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Thermal lattice Boltzmann simulations of variable Prandtl number turbulent flows
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Institute of Plasma Physics, Czech Academy of Sciences, Praha 8, Czech Republic

Linda Vahala
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529

Hudong Chen
Exa Corporation, Cambridge, Massachusetts 02139
(Received 9 June 1997; revised manuscript received 24 Octobej 1997

Thermal lattice BoltzmaniTLBE) models that utilize the single relaxation time scalar Bhatnagar, Gross,
and Krook collision operator have an invariant Prandtl number. For flows with arbitrary Prandtl number, a
matrix collision operator is introduced. The relaxation parameters are generalized so that the transport coeffi-
cients become density independent. TLBE simulations are presented for two-dimensional free decaying turbu-
lence induced by a strongly perturbed double velocity shear layer for various Prandtl numbers.
[S1063-651X98)08304-4

PACS numbds): 47.11+j, 47.27—i

I. INTRODUCTION Even further simplification was proposed by introducing its
Bhatnagar, Gross, and KrodBGK) version[6] in which the
The lattice Boltzmann metho(LBE), an outgrowth of collision operator is condensed into a single relaxation pa-
lattice gas automatofLGA) [1-3], has been considered re- rameter. This scalar collision operator is found not only suf-
cently as a possible alternative explicit numerical scheme tficient to be able to recover the desired nonlinear transport
conventional methods for solving nonlinear macroscopicequations under Chapman-Enskog expansions, but is compu-
physical systems, in particular for Navier-Stokes flows. Liketationally more efficient. Even though the dynamical phase
LGA, LBE is ideally suited for parallel computing environ- space has been increased by going from macroscopic to a
ment while in some respects improving the ancestral LGAmMicroscopic description, the advantages of explicit lattice
model by eliminating statistical noise, non-Galilean invari- BGK models[6—9] can be summarized as follows: parallel-
ance as well as pressure that is velocity dependent. This ism of the method, the simplicity of the code, easy treatment
accomplished essentially in LBE at the expense of workingpf realistic boundary conditions, and ready extension to 3D
with floating point rather than Boolean variables and theproblems. However, most of the thermal lattice Boltzmann
need to specify an appropriate equilibrium distribution tomodels(TLBE) that utilize the BGK collision operatdi9—
which collisions drive the macroscopic system. The pricell], utilize only one relaxation time scale so that both the
paid for this generalization is the loss of an H theorem andshear viscosityw and the thermal conductivity transport
possible numerical instabilities. The physical interpretationcoefficients are intrinsically linked. Therefore these models
of LBE consists of two stepgl1) a streaming step that ad- allow only for fixed Prandtl number flows, where=Pu/«.
vects particles from a particular node to its nearest neighbdit is well known that, under appropriate conditions, the heat
according to their lattice velocities, ari@) a collision step flux to walls can be a function of the Prandtl number: for
that describes the local change in the distribution functiorsome range of Prandtl number, the heat flux is from the
due to particle collisions at each nodal site. The inherenwalls, while in other Prandtl number ranges, the heat flux is
beauty of the method is that both operations are local anéhto the walls and hence there is interest in observing the
this makes LBE ideal for multiparallel processor machineschange in flow characteristics with Prandtl number. Here we
Of course there are many kinetic models that will reproduceextend TLBE to handle flows with variable Prandtl numbers.
the desired form of macroscopic nonlinear transport equawe shall comment on earlier variable Prandtl number at-
tions. In LBE, one goes from a macroscopic to a microscopi¢empts made by other authdrs2,13 in Sec. V.
description to work with the simplest possible micromodel, In the following section, we will describe an extended
which is computationally most efficient. Its motivations resttensor collision operatof14] that allows variable Prandtl
on the fact that the details of the microscopic dynamics affechumber flows. Incorporation of an additional free parameter
only the transport coefficients and do not alter the form ofin the off-diagonal components of the matrix collision opera-
fluid conservation equations. tor will lead to a multirelaxation scheme. The relaxation pa-
An important refinement of the LBE was proposed inrameters will be generalized so that transport coefficients be-
Refs.[4,5], where the collision operator was generically lin- come density independent, a result well known from
earized for simplicity as a product of the collision matrix andclassical kinetic theory of dilute gasgk5]. All previous lat-
the perturbative part of the particle distribution function.tice Boltzmann models have suffered from the problem of
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density-dependent transport coefficients. Even though this
poses no problem for incompressible flows, it is critical and A=
must be handled for compressible fluid simulations. In Sec.

II, we discuss the Chapman-Enskog procedure used in LBlsf multiplicity 4 and 2, respectively, for a hexagonal lattice.
and derive the desired macroscopic fluid equations and tranghe equilibrium distributioNFis assumed to be a truncated
port coefficients. In Sec. Ill, we present TLBE simulation nower serieg9] in the mean velocity:

results for the effect of velocity shear layer on a heat front

for various Prandtl numbers. The numerical stability of the ~NZi=A;+ Bp(€ni- V) + Cp(&yi V)2 +D V2 +E (- V)3
proposed model is discussed in Sec. IV, while Sec. V is 5

devoted to a summary and concluding remarks. In the Ap- +Fp(epi-V)V*. (6)
pendix, we perform numerical tests to verify that our ex-
tended tensor collision operat@ntroduced in Sec. }Ican be

properly used for variable Prandtl number flows.

0,
1+ =

> ®)

The coefficientsA,,B, - -F, are functions of the mean
densityn and mean temperatutg where

Il. TLBE WITH EXTENDED COLLISION OPERATOR n=2> Npi, ()
pi

The governing equation of TLBE, which in local micro-
scopic units of length and time takes the generic form

nv= ; Npiepi ) (8)
Npi(X-I-epi,H- 1)_Npi(X,t):Api, |:1,bp (1)
This describes the evolution of the mean particle population Ne = E > Npi(epi_v)z- (9)
Npi in the discrete phase space. The indipeandi are for 2 %

sublattice and lattice links, respectively. Thus, for a 2D hex- Th licit f f th fici d q h
agonal latticep,=6 as each lattice node is connected to 6 e explicit form of these coefficients depends on the

other spatial sites. Strictly speaking, one should call this ?eometry of the underlylng lattice a_nd are given in Rél.
triangular lattice. A hexagonal lattice has only 3 links; is or a 2D, _hexagon_al latttice. Consiraints |mposedeﬁ.a.nd

the lattice vector giving the velocity of moving particles in f[he c_oII|S|on matrixA,; are such that the Iocal2 collisional
the system. The speed in each sublattickeig=p. To re- invariants X piApi=0, 2piA,i€=0, and2,A,€,=0 are
cover the correct macroscopic behavior, rest particles mus@tisfied. Further physical constraints are also imposed: in
also be included and will be labeled py=0 with e,=0 and particular, one must impose Galilean invariance and require
bo=1. A,; is the collision matrix whose eigenvalues control that the pressure be independent of the mean macroscopic

the transport coefficients. In nearly all lattice Boltzmann lit- VE!OCity.- _ , ,
erature A, has been reduced to the BGE] form for com- To recover the desired thermal Navier-Stokes equations,
putationa?lsimplicity we first translate the discrete lattice Boltzmann equation into

the continuous space and time form by Taylor expanding

in the long wavelength and the low frequency limit:

1
Api:_;(Npi_Ng?)- ¥l

_ _ _ _ (9thi+epia(9Npi+E IZN i+ €piad diNp;
whereris a relaxation parameter that determines the time for 2

Np; to relax to some appropriately chosen equilibrium distri- 1

bution functionNZ{. Unfortunately, this yields an invariant + 5 €0ia€pipdadsNpi=Api(N), (10
Prandtl number. This is because the scalar collision operator 2
in BGK takes the form—(1/7) &;(Np;—Npf) and this forces  yhere the subindicea and g represent Cartesian compo-
the eigenvalues for the momentum and energy transpof{ents with summation over repeated subscripts. We now uti-
modes to be identical because of the Kronecker te@5or  |ize the Chapman-Enskog procedure, assuming the following

Thus for variable Prandtl number flows, it is convenient tomtiscale expansion for the time and spatial derivatives in a
generalize the scalar collision operator into a circulant matrixymaj| quantitye:

with the inclusion of another free parametérin the off

diagonal componen{sl 4] Oy— €91+ €201p, I,— €0, . (11
1 0 € is, in essence, the Knudsen number. We also expand the
= Ny — — ) . —N¢&9 o "
Bpi T (Npi—=Np?) bpe; ; €pia€pja(Npj~Np)) distribution function as
-1 Npi=N{ + eNGY (12)
ET; Aij(Np;— NS, 3

with N(Y=N®9, andN(} is the perturbative part of the dis-
Here we do not defind ; by the scattering rules as in LGA, tEr|buti%n funct;)on_. Substituting the above expressions into
but enforce certain symmetry requirements. As a regyit, 9. (10), we obtain

is symmetric, cyclic, with the nonzero eigenvalues

1
O(e): (dutepiadaNyi?=—— 2 AjNG}, (19

A =1, 4
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O(€%):  FppNgH (dgy+ €piad o) N 2| 1
P Pl Qw'=(1-57] 3 2 SiepiaNyi’ (29)
+%(atl+epiaaa)2NS?:O'
(14 Terms with the nonequilibrium components of the distribu-
tion function NI(Dli) can be evaluated using the first-order

Taking moments of Eq13) yields equations. Now since the circulant matdy in Eq. (3) sat-

dn+4d,(nv,)=0, (15)  isfies the eigenvalue relations
eq _
atl(nvﬂ’)+aﬁnaﬁ_0’ (16) Z epiaepi'BAij :Klepjaepjﬁ, (30)
du(ne+3nv?)+39,Q5=0 (17)
2 —y a2
with momentum and heat fluxes EI €pi€piaAij = N2€pi€pja (3D
1500 YR NL) 1g 1153 andQY" can be determined in terms of the equilibrium
B TPl distribution functions
eq_l eq H(l)_ 1 A 2
Q. —Ezpi: egzjiepiaNpi' 19 aB= |7 o7 5 €piaCpip
Note that the right-hand side of E(L3) does not contribute «| - AL +e . g )N 32
to the moment equationd5)—(17). This is because of the T; i (Gt pjydy)Npj| (32
constraints imposed for the local collisional invariants. By
making use of Eq(6) we can write Eqs(18) and (19) in Ao\ 1
. L W=[1-22] 2 e2e .
terms of macroscopic quantities: Q. 27) 2 4 Siia
I1ed :E ned,z+nNv v (20) -1 eq
af D af av B X —T; AIl ((9t1+epjﬁ(95)ij y (33)
eq:D+2 nev -+ 1 no2o 21) whereA;; ! is the inverse matrix of\;; . When Egs.(26)—
« 2 “ 2 «’ (27) are evaluated and combined with equations of first and

second order irg, the desired macroscopic fluid equations
whereD is the dimension of the lattice. Thus by substituting are found:

these expressions into Eq46) and(17), we find the follow-

ing nondissipative Euler fluid equations, i.e.,(e): dn+d,(nv,)=0, (39
dun+d4(Nv,) =0, (22 NV ) + 3NV 0 )= = 3P+ 3,(N3,0.,)
A1 (NV o)+ dp(NV 40 g) =~ 3,P, (23 T gl pu(dvptpua)], (35
&tl(ns)+aa(nsva)=—P&ava. (24) ﬁt(n8)+(9a(ngva):_Paava+ﬁa(K§aS)

Here we can identify the velocity-independent portion of 1 0a0 g+ I o) It g+ M(Ip0 )%,
the momentum flux tensor in E¢RO) as the pressur, with (36)
P=neg; i.e., we find the equation of state for an ideal gas.

To obtain the continuity, momentum, and energy equa©n identifying the transport coefficients in Eq84)—(36)

tions atO(e?), we take appropriate moments of H@4) to with the corresponding terms in thermal Navier-Stokes equa-
get tions, we determine the values of shear viscogitgnd ther-

mal conductivityx:

9N=0, (25)
_ T 1 3
da(Nw o) + 311 A=0, (26) p=neX 2) 37)
J +3,Q+a,0411)=0, 2 T 1
tZ(ns) aQa av’B ap ( 7) K=2nNe )\__E . (38)
2
wherell{) andQ{" are momentum and heat fluxes, respec-
tively, On choosing the relaxation timéat each lattice node
n@=(1- 2t > epinoisNY (29) Y I (39
of 27) 4 SPiaSpisTpi lnxt 2/
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FIG. 1. The unperturbeda) velocity, (b) temperature, andc) density profiles. The scale has been normalized ¥ <127 for

convenience. The hexagonal lattice is &13212.

_ 4an(x,t) 2 40
“lornx 7/ (40
we obtain the final transport coefficients
M= MoE, (41
K= Ko€, (42

where ko(e) is an arbitrary function of the temperatuse
while uo(e) = akg(e) with @=const. The Prandtl number is
then

_ mole) :
= ol®) =a, « arbitrary. (43

Note that the transport coefficientsand « are independent

of density but are functions of temperature, as is necessary
from standard kinetic theoy15]. The above choice of tem-
perature dependence gpf; is dictated by gas kinetic theory
[15] in which it is shown that the temperature dependences
of the transport coefficients are the samex{fand uy are
chosen to be constan(as in the simulations belowthen the
transport coefficients have a linear dependence.cdrhis is

the temperature dependence derived in standard kinetic
theory[15] for Maxwell molecules.

It should be noted that in the LBE Chapman-Enskog
analysis, there are higher ord@ubic in the mean velocily
deviation terms that appear in the momentum and energy
equationg(35)—(36). Their explicit forms are given in Refs.
[11, 16. However, these cubic deviation terms can be shown
[11,16 to be negligible for low Mach number flows and
since the flows under consideration here have Mach numbers
on the order of 0.1, we have neglected them.
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FIG. 2. The initial vorticity(projected onto the-y plane after
the strong asymmetric perturbation has been applied.

Ill. SIMULATIONS FOR VARIABLE PRANDTL NUMBER
TURBULENT FLOWS

We consider the role of variable Prandtl number on 2D
free-decaying turbulence induced by a double velocity shee
layer. Simulations are performed on a %212 hexagonal
grid so that the Reynolds number of this flow-RE655. For
simplicity, periodic boundary conditions are imposed, and
the plots are renormalized tostx,y<127. The unperturbed
velocity, temperature, and density profiles are shown in Fig
1. A strong(40%) asymmetric sinusoidal velocity perturba- (b)
tion is then applied leading to the vorticity profile of Fig. 2.
The velocity shear layercentered ay=42.3 andy=284.7)
will give rise to co- and counter-rotating vortex in their re-
spective layers and the initial 7 vortices in each layer are du
to the periodicity in the initial velocity perturbation. More-
over, because of the asymmetric initial perturbation, there i
a secondary set of vortices indudghkese can be readily seen
in Fig. 2. within 10<y<40 and 45 y<83).

We shall express the time evolution of the flow in terms
of the eddy turnover time, which is related to the TLBE time
scale:

Teddyz I-0
TLBE 2 U

~1020, (44)

wherelL =512 (length in TLBE unit$ andv is the unper-
turbed maximum velocity. To resolve any fine scale struc-
tures generated by the turbulence, one requires the dissip
tion length scald_4=3 cells(in TLBE units), where

L
Lo= man: (45)

In this simulation,L =16 (since Re=1655, so that all fine (d

scale structures are well resolved. FIG. 3. The evolution of the vorticity for Rel1655 and Pr

The evolution of the vorticity profiles for flows with Rey- _ 5 4 (a) at t=1000 LBE time stepgapproximately 1 eddy turn-

nolds r'lum'ber Re1655 and Prandt number 0.9 is over timeg, (b) att=3000 LBE time step$3 eddy turnover timgs
shown in Fig. 3. After one eddy turnover timte= 1, the tWo () 5t t=5000 LBE time steps5 eddy turnover times (d) at t
major vortex layers are being sheared while one sees the7500 LBE time steps(7.5 eddy turnover times (e) at t
beginning of alternating co- and counter-rotating vortices in—10 000 LBE time steps(10 eddy turnover timés (f) at t

the regions between the major vortex laygFy. 3@]. At =15000 LBE time steps(15 eddy turnover timés (g) at t
t=3, the imprint of the initial perturbation has been removed=20 000 LBE time step£20 eddy turnover times

by the flow within the two major vortex layers but it still

persists within the secondary vortex paririgsg. 3b)]. At  3(d)], the two major vortex layers are beginning to interact
t=>5, the vortices within the major layer are beginning towith each other as the major vortices form. The subsidiary
form while the imprint of the initial perturbation on the sub- vortices themselves start to merge and have now lost the
sidiary vortices is decaying awdffig. 3(c)]. By t=7.5[Fig.  imprint of the initial perturbation. At=10 [Fig. 3€)], t
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=15[Fig. 3(f)] andt=20[Fig. 3(g)] eddy turnover times the
like-signed vortices merge with the final area being domi-
nated by one co- and one counter-rotating vortex. The vortex
merging is, of course, a distinctive property of 2D flows:
energy cascades to large scales.

The corresponding decay of the peaked temperature pro-
file is shown for eddy turnover times=1 [Fig. 4a)], t=5
[Fig. 4b)], t=7.5[Fig. 4c)], andt=10 [Fig. 4(d)]. At t
=1, one clearly sees the imprint of the initi@trong sinu-
soidal perturbation on the unperturbed temperature profile, as
well as the effect of secondary co- and counter-rotating vor-
tices on the tail of the temperature profile. By5, the tem- 10774127
perature profile is diffusing and responding to the slight
modulating in the major two vortex layefsf. Fig. 3c)]. For
t=7.5 andt=10, one sees, as expected especially for low
Mach number flows, how the flow convection distorts the
temperature profile on a faster time scale than diffusive pro-
cess[cf. vortex layer distortions in Figs.(8), and 3e)].

We now consider the effect on the vorticity and tempera-
ture as one increases the Prandtl number te P at fixed
Re=1655(by decreasing the conductivity parametgj. We
find that there is little effect on the geometry of the dominant
vortex structures as projected onto the 2D plane, the differ-
ences coming more in the magnitudes. This is shown in Figs.
5(a) and gb) for the vorticity att=10 and 20. What is plot- () 1977127
ted here is the difference between the vorticity at Br9 and
at Pr=15. At t=7.5, one finds only a maximum vorticity
magnitude variation of 3% while at=20 this magnitude
variation can approach 50%. Again, this is to be expected in
free-decaying turbulence since the dominant effect comes
from convection and not from the transport coefficient terms.
This is also seen in the temperature difference profiles, Figs.
6(a)—6(c), for eddy turnover times=1 (3% maximum dif-
ference, t=5 (10% difference, andt=10 (10% difference

Finally, we shall consider the effect of Reynolds number
on the 2D breakup of the double shear layers. For these
512x512 simulations, the eddy turnover time
Teaay=1360LBE time units and Rel4 746(Fig. 7) and Re 1277127
=4915(Fig. 8). One sees qualitatively the same behavior as
before, but occurring at a faster rate for higher Re.tAt
=3.7, the two major vortex layers are undulating and begin-
ning to break up, with the initial perturbation imprint re-
moved[Figs. 7a) and §a)]. The secondary co- and counter-
rotating vorticies can, on close inspection, be seen to be
evolving on a faster time scale for Rd4 746 [Fig. 7(a)]
than for Re=4915 [Fig. 8@)]. By t=7.4, there is now a
marked difference in the evolution in the breakup of the ma-
jor vortex layers and the evolution of these vortices for Re
=14 746 [Fig. 7(b)], Re=4915 [Fig. 8b)], and Re=1655
[Fig. 3(d)], which is actually at a slightly later time=7.5
but still has its shear layers themselves somewhat intact.
There is a continual difference in the evolution of the space- 5 4. The evolution of the temperature for RE655 and Pr

filling vortices as time evolveqdFigs. 7c) and 8c) at  _(.9(a) att=1000 LBE time units(1 eddy turnover timg (b) at
t=12.9; Fig. 7d) and 8d) att=14.8]. At these higher Rey- {=5000LBE time units (5 eddy turnover times (c) at t
nolds numbers, the evolution of the temperature is consider= 7500 LBE time units (7.5 eddy turnover times (d) at t
ably different. We find that these profiles are smoothed out=10 000 LBE time unit410 eddy turnover times

by the 2D turbulence within 4 eddy turnover times.

»

L

(d) 1277127

analysis[17] of the single-time BGK collision operat¢f9]
can be readily applied. In particular, for a uniform global
equilibrium with densityn=1, internal energye=¢, and

In considering the linear stability of TLBE with extended zero mean velocityw=0, the equilibrium distribution func-
collision operator[14] the method applied to the stability tion (6) reduces to

IV. STABILITY OF TLBE WITH EXTENDED
COLLISION OPERATOR
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FIG. 5. The evolution of the difference in the vorticity at Re
=1655—but for different Prandtl numbers: Pt5 and
Pr=0.9—(a) att=10 000 LBE time step&l0 eddy turnover times
(b) att=20 000 LBE time step$20 eddy turnover timgs

N0 =Ag(e0) =AY (46)
at any grid pointx.

Now apply an initial perturbatiod(x) to this equilib-
rium distribution function so that at time=0

NG00 =Ap+ ¢ (). (47)

We use the superscript index to denote the time iteration
number.

After free-streaming and extended collisional relaxation at
each nodal site, we can determirig’] the new distribution
function Ngli)(x). From this, we deduce that the perturbation
at timet=1 is given by

2
€q
g,

0
Apt 5

1
5238(x)=§ {; Ag°+(epi-eqj)88}

(c) 12777127
+

1_E 5500 | L (x—ey)
7| %padij [ Laj (X~ & _ . :
FIG. 6. The evolution of the difference in the temperature at

Re=1655 but for different Prandtl numbers: P15 and P=0.9;

0 2 ; .
+2 [E (Bg_ 2 5pq)(epi'eqj)}§$)(x—eqj)- (@) at t=1000_LBE time stepg1 eddy turnover timg (b) at t
aj pCp =5000 LBE time steps(5 eddy turnover times (c) at t
(48) =10 000 LBE time step$l0 eddy turnover timegs
2
Here the derivativeA’°=A/(g,) and B=B_(g,). The 6 11 0, (% 0 0
. S p\<0 P p\<0 . ={— + | == "4 (e..a.
term in Eq.(48) arises due to the use of the extended colli- Cmn=) 7 Ap 2 °0 Aot (8pi- &) By
sion operator. L ;
After t iterations, Eq(48) can be written in matrix form 1= ;) 8oaBi | S+ 5
S+ _c.q. =50
= C-S-EW, (49 . 2
_ X| Bp~ a2 %pa) (Epi* €qj) G (51
with pp
_ while the streaming matri$ has elements
Em=pi(X), (50)

Shm= 5pq5ij5(X|_Xk_eqj). (52)
where the indeX is used for relabeling the lattice nodes for
convenience. Also, to write perturbatioig(x,) into a vec- Heren=M(q,j,I). The dimensionality of the matric-S
tor 2,,, we have introduced an isomorphic mipof indi-  (for Ly=512) is on the order of 3&+06x 3.4e+06. The
ces ,i,k) into a single indexm: i.e., m=M(p,i,k). The matrix C-Sis real but asymmetric for more than 1 moving
collisional relaxation matrixC has elements speed, as is required for TLBE under any chosen lattice.
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(c)

(b) (@)

FIG. 7. The evolution of the vorticity for the double shear layer,  FIG. 8. The corresponding evolution for the vorticity but now at
but now at Re=14 746 and P+ 0.44 on a 51X 512 hexagonal grid. Re=4915(a) att="5000 LBE time step$3.7 eddy turnover times
(a) At t=5000 LBE time step$3.7 eddy turnover timés(b) att  (b) att=10 000 LBE time step$7.4 eddy turnover timgs(c) att

=10000 LBE time steps(7.4 eddy turnover timgs (c) att =17 500LBE time stepg12.9 eddy turnover times (d) at t
=17 500 LBE time stepg12.9 eddy turnover timgs (d) at t =20 000 LBE time step$14.8 eddy turnover timgsThese runs
=20 000 LBE time step$14.8 eddy turnover times were actually at Pr1.32, but as we have already noted, there are

no direct effects on the geometric vorticity structures.
Without appealing to the tremendous memory requirement
for a matrix of this size, it is impossible to use standard tools, o (YVor1)
such as NAG library or IDL, for eigenvalue analysis because Ap=lim v (56)
of the accumulation of numerical errors. However, the form n—e :
of the matrixC- S allows the use of efficient iterative meth- )
ods. for any vectory not orthogonal tav, . In practice, for thenth

From the stability point of view, we are interested only in approximation of the leading eigenvalué” , one takes the
the spectral radiup, of the matrixC-S, i.e., the maximum quotient of the maximum components of two successive vec-
absolute value of all its eigenvalukg,. For this purpose, we torsv, andv;_;.
adopt the method of powefd8]. Suppose that aM X M The convergence th, in Eq. (56) is guaranteed only if a
matrix A hasM |inear|y independent eigenvammn with dominant(single or multlplé real eigenvalues exists. It is
corresponding eigenvalues,,, m=1,..M. An arbitrary = €asy to derive a similar expression for the case in which a

vectorv, can then be expressed as single complex pair of eigenvalues dominates. Strictly
speaking, one would have to treat individually all special
M caseg|i.e., all possible combinations of real and complex

vo=le amWn (53 eigenvalues of the samienaximumm absolute valugs How-

ever, this is essentially impossible considering the number of
eigenvalues involved. Instead of this, if E§6) fails to con-

so that thenth iterated vectow,,, . ;
n verge, we take a long-time geometric average

M
Va=ANo= > A amW,. 54 ()
AN et © NUSE 1 &
Fmax
Let N\, be the dominant eigenvalugx,|>|\,|, for all m
>1. Providedv, is not orthogonal tav; (so thata,#0) where
1 () — (n)
lim _nAn'VOZalwl (55 I:max ma>{§p, (Xk)] (58

n—oo 1
with suitably chosen spah In what follows, we refer the
so that value|\,| as the spectral radiys, .
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FIG. 9. The spectral radius for a hexagonal #2120 grid as a
function of 4 for various Prandtl numbers. We find that the spec-
tral radius becomes independent of the Prandtl number for Pr

fo -33 [plotted .'S. t_he spectral radius for £0.33, P=0.5, Pr dow at practical Prandtl numbers for the square lattice for
=1.17, and Psinfinity].

7=0.6 (i.e., ug=0.1). Fig. 11.

FIG. 11. The spectral radius for the 13-bit TLBE model of Ref.
[20] on a 80x 80 square grid for varioug at Pr=0.5.

In Figs. 9—11, we plot the spectral radius as a function of
initial internal energye, for various Prandtl numbers. From
our work on the numerical stability of TLBE 13-bit hexago-  To handle flows with variable Prandtl number, we have
nal[9] and square mode[20] with single-time BGK relax-  proposed an extended collision matrix that includes the usual
ation, it was determined that the spectral radius becomeBGK form as a special case. The use of full collision matrix
independent of lattice size provided that the hexagonal latticevith different eigenvalues was previously attempted by Mac-
size was not less than 48@100, and the square lattice was Namara and Aldef12]. However, their approach fails to
not less than 88 80. In Fig. 9, the spectral radius is plotted produce the correct transport coefficients and they find that
at 7=0.502(i.e., uo=0.002 for the hexagonal lattice. Note they lose the correct form of the energy conservation equa-
that for an equilibrium velocity,=0.08, this would corre- tion. A somewhat different approach was proposed by Chen
spond to a Reynolds number50 000. For very low Prandtl et al.[13]. They introduce an additional free parameter into
numbers, one finds two moderately sized “stability” win- the form of the equilibrium distribution functlohle?, and
dows in temperature. As the Prandtl number increases, thegge this to have a flexible ratio of viscosity and thermal con-

“stability” windows shrink considerably until they become ductivity. However, incorporation of the additional free pa-
invariant to the Prandtl number for $0.33. The corre- rameter produces an unphysical term in the heat flux vector
sponding spectral radius plot for the square lattice is showand the minimization of such unphysical effects requires this
in Fig. 10 for7=0.55(i.e., uo=0.05 and Re on the order of
2000. One can achieve a meaningful stability win-

V. CONCLUSIONS

w 2T Poiseuille Flow

Square Grid (80 x 80)

Pr=10.33 0 0.5 1 L5 2 25 3

FIG. 12. Shear viscosity for isothermal Poiseuille flow as a
0 function of relaxation parameteras determined from the extended
collision operator TLBEopen squares, dark squaresd from the
FIG. 10. The spectral radius for the 13-bit TLBE model of Ref. Chapman-Enskog theorisolid lineg for 2 values of the internal
[20] on an 880 square grid for various Prandtl numbers: Pr energye=0.35 and 0.5. These results were generated atOF.
=0.04, P=0.33, P=1.17 and P#infinity. Table | verifies the well-known result that is independent of Pr.
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TABLE I. A verification that the TLBE viscosity is independent
of Prandtl number in isothermal Poiseuille flow. The mean simula-
tion value and the standard deviation are computed for 50 values of

Fourier Conductivity (t = 0.6)

the Prandtl number, 01Pr<9.9. There is also excellent agreement
between TLBEx and the theoretical Chapman-Enskaeg
T wu (theory) (u (simulation)  std. (simulation
0.51 0.666 67 {2) 0.682 37 2) 2.0 (—-9)
0.6 0.666 67 1) 0.666 26 1) 3.7 (—8)
1.0 0.33333 0.333 37 4.04—6)
15 0.666 67 0.666 36 3.18(5)
2.0 1.0000 0.998 59 1.07-4)
25 1.3333 1.3293 2.54-4) N T —— e S
3.0 1.6667 1.6583 4.93-4) 0 2 4 Pr 6 8 10

FIG. 13. The dependence of the thermal conductikityn the
free parameter value to be close to unity. As a result, theiPrandtl number Pr at relaxation parameter0.6. The Chapman-
scheme allows Prandtl number variations only within a lim-Enskog theory(solid line) gives k~(Pr)~*. TLBE simulations in-
ited range. dicate that one must perform up to®1TLBE time steps to reach

An advantage of the extended collision matrix presentedgteady stat€open diamonds and one finds excellent agreement
here is that it is simple and computationally efficient. Be-With theory. For comparison, the TLBE simulation result afte? 10
cause of its eigenvalue properties, matrix inversion is adferations are also showfuark squargs The simulations are per-
trivial as in the case of scalar BGK operator. Also with thefqrmed for 50 Pr values. Table Il tabulates the power curve fits for
additional free parameter introduced in the off-diagonal comdifferent =
ponents, one now has multi time-scale relaxation parameters

that allow generalizations to variable Prandtl number simu{Ween the TLBE transport coefficients and those determined

lations. It is also important to remove the density dependenc@eoret'c"’IIIy from the Chapman-Enskog theory, and for defi-

at each lattice node from the transport coefficients, and thi§!teness we scan the Prandt_l nhumber range<@f<9.9 in
can be readily accomplished. steps of 0.2, for each relaxation parameter vatibere we

We have carried out simulations of a 2D free decayingconsIder vaIues_'z 051,0.6, 1.0, 1.5, 2.0, 2.5, and B.Ohe
turbulence induced by a strongly perturbed double velocit);)oundary conditions are here enforced by standard bounce
shear layer. In particular, we have considered the effect olf’aCk'
this turbulence at various Prandtl numbers. A linear stability
analysis indicates that varying the Prandtl number does not
adversely affect the limited stability window in TLBE mod- The viscosity is relatefd] to the momentum at the chan-
els invoking free-streaming in its difference scheme. Sinceel center by

we are here dealing with free-decaying turbulence, we find

(not unexpectedlythat Prandtl number variation does not B L?
have a leading order effect on the geometric structures as M= 8v¢n
they evolve in time—the effects of advection mask the ef-

fects of transport. However, we do notice significant magni-whereL is the channel widthy ., is the mean velocity at the
tude variations in the size of these structures. channel center, anfl is the magnitude of the forcing. The

1. Poiseuille flow

f, (A1)

TABLE Il. TLBE determination of the dependence of the ther-
ACKNOWLEDGMENTS mal conductivityx on the Prandtl number, 0IPr<9.9, using the

This work was supported by DOE and a joint U S_Czechpower-law fitk=A(Pr)™. There is excellent agreement in both pa-

grant. Some of these vorticity plot& color) can be viewed rametersA andm between the theoretical Chapman-Enskognd
s . the TLBE«. Note that for low values of the relaxation parameter
at http://physics.wm.edu/vahala/may97.htm| one must proceed to more time iterations in order to reach steady

state.
APPENDIX: SOME NUMERICAL TESTS

ON THE EXTENDED COLLISION OPERATOR T A A (simulation m (theory) m

. ) (theory) (simulation
We now present details of some of the numerical test we

have performed to verify that our matrix collision operator0.6 (10 iter) 0.13333  0.13726 -1 —0.8829
on the hexagonal lattice accurately simulates variable Pranddl.6 (16 iter.) 0.13333 0.13405 -1 —0.99996
number flows. In particular, we show for isothermal Poi-1.0 0.66667 0.6699 -1 —0.9975
seuille flow that the TLBE viscosity is independent of the 1.5 1.3333 1.3405 -1 —0.99997

Prandtl number and the TLBE thermal conductivitydeter- 2.0 2.0000 2.0107 -1 -1

mined from the heat transfer across a linear temperature gra-s 2.6667 2681 1 1

dient, using Fourier's lawg=—«VT) varies inverses with 3 3.3333 3.3512 -1 -1

the Prandtl number. We also find excellent agreement be
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viscosity u must be independent of the Prandtl number. In 2. Fourier heat conduction
Fig. 12, the Chapman-Enskog viscositgetermined from
Eqg. (39) and(41)] is plotted as a function of the relaxation
time 7 and compared to the simulation viscosity determine
from Eq. (Al) for two values of the internal energy=0.5
and 0.35. We find excellent agreement. In fact, the curve fit
(for Prandtl number P+0.1) are as follows:

The simulation thermal conductivity is determined from
dthe Fourier lamg= — «VT by determining the heat transfer
across a temperature gradient at zero mean velocity, while
he Chapman-Enskog conductivity is determined from Egs.
%38), (40), and(42). Since the channel walls are held at fixed
temperatures =0.5 ande=0.4999, the resultingsimula-

£=0.5: theory: uyu=—0.33333+0.66667, tion) temperature profile is linear, leading to a constant tem-
perature gradien? T. We immediately note that should be
simulation:  ugm=—0.3315% 0.6648, inversely proportional to the Pr:
and A(r)
K= (A2)

£=0.35 theory: ug=—0.23333 0.4666%, Pr

simulation:  ugm=—0.234290.46786. o o
and hence will give an excellent test for the validity of our

To show that the viscosity is independent of the Prandtl extended collision operator. In Fig. 13 we plot the theoretical
number, we perform TLBE simulations for these 50 valuesChapman-Enskog-(solid line) to the simulatior for relax-
of Pr in the interval[0.1, 9.9. For eachr, the results are ation parameter= 0.6 for the 50 Prandtl values in the range
summarized in Table | in which we give the mean simulation0.1<Pr<9.9. Because of the low, one does not reach a
viscosity (averaged over these 50 Prandtl numpas well  steady state after $@ime iterationgdark squares After 10°
as its standard deviatiofi‘std” in Table 1) and compare iterations one reaches steady state and excellent agreement
them to the Chapman-Enskog viscosity, (theory. Our  with the Chapman-Enskog dependence on (Pr}. The re-
simulations(with L=128 and 10 time steps in TLBE units  sults of a power-law curve fit for various values ofare
are in excellent agreement with the Chapman-Enskog theorshown in Table Il, verifying that our extended TLBE colli-
and show conclusively that in our TLBE extended colli- sion operator accurately simulates the (Pr)dependence
sion operator form is independent of the Prandtl number. of «.
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