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ABSTRACT 
 

Autism spectrum disorder (ASD) is characterized by social and communicative delays. It is 

known that those with ASD exhibit lower activity levels and decreased proprioception to some 

extent. The biomechanics of movement in ASD has not been assessed thoroughly enough to 

provide information on ASD specific movement patterns, and no studies have been performed 

examining work and recovery. The purpose of this study is to examine whether 1) inter-limb and 

intra-limb coordination patterns during walking and running differ between youth with ASD and 

neurotypical sex, age, and BMI-matched controls.  Youth with ASD (N=8) and their BMI, age, 

and sex matched controls (N=8) performed walking at their self-selected speed and also at a 

standardized speed of 1.3 m/s for at least five trials each. An eight-camera motion capture system 

was used to collect three-dimensional (3D) kinematics for each subject. After in-lab data 

collection, subjects were given an accelerometer to wear to measure physical activity levels over 

a span of at least four days. To analyze the data, angle-angle plots were constructed for the left 

upper-arm and right thigh, and right shank-foot. Vector coding was used to obtain coupling angle 

and coupling angle variability information. No significant differences existed in coordination 

patterns or physical activity levels between the two groups. Upper-arm dominance and anti-

phase upper arm/thigh patterns were significantly related to minutes of vigorous physical activity 

(Rho: -0.63, p<0.01 & Rho: 0.58, p=0.02, respectively). According to these results, there are no 

differences in coordination between those with and without ASD. 
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CHAPTER ONE 

INTRODUCTION 

 
 Autism spectrum disorder (ASD) is a social developmental disability, characterized by 

deficits in communication and social interaction (American Psychiatric Association, 2013; Baio, 

Wiggins, Christensen, Maenner, Daniels, Warren, … & Dowling, 2018). According to the APA 

(2013), those with an established diagnosis of autistic disorder, Asperger’s disorder, or pervasive 

development disorder from previous years are now given the diagnosis of ASD. ASD is 

recognized by persistent deficits in social communication and interaction, and restrictive or 

repetitive patterns of behavior (APA 2013). The most widely known symptoms and effects of 

ASD include difficulty with language and interaction with others, restrictive and repetitive 

behaviors, and different self-stimulating or self-regulatory movements such as rocking and arm 

flapping (Kindregan, Gallagher, & Gormley, 2015). As of 2020, the CDC reported that about one 

in 54 children at eight years old is diagnosed with ASD (CDC 2020).Most research studies about 

ASD thus far pay most attention to the social deficits and developmental delays that occur with 

this condition without researching the possible physical aspects of the diagnosis. 

Movement Deficiency 

 Until the past decade or so, ASD was mainly deemed as a social and communicative 

disorder (Kindregan et al, 2015). More recent research suggests that ASD not only affects 

communication and social interactions, but may affect movement (Dufek, Eggleston, Harry, & 

Hickman, 2017; Eggleston, Harry, Hickman, & Dufek, 2017). Some of the most widely known 

movement challenges that occur among those with ASD include, but are not limited to, altered 

muscle recruitment patterns (Damasio & Maurer, 1978; Kohen-Raz, Volkmar, & Cohen, 1992), 

impaired postural control (Kohen et al., 1992), dyspraxia (clumsiness) (Green, Baird, Barnett, 
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Henderson, L., Henderson, S., & Huber, 2002; Dziuk, Larson, Apostu, Mahone, Denckla, & 

Mostofsky, 2007; MacNeil & Mostofsky, 2012; Mostofsky, Dubey, Jerath, Jansiewicz, 

Goldberg, & Denckla, 2006; Provost, Heimerl, & Lopez, 2007), and deficits in locomotion and 

balance (Green et al., 2002). Studies have also noted that individuals with ASD exhibit less 

motor coordination, mainly at the visual level (Ghaziuddin & Butler, 1998; Fournier, Hass, Naik, 

Lodha, & Cauraugh, 2010); however, these previous examinations have only been performed via 

visual inspection. Symptoms of ASD may initially present as movement disorders rather than 

communicative disorders, considering that the common ages for diagnosis of this particular 

disorder is 2-4 years (Eggleston et al., 2017). A study performed by Weiss et al. (2013) 

comparing teenagers and younger adults with and without ASD found that variables such as step 

length, cadence, velocity, and gait cycle time were all lower in the ASD group compared to the 

control group. Though, considering that ASD varies from person to person, most studies are 

inconclusive in determining exactly what differences occur in those with ASD, and why.  

Problem Statement 

Those with ASD may experience motor impairments (Riquelme, Hatem, & Montoya, 

2016; Weiss, Moran, Parker, & Foley, 2013), that may likely translate to impairments in walking 

gait. Proprioception plays a major role in walking, as limb awareness, position sense, and the 

ability to constantly shift weight are the main components needed for locomotion (Beets, Macé, 

Meesen, Cuypers, Levin, & Swinnen, 2012; Blanche et al., 2012). However, current literature 

has yet to determine if inter-limb coordination during locomotion differs between persons with 

ASD and neurotypical counterparts. In addition, it is unknown if these measures relate to a 

person's physical activity level. 
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 The purpose of this study is to examine whether 1) inter-limb and intra-limb coordination 

patterns during walking differ between more and less physically active youth with ASD and 

neurotypical sex, age, and BMI-matched controls. Specifically, we compared 1) contralateral 

arm/leg swing, and 2) foot and shank coordination using modified vector coding and 3) between 

youth (defined by above and below the mean activity level) with ASD and matched controls. It is 

hypothesized that those with ASD will 1) have decreased inter-limb and intra-limb coordination, 

and 2) coordination were decreased all persons with lower physical activity levels.  

Delimitations 

 The participation sample included boys and girls aged 13-18 years old that have a clinical 

ASD diagnosis. Inclusion criteria for participation required all participants have: no lower 

extremity injury within the last six months prior to the start of the study, no history of diagnosed 

joint disease or joint surgery, and should not be pregnant. In order to rule out cognitive disability 

in both populations, participants’ IQ must be greater than 70. Lastly, all participants must be able 

to walk, run, and balance on one and two limbs.  

Limitations 

As with all laboratory research assessments, some study limitations must be 

acknowledged. One significant limitation is that individuals with ASD are not always willing to 

be involved in research that includes manual palpation, which was required in this study in order 

to record motion capture information. This could possibly decrease the pool of participants that 

were willing to participate. To alleviate any concerns participants may have had, visual 

references were used (via an iPad) with each participant prior to beginning the study protocol. As 

some persons with ASD favor visual stimuli, the visual reference should have assisted in 

participants’ understanding and preparation for the study.   
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 Another possible limitation is physical activity levels among both the ASD and 

neurotypical populations. It is known that most kids and adolescents are not engaging in the 

proper amount of moderate-to-vigorous physical activity as defined by the CDC, which could 

make it hard to differ between high and low levels of physical activity. When performing an 

analysis on the data, high and low physical activity groups may have to be defined in a different 

way. 

 Lastly, variations in movement patterns may exist amongst the function levels of ASD. 

This study did not control for specific function levels, so as not to limit the possible sample size. 

However, we obtained documentation on diagnosed level of function that can be used to assist in 

furthering our understanding of the findings. 
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CHAPTER TWO 

LITERATURE REVIEW 

The purpose of this thesis research is to assess the various kinematic elements of walking, 

proprioception, and physical activity in adolescents with Autism Spectrum Disorder. This review 

of literature will cover: 1) An overview of ASD, 2) Physical activity differences in those with 

ASD, 3) What is known about these individuals walking gait compared to that of normal 

developing controls, and 4) Proprioception in individuals with ASD. 

Overview of Autism Spectrum Disorder 

Autism spectrum disorder has been widely defined as a lifelong developmental disability 

that elicits deficits most notably in social communication and interaction (APA 2013). These 

deficits include, but are not limited to, deficits in social-emotional reciprocity, failure to initiate 

or respond to social interactions, deficits in nonverbal communicative behaviors, lack of facial 

expressions and non-verbal communication (American Psychological Association, 2013). Other 

possible patterns sometimes seen in individuals with ASD include stereotyped or repetitive 

movements, inflexible adherence to routines, abnormal and intense fixated interests, and hyper- 

or hyporeactivity to sensory input (American Psychological Association, 2013).  Recent studies 

state that the incidence rate is 18.5 per 1000 children, or one in 54 (Maenner et al., 2020). 

Historically, children with ASD were overwhelmingly non-Hispanic white males that come from 

two-parent families living in large metropolitan statistical areas (Zablotsky, Black, Maenner, & 

Schieve, 2014), but over recent years there has not been a statistically significant difference 

between most race/ethnic groups, aside from Asian/Pacific Islanders (Maenner et al., 2020). In 

most cases, ASD is recognized by the age of three years old, if not earlier by either the parent or 

a health professional (Zablotsky et al., 2014). In some instances, although fairly rare, ASD can 
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go unnoticed and undiagnosed for months and even years, especially in the individuals who are 

eventually classified as “level one” and who likely present with mixed clinical presentation 

(Kamio, Moriwaki, Takei, Inada, Inokuchi, Takahashi & Nakahachi, 2013).  

The functional limitations faced by those with ASD usually vary and can change over 

their lifespan (Wiggins et al., 2018). There are individuals who do not need much support that go 

on to lead regular lives, and there are individuals that require substantial amounts of support with 

more social, communicative, and even physical tasks than their counterparts that require less 

assistance. It is very possible that these deficits and behavioral patterns are not recognized as 

symptoms of ASD until later on in a child’s life, such as when they are unable to meet important 

life demands and developmental milestones (Wiggins et al., 2018). 

Although ASD is most notably seen as a communicative and social disorder, more recent 

studies have found that it likely shows as movement differences initially before it can be 

recognized as a social and communicative disorder (Eggleston et al., 2017). Some of the most 

notable self-stimulating movements that occur include excessive rocking, finger flicking, and 

arm flapping (Kindregan et al., 2015). Various other motor problems including clumsiness, 

difficulties in fine and gross motor movements, and lack of fluency and coordination have also 

been found in those with ASD (Memari, Ghanouni, Gharibzadeh, Vahid, & Pouria, 2012). More 

recent studies have assessed walking and balance in children with ASD, though mixed results 

have been reported. In the next few sections, there were an overview of the recent findings about 

movement in those with ASD.  

The Cerebellum and its Role 

 The cerebellum is a major part of the brain that’s role is to receive information from the 

spinal cord (sensory input), and it is mainly in charge of balance, coordination, speech, and 
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overall motor control. It acts as a processor that uses input to guide movement (Wang, Kloth, & 

Badura, 2014). The cerebellum is the most frequently disrupted part of the brain in persons with 

ASD, not only at the microscopic level but at the gross level as well (Wang et al., 2014). 

Kindregan et al. (2015) explained that recent neuroimaging studies showed that children with 

ASD displayed reduced activation of the cerebellum during gross motor movements. Starting at 

early ages when the most noticeable ASD traits and deficits begin to appear, the cerebellum 

begins to show gross and cellular deficits, most notably in the vermis which has been found to 

have a decreased overall volume in those with ASD compared to their neurotypical counterparts 

(Scott, Schuman, Goodlin-Jones, & Amaral, 2009; Wang et al., 2014). It is suggested that the 

cerebellum provides an internal model, which is needed in order to refine the accuracy of 

movement. Alterations in the cerebellum and also the basal ganglia may cause motor 

impairments in different capacities in those with ASD (Nagy, Feher-Kiss, Barnai, Domjan-

Preszner, & Angyan, 2007; Dufek, Eggleston, Harry & Hickman, 2017; Rinehart et al., 2006). If 

this is the case, it makes sense why persons with ASD exhibit problems in locomotion and 

balance, thus it is important to describe the known locomotion and balance alterations associated 

with ASD. 

Walking Gait 

 Walking gait in neurotypical individuals is a topic that has been studied for many years 

now. Prior to the recent few decades, ASD was thought of as solely a social and communicative 

disorder and any possible physical differences were not addressed, so gait was not a significant 

focus within the research (Dufek et al., 2017; Eggleston et al., 2017). Within many of the more 

recent studies, there are inconclusive findings on the movement patterns in those with ASD 

(Eggleston et al., 2017). Those with ASD exhibit greater clumsiness, decreased motor 
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coordination, instability, hypotonia, and muscle rigidity compared to normally developing 

counterparts (Bauman & Kemper, 2005; Kohen-Raz, Volkman, & Cohen, 1992; Damasio & 

Maurer, 1978; Jones & Prior, 1985; Leary & Hill, 1996; Minshew, Sung, Jones, & Furman, 

2004; Molly, Dietrich, & Bhattacharya, 2003). Some of the other issues include altered muscle 

recruitment patterns, impaired postural control, and various deficits in locomotion and balance 

(Dufek et al., 2017). 

 Spatiotemporal variables have been widely assessed in those with ASD compared to their 

neurotypical counterparts, but with mixed results (Nayate, Tonge, Bradshaw, McGinley, Iansek, 

& Rinehart, 2012; Nobile et al., 2011; Rinehart et al., 2006, Shetreat-Klein, Shinnar, & Rapin, 

2014). Rinehart et al. (2006) assessed gait function in young children aged four to seven that 

were newly diagnosed with autism. The previous work found there were no significant 

differences found in velocity, cadence, stride length, double support, and heel-to-heel base of 

support between those with autism and the controls subjects (Rinehart et al. 2006). However, the 

previous study did find that those with ASD had a greater number of missteps, meaning that the 

foot did not fall on the line they were supposed to be walking on for the experiment, and 

exhibited a greater horizontal-axis range, meaning that they had greater difficulty walking in a 

straight line compared to their typically developing counterparts (Reinehart et al., 2006). Weiss 

et al. (2013) found that control participants walked with greater cadence, velocity, and gait cycle 

time, while those with ASD spent a greater percentage of time in the stance phase of the gait 

cycle and a shorter amount of time in the swing phase. In contrary, other studies have found 

higher cadences in those with ASD (Chester & Calhoun, 2012). Several studies have also found 

increased step width in those with ASD (Shetreat-Klein, Shinnar, & Rapin, 2014; Nayate et al., 

2012; Nobile, Perego, Piccinini, Mani, Rossi, Bellina, & Molteni, 2011), while others found no 
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differences (Rinehart et al., 2006). Based upon the current literature, it appears that those with 

ASD walk with less balance and more sway, and exhibit greater difficulty walking along a 

straight path. Other variables may be subject-specific. 

 Walking gait in those with ASD has also been previously assessed using standard inverse 

dynamics-based biomechanics via three-dimensional motion capture and force platforms (Dufek 

et al. 2018; Eggleston et al., 2017; Rinehart et al., 2006; Weiss et al., 2013). Dufek et al. (2018) 

found that children with ASD exhibit unpredictable movement patterns and positioning during 

their gait cycle, such as varied vertical GRF and hip, knee, and ankle joint positions. The 

previous work found that differences occur between those with ASD and their neurotypical 

counterparts, but most notably are differences in the ankle at ground contact, as those with ASD 

tend to be more plantarflexed at this point in the gait cycle. Differences at each joint were 

assessed in a similar study, which found that there were significant differences in sagittal plane 

angles of the hip joint (39%), knee position (53%), and ankle position (45%), with the percentage 

differences representing a large effect size (Eggleston et al., 2017). These pattern differences 

were different in each child, so no general conclusions could be made about the time point in 

which the differences occur and why.    

 There are also many discrepancies regarding differences in kinematic variables between 

those with ASD and controls within the current literature. In the one study that was performed on 

adults, results showed “mild clumsiness” in those with ASD, but the only significant difference 

involved the range of ankle dorsiflexion (Hallet et al., 1993). The only consistency between 

various studies is that there is at least a slight reduction in range of motion (ROM) at the ankle 

joint in those with ASD at various points during the walking cycle (Ambrosini, Courchesne, & 

Kaufman, 1998; Nobile et al., 2011; Vilensky et al., 1981). Children with ASD have been found 
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to have reduced peak plantarflexor moments at the ankle, and decreased peak hip flexor 

moments (Chester et al., 2012). It also seems to be true that children with ASD exhibit normal 

ground reaction forces, except for a reduced vertical peak force during terminal stance, which 

would cause them to walk slower than neurotypical children (Ambrosini et al., 1998).  

 While research has examined several major areas of walking gait in those with ASD, one 

important area has yet to be investigated: gait energetics. From an energetics perspective, 

walking speeds of 1.1-1.4 m/s are the most efficient speeds for healthy adults (Cavagna & 

Kaneko, 1976; Mahaudens, Detrembleur, Mousny, & Banse, 2009; Willems, Cavagna, & 

Heglund, 1995). Efficiency is determined by the amount of energy that must be created/absorbed 

from step to step (i.e. work; (Cavagna et al., 1976; Mahaudens et al., 2009; Willems et al., 

1995)), where less work per step would indicate a more efficient walking speed/pattern. When 

considering similarities in mass, age, and walking speed, an increase in the amount of positive 

work (i.e. increasing the energy of the system) to take a step would suggest that more muscular 

input/effort is required for that particular individual to walk. It could also suggest that muscular 

effort is wasted in some other capacity. For example, greater step widths in those with ASD 

(Shetreat-Klein, Shinnar, & Rapin, 2014; Nayate et al., 2012; Nobile, Perego, Piccinini, Mani, 

Rossi, Bellina, & Molteni, 2011) result in more mediolateral movement whereas the goal is to 

move forward, which may increase work during walking. In addition, the deficiencies in 

coordination or proprioception (Blanche et al., 2012; Weimer et al., 2001) in those with ASD 

may result in altered movement patterns of the limbs that are not efficiently counterbalanced. As 

counterbalanced limb movements are important for maintaining linear/angular momentum, 

issues with coordination could require muscular effort that does not produce forward motion. 

Thus, it becomes apparent that dissimilarities in the gait of those with ASD could ultimately 
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increase the work required to walk and could negatively impact walking as a mode of physical 

activity. However, previous work does not exist in the realm of gait energetics and/or limb 

coordination for those with ASD. 

Variability 

In human motion, including motion that is repetitively performed such as walking and 

running, humans display a certain level of coordination variability (Robertson, Caldwell, Hamill, 

Kamen, &Whittlesey, 2013). This can be defined as range of coordination patterns that a person 

exhibits while performing a movement (Robertson et al., 2013). Healthy, neurotypical 

individuals have a preferred coordination pattern, but they also possess the ability to access a 

variety of coordination patterns in order to respond to perturbations (Bernstein, 1966). For 

example, gait mechanics when walking up a hilly terrain tend to differ from walking on a 

smooth, level surface. Even when walking on the same surface and in the same conditions 

repeatedly, with the same goal in mind, kinematics and kinetics vary at least somewhat 

throughout those multiple repetitions (Miller et al., 2010). Variability in complex motor 

movements is a critical determinant of the quality of human movement and flexibility (Newell, 

1985). Measuring variability has given insight to stability, fall risk (Newell, 1985), and injury 

status (Hamill, Palmer, & Van Emmerik, 2012). A traditional view of variability states that 

variability is “noise” coming from either error in performance, or the recording of the movement 

itself (Shannon, 1948). More modern views on the topic suggest that variability is not necessarily 

positive or negative, but it is more telling of the variety of coordination patterns used to complete 

whichever motor task is being observed (Haken, Kelso, & Bunz, 1985; Schoner and Kelso, 

1988). With either view, it is still thought that variability will decrease with the level of skilled 
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performance and will increase with the level of injury or possible disease (Robertson, Caldwell, 

Hamill, Kamen, & Whittlesey, 2013).  

Measuring variability can be used as a tool to identify movement patterns that differ from 

the norm (Hafer & Boyer, 2017). Children with ASD exhibit some abnormal motor patterns, 

such as clumsiness (Kanner & Lesser, 1958), unusual postures, toe-walking, and increased joint 

mobility (Filipek, Accardo, Baranek, Cook, Dawson, Gordon…&Minshew, 1999; Tsai, 1996). In 

a previous study (Shetreat-klein, Shinnar, & Rapin, 2014), researchers found that 68% of 

children with ASD exhibited some sort of gait abnormality during walking tasks, as compared to 

only 13% of controls. Their analysis was a simple visual observation, so it can be hypothesized 

that even more differences could be found with further analysis.  

Over the past decade, vector coding has gained popularity as a way to measure and 

quantify movement variability during various motor tasks (Chang, Emmerik, & Hamill, 2008). 

Vector coding can be defined as the relative motion between angular time-series of two segments 

(Robertson et al., 2013). Vector coding uses spatial data only, which provides a metric that is 

more understandable to clinicians and could be a reason for its recent popularity (Hafer & Boyer, 

2017). This technique involves creating angle-angle plots for motion between adjacent segments 

(Hafer & Boyer, 2017). These angle-angle diagrams usually depict the changes in angular 

rotations of the given segments or joints and can be examined for inter-limb or intra-limb 

coordination (Robertson et al., 2013). The use of vector coding requires examining a number of 

full stride cycles. Specifically, previous studies suggest anywhere from 5-15 cycles 

(Heiderscheit, Hamill, & van Emmerik, 2002; Silvernail, Boyer, Brüggemann, & Hamill, 2015; 

Needham, Naemi, & Chockalingam, 2014; Miller et al., 2010; Hafer, Freedman Silvernail, 

Hillstrom, & Boyer, 2016). It is important to use a correct number of strides so that the values 
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calculated are truly representative of the coordination variability within the group being studied 

(Hafer & Boyer, 2017). 

Previous studies have not been performed assessing joint and limb variability in those 

with ASD. However, as noted earlier, children with ASD have been found to have reduced range 

of motion at the ankle joint along with inefficient ankle strategies (Kindregan et al., 2015; 

Blanche et al., 2012). This is a possible indicator that there is some sort of abnormality likely 

happening at the ankle joint, which could be displayed by plotting the movements of the shank 

and foot against each other. Previous studies have been done on adults assessing the shank and 

foot in the frontal and transverse while walking to give an idea of what is happening at the ankle 

complex. At heel strike, the shank is externally rotated which indicates that the rear foot is 

supinated compared to its relaxed position during standing (Cornwall & McPoil, 1995; Knutzen 

& Price, 1994; Lundberg, Svensson, Bylund, & Selvik, 1989; Mannon, Anderson, Cheetham, 

Cornwall, & McPoil, 1997). Most studies agree that during midstance, the angles in the frontal 

plane and transverse planes remain the same with ankle inversion and shank external rotation 

beginning around 50-55% of the gait cycle (Kepple, Stanhope, Lohmann, &Roman, 1990; 

Mannon, Anderson, Cheetham, Cornwall, & McPoil, 1997; Pierrynowski, Smith, & Mlynarczyk, 

1996), while only one reports that external rotation of the shank starts earlier, around 16% of the 

gait cycle (Nester, Hutchins, & Bowker, 2000). There is not much data for what happens later 

on, at least in healthy adults, but it is reported that during early swing the rear foot begins to 

pronate but remains in a supinated position relative to its relaxed state (Nester et al., 2000). 

Being able to alternate between flexibility and rigidity in the foot joint is essential for adaptation 

during walking and running and assisting in forward progression (Stefanyshyn & Nigg, 1997; 
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Whittle, 1999). Therefore, if those with ASD have decreased adaptability, then it is likely that 

their variability at the ankle joint will differ from that of the neurotypical children.  

Another characteristic typical of those with ASD are self-stimulating arm movements, 

mostly noted as arm flapping (Kindregan et al., 2015). The extent to which these arm movements 

may affect walking and running efficiency is still unknown. Although it is possible to walk 

without any arm swing, it is thought that arm swing may reduce the metabolic cost of walking or 

running by enhancing stability (Ortega, Fehlman, & Farley, 2008; Umberger, 2008; Ford, 

Wageenar, & Newell, 2007). It is also known that arm swing helps to generate a horizontal 

torque at the upper trunk, which may do three things – counteract pelvis rotation, minimize 

angular momentum, and help reduce reaction moments at the foot and ankle joint (Umberger, 

2008; Ortega et al., 2008; Li, Wang, Crompton, & Gunther, 2001; Park, 2008). A previous study 

assessed coordination between arm and leg movements during locomotion, and found that the 

arms and legs move at a 2:1 ratio (arm:leg) at lower velocities, but decreases towards 1:1 ratio 

with increased speeds (Donker, Beek, Wagenaar, & Mulder, 2001). This means that the arms 

oscillate either twice as fast as the legs, or at about the same speed. Considering the known arm 

movement differences, it is likely that the subjects with ASD will not consistently match this 

ratio. As mentioned earlier, improper coordination at the arms and legs can increase angular 

momentum, and increase the metabolic cost of locomotion, which could then in turn lead to 

decreased levels of physical activity especially in populations that are already compromised. 

Using vector coding, it would be possible to quantify the differences in coordination between 

those with ASD and neurotypical controls.  

Summary 
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ASD is a lifelong developmental disability that elicits deficits in not only social 

communication and interaction, but also possibly in movement (American Psychiatric 

Association, 2013). It is suggested that alterations in the cerebellum play a large role in these 

deficits, creating issues with locomotion, proprioception, and balance (Wang et al., 2014). Those 

with ASD exhibit similar patterns such as greater clumsiness, decreased motor coordination, and 

instability compared to their typically developing counterparts (Damasio & Maurer, 1978; Jones 

& Prior, 1985; Bauman & Kemper, 2005; Kohen-Raz et al., 1992; Leary & Hill, 1996; Molly et 

al., 2003; Minshew et al., 2004). However, there is disagreement in the literature as to what 

specific variables are different in those with ASD (Eggleston et al., 2017). These movement 

deficiencies seem to have translated to those with ASD engaging in less physical activity (Healy 

et al., 2017; Tyler et al., 2014; Memari et al., 2012), which is causing obesity rates in these 

individuals to continuously rise (Egan et al., 2013; Tyler et al., 2014). Thus, it is important that 

future research determine what motor deficiencies are present in those with ASD, including 

coordination and proprioception differences, and to determine if the variables are related to the 

lower level of physical activity within this population. 
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CHAPTER THREE 

METHODOLOGY 

Participants 

We obtained Old Dominion University Institutional Review Board approval for all 

aspects of this study prior to recruitment of participants. This study included eight youth, age 13-

18, clinically diagnosed with ASD and eight age, sex, and mass matched neurotypical controls. 

To be involved in this study, each participant (both groups) must have an IQ of at least 70 or 

above, no recent (within 6 months) musculoskeletal injury, and no history of joint surgery or 

replacement. Additional criteria for all participants include being able to walk, run, jump, and 

land. Participants were recruited via word of mouth. Upon arrival, participants (and their parents) 

were informed of the study procedures and asked to sign consent forms. Next, the parents filled 

out a brief medical and physical activity questionnaire. Participant demographics are provided in 

Table 1. 

Protocol 

Walking and Running Gait Testing: 

 Prior to beginning any data collection, participants were shown pre-recorded videos of all 

preparation and experimental procedures. The goal for the video was to increase participant 

familiarity, so that participants were comfortable and less apprehensive to perform this 

unfamiliar activity. After viewing the videos, participants were asked to don standardized lab 

shoes and spandex shorts.  

 To determine movement patterns during walking and running tasks, biomechanical data 

were collected using a 10-camera motion capture system (200 Hz, Vicon Motion Analysis Inc., 

UK) and three force platforms (2000 Hz, FP4060, Bertec Inc., USA). Retroreflective markers 
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were placed on the upper and lower extremities and trunk (total of twelve body segments) of 

each participant. Anatomical markers were placed bilaterally on the ulnar and radial styloid 

processes, lateral and medial humeral epicondyles, acromion processes, iliac crests, anterior 

superior iliac spines (ASISs), posterior superior iliac spines (PSISs), greater trochanters, lateral 

and medial femoral epicondyles, lateral and medial malleoli, 1st and 5th metatarsal heads, and 2nd 

toes. Clusters of four tracking markers were placed on the forearm, upper arm, posterior pelvis, 

and bilateral thighs, shanks, and shoe heels.  

 Participants with ASD were asked to perform walking under two conditions: at self-

selected speeds and at a standardized speed of 1.3 m/s. Each participant’s self-selected speeds 

were recorded using two sets of electric timing gates during warm-up trials, then averaged, and 

then used to set boundaries at ±5% average self-selected speeds. A trial was deemed successful 

when performed at the required speed and with full foot contact within the force platform 

boundaries. Control participants were asked to walk at the previously defined standardized 

speeds and matched speeds of their ASD counterpart in that order. The speed boundaries for each 

trial were ±5% of each given speed, and a trial was deemed successful when performed at that 

required speed and with full foot contact within force platform boundaries. Five successful trials 

were recorded for each condition. 

Accelerometer Data 

 After completing the on-site data collection, participants wore ActiGraph GT3X+ 

accelerometers (ActiGraph, Pensacola, FL) on their waistband for seven consecutive days. 

Participants were instructed to wear the accelerometers throughout the day and only remove it 

when going to sleep or engaging in activities that expose it to water. Data were collected with a 
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60 Hz sample frequency and analyzed using 15 second epochs. To be included in the final 

analysis, participants needed to accumulate a minimum of 10 hours/day of wear time for at least 

four days, including one weekend day. Previously validated count thresholds for children by 

Evenson, Catellier, Gill, Ondrak, & McMurray (2008) were used to establish sedentary activity 

(0 – 100 counts per minute), light physical activity (101-2295 counts per minute), moderate 

physical activity (2296-4011 counts per minute), and vigorous physical activity (4012+ counts 

per minute). Accelerometers were returned in-person to the researchers.  

Data Processing 

Motion capture and force data were imported into the biomechanical software suite 

Visual3d (Version 6, C-Motion, USA). Marker and force data were filtered using zero-lag 4th 

order recursive Butterworth filters at 6 Hz for walking (Chiu & Wang, 2008). An inverse 

dynamics-based model was created for each participant. Shoulder joints were defined using the 

equation 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 0.17 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐿𝐿𝐿𝐿𝐿𝐿,𝑅𝑅𝑅𝑅𝑅𝑅) as defined by the Visual 3d software 

guidelines. The elbow and wrist joints were defined as the midpoint of the medial and lateral 

humeral epicondyles and styloid processes, respectively. The Davis method was used to 

determine hip joint centers (Davis, 1953). Knee and ankle joints were defined as the midpoint of 

the femoral epicondyles and malleoli, respectively. An X-Y-Z (flexion-adduction-internal 

rotation) Cardan rotational sequence and the right-hand rule were used for 3D angular kinematics 

computations and polarizations. A full gait cycle consisted of right heel strike (vertical GRF > 10 

N) to subsequent right heel strike.  

Angle-Angle Plots & Vector Coding 

 Angle-angle plots were constructed for contralateral arm/thigh and ipsilateral foot-shank 

segment groupings in the sagittal plane (Figure 1). The proximal and distal segments comprise 
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the x and y-axes, respectively. Coordination and variability were determined using previously 

defined methodology (Chang, Emmerik, & Hamill, 2008), and is briefly described below.  

Sagittal plane upper arm, thigh, shank, and foot data were imported into Matlab 

(MATLAB. (2018). 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc.) The 

relative motion between the two segments was quantified using the coupling angle, represented 

as (γ). The coupling angle was found by using the following equation (Robertson et al., 2013), 

which determines the quantification of a vector adjoining two successive time points: 

𝛾𝛾𝑗𝑗,𝑖𝑖 = tan−1(  
𝑦𝑦𝑗𝑗,𝑖𝑖+1 − 𝑦𝑦𝑗𝑗,𝑖𝑖

𝑥𝑥𝑗𝑗,𝑖𝑖+1 − 𝑥𝑥𝑗𝑗,𝑖𝑖
 ) 

The coupling angle was modulated to exist between 0° and 360°. Within the equation, i 

represents consecutive data points in a cycle, and j is indicative of the multiple gait cycles. Mean 

coupling angles (𝛾̅𝛾) were computed with circular statistics (Batschelet 1981; Fisher 1993). 

Within each subject, 𝛾̅𝛾 is calculated from mean horizontal (𝑥̅𝑥𝑖𝑖) and vertical components (𝑦𝑦�𝑖𝑖) 

across the gait cycles (j) for each percentage (i) of the gait cycle: 

𝑥̅𝑥𝑖𝑖 =
1
𝑛𝑛
�(cos γ𝑗𝑗,𝑖𝑖)
𝑛𝑛

𝑗𝑗=1

 

𝑦𝑦�𝑖𝑖 =
1
𝑛𝑛
�(sin γ𝑗𝑗,𝑖𝑖)
𝑛𝑛

𝑗𝑗=1

 

Next, the mean vector’s length is defined as 

𝑟𝑟𝑖𝑖 = �𝑥̅𝑥𝑖𝑖2 + 𝑦𝑦�𝑖𝑖2 

for each percentage of the gait cycle. The mean vector will have a defined angle versus the 

positive horizontal axis, which is known as the coupling angle γ. Mean coupling angles across 

multiple gait cycles will again be defined for each percentage (i) of the cycle: 



 
 

20 

γ̅𝑖𝑖 =

⎩
⎨

⎧arctan �
𝑦𝑦�𝑖𝑖
𝑥̅𝑥𝑖𝑖
� ,                     𝑖𝑖𝑖𝑖 𝑥̅𝑥𝑖𝑖 ≥ 0

180 + arctan �
𝑦𝑦�𝑖𝑖
𝑥̅𝑥𝑖𝑖
� , 𝑖𝑖𝑖𝑖 𝑥̅𝑥𝑖𝑖 < 0

 

The coupling angles were then be organized into four separate bins, separated by 45 degrees 

(Chang et al., 2008), across stance and swing phases of the gait cycle. The four bins represent 

segmental dominated (n=2), anti-phase, and in-phase coordination patterns that can be expressed 

for each coupling: thigh-upper arm and foot-shank. The frequency of each coordination pattern 

(out of 100%; e.g. where 100% denotes that coupling pattern existed for the entirety of stance) 

were determined for each participant and condition. Frequencies were determined for early (0-

50%) and late (51-100%) portions of the stance phase.  

 
Statistical Analysis  

As the participant pool was small for each group, non-parametric analyses were assumed 

to be necessary. Wilcoxon RankSum Tests (p<0.05) were performed to analyze differences, if 

any, in coordination patterns (four patterns per coupling group) between youth with ASD and 

matched controls at each speed (matched self-selected and 1.3 m/s). Spearman’s Rho correlation 

analyses were performed to determine if any of the four coordination patterns for each couple 

during the stance phase or sagittal plane thigh, upper arm, or ankle joint range of motions were 

significantly related to physical activity level. Due to the small sample size, these relationships 

were analyzed across the entire participant pool (n=16) and only for the standardized walking 

speed. 
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CHAPTER IV 
 

FINDINGS 

  

DESCRIPTION OF COORDINATION PATTERNS 

Coupling angle and angle-angle plots are provided for the upper arm-thigh and shank-

foot for each group at matched and standardized speeds (Figure 1). For upper arm-thigh 

coupling, dominance in the proximal segment would show as the plot having more movement 

towards the right side, while dominance in the distal segment would show as more movement to 

the left side. The opposite would be true for shank-foot coupling. These plots also show whether 

the limb pairings are in-phase or anti-phase. In-phase is defined as simultaneous movement of 

both limbs performing the same movement (e.g. flexion or extension), while anti-phase is 

defined as opposite movement of the limbs (e.g. thigh flexion and upper arm extension). 

PATTERN DIFFERENCES BETWEEN GROUPS 

For the shank-foot plots, both groups begin in the stance phase with flexion (positive 

angle for the foot, negative angle for the shank according to right-hand rule) occurring at both 

the shank and foot. Shortly after, peak flexion is reached and both limbs begin to extend 

(decreasing positive/increasing negative angles) until toe-off. The ASD group displays slightly 

reduced flexion at both segments, but the overall range of motion is consistent with their 

neurotypical counterparts.  

Although the general coordination is similar in the figures, the greatest differences occur 

in the upper arm-thigh plots. Both groups follow a similar pattern beginning with flexion at both 

the upper arm and thigh, but the ASD group is slightly more extended at both limbs. At both the 

self-selected and standardized speeds (Figure 1C/1D), it appears that those with ASD present 
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with greater thigh and upper arm extension over the whole gait cycle, while the control group is 

flexed more in both limbs. The pattern in both groups shows that while one limb is flexing, the 

other limb is generally performing the same motion, which is expected. 

The only instance where coupling angles are noticeably different occur between the 

upper-arm and thigh at the standardized speed (Figure 1D), where the ASD group showed a 

considerably lower peak angle around 50-60% of stride compared to the control group. None of 

the frequency values were significantly different between the two groups. Figures 2 and 3, and 

tables 2, 3, 4, and 5 display the frequency results for both groups under both conditions.  

Correlation Analyses 

Upper-arm dominance and anti-phase upper arm/thigh-dominance patterns were 

significantly related to decreased minutes of vigorous physical activity (Rho: -0.63, p<0.01 & 

Rho: 0.58, p=0.02, respectively; Figures 4 and 5). No other coordination patterns were 

significantly related to minutes of vigorous physical activity (p>0.05). No coordination pattern 

for either coupling was significantly related to steps (p>0.05). No significant relationships were 

found between upper arm, thigh, or ankle joint ranges of motion and minutes of vigorous 

physical activity or steps (p>0.05). 



23 
 

Table 1. Participant Demographics 
 
 
 
 
 
 
 
 

 
 
Note. There were no significant differences between the ASD and control groups in age, mass, height, or BMI. A Mann-Whitney test 
for two independent samples was used to obtain the p-value in each category. 
 
 
 
 
 
 
 
 
 
 

 
Age (yrs.) Mass (kg) Height (m) BMI 

ASD (n=8) 15.6+1.5 63.87+20.29 1.67+0.13 22.0+4 

CON (n=8) 15.0+1.0 64.44+15.90 1.72+0.09 22.0+4 

T-test (p-value) 0.707 0.951 0.408 0.756 



24 
 

Table 2. Frequency data for walking at self-selected speeds for the thigh (Th) and upper arm (UA). 

 Early Stance Late Stance 

GRP Th UA In-Phase Anti-Phase Th UA In-Phase 
Anti-
Phase 

ASD 34.3±30.3 15.9±11.0 47.0±24.1 8.9±7.9 41.3±32.6 8.9±10.0 45.2±30.1 6.3±7.5 

CON 22.2±24.2 14.9±9.3 54.4±23.9 8.5±6.4 41.5±32.5 4.0±4.1 55.2±30.6 2.4±2.3 
Wilcoxon 
Ranksum 
Test 

W(76), 
p=0.425 

W(69), 
p=0.945 

W(54.5), 
p=0.168 

W(67), 
p=0.963 

W(66.5), 
p=0.897 

W(81), 
p=0.174 

W(55.5), 
p=0.200 

W(84), 
p=0.096 
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Table 3. Frequency data for walking at self-selected speeds, for the shank (Sh) and foot (Ft). 
 

 GRP Sh Ft In-Phase Anti-Phase Sh Ft In-Phase Anti-Phase 
 ASD 56.5±13.2 6.5±6.9 31.0±16.1 5.0±8.7 26.4±18.5 3.2±3.5 72.2±18.0 1.4±3.9 
 CON 58.5±13.0 6.0±6.8 33.5±18.6 2.0±3.4 22.2±17.5 2.4±2.9 77.0±18.4 1.6±4.6 

 
Wilcoxon 
Ranksum Test 

W(67), 
p=0.944 

W(71), 
p=0.824 W(63), p=0.628 

W(75.5), 
p=0.439 

W(78.5), 
p=0.289 

W(75), 
p=0.497 

W(56.5), 
p=0.248 

W(67.5), 
p=1.000 
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Table 4. Frequency data for walking at standardized speeds (1.3 m/s), for the thigh (Th) and upper arm (UA). 
 Early Stance Late Stance 

GRP Th UA In-Phase Anti-Phase Th UA In-Phase Anti-Phase 
ASD 41.1±34.9 15.3±10.1 45.8±27.6 9.3±8.2 42.3±35.7 4.0±4.6 53.4±34.8 3.4±3.4 
CON 18.1±21.7 16.9±8.4 56.5±24.3 8.5±7.9 33.5±26.8 3.6±2.1 61.7±27.4 4.4±3.8 
Wilcoxon Ranksum 
Test 

W(79.5), 
p=0.246 

W(62), 
p=0.552 

W(54), 
p=0.152 

W(72), 
p=0.725 

W(71.5), 
p=0.738 

W(63), 
p=0.682 

W(62), 
p=0.556 

W(58), 
p=0.312 
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Table 5.  Frequency data for walking at self-selected speeds, for the thigh (Th) and upper arm (UA). 

 
 

 Early Stance Late Stance 
GRP Sh Ft In-Phase Anti-Phase Sh Ft In-Phase Anti-Phase 
ASD 54.8±11.9 6.7±5.9 30.4±16.5 6.7±10.5 26.2±19.2 3.4±4.0 73.2±21.2 0.4±1.6 
CON 57.7±15.8 6.0±5.6 33.1±18.9 3.2±9.1 20.2±15.5 3.2±3.0 79.0±18.7 0.8±2.3 
Wilcoxon 
Ranksum Test 

W(66.5), 
p=0.888 

W(72), 
p=0.723 

W(61.5), 
p=0.519 

W(78.5), 
p=0.282 

W(83), 
p=0.118 

W(67.5), 
p=1.000 

W(56), 
p=0.220 

W(64), 
p=1.000 
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Figure 1. Angle-angle, coupling angle, and coupling angle variability plots for each group and condition. 
A.  
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D.  

 
 
Figure 1. Ensemble angle-angle and coupling angle plots for right shank-ankle at self-selected speed (1A), right shank-ankle at 
standardized speed of 1.3 m/s (1B), right thigh-left upper arm at self-selected speed (1C), and right thigh-left upper arm at 
standardized speed of 1.3 m/s (1D) are presented for the persons who with ASD (solid lines) and controls (dashed lines) at matched 
speeds during walking. The “x” and diamond notations on angle-angle plots represent heel strike and toe-off events, respectively. 
The solid vertical line on coupling angle plots represents toe-off. Coupling angle variability (CAV; deg) are also provided for each 
angle-angle grouping (persons with ASD: solid line and shading, controls: dashed line). 
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Figure 2. Early stance frequency data. 
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C.  
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D.  
 

 
Figure 2. Frequency plots for both control and ASD groups during early stance (1-50% of stance). Plots are shown for upper arm-
thigh at self-selected speed (2A), shank-foot at self-selected speed (2B), upper arm-thigh at standardized speed (2C), and shank-foot at 
standardized speed (2D). The plots show at how many points out of a total of 31 that the specified limbs were flexing or extending, 
and whether they were in-phase or anti-phase. 
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Figure 3.  Late stance frequency data. 
A.   
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B.  
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C.   
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D.  

  

Figure 3. Frequency plots for both control and ASD groups during early stance (51-100% of stance). Plots are shown for upper arm-
thigh at self-selected speed (3A), shank-foot at self-selected speed (3B), upper arm-thigh at standardized speed (3C), and shank-foot at 
standardized speed (3D). The plots show at how many points out of a total of 31 that the specified limbs were flexing or extending, 
and whether they were in-phase or anti-phase. 
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Figure 4. Scatter plot of Upper Arm Dominance and Minutes of Vigorous Physical Activity (MVPA).
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Figure 5. Scatter plot of Anti-phase Upper Arm and Thigh Coupling and Minutes of Vigorous Physical Activity (MVPA) 
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CHAPTER V 

 
DISCUSSION 

 The purpose of this study was to assess differences in inter-limb and intra-limb 

coordination in those with ASD and age, sex, and BMI matched controls. We hypothesized that 

youth with ASD would have decreased inter-limb and intra-limb coordination. This hypothesis 

was rejected, as there were no significant coordination differences in either category between the 

two groups. 

Figure 6. Gait cycle and general movement patterns.  

 

In typical walking gait, during heel contact and early stance phase is when the right foot 

contacts the ground, the opposite upper arm (left), right thigh, shank, and foot are all generally in 

a flexed position. As the rest of the body transitions from behind to in front of the stance limb (i.e. 

loading response through terminal stance), the right lower limb segments extend. The extended 

limbs are then quickly flexed to produce and prepare for forward swing. The upper arm and thigh 

generally remain in line with each other, moving at a 1:1 ratio while walking as can be seen in 

Figures 1A and 1B. The shank and foot move either in-phase or anti-phase with each other as 

shown in Figure 1C and 1D, to produce ankle dorsiflexion or plantarflexion as needed. 
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 According to the frequency plots, during early stance phase at both the self-selected and 

standardized speeds most of the movement occurred at the ankle consisted of shank extension and 

little foot extension, in both the ASD and control group. No flexion occurred in either limb. Also, 

during early stance for both conditions, the upper arm and thigh were mainly extending in both 

groups, with most of the movement as in-phase.  

 Walking speed did not appear to affect frequency of movement at the ankle. Though, there 

is a slightly higher frequency of shank and foot extension, and in-phase frequency. For the upper 

arm and thigh, the ASD group at their self-selected speed exhibited similar extension and in-phase 

frequency values during late stance as they did during early stance. The control group at their self-

selected speed showed a little bit more thigh flexion points than the ASD group, and a slightly 

greater percentage of the time was spent in-phase, but these values were similar to what they did 

during early stance. Similar values were seen at the standardized speed, with slightly more thigh 

flexion and greater percentage of the thigh and upper arm being in-phase.  

 Shank-foot angle-angle plots (Figure 1A and 1B) show that both the ASD and control 

group exhibit similar angles and movement patterns from heel-strike to toe-off, at both the self-

selected and standardized speeds. The average angles at each limb only differ by a few degrees. 

The coupling angles were also extremely similar and coupling angle variability (CAV) was not 

significantly different between the two groups.   

Surprisingly, none of the variables were significantly different in either group at either 

condition. This was unexpected especially at the ankle, where it has been noted in previous 

literature that those with ASD exhibit some kinematic and kinetic differences at the ankle (Blanche 

et al., 2012; Chester et al., 2012; Dufek et al., 2018; Eggleston et al., 2017).  
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Moderate-to-vigorous physical activity levels (MVPA) were not different between the 

ASD and control groups. However, there was a significant relationship between MVPA and upper 

arm activity (Figure 4). Those with increased upper arm movement generally had reduced MVPA. 

This could be related to the self-stimulating extra arm movements that are sometimes seen in those 

with ASD, such as arm flapping (Kindregan et al., 2015). Excessive aberrant arm movement could 

possibly lead to increased energy expenditure in these individuals, causing them to expend more 

energy during normal, everyday movements, which in turn leads to a decrease in more vigorous 

physical activity. 

Though variability has not been widely assessed in youth with ASD, especially to this 

degree, it has been noted that this population is known to exhibit behaviors such as increased 

clumsiness (Kanner & Lesser, 1958) and toe-walking (Filipek et al., 1999; Tsai, 1996). Most 

studies performed on subjects with ASD have also noted that the majority of children with ASD 

exhibit some sort of differences in gait compared to their neurotypical counterparts (Dufek et al., 

2018; Eggleston et al., 2017; Shetreat-klein et al., 2014), thus it was surprising that increased 

variability was not found at the shank-foot or between the upper arm and thigh. A vector coding 

technique has not been performed amongst this population, so any observations made about gait 

differences in previous studies were strictly visual or from kinematic variables in the form of 

percent differences. Although there were some slight differences in arm-thigh angles in those with 

ASD, none of the differences were significant despite the known differing arm movements that 

some individuals with ASD exhibit (Kindregan et al., 2015). 

One reoccurring conclusion in previous studies was that although it is known that those 

with ASD exhibit movement differences, high inter-subject variability made it difficult to pinpoint 

consistent differences. Based on the frequency data in this study, it does not appear that the 
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individual subjects in the ASD group exhibited any more limb variability than their neurotypical 

counterpart, though group variability was not assessed so any similarities or differences are not 

concrete. The lack of differences could be because the sample size is relatively low. It is also 

possible that the ASD subjects in this study had a lower severity level (though this data was not 

directly collected) compared to those reported in the previous literature.  

Studies assessing these same variables have not been performed before in this population. 

In the future, it would be helpful for more studies to assess these variables in a wider range of 

subjects, also testing different joints. It is possible that previously noted ankle differences could 

be due to abnormalities at the knee or hip, so this is something that can be determined in further 

research. Aside from walking, it would also be helpful for movement to be assessed in a wide 

range of activities. Since physical activity levels are a concern among adolescents in general, 

especially those with ASD, observing and collecting data of various other movements involved in 

various activities (such as cutting or pivoting, in the context of an activity that would be performed 

at recess or after school, such as soccer) could possibly be helpful in determining why adolescents 

with ASD have slighter higher rates of obesity compared to their neurotypical counterparts. Also, 

in future research studies it should be noted if subjects require any assistance in day to day 

activities, and how much assistance they require, if any. With enough subjects, the ASD group can 

be divided up and comparisons can be made between different subjects with different assistance 

levels.  

 

 

CHAPTER VI 
CONCLUSION 
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Within the given sample of youth with ASD and their matched neurotypical controls, 

there are no significant differences in coordination patterns, variability, or physical activity 

levels. This research suggests that ASD itself may not be a physical disorder, but the other 

factors involved with the condition may contribute to physical differences in some youth, given 

that it is an extremely heterogenous condition.  Future research addressing coordination patterns 

should consider looking at other limbs and joints, such as the hip and knee, and possibly tracking 

physical activity over a longer period of time. 
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