f  du 0 (u z)---------— --------  (161)

Jo 2 — a
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Appendix B

DIS Example Formulas

Some of the integrals used in calculations of Section 6.1

L 1 , [In i 
ax —r~ 

x
n 1 k 1

** -+ k= I K 5=1 &

[ ldx
Jo

xn =
k = l k  +  l

(162)

(163)

r  I 1 n+1 1
/ dx lax x n =  i—  y  r
Jo n +  1 k

(164)
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Some of the series used in calculations of Section 6.1

!iy r 7 :1 =  -  E  j
1 X  n = 0  f c = l K

1 'r  X  n = 0 k = l  K

M i - * )  ^  i7-— -7r = - I >  + i)s E r r 7
( 1 - * )  n = 0  f c= i fc +  l

In (1 + x) 
(1 +  x)

ri 00 * 1^ =  - £ ( - ! ) > + 1)*"
n = 0  k =  r  +  1

(165)

(166)

(167)

(168)
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Appendix C

Nonforward Example Formulas

In this appendix we present some of the integrals which were used in the 

calculations of the nonforward amplitude in chapter 6.2.

Small complex number ie is provided to specify the contour of integration 

and values of complex logarithm in the expressions which diverge at .Y =  Q. 

Note that in the region of interest both X  and £ are positive.

/ du / dv 
o Jo

yl S(u) I
(169)

. i /J+ -Y(l — u — v) +  X

[  du [  dv 
Jo Jo

'£/] S(u) 11

+ a X  X  -  C +  IE K ln(C — is) -  ln(C -  *Y — it)  j  (170)

u S(v)
u\  + A '(l — u — v) 4- (u

(171)
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[ ' d u  f d v  [ -  
Jo Jo Lu. A '( l  — u — v)  — (u. +  i s  X  -  C +  i s

(172)

The dilogarithm function (n =  2 Spence’s integral) is defined in accordance 

with reference [58]:

dilog(x) = -  [  dt. (173)
Jx 1 — t

The following functional relationships of dilogarithm are relevant to our cal­

culations:

7T̂
dilog(x) +  dilog(l — x) =  —— lnxln( l  -  x), 0 < x < 1 (174)

6

and

dilog(l -  x) + dilog(l 4- x) =  —dilog( 1 -  x“). 0 < x < 1. (175)

[ ldu  [ U d v  
Jo Jo

In v 6(u)

. Y ( l - u - u )  +  Cu X
=  — 77 dilog(O) (176)

f ldu r
Jo Jo

d v
Inn 6{u)

■i + X  (1 — u — tr) — C u +  ie

c 7T
A  — £ +  i s  I X  — £ +  i s  C, — A — i s  6

X
(177)

[ ld u [ ‘ dv
Jo Jo u

6(v) =
— u — v)  +  Cu — i s

. c  * 2 X- C  
l n x - T +dlIog—

(178)
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f ' d u  r
Jo Jo

du
In u

u
S(v) 1

X ( l  — u — u) — Cu +  is X  -  C +  is
— dilog(O) (179)

Cdu r
Jo Jo

dv
u

Lt'J

. In(A'(l -  u -  v) + (u  -  ie) 
+ A'( 1 — u — u) +  (u  -  ie

= y  (  In (A) -  dilog(O) j (180)

r  l r u
I du dv 

Jo Jo
1

v
.V.

6(u)
In (—A'(l -  u -  u) + Qu ~ ie)

X(1 — u — u) — £u + ie 
CIn (—AT +  C -  is) -  dilog

C -  A
+

C
2A

(in2 (C -  A -  ie) -  In2 (C -  *£)) (181)

[ ldu r
Jo Jo

dv
u

Luj
J(C)M.V(1 - u - v )  +C u - i e )  

+ 1 X ( l  — u — u) + Qu — ie

i [ l n ( . Y ) - d i l o g | : -

(in' (.Y) -  In2 ( 0 )
2(.Y -  0

(182)

f ' d u  r  dv 
Jo Jo

u
lui

S(v) In (—A(1 — u — u) 4- C« — is)
A( 1 -  u — u) — +  ie

= x  -  <• + ie (  ln ^  “  X  ~ ie) ~  dil°S(°) )  • (183)

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Appendix D

Real and Imaginary Parts

To separate the real and imaginary parts of (95) we adopt a technique described 

in [52].

Let us consider the following generalized function

AT — (,* +  is —£ +  is A — £ + is AT — £ +  L 

which corresponds to the functional

r l 1 X - C + i e
/  d X  F (X )  :■ In (185)
Jo X  - (  + is -C  +  is

where probe functions F (X )  are real, sufficiently smooth and satisfy the fol­

lowing boundary conditions:

F ( 0) =  0

F ( l )  =  0. (186)
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To separate its real and imaginary parts let us first shift variable of inte­

gration

y = X - q 

F { y +  Q = p{y)- (is?)

The imaginary part of the second term in the r.h.s of (184) can be easily 

found by means of the well-known formula:

\  =  -  (InC + iTr) f p - -  i7rci(//)N) =y A ie \  y j

-  ln(,'P -  -  n2S(y) -  i n P -  + in6{y) In;'. (188)
y y

In order to deal with the first term of the right hand side of (184) we note 

that the following relationship holds true

!1 T IT  = ~iTy ' " 3 (v + ie) =  5  K {,J +  ,J ) ] ' ■ (189)

Let us now calculate the derivative of the generalized function In2 {y 4- ie). 

By definition:

^ C dy ^  [In2 +  ‘̂ F  = I - c C dy In'2 +  ie* =

=  —  --------   dy <p'{y) In2 |y| -  in J  dy <p'(y) In |y| =

/■1_C /In  It/I 7r2 \  r°
= dyy{y)  + — s {y)J -  j _ ^ y ^ ' { y ) \ n \ y \ . (190)

Let us now combine the last term with the last term of (188):

r°
in(p(Q) In Q — in  j  dy y'(y) In \y \ =
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171%

lim
£->0

(0) In C -  nr lim f  dy <p'{y) In |y| =
£->0 ./_£

iir ln£^(0) +  i7r [  dy — in<p{-e'
J-c, y

Ins (191)

Now we may replace ^ ( —s) Inf  by !p(0) Inf,  since the limit of the difference 

is zero. Further.

^(0) InC -  ^(0) In f =  -  f  dy —
J-C I

The result for (191) may then be written as

V(0) (192)

limf]r r d y k M ^ m  = r ^ y ^ y )
~ J-c y J-cc

0(-y)

And for the real and imaginary parts of (184) we get

Re

Im

1 In -V C + k  = p j —  In
A" — (,* 4* ic — C, +  IE 

1

- V- C

A — + ie 
I n --------------  =  tt

Im

A — (̂  +  ic — i 

The latter can be also written as 

1

- Y - C  
*(C ~  -Y) 

• Y - C

(193)

-  ^ ( - Y  -  0

-  7t P  —
1

A -  C
(194)

In ——. ** +  =  7rd'(A' -  C) In — x 0(A ~ 0  
A' -  C

. (195)
X  — £ +  ie —C +  is " 1 -  C

We note that since we shifted back to the original variable X ,  symbol 

in formulas (194) and (195) means the subtraction of F(C). and not

F( 0).
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