
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computational Modeling & Simulation
Engineering Theses & Dissertations

Computational Modeling & Simulation
Engineering

Spring 2019

A Framework for Test & Evaluation of Autonomous Systems A Framework for Test & Evaluation of Autonomous Systems

Along the Virtuality-Reality Spectrum Along the Virtuality-Reality Spectrum

Nathan D. Gonda
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

 Part of the Computer Sciences Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Gonda, Nathan D.. "A Framework for Test & Evaluation of Autonomous Systems Along the Virtuality-
Reality Spectrum" (2019). Master of Science (MS), Thesis, Computational Modeling & Simulation
Engineering, Old Dominion University, DOI: 10.25777/y0gb-fg06
https://digitalcommons.odu.edu/msve_etds/47

This Thesis is brought to you for free and open access by the Computational Modeling & Simulation Engineering at
ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation Engineering
Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please
contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/47?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A FRAMEWORK FOR TEST & EVALUATION OF AUTONOMOUS SYSTEMS

ALONG THE VIRTUALITY-REALITY SPECTRUM

by

Nathan D. Gonda

B.S. May 2017, Old Dominion University

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY

April 2019

Approved by:

James F. Leathrum Jr. (Director)

Yuzhong Shen (Member)

Yiannis E. Papelis (Member)

ABSTRACT

A FRAMEWORK FOR TEST & EVALUATION OF AUTONOMOUS SYSTEMS ALONG

THE VIRTUALITY-REALITY SPECTRUM

Nathan D. Gonda

Old Dominion University, 2019

Director: Dr. James F. Leathrum Jr.

Test & Evaluation of autonomous vehicles presents a challenge as the vehicles may have

emergent behavior and it is frequently difficult to ascertain the reason for software decisions.

Current Test & Evaluation approaches for autonomous systems place the vehicles in various

operating scenarios to observe their behavior. However, this introduces dependencies between

design and development lifecycle of the autonomous software and physical vehicle hardware.

Simulation-based testing can alleviate the necessity to have physical hardware; however, it can

be costly when transitioning the autonomous software to and from a simulation testing

environment. The objective of this thesis is to develop a reusable framework for testing

autonomous software such that testing can be conducted at various levels of mixed reality

provided the framework components are sufficient to support data required by the autonomous

software. The paper describes the design of the software framework and explores its application

through use cases.

iii

Copyright, 2019, by Nathan D. Gonda, All Rights Reserved.

iv

This thesis is dedicated to my family, friends, and colleagues whom I love and respect.

v

ACKNOWLEDGMENTS

There are many people who have contributed to the successful completion of this

dissertation. I want to thank Dr. James Leathrum for serving as my major advisor. His patience

and guidance on my research deserve special recognition. I also want to extend many thanks to

my committee members, Dr. Yuzhong Shen and Dr. Yiannis Papelis, for taking time to

contribute their knowledge and edit this manuscript. My fellow lab members also deserve

special recognition for their long hours and hard work in helping to conduct the research and

development presented in this thesis. In particular, undergraduate Thomas Laverghetta

contributed immensely in developing the test examples presented in this thesis. This experience

was a very rewarding one, and I believe that the project greatly benefited from the group effort.

vi

TABLE OF CONTENTS

 Page

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

Chapter

1. INTRODUCTION ...1

2. BACKGROUND ...5

2.1 A GENERAL MODEL FOR AN AUTONOMOUS SYSTEM5

2.2 THE VIRTUALITY-REALITY SPECTRUM ...7

2.3 THE PUBLISH-SUBSCRIBE PATTERN ...10

2.4 UTILIZING ROS FOR FRAMEWORK COMMUNICATION12

2.5 UTILIZING ARDUINO FOR HARDWARE COMMUNICATION14

3. AUTONOMOUS SYSTEM FRAMEWORK DESIGN ..16

3.1 FRAMEWORK PURPOSE ..16

3.2 FRAMEWORK REQUIREMENTS ...17

3.4 BASE EXAMPLE ...18

3.3 GENERAL APPROACH ..19

3.5 FRAMEWORK DECOMPOSITION ...22

3.6 NODE COMMUNICATION ..29

3.7 MAPPING TO A PUBLISH-SUBSCRIBE PATTERN ...31

3.8 DEVELOPER ROLES ..33

4. FRAMEWORK SOFTWARE DESIGN ...36

4.1 SOFTWARE REQUIREMENTS..36

4.2 DESIGN APPROACH ..38

4.3 IMPLEMENTATION OF THE API ...41

4.4 IMPLEMENTATION USING ROS ...48

5. FRAMEWORK DEMONSTRATION ..54

5.1 RANGE FINDING DEMONSTRATION ..54

5.2 OBSTACLE AVOIDANCE DEMONSTRATION ..72

6. CONCLUSION ..88

7. REFERENCES ..90

8. VITA ..92

vii

LIST OF TABLES

Table Page

1. API Functions ... 39

2. Combiner and Splitter Abstract Functions .. 47

3. Details of shape components used in the Virtual Environment .. 61

4. Sensor Model Analysis Results .. 62

5. Signal values used for controlling Wheel Motors... 76

6. Virtual Rover Avatar Parameters .. 77

7. Experiment Parameters for Obstacle Avoidance .. 86

viii

LIST OF FIGURES

Figure Page

1. Autonomous System Model .. 7

2. Virtuality-reality spectrum .. 9

3. Example Publish-Subscribe System ... 12

4. Processes within ROS Communication .. 13

5. Test & Evaluation Architecture .. 20

6. Framework decomposition associated with Sense node ... 24

7. Combiner Model ... 26

8. Splitter Model ... 27

9. Single-Valued Model .. 27

10. Information flow in an example Combiner ... 28

11. Communication via channels .. 30

12. Applying Publish-Subscribe to the Base Example ... 32

13. Updated Base Example with added Position Sensor Data .. 35

14. Inheritance of Application classes .. 40

15. Control Loop Routine ... 43

16. Node Class Functions ... 44

17. Topic Class Functions ... 44

18. SerialObject Class Functions .. 45

19. Combiner and Splitter Hierarchy .. 46

20. Combiner Core Routine .. 48

ix

21. ROS Interaction Sequence .. 50

22. ROS Interaction Detailed View .. 51

23. Example ROS Launch File ... 53

24. Range Finder Hardware Setup .. 55

25. Range Finder Coordinate System ... 56

26. Range Finder Framework Structure .. 57

27. HC-SR04 Hardware Setup .. 58

28. HC-SR04 Loop Routine .. 59

29. HMC588L Hardware Setup .. 59

30. Virtual Environment Detection Routine ... 60

31. Fitted Sensor Model Error Distribution .. 63

32. Compass Coordinate Conversion .. 65

33. Multithreaded Processing for Qt ... 66

34. Qt Thread Interaction .. 67

35. Range Finder Scene in different Reality Modes ... 69

36. Virtual Reality Plots .. 70

37. Augmented Reality Plots .. 70

38. Physical Reality Plot ... 71

39. Physical Rover Chassis ... 72

40. Coordinate Systems Utilized in Obstacle Avoidance ... 73

41. Obstacle Avoidance Framework Structure ... 75

42. Detection of Points for Obstacle Avoidance ... 78

43. Detection of Boundaries for Obstacle Avoidance .. 79

x

44. Planner State Machine .. 82

45. Visualization of Virtual Avatar and Environment .. 84

46. Experiment Scene for Obstacle Avoidance .. 86

1

CHAPTER 1

INTRODUCTION

The purpose of this research is to design and create a Test & Evaluation environment for

testing autonomous vehicles throughout the design and development of the autonomous software

and physical hardware. The process of testing the autonomous software can be extremely

difficult; therefore, it is desirable to test early in the design and throughout the development

lifecycle. A framework is created in which the autonomous software can be developed such that

testing can be conducted at various levels of mixed reality provided the components of the

framework are sufficient to support data required by the autonomous software1.

Autonomous systems represent an increasingly diverse and complex research area in

engineering and industry. Goldman Sachs Research predicted a $100 billion dollar market just

for autonomous drones from 2016-2020 [1]. The top commercial/civil sectors include

construction, agriculture, finance, and public safety (police, fire, coast guard). There are efforts

in universities to establish curriculums to prepare engineers for working with autonomous

systems policy and risk management [2].

Autonomous systems have been utilized in numerous applications in science and

technology. Studies have been conducted to understand the key factors in adopting driverless

cars into the daily life [3]. There are also examples of autonomous software in non-vehicular

systems such as those used in high-frequency trading strategies in the U.S. capital market [4].

Autonomous vehicles could also be sent to places that are uninhabitable by humans or placed in

situations that would traditionally place a human in danger. For example, unmanned aerial

1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references.

2

vehicles have a role in operational forest fire activities with high maneuverability and high

capacity to perform activities such as reconnaissance [5]. Autonomous systems also help by

lowering the cost of maintenance by allowing the system to care for itself. For example, there

are high-level control systems that carry out energy regulation on hybrid power systems [6].

However, autonomous systems present new challenges in Test & Evaluation. Koopman

and Wagner discuss the inherit difficulties in testing autonomous vehicles [7]. Similar

assessments are made by Menzies and Pecheur [8] and Schumann and Visser [9]. First, there is

also no human backup to address faults, malfunctions, or unexpected operating conditions. Fully

autonomous vehicles must have additional complexity to address all potential contingencies.

Real-world testing is not able to completely validate every operating condition the autonomous

software might encounter in the field, especially ones that may not be observable in the long

term [7]. Second, autonomous software often utilizes non-deterministic behavior and statistical

algorithms to adapt its own behavior to cope with changing surroundings [7]. As such, the

software can provide different outcomes given the same test scenario. This makes it difficult to

evaluate the results of testing because there is no uniquely correct result for a given test scenario

and the tests are non-repeatable [8]. Third, acceptance of the behavior of autonomous systems is

a critical concern. Helle, Schmai, and Strobel find that current design and testing methods are

insufficient to assure safety as they make assumptions about the autonomous system behavior in

the field based on the testing environment [10]. The software system must be tested extensively

to demonstrate that failure rates do not exceed an acceptable safety threshold. Such vehicle

testing is time consuming and expensive, and it is often not feasible to conduct enough tests to

ensure desired safety level.

3

Simulation-based testing can work to reduce development cost by allowing testing of

imperfect systems placed in hazardous or otherwise impractical situations without physically

endangering people or property [10]. In a virtual, or simulated, world, complex systems and

conditions can be abstracted and manipulated relatively quickly and inexpensively to represent

different scenarios. This can be especially helpful in the early stages of design prior to

development of a physical prototype of the vehicle. In later stages of development, virtual

reality (VR) and augmented reality (AR) can gradually increase the resolution of the stimuli until

real world testing is possible.

 However, these approaches only work if the autonomous software is readily

compatible with the operating environment with which it is tested. Often this requires many

specific test harnesses to maintain compatibility with heterogeneous test environments, thus

limiting the scenarios that testers can evaluate until real-world trials can commence with the

fully-integrated autonomous system [11]. If the autonomous software could seamlessly integrate

virtual and physical components over its development lifecycle, VR and AR can greatly reduce

the cost of development by providing an easier transition between simulation-based testing and

fully integrated testing.

The objective of this thesis is to develop a reusable framework in which the autonomous

software can be developed such that testing can be conducted at various levels of mixed reality

provided the components of the framework are sufficient to support data required by the

autonomous software. The framework allows initial testing on a simulated vehicle in a virtual

environment. Then as initial hardware becomes available, testing can work on a physical vehicle

in a virtual environment (VR). By gradually allowing the vehicle to perceive its environment,

4

the vehicle can respond to the physical environment while also responding to virtual information

(AR). Finally, testing transitions to full physical testing.

The discussion is composed into four main chapters. Chapter 2 describes several key

background materials that are important for understanding the rest of the paper. Chapter 3

presents system requirements to support generalized testing with VR and AR and a high-level

design that highlights necessary roles, responsibilities, and behaviors. Chapter 4 utilizes the

high-level design to present a software design that can be readily implemented to build the

framework. Finally, Chapter 5 presents a demonstration of the framework with several example

systems to illustrate seamless integration of VR and AR across the Virtuality-Reality spectrum.

5

CHAPTER 2

BACKGROUND

This chapter establishes key concepts and background information necessary to

understand the framework design and associated implementation. We begin by introducing the

concept of an autonomous system and how it is modeled in this thesis to facilitate the research in

this paper. This is followed by a discussion on the virtuality-reality spectrum and how it applies

to Test & Evaluation of autonomous systems. Next, the Publish-Subscribe (PS) pattern is

presented as a possible method for communication within the system to achieve flexibility and

decoupling within a framework. The Robotic Operating System (ROS) is provided as an

example of a PS system that is available and well-documented. Arduino programming and the

Arduino IDE are also described to introduce a method of communication with physical

hardware.

2.1 A General Model for an Autonomous System

It is important to understand the features of an autonomous system and how they interact

before placing the system within a virtual or augmented reality setting. Autonomous systems

require the ability to utilize various sensors to gain information about the external environment.

Autonomous systems must also be able to interface with a physical system’s actuators to instruct

the system to act. Finally, control systems must be robust enough to adapt to changes in the

environment, maintaining consistent feedback and behaving sensibly to a wide variety of

possible situations [12]. To this end, the purpose of the control system is to generate a plan

based on knowledge of the external environment and execute the plan based on actions made

available by hardware actuators.

6

The modeling of autonomous control systems for mobile robots has an extensive history

of research and development. One approach is to model the control system software using a

pipeline of functional modules where input and output are connected to the robotic hardware

[13], as illustrated in Fig. 1. The model includes, at a high-level, the autonomous software, the

hardware, and the external environment. The hardware can be broken down into sensors,

actuators, and vehicle dynamics/state information. The vehicle dynamics and state information

include physical attributes of the vehicle such as velocity, orientation, and fuel level. The

software can be further decomposed into the functional modules of the pipeline. The modules

are:

• Sense – Computes a perception of the environment based on incoming raw data from the

hardware sensors. This involves mapping the raw sensor data to the world

representation.

• Plan – Generates a plan composed of actions based on the system’s current world

representation, operational goals, and past experiences.

• Act – Executes the plan by converting actions to control signals to send to the actuators.

7

Software

Se
n

so
rs

Sense Plan Act

A
ctu

ato
rs

Vehicle Hardware

External Environment

W
o

rl
d

R

ep
re

se
n

ta
ti

o
n

Vehicle
Dynamics/

State

Fig. 1. Autonomous System Model.

The software also contains a world representation, an internal representation of the external

environment and internal vehicle state. The world representation could include a panoramic view

of distances to boundaries, sets of recognized objects and their computed attributes, or a map of

the environment based on past experiences of the robot. Note this model is employed illustrate

the ensuring work. The work is not solely relegated to this model and may include other stage

decompositions such as to include a perception stage.

2.2 The Virtuality-Reality Spectrum

Properly utilizing virtual reality and augmented reality requires understanding the larger

class of mixed reality displays. Milgram describes mixed reality displays as existing in a

virtuality-reality spectrum [14]. During the design process, four phases of the reality-virtuality

spectrum are introduced. This spectrum is bounded on one end by reality and on the other end by

virtuality. In between these end points live a spectrum of mixed reality displays that includes

augmented reality displays and augmented virtuality displays.

8

Davis and Lane provide an example of applying the virtuality-reality spectrum to design

and testing of underwater vehicles [11]. A mixed reality framework is developed using

JavaBeans and Java3D to model the environment and interface with physical vehicle hardware

and software via an Ethernet-based communication network. The framework utilizes a

communication protocol, OpenSHELL, to allow software modules within the framework to run

remotely, allowing for reconfigurability across the virtuality-reality spectrum [11]. The

conclusions show that extendable architectures can be developed and generalized to the testing

of different autonomous systems. While only applied to underwater vehicles, the concept

encourages further research in the area of autonomous system Test & Evaluation, supporting the

need for the framework presented in this thesis.

Fig. 2 shows how the testing environment changes as the environment moves from a fully

virtual reality to fully physical reality. Within the spectrum, a subset of components may operate

in a simulated environment or augmented environment (involving both real and virtual stimuli),

and the remaining components operate in a physical environment.

9

Fig. 2. Virtuality-reality spectrum.

At one end of the spectrum, virtual models of robotic components and various

environments can be utilized. Note that while the hardware system is fully simulated, the current

state of the autonomous software being tested is not a simulated version. The current state can

progress from behavioral to algorithmic to functional as defined by the autonomous software

development lifecycle. The simulation of the physical platform progresses from a behavioral

model to a fully functional model as the specifications and design of the system progress,

allowing greater and greater detail in the testing process.

As the design continues, more and more physical components are prototyped in software

or hardware and used to augment the virtual system representation. This begins by allowing the

physical robot to maneuver in the virtual world. All sensed information is provided from the

virtual environment. The autonomous software can react to this information and physically

Virtuality Reality

Autonomous SystemAutonomous System

Sensors

simulated

Actuators

simulated

EnvironmentEnvironment

simulated

Autonomous Software
actual

updatesupdatesobservesobserves

Autonomous SystemAutonomous System

Sensors

simulated

Actuators

simulated
or physical

EnvironmentEnvironment

virtual

Autonomous Software
actual

updatesupdatesobservesobserves

Autonomous SystemAutonomous System

Sensors

augmented

Actuators

physical

EnvironmentEnvironment

augmented physical

Autonomous Software
actual

updatesupdatesobservesobserves

Autonomous SystemAutonomous System

Sensors

physical

Actuators

physical

EnvironmentEnvironment

physical

Autonomous Software
actual

updatesupdatesobservesobserves

Test Scenario Test Scenario Test Scenario Test Scenario

Virtual Reality Augmented Virtuality Augmented Reality Physical

10

move the vehicle. By maintaining an avatar in the virtual world to represent the vehicle’s state

information in the physical world (position, etc.), the virtual environment can be appropriately

sensed. This provides a safe environment to observe the vehicles response to various scenarios

represented in the virtual world without risk of injury to people, the environment, or the vehicle

itself.

In the final stages of design and testing, the autonomous software and vehicle hardware

are complete and tested in the real environment. The vehicle now fully senses its physical

environment and responds to it. However, for safety reasons it may be undesirable to place all

objects in the real environment. For instance, people or other autonomous vehicles may be

represented in virtual reality and then imposed on the real environment. Now virtual information

is imposed on the real sensed information, requiring a stage prior to the sense or plan stages

where real information can be augmented.

Testing may not end even after the robot is fully deployed in the real world. With the

physical robot and autonomous software fielded, the autonomous software may need to be re-

evaluated as the platform evolves. For example, this can occur if the software changes via

updates to bugs or fixes for functional, performance, or security problems. It can also occur if

the parameters in the software change by design over time, such as in deep learning models. In

these cases, it is beneficial to allow the software to be placed back in the same operating

environment used in the virtual or augmented stages of testing.

2.3 The Publish-Subscribe Pattern

A method of communication between system components is required that is flexible and

maintainable among many different testing scenarios. Autonomous software design can

introduce a complex web of dependences between components of the system making it difficult

11

to re-use or maintain system components along the virtuality-reality spectrum [15]. Decoupling

is the process of reducing dependencies between software modules. A common pattern used to

achieve decoupling in autonomous software is the Publish-Subscribe (PS) pattern [15]. Publish-

Subscribe is a loosely coupled, message-oriented pattern for communicating in a network. The

pattern has been used extensively in framework architectures for autonomous systems. These

architectures focus on maintainability, performance, testability, extensibility [16].

The Publish-Subscribe (PS) pattern has four common types of message routing

semantics: content-based, header-based, topic-based, and type-based [17]. Content-based and

header-based systems route messages based on filters of either the message content or message

header. Topic-based involve channels of which messages must match with a requested topic

name to be routed. Type-based systems allows the selection of messages based on a selected type

in a type hierarchy. For this discussion and further in the paper, we limit the scope of PS to

topic-based systems.

Topic-based PS systems are primarily composed of two types of entities known as nodes

and topics. Fig. 3 provides an illustration with an example of a camera publishing image data to

two subscribers. Nodes are defined as a consumer and/or producer of information (i.e. a

subscriber or publisher, respectively). Topics are defined as logical channels that associate a

type of data to the channel such that nodes can communicate by interacting with the topic rather

than directly with each other. When a node publishes information, it is to a named topic that

accepts the type of content the publisher provides. A node that subscribes to information

indicates a named topic from which to receive data and registers to be notified as information is

made available through the topic.

12

Fig. 3. Example Publish-Subscribe System.

Publish-Subscribe systems have a number of properties that are advantageous to

connecting software components while maintaining flexibility and decoupling. PS systems

exhibit space, time, and synchronization decoupling due to event notification [18]. Event

notification is a method of delivering messages to subscribers in an asynchronous manner where

the subscriber is notified when a message must be processed [17]. Memory space does not have

to be shared between entities in the system allowing different parts of the system to exist on

different platforms and be replaceable and interchangeable. Notifications can occur at a time

different to when messages are sent or received, meaning that individual publishers and

subscribers do not have to wait for messages to arrive to continue processing [18].

Synchronization decoupling also has the advantage of making the PS system more scalable.

Nodes can be added or removed without directly impacting the performance of other nodes in the

system [17].

2.4 Utilizing ROS for Framework Communication

The Robotic Operating System (ROS) is a collection of libraries that provide a Publish-

Subscribe service on top of the standard inter-process and network communication layers of a

Camera
Image

Processing

Image
data

Image
Display

Publish Subscribe

Publishers / Subscribers
(Nodes)

Message Classification
(Topics)

Subscribe

13

computer system [19]. ROS implements a topic-based Publish-Subscribe (PS) system between

nodes in a peer-to-peer network. ROS nodes can be either on the same machine or different

machines. ROS maintains its own interface for publishing and subscribing to specific topics.

ROS software is organized in groups called packages. The packages are divided into

separate directories that may contain source code, third-party libraries, datasets, configuration

files, and build files for compiling the nodes into runnable programs. There also exist several

distributions of ROS available for development. Each distribution is a versioned set of ROS

packages with a stable codebase from which to develop new software. Each distribution retains

the same basic software architecture. The distribution used in this demonstration is ROS Kinetic

which is typically used with the Ubuntu 16.04 Linux operating system.

The primary functions leveraged in ROS are subscription, advertisement, publication, and

callback. Fig. 4 illustrates the processes at work within a ROS network. Subscription and

advertisement are calls made to ROS in order to establish topics. Publication is a call made to

ROS to initiate sending a message through an establish publication topic. Callback is a call

made from ROS to the node upon receiving a message from an established subscription topic.

Fig. 4. Processes within ROS Communication.

Node Node

Subscription

Master

Topic

Advertising

Publication Callback

14

These functions work in tangent with a server known as the Master. The role of the

Master is to enable individual ROS nodes to locate one another to perform peer-to-peer

communication [20]. Each ROS node registers with the Master that is started initially. Topics

are then registered using a unique topic name and tracked with the ROS Master to provide

information necessary for communication. Callback functions are registered by providing the

function as a parameter to the call to subscribe to a given topic.

2.5 Utilizing Arduino for Hardware Communication

Arduino is a relatively easy-to-use and inexpensive platform for communicating with

analog and digital devices that is programmable and extendable [21]. Arduino circuit boards

come in a number of variants with differences in size, memory capacity, the number and type of

connector pins, power, and processor speed. Arduino is utilized many times in academics and

prototyping to demonstrate proof-of-concept robotics and sensing systems [21].

 The Arduino IDE is a free development environment for developing programs that can be

compiled, uploaded, and then executed on an Arduino board to interface with devices and control

the Arduino’s behavior. The programs are developed in source code files known as sketches.

The IDE provides many features to accommodate development and testing of sketches such as

error detection and serial monitor to help with debugging. There is also a large user community

that publishes sketches for many commonly used devices, thus reducing development time.

 Device communication can be handled by reading and writing in software to different

input and output pins that are physically wired to pins on the devices. Libraries come with many

devices with code that is already set up to interface correctly. Example sketches are also often

available with each library to demonstrate use [22].

15

16

CHAPTER 3

AUTONOMOUS SYSTEM FRAMEWORK DESIGN

This chapter details the design and structure of the framework used to perform Test &

Evaluation of the autonomous system software. The primary purpose of the framework is first

discussed in relation to the virtuality-reality spectrum. A set of framework requirements are

established to lay the groundwork for the rest of the section. A high-level view of the framework

system and its components is then described. This is followed by the description of an example

application that can be used for discussing the design. The framework is then decomposed to

illustrate its basic components and interfaces to facilitate communication and component

decoupling. This includes identifying and describing common components used within the

framework. The component-type architecture is then mapped in terms of a Publish-Subscribe

system and certain relationships are highlighted. Finally, the process of Test & Evaluation is

described in the context of the framework. Key developer roles are discussed and put into the

context of developing and testing the autonomous system using the framework.

3.1 Framework Purpose

The purpose of the framework is to decouple the components of the autonomous software

from its operating environment and allow the software to interface with both virtual and physical

components without direct knowledge. Decoupled, the software can be tested under different

conditions without modification for each combination of virtual and physical components. At a

minimum, the framework must support Test & Evaluation in the following scenarios:

• in a completely simulated environment with all components represented in virtual reality

17

• in a semi-simulated environment with a portion of physical sensors or physical actuators

• in a mostly physical environment with a portion of components in virtual reality

• in a completely physical environment with fully integrated sensors and actuators

3.2 Framework Requirements

At a broad level, the requirements for the framework facilitate building an effective test

harness for the autonomous software. This includes the:

• ability to decouple components of the autonomous system for testing purposes

• ability to decouple the implementation of the autonomous software from its’ operating

environment, and the

• ability to decouple the autonomous system from knowledge of the source or use of

information

It is important that the autonomous system components being tested are decoupled from

each other. Test harnesses are efficient at a unit testing level where the function and

performance of individual components can be specifically assessed and then later tested as an

integrated whole. If the components are intertwined, it is more difficult to gauge individual

component functionality. This characteristic is also critical for tracking down the source of

problems in the system when they arise. For example, the reason behind a decision in the Plan

stage could be difficult to determine if the input to the Plan stage is inaccessible. This could

happen if the planning component(s) of the autonomous system are intertwined with the sensing

component(s) of the system. Additionally, the input or output of certain components may be

stochastic in nature. As such, an ability to inject or capture information to and from each

component is essential to facilitating the testing process.

18

 An effective test harness also decouples the implementation of the components from

their operating environment. The operating environment consists of the system(s) external to the

autonomous software that are available to provide input to the autonomous software and accept

output from it. Decoupling the operating environment allows it to be substituted or replaced

without modifying the autonomous software. This includes reducing the dependencies between

the software Test & Evaluation and the ongoing development of the physical hardware. In this

way, both the autonomous software and the external components can be developed separately

without introducing testing dependencies into the project. In addition, decoupled components

are easier to interchange or replace with different components later in the development lifecycle,

adding fidelity to the testing. For example, a large-scale traffic simulation that is still early in

development could be substituted for a simpler simulation that could fulfill the needs of testing

while development continued.

 Finally, to ensure changes in the framework do not affect the structure or design of the

autonomous system, the autonomous software should be unaware of the source or use of

information transferred through the system. This implies a need for formally defined data

interfaces that remain consistent even if the data sources or data recipients change. For each

component, input and output functions must be identified to connect the component with the rest

of the system. These functions must be consistent between each component even if internal

functions may vary.

3.4 Base Example

 To build a foundation for later chapters, an example application will be used to provide

context to the design. The application will be limited to the Sense stage to focus on the

framework’s ability to tackle decoupling of a single stage of the autonomous software. One

19

common application involving the autonomous software’s Sense stage is the mapping of a

robot’s surrounding environment. The process involves using observations taken from sensors to

build a world representation that can be displayed visually. The sensors include a proximity

sensor and a compass sensor which are used to obtain the distance to obstructions within the

environment and the robot’s orientation within the environment, respectively.

3.3 General Approach

 The focus of the framework architecture is to decouple the autonomous software

components from their respective input and output sources and allow for additional components

to control the virtuality-reality of the data without the autonomous software’s knowledge. Fig. 5

illustrates a high-level view of the Test & Evaluation structure. Four major sections are

highlighted. They are the:

• Physical (or simulated) Vehicle

• Physical Environment

• Virtual Environment and Test Scenario

• (Autonomous) Software

• Test Harness

20

Fig. 5. Test & Evaluation Architecture.

The Physical Vehicle represents the system(s) that feeds information into the autonomous

software and that uses information from the autonomous software to operate. It can be described

as the body to the autonomous software’s brain. It is composed of Sensors (which provide

information to the autonomous software) and Actuators (which accept information as control

signals to alter the vehicle’s operation). The Physical Environment represents all the external

factors and stimuli that can influence and be influenced by the physical vehicle. Information

flow here is based on real-life interactions with a real system. The interactions are mainly with

the physical Sensors, where information flows from the Physical Environment, or the physical

Actuators, where change is enacted on the Physical Environment.

On the other side, the virtual systems represent generated or simulated versions of the

physical counterparts. The Simulated Vehicle is composed of Virtual Sensor Models and Virtual

Simulated Vehicle

Autonomous Software

Act

A
ctu

ato
rs

Plan

Se
n

so
rs

Virtual Environment/Test Scenario

W
o

rl
d

 In
fo

rm
at

io
n

 M
o

d
el

s

P
la

n
 D

at
a

M
o

d
el

s

A
ct

u
at

o
r

D
at

a
M

o
d

el
s

W
o

rl
d

 R
ep

re
se

n
at

io
n

Software Architecture/Test Harness

Se
n

so
r

D
at

a
M

o
d

el
s

Sense

Physical Vehicle

Physical Environment

Virtual Sensor Models Virtual Actuator Models

21

Actuator Models that represent the behavior of the physical counterparts found in the Physical

Vehicle. The virtual environment, in general, represents a generated version of the environment

external to the vehicle. This could be a simulation of the environment or simply a testing

module(s) that provides a rough approximation of data obtained from the environment.

The components of Sense, Plan (including World Representation), and Act represent the

main stages of the autonomous system model. They are separated based on the level of cohesion

and functionality appropriate for each stage in the model. Each of these components has basic

behavior defined according to the general model but may vary based on the specifics of the

autonomous system. In general, it is understood that Sense transforms environment data into an

appropriate form for the World Representation. Plan uses the information in World

Representation to assess the environment and decide on a set of actions the system should

perform. Act receives these actions and converts them into signals that the Physical (or

Simulated) Vehicle can understand.

The Test Harness is placed in between the autonomous system components and the rest

of the framework. This works to decouple the autonomous system from direct knowledge of the

source and use of the information outside of each component’s own processing. The Test

Harness also allows for data manipulation. As the Test Harness handles the routing of

information between different components, it also has access to the data before transfer. At the

interface between autonomous software stages, the test harness provides a location where

different operations can be placed to alter the data before transferring to one of the autonomous

system components. This allows data to be injected or observed from outside of the autonomous

software stages. It also allows the implementation of the virtual system(s) to change or be

replaced if necessary, provided the communication format stays consistent.

22

 Underlying the Test Harness is a communication layer that is able to connect the separate

components of the framework architecture together. For our purposes, the Robotic Operating

System (ROS) is this intermediate layer and provides much of the facilities for the type of

communication that the framework requires. How ROS is integrated within the framework is

discussed in more detail in Chapter 4.

3.5 Framework Decomposition

The framework system is now decomposed to illustrate its inner structure. The section

first decomposes the high-level design into basic components that form the framework structure.

Major groups for the framework structure are highlighted in context with the high-level design

with focus on the group making up the Test Harness. Next, the framework is decomposed

further to highlight certain classes of entities with different responsibilities within the Test

Harness group. This is followed by a discussion of the decomposition within the sensing and

mapping application.

3.5.1 Framework Components

The framework can fundamentally be decomposed into basic components known as

nodes. Nodes are defined as a functional component of the framework that can produce and

consume information. The nodes of the framework can be grouped into three main categories:

• Autonomous Software Nodes – Sense, Plan, Act

• External Nodes – Virtual Environment, Virtual Sensor Models, Virtual Actuator Models,

and their physical counterparts

• Framework Nodes – Sensor Data Models, World Information Models, Plan Data Models,

and Actuator Data Models

23

The Autonomous Software nodes involve the stages of the autonomous system model:

Sense, Plan, Act. Each node has assumed behavior and responsibilities for its place in the

framework architecture. Note that each node (Sense, Plan, and Act) may, itself, be made of

multiple components that together, conceptually, work as a single node.

An external node refers to any component of the framework that exists outside of the

autonomous software but is still able to influence or respond to the autonomous software’s input

and output. This includes nodes that interact directly with physical hardware or a virtual

simulation of the hardware. It also can also include nodes that perform visualization based on

observing the state of the autonomous software nodes or other external nodes.

Framework nodes provide the ability to choose from multiple sources of information

external to the autonomous software nodes. These make up the Test Harness potion of the high-

level architecture. As there can be multiple flows of information between the autonomous

software stages, it is useful to view the test harness not as a single entity but composed of a

variety of data models that operate independently for each type of data. A node is created for

each type of data being communicated to control its flow.

The framework nodes can be divided into three sections, each preceding a stage of the

autonomous software (Sense, Plan, and Act). To illustrate the decomposition, Fig. 6 shows only

two sections specifically associated with the Sense node of the autonomous software. Each

section operates independently on a subset of the data communicated between autonomous

software stages and between the stages and external nodes (e.g. Virtual Environment).

Furthermore, each data model independently acts on a single type of data within the subset.

24

Fig. 6. Framework decomposition associated with Sense node.

As autonomous systems can have different information requirements, the decomposition

of the framework depends largely on the needs of the autonomous system. Only data models

that involve information that is actively passed into and out of the autonomous software should

be present within the framework. Therefore, the framework structure is dynamic relative to the

testing process and may need to change to accommodate the requirements for reducing

dependencies in knowledge and implementation for certain pieces of information transferred

through the system.

Software

Virtual Environment/Test
Scenario

Test Harness
Framework

Sense

Sensors
Sensor Data

Models
World Info.

Models

25

3.5.2 Framework Data Model Templates

 Where the framework could contain numerous data models for various pieces of

information travelling through the system, we find that three templates cover most models.

These templates can act as basic data models for modeling the source or use of any type of

information and could be further customized based on the specific data to be handled. These

three classes and their mappings are:

• Combiner node (Many-to-1 mapping)

• Splitter node (1-to-Many mapping)

• Single-Valued node (1-to-1 mapping)

The framework does not preclude a many-to-many mapping, but we have not found the need for

this template at the current time.

The combiner model involves multiple sources of information. As illustrated in Fig. 7,

the source(s) of information are selectively outputted or augmented (“combination”) from all

sources of data. This generally involves only two sources: a physical source (or source from a

previous stage of the autonomous model) and a virtual source. The combiner then has different

reality modes to dictate the reality that is output as final data. If the reality mode is “physical”,

the combiner outputs the physical data; likewise, if the reality mode is “virtual”, the output is the

virtual data. The augmented reality mode requires modeling the interaction of virtual and

physical data and may vary depending on the type of data being handled.

26

Fig. 7. Combiner Model.

A splitter model is used to pass forward data from a previous stage to a potentially

multiple destinations, generally up to two destinations. Fig. 8 illustrates the splitter model. The

splitter may operate as switch to allow output only to one of the destinations or a router to both at

the same time. An example may include a model for routing control data from the autonomous

model to physical and virtual actuators. Splitter nodes may also include additional modeling to

transform data to formats appropriate for the virtual destination; for example, converting data to

an appropriate coordinate system, which may differ between the virtual and real worlds.

CombinerData

Data

Input

Input DataOutput
Previous

Stage

Virtual
Source

Next Stage

27

Fig. 8. Splitter Model.

A single-valued model is used to output data from a single source, such as shown in Fig.

9. It may still include modeling to process data before output. For example, the data may need

to be converted to a certain representation or coordinate system for testing purposes. Another

example may be thresholding values or passing averaged values to smooth data and eliminate or

add noise, though it is advocated that such functionality probably is not appropriate in the

framework. In general, the single-valued model should not include modeling defined by the

autonomous system.

Fig. 9. Single-Valued Model.

SplitterData

Data

Output

Input DataOutput

Virtual
Destination

Previous
Stage

Next Stage

Single-ValuedData Input DataOutput
Previous

Stage
Next Stage

28

3.5.3 Base Example Decomposition

To illustrate these classes, the base example is mapped to the framework. There are two

types of observations associated with the base example: range data and orientation data. The

framework is then decomposed into two corresponding data models. These two models are

placed in between the autonomous software and external components. In other words, any input

for range data or orientation data must go through the combiner and be made accessible to the

framework before being inputted into the autonomous software.

The range finder may use a combiner to control the perception of range data. Two sources

are made available to the combiner: the range data from the physical sensor and range data that is

generated from a virtual environment. Fig. 10 shows that the flow of information is altered by

the reality mode. If mode is for “physical” or “virtual”, only one of the inputs are used to

determine output. If by augmentation, the output is determined as a function of both inputs.

Additionally, a threshold may be applied to the output to only consider range values no closer or

no further than the threshold for testing.

Fig. 10. Information flow in an example Combiner.

Combiner

Physical
Range

Virtual
Range

Test
Range

Output
Select Phys

Select Virt

Augmentation

29

3.6 Node Communication

Isolating knowledge between the nodes within the framework is now considered.

Interfaces between decoupled nodes must remain consistent for nodes to communicate accurately

and predictably. For example, suppose there is a transportation system with two components: a

traffic simulation and an autonomous driver. The transportation system provides information

about the presence of pedestrians in the simulated environment, and the driver can accept this

information about the environment and provides information about whether the driver’s vehicle

should brake or turn. How the traffic simulation produces the information is subject to change

during system development based on the fidelity of the simulation required; however, the

simulation must still provide appropriate information for the driver to be accurately tested.

Communication can be hidden by interacting through a channel. This channel is similar

to the concept of a topic. The main characteristic of this interface is that components do not

directly communicate with each other (including those components in the Test Harness). Each

node that produces information will push the information through the channel. In addition,

nodes that need to consume the information will reference the same topic. As Fig. 11 shows,

from the perspective of each component behind the interface, the actual producer or consumer is

not known. The channel is known, but the nodes do not have specific knowledge of the

information medium or method of communication, only that certain information can be sent or

received going through the channel.

30

Fig. 11. Communication via channels.

Consequently, this type of interface must adapt to the information requirements of each

component. Each component has different inputs and outputs which may contain different types

of information for testing. For example, if a Sense node requires range data as input, the

associated interface must have knowledge of the channel(s) that carries this data in order to

properly receive the range data in isolation. On the other hand, the interface for a node that

provides orientation data requires knowledge of a different channel beforehand to identify the

channel for orientation. With this, we can outline basic requirements for each component to

communicate through the interface:

• Nodes interact with the channel rather than directly with other nodes

• Channels do not change when nodes are replaced

• Channels are associated with a type of data of which the format is known to be

readable by other nodes

Data
Channel A

Data
Channel B

Autonomous Software

Autonomous
Software Node (i.e.

Sense)

Framework
Node A

Framework
Node B

31

3.7 Mapping to a Publish-Subscribe Pattern

Underlying the Test Harness is a communication layer that connects the separate

components of the framework architecture together. The communication layer primarily

manages the flow of information from node to node without nodes having knowledge of specific

senders or recipients. The paradigm that dictates this interaction is the Publish-Subscribe (PS)

pattern. The pattern is a reasonable choice as it does not involve direct communication between

sender and recipients (publishers and subscribers) and allows for network entities to be replaced

without impacting the whole network [18].

In this way, mappings can be made from the architecture to the pattern. Each node in the

framework can be mapped to one or more nodes of a Publish-Subscribe system. The concept of

logical channels can be readily mapped to topics in a topic-based Publish-Subscribe system. The

interfaces each node uses to communicate information becomes an interface to access a publish-

subscribe service. Nodes for the physical sensors become publishers of sensor data in the

network, where the actuators become subscribers. Other nodes are both publishers and

subscribers, such as the data model(s) that make up the Test Harness.

Each node has a basic set of behaviors to communicate over the network. These include

the ability to advertise, subscribe, publish messages, and receive messages through callback. In

addition, each topic must have a well-defined and known format that is used by publishers and

subscribers to understand the message content. This includes the ability to serialize and

deserialize data fields into a common communication format.

To illustrate an example of the mapping, the base example is utilized, illustrated in Fig.

12. The main nodes involved here are the Sense node (component of the autonomous software),

the Virtual Environment node, and two framework nodes: one representing a Combiner for range

data and the other representing a single-valued node for orientation data. The arrows represent

32

the flow of information through the system once publishing and subscription have taken place.

The arrows are labeled based on which process they refer to: publishing or subscription.

Fig. 12. Applying Publish-Subscribe to the Base Example.

Finally, the circles represent the several topics that channel a particular type of data from the Test

Harness to the Sense node. This includes a physical and virtual range topic, a physical

orientation topic, and two topics for the range and orientation input into the autonomous

software.

The result is that the autonomous software is decoupled from the implementation of the

virtual environment and physical sensors. Those nodes could be replaced if the communication

channel is maintained in the form of a topic with known message content. Similarly, the virtual

environment could be replaced without affecting the Range Combiner. In addition, the Sense

node is decoupled from the source of the range and orientation data. This allows framework

nodes such as the Range Combiner to perform data manipulation (through either selection,

Software

Sense

Range
Combiner

Orientation
Single-
Valued

Publish

Publish

Subscribe

Subscribe

Range
Topic

Orient.
Topic

Physical
Range
Topic

Subscribe

Physical
Orient.
Topic

Subscribe

Virtual
Range
Topic

Subscribe

Virtual Environment

Subscribe

Publish

33

augmentation, or some other process) on the range before it is published to the topic, as long as

the topic format is consistent. This design can be very powerful as it inherits the flexibility and

scalability that is attributed to the Publish-Subscribe system.

3.8 Developer Roles

 In addition to the design of the framework, it is also important to discuss developer roles

and responsibilities. The entire system hosts several components that may have their own

lifecycle for design, development, and testing. Different developer roles exist to design and

build this testing system. Knowing what roles exist can help in identifying who is responsible

for developing and managing certain components and associated communication channels and

organizing the project resources and timeline.

 Key development roles are identified based on the decomposition of the architecture.

These follow from the major components:

• Autonomous Software Developer

• Physical Vehicle Developer

• Virtual Vehicle Developer

• Virtual Environment Developer

• Framework Developer

It is important to note that each developer does not necessarily have to correspond to a

single person; but rather indicates a developer entity that could be a team of engineers or even an

organization. Each developer is responsible for one of the major components of the system. In

addition, at any one time, these developers could be at a different point in their own development

process. For example, the vehicle’s hardware may still be in an early design phase at the same

34

time the autonomous software has begun testing. In addition, at this point, a virtual environment

may be only rudimentary and static, with complex behavior and interactions within the

environment still in development. At this point, the virtual vehicle may be a simple behavioral

model to allow initial testing without the hardware. Framework developers must especially work

to stay ahead of other development teams to facilitate testing of the different components and

ensure accurate results. The disparity in development presents a challenge for testing the system

in its entirety; until, at least, very late in the lifecycle.

 The key to overcoming the design challenges is by leveraging the framework’s flexibility

to adapt the system testing to suit the current state of development. The Publish-Subscribe

pattern and framework design allow for individual nodes to be replaced or added as necessary.

However, this means the burden is placed on the communication channels (i.e. topics) to

maintain a consistency between each node. Subsequently, the framework developer is the party

responsible for maintaining the communication channels as they are responsible for developing

the Test Harness that lies in between each major component. To achieve consistency, the

framework developer must keep up-to-date with the necessary requirements for each node to

properly configure the channels.

For example, consider the base example discussed previously. What if the autonomous

software was updated to require the position of the autonomous vehicle in the environment? Fig.

13 shows a possible structure with updates.

35

Fig. 13. Updated Base Example with added Position Sensor Data.

The autonomous software does not have this information readily available and must receive it

from and external source. As such, a communication channel must be established by creating a

topic for receiving the position data. The data would also need a defined format for

communication. In addition, a framework node must be developed that captures the position

data and makes it accessible for data manipulation (for selection, augmentation, etc.). Finally, at

least one source of position data must be made available to publish data into the system

(examples could include a physical sensor or a virtual simulated sensor). Other nodes such as

the virtual environment might also subscribe to the position data for the purposes of

synchronization. As such, their communication channels would also be affected.

Software

Sense

Range
Combiner

Orientation
Single-
Valued

Publish

Publish

Subscribe

Subscribe

Range
Topic

Orient.
Topic

Physical
Range
Topic

Subscribe

Physical
Orient.
Topic

Subscribe

Virtual
Range
Topic

Subscribe

Virtual Environment

Subscribe

Publish

Position
Combiner

Physical
Position

Topic
Subscribe

Position
Topic

Publish Subscribe

Subscribe

Virtual
Position

Topic

Publish

Subscribe

36

CHAPTER 4

FRAMEWORK SOFTWARE DESIGN

This chapter discusses the details of the software design to support the framework. A set

of requirements are derived from the general framework design developed in Chapter 3. A basic

approach is outlined for the software design, to include the programming constructs that are

relevant to developing nodes in the framework and major events that are captured within the

framework. Details are described for the base classes that make up the foundation for the

framework implementation. Finally, where and how ROS is utilized to implement the given

design is discussed.

4.1 Software Requirements

To start, a set of requirements are derived for the software design from the framework

design. These requirements are important for identifying and organizing required behaviors and

developing an approach for the implementation. Requirements are:

• that necessary behaviors for communication are provided by a consistent software

interface,

• the interface refers to data topics only and does not refer to any node specifically,

• the interface works independent of the type of node or type of data communicated,

• the details behind the interface can be easily replaced, for instance, with an alternate

Publish-Subscribe service, and

• the interface is able to accommodate an arbitrary number of nodes and interconnections.

37

From the framework design, the framework is composed of functional components

known as nodes and a communication layer that decouples each node from the source of input

data or use of output data. An application programming interface (API) is defined to abstract the

behaviors of a Publish-Subscribe system, allowing different nodes access to the PS

communication layer. The application does not require knowledge of the details of the

communication layer as long as the API remains consistent from node to node. In addition, the

API standardizes the development of nodes in framework and establishes a specific set of rules

and procedures for creating any node.

The API cannot refer to any node specifically as a target to send or receive data. Doing

so would violate the framework’s requirement to decouple the implementation of the

autonomous software from its operating environment. Instead, each node must communicate

through channels known as topics via the behaviors defined by the Publish & Subscribe pattern.

The API is limited by these behaviors and must enforce them on the application to enable

communication. This includes providing routines to declare publication or subscription given a

topic name and message content/format. It also includes providing a way for the application to

inform and be informed of the communication.

The API must also be independent of the type of node being developed or data being

communicated. The process of sending and receiving messages assumes the format of the

messages can be readily understood by both the sender and receiver. As the API abstracts the

implementation of the communication, it must also abstract how the messages are viewed.

Indeed, the message format used to communicate the message between nodes is likely not the

same format that is used in the application. The contents of messages can also change based on

the application. As such, the API must provide a way to specify the content for a given message

38

type. This includes how to map the data between the format used by the framework and the

format used by the application.

The underlying communication layer, or backend, may handle communication differently

depending on Publish-Subscribe service used. Different backends, such as ROS, AMQP, or

MOOS-IVP, may have different processing requirements or conditions for use. In addition, a

different implementation can be used at various stages of development. For example, an easy

and robust commercial package such as ROS may be preferable early on in development of the

framework. Later, when performance is more critical, a more efficient, custom solution may be

required without altering the application(s) that have been developed. Therefore, the backend

must be easily replaceable without modifying the individual nodes of the framework.

4.2 Design Approach

To meet these requirements, the API includes behaviors for communicating between

decoupled nodes in a Publish-Subscribe system. Specifically, these are the:

• ability to create node within the framework

• ability to subscribe to a topic

• ability to advertise a topic

• ability to receive messages from a subscribed topic

• ability to send messages to a published topic

• ability to be notified when messages are received

The API behaviors are mapped to several functions listed in Table 1. The functions are

placed in a rough order of precedence that they should be called to handle communication

appropriately. The purpose of Initialization is to create the node and connect it to the framework

39

and allow specialized classes to perform their own initialization alongside further calls to

connect to topics. Subscribe and Advertise are functions that connect a data object provided by

the node to a certain topic name for either receiving or sending data along the topic when

notified to do so. Notification is for connecting a function provided by the node to a certain

(subscribed) topic to be called on the event of receiving data on the topic. Callback and Publish

are specifically for receiving or sending data to and from a topic, respectively. This includes

deserialization and serialization as part of the communication.

Table 1. API Functions.

Function Behavior

Initialization Creates node and performs node initialization

Advertise Advertises a topic and connects data for

sending to the topic

Subscribe Subscribes to a topic and connects data to

receive

Notification Connects function to be notified upon

receiving from a topic

Publish Sends data connected to topic for publishing

Callback Receives data connected to subscribed topic

The API is made accessible to the application through inheritance. Base classes

implement the underlying abstraction of the Publish-Subscribe service, and specialized classes

utilize the API to implement the node-specific functionality. Messages are also encapsulated as

classes which include relevant fields and mapping through serialization/deserialization. As the

API is made accessible through inheritance, this approach assumes that applications follow the

proper rules for building specialized classes and implement virtual methods that are required for

the system to operate.

40

Fig. 14 illustrates the inheritance relationship between the base classes and specialized

classes and the visibility to the developer. The bottom portion shows the base classes from

which nodes would be developed. The top portion shows the specialized or derived classes that

would be unique to a specific node or specific type of message in the system. The declarations

of the base classes are visible to node developers to create the specialized classes for those

nodes, but the definition is hidden to allow for replaceability of the communication layer to a

different Publish-Subscribe service.

Fig. 14. Inheritance of Application classes.

The Node class encapsulates the behaviors for managing topics and methods for

notification and processing. The purpose of the Node class is to automate the Publish-Subscribe

communication while providing access to the application node to connect data objects and

functions that define the node’s state and behavior. Each Node publishes or subscribes to one or

more topics which are represented by a Topic class. The Topic class encapsulates functionality

necessary to send or receive from a single topic. Each Topic has reference to one other

SerialObject. The SerialObject represents a base class for specifying message content and

format for messages passed along a topic. The SerialObject also provides a mapping of data

through serialization/deserialization.

41

In addition, the software design adopts the singleton pattern. The pattern involves

establishing a single instance of the Node class. Other instances of Node are not allowed. This

ensures that initialization for each application node is only performed once and defines a specific

area of each application node that can appropriately access core functions and variables. This

also means that each application node is built from within the derived Application class.

Likewise, the base Node class does not have specific behaviors defined for it and is not meant to

be used without inheritance.

To better follow the terminology of later sections, it is important that we make a

distinction between a node as a program and as a class. From this point, referring to “Node” or

“Application” will refer to the class or derived classes that encapsulates the Publish-Subscribe

interface and node specific behavior, respectively. Referring to “application node” or simply

“node” will refer to the program that contains a specific Application class.

4.3 Implementation of the API

In this section, details are presented for how the API is organized and accessed from

within different nodes. API functions are made available by inheriting an abstract class Node

which defines the functions in terms of the underlying Publish-Subscribe system (e.g. ROS). A

Topic class is used behind the API to organize the functions and information associated with a

single topic. The data objects that can be provided to the API are inherited from the SerialObject

class, allowing the developer to define the serialization process. Finally, two classes are

explained relating to framework nodes that implement a general Combiner or Splitter. These

classes provide an example of classes that derive from Node and can be further specialized to

handle data within the virtuality-reality spectrum.

42

The base Node and Topic class contain declarations for API behaviors that may be

implemented differently depending on the underlying communication system. These primarily

include Subscribe (), Publish (), Init (), and Loop (). The specific definition of these functions

may change when moving to another system such as AMQP or MOOS-IVP. These functions are

declared as abstract so the communication can be replaced if necessary. However, the

declarations and expected behavior is assumed not to change when moving from one system to

another. Following this structure allows application nodes to continue working using the same

methods when a using a different communication layer.

4.3.1 Node Class

Every node has an entry point (main) function. There are two procedures that the main

function calls to run the node: initialization and the control loop. Initialization starts by creating

the singleton instance of the Node class from which the rest of the application node is run.

Specifically, a derived class of Node (or Application class) is created that implements specific

behavior required for the node. Initialization then involves calling Setup() to allow the node to

connect data and functions to topics.

The call to Setup() is important as it allows the Application class to customize the basic

Node control loop and define the node’s behavior. The basic control loop is shown in Fig. 15.

Evidently, the loop is largely dependent on the functions connected or registered during Setup.

For example, if Setup contained an empty definition, the node would have no functions to call;

and, therefore, result in the node having no defined behavior.

The Subscribe() and Publish() methods allow the Application class to connect data

objects to specific topic channels. Once connected, the current state of the data objects will be

used whenever data is received (through a subscription topic) or whenever the Application class

43

indicates data should be sent (through a publication topic). RegisterInputFunction() is

essentially the Notification function listed in the API and connects a method to a subscription

topic. The method is automatically notified (called) on the event that new data is received from

the associated topic.

Fig. 15. Control Loop Routine.

Similarly, RegisterInitFunction(), RegisterCoreFunction(), and RegisterExitFunction(),

respectively, allow the Application class to connect other methods to the control loop; however,

these methods are called in regular places in the control loop rather than on an event. An

additional function FindTopicName() is included for retrieving a topic for a given parameter at

runtime. The Node class functions are summarized in the class diagram shown in Fig. 16.

foreach function in init functions:

 call init function()

while not terminated:

 process incoming and outgoing msgs

 foreach function in core functions:

 call core function()

 foreach topic in publishers:

 if topic flag is true:

 call topic publish()

 reset topic flag

foreach function in exit functions:

 call exit function()

44

Fig. 16. Node Class Functions.

4.3.2 Topic Class

The Topic class encapsulates the functionality and information necessary to communicate

along a single topic, shown in Fig. 17. This includes the topic name, a reference to the

associated SerialObject, and any other data objects necessary to support the communication. It

also contains the methods for sending information on a single published topic or receiving

information from a single subscribed topic. The two main functions that it must implement are

Publish() and Callback() to handle sending data to the topic or receiving data from the topic.

Like the Node class, the definition of this class is not visible to the developer and may differ

based on the communication layer.

Fig. 17. Topic Class Functions.

45

4.3.3 Serial Object Class

As shown in Fig. 18, the SerialObject class is a base class for specifying data objects that

can be connected via the API to topics for communication. Specialized classes would contain

additional fields for message content. The base class also have three main methods which should

be implemented in specialized classes. These are the Serialization(), Deserialization(), and

GetObjectSize(). The former two methods are used to handle data mapping for sending and

receiving. The Serialize() method takes the message fields and copies their current values into a

provided byte-string. The Deserialize() method performs the opposite transformation and copies

values from a provided byte-string into the correct message fields.

Fig. 18. SerialObject Class Functions.

The SerialObject assumes it will receive a byte-string of the correct size and with the

appropriate format given the order of serialization. Each specialized class is also responsible for

copying the appropriate fields in the correct order to and from the byte-string representation.

GetObjectSize() should return the summed size in bytes of all the relevant message fields. For

this implementation, it is also assumed that, for given SerialObject, this message size does not

change during execution.

46

 Additionally, two functions GetFlagged() and SetFlagged() are used with the Topic’s

Publish function. SetFlagged() is used by the Application class to mark the SerialObject for

serialization and trigger publishing on the associated topic. GetFlagged() is used by the

associated Topic class to identify when to serialize and publish the associated SerialObject using

the communication layer. The flagged state is then reset after publishing.

4.3.4 Combiner and Splitter Classes

On top of the basic Node class, two extensions of Node are the Combiner and Splitter

classes. Fig. 19 illustrates where the two classes fall in the class hierarchy. These two classes

inherit the base class functionality and extend it to enable selection or augmentation of the input

and output to and from the autonomous software nodes. The Combiner and Splitter classes

provide convenience by providing methods that can be reused and extended to manipulate

different types of data (i.e. single value, 2D image, transform, etc.).

Fig. 19. Combiner and Splitter Hierarchy.

Table 2 shows the additional abstract functions made available in the Combiner and

Splitter class that allow for customization while controlling behavior. CreateObjects() allows a

47

Combiner class to define and allocate memory for data objects that represent the input and output

data for the Combiner/Splitter. Likewise, SetTopicNames() allows the node to define the names

for input and output topics.

Table 2. Combiner and Splitter Abstract Functions.

Function Behavior

CreateObjects Allocates memory for data objects as specified for input and output data

SetTopicNames Assigns topic names as specified for input and output topics

SetMode Assigns the reality mode

Combine Computes output data based on phys. and virt. data and reality mode

Split Computes phys. and virt. data based on input data and reality mode

SetMode() allows the reality mode to be assigned based on parameters passed to the application

node at execution. Combine() and Split() compute output of the Combiner or Splitter,

respectively, based on the input data available and the assigned reality mode. The reality modes

are defined as such:

• Mode 0: Select/Use only physical data

• Mode 1: Select/Use only virtual data

• Mode 2: Use augmentation of physical and virtual data

Both the Combiner and Splitter classes define Setup() to call the abstract methods and

customize the topics and data objects. The core routine then calls the Combine() or Split()

function as appropriate to perform selection or augmentation. Fig. 20 shows the Combiner’s

core routine as an example. If a Combiner class’ reality mode selects only virtual data, the

Combiner does not need to subscribe to a physical data topic.

48

Fig. 20. Combiner Core Routine.

Similarly, the core function does not wait until physical data is available before calling to process

the incoming data. As such, the reality mode alters the behavior of the core function.

4.4 Implementation Using ROS

ROS fills in the Publish-Subscribe functionality that is required by the API. Some of the

functionality is at the code-level where API functions call on the ROS service to perform

appropriate behaviors. ROS functionality is also at the build-level where application nodes are

compiled into executable programs. Each node can be developed separately from the Publish-

Subscribe system by utilizing the provided API. However, when using ROS as the

communication layer, the nodes must be compiled within the ROS (or Arduino) environment and

executed via ROS’s runtime services to communicate properly. A ROS launch file is

constructed to identify what nodes should be executed and what topic names are available for

publish/subscription. In the future, the launch file could be replaced with an abstracted

representation of the topology that could be mapped to ROS launch files or an equivalent

mechanism provided by the utilized Publish-Subscribe system.

If mode is 0 AND physical received true:

 Call Combine() using physical data and return output

 Publish output data

 Set physical received to false

Else if mode is 1 AND virtual received true:

 Call Combine() using virtual data and return output

 Publish output data

 Set virtual received to false

Else if mode is 2 AND physical received true AND virtual received true:

 Call Combine() using physical and virtual data and return output

 Publish output data

 Set physical received to false

 Set virtual received to false

49

4.4.1 Code-Level

The API interacts with the ROS service primarily in the initialization and control loop

methods. The application node first performs ROS initialization. This includes creating a ROS

handle and calling a specific ROS initialization function to allow the ROS backend to allocate

what it needs to function. With ROS initialized, calls can be made to subscribe and advertise to

different topics. The method then calls the Setup() function to allow for the application node to

perform the subscription and advertisement and connect data and functions to send, receive, and

notify when appropriate.

The application node then moves to the control loop. Fig. 21 illustrates the interaction of

framework’s API with ROS’s API through a sequence diagram. Control starts with Node and

passes into the ROS API with a call to spinOnce(), which is ROS’s function for processing

incoming and outgoing messages. The framework API resumes control when an incoming

message is passed to a callback function registered automatically with ROS when subscribing to

the topic. The callback then deserializes/copies the incoming message into the appropriate

SerialObject connected to the topic. It then notifies the appropriate input function if one is

registered with the topic.

50

Fig. 21. ROS Interaction Sequence.

Later in the sequence, assuming a SerialObject is marked as flagged, Node calls the associated

Topic to publish the data. This involves calling the associated SerialObject’s Serialize() to

obtain serialized data to publish and then calling ROS’s Publish() function to pass the data to the

communication layer.

It is important to note that the ROS callback is not the same thing as the registered input

function. ROS requires a callback to receive the message, but an input function for the

application to be notified is not required. In a different manner, the call to publish from a topic

first calls a routine to serialize the data from the connected SerialObject and then relays the data

to the ROS API for its own processing.

Fig. 22 shows a more detailed view of where and how the behaviors provided by the API

are connected to the underlying Publish-Subscribe service provided by ROS. The application

Node TopicROS API

spinOnce

Serial
Object

Callback

Deserialize

Notify (Input Func)

Publish

Serialize

Publish

51

section contains Input functions and Core functions that are application node-specific. The ROS

section of the interface includes structures necessary for Publish-Subscribe communication.

These include Incoming Queues and Outgoing Queues that hold the (serialized) messages

temporarily before processing.

Fig. 22. ROS Interaction Detailed View.

In addition, ROS internally notifies Callback functions for a specific topic to inform when a

message is processed from the Incoming Queues. The callbacks deserialize incoming messages

and then call the appropriate Input function for notification. The Common section indicates the

data that can be accessed from both sides of the interface. This includes the input / output

messages that contain the data content (i.e. SerialObjects) that is to be communicated.

4.4.2 Build-Level

Each application node must be compiled into an executable program in ROS environment

to work correctly with the communication layer. This includes linking to ROS’s client libraries

to access the ROS API functions. ROS’s low-level build system, catkin, is able to compile

programs and additional libraries that can be further linked in other application nodes/libraries.

Input Functions

ROSROS ApplicationApplication

CommonCommon

Input / Output Messages

Incoming Queues ROS Callbacks

Outgoing Queues

Core FunctionsNotify

Flag for Publishing Flag for Publishing

Incoming Processed
Messages

Deserialized Messages

Flagged Serialized Messages

Access Access

Incoming
Messages

Outgoing
Messages

Internal State

52

Each ROS package contains source code, configuration files, and build/make files for identifying

what code is to be included when compiling an application node. The ROS packages for the

framework are divided into packages for nodes and packages for libraries. This is so that

commonly used code, such as the base Node class or SerialObject classes, can be stored in a

library that can be linked instead of copied with each application node. It also separates the

definition of the base classes from the application node in a natural manner to facilitate

replaceability.

To setup the system, the node topology of system can be defined in a configuration file

known as a launch file. Nodes can also be executed manually, but launch files are chosen for

ease-of-use and maintainability. Launch files are written in XML format. An example of a

launch file is shown in Fig. 23. The file references two nodes, each providing attributes that

specify the type of node to execute and a node identifier. The parameters under each node are

used to specify the topic names made available for subscription /advertisement. An identifier is

given to map to the topic name such that it can be referenced through the FindTopicName()

function made available from the API.

53

Fig. 23. Example ROS Launch File.

The launch file is also used to execute the system nodes together on a single machine. The

roslaunch tool is used to launching multiple ROS nodes locally and remotely via SSH [23]. If

there are multiple machines, multiple launch files are used to specify the nodes that run on each

machine.

 An exception to this build environment is when working with nodes developed on

Arduino. The programs (sketches) are developed and compiled using the Arduino IDE. A

library called rosserial is linked to access ROS API functions through the Arduino [24]. The

Arduino node then connects to the system via serial communication through a connected port to

a rosserial node executed from a launch file. The Arduino implementation also requires slightly

different implementation of the Node class library to build for Arduino. The differences are

related to the different format of ROS messages in rosserial library compared to the regular ROS

client libraries.

<launch>

<node pkg="package1" type="package1_node" name="node1" output="screen"

launch-prefix="xterm -e " required="true">

 <param name="~input1" value="SUB_TOPIC_1" />

 <param name="~input2" value="SUB_TOPIC_2" />

 <param name="~output1" value="PUB_TOPIC" />

</node>

<node pkg="package2" type="package2_node" name="node2" output="screen"

launch-prefix="xterm -e " required="true">

 <param name="~input1" value="PUB_TOPIC" />

 <param name="~output1" value="SUB_TOPIC_1" />

 <param name="~output2" value="SUB_TOPIC_2" />

</node>

</launch>

54

CHAPTER 5

FRAMEWORK DEMONSTRATION

In this chapter, use of the Test & Evaluation software framework is demonstrated through

two use cases. In each, the use case is described, the structure and setup of the framework is

illustrated, and details of the experiment results are provided. The use cases showcase testing of

specific stages of the autonomous software. The first demonstration isolates the sense stage of a

range finding sensor for use on a robot platform to illustrate the insertion of information across

the virtuality-reality spectrum. The second demonstration isolates the planning stage of an

autonomous rover performing obstacle avoidance to illustrate the use of information across the

virtuality-reality spectrum.

5.1 Range Finding Demonstration

 This use case involves demonstrating the Test & Evaluation framework for testing a

range finding sensor in virtual, augmented, and physical reality. The range finding sensor is

paired with a compass providing heading to plot cartesian coordinates of detected points in the

environment. Physical sensors are mounted on a turntable, shown in Fig. 24, so they can rotate

to sense the environment (translation is not supported as there is no location or motion sensor

involved). The compass data is always produced as real, while the range finder data can be

either real or virtual. This allows the system to detect objects in the virtual environment,

physical environment, or augment the physical environment with virtual objects.

55

Fig. 24. Range Finder Hardware Setup.

Data from the physical range finder is provided as a distance in centimeters, and rotating

the turntable allows distances from one or more objects to be detected and plotted. Data from a

virtual world containing virtual objects involves defining the location and orientation, with

location being FIXED and orientation being provided from the compass sensor to align the

avatar representation of the platform with the real environment. Fig. 25 illustrates the coordinate

system adopted in this example. Given location and orientation of the avatar, the distance to the

nearest objects in the given heading are computed and returned as truth.

Range

finder

Compass Arduino board

(sensor

interface)

56

Fig. 25. Range Finder Coordinate System.

5.1.1 Setup

To start building this application, the major components of the system must be defined and

mapped onto appropriate nodes in the framework as shown in Fig. 26. The setup is composed of

a total of six nodes to include:

• Arduino Interface (Sensors) – Queries the compass and range sensor connected to the

Arduino board and publishes the sensor data to the framework

• Custom Environment – Defines an environment for range detection comprised of

simple geometric shapes

• Virtual Range Finder Model – Models error for the virtual range finding sensor

• Sense (Plot) – Provides visualization of sensor data as points on a graph

• Range Combiner – Performs selection and augmentation on physical and virtual

range data

• Heading Single-Valued - Performs single-valued operation on physical heading data

North (90°)

South (270°)

West (180°) East (0°)

Location
(FIXED at Origin)

Range to Sensed Point

Current Heading

Sensed Point

57

Fig. 26. Range Finder Framework Structure.

This section will now discuss each of the nodes to describe their purpose, behavior, and specific

details to their construction.

5.1.1.1 Arduino Interface

The Arduino interface in this demo is used to obtain values from sensors to supply input

to the framework. This node is implemented as an Arduino sketch which is uploaded to the

Arduino board. The node advertises two topics for publishing: one for the physical heading and

one for the physical range. The Application class features two initialization functions and two

core functions to setup and query each sensor for data, respectively, and publish the data to the

appropriate topic.

Physical Hardware

Virtual Sensor Models

Virtual Environment/Test Scenario

Arduino Autonomous Software

Sensor Data Models

Sense

Range
Combiner

Physical
Heading

Sensors

Compass

Virtual Range
Finder Model

Distorted
Virtual
Range

True
Virtual
Range

Heading
Single-
valued

Physical
Range

Range
Finder

Test
Range

Test
Heading

Custom Environment

Arduino
Interface

58

The hardware utilized includes an Arduino board, the range finder, and the compass

sensor. An Arduino Due is the platform for connecting and running the physical sensors. A

laptop computer supplies the Arduino with power and allows it to communicate through serial

communication. The range finder used in this example is an HC-SR04 distance sensor that is

able to detect obstructions up to 400cm. The compass sensor is an HMC5883L 3-Axis digital

compass that measures heading offset from local magnetic field with 1 to 2-degree accuracy.

Fig. 27 illustrates how the HC-SR04 is connected to the Arduino board. The HC-SR04

requires a 5V voltage supply provided from the Arduino Due. The HC-SR04 works by sending a

pulse 40 kHz ultrasonic wave and detecting whether a reflected pulse is received. The distance

can then be calculated by measuring the time difference between sending and receiving the

signal. The device has an input trigger signal for initiating each pulse wave and output echo

signal for returning the time difference.

Fig. 27. HC-SR04 Hardware Setup.

59

The algorithm for triggering the pulse and computing distance is given in Fig. 28. The distance

is then computed as half the time duration times the speed of sound (in cm/uS).

Fig. 28. HC-SR04 Loop Routine.

Additionally, the echo signal has a voltage range of 3-5V which is larger than what PWM pins

on the Arduino Due can handle normally (max is 3.3V). A series of resistors are added to reduce

the voltage to a manageable range.

Fig. 29 illustrates the HMC588L connected to the Arduino Due. This device also

requires a 5V voltage supply from the Arduino Due.

Fig. 29. HMC588L Hardware Setup.

write LOW signal to trigger PIN to reset

delay for 2 microseconds

write HIGH signal to trigger PIN

delay for 10 microseconds

write LOW signal to trigger PIN to signal to start pulse

obtain time duration from echo PIN signal

distance = time duration / 2.0 * 0.0343

60

The HMC588L works by measuring the orientation of the device’s magnetic field offset from the

local field in the area. While the device is able to obtain orientation in 3 axes, only the

orientation around the vertical axis is published to the physical heading topic.

5.1.1.2 Custom Virtual Environment

The Custom Virtual Environment defines a world comprised of simple geometric shapes

for virtual range detection. The geometric shapes are comprised of basic shape components such

as line or curves or whole shapes such as ellipses. The virtual environment also maintains an

avatar of the system in the virtual world. The node subscribes to the physical heading topic and

publishes to a topic for true, or undistorted, virtual range. On the event of receiving new heading

data, an intersection is computed between each of the shapes and a vector oriented along the

current compass heading. The Euclidean distance can then be computed from the location of the

avatar (in this case the location is FIXED at the coordinate system’s origin) and the intersection

point, the minimum distance of which is provided as true virtual range. The general routine for

detection is shown in Fig. 30.

Fig. 30. Virtual Environment Detection Routine.

Initialize minimum distance to infinity

For each shape component in shapes:

 Compute intersection of heading vector with shape component

 If intersection exists

 Compute euler distance to intersection

 If distance < min distance

 Set min distance to distance

Assign virtual range as minimum distance and flag for publishing

61

Each shape component is represented by a unique mathematical equation. The

intersection is computed by solving for the coordinates ‘x’ and ‘y’ given a linear system of

equations formed by the heading and the corresponding equation for the shape component. The

equations are summarized in Table 3. Note ‘θ’ refers to the avatar’s heading.

Table 3. Details of shape components used in the Virtual Environment.

Shape

Component

System of Equations Intersection

Line 0

sin cos 0

Ax By C

x y 

+ + =

− + =

sin
cos

, ;cos 0

0, ;

m

C
x y mx

A mB

C
x y otherwise

B






=


= − =  +


 = = −


Quadratic 2 0

sin cos 0

Sx Tx Uy V

x y 

+ + + =

− + =
 ()

2sin
cos

4

,
2

m D T m AC

B D
x y mx

A




= = + −

− +
= =

Ellipse () ()
2 2

2 2
1

sin cos 0

x h y k

a b

x y 

− −
+ =

− + =

2 2 2 2 2 2 2

1,2 2 2 2

2 2 2 2 2 2 2 2

1,2 2 2 2

sin

cos

2

2

m k mh

hb ma a m b k k
x

a m b

b ka m abm a m b k k
y

a m b


 



  

  

= = − =

−  + − − +
=

+

+  + − − +
=

+

Note the process may compute intersection points that are behind the avatar or outside the

bounds of the shape component. To determine if an intersection point is valid, the intersection(s)

is computed and then compared to boundary conditions of each shape component and the

forward vector form by the sensor given the orientation of the avatar. Intersection points that are

62

facing away from the heading or are outside of the boundary of the shape are treated as if the

intersection does not exist.

5.1.1.3 Virtual Sensor Model

As shown, while the Virtual Environment provides truth, it does not account for the

irregularities and error associated with a physical sensor. The true virtual range represents the

ideal distance, if sensor were perfect and provide the actual distance from a virtual obstruction.

However, to accurately test the autonomous software, virtual distance data should emulate

physical distance data. To achieve this, data was collected from the physical range-finder to

capture sensed and real distances from various object shapes and materials. The data was used to

build a model to modify truth data provided from the virtual environment.

Table 4 provides the results of input analysis done to estimate a parametric distribution

for modeling sensor error in the virtual sensor model. The bolded entry represents the

distribution that was chosen.

Table 4. Sensor Model Analysis Results.

Function Sq. Error KS statistic

Weibull 0.00421 0.145

Normal 0.00473 0.12

Gamma 0.011 0.142

Erlang 0.0166 0.146

Uniform 0.0187 0.125

Beta 0.0226 0.112

Triangular 0.0226 0.273

Lognormal 0.0253 0.168

Exponential 0.0718 0.229

63

The error distribution is estimated by taking the difference between actual and sensor distances

over a number of actual distances from the sensor. Common probability density functions were

tested against the empirical distribution from 16 difference data points using statistical tests in

input analysis (e.g. chi-square and KS test).

Of the results, the parameters for a normal distribution were computed by maximum

likelihood estimation for normal distribution. The normal distribution was chosen for its low

mean square error to the data and its ability to account for values outside of those recorded. Fig.

31 shows the fitted distribution.

Fig. 31. Fitted Sensor Model Error Distribution.

Note, this only accounts for some of the error associated with the HC-SR04 and does not

consider more complex issues associated with an ultrasound sensor such as reflection on

64

irregular or oriented surfaces. Ideally the resulting model would prevent the autonomous

software from being able to detect the source of data by the form of the data. This would require

more complete sensor modeling than done for demonstration purposes here. The process can be

very complex, for instance the simple ultrasonic range finder employed may produce no data if

the angle of the object being detected is too steep, or even worse, greatly chaotic results.

5.1.1.4 Range Combiner

The Range Combiner performs selection and augmentation on physical and virtual range

data. Physical sensor data is obtained using an Arduino node and published to topics for the

sensor data model. Virtual sensor data is obtained from the virtual environment and distorted

through virtual range finder model. The data is then manipulated based on the following modes

of operation:

• 0 (physical range finder data) – sensor data from the physical range finder is passed

through.

• 1 (virtual range finder data) – sensor data from the virtual range finder is passed through.

• 2 (augmented range finder data) – sensor data from the physical range finder is

augmented with data from the virtual range finder. This simple demonstration involves

just taking the minimum of the two data. Other sensors would involve much more

complicated augmentation (consider a camera image).

Based on the mode of operation, the Combiner waits until physical range, virtual range, or both

are received before performing the selection or augmentation. Additionally, the Range

Combiner has a minimum and maximum range limit. Input values that are outside the limits are

passed on as infinity.

65

5.1.1.5 Heading Single-Valued

The heading single-valued model from the HMC558L. Note that this single-valued

model is technically implemented as a Combiner class only without a virtual or augmented mode

of operation. The Heading Single-Valued only has a single mode of operation:

• 0 (physical heading data) – sensor data from the physical compass is passed through.

 The heading single-valued model also performs a conversion from the coordinate-system the

HMC588L uses and the what is used internal to the autonomous software. Fig. 32 shows the

conversion between the compass coordinate system and the coordinate system used by the

autonomous software sense stage.

North
(0°)

South
(180°)

West
(270°)

East
(90°)

Heading=30°

North
(90°)

South
(270°)

West
(180°)

East (0°)

Heading=60°

HMC5883L Compass Virtual Environment

Fig. 32. Compass Coordinate Conversion.

5.1.1.6 Sense (Plot)

The Sense node acts as the autonomous software under test in this example. The node

accepts sensor data from the framework and provides a basic visualization of the sensor data as

points on a 2D cartesian graph. The data points are drawn in a dynamically as the sensor is

66

rotating and new heading and range data is received. The visualization is generated by utilizing

the Qt graphics library.

Qt has its own procedures and events for handling window processing, drawing, and

device input (such as from keyboard and mouse). Each Qt application must allow Qt API

control of the program to perform its necessary activities. This creates the situation where there

are two control loops within the Sense node as the framework API has its own control loop that

must run regularly to process the sending and receiving of data on topics. As a consequence, the

Qt portion must be run on a separate thread to prevent blocking the Publish-Subscribe

processing. Fig. 33 provides an illustration of how both Sense and Qt both have their own

independent control loops.

Fig. 33. Multithreaded Processing for Qt.

The main thread of the node is assigned to Sense. This thread processing events for receiving

range and heading data and pushing the data to Qt once both are received. The other thread

manages the graphics control loop that includes processing normal window or keyboard events,

Process incoming messages data

SenseSense QtQt

Indicate data is received in message callbacks

Check if all data is received

If so, invoke method to push data to Qt

Process window & input events

Process any invoked methods

If so, update graphics with new data

Redraw graphics elements

67

processing data pushed from the main thread, updating the graphics with the new data, and then

redrawing the graphics objects on the screen.

Fig. 34 shows a sequence diagram of the interaction between the two threads. Most of

the activities are performed independently which allows both to handle timed updates (such as

refreshing the screen) in their own manner. The primary interaction comes when data must be

pushed to be available Qt thread to update the graphics objects. The Sense thread first processes

incoming messages as per the regular Node control loop and indicates when each (range and

heading) is received.

Fig. 34. Qt Thread Interaction.

Once both are received, the Sense thread makes an asynchronous call to a method in

corresponding Qt class, providing the data to push as parameters. The Qt thread can then use the

data to update graphics (such as adding point to the main plot). Regardless if a call was made,

the Qt thread redraws the graphics elements and window to reflect the current state of the

visualization.

Qt

Process Incoming Messages

Sense

Check if all data received

Indicate data is received in callback(s)

Update graphics with new data

Process window events

Redraw graphics elements
If all relevant data

is received

Process Qt Invoked methods

68

5.1.2 Experiment

This section describes the experiment details undergone to demonstrate the range finder

under different reality modes. This begins with a description of the environment scene in which

the range finder will operate. The range finder is then set to sense the environment in each

reality mode with results overlaid to view accuracy. This is followed by a discussion of the

results of applying the framework to the range finder.

5.1.2.1 Range Finder Scene

In this experiment, the idea is to build a scene and vary the reality mode to demonstrate

the effects of VR and AR on the Sense stage of the range finder. Fig. 35 shows the progression

of the scene across virtual, augmented, and physical reality modes. In the scene, the robot is

situated at the center of the environment and initially faces North. In the virtual scene, a simple

rectangular shape is placed at some distance in front of the range finder (roughly 50-55 cm). As

we move to augmented reality, a physical rectangular object is placed to the left of the sensor at a

similar distance and different orientation. This allows the real and virtual objects to occlude each

other partially. The third reality mode removes the virtual object from consideration.

69

Fig. 35. Range Finder Scene in different Reality Modes.

5.1.2.1 Range Finder Results

By varying the reality mode of the Range Combiner, different environments are

perceived without modification of the Sense stage. Fig. 36, Fig. 37, and Fig. 38 show plots of the

resulting environment in the order of introduction of fidelity and movement across the virtuality-

reality spectrum.

70

Fig. 36. Virtual Reality Plots.

Fig. 37. Augmented Reality Plots.

71

Fig. 38. Physical Reality Plot.

5.1.2.2 Range Finder Conclusions

The results show that the range finder can be tested under different conditions in the

virtuality-reality spectrum without modification of the autonomous software. First, the

framework is able to isolate virtual data to test the Sense stage in a simulated environment. This

illustrates that a basic environment can be perceived. Both physical and virtual range data can

then be augmented, and the interaction can be modeled separately from the Sense stage of the

autonomous software. Finally, the framework is also able to isolate and test with only physical

data, showcasing that the fully integrated system can be tested with the same framework

structure. Additionally, error models can be applied to the virtual data without having to modify

the virtual environment or the autonomous software. The error is also modeled as a separate

node and is, therefore, decoupled from any changes in the virtual environment. However, the

framework also introduces issues in synchronization and a time lag between the Sensors and

Sense stage. This can be seen notably in the virtual and augmented reality mode, where the lag

72

causes (small) distortions in the virtual data that would otherwise not exist. The lag is likely due

to a different rate of computation between virtual data (produced by the virtual environment) and

physical data (published from the Arduino interface). Further research may work to adjust the

framework to accommodate the synchronization issues.

5.2 Obstacle Avoidance Demonstration

This use case demonstrates the Test & Evaluation framework for an autonomous rover

avoiding obstacles and boundaries encountered in the environment. The example focuses on the

use of information in the virtuality-reality spectrum. Unlike the range finder use case, this

example does not use any physical sensor devices. The autonomous software is entirely

operating in a virtual environment. An autonomous planning stage directs the rover’s actuators

(i.e. wheels) when obstacles are detected. The actuator data can be used to control a virtual

avatar of the rover in the virtual environment. The data can also be used to control physical

actuators on a real-life rover, shown in Fig. 39.

Fig. 39. Physical Rover Chassis.

73

The virtual environment is composed of three coordinate frames: a global coordinate

system, a vehicle-carried coordinate frame, and a local coordinate frame. This is similar to the

Local NED (North-East-Down) coordinate system [25]. Fig. 40 provides an illustration. The

global coordinate system is a two-dimensional space measured in centimeters along a horizontal

and vertical axis. For this demonstration, the origin of this global coordinate system and the

orientation of its axes are mapped arbitrarily to the area used at the time of testing. The vehicle-

carried coordinate system is centered on the position of the entity within the global coordinate

system.

Fig. 40. Coordinate Systems Utilized in Obstacle Avoidance.

YG

XG

YV

XV

YL

XL

θ

x

y

74

The axes of the vehicle-carried coordinate frame are oriented in the same direction as the axes of

the global coordinate frame. Finally, the local (or body) coordinate frame is centered on the

position of the entity but with axes that are aligned with the orientation of the entity relative to

the vehicle-carried coordinate frame.

As such, the coordinates of each entity within the environment can be described with

three parameters: {x,y,θ}, where ‘x’ is the distance in cm from the global to the vehicle-carried

coordinate frame’s origin along the horizontal axes, ‘y’ is the distance in cm from the global to

the vehicle-carried coordinate frame’s origin along the vertical axes, and ‘θ’ is the orientation of

the local coordinate frame in degrees relative to the vehicle-carried coordinate frame.

5.2.1 Setup

Similar to the range finding example, the major components of the system are defined

and mapped onto the appropriate nodes within the framework as shown in Fig. 41. Some of the

components have similar responsibilities as the ones in the range finder with a few notable

exceptions. The major components of this demonstration are provided as follows:

• Arduino Interface (Actuators) – Sends signals to wheel actuators based on

actuator control data received from the framework

• Custom Environment – Defines the environment comprised of boundaries and

obstacles and an avatar of the rover

• Virtual Rover Model – Computes motion (translation and rotation) of virtual

rover over time based on current wheel actuator data

• Planner – Determines wheel actions for autonomous rover based on detected

objects and current location and orientation

75

• Detection Model – Performs selection on obstacles detected in environment

• Rover Pose Model – Performs selection on the rover’s position and orientation

data made available to the autonomous software

• Wheel Splitter – Relays wheel actuator data to both physical and virtual actuators

• Visualization – Presents a visualization of the virtual environment and current

rover position and orientation

Fig. 41. Obstacle Avoidance Framework Structure.

This section will discuss each of the nodes for obstacle avoidance including their purpose,

behavior, modeling details, and related information.

5.2.1.1 Arduino Interface

The Arduino interface is used to communicate with the physical rover’s wheels. This

node is implemented as an Arduino sketch uploaded to the Arduino board. The sketch

subscribes to one topic to receive the physical actuator control data. The class also features an

Physical Hardware

Virtual Actuator Models

Virtual Environment/Test Scenario

Arduino

Autonomous
Software

World Information Models

Planner

Actuators

Virtual Rover Model

True
Detected
Obstacle

Rover
Model
Output

Detection Model
(Single-Valued)

Wheels

Test
Detected
Obstacle

Custom Environment

Actuator Data Models

Wheel
Splitter

Arduino
Interface

Virtual
Wheel
Action

Physical
Wheel
Action

Test
Wheel
Action

Visualization
Virtual

Obstacle
Info

Test
Rover
Pose

Rover Pose
Model

(Single-Valued)

True
Virtual
Pose

76

initialization function and core function to setup and send signals to the wheel actuators,

respectively.

The hardware utilized include an Arduino board, a Sabertooth dual 25A motor controller,

and four IG52-04 motors (the two rear motors include encoders), and a rover chassis. The IG54-

04 motors are powered by a 24V battery regulated through the motor controller. The motor

controller drives each set of motors (left/right) independently. The Arduino communicates with

the motor controller through 2 PWM signals (one for each set of motors). The signal is an

integer value from 1 to 255 whose values are partitioned into two ranges where each range sets

the velocity of one set of motors. These values are further mapped to the range [-1,1] to simplify

control, allowing each set of wheels to either go full forward, full reverse, or stop. Table 5

shows the range of values and their corresponding motor set and velocity.

Table 5. Signal values used for controlling Wheel Motors.

Full Reverse Stop Full Forward Full Reverse Stop Full Forward

1 63 127 128 191 255

-1 0 1 -1 0 1

Right Motors Left Motors

5.2.1.2 Custom Virtual Environment

The virtual environment in this demonstration is comprised of a set of obstacles and a

boundary around the environment. It also maintains a virtual avatar of the rover within the

environment, allowing the environment to provide information relative to the rover position.

The obstacles are represented as shapeless points within the environment. Each obstacle is

77

described by a number identifier and a position within the environment. The boundary sections

are represented and described as line segments. The environment node listens for pose

information to update the position and orientation of virtual rover avatar. The node also

performs collision detection and publishes information about detection events that occur during

the computation.

A vehicle avatar is maintained in the environment and is described by the parameters as

shown in Table 6. This includes parameters for describing the position and orientation of the

rover within the virtual environment. It also includes parameters for defining the vehicle’s

ability to sense the environment. The node subscribes to the virtual location topic and publishes

the event on which the avatar detects an obstacle or boundary.

Table 6. Virtual Rover Avatar Parameters.

Avatar

Parameter
Description Units

x
Distance of rover from global origin along the horizontal

axis
Cm

y Distance of rover from global origin along the vertical axis Cm

θ Angular displacement of rover around the local origin Degrees

δ Maximum distance that obstacles can be detected Cm

ϕ Half the field of view that obstacles can be detected within Degrees

 The virtual environment node registers an input function for notification of new pose data

for the rover. On the event of receiving the data, the environment computes a projection with the

available obstacles and boundary segments. Fig. 42 illustrates the detection of obstacles within

the virtual environment. For each obstacle, a projection vector is computed and compared to the

maximum detection distance and the field of view to determine if the obstacle can be detected. If

78

there are multiple obstacles are detected, the virtual environment keeps the obstacle that is

closest to the rover as truth.

Fig. 42. Detection of Points for Obstacle Avoidance.

Fig. 43 illustrates the detection of boundaries within the virtual environment. The boundary is

described using a line segment instead of a point. For each boundary segment, an intersection is

computed between the segment and rays oriented by angle ϕ relative to the rover’s local

coordinate system. Intersections that are not in front of the rover or are outside the maximum

distance threshold are disregarded. In the case of multiple (two) detections on more than one

boundary segment, the environment assumes that the boundaries will intersect at a corner. The

coordinates of the detection point are then estimated as coordinates from the two detected points

with the greatest absolute value in the global coordinate system.

Detected

Not-Detected

Not-Detected

XL

YL

φ φ

δ

79

Fig. 43. Detection of Boundaries for Obstacle Avoidance.

After computing the closest detection, the environment publishes the event including the ID of

the obstacle, the position of the obstacle, and the computed distance to the obstacle from the

rover. In case of detecting a boundary or corner, the ID of the obstacle is not defined.

5.2.1.3 Virtual Rover Model

 The virtual rover model is responsible for simulating the motion of the virtual rover over

time to provide position/orientation to the virtual environment in the absence of localization

hardware. It acts as a virtual counterpart to the Arduino interface/physical rover. The node

accepts the actuator data to control the virtual rover’s motion. The results of the model

computation are a new pose for the virtual rover that is published to the framework.

 The model is based on a kinematic model with three degrees of freedom. The model is

simplified and is mainly used for proof of concept rather than physical accuracy. The parameters

for the model include rotational speed (cRot), translational speed (cTrans), and an axis of rotation

XL

YL

φ φ

δ

Boundary

DetectedNot-Detected

Not-Detected

YG

XG

XL

YL

φ
φ Detected

Detected
Estimated

Boundary

δ

80

defined in two dimensions (aL). Note that translational speed is in the local coordinate system.

The model also depends on the current position and orientation of the rover (given by the tuple

G Lp ) and current state of the left and right wheels (w0 and w1, respectively). The rover

state definitions are given in Equation 1. Note the subscripts of ‘L’ and ‘G’ are used to signify

the local and global coordinate space, respectively, for each variable.

cos sin cos

sin cos sin

G L L L

G L L

G L L L

x
p R m

y

  

  

−     
= = =     

    
 (1)

The computations for the model are divided into two parts: rotation and translation.

Rotation may affect both the position and orientation of the rover, whereas translation only

affects the position. The rotations effect on position depends on the current wheel state which, in

turn, affects the axis of rotation. Equation 2 illustrates the intermediate formulas that are used in

computing rotation and translation.

0 1

0 1

0 1

0 1

1,

1,

0,

,
0

,
0

0
,

0

cos sin

sin cos

Rot

L

L

L

Rot

L

w w

d w w

otherwise

x
w w

x
a w w

otherwise

c t d

R



 

 




= − 



 
 

 
 − 

=  
 
 
 
 

 =  

 −  
 =  

  

0 1

0 1

1, 0, 0

1, 0, 0

0,

Trans

Trans L

w w

d w w

otherwise

p c m t d

 


= −  



 =   

 (2)

In both cases, a direction variable is used to determine a forward/CW or backward/CCW

direction to apply the rotation or translation. The rotation operation then calculates an axis of

81

rotation to correct for off-balance wheels. Finally, a delta is calculated for rotation and

translation based on the speed parameter for each and a time step to advance.

After computing the deltas for rotation and translation, the new pose can be computed as

shown in Equation 3. The formula for
Rotp transforms the position to center around the axis of

rotation before applying the rotation.
Gp is then computed by applying the translation delta. The

new pose is represented by the tuple G Lp   .

()() ()Rot L L L G L L G

L L

G Rot

p R R a p R a p

p p p

  

 =  + − +

 = + 

 = + 

 (3)

It is assumed that the rover model accepts the same type of data as the Arduino interface.

This includes integer values for the left and right wheel within the range [-1,1]. It is also

assumed that the axis of rotation only varies along the local XL axis of the rover. This simplified

the calculations. The experiment section (5.2.2) further states that weights are added to the

physical rover to bring its axis of rotation into a similar alignment. Another assumption is that

the translation speed and rotation speed parameters are constant given a specific wheel state.

5.2.1.4 Planner

The Planner node acts as the plan stage of the autonomous software in this application.

The main goal of the planner in this application is to direct the rover to avoid obstacles or

boundaries within the environment. This involves assessing the current state of the world

representation and deciding to change the course of the rover or keep it the same. The change is

then communicated by publishing new wheel actuator data.

The world representation for the planner is composed of the most recent detection within

the environment and the rover’s most recent pose within the environment. Both types of data are

82

used to determine what action the rover should perform to avoid collision. In addition, an

internal timer to keep a particular action for a certain amount of time.

The actions of the planner can be summarized by the state machine shown in Fig. 44.

The state machine is composed of three main states that correspond to the action the Planner

directs the rover to make when that state is active. The state highlighted green (“Go Forward”) is

the initial state of the Planner. The planner stays in this state until a detection is observed.

Fig. 44. Planner State Machine.

The Planner then determines whether the detection is to the rover’s left or to its right based on

the rover’s current pose (position and orientation). If it is to the left, the Planner transitions to

the “turn right” state to attempt to avoid the obstacle; if it is to the right, the Planner transitions to

the “turn left” state. In either transition, the timer is set to a certain time in the future. The

Planner’s core function then iteratively compares elapsed computer time with the set time.

Go Forward

Turn RightTurn Left

Timer expire Timer expire

Detection to
the Right

Detection to
the Left

83

When the timer expires, the planner transitions back to the “Go Forward” state and the process

can repeat.

5.2.1.5 Detection Model, Rover Pose Model, and Wheel Splitter

The detection model is a node for performing selection and augmentation of detection

events within the framework. For the current demonstration, it is assumed that there are no

physical detections and that all detections are from the virtual environment (either of an obstacle

or boundary) from the virtual rover. Therefore, the detection model is configured as a single-

valued node that passes through the data coming from the virtual side of framework. The model

is still implemented as a Combiner in the anticipation of detections obtained from a Sense node.

That is, the detection model acts as a placeholder to eventually be extended to a Combiner in the

future.

Similarly, the Rover Pose model performs selection and augmentation of the position and

orientation data required by the Planner. The node is also configured as a single-valued node

that simply passes the virtual pose data from the Virtual Environment as no physical sensors are

used for localization. At this time, the data does not require any conversion from the coordinate

system used by the Virtual Environment as the Planner assumes the same representation.

However, the model is available for potential conversions if nodes should be replaced.

The wheel splitter is a framework node that relays wheel actuator data to both physical

and virtual actuators. The node also does not need to apply conversions to the data to work with

the physical and virtual actuators. This is node is still made available to maintain isolation and

allow for potential conversions of wheel actuator data should nodes be replaced.

84

5.2.1.6 Visualization

The visualization in this example is a separate node that observes data from the virtual

rover and virtual environment and presents a visual depiction of the current state of both over

time. The node observes information about the rover pose and obstacles within the virtual

environment to construct a map of the virtual world. The visualization is also generated by

utilizing the Qt graphics library.

Like the Sense (Plot) node in the range finding application, this node maintains two

threads for regular communication and graphics updates, respectively. The sequence diagram is

mostly the same with a difference in the type of graphics that need to be updated in the

visualization; and, therefore, the type of data that needs to be communication between threads.

Fig. 45 shows the graphics components of the visualization. This includes a graphic for the

virtual rover avatar and graphical representations for each obstacle and boundary within the

environment.

Fig. 45. Visualization of Virtual Avatar and Environment.

Field of View

Rover

Boundary

Obstacles

85

Note that the size of the obstacles within the visualization are not indicative of actual size. The

size is only made as such to make it easier to view. Additionally, the visualization shows the

rover pose and obstacle positions from the global coordinate frame.

5.2.2 Experiment

In this section, the experiment for testing obstacle avoidance will be described. This

begins with a description of the scene the rover will perceive. This is followed by a discussion

of the results of applying the framework to obstacle avoidance.

5.2.2.1 Obstacle Avoidance Scene

The experiment scene for this demonstration is set up in an enclosed virtual environment

with obstacles that are scattered randomly within the room to provide variety. The idea is to

mimic the environment that a Roomba would traverse in order to perform an operation such as

cleaning or floor mapping [26]. As such, four boundary segments are defined at a distance of

100cm along each axis from the origin of the global coordinate frame as shown in Fig. 46.

Additionally, 10 obstacles are created and placed randomly within 60cm radius of the global

origin.

86

Fig. 46. Experiment Scene for Obstacle Avoidance.

Several parameters for sensing and motion are also set for the virtual rover avatar. This

includes the maximum range and viewing angle (field of view) to detect any obstacle or

boundary. It also includes the initial pose of the rover and parameters such as translational and

rotational speed. These are summarized in Table 7.

Table 7. Experiment Parameters for Obstacle Avoidance.

Parameter Initial Value Units

X 0.0 Cm

Y 0.0 Cm

Θ 0.0 Degrees

Δ 20.0 Cm

Φ 30.0 Degrees

CRot 23.0 Degrees/sec

CTrans 7.0 Cm/sec

xL 5.0 Cm

87

5.2.2.2 Obstacle Avoidance Conclusions

This demonstration indicates promise in utilizing the framework to facilitate testing

between simulated and physical systems. It highlights the capability of the framework to isolate

the autonomous software from the system it controls. As such, the Plan stage is able to be tested

controlling a simulated and physical system without modifications to the autonomous software.

Additionally, the autonomous software Plan stage is isolated from the virtual environment. As

such, the virtual environment can be replaced with an environment with greater fidelity or more

resolution. This is also true for the virtual rover model. While the model localizes the

autonomous system within the virtual environment, the model is a crude approximation of the

rover’s motion with assumptions that do not account for physical effects such as friction. In

addition, other localization methods could be employed such as utilizing GPS sensing or the

motor encoder data that could more accurately position and orient the rover within the virtual

environment; although, these would only be relevant in an augmented or physical reality mode.

As the virtual and physical system is decoupled from the autonomous software, modifications to

add a higher fidelity model or an appropriate substitute would not impact the autonomous

software stages.

88

CHAPTER 6

CONCLUSION

The Test & Evaluation process of autonomous software presents many challenges in

handling the transition between early simulated systems and the fully integrated physical system.

The framework presented in this thesis provides a promising architecture for supporting the

testing of autonomous software over the course of its development. The framework isolates the

autonomous software from the components of the testing environment (e.g. virtual environment),

allowing the software to be tested provided the components can provide sufficient data required

by the autonomous software. A Publish-Subscribe communication pattern is leveraged to

support communication in the decoupled system. The framework test harness includes nodes

(e.g. Combiner, Splitter, and Single-valued) to manipulate and route information as necessary to

conduct different testing scenarios. The two use cases provide a proof of concept of the

architecture and illustrate the framework is capable of supporting testing of stages of the

autonomous software in mixed reality without additional effort to reconfigure for different

environments, such as creating separate testing harnesses.

Further applications can now be explored. A development process may be defined to

address parallel development across different development roles of the autonomous system.

Several roles have been identified in this thesis; but a process is required to ensure external

sources of information (i.e. virtual environment, virtual sensor models) are ready to allow testing

of the autonomous software. Additionally, the use cases have only tested a single autonomous

system in the environment at a time. Leveraging the framework, collaborative autonomous

systems could be developed in both physical and virtual reality by isolating knowledge of

89

whether a collaborating system is, in fact, physical or simulated. For example, the Obstacle

Avoidance use case has recently been expanded to include a virtual rover autonomous vehicle

that can interact with the physical rover within the virtual environment as if it were another

obstacle to avoid. The framework API could also be extended to include direct channel

communication or command and control (C2) communication between collaborating systems in

addition to the regular data communication via topics. There is also potential to develop human

interfaces to visually observe the virtual and augmented environments while testing scenarios

within the virtuality-reality spectrum. Visualizations can leverage the framework to isolate itself

from the autonomous software or virtual environment.

While the system is now a valid proof of concept, there are still areas of potential

improvement. The demonstration indicates issues with Publish-Subscribe communication that

may need addressing. Time lag between certain nodes may be fine for low-risk systems but

introduce problems with autonomous systems that require a high-level of accuracy.

Additionally, the security requirements of each node must be considered. Should nodes assume

the data they are provided is correct? This can lead to a question of integrity within the system,

which can be a critical concern for autonomous systems that make decisions based off of the

available data. ROS is known to have security issues [27]. Additionally, the amount of data

communicated between nodes in the use cases is relatively minute. Research should keep in

mind how increasing data requirements (such as the introduction of an 2D images) will impact

the communication.

90

REFERENCES

[1] Goldman Sachs Research, "Drones: Reporting for Duty," [Online]. Available:

https://www.goldmansachs.com/insights/technology-driving-innovation/drones/. [Accessed

1 February 2018].

[2] CAPITOL Technology University, "Masters of Science (MS) in Unmanned and

Autonomous Systems Policy and Risk Management," [Online]. Available:

https://www.captechu.edu/degrees-and-programs/masters-degrees/unmanned-and-

autonomous-systems-policy-and-risk-management-ms. [Accessed 5 March 2019].

[3] K. Kaur and G. Rampersad, "Trust in driverless cars: Investigating key factors influencing

the adoption of driverless cars," Journal of Engineering and Technology Management, vol.

48, pp. 87-96, 2018.

[4] A. KIRILENKO, A. S. KYLE, M. SAMADI and T. TUZUN, "The Flash Crash: High-

Frequency Trading," THE JOURNAL OF FINANCE, vol. LXXII, no. 3, pp. 967-998, 2017.

[5] A. Ollero, J. R. Martínez-de-Dios and L. Merino, "Unmanned Aerial Vehicles as tools for

forest-fire fighting".

[6] V. Osadcuks and A. Galins, "SOFTWARE IN THE LOOP SIMULATION OF

AUTONOMOUS HYBRID POWER SYSTEM OF AN AGRICULTURAL FACILITY,"

in 11th International Scientific Conference, Jelgava, 2012.

[7] P. Koopman and M. Wagner, "Challenges in Autonomous Vehicle Testing and

Validation," SAE Journal on Transportation Safety, vol. 4, no. 1, pp. 15-24, 2016.

[8] T. Menzies and C. Pecheur, "Verification and Validation and Artificial Intelligence,"

Advances in Computers, vol. 65, pp. 153-201, 2005.

[9] J. Schumann and W. Visser, "Autonmoy Software: V&V Challenges and Characteristics,"

2006.

[10] P. Helle, W. Schamai and C. Strobel, "Testing of Autonomous Systems - Challenges and

Current State-of-the-Art," in 26th Annual INCOSE International Symposium, Edinburg,

2016.

[11] B. Davis and D. Lane, "Guided Construction of Testing Scenarios for Autonomous

Underwater Vehicles Using the Augmented-Reality Framework and JavaBeans," Journal

of Engineering for the Maritime Environment, vol. 224, no. M, pp. 173-191, 2010.

[12] R. A. Brooks, "A Robust Layered Control System for a Mobile Robot," IEEE JOURNAL

OF ROBOTICS AND AUTOMATION, Vols. RA-2, no. 1, pp. 14-23, 1985.

[13] G. Erann, "On Three-Layer Architectures," Artificial Intelligence and Mobile Robots,

1998.

[14] P. Milgram, H. Takemura, A. Utsumi and F. Kishino, "Augmented Reality: A Class of

Displays on the Reality-Virtuality Continuum," SPIE Telemanipulator and Telepresence

Technologies, vol. 2351, pp. 282-292, 1994.

[15] J.-A. Fernandez and J. Gonzalez, "A FRAMEWORK FOR INTEGRATING THE

SOFTWARE COMPONENTS OF A ROBOTIC VEHICLE," IFAC Proceedings Volumes,

vol. 31, no. 2, pp. 419-423, 1998.

[16] S. Limsoonthrakul, M. N. Dailey, M. Srisupundit, S. Tongphu and a. M. Parnichkun, "A

Modular System Architecture for Autonomous Robots Based on Blackboard and Publish-

91

Subscribe Mechanisms," in ROBIO IEEE International Conference on Robotics and

Biomimetics, Bangkok, 2008.

[17] S. Tarkoma, PUBLISH/SUBSCRIBE SYSTEMS DESIGN AND PRINCIPLES, West

Sussex: Jon Wiley & Sons Ltd, 2012.

[18] P. Eugster, P. Felber, R. Guerraoui and A.-M. Kermarrec., "The Many Faces of

Publish/Subscribe," ACM Computing Surveys, vol. 35, no. 2, pp. 114-131, 2003.

[19] Documentation - ROS Wiki, http://wiki.ros.org/, 2019.

[20] Master - ROS Wiki, http://wiki.ros.org/Master, 2019.

[21] What is Arduino?, https://www.arduino.cc/en/Guide/Introduction, 2019.

[22] Examples from Libraries, https://www.arduino.cc/en/Tutorial/LibraryExamples, 2019.

[23] roslaunch Package Summary - ROS Wiki, http://wiki.ros.org/roslaunch, 2019.

[24] rosserial Package Summary - ROS Wiki, http://wiki.ros.org/rosserial, 2019.

[25] G. Cai, B. M. Chen and T. H. Lee, Unmanned Rotorcraft Systems, London: Springer-

Verlag, 2011.

[26] B. Tribelhorn and Z. Dodds, "Evaluating the Roomba: A low-cost, ubiquitous platform for

robotics research and education," in Proceedings 2007 IEEE International Conference on

Robotics and Automation , Roma, 2007.

[27] J. Mcclean, C. Stullb, C. Farrarc and D. Mascareñas, "A Preliminary Cyber-Physical

Security Assessment of the Robot Operating System (ROS)," in Proceedings of SPIE - The

International Society for Optical Engineering, 2013.

92

VITA

Nathan Daniel Gonda Graduate Researcher, Autonomous Systems

Old Dominion University Dept. of Modeling, Simulation, and Visualization Engineering

5115 Hampton Blvd, Norfolk, VA 23529

ngond002@odu.edu

EDUCATION

Master of Science in Modeling and Simulation (GPA: 3.75) Aug 2017 - Present

Old Dominion University - Norfolk, Virginia

Relevant Courses: Machine Learning I and II, Intro to Combat Modeling & Simulation

Bachelor of Science in Modeling and Simulation (GPA: 3.94) Aug 2014 - May 2017

Old Dominion University - Norfolk, Virginia

Relevant Courses: Discrete Event Simulation, Continuous Simulation, Simulation Software

Design, M&S Statistics & Analysis, Object Oriented Design, Introduction to Distributed

Simulation, Linear Algebra

Associate of Arts and Sciences - Computer Science (GPA: 4.00) Aug 2012 - May 2014

Paul D. Camp Community College - Franklin, Virginia

PUBLICATIONS

• Gonda, N., Laverghetta, T.J., Leathrum, J.F., AN ARCHITECTURE FOR TEST &

EVALUATION OF AUTONOMOUS SYSTEMS ALONG THE SPECTRUM OF

MIXED REALITY. Paper submitted to the WinterSim Conference 2019, National Harbor,

MD. (Submitted)

• Leathrum, J.F., Laverghetta, T.J., Gonda, N., Integrating Virtual and Augmented Reality

Based Testing into the Development of Autonomous Vehicles. Paper in press at the

MODSIM World Conference 2019, Norfolk, VA.

• Leathrum, J.F., Shen, Y., Mielke, R.R., Gonda, N., Integrating Virtual and Augmented

Reality Based Testing into the Development of Autonomous Vehicles. Paper presented at

the MODSIM World Conference 2018, Norfolk, VA.

• Collins, S.C., Gonda, N.D., Dumaliang, L.C., Leathrum, J.F., Mielke, R.R.,

(2017). VISUALIZATION OF EVENT EXECUTION IN A DISCRETE EVENT

SYSTEM. Paper presented at the SpringSim-ANSS 2017 Conference, Virginia Beach, VA.

• Branch, B., Collins, S., Dumaliang, L., Gonda, N., Lane, T., Miles, K., Periman, M.,

Scerbo, D., Rapid USV Prototyping System (RUPS). Paper presented at the MODSIM

World Conference 2017, Virginia Beach, VA.

AWARDS

VMASC Industry Association Undergraduate BS/MS Scholarship March 2017

VMASC Industry Association VCCS Scholarship July 2014

Gordon G. Barlow Jr. Memorial Scholarship February 2013

Kiwanis Club of Smithfield Scholarship February 2013

Paul D. Camp Classified Personnel Scholarship August 2013

Louis Armstrong Jazz Award June 2011

mailto:ngond002@odu.edu

	A Framework for Test & Evaluation of Autonomous Systems Along the Virtuality-Reality Spectrum
	Recommended Citation

	tmp.1560264554.pdf.Tc0DP

