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ABSTRACT

ANALYSIS OF GROWTH CURVES UNDER SOME
SPECIAL COVARIANCE STRUCTURES

Shobha Prabhala

Old Dominion University, 1995
Director: Dr. D. N. Naik

In this dissertation we consider the growth curve or generalized MANOVA

model in its most general form given by,

— A. . .. = 1.2 ) = 1.2 :
TR /1"‘|>‘96ng13'ka;:”+ iyt ¢ = 1,2, .9, ) = 12000005

and develop statistical methodology for analyzing data using this model. Here g
represents the number of groups, Yj; is the observation matrix, £ is a matrix of
unknown parameters, A; is a known matrix of rank g, and B;; is a matrix of rank
k. Further, the rows of the error matrix €;; are independent and each distributed
as IV, (0,%;;). This model accommodates different kinds of unbalanced data.
such as, monotone data, data missing from any occasion, and data observed at
unequally spaced time points.

Our main results are: (1) derivation of the formulae for the maximum likeli-
hood estimates (MLEs) of the parameters involved, (2) construction of the tests
for testing general linear hypothesis of the form H, : Eqxg€gxk Fixy = 0. for known
full rank matrices £ and F, and (3) derivation of the formulae for prediction of (a)

future observations corresponding to an individual. (b) the unobserved portion of
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a partially observed data for a new individual. and (c) any missing value of an
observation vector.

Deriving the maximum likelihood estimates and the prediction formulae for
unbalanced data is a challenging problem. We have derived these results by tak-
ing two types of covariance structures for £;;. These structures, namely equicor-
relation structure and autoregressive structure, are most commonly used in the
literature. For the autoregressive structure. the maximum likelihood estimator
of the correlation parameter turns out to be a solution of a cubic equation. We
prove that this cubic equation has a unique real root in (—1, 1). This proves
the uniqueness of the MLE. Further, we notice that the autoregressive structure
leads to Markov structure when the data are observed at unequally spaced time
intervals. For the model with Markov covariance structure, we derive a formula
for estimating a missing value and show that the estimator based on this formula
depends on only two neighboring data values. The results for equicorrelation
structure are included in Chapter 2 and those for the autoregressive structure
(Markov structure as well) are included in Chapter 3.

Finally, in the fourth chapter we point out some draw backs of fitting the lincar
growth curve models to biological data and suggest fitting nonlinear models to
growth data. After reviewing the popular nonlinear models, we show the analysis

of nonlinear models with different covariance structures using SAS software.
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Chapter 1

Introduction

The analysis of growth data is important in many fields of study, like biology,
medicine, agriculture, and education. Often in practice, data are of the form where
several successive measurements over time are made on each subject (or experi-
mental unit) and occur naturally. Especially in the field of medical and fisheries
research, such data are common. Typically, data are obtained from studies that are
designed to (a) describe the changes in an individual’s response as time changes (b)
compare mean responses (mean response curves) over time among several groups of
individuals. These studies are called longitudinal studies, repeated measures data
analysis, or analysis of growth curves.

Some examples where problems (a) and (b) are of interest are:

e Medical trials involving several groups of subjects, where measurements may be

collected on each subject at regular time intervals.
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o Growth (of animal or plant) experiments, where observations may be made on
the same individual (animal or plant) as it grows and changes over time.

o In fisheries research, growth of certain species of fish may be observed over a
period of time in the lakes of different geographical regions.

In many cases, especially if the number of measurements on each subject is
small, these data can be analyzed by fitting polynomial growth curves to the re-
peated measures. This can be achieved using the generalized multivariate analysis
of variance (generalized MANOVA) or the growth curve model introduced by Pot-
thoff and Roy (1964). If the number of repeated measurements on each subject is

the same, the growth curve model can be written as

Ynxp = Anxgﬁgkakxp'i‘ enxpa (1'1)

where Y is an observation matrix, £ is a matrix of unknown parameters, A is a
known matrix of rank g < n, and B is a known matrix of rank k < p. Further,
the rows of the error matrix € are independent each distributed as N,(0,X), where
¥ is a p x p positive definite matrix. In general, p represents the number of time
points observed in each of the n cases, (k — 1) is the degree of the polynomial and
g is the number of groups. Here B will be the matrix of polynomial terms.

The problems of interest relating to this model are :

¢ Estimation of ¢ and X,
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e Testing of general linear hypotheses of the form
H,: qugggxkaxu =0,

for known full rank matrices D and F, and

o Prediction of future observations.

Estimation and testing of hypothesis problems for this model have been discussed
by many authors. Some of the important articles in this area are Potthoff and Roy
(1964), Rao (1965, 1966, 1967), Khatri (1966), and Grizzle and Allen (1969). A
survey of the analysis of this model is given by Timm (1980), and more recently, by
von Rosen (1991). Applications of the growth curve models to different fields can
be found in Nummi (1995). A recent book solely on growth curves, by Kshirsagar
and Smith (1995), is an excellent collection of materials in this area with many
real life applications. The prediction problem is discussed by Rao (1977). Recently
Rao (1987) revived interest in this model by considering prediction problems using

several methods.

1.1 Estimation and testing

Suppose our interest is to test Hy : DEF = 0, where D is a ¢ x g matrix of rank
q and F is a k x v matrix of rank v. A likelihood ratio test for testing Hy, can
be constructed, but the distribution of the test statistic is intractable. Hence, the

following two methods have been suggested in the literature :
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1. Potthoff & Roy’s method.
2. Rao-Khatri analysis of covariance method.

We discuss only the Rao-Khatri method. In this method, a p x & matrix C; of
rank k and a p x (p — k) matrix C; of rank (p — k) are chosen such that BC; = Ii
and BC; = 0. Let C = (C},C;) be a p x p nonsingular matrix. Then make the
transformation Y, = YC = (1}, Y2) (say), where Y = YC and Y = Y C;. Thus it
is easy to see that E(Y;) = A¢ and E(Y,) = 0, so the analysis of covariance model
1s

EYi|Yz) = A6+ Yol = (4,12) (6,17

Since the rows of Y] are conditionally distributed as independent multivariate

normals with a common covariance matrix, the theory of analysis of covariance can

be applied. The estimates are:

= (A'A)'A'YS™'B'(BS'B')™" and

Ny

Lo B
il

(CéSCz)_ICéSCI,
where
S=Y'[I- A(A'A)'IA']Y/(n - p).

It can be shown that ¢ is the maximum likelihood (ML) estimate of £ w.r.t the
conditional model as well as the original model. To test the hypothesis Ho : DEF =

0, we define two matrices £ and H as follows:

E = (n—g)F'(BS™'B')"'F and

4
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H = F'é’D'[D(A'A)'ID' + DLML’D']_IDEF,
where

1
n—4g

LML =

(A'A)"TA'Y[S' = STIB/(BS™'B') "' BS-1Y' A(A'A)1.

When Hp is true, £ and H are independently distributed as v-dimensional
Wishart with a common dispersion matrix and respective degrees of freedom g+p—k
and ¢ . Since these Wishart distributions do not depend on the condition that
Y is fixed, these are also the unconditional distributions of these matrices under
Ho. Using these matrices, the standard multivariate tests can be constructed. For
example, Wilks’ A for testing Hy can be written using the £ and H matrices as

A = |E + H|"'|E|. See Rao (1973) for a description of various multivariate tests.

1.2 Prediction

There are two types of prediction problems of interest that have been considered
in the literature:
(1) Predict V, given Vi and Y, where V = (14, 1;) is a set of observations drawn
from the growth curve model on a new individual (Lee and Geisser (1972, 1975),
Fearn (1975), Rao (1975), and Reinsel (1984)). Here V has dimension 1 x p, W] has
dimension 1 x r and V, has dimension 1 x (p — ). This problem is concerned with
prediction of the unobserved portion of a partially observed vector corresponding

to a new individual.
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(2) The second problem is to predict y; given Y, where y; is a set of N(< n) future
g-dimensional observations whose current p-dimensional observations are a subset
of Y (Rao (1977, 1984, 1987)). This problem is concerned with predicting future
values on some or all of the already observed subjects.
Prediction of V; :

For simplicity assume that r = p — 1. Then V; is a scalar. Let E(V) =
B(Vi,Vs) = (B(V),E(s) = AjtB = (As£B:, AsBy), where Ay is an 1 x m

known vector, and B = (B, B;). Further, let

X o012

cov(V)=% = )

On 022
where ¥ is partitioned in accordance with the partition of V. Then the minimum
predictive mean square error predictor for V, based on the conditional expectation

of V, given Y and V; is given by

Vo= AiéBy+ (Vs — AjéBy)) ST} ova (1.2)

Also
var(f/g - W) =72 = 099 — 0181 012 + ¢5d' Dd,

where ¢; = A;(A'A)'A,,D = (BE-'B)"!, and d = B, — BiS{} 01, Since in

practice, ¥ in the prediction formula is unknown, the predictor is not computable.
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However, if a consistent estimate of ¥ is available, then the predictor can be eval-

uated as
V, = AféBz + - AféBl)Sﬁlé’m-
The estimated variance is
# = Gyp — 6051612 + cpd' Dd.

Naik (1990) has constructed approximate prediction intervals for V5. Since
(Vy — V4)/7 is approximately distributed as N(0,1), a 100(1 — @) % prediction
interval for V, can be constructed using the normal distribution. This can be
summarized in the following theorem

THEOREM 1 ! If an estimate of L,

211 012

™
Il

62 G2
is available, then an approzimate 100(1 —~ o) % prediction interval for V; is given

by

(‘72 - 20/2’;-) ‘72 + za/2+), (13)

where

Vo = AiBr+ (Vi ~ AiBy)ET} 61,
‘/:'2 = 6‘22 - &212.1_116'12 -+ Cf(i’D(i,
d = B,- BS7}61,, D=(BS'B),

7
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and 2,2 is the standard normal distribution cut off point.

Prediction of y;:
Let us assume N = nand ¢ = 1 for simplicity. Then interest is to build
prediction formula for yy;, where y;; is the future observation (at (p + 1)** time

point) of ¥;, the ¢** row of Y. For the ¢** individual we have

Y. (AL£BY Y, S o
E = , COV =Y, = )
Ysi (A By) Yi 07 O
where A! is the i** row of A, By is a k x 1 known vector, and £ isa (p+1) x (p+1)

covariance matrix. Then the minimum predictive mean square error predictor based

on the conditional expectation of y;; given Y is
i = (Ai€B;) + o757 (Y; — (A¥BY) (1.4)
and the variance of gy, is
var(§p — yp) = 78 = 095 — 07 oy + cig' Dy, (1.5)

where

o = A(A'A)*A;, g = By — BS 'oy, and D = (BZ'B).

If a certain consistent estimates of £; and ¥ are available then the predictors can

be computed as

Jr = (Ai€B;) + 68,57 (Vi — (A¥BY

8
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As before, it is possible to construct an approximate prediction interval for yy;
(Naik (1990)). Since (§s: — yy:)/7: is distributed approximately as N(0,1), we have

the following theorem.

THEOREM 2 : Approzimate 100(1 — )% prediction interval for yy; is given by
(95i = 2ap2Tis §5i + 2as27i),

where

Jri = (Al€B;) + 54571 (Y: - (Ai€B)"),

r? = a'gf - 5‘/2—15j + Cingg,

D =(BL'B),

assuming that a consistent estimate

) S &y

Xs= ,
0% o

of Ly is available.
Note that an estimate of ¥ in

2 0’_[

;= ,
0'} Oof

can perhaps be obtained from the available data, but there is no data for estimat-
ing o; and ogy. This is so because these quantities refer to the covariances and

variance of the future unobserved quantities. Hence, the formula for §¢; cannot be

9
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used in practice. To overcome this difficulty, certain structures on ¥ (and hence on
L) are assumed. We consider two special covariance structures, (1) equicorrela-
tion structure in the second chapter, and (2) autoregressive structure in the third

chapter.

1.3 Unbalanced data

So far, we have dealt with the situation where data are available for all the subjects
or all occasions. This is called the balanced data. However, often in practice one
does not have balanced data. In fact, unbalanced data are more common than
balanced data. In general, there are two types of unbalanced data : (1) monotone
or balanced incomplete data ; (2) unbalanced data. The first type of unbalancedness

for n subjects at p occasions or time points has the following form:

Monotoneor balanced incomplete

time
Subject 1 2 . . . . p
1 yiu Yyiz - - - Yip
2 Y21 Y22 - . . . Y2p,
n Ynl Yn2 . . . . Ynpn

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note that for these type of data, observations are missing from the last few
occasions for some of the subjects. Here p is the maximum of pls. These data
occur naturally in practice. For example, some patients that are in a study at the
beginning of an experiment might stop coming after some time for a variety of
reasons.

We analyze these data by dividing the n subjects into g groups based on the
number of measurements on each subject. Thus a mode] for balanced incomplete

data or monotone data is as follows:
Yi"‘.xp‘ = Ain,-nggkaikxp,-+ E,’n‘_xp‘,,i =1,2,....,9. (1.6)

Here g represents the number of groups in the model and each group has n; units
(not the same number in each group). In this model, rows of the error matrix
€; are independent each distributed as N,,(0,X;), where L, is a p; x p; positive
definite matrix. When g = 1 the model is similar to the growth curve model for the
balanced data. Analysis of monotone data from a multivariate normal distribution
has been discussed by Anderson (1957) and Bhargava (1975).

The second type of unbalancedness where data could be missing for any subject
from any occasion ( not just the last few occasions as in the monotone data case)
can be represented such that the measurements are available at the checked (v/)

places.

11
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Unbalanced

time

Subject 1 2 . . . p
VANV A
2 - Vv - . .V

VAV

A model for analyzing these data is
Yin‘.xp‘. = Ain‘.nggkakXpGipxp_.’i" Einixp‘-’i = 1a2s"'-a g9, (17)

where rows of €;~ N,,(0,G'ZG;), G; is a matrix of 0’s and 1’s such that if the
observations i, ..., 1, are available then G; has one in the (k, )" position for k =
1,2,...,p; and zeros elsewhere. This model has an advantage over incomplete data
model. In practice, one can have data missing from intermediate occasions as well.
Thus this model is more general and can be used if data are missing from any
occasion on any subject. Data with missing values are common in practice and a
systematic approach to analyze such data is needed. There are some discussions
about analyzing these types of data in the literature, for example, see Kleinbaum
(1973) and Chi and Reinsel (1989).

There is a third type of unbalancedness that is possible. This is a more general

12
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case than the monotone or balanced incomplete data case. Here, for each group,

data could be missing for some of the subjects from the last few occasions.

Incomplete
Group i
time
1 2 Di
Il yn w2 - . . Y1pi
2 ya oy - . . . Y2piz
I ¥ Yiz o - . Yipy
i Ynit Yn2 - o - . Ynipin;

A model for general incomplete data can be written as:

= Ainixg£§Xkajkxp;j+ E"J'n‘-xp‘-j7 1= 1’2a~--',gaj =12,..,n. (18)

g xpy;
Here g represents the number of groups in the model and each group has n; units
(not the same number in each group). In this model, the rows of error matrix €;;
are independent each distributed as Ny, (0, Z;;), where L;; is a p;; x p;; positive
definite matrix. When g = 1 the model reduces to the case where the number
of measurements observed on each subject is different, that is, the first type of
unbalancedness. The maximum likelihood analysis of the model is essentially the
same as the much simpler incomplete (balanced) data model of equation (1.6).

13
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Hence we will not pursue the analysis of the model (1.8) but restrict ourselves to

(1.6).

1.3.1 Analysis of incomplete data under general
covariance structure

Consider the model (1.6) , that is,

Yirixpe = AinixoloxkBigyp. + Cinpxpirt = 1,25 00009

with the rows of error matrix €; independent, each distributed as N, (0, X;).

Case 1: When I, is known for each i then the estimate of { can be obtained as

g

vee(d) = [S)(BEr BY) RAAN S (BET @ Avee(¥:)

=1 =1

with the covariance matrix

Cov(vec(d)) = (S (BEF B) Q) (AL

=1

Case 2: When I; are unknown then MLE of vec(€) has the same form but the
ML equations for ¥; are intractable. Some suggestions about how to compute some

alternate estimators of L; are suggested by Crowder and Hand (1990).

1.4 Analysis of unbalanced data under general

covariance structure

Consider the model (1.7). Kleinbaum (1973) called this model the Generalized

14
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Growth Curve Multivariate (GGCM) Model. He has proposed best asymptotically
normal (BAN) estimators for the parameters as follows
g

vec(€) = [;(BG,-(G@G,-)"GQB’) QA AN i(BG,-(GQﬁG,-)“ &) Al)vec(Ys)

where ¥ is a consistent estimator of ¥. He proposed an unbiased and consistent

estimator of ¥ = ((o,)) by forming the usual pooled estimate of o,, as follows:

a'rs = ETI-R(._D:)_:E:'S[I - D"S(D:.';DN)-ID:-S]ZTS rys = 132a P

where N, (> 2) is the number of experimental units in which both response variates
V: and V, are observed, z,,(/N;, x 1) is the observation vector on V, corresponding
to those experimental units on which both response variates V; and V, are observed,
D,s(N:, x g) is the design matrix, consisting of a row of A; matrices, corresponding
to z,, and V1, V;,...,V, are the p response variates corresponding to the p time
points. [t is important to note that this estimate of ¥ is not necessarily positive
definite for small samples.

In this thesis, we consider the two types of unbalanced data and using the ML
method, under the above mentioned two types of structures for covariance matriz,
show the analysis (estimation, prediction, and testing) of growth curves.

In the second and third chapters we consider the polynomial growth curve mod-
els under equicorrelation and autoregressive covariance structures respectively. In
each chapter we consider the models for balanced data , for balanced incomplete

data, and also for unbalanced data. For each covariance structure, the validity of

15
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assuming such a structure (goodness of fit of the model with the assumed structure)
is discussed either by testing for the covariance structure or by using residual plots.

When the model (1.7) is used to analyze unbalanced data with an autoregressive
covariance structure for ¥, the covariance matrix for the error, GiXG;, becomes
what is known as a Markov structure. Also, if balanced or balanced incomplete
data are such that the repeated measurements are made at unequally spaced time
points, then the natural covariance structure to use is Markov structure. Under this
structure, the problem of predicting the unobserved portion of a partially observed
vector V, when the unobserved portion is in the middle is also addressed in chapter
3. This result addresses some interesting questions relating to estimation of missing
values in a time series context.

In each case computation of estimators have been illustrated either using the
available software (for example SAS) or by writing FORTRAN programs.

The polynomial models can provide useful predictive information and may be
the best approach if the growth information has been collected over a limited range
of growth cycle. However, such models are often biologically unsatisfactory, as
the parameters may not have a satisfactory biological interpretation. In that case
we need to use nonlinear functions for fitting the growth processes. In the fourth
chapter we consider the nonlinear growth curves and give computer programs using

SAS software, to do the analysis of nonlinear models under variety of situations.

In summary, the new results developed in this dissertation can be found in

chapters 2-4 and specifically in sections 2.3-2.5, 3.3-3.6, and 4.4-4.7.

16
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Chapter 2

Analysis of Growth Curves
Under Equicorrelation

Covariance Structure

2.1 Introduction

In this chapter, we consider the growth curve models under equicorrelation co-
variance structure. First, in section 2.1, we describe the structure itself by providing
its determinant and the inverse. In section 2.2, we review the results for estimation
and prediction problems for balanced data model. In section 2.3, we consider a
model for monotone or balanced incomplete data. Further we point out that this
model can handle any type of unbalanced data under equicorrelation structure. In
section 2.4, we consider some goodness of fit tests. Finally in the last section, we

17
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give the computer program for estimation of parameters under unbalanced data

model.

2.2 Equicorrelation structure

A step towards dependence from independent errors is equicorrelated errors.
Under the equicorrelated errors model each pair of components of the error vector
has the same correlation coefficient, say p. This structure is appropriate when the
measurements are all made under similar conditions. For measurements of the same
type made in the same way, it is usual to assume variance homogeneity. Thus ¥,

the covariance matrix of the error vector, has the following structure:

T = (1= p), + pJ]
= o*V(p)
L pp . .p
pl p . . p
= 0‘2
p
p . . . .1

The determinant and inverse respectively are

det(Z) = |Z] = a*(1 + (p — 1)p)(o*(1 = )"

18
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and

-1 _ 1 _ P
Rl=T; g Ll sy ey p

Note that the inverse is also of the same form as ¥. We need the restriction,

—p—il- < p < 1, to maintain the positive definitness of . The determinant and

inverse can also be written in the following form for the reparameterization,

n=c*l1+(p—-1)p)and , = *(1 —p):

Sl = o1+ (= Dp)o*(1 = o))t = murf ™

-1 _ 1 _ P
== 0'2(1—p)[I (1—(P—1)p)J]
_ Lo,
T2 P12

This reparametrization is useful to obtain the MLEs of o2 and p.

2.3 Balanced data model

For balanced data, the growth curve model (1.1) is

Ynxp = AnnggkakXp+ Enxps

where Y is an observation matrix, £ is a matrix of unknown parameters, A is a
known matrix of rank ¢ < n, and B is a known matrix of rank k£ < p. Further, rows
of error matrix € are independent each distributed as N,(0,X), where Zisap x p
matrix. Here we are considering the equicorrelation structure for £. We discuss

19
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only estimation and prediction in this section since testing is done in exactly the

same manner as discussed in the first chapter.

2.3.1 Estimation

Lee (1988) has discussed estimation of o2, p and ¢ using the ML method. We
first show estimation of the parameters p and o2. The likelihood function has the

following form

L(o? p) = (27r)"22£|2|—§'e:z:p[—étr2_1(y — AEBY(Y — A£B)]

Rewriting the log of likelihood function in terms of 7 and 7, after substituting ¢

for ¢, we get
L = ~Lin(2r) - Mins| - -;—tr[Z"l(Y — AEB)'(Y - A£B)]
Chn(ar) = Pin(rrr ) = S i1 - Ly L gpE
5 In(27) 2ln(1'17'2 ) 2tr[TZI p7'2J + o J]
np n n(p—1) | 1 far
= _F - S ¥ A -t —t E
5 In(27) 2ln(7'1) 5 In(m) o rE'E + 257 rJE
1o
—2P—T1JE E

where £ = (Y — A£B).
Taking the partial derivative of InL with respect to 71 and setting it to zero we

get
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where 1 is a vector of ones. Also

OlnL
=0
87‘2
L1 ., = VE'El
=T = m[trl‘? E- ].

Since

This gives us the ML estimates of 0% and p as :

3=

trE'E — LirVE'E1 + LerVVE'E1 1 ..
o2 = np np = —trE'E
P np

and

1 X nlln 1 nEn 1 3 nl 7
Sirl'E EIA—A n(p_l)trl:}”;?' + n(p_l)pzfrlA E'E1l
nl—ptrl’E’El + ’l—ltrE'E - ’—:;trl’E’E'l
VE'El —trE'E
(p—- l)trE'E ’

The ML estimate of ¢ as before is
£ =(A'A)TAYS 1B (BET1B)"L.
But for the equicorrelation structure

YT 'B'(BZ-'B')"' = YB'(BB')™!,

21
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assuming that the matrix B has the vector of ones as one of the rows. Then the

ML estimate of £ can be written as

£ =(A'A)'A'YB' (BB, (2.1)

2.3.2 Prediction

The predictions of V, and y; have been considered by Lee (1988), under the
equicorrelation structure,
Prediction of V, :

Using (1.2), the predictor of V; given Y and V, is

A

Vo = AgB;+ (Vi — A;6B)Silon
- p a~
ApBy + ————(Vy — A€By)1,_1,
since
J12 = 0‘2p1p_1 y O22 = 1
T = 0?[(1 = p)lp-1 + pJp-1]
and

Silop= —FP 1,
HI = T (p-2)p) "
Also we have
2 — 1)0.2
0y 71 = __Il(P—_
AT T (- 2)0)
22
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From Theorem 1 of chapter 1, we get that the approximate 100(1 — &) % prediction

interval for V; (Naik (1990)) as

(Va = 2zaja?, Va + 2as2?) (2.2)
where
2 = O3 — &'212;-110"12 + Cf(z/DdA

(1 =41+ (p—1)h) ¥

= 02( - +cpd' Dd
1+(p—2)p !

d = B,— B¥7léy,

A

__r
1+(p—-2)p’

D = (BEL'B)L.

= B-B

Prediction of y; :

Let us assume N = n and ¢ = 1 here also. For the i** individual we have

Y; (A€ BY Y; £ o

, COV =Y = )
Ysi (AiBs) yyi oy Oy

E

where A! is the i* row of A, B; is a k x 1 known vector similar to the matrix B,
and Z;isa (p+ 1) x (p+ 1) covariance matrix. For the equicorrelation structure

we have

23
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L pop p
p 1 p p
E 0’/
Ej= =0‘2
gf Oaf
p
p . 1
This gives
55 = ol 1 - P 11
! Pat(1-p) 7 (1—-(p—1)p) "7
- p 1!
(I+(-1)p) "
2 2
=03l = —F 12 = PPT
ST W+ -0 T T T 0+ - 1p)
=0t =0Ty = o (1- b =0,2(1—ﬂ)(1+PP)
(1+(p~1)p) 1+(p—1)p

From (1.4) we get the conditional predictor of yy; given Y as

g = (AI€By) + 0,7 (Y; — (ABy))

— - R R T VRN Tr I - R,
= (A48 + (- (44B)Y)

and the variance of (§ — yy:) is given by

var(?)fi - yfi) = ‘/A'iz = Gy5 — &;)3‘1&, -+ C,'Q'Dg
(A =p)(L+pA) . ips
= ~ +¢g'Dg,
1+ (p—1)5

with o = Al(A'A)4A

24
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. 5
= Bj—- ——+——_BI1
I T I=SVF) R

b = (BE'B)™!

Using Theorem 2 of chapter 1, we have the approximate 100(1 — a)% prediction

interval for ys; (Naik (1990)) as
(Ui = zas2fi, Usi + 2as27)

where §y; and 77 are as above.

2.4 TUnbalanced data model

The model for unbalanced data considered in (1.7) is as follows:
Yinine = Ainxgboxk BixpGipxp, + Eingupist = 1,250, 95 (2.3)

where the rows of the error matrix €;~ N,(0, G:ZG;), £ having a equicorrelation
structure. But &; = GiEG; = 0*V(p), since GiG; = I; and G}JG; = J;,
where J; = 1,17, J = 1,1} and Vi(p) = [(1 — p)Ip; + pJp]. Thus Z; also has
equicorrelation structure. Therefore, for equicorrelation structure, the model for
unbalanced data is the same as the model for the monotone or balanced incomplete
data. Hence we consider estimation, testing, and prediction problems for the latter

model only.

The model for balanced incomplete data is

K:n‘- xp; = Ain‘xmékaBikxp"*' Einixp‘,,i =12,....,9. (2.4)

25
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The rows of error matrix €; are independent each distributed as N, (0, Z;), where

Y; is a p; X p; matrix with equicorrelation structure.

2.4.1 Estimation

For this model a solution to the maximum likelihood equation for { is not
directly attainable. Hence we make the following transformation.

Let y; be vec(Y;) and ¢; be vec(€;). Let

Y1 €1
Y2 €2
y= - , €= ' and

Yg €g

B ® A

B; ® A,
X =

B, ® 4,

26
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Then the model (2.4) can be written as
y = Xvec(é) + e (2.5)

Let N; = 4_, nip;. Then y, X and € are matrices of dimensions Ny x 1, Ny X gk,

and N; x 1 respectively. Further e ~ N(0, D), where

LQ6L 0 ... 0
0 Y.Q1 0
0
D =
0
0
\0 0 D Y,

We know that if the model is y = X8 + € with ¢ ~ N(0,V), then MLE of § is
B = (X'V-1X)"'1X'V~-ly. Thus fur the model in (2.5), we have the ML estimate
of vec(£) as

vee(€) = (X'D' X)) X'DYy. (2.6)

To simplify (2.6), note that

/(21®Il)'1 0 ... 0
0 (Z:Q®L)! 0
0
D' =
0
0
\ 0 0 R (Eg@ly)_l

27
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Next, using the properties that (a) (A® B)™! = A~'® B! (if inverses exist), (b)

(AQ B)(C®D) = ACQ® BD, we can show that
X'D'X = zgj(Biz,-'lB,’) Q(AiA:)
i=1
and
X'Dly = Zgj(B,-E:1 & A)vec(Y))
i=1

Thus for the model (2.5), we have the ML estimate of ¢ as

vee(§) = (X'D7'X)7'X'D7ly

g

= [D(BSB) QA4 BEN @ Avecl¥)  (2.7)

=1 =1

It can be shown for &; = 02V,(p), the equicorrelation structure, that the expression
for £ does not depend on p and o2. However, if we consider the model (1.8) the ML
estimate £ of ¢ will depend on p. However, we will not consider this model further

since computationally it does not create any complexity.
Now, to find the ML estimates of p and o2 for the incomplete data model (2.4),
with 3; having equicorrelation structure, the likelihood function is
g . n . s
L = JJien) "5 Feopl— 5trEr (¥ - AGBY(Y: - AEB)]
t=1
9 (miBiy) TH ng 1 .
= (27r)_(zi=1( 7)) Mz~ )exp[—EZtrEflE£E¢] (2.8)
t=1

=1

where E; = (Y; — AiB;). Recall that

B = L+ (= Do)~ )P
-1 _ 1 o p |
and ¥ = a2(1 - p) [4; T~ (-1)p) Ji].
28
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Substituting these values for |£;| and £, and taking the logarithm of likelihood

function we get,

N. N g Ar. — g .
Inl = ——lln(27r) Syl Y -”‘(i_l)zn(l o) = B+ (5= 1)p)
2 2 = 2 2
9
~5531 =) 1 E tri!E; — Z 1, — L trJElE], (2.9)

where Ny = Y9, n;p; and E; = Y. - AiéBg. Now we can get the ML estimate of

o? by taking the partial derivative of InL w.r.t. o2 and setting it to zero, i.e:

OlnL 0=

do?

L [ZtrEE Z — _#rJEE)=0.
20’2 pe - 1)p -

This gives us the ML estimator of o2 as

. g g L
2= trEl B, — trJ;EE]. 2.10
o Nl(l— gr. Ell-%(l—) r ] (2.10)

Note that &2 is an explicit function of p (as it can be seen) since E; is independent
of p. Putting 62 in the log of likelihood function (2.9), we can write InL as a function
of p:

InL(p) = —-%ln( )—%zn in'(—'lln(l—p)

g n
- ; i+ (pi-1)p) - 5
We have to minimize —{nL(p) w.r.t. p to get the MLE of p. Taking partial
derivative of —InL(p) w.r.t. p and setting it to zero gives us an equation which is
difficult to solve. Instead we use numerical minimization methods to get the MLE.
Consider the following function of p:

29
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flp) = =2inL = Ny(1 +In(27) + Iné?) + (Ny — n)in(1 — p)

+ineln(1 + (pi — 1)p). (2.11)

i=1
For given values of Ny, 62, ny, na,...,ng,9,p1, P2,---,Pg, We have to minimize f(p) w.r.t.
p and find a solution. Suppose this solution is 5. Use this p in 62 of (2.10). Find
the new 6% and again find the minimum of f(p). We continue these iterative steps
until the solution (p) is stabilized. These types of algorithms have been successfully

implemented in popular software, like SAS. We illustrate the computation on a data

set in section 2.5.

2.4.2 Testing of hypothesis
To test the hypothesis
Ho : EqugloxiFixo =C
one can use the test statistic

W, = (GB - P)'[G(i(Bi}ilef) ®(A§A,-)'l)‘1G']'1(G,@ - P) (2.12)

i=1
where G = F'QE, P = vec(C) and § = vec(f). This statistic W, can be shown

to be approximately distributed as x? with qu degrees of freedom.

2.4.3 Prediction

Prediction of V,

30
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Let E(Viyyp,) = E(Vai,Vai) = (AiffBui, Aif§Bai) with By, = (Bu, Ba) and
Cov(V;) = Z; having equicorrelation structure. The interest here is to predict
Vy: given Vi; and Y, ¢ stands for the ¢** group. Using (1.2), a predictor of V3; given
Visand Y is

Voo = AiféBZi + (Vi — AiféBli)El_lliUlZi

"

= AiyéBy+ ——L (Vi — AyéBii)l, 1.

1+ (pi = 2)p
Also
$-1 2 qt p 1
0210110128 = Uplp;_lm pi-1
p*(pi = 1)o?

IT+@—2)p)
Since (Vy; — Vas)/7: is approximately distributed as N(0,1), using Theorem 1 of the
first chapter, we can construct the approximate 100(1 — @)% prediction interval for
Vai as

(‘72i - za/2+ia ‘721' + za/Zﬁ') (213)
where

A2 - A - A R R
7',\.’:2 — g (1 p)(l +(P: . l)p) + Cjid:j-Didi)
1+ (pi —2)p

with Cfe = A;f(AéA,’)_lAéf,

. p
i = . B ,,]. [ - A
and d B2 1ilp; 1—'-"'——'1 n (P;’ _ 2),0

Prediction of y;
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For the j** individual in the i** group we have

Y; (AL;€B:) Y; i o
E ’ = ’ , COV ’ =Xy = ,

Yis; (Ai;€Bif) Yif, % O

where A{; is the 7t row of A;, Bis is a k x 1 known vector defined similarly as B;.

Since
L pp..0p
plp .. p
X, o
Efl'-- =0‘2
O Oafi
P
[ 1
and
&I" i—1=_—p___1/,
d (1+(pi—1)p) ™

the predictor of yiy, is given by

Jiy, = (ALEBy) +6,571(Y;; — (ALE€BY))

= I..A ) __i—’ L A(,AB':/
(AtJéB‘f)+1+(Pi—1)ﬁ1m(Y‘J (A;€B:)")

Now, using
. A2, 2
& A p pi0
5.8 6 = —pﬁ—l"az 1y, = 7+m———=
K (N PV F) R (R R VF)
22 sl =la a2 52 =A2(1—ﬁ)(1+P£P)
6°—-6,8 65 = © ( (1- _&L—(l-f-(p.‘—l)ﬁ) ) o T+ (i = 1)p
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we have

var(Jig, = yig;) = 15 = oapi — 64,57 64 + ;41 Dids

&1 - p)(1 + pip)
1+ (pi—1)p

+ cii§t Digi,
with

a; = AiL(AjA)™ Ay,

. p
i = Bif— Bilpj7—r—,
7 d 1+ (pi—1)p

D; = (BEB)™.
Since (Jis, — vis;)/7i; is approximately distributed as N(0,1) using Theorem 2 of
chapter 1, we can construct the approximate 100(1 — «) % prediction interval for
Yif; as
(Fit; = Zas2Tijs Dig; + Zaj2ij)-

Example 2.3.1

Just to illustrate that these methods can be implemented in practice, we provide
an example with computer program. In a study of the association of hyperglycemia
and relative hyperinsulinemia, standard glucose tolerance tests were administered
to 13 control and 20 obese patients on the Pediatric Clinical Research Ward of the
University of Colorado Medical Center (Zerbe (1979)). Plasma inorganic phosphate
measurements determined from blood samples withdrawn 0, 0.5, 1, 1.5, 2, 3, 4
and 5 hours after a standard dose oral glucose challenge are shown in Table 2.1.
Suppose for the treatment group we don’t have data at time points 1.5 and 5. So
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Table 2.1: Plasma Inorganic Phosphate data

Hours after glucose challenge
Patient 0 05 1 1.5 2 3 4 S
Control
1 43 33 30 26 22 25 34 44
2 3.7 26 26 19 29 32 31 39
3 40 41 31 23 29 31 39 4.0
4 36 30 22 28 29 39 38 4.0
5 41 38 21 30 36 34 36 3.7
6 38 22 20 26 38 36 30 35
7 38 30 24 25 31 34 35 3.7
8 44 39 28 21 36 38 4.0 39
9 50 40 34 34 33 36 4.0 4.3
10 3.7 31 29 22 15 23 27 28
11 3.7 26 26 23 29 22 31 39
12 44 37 31 32 37 43 39 48
13 4.7 31 32 33 32 42 37 43
Obese
1 43 33 3.0 26 22 25 24 34
2 5.0 49 41 37 3.7 41 47 49
3 46 44 39 39 37 42 48 50
4 43 39 31 31 31 31 36 4.0
5 31 31 30 26 26 19 23 27
6 48 50 29 28 22 31 35 36
7 37 31 33 28 29 36 43 44
8 54 47 39 41 28 37 35 3.7
9 30 25 23 22 21 26 32 35
10 49 50 41 3.7 3.7 41 47 49
11 48 43 47 46 47 3.7 36 3.9
12 44 42 42 34 35 34 39 40
13 49 43 40 40 33 41 42 43
14 5.1 41 46 41 34 42 44 49
15 48 46 46 44 41 40 38 38
16 42 35 38 36 33 3.1 35 39
17 66 61 52 41 43 3.8 42 438
18 36 34 31 28 21 24 25 35
19 45 40 37 33 24 23 31 33
20 46 44 38 38 38 36 38 38
34
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ny = 13,n, =20, m =2,k =5p=8, p =8 and p; = 6. A; and A, are of order
13 x 2 and 20 x 2 respectively. Using SAS, we fit the unbalanced model on this

data set (PROGRAM 1). The results of this program are p = 0.33, 6% = 0.61 and

3.2 -0.01 0.01

o,
Il

3.44 0.64 -0.15

2.5 Goodness of fit tests

Consider the model (1.1), Y = A(B+ €, with the usual assumptions. One of
the problems we face in practice is to determine an appropriate structure for the
covariance matrix X. If there is only one group in the model, one can determine the
appropriate structure for ¥ by selecting several structures and testing hypotheses
about these structures. For example, suppose we want to see whether equicorrela-
tion structure fits well for the data. Using the data under the above model we test
Ho : & = 02V(p) (the equicorrelation structure) against H, : I is a positive definite
matrix. This is a standard problem in multivariate analysis, perhaps under simpler
multivariate linear model situation. See Anderson (1984) or Siotani, Hayakawa,
and Fujikoshi (1985). Similarly, tests for testing other structures can be developed
using the likelihood ratio test.

If there are several, say g, groups, then these type of testing of hypothesis
problems become difficult. This is because, different groups may have different
covariance matrices £,z = 1,2,...,9 and we may need to first test Ho: ¥y = X2 =
... = B, versus H, : The covariance matrices I;’s are different. If Hy is rejected and
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2 or more structures are being considered for Z;, a variety of situations may occur in
practice due to the fact that, only a certain parameters determining the structures
may be different for different groups. The problem is further complicated if the
data are unbalanced. For example, suppose we want to test Ho : X, ,, = 0°Vi(p)
against H; : ; is a positive definite submatrix of ¥,4,. In this case, finding the
MLE of ¥; under H; may be very difficult even if it exists.

In this section, we assume due to other practical considerations as well, that
=o*V(pi), 1 = 1,2,...,g9. The problem then is

the structure for group 1 is ;..

to test various hypotheses,

2 _ 2 —p = =
0= ... =05, p1=p2=...=pg

HmIO'

Lol S ]

(og

H02:0'

I

=.. =02 =02, p;’s are different

L] S

Hos : p1 = p2 = ...py = p, 0¥’s are different

against an appropriate alternative hypothesis.

In a recent paper, Viana (1994) has derived the MLE’s of the parameters under
Ho, and Hys. The MLE’s of 02, p;, ¢ = 1,2,..., g under the alternative &; = o?V(p;)
are easily obtained using the MLE'’s for balanced data. The MLE’s of ¢? and p
under Hp, are derived in section 2.2.1. Using these MLE’s various hypotheses can
be tested using the likelihood ratio criterion.

If we consider an autoregressive structure instead of an equicorrelation structure,
then tests for all of the above various hypotheses have been considered by Lee
(1991).

Residual Plots
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One can also suggest certain graphical procedures for visual and easy validation
of the assumed structure. One graphical procedure we may suggest is as follows

Define y = vec(Y), € = vec(€) and B = vec(é). Then model (1.1) can be

rewritten as
y = (B’®A)ﬁ + €= XpB + ¢ (say)

Further, under the assumption of rows of € being independently distributed as
multivariate normal with mean 0 and covariance matrix ¥, we have € to be dis-
tributed as np variate normal with mean 0 and covariance matrix 2 = £ @ I. Using
standard generalized least squares theory we know that 4 = (X'Q-1X)~1X'Q"1y.
The vectors of predicted values and the residuals respectively are given by § = X A
and € = y — y. It is standard practice in regression analysis to plot the respective
elements of 2~37 and Q~3¢ as points in a plane. If the points follow a random
pattern in the plane then the model is assumed to be valid. We adopt this plot for
validating the assumed structure. Suppose ¥; is the covariance matrix for the it
group and it has an equicorrelation structure then the covariance of ¢ is of the form
2 = Diag(%,, 2o, ..., X,) instead of I @ ¥ and § is a function of the two parameters
o? and p. We estimate 0? and p using the ML method and estimate 2. Suppose
the estimator of {2 is €1, then we compute Q- ;‘;z) and {~7¢ and plot the points in a
plane as described. A program for plotting the residuals for a data set under the

equicorrelation structure is provided in section 2.5.
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2.6 Computer program

PROGRAM 1
options linesize=70;
Title 'Growth curve analysis of plasma data under equicorrelation structure’;
data plasma;
infile 'plasma.data’;
input subjl y1 y2 y3 y4 y5 y6 y7 y8 subj2 y9 y10 yl11 y12 y13 y14 y15 y16;
data newl(keep=subjl yl-y8) new2(keep=subj2 y9-y16);
set plasma;
/* Creating vec(Y) */
data newll;
set newl;
y=yl;time=1;output;
y=y2;time=2;output;
y=y3;time=3;output;
y=y4;time=4;output;
y=y5;time=>5;output;
y=y6;time=6;output;
y=yT7;time=T7;output;
y=y8;time=8;output;

drop yl-y8;
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data new22;

set new2;
y=y9;time=1;output;
y=yl0;time=2;output;
y=yll;time=3;output;
y=yl3;time=>5;output;
y=yl4;time=6;output;
y=y15;time=T7;output;

drop y9-y16;

data b;

set newll(in=innew! rename=(subjl=subj))
new22(rename=(subj2=subj));
if subj=’." then delete;

/* We are creating the X matrix in this proc step. */
proc iml;
B=(1111111,
0051152345,
00.2512.25491625),
Gl=(10000000,
01000000,
001000600,

00010000,
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00001000,
00000100,
00000010,
00000001 );
G2=(100000,
010000,
001000,
000000,
000100,
000010,
000001,
000000 );
Al=(10,
10,

10,

10,

10,

10,

10,

10,

10,
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10,
10,
10,
10);

A2=(01,

4]
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01,
01,
01)
Dzl = (G1‘ * B) @ Al;
D22 = (B2 * G') @ A2;
D = Dz1//Dz2;
varnames=x1,x2,x3,x4,x5,x6;
create dd from D(|colname = varnames|);
append from D;
close dd;
data last;
merge dd b;
/* We are fitting the model y = Xvec(€) + € with equicorrelation covariance
structure. */
proc mixed data=last method=ml;
class subj;
model y= x1 x2 x3 x4 x5 x6/s noint;
repeated intercept diag/subject=subj r;
make 'Predicted’ out=pred;
make 'R’ out=rmatrix;
run;
proc iml;

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



use rmatrix;

read all var{coll} into col;

sigl=col[1,1];

sig2=col{2,1];

rh=sig2/sigl;

rho=J(224,1,1);

rho=rh*rho;

varnames=rho;

create rhnew from rho(|colname = varnames);
append from rho;

close rhnew;

data final;

merge rhnew pred;

/* In the following proc step we are transforming the predicted and residual
vectors.*/
proc iml;
use final;
read all var{rho,Pred,Resid} into aa;
rhol=aa[l,1];
gl=J(8,8,1.0);
g2=J(6,6,1.0);
c=1.0/sqrt(1.0-rhol);
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betl=(-rho1*8)/((1.0-thol)*(1.0+7*rhol)});
bet2=(-rho1*6)/((1.0-thol)*(1.0+5*rhol));
d1=(1.0/8)*(-c+sqrt(c+betl));
gl=c*I(8)+d1*J(8,8,1.0);
d2=(1.0/6)*(-c+sqrt(c+bet2));
g2=c*I(6)+d1*J(6,6,1.0);
pred1=(I(13) @ gl)*aa[1:104,2];
pred2=(1(20) @ g2)*aa[105:224,2};
tpred=predl//pred2;
resd1=(I(13) @ gl)*aa[1:104,3);
resd2=(I(20) @ g2)*aa[105:224,3];
tresd=resd1l//resd2;
zz=tpred || tresd;
varnames=tpred,tresd;
create lastl from zz(|colname = varnames|);
append from zz;
close lastl;

/*THE RESIDUAL PLOT*/
/* Plotting the transformed residuals on transformed predicted values.*/
proc plot data=last1;

plot tresd*tpred;
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Chapter 3

Analysis of Growth Curves
Under Autoregressive Covariance

Structure

3.1 Introduction

In this chapter we consider the growth curve models for different situations with the
autoregressive structure for the covariance matrix. In almost all cases, there will be
correlation between the repeated measurements (measurements on the same subject
or experimental unit) taken at different time points. It is also likely that there
is a decay in the correlation with increasing time distance between the repeated
measurements. In this case the natural structure for the correlation matrix is the
autoregressive correlation structure. Moreover this structure enables us to model

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



unbalanced (missing value) data. Hence in this chapter we restrict ourselves to
the first order autoregressive correlation structure. While modeling the unbalanced
data or the data observed at unequally spaced times, the first order autoregressive
structure leads to the Markov structure as we will see later. In the next section,
we present the autoregressive structure and its variance and the determinant. In
section 3.3, we study the growth curve model for the balanced case and give the
maximum likelihood estimators of the parameters involved (Lee (1988), Fujikoshi
et al. (1990)) and give a test for testing Hy. We also consider the prediction of y;
given Y and prediction of V, given V; and Y.

Another prediction problem that may be of interest to scientists is the prediction
of unobserved portion of a vector, when the unobserved portion is in the middle.
For example, predict V;, given V;, V;, and Y, where V' = (V/, V/, V). We address
this problem also in section 3.3.

In section 3.4, we consider the model to accommodate monotone or balanced
incomplete data (that is, data that are missing only at the end) and derive the
maximum likelihood estimators. Further, we consider the two prediction problems.
The testing problem is similar to the one considered in the second chapter. Finally,
in section 3.5, 2 model to analyze missing or unbalanced data (that is, data that

are missing at any time of the observation) is considered.
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3.2 Autoregressive structure

A widely used time series model is the autoregressive process and the structure
of the correlation of a first order autoregressive process is called autoregressive
correlation structure. In applications, we take a p X p autoregressive covariance

matrix as

T = o¥ph i i=1,..p (3.1)
1 p P pr!
p L p PP p?
= 0’2
PPt P p 1
= a*V(p).

The inverse of V can be written as

V7l =(1~p")"p"C1 = 20C2 + L),
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where

(3.2)

Do —

Also

det(S) = [Z| = (o2)7(L - o).

3.3 Balanced data model

The growth curve model under the balanced case is

YnXp = Anmemkakxp'{' Enxp)

where Y is an observation matrix, £ is a matrix of unknown parameters, A is a
known matrix of rank m < n, and B is a known matrix of rank k < p. Further,
rows of error matrix € are independent each distributed as N,(0,X), where & is a

p X p positive definite matrix.
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The log of the likelihood function
L = (2r)~F|S| F exp[— %trZ‘l(Y — AEB)(Y — A¢B)]
of ¢, p and o? based on Y can be written as

InL(€,0%, p) = —1/2((np)inc® + n(p — 1)In(1 — p*) + (np)in2=

+0%(1 = p2)~Mr{(p*Cy = 20C; + L)Y — AEB)' (Y — AEB)]

Taking the derivative of this equation with respect to 2 and setting it to zero

we have
S0P L (0PCy - 200, + L)Y — ACBY(Y — A£B)] = 0
202 20%(1 - p?) pra= Pl -
N 1 ’

Next, rewriting InL as

—_ 1 2 ’

ik = = Finzr = Pine? ~ RO nld = ) = gl OY ~ AEBY(Y ~ 4¢B)
/ 1 ,

+;2Tlﬁ_7)‘tr02(y — A(B)'(Y — A¢B) ~ mtr(y _ AEB)(Y - A¢B)

and differentiating with respect to p we obtain

ginL _ n(p—1)p p | 1+ p°
B T U ATt Oy — AEBY(Y - ALB) +
trCy(Y — AEB)'(Y — AEB) - ;—2-(1—!;7)3#(}’ ~ AEB)'(Y — A¢B),
and
dlnL
dp =0
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gives

n(p = 1)p(1 = p*)a* — ptr[Cy(Y — AEB)'(Y — AEB)] + (1 + o)

tr[Co(Y — AEB)'(Y — A¢B)] — ptr(Y — AEB)(Y — AEB) =0  (3.3)

Let R = (Y_Afi)_'g'A@) and a; = tr(C;R). Then we have the ML estimator of &?

as

. 1

2 = - —-m 52 _ 2 — A -
g np(l _ p“Z)[(n )p 3 (TL ”l)pa‘Z + (n 111)&3]
n—m .o .
- —_—— -2
np(l — ‘52) [alp azp + a3]

To get the ML estimator of p, let us substitute the value of 6% , R and a; in

(3.3). We get the following equation:

n—m
n(p —1)p(1 - Pz)l—_pz)[alpz — 2a3p + a3] — p(n — m)a; +

np(
(1 + p*)(n —m)az — p(n — m)a =0

-1
= P

pla1p® — 2a2p + as] — pay + (1 + p*)a; — paz = 0
= (p— 1)a1p’ — 2(p — 1)azp’ + (p — 1)asp — parp

+pay + pazp’ — pazp =0
Thus, ML estimate of p is the solution of the following cubic equation
(p — a1p® = (p — 2)azp® — (par + a3)p + paz = 0.

We summarize the maximum likelihood (ML) estimates of ¢, o2, and p in the
following theorem due to Fujikoshi et al. (1990). Also see Lee (1988).
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THEOREM 3 The ML estimates of £, o® and p in the growth curve model with

autoregressive covariance structure are the solutions of the following equations:

(I) € = €(p) = (A'A)'A'YV: B/(BV1 B')~!

n-—m

(11) * = o*(¢,) = (1= *) [@1p* — 2a2p + as]

(I11) (p = Dar® = (p = 2)ari® = (pon + as)p + paz = 0.
where

V=V(p), V= (1= )1 p2C, — 25C; + Cs),
_ (Y - AB)(Y - A¢B)

n—m

R , a; = tr(CiR),i=1,2,3,

with Cy & C; as defined in equation 3.2 and C; = I,.

Fujikoshi et al. (1990) have studied the asymptotic properties of the ML esti-

mators é, o? and p and have established that, for fixed p and g, as n — oo,

vec(((A'A)2 (€ = €))) ~ Nu(0,1 ® (BE™1B')7), (3.4)

where ¥ = §?V().

3.3.1 Testing of hypothesis

Consider the problem of testing Hy : EEF = C versus H; : E€F # C, for known
matrices E, F and C of order ¢ x g, k x v and ¢ x v respectively, with E of rank ¢
and F of rank v.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using the asymptotic distribution off given in (3.4) a test criterion can be

easily constructed. We note that the asymptotic variance of EEF using (3.4) is

var(vec(BEF)') = (E(A'A)™'E") @ F'(BS™'B')"'F.

Hence a test criterion to test Hy is to use the trace of

(EEF — C)(E(A'A)'E")"\(EEF — C)(F'(BL™'B') F)~! (3.5)

whose asymptotic distribution is x? with qv degrees of freedom. The reader is re-
ferred to Azzalini (1987) for a similar result. Other criteria based on the eigenvalues

of the matrix (3.5) can also be used to test Ho.

3.3.2 Prediction

In the following we present minimum (predictive) mean square predictors for
Yis, the future observation for the ith individual, and V5, the unobserved portion of
the vector V'(= (V{,V4)). For simplicity of presentation we assume that both y;s
and V, are scalars. However, in general, these can be vectors.

Prediction of V;:

The minimum mean square predictor of V, given V] and Y is obtained as follows:

Let E(V) = E(W,Va) = (As€B,, AséB;), where Ay is 1 X g known vector, B =
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(B1,B2), and cov(V) = E. Then V, = Ai€B, + (Vi — A;£B,)S1} oy, with the

. 2 _ > -
variance, 7% = var(V; — Vo) = 022 — o T3 012 + ¢4d' Dd,

where
1 p P prt
p 1 p PP p?
Xn 012
cov (V) =3 = = :
021 O22
pP~t pP? p 1

cf = AJ(A'A)_IA', and d = Bz - 3121_110'12.

For the autoregressive structure,

— 2fp=1 _p=~2 ! 2
UIZ_U(P P ,--'ap) y 022 =0

Z1 = 0*V(p)p-1xp-1

Shor = (1=p)p?CL = 20Cs + L_i)(pP1, 077, s p, 1)

1 —p 0 0 ( pP! \
-p 1+p* —=p 0 0] p?
0 —p 1+p2 —-p 0 0 p=3
= (1-p9)7" o ’
i 0 0 —-p 1 P )
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0

0

0
= 1-p97"1

p—p°
= (0'_2,,0)'.

Also,

02121_11012 = 012(1 - Pz)—l[chl - 2pC; + I -1](Pp_1app_2, ceey Py l)l

= o} (p", 0772, ., p) (05 s, 0)

= o2p?

and
-1 2 2 2 2 2
022 — 01227, 012 = 0° — 0*p* = 0*(1 — p*)

Thus we have

=~
1l

AsEBr + (Vi = AB)(0)os,p)'
2 = war(Vy = V) = o*(1 = p*) + ¢;d' Dd,
d = By—Bi(0,_,p).

Using the maximum likelihood estimates of p and o2 that are obtained using Y, we

can compute the predictor and its variance. Note that the observed portion of V
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is used only for prediction purposes and not for estimation of the parameters. One

can suggest an iterative procedure for prediction of V; utilizing V) for estimation

as well as prediction. This procedure is discussed later in this section.
Prediction of y;:

For the i** individual we have

Y; (Ai€BY Y; o

, and cov =Y, = ,
Yis (ABy) Yif of O

E

where ©; is a (p+ 1) x (p + 1) positive definite matrix, A is the i** row of A and
By is a k x 1 known vector. Using this and the formula of conditional expectation
of yis given Y, , the predictor is given by

i = (A€By) + o} (Y: - (ALB;)),
and the variance of the predictor is

7} =var(§s — ypi) = 025 — 0457 0y + cig' Dy,

where ¢; = A{(A'A)"'A;, g = By — BS o4, and D = (B! B')~.

For the autoregressive structure
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Then doing calculations in a similar way (as for V;), we get

0}2_1 = (0;—1 ) P)

o2 — 0357 lop = (1 — p?).

Using this we have

jri = (A¥By) + (0,_y,p)(Y: — (AiB))

7? = var(jpi—yp) = 0*(1 — p*) + cig' Dy

g=Bs—-B(0,_,,p)

In applications, we replace p and ¢? in the formulae by their maximum likelihood
estimates obtained using the data matrix Y. It is interesting to note here that we
have used the observation corresponding to the :** individual for both estimation
of the parameters and prediction of y;;. As in the equicorrelation case one can
construct approximate prediction intervals for yy; and also for V4;. See Naik (1990)

for details.

3.3.3 Prediction of missing values

Prediction of V; :

Here we consider the prediction of unobserved portion of a vector, when the
unobserved portion is in the middle. That is, we predict Vi, given Vi, V2, and ¥,
where V! = (V{, V!, VJ). For convenience, suppose V; is a scalar and it corresponds

to the i** position of the vector V. Rearrange the elements of V' so that V' =
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(Vo I, V;). Let E(V') = (E(Vt)aE(V{)aE(VZI)) = (AffBivAffBl’A.ffB?)’ where

Ay etc. are appropriately defined vectors or matrices. Let

V; Wi Wil Wi
Wiy Wy
vl Vi | T lwi Oy Q2 | F
w! 0
V2 wy Sl szj

The minimum mean square predictor of V; then is

£ A€ B
E(Vi/W,V,Y) = A£B; + wlQ! _
V2 AffBz

Computation of w/Q2~!. First we compute the inverse of Q. For that we use the

formula

-1

A B A'+ AT'BE"'B'A7! —A"'BE™!

B D —-E-1B'A™? E-1
where F = D — B'A™!'B (see Rao, 1973, p. 33).

We use this formula to compute

Q'11 QIZ

Q21 Q22

Ol + FE-\F' —FE-!

—E-1p E-1
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where F' = 91_11912 and F = sz — 92191‘11012.
Note that the (: — 1) x (2 — 1) matrix Q1;, the (p —:) x (p — ¢) matrix Qy,, and

the (¢ — 1) x (p — t) matrix ©; for the structure in hand are

L p p P
p 1 p pe
Q= o’
pf.—Z pi—3 1
1 p P prtt
p 1 p pri?
ng = 0’2
pp—i—l 1 )
pz pi+1 pP—l
Q2 = o? . . o = ler
p? P L. ppi
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- 2
tey PzaP,P, pza""pp ) and Wig = 1392‘

' ! 2t {—
Further, w! = (wy;,wy) = o?(p*~1, p* 72,

pt Pt p
Pt pt .
le = 0'2
pp—l pp—Z o pp-i+1
pa’
p2a/
pp—ial

Here o' = (p*™1,p'™, ..., p) and Q' = —5(p*C1 — pC2 + ).

(

2 ! 1 '
i22pd'Cy — tzpd Co + =z pa

2
[ 2,7 4 2,7 . 1 2.1
=7 p aCl - i—_—p—yp (102 -+ l—pzp a

Q97 =

2
e -1, p~-1 1 1 p—1,/
Zrp”1aCr — {rpP T Co + P e
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Here

a’Cl = (pi_l,ﬂi_z,..,,p)'

1

0

= (0,p%,0"%,...,0%,0)

0 1

10

alcz = (pi—l ) p‘_Z, 9 p)l

1
10

= (pi-z’peq +pi_3,pi'2+p£'4,...,p3+p,p2)

p
1—p?

P Lot -1 i =2 - i
= 7= l0A5e L 40) = (071, 0 4 R o 0 0+ 0%, %)

[Pza’Cl - ,0(1102 + a,']

+(pi—1 ) pi—2’ ceny P)I]

- 1 _pP2 [(0’0’0’ "',03 P(l - Pz)]
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= (07 07 0, e Oa p2)

Therefore,

Qi) =

Qa2 =

= db

00

—t+43 —tq
pP pF

p
0
pp—i-H

pi

pi—l
0,2

p?
pp—i+3
pp—i+4
p2(p—i+l)

=F'

p—t+1
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p
p?
= 0.2p2(p, P2a sy pp_i)
P
Therefore, E = Qg3 = Qi 0y = Qg — db/ and B! = Oz} + %% Ang
22

0% = z=np*C1 — pC + I,_i], s0

o*(1-p?)

(P P*, ey PPN

B ;?@%35(07 ph PP T0) = ;ﬁli_—ﬂ(pz,p + 0%y PP P P
+——02(11_p2)(p, P%y s P77
= gz(l—l_pz—)(p -00,...,0)
= %(p,O,...,O).
Thus,
p
p?
¥Q50d = (°,0,...,0) | . = ot

P
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Hence we have

p
0
B o= | | (%0,.0)
22 0?1 _p4 PV
0
‘ )
lfp, 0 .0
o1 0 0 . 0
= Qp + o2
0 0 . 0
0 0 . 0
Next,
o' 0o’
[
o o || &0 0
» . o1 0 0 . 0
FE = 922 + ;
0 0 . 0
! !
0 0 \ 0 0 0
pd' pd
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0 0 .0 0 0 0
0 0 .0 0 0 0
B 1
= -}-0—.2-
0 0 .0 0 0 0
pd' Q53 s 0 0
0 0 .0 0 0 0
0 0 .0 0 0 0
= +
0 0 0 0 0 0
p7. s
& 0 0 7 0 0
0 0 . 0
0 0 . 0
0 0 . 0
2
= 0. 0
So,
0 0 0|00 0 p
0 0 I 0 o3
FE'F' =
0 0 . 0
A 0. . .0 {00 . . .0 pH
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0 0
0 0
0 0
0 g21—pt
Thus,
-1
Q11 Q12
0l =
QZI Q22
Q!+ FE-'F' —FE™!
—E-1F E-1
00 0 ) 00 0
00 0 0 0 0
o0+ -
00 0 0 0 0
4 4
_ 0 0 FZ(1=p%) 00 72(1—p%)
00 0 00 . 0
0 0 0 00 . 0
- Q3 +
00 0 00 . 0
4 4
i 00 6-—2(;’_,,4) 00 ... U——z(;_p,)
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Finally, we need

wéQ"l = 0,2(pi-—1,pi—2,“"p2,p:p’pZ’“.’pp—i)Q—l

i+ FE'F' —FE-!

= (a':d
—E-1f E-1
5 3 3
_ -1 P P X P
= [G'Qn + (0,0,...,0, 1 —p4) - (0,0,...,0, 1 _p4) . —(1 _p4,0 ..,0)
1 p°
1y —
+d €y, + (W’O’M’O)]
p° p° p°
= [(0,0,...,0, 0,0,...,0,——) —(0,0,...,0, i =(—,0,...,
(0,0,0040, )+ (0,010, 72 = (0,0,.0, T2 = (E5,0,..,0)
0°
..., 0 —0,...
+(p,0,-., )+(1_p4,0, ,0)]
p p
= (0,...,0,——: ——,0,...,0).
( L4p2 14 p? 0 )
Thus a minimum mean square predictor of V; given Vi, V, and Y is
Vi= AfBi+ ——(Vies — A€Bi1) + —— (Vi — A6 Bin1),  (3.6)

1 + 2 1 + 2
where the vectors B;-; and B, are all appropriate part of the matrix B and V;_;

and V4 are the (i — 1)** and (¢ + 1) elements of V respectively. Also

- P 14 i-1  i- -
wiﬂ lwi = (Ov")oam:ﬁ__p—jaoa“"o)oj(p l’p 2a---,P2,P3PaP2a-~-,PP )I
ot 2
T 1=p%14p%
And
0L = o? o2 2 o?

1_p2_1_p21+p2=1+p2

So, we have the var(f/t- - Vi) as
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where d; = B; — (fzBi-1 + {2z Biv1)-

An alternative predictor of V; :

In finding 14 (Vs as well) above, we have used the observed part of the vector
V for predicting V; but ignored it for estimating various parameters involved. We
suggest an iterative prediction method in which the observed portion of V will
be used not only for prediction but also for estimation. The procedure essentially
makes use of the formulae developed in (3.6) for V; and the maximum likelihood

estimates in Theorem 3. It can be described as follows:

1. Compute V; using the formula given in (3.6) for an initial value of p, say p = 0.5.

2. Using V}, form the vector V' = (V;, W, V4) and the new data matrix

Y
}lncw =
‘"/1

3. Use Theorem 3 to evaluate £, p and o? replacing Y by Y,.,, and A by

A
Ancw =
Ay
4. Repeat steps (1)-(3) until the estimators are stabilized.
To compare the predictor V; with V; we conduct the following simulation exper-
iment.
First, we generate p = 12, normal random variable z;, j = 1,...,p with mean

zero and variance 1. Next, for p = 0.5 we find a p x p matrix I'(p) such that
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V(p) = T'(p)I"(p), where V(p) is a p x p matrix of autoregressive structure. Then
we find a p x 1 vector u = Tz, where 2z’ = (21, 2, ..., 2), and v’ = (uy,uz, ..., up).
Let & = (€0,¢1,¢2) and p; = &o + &7 + &25%, 7 = 1,2,...,p. We set y; = pj + uj,
J = 1,2,...,p to obtain a vector y' = (y1,y2,...,yp). For our simulation we take
¢ =(0,0,0).

Repeating this procedure, n = 20 times, we obtain the n X p data matrix Y
such that

Y = AEB+E, (3.7)

where A is a n x 1 vector of ones, B is a matrix of second degree polynomial terms
and rows of E are independently distributed as p-variate normal with zero means
and covariance matrix 0?V(p), V(p) having the autoregressive structure. Next, we
generate one more 1 X p vector V in the same way. We pretend that Vs, the 5t
element of V, is missing. For each simulation run (that is, for each generated set
of data), we compute V; and Vs using (3.6) and the steps (1)-(4) of the algorithm
respectively. During this process we also have j and g, the estimates of p using the
respective procedures. We repeat the whole procedure N = 2000 times and obtain
% D(Vs=Va)2, & T(%=Va)2, & £(5-p)%, & T(6—p)% & L i~pand 4 T j—p. The
above quantities respectively are the predictive mean squared errors for estimating
p for the two procedures (using formula (3.6), and using the algorithm) , and biases
for the two procedures. These quantities for the simulation are 0.6216, 0.6201,

0.0036, 0.0034, -0.0141, and -0.0123. We have run this experiment for different
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choices of n, p, and p. The results were not different from the pattern we see in
this example. It is clear that there is a slight improvement if we use the algorithm,
although the improvement is very minimal.

Since this algorithm is easy to adopt and in fact, leads to the maximum like-
lihood predictor of V; based on the unconditional likelihood ( note that 17, is the
predictor based on conditional likelihood), we recommend that this algorithm be
used in practice. Of course, for large sample (n — o0) the two predictors are

essentially the same.

3.4 Model for monotone or balanced

incomplete data
The model for incomplete data is as follows:
}/in‘ xp; = Ain‘Xmgmkaikxp‘. + ein‘xp" ) 1= ]-a 2, ey gy (38)

where g represents the number of groups in the model and each group has n;
units (not the same number in each group). Here the rows of the error matrix €;
are independent each distributed as N,(0,%;), where I; is a p; x p; matrix with
autoregressive covariance structure. We discuss estimation and prediction for this
model. Testing of hypothesis Hy : EEF = C can be done the same way as explained

in chapter 2.
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3.4.1 Estimation

We have seen in chapter 2 that for this model the ML estimate of £ is

g

veeld) = [L(BET B) QAN L (BET @ Avee).  (39)

=1

Now we consider an autoregressive covariance structure for ¥; as follows:

% = o?Vi(p) = o} (p" "), 5,k = 1,2, D i = 1, ey g (3.10)
We have
B = (@)t
7Y = (0T = (0071 = p7) T PP Cu = 20C0 + 1)

Here Cy; and C; are p; X p; matrices with the same structure as C; and C; of
section 3.2. Taking the log of likelihood function of (2.8) and substituting for |Z;|

and X! from the above equations, we get

N1 g ni 1 g 1 B
InL = —71n(27r) Y In(|Zi]7) - §Ztr2i ElF;
=1 t=1
_ N1 1 2 1 2 02
= —TIn(Zw) - §N21n(1 p°) ENllna +t1o p

g AL A
E tr(pou — 2/302{ + Ip‘)E:E,

=1
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Hence

BlnL N1 1
902 = —5—0’—2--‘}- W—Ztr(p Cl;"“"2p021.+1|)EE
= 0=

1
52 = —— V¢ i =2pCy; + I, )E'E;,
& N = ZT'PCI pCai + I;)

where Ny = S0, nipi, No = Y0 ni(pi — 1) . Let us write a1 = £, ayi, a2 =

(CkiR:), R; = E{E‘. So we can write the MLE of

g _— g —_
z:i:l Qa¢y A3 = Zi:l azsy Qg = tr

0'2 as

1
T M(1- 5 )(p "o

52 —

o 2paz + as)-

Now to get the MLE of p, we take partial derivative of InL w.r.t p.

dinL Tiandpi—1p 4
= = trC ,E E
5 TS o L rOubih +
14 p? p

52(1 — p?) Et CZ*E E 52(1 — p?)?
EtT‘EA‘{Eg
=1

= 0

= Nap £ L+ /° 502 — P az =0

(1-7?) - 52(1 — (?)? 1’*'02(1_ 2)2
=>N2/3(1—/3)& —,5a1+(l+,5)a2—;3a3=0

Ny, . . R . .
= ]'VZP(PZU'I — 2pay + a3) — pay + (1 + p*)ap — paz =0
1

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



= ﬁaNzal - 2[32N2€Lz + ﬁNzaa - ﬁN1a1 -+ Nﬂlz -+ ﬁleaz - ﬁNla;; =0
= ﬁaNza,l - ﬁ2a2(2N2 - Nl) + ﬁ(Ngaa - N1a1 - Nlag) + N1a2 =0

= [)3N2a1 - ﬁ2a2(2N2 - Nl) - [)(Nla,l <+ (N1 - Nz)as) + N1a2 =0

So we have the following theorem for the ML estimates under the incomplete (bal-
anced) data model similar to the one given by Fujikoshi et al. (1990) for balanced

data model:

THEOREM 4 The MLE’s of €, 0% and p in the model (8.8) with covariance structure

(3.1) are the solutions of the following equations:

(Iwec(é) = [i(BM"Bé) QA4 i(BJZ-" &) Alvec(Y;)

=1 t=1

1

U= g7

(P*ar — 2pay + a3)

(III)ﬁSNga,l - /32(12(2N2 - Nl) - ﬁ(N]Cll + (Nl - Ng)a;;) + Nlag = 0,

where

A g g g g
Vi=Vi(p), M1 =Y _nipi, N2 =Y ni(pi = 1),a1 = D ari,a2 = Y aa,
i=1

=1 =1 =1

g

a3 =Y asi,ak = tr(CiRi), k = 1,2,3,Ca; = I, and R; = (Yi — AilB:)'(Y; — AilB;).
=1

Note that the equation for estimating p is a cubic equation in p. Although this

equation is different from the cubic equation in Dahiya and Korwar (1980), the

ideas from there can be used to show, using Descartes’ rule of signs, that the

equation has unique root in the interval (—1,1). A proof follows.
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Proof of uniqueness of 5 :

The cubic equation is

ﬁ3N2(11 - ,52&2(2N2 - Nl) - ﬁ(N]CLl -+ (Nl - N2)CL3) + N]CLZ = 0.

Let us write this as f(p) = 0

We note that Ny > Ny, a; > 0, and a3 > 0. For a; we have the following cases:

Casel:a; >0

By Descartes’ Rule, the number of positive roots of this equation is at most 2
and the number of negative roots is at most 1, provided p; > 2 with at least one p;
greater than 2.

Case 2: a; <0

Again by Descartes’ Rule, the number of negative roots is at most 2 and the
number of positive roots is at most 1 , provided p; > 2 with at least one p; greater
than 2.

Case 3: a; =0

For this case, it can be easily shown that there is only one root in the interval
(-1,1) and it is equal to zero.

We prove for the case when a; > 0, the cubic equation f(p) = 0 has a unique
root between (-1,1). It can be similarly proved for the case when a; < 0.

Case when a; > 0:

Consider

f(=1) = =My —ay(2N; — Ny) + (May + (Ny = N;)az) + Nra,
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= (M = N2)(a1 + 2a3 + a3).

Since a; > 0 and Ny - N; > 0, f(—=1) > 0. Also f(0) = Nyaz > 0. Now

I

f(].) Ngal hd (12(2N2 - Nl) - (Nlal + (N1 - Ng)a;;) + N1a2

(Nz - N1)(al - 202 + (13)

But ((a; — 2a; + a3) > 0, (Note that 5, 0L, (€& — €56-1) > 0 gives ((a; — 2a2 +
az) > 0) , hence f(1) < 0.

Since f(—=1) > 0 and f(0) > 0, and by Descartes’ Rule there can be only one
negative root, there are no roots in the interval (-1,0). Thus if we prove that there
is a unique root in the interval (0,1), we are done. Since f(1) < 0, there is at least
one root in the interval (0,1). There are in total two positive roots and one negative
root. So there can be only one root between (0,1) since f(0) > 0 and f(1) < 0.
Thus the above cubic equation has a unique root in the interval (-1,1). This root

can be easily evaluated using simple computer programs.

3.4.2 Prediction

Prediction of y;

For the j** individual in the :** group we have

B Yij _ (AijEBi), ,

Yif; (Al;6Biy)
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1 p p* p pr:
p 1 p P p . P
}/1. Ei T fi
cov ’ = Yu= = ¢g?
Yif, Ty T2
pm pp."l p 1

Aj; is the 7 row of A; and Bis is a k x 1 known vector. Using this and the

conditional expectation of y;;, given Y;;, the predictor is given by
Jis, = (AEBig) + (051, 8)(Yyy — (Aii¢ By)')

Also,

var(fi, — yig,) = 75 = 0250 — 01,57 00 + 9D

But

U'fizi-ldﬁ = (0;;-17P)Uﬁ

= (Oli-l,p)(pmu pp‘_la '--vp),

- 0'2,02

which gives
a2i — 03T o = 0F — o%p* = (1 ~ p?)
Thus we get the variance as

#2 = 5%(1 — ) + ci;9! Dids,
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where
ci = AL(AIA)T Ay,
g = Bif— Bi(0,.1,5),

D; = (BE'B)T,

& 1 R R
i &—2(1—_—’555[;0201;' - 2pCo + I,;).
We observe that (g5, — yis;)/7i; is approximately distributed as normal with

mean zero and variance one. Hence a 100(1 — «) % prediction interval for y;s, can

be constructed using the normal distribution as:
(1, = 2as2tiss Gig; + 2af2tis) (3.11)

where §;;, and 7;; are as given above.
Prediction of V,

Let E(Viy,,,) = E(Vii, Vai) = (AipéBuri, A Bai). Also B = (By;, Bx) and

'».kxp,;

Cov(V) = L; having autoregressive structure. I, is partitioned in accordance with

the partition of V;

1 p P e
p 1 p . . pr?
Yiui or2 )
E¢= =0
0215 022
p
ppi_l p 1
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and

o1z = ("1, o772, p)
O22i = 0%, Ty = U2V§(P)p;-—1xp;—1

Following the same procedure as we did for yiy,, we get
flliUIZi = (0,‘--2#’)'

T2 — G2 8012 = (1 —p?).
Thus a conditional predictor of V;; given Vj; and Y is

Vai = Auy€Bai+ (Vi — Aig€Bri) ko
= Aip€Boi + (Vi = AiBr)(0L _p, 5)"
And also the variance of (VZ‘ - Vi) is

T, = 022i~021i21_11i012e+cjiozﬁbi<2i
= *(1 = p*) + cpud; Did,
where
eri = Aiy(AiA) AL,
di = Byu- Bri(0, -2, ),
D; = (BE'B)™.
Since (Vo — Vi)/#; is approximately distributed as N(0,1), a 100(1 — &) %
prediction interval for V;; can be constructed using the normal distribution as:
(f/zi — Zo/2Tijs Vi + Zaf2Tij ) (3.12)
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3.5 Unbalanced data model

The growth curve model for analyzing unbalanced data is :
}/in‘. xp; — Ain‘-xmémkakxpGipo"+ einixp"’i =12,...,9, (313)

where G; is the matrix of 0’s and 1’s such that if the observations iy,...,4,, are
available, then G; has 1 in the (k,i)* position for & = 1,...,p; and zeros else-
where. In this chapter, rows of error matrix €; are independent, each distributed
as N,(0,GiEG;), where T is a p x p matrix with autoregressive structure, that is,

T = o?(pl=91). 1t is easy to see that G'EG; has a Markov structure, that is,
G:EG, = 2,; = 0'2(/)“"_!"’.’!) = 02V1(P) 7jaj, = lv""pi’

where t;;, 7 = 1,...,p; are the consecutive times points where the observations on

an individual of the i** group is made. Then Vi(p) can be written as

1 p!-‘z—tu ptia —ta pt.'p.--—t.»l

ptaz—tu 1 ptaa —t2 pt.'p.- —ti2
Vilp) =

ptipi—til p“p“"tiz . |

The determinant and the inverse of this matrix are given below. Let d;; =

tig+1) — tij, and fi; = ﬁ’i_f’ j=1,...,pi— 1. Then

12| = |o*Vi(p)| = o (fufiz fipim1) ™!
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and

Vi(p) ' =V =
fa — fap® 0 oo 0
—fup® fa+ fa—1 ~—fope .o 0
0 —fizpd" fo+fa-1 . . 0
0 : : . Jipie2 + fiper =1 = fipm ptirit
0 . : 0 — fipmyphiri= fipi-1

If ti1, tiz, ..., tip are integers then Vi(p) is p.d. for —1 < p < 1, otherwise for

O0<p<l1.

3.5.1 Estimation

The log of the likelihood function is written as

g
InL = Nlln(2 ) — Z?ln(|2| EtTV 'ElE;
1=1
p.-l
= Nlln(? ) — Nlln(a En' Z In(l — p*%i) — _Zt V.-lElE;
1=1 i=1

Here Ny = T2, n;p; and E; = Y. — A;(B;. Taking the partial derivative of inL

w.r.t. 0% and setting it to zero gives the ML estimate of o? as
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where E¢ =Y, - AiéBg and M = Vi(p), é and p being the MLEs of ¢ and p
respectively. The MLE £ of ¢ will be given in the theorem that follows and the
MLE 5 of p is derived next.

Take the partial derivative of InL with respect to p, and set it to zero, to get

gn'P.Ide.,l 1 & 9 .
_2 2 ! 1 py %5;15"‘8’;‘/;’ EE; = 0. (3.14)

=1

V -]
Now to evaluate -—‘5— consider

of; 8, 1

2d;;p*% !
ap - %(1 —pzdij) -

T- 757

_1(1 _ p2d;j)—2(__1)2dijp2di;—l - = i2j2dijp2d¢j—l'

Thus the diagonal elements of aa—prl are:

( 2d p2d.1—1, 12d,‘1p2d"1_1+ ';222di2p2d‘2_1,...,

2 2dip. 2 ~1 2 2dip.—1—-1 2 ) 2dip; 11
fip.‘-22diﬂ-’"2p P~ +fip.'—12d';Pi'1p P ’fip;-IZd‘Pi‘“lp bl )

Also,
o fi; di _ f
) g
= fidip® T+ p® ,§2dijP2d"_l
N 2P2d.,
= dijp % 1f*J[l + —E]
- 1+ deU
= dl,pd., lfq[——?a]

= dip® T R+ p*).

Therefore, the off-diagonal elements of :—pVi'l are
(dnp™ = [3(14 p240), digp®7 F(14 9242, oy iy 7m0 B, (14 pP0o0)),
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Thus we see that (.f—pVi'l is a tridiagonal matrix with diagonal and off-diagonal
elements as given above. Substituting this in equation(3.14), we get that the ML

estimate of p as a solution of the equation:

g pi—1 g pi—1
& an Z 2d.; fi;p 52451 Z Z ft12(2du 241 Z(fk,a + 6ch+1
=1 j=1

—2d;;p% 1 £i2(1 + p2%) Z(ékjékjﬂ)] =0.

k=1
Then we have the following theorem for ML estimators of £, 0% and p.
THEOREM 5 The MLE’s of £, 0* and p in the unbalanced model with autoregressive

covariance structure are the solutions of the following equations:

(1) vec(€) = [Y(BG.E7 GLB) @A) Y (BG.E @ Aljvec(Y)

=1 =1

1 g - Al
IN6*= ——— 5 trV. 'ElE;
( ) 7 -:]—1 2y ;
pi—1 g pi-1
(I11) 22”* Z 2d;; fi;p 2451 Z Z f‘12(2dq %51 Z EkJ + 5k:+1
t=1 J=1 =1 j=1
—2d;p% 7 (1 + pP%4) Z(ékjékjﬂ)] =0,
k=1
where Et" o, = (&) k=1,2,..,n; § = 1,2,...,p;, is the matriz of residuals for the
th group.

Note, unlike in Theorems 3 and 4, that the third equation (/1) for estimating
p involves 2. However, this does not create any problem for numerically evaluating
the ML estimates using the three equations (I) — (III). We have successfully

implemented this algorithm using a FORTRAN program. This program is provided
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in section 3.6 (PROGRAM 1). We fitted the plasma data under Markov structure.

The results are p = 0.71, 5% = 0.47 and

4.45 —0.52 0.045
5.01 -0.53 0.04
Using these ML estimates one can suggest a test statistic of the form (2.12) to test

the hypothesis Hy : E(F = C.

3.5.2 Prediction

Prediction of y;

For the jt* individual in the i** group we have

! !
Y; (Ai;6BG:) Y;; T o4
E = cov =Xy =
. I 3 l . I .
Yify (Ai;¢BGiy) Yis; Ogi O2fi
1 pt.‘z-tu ptea—tu L. ptip"+l_ti1 \
pti2—til 1 ptia—iiz L. ptip.'+1—ti2
= 0'2
ptip“—til pt.‘p,-—t.'z
ptip"-f-l_tl'l ptl'p"-{»-l_tt'z . L. pt-'p.~+1—tep,~ 1
Since
a{fi —_ 0.2(piip,-+1-t.‘1,pt-‘p‘-“—t-‘z, - ptip“-{-l_tipi—l,ptip"-{-l_tip"),
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o = 0%, and
( fa — fapt 0 .o 0
~fap™ fa+ fa—1 —fap®e 0 . 0
0 — fizp™ fo+fa—-1 00 0
o= ;15
0 : : 0 foic2t frimi =1 —fip1pPei=
0 . . 0 —fipi—1p¥ri- fipim1
we have

03Tt = (faplrtrTH = fy pta plipcti =t
—filpd“pt"’i‘“_t“ + filp‘ip.'““ﬂ + fizp‘imﬂ—tiz — ptip;ﬂ—t.‘z _ fizpdﬂpfip'--f-l—ti:!,
—fi2pdi2ptim+l-¢i2 + fizptipﬁt—t.‘z + fisp!ip.’-i-l—tiz _ ptip.‘+1—'t{2 _ fiapt(p;+1—ti3,
ey _fip.'—lpd"p""lpt"”"“_t"P-’“ + fip‘_lpt""+1—t"")

= (f“p‘ip.'ﬂ"il - f,'lpt""'+"'t‘2+“2"il’
_f':lptip.'+l—ti1+ti2—tu + fupt""‘“_m + fizptip"+1"'t|'2 _ pt;,,',ﬂ—z,-z _ fizpt‘3“‘ti2+tip.‘+l—ti3,
ey —fip‘._lp‘ip.'—l“ipa—1+‘ipe+l"‘ipe—l -+ fim_lp‘imﬂ—‘ipa)

= (0,0,..., fipim1[pUPi+1THR [1 — plipits ~timi-1]])

= (0,0, ..., fipim1 [p%Pi[1 — phipitdini=1]])

pdipa

T e LT

pd‘Pi

= (0,0,___ dim‘*‘d"ﬂe-l])

= O\ =gl = ofetin))
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Thus a predictor of y;, based on conditional expectation of y;f, given Y is

Jis;, = (ALEBGy) +o%T7 Yy — (ALEBG:))
pipi

= (ALBGy) + (0, P

pim1 1—:;7,17,,‘,_—1[1 — phrtdin])(Y;; — (AL€BG:))

The variance of Ji5, — yiy; is

var(Jig; = vif,) = 75 = 02gi — 03 X7 0 g + g1 D;di

But
dip;
! ~1 JR— (0/ _p__L_[ — dip'-+d£p‘-—1])a-2( tip;4+1—ti1 tipi+1—ti2
Tpizi Ofi = ’l—Pzd‘m-l p P i ’
. ptipwl"tt’p;—l , p‘ipﬁl‘t"m )'
dip;
2 p dip;+dip; =11 ptip;+1 —tip;
— [ R A— 1 — P Pi Py Py
1- Pzd‘9i~1 [ p ]P
2dip.:
_ 0,2 p P [1 — pdl'p‘-‘{"dip‘—l}
1 - pzd"x"i"l
Hence
A2diip;
A2 a2 14 ¢ Adip. +dip; —1 ATD. A
A Ul = vers U AR R A

cj = Aj(AIA)TA;

Ad;?‘. 5 .
gi = BG;} - BGi(O:%—U __1 _pﬁZd,-p—‘—l []_ — pdtp;+dtp.‘—1])l

D; = (BG:E'GiB) .

Prediction of V;

Let E(V, ) = E(Vu,Vg;) = (AiffBGu,A;ffBGzi). AlSO ngxp‘, = (Gh‘,Gzi)

1xp;

and Cov(V) = G.LG; where T has autoregressive structure. As before G{XG; has
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a Markov structure. The predictor of V;; based on the conditional expectation of

Vui given Wj; and Y is given by

Vo = AiféBGm' + (Wi — AiféBGu)Eﬁl,-Umi-

Following the steps similar to that for prediction of y.y,, we get a predictor of

Va; and variance of (f/m — Vi) as follows:

. . 5% ) ) '
Vaii = AiBGai + (Vi — Aig€ BGri)(0p, 2 I‘:%;—:)ZST_T[I — phrthin-i])

A2dip;
A2 _ a2 prm
T, = O (1 - l_——_ﬁ‘_;[

cri = Aip(AiA) Al

1 — plimtdin=t] 4 cpd! Did;

5%ip;

d; = BGy — BGu(0! P

pi—2> 1 - ﬁ2dip¢—1 [1 - ﬁd\'p."*'dip.'—l])

D; = (BGS'GB)Y ™.

3.5.3 Prediction of missing values

As in the cases of balanced and monotone data, it is possible to develop a
formula for predicting the missing value in the present case also. In the following,
we derive a formula for predicting V;, based on the conditional expectation.

Prediction of V.. As in the previous cases, for convenience, suppose V; is a
scalar and it corresponds to the it* position (that is, the i** element) of the vector
V. Again for easy presentation we suppress the suffix (i) for the group. Also let
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BG) = By and BG, = B;. Re-arrange the elements of V so that V' = (V,, V{, V}).
Let E(V') = (E(V)),E(W}),E(Vy)) = (AglB;, AséB1, AjéB;), where Ay etc. are
appropriately defined vectors or matrices. We similarly partition the covariance

matrix of V as

‘/,' Wi Wit Wi
Wii Wy
cov 1/1 - Wi Q”_ le =
w0
‘/2 L wai Q21 ng
The minimum mean square predictor of V; then is
!’
Vi AffBl
E(Vi/Vi, V2, Y) = AgBi + w7 _
& AffBz

Computation of w/Q~!. First we compute the inverse of . For that we use the

formula

-1

A B A"' + AT1BET'B'A"! —A"'BE-!

B D —-E-1B'A™} E-1
where E = D — B'A™B (see Rao, 1973, p. 33).

We use this formula to compute

Q-1 Qi e

QZI QZ2
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Note that the i—1x¢—1 matrix Qy, the p—i x p—1 matrix Qy;, and the i — 1 xp—1

matrix Q2 for Marko

le = 0’2

Further,

wi = (wi

i (i

v structure are

1 ptz-h pta—h pti-x-tl
t2—t1 ta—t timy—t
p 1 pa 2 ph 1-t2
2
timy—t timy—t —1—
ph 1=t pY 1—t2 pt. 1-13 1
1 p!.‘+2—ti+1 p!;+3—t-+1 ptp—t.'+x
pt-‘+2-—t-'+1 1 pti+a—t-+2 ptp-tu,z
)
tp—t; tp—t —t;
pp i+1 p p—lit2 ptp 1+3 1
tiv1 =11 tig2—t1 tp—t
p (4 p 4 p P 1
tig1—t2 tis2—t2 tp=t
p ' p (€3 p p=t2
— Q/
— ¥e21-
pt.'+1-t.‘-1 p5i+2—ti-1 ptp—ti-x
yWiz) =
ti—t2 ti=ti=2 ti—=ti—1 tig1 =t tig2—t; tp—1t;
P yeeea P s P P ‘ap‘+ Yyenp? ')'
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With some algebra it can be shown that

A = (00,0, 270 =) 0= )

. 1 _ ﬁz(d:—l-f—dl) 4 1 — f)z(dl—l+’lu) Ul

0)

and

27471 (L= g 4 P (1 = pPh)

roy-1., —
wiQ Wwi=a 1 — pz(dJ—H'dJ)

Thus the predictor of V; given Vy, V5, and Y is given by

Adl—l ‘2d.
A,’ z p (1 - /’ ) ’ -
Vi= /1f£Bi + 1_—/}2M:Tm(‘t'"' - "11’51}‘—‘)

~f ~2d
Pl =
T‘_‘m( wer — AEBi)

with the estimated variance

22 ~2d, 22d, | ~2(dyo1+dy)
A2 a [1—{7 ]-—/) +/) ] ’-,,..
T = =7 = s + cpd' Dd.
where
" Adi—a 1 — h2d, ~d, 1 _ A2dy
(l = Bi - [/)'_' ( /) ) + /) ( p )[}H-l]

I — paldici+d) =TT p2dimrtdi)

3.6 Computer programs
PROGRAM 1

integer n,p,nl,n2,pl,p2,g,k,npl,np2 kg
parameter (pl=7,p2=6,nl=13,n2=20)

parameter (n=20,p=16,g=2.k=3.kg=6.
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c npl=91.np2=120)
real rho.rhat.sigma.rhol.trl.tr2
dimension u(n,p),yl(nl.pl),y2(n2,p2).al(nl,g),a2(n2.g)
dimension t1(p1,1).t2(p2,1),b1(k,pl),b2(k,p2),sumi(k * g,k * g)
dimension sum2(k * g,1),alt(g,nl).a2t(g,n2),blt(pl.k)
dimension b2t(p2.k),aal(g,g),aa2(g,g),sumli(k * gk * g)
dimension bvil(k,pl),bvi2(k,p2),bvibl(k.k),bvib2(k.k)
dimension sz11(k * g,k * g),s2z12(k * g,k * g),s221(k “ g.nl * pl)
dimension s222(k = g,n2 * p2),vecyi(nl * pl,1).veev2(n2 = p2,1)
dimension sz31(k * g,1),sz32(k * g,1),veczhat(k ™ g.1)
dimension zhat(g,k),resl(pl,pl),res2(p2,p2)
dimension alz(nl,k),azbl(nl,pl),el(nl,pl),elt(pl,nl)
dimension a2z(n2,k),azb2(n2,p2),e2(n2.p2),e2t(p2,n2)
dimension ft11(pl-1,1),ft12(p2-1.1),vil(pl,p1),vi2(p2,p2)

common /first/ evl(pl-1.1),ev2(pl-1.1),ev3(p2-1.1).ev-i(p2-1.1)
common /seend/ id1{pl-1,1),1d2(p2-1.1)

¢ external f
rho=0.5
do i=1I,n
read(1, * )(u(i,j),j=1,p)

end do

do i=1,nl
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do j=1.6
y1(i,j)=u(i,j)
end do
y1(1.7)=n(1,8)

end do

do i=1,n2

y2(1,1)=u(i.9)
v2(1,2)=u(i.10)
v2(i.3)=u(i.l1)
y2(i,1)=u(i,13)
v2(1,9)=u(i.l1)
v2(1,6)=u(i,16)

end do

¢ Creating ai matrices
call zer(nl,g,al)
call zer(n2.g,a2)
do i=1,nl
al(i,1)=1.0

end do

do i=1,n2
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end do

doi=1,5
t1(i,1)=i
end do
t1(6,1)=7.0

t1(7.1)=11.0

do i=1.3
t2(i.1)=i
end do
t2(4.1)=5.0
t2(5,1)=7.0

t2(6,1)=11.0

do i=1,pl-1
d1(i,1)=t1(i+1,1)-t1(i,1)
end do

do i=1,p2-1
id2(i,1)=t2(i+1,1)-t2(i,1)

end do

¢ Creating bi matrices
do j=1,pl
bI(1,j)=1.0
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bI(2)=t1(j.1)
bI(3.j)=t1(j,1) = =2

end do

do j=1.p2
h2(1,j)=1.0
b2(2,j)=t2(j,1)
b2(3.)=t2(j,1) * * 2

end do

call xp(al.nl.g,alt)
call xp(a2.n2,g,a2t)
call xp(b1,k.pl,blt)
call xp(b2,k.p2,b2t)
call xxp(al,nl,g,aal)

call xxp(a2,n2,g,aa2)

print * ."Beginning do loop’

1000 continue
call vin(pl,rho,idl,ft11,vil)
call vin(p2,rho,id2,ft12,vi2)
call mm(k,pl,bl,vil,pl,bvil)
call mm(k,pl,bvil,blt,k,bvibl)

call mm(k,p2,b2,vi2,p2,bvi2)
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call mm(k,p2,bvi2,b2t.k.bvibh2)
call kr(k.k,bvibl,g,g,aal.sz11)
call kr(k,k,bvib2.g,g,aa2.5212)
call kr(k.pl.bvil.g,nl,alt.sz21)

call kr(k,p2,bvi2.g,n2.a2t.5222)

SV]
D]
SV
<
[}
le]
(P
I~
~—

call vec(nl,pl,yl,vecyl) call vec(n2.p2,y2.
call mm(kg,npl.sz2l.veevl.l s231)

call mm(kg,np2.s222,vecy2.1.5232)

¢ Creating zhat
do i=1.kg
do j=1.kg
suml(i,j)=szl1(i,))+s212(i.j)
end do
end do
do i=1.kg
sum?2(i,1)=s231(i,1)+s232(i.1)
end do
call linrg(kg,suml kg,sumli.kg)
call mm{kg,kg,sumli,sum?2.1,veczhat)
ki=1

do i=1k
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do j=1.g
zhat(j,i)=veczhat(ki,1)
ki=ki+1

end do

end do

print * The estimates: zhat’
doi=l.g

write (6. ™ )(zhat(i.j),j=1.k)

end do

call mm(nl.g,al.zhat ,k,alz)
call mm(nl.k,alz,bl,pl,azbl)
do i=1.nl

do j=1,pl
el(ij)=y1(ij)-azbl(i,j)

end do

end do

call mm(n2.g,a2,zhat k,a2z)
call mm(n2.k,a2z,b2,p2,azh?2)
do i=1,n2

do j=1,p2

(‘2(17.]):)’2(1’.] )-a&bZ(l._])

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



end do

end do

do j=1.pl-1

summ?2=0.0

summ3=0.0

do i=1.nl

summ2=summ?2+el(i,j) * * 24+el(ij+1) = * 2
summ3=summi3+el(ij) ™ el(ij+1)

end do

evl(j,])=summ?2

ev2(j,1)=summs3

end do

do j=1,p2-1

summd=0.0

summH=(.0

do i=1,n2

summ4d=summd+e2(ij) © * 24e2(i,j+1) * * 2
summdb=summj+e2(i,)) * e2(i,j+1)

end do

evd(j,1)=summ4

ev4(j,l)=summ5
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end do

call xp(el.nl,pl,elt)

call mm(pl.nl,elt.el.pl,resl)

call trab(pl,vil.resl,trl)

call xp(e2,n2.p2,e2t)

call mm(p2,n2.e2t,c2,p2.,res2)

call trab(p2.vi2.res2.tr2)
sigma=(tri+tr2)/(nl = pl+n2 * p2)

print * sigma="sigmna

rhat=rho

call rhohat(sigma,rho)
comp=abs(rhat-rho)

if (comp.ge.10e-5) go to 1000
print * ‘rhat=",rhat

stop

end
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¢ Subroutines start from here
¢ Creating rohat
subroutine rhohat(sig,rr)
integer itmax.info,nrt,ier
real f.eps.eta.r,rr.err.err2.rguess
external f
common sigl
sigl=sig
err=1.0e-5
err2=1.0e-5
eps=1.0e-5
eta=1.0e-2
itmax=100
nrt=1
rguess=rr
call zreal(f,crr,err2.eps.cta,nrt.itmax,rguess.r,info)
rr=r
print * Jr="r
return

end

function {(r)
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real r,sumnl.sigl,sumn2,sumn3,sumn4.sumn3,sumné
common sigl

parameter (pl=7,p2=6,n1=13,n2=20)

common /first/ ev1(6,1),ev2(6,1),ev3(5.1),evd(5.1)
common /secnd/ id1(6,1),id2(5,1)

sumnl=0.0

sumn2=0.0

sumn3=0.0

sumn4=0.0

sumn5=0.0

sumn6=0.0

do j=1,pl-1
sumnl=sumnl+2.0 * idi(j,1) * (1.0/(L.-r * * (2 * id1(j,1)))) *
c(r**(2*idl(,1)-1))

end do

do j=1,p2-1
sumn2=sumn2+2.0 * id2(j,1) * (1.0/(1.-r * * (2 * id2(j,1)))) *
c (r* > (2*id2(j,1)-1))
end do
do j=1,pl-1
sumn3=sumn3+(ev1(j,1) * ((1.0/(Ll.-r * * (2 * id1(j,1)))) * *2) *
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¢ (2.0 *id1(j,1) * (r = * (2 = id1(j,1)-1)))

end do

do j=1,pl-1

sumnd=sumn5+(ev2(j,1) = ((1.0/(1.-r = * (2 < id1(j,1)))) = = 2) =
¢ (2.0 = id1(G,1) * (¢ * = (id1(j,1)-1)) * (145 = = (2 % id1(},1))))

end do

do j=1,p2-1
sumnd=sumnd+(ev3(j,1) = ((1.0/(1.-r = > (2 *1d2(j,1)))) = = 2) -
c (2.0 = id2(j,1)) = (¢ = ™ (2 ™ id2(j,1)-1)))

end do

do j=1.p2-1

sumn6=sumn6+(ev4(j,1) * ((1.0/(L.-r = * (2 * id2(j,1)))) * * 2) ~
c (2.0 *id2(j,1)) * (r * * (id2(j,1)-1)) * (T4r * * (2 * id2(j,1))))

end do

f=sigl * (nl * sumnl+n2 * sumn2)-(sumn3-sumnj-+sumn4-sumn6)

return

end

¢ Multiplication xs=x * s

subroutine mm(n,ip,x,s,iq,xs)
dimension x(n,ip),s(ip,iq),xs(n,iq)
do i=1,n
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do k=l.iq

sum=().0

do j=l.ip
sum=sum+x(i,j) ™ s(j,k)
end do

xs{i,k)=sum

end do

end do

return

end

¢ pp is transpose of x
subroutine xp(x,n,ip,pp)
dimension x(n,ip),pp(ip,n)
doi=l.n
do j=l.ip
pp(j,1)=x(i,})
end do
end do
return

end

¢ s is transpose(x) * x
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subroutine xxp(x.n.ip,s)
dimension x(n,ip),s(ip,ip)
do i=l.ip

do j=1.ip

sum=0.0

do k=1.n
sum=sum+x(k,i) * x(k,j)
end do

s(1.))=sumn

s(J,1)=sum

end do

end do

return

end

¢ Kronecker product
subroutine kr(m,l,a,p,q,b,c)
integer m,l,p,q

dimension a(m,1),b(p,q).c(m * p,l * q)

do i=1,m
do j=1,1
do ik=1,p
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do jk=1.q

c{(i-1) = pik,(j-1) * qik)=a(ij) * b(ik,jk)
end do

end do

end do

end do

return

end

¢ Creating inverse matrix
subroutine vin(m,x,id,f,vi)
integer m
real x
dimension vi(m,m),id(m-1,1),f(m-1,1)
external zer
do i=1.m-1
f(i,1)=1.0/(1.0-x = * (2 * id(j,1)))
end do
call zer(m,m,vi)
do i=2,m-1
vi(i,i)=f(i-1,1)+f(i,1)-1.0

vi(ii-1)=-1.0 * f(i-1,1) * x * * id(i-1,1)
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vi(i,i+1)=-1.0 * f(i,1) * x * *1d(i.1)

end do

vi(1,1)=f(1,1)

vi(m,m)=f(m-1,1)

vi(1,2)=-1.0 * {(1,1) * x * = id(1,1)
vi(lm,m-1)=-1.0 * {(m-1.1) * x * * id(m-1,1)
return

end

¢ Creating a m by m matrix of zcroes
subroutine zer(m,l,z)
integer m,l
real z(m,l)
do i=1.m
do j=1.
2(1,J)=0.0
end do
end do
return

end

¢ Creating subroutine for vec operation
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subroutine vec(m,l,a,b)
integer m,]

dimension a(m,l),b(m * I.1)
do j=1l

do i=1l.m

b((3-1) * m+i,1)=a(i.j)
end do

end do

return

end

¢ Creating trace(a * b)
subroutine trab(m,a.b,tr)
real tr
integer m

dimension a{m,m),b(m.m)

sum=0.0
do i=1,m
do j=1,m

sum=sum-+a(i,j) * b(j,i)
end do

end do
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tr=sum
return

end
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Chapter 4

Non-Linear Growth Curves

4.1 Introduction

We have considered the problems of fitting the polynomial curves to the growth
data in the previous two chapters. The polynomial model can provide useful pre-
dictive information and may be the best approach if the growth information has
been collected over a limited range of growth cycle. However, in general, the pa-
rameters of such models may have unsatisfactory biological interpretations. Ilence,
in practical problems, nonlinear functions are used to fit the growth data.

The problem of fitting nonlinear functions to growth data has been considered
by many in the literature. One of the first models is by Gompertz (1825), followed
by Verhulst (1845), von Bertalanffy (1957), and Richards (1959). In fact, the
functions considered by these authors are recognized by their names, except the

logistic function introduced by Verhulst.
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A nonlinear growth curve model can be written in the form

y = f(z,0)+e¢

f(.’l:l,.’llz, ...,xk,01,02, vy 9;,) + €,

where y is the observed response variable, f is a specified nonlinear function,
Ty, Z2,..., Tk are predictor variables and 6,,0,,...,0, are the unknown parameters.

We give the forms of some of the popular nonlinear functions in section 4.3. For
more details and other interpretations, see Ratkowsky (1983) and Seber and Wild
(1989). Among these curves, the von Bertalanffy growth curve has been widely used
in fisheries science. Kimura (1980) considered the statistical analysis of this curve
using the likelihood method and illustrated the analysis on a fisheries growth data.
In the next section, we present this important data set in Table 4.1 and utilize this
in the later sections to illustrate our methods. The analysis done by Kimura (1980)
has been adopted using simple SAS codes by Lakkis and Jones (1992). These codes
can be easily modified to fit any of the nonlinear models. For example, we provide
these codes for Richards curve at the end of this chapter.

We note that the sample sizes for different age groups, in the data set of Table
4.1 are different. In section 4.4, we present the analysis (using SAS codes) by
taking the sample sizes for different ages being different into consideration. In
section 4.5, we consider a more general model, where the fish are assumed to have
been randomly selected from a population. This amounts to using a random effects
term in the model.
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Finally, in section 4.6, we consider a nonlinear growth curve in a multivariate
setup. Assuming certain popular covariance structures for the covariance matrix of
the error vector, we show how the ML estimates of the parameters of the covariance

matrix can be computed using SAS programs.

4.2 Fish data set

The Pacific hake, Merluccius productus, is a common gadid fish that ranges from

the gulf of California to the gulf of Alaska. Dark (1975) collected data on Pacific
hake, off California, Oregon, and Washington during 1965-69, and studied the age
and growth of these fish. Biological data were collected from both commercial
fishery and aboard research vessels.

The specimens were first dissected to determine the sex of a fish. Then they were
measured from snout to the fork of the tail to determine the length. An Otolith
was removed for age determination. The specimens were also weighed to determine
the weight. The number of fish caught for study each year were different. Further,
the number of fish in each age group were very different. The average body lengths
at various ages (with the corresponding sample sizes) for male and female hakes
taken off California, Oregon, and Washington coast are given in Table 4.1. For
more details about these data and for other considerations see Dark (1975). For a

statistical analysis of these data see Kimura (1980) and Lakkis and Jones (1992).
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Table 4.1: Average length at various ages for male and female Pacific hake taken

off California, Oregon, and Washington during 1965-69 (adopted from Dark 1975).

Female Male
Age Sample Mean length Sample Mean length
(years) size (cm) size (cm)
1.0 385 15.40 385 15.40
2.0 36 28.03 28 26.93
3.3 17 41.18 13 42.23
4.3 135 46.20 83 44.59
5.3 750 48.23 628 47.93
6.3 1073 50.26 1134 49.67
7.3 1459 51.82 1761 50.87
8.3 626 54.27 432 52.30
9.3 199 56.98 93 54.77
10.3 97 58.93 21 56.43
11.3 44 59.00 8 55.88
12.3 11 60.91 - -
13.3 6 61.83 -
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4.3 Different nonlinear curves

For many types of growth data, the growth curve is an S-shaped or is of what is
called Sigmoidal pattern. This is because, the current growth rate is proportional
to the current size and the remaining growth. The four curves which we are going to
discuss are most popular in the literature. These are, Logistic curve, von Bertalanffy

curve, Gompertz curve, and the Richards curve.

Logistic Curve: With z denoting time and f denoting the size,

«

1+ Bexp(—Kz)’

f(z) = (4.1)

Here « is the limiting size and K is the constant of proportionality. This curve can
be used to describe growth in the size of a population or an organ or the biochemical

nature of a certain growth processes.

von Bertalanffy curve: The function is of the form

f(z) = lo(l - ezp(-K(z = 7)), (4.2)
where [, is the asymptotic size, K acts as a scale parameter on z thus governing

the rate of growth, and 4 is the point of inflection. This curve is used extensively

in fisheries research.

Gompertz curve: The function is of the form

f(e) = aezp(—ezp(-K(z - 7)), (4.3)
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where o, K, and v have the same meaning as above. The Gompertz curve has the
property that any power of f again is a Gompertz curve. The Gompertz curve is
used for population studies and in the growth model for the heart of a chicken.

Richards curve: Richards curve is the most general of Sigmoidal types of curves.

It has the form

f(z) = all = (6 ~ L)ezp(~ K (z — 7))]7%,6 £ 1, (4.4)
where « is the final size, the point of inflection is at the time point z = v, K is a
scale parameter on z, and 6 is a measure for degree of asymmetry to the growth
curve. [f § < 1, then one has to put the additional restriction, (1 — é§)ezp(K~) < 1,
to ensure that 0 < f < «@. All the previous three curves are special cases of the
Richards curve. For example, § = 2 gives the logistic curve, § = 0 gives the von
Bertalanffy curve, and the curve obtained by taking the limit as § — 1, is the
Gompertz curve.
The data we come across in this area generally are average growth of a particular
characteristic like, the length measured at different ages (the time factor) for male

and female fishes (the groups). A model for fitting these data can be written as

¥i = ,U;(OQ,K.',’Y;',&,{ZI) +e,0=1,2,..,9, (45)

where y; is a m; x 1 vector of average lengths for the :** group, z is a m; x 1 vector of

ages, pu(o, Ki,7i,8;, ) is a nonlinear function and the error vector ¢; is distributed
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as Ny, (0,0°1). 1 s, Koy 8is2) = el = (8 — Veap(=Ki(z — %)%, & # 1
(Richards curve), then letting

g B

Slar, .o Kiy oy Koy Y1500 %, 6140, 84) = ZZ(yik—oz,-[l—(&-—-l)

i=1 k=1
1
ezp(—Ki(zk — %)) 75 )2,
we can write the likelihood function as :

1
L= ———exp(—S(a,..,aq K1,.., Kgy 715, %9 615 8g)/20%),
(270?)?

where N = $7_, m;. For a fixed o7, maximizing L with respect to the parameters
i Kiyvi, 6 , t = 1,2,...,g is same as minimizing S with respect to the corre-
sponding parameters. Hence, it follows that the maximum likelihood estimators of
o, Kiy v, 6,1 = 1,2, ..., g are the least squares estimators. Next, taking the first
derivative of the log likelihood function with respect to o2, setting it to zero and

solving the equation for o2, we get the MLE of ¢2. That is,

S(ala -0y g,y Kh “’Kg371a s Vg 617 ) 59)

bl

InL = —%ln(27m2) -

20?
OlnL 0=
do2
the maximum likelihood of o? is given by
0"2 = j—v—S(al, ey a_q, Kla .oy Kg, Ty ’Yg, 61, ey Sg), (46)
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where 6; is the maximum likelihood (equivalently least equares) estimator of the
parameter 6;.

In section 4.7, we give a SAS program (PROGRAM 1) for calculating the MLE
(4.6) for the fish data (Table 4.1). The results of this program are: &; = 56.5,
& = 66.2, Ky = 0.38, K; = 0.14, 6, = —0.3, 6, = —1.28, v; = —0.3659 and

Yo = -5.0.

4.4 von Bertalanffy model with unequal

sample sizes under incomplete data

Consider the von Bertalanffy model in the following form:

Yik = ;L(loog,K,;,tgg,zk) + Eik,k = 1,2, ceey My, Z = 1,2, ey g, (47)

with p(loois Kiytoi, 2k) = leoi(l — ezp(—Ki(zk — toi)) and the errors €; having
N(0,0?) distribution. Here g represents the number of groups.

In fisheries, the data generally are such that, for every age group, the sample
size is different. Thus it is essential that the sample sizes be part of the model and
its analysis. To accommodate the sample size we suggest the following model:

Let y; = (yi1, ¥i2, .., Yim;)', and the model be written as

Yi = B(loois Kiy toi, ) + €, (4.8)
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where y; is a m; x 1 data vector, ¢; is a m; X 1 vector of errors, and the m; x 1

vector

)

,u(looia Ki7 to:, -751)

,uf(looi’ Ki, tOi, $2)

/Jf(loov." Kia tOiv z) =

=

—
3

S—
[l

,u'(looia KiatOiazm,;) /
such that p(lei, Kiytoi, 2k) = looi(1 — ezp(—Ki(zk — to;))) . We assume that ¢; is

distributed as Ny, (0,0%V;), where

L0 0. 0
4
0o L 0. 0
ni2
Vi= )
0 0 . ..0 L

n: being the sample size in the itk group at age z. Let z; = V,'—;_‘l ;. Then
cov(z;) = m-%(azw)w% =co?]

and
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pu(looi') Kt'a tOia .’131)
(n,-l) 0 0 . . 0

0 Jinz) 0 . L0

/L(looia Ki7 tOiv 2:2)

0 0 00 0 y/(nim)

lu'(looia Kia tOia xm) )
\/Enil)#(looi’ K, toi, 1)

\/EniZ);u‘(looia I{i’ tUia 1?2)

= | = v; (say)

\/En'ip( )ﬂ(lw:, Ki) tOi) zm.‘)

Thus the transformed model can be written as

Zik = \/ngkloo,‘(l - e.’l:p(—Ki(:Ek - to;‘))) + ik k = 1,2, veey TN, i = 1,2, s @ (49)

where zj; is transformed data and 7 are distributed independently as N(0,0?).

This model now is similar to (4.7). Letting

S = S(lwl,..,lwg,Kh..,Kg,tm,..,tog)

= 33 (e oo (1 — exp(—Ki(zi — ta)))’

=1 k=1
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The likelihood function can be written as:

1
L = memp(—S(lwl, .oy loog, Kl, ..,Kg, tm, .oy tog)/20’2)

where N = Y7_; m;. The ML estimators of l, K;,toi, for 1 = 1,2,...,g are the
least squares estimators minimizing (4.10). And the maximum likelihood estimator

of 0% is given by

ol = Ns(loola --1loogaK1a~7 Kg’tﬂla --atOg)a (410)

where .1, .., Zoog, K, ..,f{g,fgl, .., 1o, are the estimates obtained by nonlinear least
squares minimization of (4.10).

Once we have the ML estimators for all the parameters we can perform the likeli-
hood ratio tests as given in Kimura (1980).

Example 4.4.1:

For the fish data in Table 4.1, we use PROC NLIN (NLIN procedure of SAS
software) to fit a von Bertalanffy model with different sample sizes. From Table 4.1
we see that the data on the average lengths at different ages for male and female
fishes are given. The sample sizes are also provided at different ages, for both, the
male and the female fishes. The procedure PROC NLIN requires that the initial
estimates of the parameters loo1, loo2, K1, K2, to1, 02 be provided. For that, we first
plot, for each group (male and female), the length as a function of age, and get the
initial estimates for loo1, looz, t01, t02 by Vvisually examining the plot (see Lakkis and
Jones (1992)). The intial estimates for K and K, are obtained by substituting the
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corresponding initial estimates for l.,t; , the average ¥; for y;x and the average
z for z in (4.7). The SAS program is provided in PROGRAM 2 of section 4.7.
The results of this program are [y = 54.17, [z = 58.23, K1 = 0.4, K, = 0.32,

tor = 0.17 and £y, = 0.03.

4.5 von Bertalanffy model under

equicorrelation structure

The motivation for adopting the model (4.11) shown below, comes from the
special way in which the fish data presented in Table 4.1 are collected. It is clear
that we don’t have data for the same fish at different occasions. Rather, at every
occasion, certain number of fish are collected from a pool and they are classified as
belonging to a certain age group. Further, the male and female fishes are separated
to form two groups. The number of fish caught at different occasions is different
and this leads to unequal sample sizes. Although the fish on which the data are
collected at different occasions are different, they share a common habitat. This
leads us to believe that the following model would be more appropriate to analyze

the fish data of Table 4.1. Consider the model,

Yo = ,u'(looiaKiatOiax) + € (411)

such that y; is a m; x 1 data vector (a vector of lengths), the k** element of the
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mean vector f(leoi, Ki,toi, Tk) S looi(1l — ezp(— Ki(zk — to:i))). The error vector ¢; is

assumed to be distributed as N, (0,0%V;), where

1 [ P
ni1 Vrilniz Vniini
PR 1 L
NP niz NI
V‘- =
s [
VAT /rim T2

The matrix V; has equicorrelation structure except for the different sample sizes.

We rewrite the model (4.11) by transforming the data so that the covariance matrix

of the error vector is 0%[(1 — p)I;m; + pJm,;]. For that let

L0 0
ng}
0 X 0
n2
D; =
0 0

Now we make the transformation 2z

var(z;)

1

Nim

E(z)

The model for transformed data is

and W; =

P

Ci~ %y‘-. Then

f'ui

Cim1(0*V))Ci™T = C 3 (a*CiiWiCit
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Zim;x1 =Vi+77£m;x1?i= 1’27-",97 (412)

where v; = C’i";’y,- and the error vector 7; is distributed as N, (0, o?W;).

Glasbey (1979) considered the following model for a single group,
ye = fi(0) + &, t =1,2,...,m, (4.13)

where f;() is a nonlinear growth function depending on certain unknown param-
eters §. Assuming the first order autoregressive process for the errors, he has
provided an algorithm for computing the maximum likelihood estimates of the pa-
rameters involved. Our problem is similar, but with the equicorrelated errors.
Suppose we consider the model (4.13) with the observations y; made at time
points t = t1,3,..., t,m (unequally spaced time points). Then the errors (e;,, €, ..., €,,)
will have a Markov covariance structure. Estimating the parameters under this
structure has been discussed in chapter 3, when the polynomial models were fit for
growths. For the model (4.13) with Markov structure, we provide a SAS macro
program for fitting a nonlinear growth curve in PROGRAM 3 (on fish data). This
program includes Glasbey (1979)’s model as a particular case. The results of this
program are p = —0.045, iwl = 52, le°2 = 53, R} = 0.73, f(g = (.65, {01 = 0.52 and

f0g = 0.49.
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4.6 Analysis of nonlinear models for
multivariate data
So far in this chapter, we have considered the model of the form
yij = (0, zi5) + €5, 7 =1,2,...,mi, i = 1,2, .., ¢ (4.14)

where g is the number of groups, m; is the number of subjects in the i** group, p
is a certain nonlinear function, and the vector (e;, ..., €im,)" possibly has a covari-
ance structure, like equicorrelation, autoregressive, or a Markov structure. In the
following, we consider a model] to accommodate multivariate observations on each
subject or individual.

General multivariate nonlinear models under the mixed effects model setup have
been considered in the literature and algorithms to compute the MLEs have been
provided by many authors. For example, see the works of Lindstrom and Bates
(1990), Palmer, Phillips, and Smith (1991), Hirst, Boyle, Zerbe and Wilkening
(1991), Frey and Muller (1992), and Vonesh and Carter (1992). Our aim in this
section however is to provide easy computational tools using easily available soft-
ware, rather than giving another general model. For our discussion we consider the

model of the form

Yijk = fbij + Eijk,

1=1,2,..,0;7=1,2,..,ni k= 1,2,...,pij.
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Defining yi; = (¥ij1y--» ¥ijpi,)’ @nd €5 = (€j1, .-, €ijp;,)’, We can rewrite the model as
Yijpijx1 = Hi T €ijp w1 (4.15)

with ¢; distributed as N(0,0%V;;(p)) and g, is the appropriate vector of means.
We provide SAS macro programs to compute the ML estimates of the parameters
under the model p; = looi(l — ezp(—Ki(Zjx — to:))) in PROGRAM 4 for plasma
data of Table 2.1. The results of this program are p = 0.81, 6% = 2.29, loor = 66.95,

[0z = 300.25, K; = 0.003, K, = 017.79, {0y = —9.1 and fgp = —11.

4.7 Computer programs

PROGRAM 1
/ * The following code fits Richards model * /
data fish;
input length d1 d2 age;
cards;
proc nlin data=fish maxiter=100;
parms a;=55 K;=0.276 v,=0 §;=0 a;=60 K;=0.23 v,=0 6,=0;

model length = a;d1{(1 + (6; ~ 1)ezp(—K1(age — 71)))]((5—11_—1—))-4—

ayd2[(1 + (8, — 1)ezp(—K2(age — ’72)))]((621_1));
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PROGRAM 2
options ls=78 ps=45 nodate nonumber;
title 'Nonlinear Growth Curve Analysis under variance sigsq/n’;
data fish;
input length size d1 d2 age@@;
sqsize=sqrt(size);tlength=sqsize*length;
lines;
15.40385101.026.9328102.042.2313103.344.5983104.347.63628105.3
49.67 1134 106.350.87 1761 107.352.30432108.354.7793109.356432110
10.3 55.88 8 1 011.3
15.40 38501 1.028.0336012.041.1817013.346.2013501 4.348.2375001
5.3
50.26 1073 01 6.3 51.82 1459 01 7.3 54.27 626 0 1 8.3 56.98 1990 1 9.3 58.93 97 0
1

10.3 59.00 44 01 11.360.91 1101 12.3 61.836 0 1 13.3;

/* The following code fits von Bertalanffy model under variance sigma-square/n*/

proc nlin data=fish maxiter=400;
parms 11=55 k1=.276 t1=0 12=60 k2=.23 t2=0;

model tlength=11*d1*sqsize*(1-exp(-k1*(age-t1)))+12*d2*sgsize*(1-exp(-k2*(age-t2)));
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output out=new p=plength r=rlength;

run;

proc iml;

use new;

read all varrlength into res;
sum=0.0;

do 1=1 to 24;
sum=sum-res|[i]**2;

end;

print sum;

sigsq=sum/24;

print sigsq;
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PROGRAM 3
In this program, we are fitting von Bertalanffy curve to fish data with Markov

covariance structure.

/* The following macro estimates the value of rho iteratively till it’s value stabi-

lizes.*/
%macro rhohatl;

proc iml;

use &ldata;

/* Giving the initial value of rho as 0.5*/
rho=J(24,1,0.5);

varnames={rho };

create nn from rho(|colname = varnamesl);
append from rho;

close nn;

%ttt: data nnl;

merge nn &ldata;

/* In the this proc step, we are transforming the data set ¥ to z so that z has
covariance structure c2]. And also we are creating rhat so that at every iteration,

we can use it to compare it with the current value of rho.*/
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proc iml;
use nnl;
read all var {tlength,rho } into aa;
rhol=aall,2];

print rhol;

/*pl=11 and p2=13*/
dist1=J(10,1,1.0);

dist1[2,1]=1.3;

gl=J(11,11,0.0);

gl[1,1]=1.0;

%do i=2 %to 11;

g1[&i,&i-1]=-(rhol **(dist1(&i-1,1]))/sqrt(1-thol**(2*dist1[&i-1,1]));
g1{&i,&i]=1.0/sqrt(1-rhol**(2*dist1[&i-1,1]));

%end;

dist2=J(12,1,1.0);

dist2[2,1)=1.3;

£2=1J(13,13,0.0);

g2(1,1]=1.0;

g2[&i,&i1-1]=-(rhol**(dist2[&i-1,1]))/sqrt(1-rhol **(2*dist2[&i-1,1]));

g2[&i,&i]=1.0/sqrt(1-rhol**(2*dist2[&i-1,1]));
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zl=gl*aa[l:11,1];
z2=g2%aa[12:24,1];

z=zl || 22;

rhat=J(24,1,1);

rhat = rhol*rhat;

za=z || rhat;
varnames={ z,rhat };
create dd from za(|colname = varnames|});

append from za;

close dd;

data last;

merge dd &ldata nn;

/*We are using proc nlin to fit the von Bertalanffy curve to Z*/

proc nlin data=last maxiter=400;
parms 11=55 k1=.276 t1=0 12=60 k2=.23 t2=0;
model z=11*d1*sqsize*(agel*(1-exp(-k1*(age-t1)))
+age2*(-rho/sqrt(1-rho**2))*(1-exp(-k1*((age-1)-t1)))
+-age2*(1.0/sqrt(1-rho**2))*(1-exp(-k1*(age-t1)))
+aged*(-rho**1.3/sqrt(1-rho**(2*1.3)))*(1-exp(-k1*((age-1.3)-t1)))
+age3*(1.0/sqrt(1-rho**(2*1.3)))*(1-exp(-k1*(age-t1)))
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+aged* (-tho/sqrt(1-tho**2))* (1-exp(-k1*((age-1)-t1)))
+aged*(1.0/sqrt(1-tho**2))*(1-exp(-k1*(age-t1)))
+age5*(-tho/sqrt(1-tho**2))*(1-exp(-k1*((age-1)-t1)))
+age5*(1.0/sqrt(1-tho**2))*(1-exp(-k1*(age-t1)))
+age6*(-rho/sqrt(1-tho**2))*(1-exp(-k1*((age-1)-t1)))
+age6*(1.0/sqrt(1-tho**2))*(1-exp(-k1*(age-t1)))
+ageT*(-tho/sqrt(1-tho**2))* (1-exp(-k1*((age-1)-t1)))
+ageT*(1.0/sqrt(1-rho**2))* (1-exp(-k1*(age-t1)))
+age8*(-tho/sqrt(1-tho**2))*(1-exp(-k1*((age-1)-t1)))
+age8*(1.0/sqrt(1-rho**2))*(1-exp(-k1*(age-t1)))

+age9* (-rho/sqrt(1-tho**2))* (1-exp(-k1*((age-1)-t1)))
+age9*(1.0/sqrt(1-tho**2))*(1-exp(-k1*(age-t1)))
+agel0*(-tho/sqrt(1-rho**2))*(1-exp(-k1*((age-1)-t1)))
+agel0*(1.0/sqrt(1-tho**2))* (1-exp(-k1*(age-t1)))
+agel1*(-tho/sqrt(1-tho**2))*(1-exp(-k2*((age-1)-t2)))
+agel1*(1.0/sqrt(1-tho**2))* (1-exp(-k2* (age-t2))))
+12*d2*sqsize* (agel *(1-exp(-k2* (age-t2)))
+age2*(-rho/sqrt(1-tho**2) )* (1-exp(-k2* ((age-1)-t2)))
+age2*(1.0/sqrt(1-rho**2))*(1-exp(-k2* (age-t2)))
+age3*(-tho**1.3/sqrt(1-tho**(2*1.3)))* (1-exp(-k2*((age-1.3)-2)))

+aged*(1.0/sqrt(1-tho**(2*1.3)))*(1-exp(-k2*(age-t2)))
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+aged*(-tho/sqrt(1-tho**2))*(1-exp(-k2*((age-1)-t2)))
+aged*(1.0/sqrt(1-tho**2))* (1-exp(-k2* (age-t2)))
+age5*(-tho/sqrt(1-tho**2))*(1-exp(-k2*((age-1)-t2)))
+age5*(1.0/sqrt(1-tho**2))* (1-exp(-k2* (age-t2)))
+age6*(-rho/sqrt(1-tho**2))*(1-exp(-k2*((age-1)-t2)))
+age6*(1.0/sqrt(1-rho**2))*(1-exp(-k2* (age-t2)))
+ageT*(-tho/sqrt(1-tho**2))*(1-exp(-k2* ((age-1)-t2)))
+ageT*(1.0/sqrt(1-tho**2))* (1-exp(-k2* (age-t2)))
+age8*(-tho/sqrt(1-tho**2))*(1-exp(-k2*((age-1)-t2)))
+age8*(1.0/sqrt(1-rho**2))*(1-exp(-k2* (age-t2)))
+age9*(-tho/sqrt(1-tho**2))*(1-exp(-k2*((age-1)-t2)))
+age9*(1.0/sqrt(1-rho**2))*(1-exp(-k2* (age-t2)))
+agel0*(-tho/sqrt(1-rtho**2))* (1-exp(-k2*((age-1)-t2)))
+agel0%(1.0/sqrt(1-tho**2))* (1-exp(-k2* (age-t2)))
+agel 1*(-tho/sqrt(1-tho**2))* (1-exp(-k2*((age-1)-t2)))
+agel1%(1.0/sqrt(1-tho**2))* (1-exp(-k2* (age-2)))
+agel2*(-tho/sqrt(1-Tho**2))*(1-exp(-k2*((age-1)-t2)))
+agel2%(1.0/sqrt(1-tho**2))*(1-exp(-k2* (age-t2)))
+agel3*(-tho/sqrt(1-tho**2))*(1-exp(-k2* ((age-1)-t2)))
+agel3*(1.0/sqrt(1-tho**2))*(1-exp(-k2* (age-12))));

output out=newdata p=pz r=rz;
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run;

data newdd;
merge newdata nn;

run;

/* The data set newdd has the residuals after fitting the von Bertalanffy curve on
Z. In the next proc iml, we are transforming the residuals so that now they have

the Markov structure*/

proc iml;
use newdd;
read all var {rho,rz } into aa;
rhol=aa[l,1];
run;
dist1=J(10,1,1.0);

dist1{2,1]=1.3;

gl=J(11,11,0.0);

gl[1,1]=1.0;

%do i=2 %to 11;

gl[&i,&i-1)=-(thol**(dist1[&i-1,1]))/sqrt(1-thol ¥*(2*dist1[&i-1,1]));
g1[&i,&i]=1.0/sqrt(1-rhol **(2*dist1[&i-1,1]));

%end;
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dist2=J(12,1,1.0);

dist2(2,1]=1.3;

£2=J(13,13,0.0);

g2[1,1]=1.0;

%do i=2 %to 13;
g2[&i,&i-1]=-(rhol**(dist2[&i-1,1])) /sqrt(1-rhol **(2*dist2[&i-1,1]));
g2[&i1,&i]=1.0/sqrt(1-rhol**(2*dist2[&i-1,1]));
%end;

ryl=gl*aa[l:11,2];

ry2=g2*aa[12:24,2];

ry=ryl//ry2;

varnames={ res };

create ndat from ry(|colname = varnames});
append from ry;

close ndat;

data ndata;

merge ndat &ldata;

/* We are using proc mixed to find the ML estimate of rho.*/

proc mixed data=ndata method=ml;
class group;
model res= /s;
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repeated/type=sp(pow)(age) subject=group r;
MAKE ’CovParms’ OUT=final;

run;

/* Data set final has the new value of rho*/

proc iml;

use final;

read all var {est } into est;

rh=est(1,1];

rho=J(24,1,1);

rho=rh*rho;

varnames={rho };

create nn from rho(|colname = varnames|);
append from rho;

close nn;

data thel(keep=rhat);

set last;

/* Here we are comparing the new value of p which is in rho to the previous value
of rho which is in rhat. So if the difference between the two is stored in compos.*/
data tlast;

merge thel nn;
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comp=abs(rhat-rho);

proc iml;

use tlast;

read all var{comp } into comp;
compos=comp/1,1];

print compos;

%if compos > 0.01 %then %goto ttt;

%mend rhohatl;

/* Main program starts here*/

options 1s=78 ps=45 nodate nonumber mprint mlogic symbolgen;

title "Nonlinear Growth Curve Analysis under Markov covariance structure’;

data fisht;

input length size d1 d2 age@@;

sqsize=sqrt(size);tlength=sqsize*length;

lines;

15.40 38510 1.0 26.93 28 1 02.042.2313103.344.5983104.347.63628105.3
49.67 11341 06.3 50.87 1761 10 7.3 52.304321 08.354.7793109.356.432110

10.3 55.88 8 1 0 11.3

15.40 38501 1.0 28.03 36 01 2.0 41.18 170 1 3.3 46.20 1350 1 4.3 48.23 750 0 1

5.3
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50.26 1073 01 6.3 51.82 1459 01 7.3 54.276260 1 8.3 56.98 19901 9.3 58.93 97 0
1

10.3 59.00440111.36091110112.361.83601 13.3;

data fish;

set fisht;

if age=1.0 then agel=1,;
else agel=0;

if age=2.0 then age2=1;
else age2=0;,

if age=3.3 then age3=1;
else age3=0;

if age=4.3 then aged=1;
else age4=0;

if age=>5.3 then aged=1,;
else age5=0;

if age=6.3 then age6=1;
else age6=0;

if age="7.3 then age7=1,;
else age7=0;

if age=8.3 then age8=1;

else age8=0;
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if age=9.3 then age9=1;
else age9=0;

if age=10.3 then agel0=1;
else agel0=0;

if age=11.3 then agell=1;
else agel1=0;

if age=12.3 then agel2=1;
else agel2=0;

if age=13.3 then agel3=1;
else agel3=0;

if d1=1 then group=1,

else group=2;

%let ldata=fish; %rhohatl;
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PROGRAM 4

This program is for a data set with two groups, each group having n; observa-
tions at p; occasions, ¢ = 1,2,...,9. Here we are fitting a von Bertalanffy curve with
autoregressive covariance structure. We have used the plasma data.
/* Given a initial value of rho(p), we estimate the mean. Using this estimate of
mean, we find the ML estimate of rho. With this new value of rho, we again find
th ML estimate of mean. We do this iteratively till the value of rho stabilizes. All

of this is done inside this macro.*/

%macro rhohat;

proc iml;

use &ldata,;

/* Giving the initial value of rho as -0.5%/
rho=J(198,1,-0.5);

varnames={rho};

create nn from rho(|colname = varnames|);
append from rho;

close nn;

%ttt: data nnl;
data nnl;

merge nn &ldata;

» .y
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/* In the this proc step, we are transforming the data set Y to z so that z has
covariance structure c2/. And also we are creating fl1 and 22 to be used to
transform the the mean of Y. We are creating rhat so that at every iteration, we

can use it to compare it with the current value of rho.*/

proc iml;

use nnl;

read all var{y,rho} into aa;
rhol=aa[l,2];

print rhol;

£=1(6,6,0.0);

g[1,1]=1.0;

%do i=2 %to 6;
g(&i,&i]=1.0/(sqrt(1.0-rho1**2));
gl&i,&i-1]= - rhol/(sqrt(1.0-rthol**2));

%end;

f1=1.0/(sqrt(1.0-rthol**2));
£2=(- rhol)/(sqrt(1.0-thol**2));
f11=J(198,1,1);

f11=(f1*f11);

£22=J(198,1,1);

£22=(f2*22);
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rhat=J(198,1,1);

rhat = rhol*rhat;

tm1=I(33);

tm2=tml @ g;

z= tm2 * aal,1];

za=z || f11 || 22 || rhat;

varnames={ z,{11,f22,rhat };

create dd from za(|colname = varnames| );

append from za;

close dd;

data last;

merge dd &ldata;

/*We are using proc nlin to fit the von Bertalanffy curve to Z*/

proc nlin data=last maxiter=400;

parms 11=>5.0 k1=0 tl1=0 12=6.7 k2=0 t12=0;

model z =gl *(t1*11*(1-exp(-k1*(time-t11)))+f11*t2*11*(1-exp(-k1*(time-tl1)))+
f22*t2*11*(1-exp(-k1*((time-1)-t11))) + f11*t3*11*(1-exp(-k1*(time-ti1)))+
f22*t3*11*(1-exp(-k1*((time-1)-t11))) + f11*t4*11*(1-exp(-k1*(time-t11)))+
£22*t4*11*(1-exp(-k1*((time-1)-t11))) + f11*t5*11*(1-exp(-k1*(time-t11)))+

{22*t5*%11*(1-exp(-k1*((time-1)-t11))) + f11*t6*11*(1-exp(-k1*(time-tl1)))+
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f22*t6*11*(1-exp(-k1*((time-1)-tl1)))) +
g2*(t1*12*(1-exp(-k2*(time-t12)))+f11*t2*12*(1-exp(-k2*(time-t12)) )+
f22*t2*12*(1-exp(-k2*((time-1)-t12))) + f11*t3*12*(1-exp(-k2*(time-t12)))+
f22*t3*12*(1-exp(-k2*((time-1)-t12))) + f11*t4*12*(1-exp(-k2*(time-t12)))+
f22*t4*12* (1-exp(-k2*((time-1)-t12))) + f11*t5*12*(1-exp(-k2*(time-t12)))+
22*t5%12* (1-exp(-k2*((time-1)-t12))) + f11*t6*12*(1-exp(-k2*(time-t12)))+
f22*t6*12* (1-exp(-k2*((time-1)-t12))));

output out=newdata p=pz r=rz;

run;

data newdd;
merge newdata nn;

run;

/* The data set newdd has the residuals after fitting the von Bertalanffy curve on
Z. In the next proc iml, we are transforming the residuals so that now they have

the autoregressive covariance structure.*/

proc iml;
use newdd;
read all var{rho,rz} into aa;

rhol=aall,1];

g=J(6,6,0.0);
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g[1,1]=1.0;

%odo i=2 %to 6;
g[&i,&i])=1.0/(sqrt(1.0-thol**2));
gl&i,&i-1]= - rhol/(sqrt(1.0-thol**2));
%end;

tm1=I(33);

tm2=tml @ g;

ry=inv(tm2) * aa[,2];

varnames={ res };

create ndat from ry(|colname = varnames|);
append from ry;

close ndat;

data ndata;

merge ndat &ldata;

/* We are using proc mixed to find the ML estimate of rho.*/

proc mixed data=ndata method=ml;
class group subj;

model res= group/s;
repeated/type=AR(1) subject=subj r;
MAKE ’CovParms’ OUT=final;

run;
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/* Data set final has the new value of rho*/

proc iml;

use final;

read all var{est} into est;

rh=est[1,1];

rho=J(198,1,1);

rho=rh*rho;

varnames={rho};

create nn from rho(|colname = varnames);
append from rho;

close nn;

data thel(keep=rhat);

set last;

/* Here we are comparing the new value of p which is in rho to the previous value
of rho which is in rhat. So if the difference between the two is stored in compos.*/
data tlast;

merge thel nn;

comp=abs(rhat-rho);

proc iml;
use tlast;
read all var{comp } into comp;
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compos=comp(l,1];

print compos;

%if compos > 0.01 %then %goto ttt;

%mend rhohat;

/* Main program starts here.*/
options linesize=70 mprint mlogic symbolgen;
title "Fitting plasma data using proc mixed with von Bertalanffy curve and
autoregressive covariance structure’;
data plasma;
infile ’plasma.data’;
input subjl y1 y2 y3 y4 y5 y6 y7 y8 subj2 y9 y10 y11 y12 y13 y14 y15 y16;
data newl(keep=subjl y1-y8) new2(keep=subj2 y9-y16);
set plasma,;
data newll;
set newl;
y=yl;time=1;t1=1;t2=0;t3=0;t4=0;t5=0;t6=0;0utput;
y=y2;time=2;t1=0;t2=1;t3=0;t4=0;t5=0;t6=0;0utput;
y=y3;time=3;t1=0;t2=0;t3=1;t4=0;t5=0;t6=0;0utput;
y=y4:time=4;t1=0;t2=0;t3=0;t4=1;t5=0;t6=0;0utput;
y=y5;time=>5;t1=0;t2=0;t3=0;t4=0;t5=1;t6=0;0utput;
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y=y6;time=6;t1=0;t2=0;t3=0;t4=0;t5=0;t6=1;output;
y=y7;time=7;t1=0;t2=0;t3=0;t4=0;t5=0;t6=0;0ut put;
y=y8;time=8;t1=0;t2=0;t3=0;t4=0;t5=0;t6=0;0ut put;

drop yl-y8;

data new22;

set new2;
y=y9;time=1;t1=1;t2=0;t3=0;t4=0;t5=0;t6=0;0utput;
y=yl0;time=2;t1=0;t2=1;t3=0;t4=0;t5=0;t6=0;0utput;
y=yl1l;time=3;t1=0;t2=0;t3=1;t4=0;t5=0;t6=0;0utput;
y=y12;time=4;t1=0;t2=0;t3=0;t4=1;t5=0;t6=0;0utput;
y=yl13;time=>5;t1=0;t2=0;t3=0;t4=0;t5=1;t6=0;0utput;
y=y1l4;time=6;t1=0;t2=0;t3=0;t4=0;t5=0;t6=1;0output;
y=y15;time="7;t1=0;t2=0;t3=0;t4=0;t5=0;t6=0;0utput;
y=y16;time=8;t1=0;t2=0;t3=0;t4=0;t5=0;t6=0;0utput,

drop y9-y16;

data bll;

set newl1(in=innewl rename=(subjl=subj))
new22(rename=(subj2=subj));

if innew1 then group=1;

else group=2;

if subj="." then delete;
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if time="7" then delete;

if time="8’ then delete;

data b;

set bll;

if group=1 then gl=1;
else g1=0;

if group=2 then g2=1;

else g2=0;

%let ldata=Db;

%rhohat;

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

(1] Anderson. T. W. (1957). Maximum likelihood estimators for a multivariate
normal distribution when some observations arc missing, J. Amer. Statist.
Assoc., 52, 200-203.

[2] Anderson. T. W. (1984). Introduction to Multivarialc Statistical Analysis. John
Wiley, New vork.

[3] Anderson. A. IH., Jensen, E. B. and Schou, (5. (1981). Two way analysis of
variance with correlated crrors. Inter. Stat. Revicw, 19. 153-167.

[1] Azzalini, A. (1987). Growth curve analysis for patterned covariance matrices,
New Perspectives in Applied Statistics | (eds. M. L. Puri et al.), 63-73.

[5] Bhargava. R. P. (1975). Some one-sample hypothesis testing problems when
there is a monotone sample from a multivariate normal population, Ann. Inst.
Statist. Math., 27, 327-339.

[6] Brubacher. S. R. and Tunnicliffe-Wilson, G. (1976). Interpolating time scries
with application to the estimation of holiday effects on the electricity demand.,
Applied Statistics, 25, 107-116.

[7] Chi. E. M. and Reinsel, G. C. (1989). Models for longitudinal data with random
effects and AR(1) errors, J. Amer. Statist. Assoc., 84, 452-459.

(8] Crowder, M. J. and Hand, D. J. (1990). Analysis of Repeated Measures. Chap-
man and llall, London.

[9] Dahiya, R. C. and Korwar. R. M. (1980). Maximum likelihood estimators for
a bivariate normal distribution with missing data, Ann. Statist., 8, 687-692.

[10] Dark, T. A. (1975). Age and growth of Pacific lake, Merluccius Productus,
Fishery Bulletin, 73, 336-355.

(11] Fearn, T. (1975). A bayesian approach to growth curves, Biometrika, 62, 89-

100.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[12] Frey, C. M. and Muller. K. E. (1992). Analysis methods for nonlinear models
with componnd symmetric covariance. Commun. Statist. -Thcory Meth.. 21,
1163-1182.

[13] Fujikoshi. Y.. Kanda, T. and Tanimura, N. (1990). The growth curve model
with an autoregressive covariance structure. Ann. Inst. Statist. Math.. 12, 533-
H42.

[14] Glasbey, C. A. (1979). Correlated residuals in non-lincar regression applied to
growth data, Appl. Statist.. 28. 251-259.

[15] Gompertz. B. (1825). On the nature of the function expressive of the law of
human mortality, and on a new mode of determining the value of life con-
tingencies. Philosophical Transactions of the Royal Socicty of London, 115,
513-585.

[16] Grizzle. J. E. and Allen, 1. M. (1969). Analysis ol growth and dose response
curves, Biometrics, 25, 113-421.

[17] Hirst. K., Boyle, D. W., Zerbe. Gi. O. and Wilkening, R. B. (1991). On non-
linear random effects models for repeated measurements. Commun. Statist. -

Simula., 20, 163-478.

[18] Khatri, C. G. (1966). A note on a MANOVA model applied to problems in
growth curve, Ann. Inst. Statist. Math., 18, 75-86.

[19] Kimura, D. K. (1980). Likelihood mecthods for the von Bertalanffy growth
curves, /. S. Fishery Bulletin, 77, 765-776.

[20] Kleinbaum, D. G. (1973). A generalization of the growth curve model which
allows missing data, .J. Multivariate Analysis, 3, 117-124.

[21] Kshirsagar. A. M. and Smith. W. B. (1995). Growth Curves. Marcel Dekker.
New York.

[22] Lakkis, H. D. and Jones, C. M. (1992). Comparing von Bertalanffy growth
curves with SAS using the likelihood methods developed by Kimura, Preprint.

[23] Lee, J. C. (1988). Prediction and estimation of growth curves with special
covariance structures, J. Amer. Statist. Assoc., 83, -132-440.

[24] Lee, J. C. (1991). Tests and model selection for the general growth curve model,
Biometrics, 47, 147-159.

[25] Lee, J. C. and Geisser, S. (1972). Growth curve prediction. Sankhya, ser. A,
34, 393-412.

(26] Lee, J. C. and Geisser, S. (1975). Applications of growth curve prediction,
Sankhya, ser. A, 37, 239-256.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[27] Lindstrom, M. J. and Bates, I). M. (1990). Nonlincar mixed effects models for
repeated measures data, Biometrics, 46, 673-687.

[28] Naik, D. N. (1990). Prediction intervals for growth curves, J. App. Stat., 17.
245-254.

[29] Nummi. T. (1995). Fstimation and Prediction in Growth Curve Models with
Applications. University of Tampere, Tampere.

[30] Pantula, S. G. and Pollock, K. H. (1985). Nested analysis of variance with
autocorrelated errors, Biomelrics, 41, 909-920.

[31] Palmer, M. J., Phillips, B. F. and Smith, G. T. (1991). Application of nonlinear
models with random coefficients to growth data. Biometrics. 17, 623-635.

[32] Pena, D. and Tiao, G. C. (1991). A note on likelihood estimation of missing
values in time-series, Amer. Slatistician. 15, 212-213.

[33] Potthoff. R. F. and Roy, S. N. (1964). A generalized multivariate analysis of
variance model useful especially for growth curve problems. Biometrika, 51.

313-326.

[34] Rao. C. R. (1965). The theory of lcast squares when the parameters are stochas-
tic and its application to the analysis of growth curves. Biometrika, 52, 447-158.

[35] Rao, C. R. (1966). Covariance adjustment and related problems in multivariate
analysis, Multivariate Analysis, 1, 87-103.

[36] Rao, C. R. (1967). Least squarcs theory using an estimated dispersion matrix
and its application to measurement of signals, Proc. Fifth Berkeley Symp. on
Math. Statist. Prob., Vol. 1, 355-372, Univ. of California Press, Berkeley.

[37] Rao. C. R. (1973). Linear Statistical Infercnce and Its Applications. 2nd ed.
John Wiley, New York.

[38] Rao, C. R. (1975). Simultaneous estimation of parameters in different linear
models and applications to biometric problems, Biometrics, 31, 545-554.

[39] Rao, C. R. (1977). Prediction of future observations with special reference to
linear models, Multivariate Analysis, 4, 193-208.

[10] Rao, C. R. (1984). Prediction of future observations in polynomial growth
curve models, Proceedings of the Indian Statistical Institute Golden Jubilee
International Conference on Statistics: Applications and New Directions, pp.
512-520, Indian Statistical Institute, Calcutta.

[41] Rao, C. R. (1987). Prediction of future observations in growth curve models,
Statistical Science, 2, 134-471.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(12] Ratkowsky, D. A. (1983). Nonlinear Regression Modcling. Marcel Dekker, New
‘ork.

[43] Reinsel, G. (1982). Multivariate repeated measurement or growth curve models
with multivariate random eflects covariance structure. J. Amer. Statist. Assoc..
77, 190-195.

[44] Recinsel, G. (1984). Estimation and prediction in a multivariate random effects
generalized lincar model, J. Amer. Statist. Assoc.. 79, 406-414.

[45] Richards. I. J. (1959). A flexible growth function for emperical use, J. Ezp.
Botany, 10. 290-300.

[46] Seber, G. A. F. and Wild, C. J. (1989). Nonlincar Regression. John Wiley,
New York.

[17] Siotani. M.. Hayakawa. T. and Fujikoshi. Y. (1983). Modern Multivariate
Statistical Analysis: A Graduate Course and Handbook. American Sciences
Press, Columbus, Ohio.

[48] Timmn, N. H. (1980). Multivariate analysis of variance of repeated measure-
ments, [landbook of Statistics. ¢d. P. R. Krishnaiah. vol. 1, 41-87, North-
Holland, New York.

[19] Verhulst, P. F. (1845). Recherches mathematiques sur la loi d’accroissement

de la population, Nouvelles Memoires Academic Royale, Science et Lettres,
Bruzelles, Series 2, 18, 1-38.

[50] Viana, M. A. G. (1994). Combined maximum likelihood estimates for the
equicorrelation coefficient, Biometrics, 50, 813-820.

[51] von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. Quart.
Rev. Biol.. 32, 217-231.

[52] von Rosen D. (1991). The growth curve model: A review, comm. statist.
theory. meth., 20, 2791-2822.

[53] Vonesh, E. F. and Carter, R. L. (1992). Mixed-Effects Nonlincar Regression
for Unbalanced Repecated Measures, Biometrics, 48, 1-17.

[54] Zerbe, G. 0. (1979). Randomization analysis of the completely randomized
design extended to growth and response curves, J. Amer. Statist. Assoc., T4,
215-221.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Biographical Statement

Place of Birth

Vijayawada. India

Date of Birth

January 04. 1967

Lducation

B.Sc. in Statistics. 1988.
Banaras Hindu University, Varanasi, India

M.Sc. in Statistics, 1990,
Indian Institute of Technology, Kanpur, India

Employment

Department of Mathematics and Statistics, Old Dominion University,
1991-1995, Teaching Assistant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	Analysis of Growth Curves Under Some Special Covariance Structures
	Recommended Citation

	tmp.1559931044.pdf.jZURt

