
<50 bp/PD to >2000 bp/PD) (Britt-Compton et al. 2006). IMR90
cultures propagated to senescence using standard culture condi-
tions, such as those we have used here, have different global ex-
pression profiles than those propagated under low oxygen
conditions (Lackner et al. 2014), suggesting that oxidative stress
may impact the clonal subpopulations contributing to the bulk
senescing cultures. Future experiments measuring global single-
telomere lengths following IMR90 culture of clonal populations
grown in varying oxygen tensions are required to clarify these
issues.

The two telomerase-positive immortal cancer cell lines ana-
lyzed here have very distinct single-telomere dynamics from the
IMR90 senescing fibroblast model. Both the bladder cancer cell
line UMUC3 and the prostate cancer cell line LNCaP have much
narrower distributions of single-telomere lengths than IMR90, per-
haps reflecting their respective clonal derivations from somatic
cells with already very short single-telomere distributions.
UMUC3 in particular has a relatively high percentage of very short
telomeres <500 bp in length (Table 1). Identified previously as T-
stumps (Xu and Blackburn 2007), it has been proposed that in

Figure 5. Telomere labeling identifies incorrectly represented and uncharacterized subtelomeres. (A) The 0.55- to 0.8-megabase region of the hg38 sub-
telomere reference sequence for 1p of UMUC3 is shown as a light blue bar; the dark blue vertical ticks within these bars indicate in silico Nt.BspQI nick-label
sites. The hg38 reference sequence continuing toward the putative 1p telomere is not shown. The green lines on the single-molecule maps are Nt.BspQI
(GCTCTTC) sites. Representative examples of raw images of several of these single molecules from two-color labeling experiments are shown. The single
DNA molecules used to form the consensus map for Chromosome 1p each align with the 0.6-Mb region of the hg38 reference, and all contain intense
telomere end labels. (B) Five telomere-containing consensus maps that could not be aligned with the hg38 reference sequence. Red bar designates an
SRE located on 4p, 4q, and several acrocentric short-arm subtelomeres (Youngman et al. 1992).
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the setting of active telomerase and compromised checkpoints
typical of immortal cancer cells, these very short telomeres are
the minimal telomere (TTAGGG)n tract that can still form a
TRF1- and TRF2-containing capping complex and, furthermore,
that telomerase is required to maintain/protect this complex and
prevent telomere fusion and end-joining reactions that would oth-
erwise kill the cancer cell (Xu and Blackburn 2007). The subtelo-
mere-specific biases are especially evident in UMUC3, where
almost half of the very short telomeres detected are present at ei-
ther 8q or 9p (Table 2).

The single-telomere resolved (TTAGGG)n length data sets ac-
quirable using our current methods are still incomplete. While
only 36 of 46 subtelomeric regions and their associated telomere
lengths were successfully mapped and analyzed, we were able to
identify several additional consensusmapswith telomere labeling.
These consensus maps likely include the acrocentric p arms (13p,
14p, 15p, 21p, and 22p) and the XpYp arm; the hg38 human ref-
erence sequence lacks complete information for these subtelo-
meres, which are required to connect to the consensus maps
using global nickase-dependent patterns. Experiments are under-
way to confirm the origins of these subtelomere consensus maps
using gRNA-directed CRISPR/Cas9 nickase labeling of known sub-
telomere sequences from these regions paired with telomere-spe-
cific labeling. The other four subtelomeres and their associated
telomeres (16p, 17p, 19q, and 22q) were not mapped due to dou-
ble-strand DNA breaks caused by INP sites of the nicking enzyme
used, Nt.BspQI. New England Biolabs recently developed a new
nicking enzyme, Nb.BssSI. We are currently testing this nicking
enzyme, alone and in combination, to detect the remaining telo-
meres. We also have the option of marking these individual telo-
meres using gRNA-directed CRISPR/Cas9 nickase labeling
(McCaffrey et al. 2016).

One particular strength of this telomere length–measuring
method is its potential ability to differentiate haplotype-specific
telomere lengths. Current haplotype linked telomere length mea-
surements are largely limited to subtelomeres with large structural
variants detectable using global nickase-dependent labeling
patterns (e.g., Fig. 2B). We have recently shown that CRISPR/
Cas9 labeling can differentiate alleles with single-nucleotide poly-
morphism (SNPs) in the PAM protospacer regions of specific
gRNAs that can be used to direct allele-specific nick-labeling
(data not shown). Thus, while the scope of themapping is current-
ly limited to 36 subtelomeres and structural variants, with these
additional refinements the technology has the potential to resolve
all subtelomeres and subtelomere haplotypes. The combination of
CRISPR/Cas9-specific sequence tagging with long-range single-
moleculemappingmay find other important applications in other
target genomic regions.

Methods

Cell preparation

UMUC3 cells, a human urinary bladder carcinoma cell line, were
obtained from ATCC and cultured in Eagle’s minimum essential
medium (EMEM) containing Earle’s salts, NEAA, and L-glutamine
(2 mM; ATCC) with 10% fetal bovine serum (FBS; Corning).
LNCaP cells, a human prostate cancer cell line, were obtained
from ATCC and cultured in RPMI 1640 media containing 2 mM
L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4500 mg/L
glucose, and 1500 mg/L sodium bicarbonate (ATCC) supplement-
ed with 10% FBS (Corning). IMR-90 cells, a human fetal lung fibro-

blast cell line, were obtained from Coriell Cell Repository and
maintained in EMEM containing Earle’s salts, NEAA, and L-gluta-
mine (2 mM; ATCC) supplemented with 15% FBS (Corning).
UMUC3 and LNCaP cells were passaged using 0.25% trypsin-
EDTA (Gibco), and IMR-90 cells were passaged using 0.05%
Trypsin-EDTA (Gibco).

High-molecular-weight DNA extraction

Mammalian cells were embedded in gel plugs, and high-molecu-
lar-weight DNA was purified as described in a commercial large
DNA purification kit (BioRad no. 170-3592). Plugs were incubated
with lysis buffer and proteinase K for 4 h at 50°C. The plugs were
washed and then solubilizedwithGELase (Epicentre). The purified
DNAwas subjected to 2.5 h of drop-dialysis. It was quantified using
Quant-iTdsDNA assay kit (Life Technology), and the quality was
assessed using pulsed-field gel electrophoresis (Schwartz and
Cantor 1984).

Guide RNA preparation

The seed sequence of 20 nucleotides complementary to the 3′-5′

strand of the telomere (UUAGGGUUAGGGUUAGGGUU) was de-
signed via a gRNAdesign tool (Feng Laboratory CRISPR designweb
tool at http://crispr.mit.edu). This seed sequence was incorporated
into the crRNA. The crRNA and the universal tracrRNA were syn-
thesized by GE Dharmacon. The telomere gRNA was created by
preincubating the tracrRNA (0.1 nmol) and crRNA (0.1 nmol) on
ice for 30 min.

The two-color labeling scheme

The gRNA (2.5 µM) was incubated with 200 ng of Cas9 D10A
(LabOmics), 1× NEBuffer 3 (New England BioLabs, NEB), and 1×
BSA (NEB) at 37°C for 15 min. The DNA (300 ng) and 5 U of Nt.
BspQI (NEB) were added to the mixture and incubated at 37°C
for 60 min. The nicked DNA was labeled with 5 U of Taq DNA
Polymerase (NEB), 1× green labeling mix (BioNano Genomics),
and 1× Thermopol buffer (NEB) at 72°C for 60 min. The nicks
were repaired with 20 kU of Taq DNA Ligase (NEB), 1 mM NAD+
(NEB), 100 nM dNTPs, and 1× Thermopol buffer (NEB) at 37°C
for 30 min. The small quantity (300 ng) of labeled genomic DNA
required for a typical experiment is sufficient to generate at least
60× coverage of a genome, making it feasible to apply this method
to small clinical sample sources such as blood.

The three-color labeling scheme

The DNA (300 ng) was first nicked with 5 U of Nt.BspQI (NEB) in
1× NEBuffer 3 (NEB) at 37°C for 2 h. The nicked DNA was then la-
beled with 5 U of DNA Taq Polymerase (NEB), 100 nM ATTO532-
dUTP dAGC, and 1× NEBuffer 3.1 (NEB) at 72°C for 60 min. The
sample was treated with 0.3 U of SAP (USB Products) at 37°C for
10min and then 65°C for 5min. The gRNA (2.5 µM)was incubated
with 200 ng of Cas9 D10A (LabOmics), 1× NEBuffer 3 (NEB), and
1× BSA (NEB) at 37°C for 15 min. The green-labeled sample was
then added to the reaction and incubated at 37°C for 1 h. The
Cas9 D10A nicks were labeled with 2.5 U of Taq DNA
Polymerase (NEB), 1× IrysPrep labeling mix red (BioNano
Genomics), and 1× NEBuffer 3.1 (NEB) at 72°C for 60 min. The
nicks were repaired with 20 kU of Taq DNA ligase (NEB), 1 mM
NAD+ (NEB), 100 nM dNTPs, and 1× NEBuffer 3.1 (NEB) at 37°C
for 30 min.
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DNA loading and imaging

After nick-labelingwith either the two- or three-color schemes, the
samples were treated with 6 mAU of QIAGEN Protease at 56°C for
30 min, and the reaction was stopped with 1 µL of IrysPrep stop
solution (BioNano Genomics). The DNA backbone was stained
with 333 nM YOYO-1 (Invitrogen) and is shown in blue in all fig-
ures. The stained sampleswere loaded and imaged inside the nano-
channels following the established protocol (Lam et al. 2012).
BioNanoGenomics labeling kit and IrysChipwere used to generate
the nick labeling data. The next generation mapping system from
BioNano has dramatically improved the throughput; our custom-
made systems are very similar to this new BioNano Genomics sys-
tem. Each IrysChip contains two nanochannel devices, which can
generate at least 60 Gb of data (molecules >150 kb). Normally, 60×
coverage (180Gb) is needed to generate 30molecules of each chro-
mosome end containing the telomeres. This assay runs 3 d, collect-
ing over 24,000 images. It currently costs $1000 per sample to run
whole-genome mapping. The image analysis was done using
BioNano commercial software for segmenting and detecting
DNA backbone based on the YOYO-1 staining similar to early op-
ticalmappingmethod (Lin et al. 1999), and localizing the green la-
bels by fitting the point-spread functions.

De novo genome map assembly

Single-molecule maps were assembled de novo into consensus
maps using software tools developed at BioNanoGenomics, specif-
ically Refaligner and Assembler (Mak et al. 2016). Briefly, the as-
sembler is a custom implementation of the overlap-layout-
consensus paradigm with a maximum likelihood model. An over-
lap graph was generated based on pairwise comparison of all mol-
ecules as input. Redundant and spurious edges were removed. The
assembler outputs the longest path in the graph, and consensus
maps were derived. Consensus maps are further refined by map-
ping single-molecule maps to the consensus maps, and label posi-
tions are recalculated. Refined consensus maps are extended by
mapping single molecules to the ends of the consensus and calcu-
lating label positions beyond the initial maps. After merging of
overlapping maps, a final set of consensus maps was output and
used for subsequent analysis.

Telomere length analysis

The molecules from the consensus maps, which were mapped to
the ends of the individual chromosomes (hg38 reference) were
designated as the molecules containing telomere and analyzed.
These molecules contain additional labels not found in the
reference, which were classified as telomere labels. The integrated
fluorescence intensity of these labels was calculated after subtract-
ing the background intensity. The intensity was then converted
to base pairs based on standard established using fosmids
(Supplemental Fig. S1).

Data access

The BioNano whole-genome assembly data from this study have
been submitted to the NCBI BioProject (https://www.ncbi.nlm.
nih.gov/bioproject) under accession number PRJNA396850.
The BioNano supplemental data at this accession refer to
IMR90 (SUPPF_0000001237), LNCaP (SUPPF_0000001236), and
UMUC3 (SUPPF_0000001235).
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