Correlation and Causes of Fifth Order Cycles Within the Upper Cretaceous Eagle Formation, Bighorn Basin of Wyoming

Kimberly Ann Johnson
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/oeas_etds

Part of the Geology Commons

Recommended Citation
Johnson, Kimberly A.. "Correlation and Causes of Fifth Order Cycles Within the Upper Cretaceous Eagle Formation, Bighorn Basin of Wyoming" (2005). Doctor of Philosophy (PhD), Dissertation, Ocean & Earth Sciences, Old Dominion University, DOI: 10.25777/3m7g-1s87
https://digitalcommons.odu.edu/oeas_etds/55

This Dissertation is brought to you for free and open access by the Ocean & Earth Sciences at ODU Digital Commons. It has been accepted for inclusion in OES Theses and Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
CORRELATION AND CAUSES OF FIFTH ORDER CYCLES
WITHIN THE UPPER CRETACEOUS EAGLE FORMATION,
BIGHORN BASIN OF WYOMING

by

Kimberly Ann Johnson
B.A. August 1992, Old Dominion University
M.S. May 1995, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the
Requirement for the Degree of

DOCTOR OF PHILOSOPHY

OCEAN, EARTH AND ATMOSPHERIC SCIENCES

OLD DOMINION UNIVERSITY
May 2005

Approved by:

Donald J.P. Swift (Director)

Dennis Darby (Member)

James Castle (Member)

Chester Grosch (Member)
ABSTRACT

CORRELATION AND CAUSES OF FIFTH ORDER CYCLES WITHIN THE UPPER CRETACEOUS EAGLE FORMATION, BIGHORN BASIN OF WYOMING

Kimberly Ann Johnson
Old Dominion University, 2005
Director: Dr. Donald J.P. Swift

Cyclic stratification was examined in the Upper Cretaceous (Santonian-Campanian) section (Eagle Formation) within the Bighorn Basin of Wyoming. Of particular concern was the 10^3 to 10^4 year band, which in marine settings has been attributed to orbital forcing (Milankovitch cyclicity). A series of 19 sections were measured through the Virgelle Member of the Eagle Formation. Most were measured on the "J"-shaped escarpment that constitutes the nose and north flank of the Thermopolis anticline. Several others were measured at sites up to 30 km to the northwest along paleo-shoreline. In the study, detailed thickness data of all sections and grain size data of three sections were used to test the hypothesis that fifth-order cycles are of eustatic origin. Spectral analysis of limited grain size data clearly indicated a strong 41,000-year Milankovitch cycle (the obliquity cycle) along with a well-defined 20,000-year Milankovitch cycle (the precession cycle). The Sherman statistic, a statistic which tests whether events are periodic or random, was used on the more extensive thickness data. Results indicated the presence of Milankovitch events at periodicities of 41,000 and 20,000-years, and these events have been correlated along paleo-shoreline as well as into the basin. This data has been interpreted as a result of varying monsoonal strength often ascribed to precessional control. Variation in monsoonal strength may have caused the rate of sediment input to vary, or may have caused sea level to vary, or both.
This dissertation is dedicated to my stepfather Steve Forster, a fellow geologist who has influenced me in more ways that can he can imagine.
ACKNOWLEDGMENTS

There are several people who have helped to make this dissertation possible. I would like to thank my dissertation committee members individually. Dr. Donald Swift for introducing me to the Bighorn Basin and believing in me always. Dr. Dennis Darby for his insights and helping me to become a better writer. Dr. Chet Grosch for his amazing contribution with respect to time series analysis. Dr. Jim Castle for the friendly comments and willingness to be an outside reader. I would also like to thank the students and faculty of Old Dominion University and Tidewater Community College for their help in the field, in the lab and with logistics. To my mother and my sister Amanda for their unconditional support during the last five years. To Carol Peterson, Sherry Johnson, Sharon DuBois, Rob Gucwa and Lisa Van Kylen for all their support during the ups and downs in the field, in the lab and during the writing process. And finally to Mike Howell, my rock, my best friend and the reason I enjoy life.
TABLE OF CONTENTS

LIST OF TABLES ... viii
LIST OF FIGURES .. ix
LIST OF PLATES ... xiii
INTRODUCTION .. 1

DESCRIPTION OF THE PROBLEM ... 3
GEOLOGIC HISTORY .. 3
Overview of the Cretaceous Western Interior Seaway 3
Paleoclimatology and Paleoeceanography 5
The Upper Cretaceous of Wyoming ... 7

CYCLICITY .. 11
Historical Background .. 11
Cyclicity and the Western Interior Basin 11
Storm Stratification ... 13
Causes of High Frequency Cyclicity: a Survey of the Literature 15
Biostratigraphic Control .. 17

FORMULATING THE HYPOTHESIS .. 19

TESTING THE HYPOTHESIS ... 19
Criteria for Orbital Forcing .. 19
Criteria for Tectonic Forcing .. 19
Criteria for Autocyclic Shoreline Repetition 20
Criteria for Regional Variations in Sediment Supply 20

METHODS ... 22
FIELD PROCEDURES .. 22
Measured Sections ... 22
Grain Size Sampling ... 23
LAB PROCEDURES .. 23
Measured Sections ... 23
Grain Size ... 23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALYSIS AND RESULTS</td>
<td>24</td>
</tr>
<tr>
<td>MEASURED SECTION DESCRIPTION</td>
<td>24</td>
</tr>
<tr>
<td>ANALYSIS OF GRAIN SIZE DATA</td>
<td>31</td>
</tr>
<tr>
<td>Preparation of Grain Size Data</td>
<td>31</td>
</tr>
<tr>
<td>Spectral Analysis</td>
<td>36</td>
</tr>
<tr>
<td>Tuning the Analysis</td>
<td>40</td>
</tr>
<tr>
<td>Verification of the Tuning Process: Sedimentation Rates</td>
<td>42</td>
</tr>
<tr>
<td>ANALYSIS OF BED THICKNESS DATA</td>
<td>44</td>
</tr>
<tr>
<td>Rare Events</td>
<td>44</td>
</tr>
<tr>
<td>Rare Events and the Sherman Statistic</td>
<td>46</td>
</tr>
<tr>
<td>Correlation of Precession Cycles</td>
<td>53</td>
</tr>
<tr>
<td>DISCUSSION AND CONCLUSIONS</td>
<td>55</td>
</tr>
<tr>
<td>General</td>
<td>55</td>
</tr>
<tr>
<td>Monsoons as the Forcing Mechanism</td>
<td>56</td>
</tr>
<tr>
<td>Milankovitch Studies in a Clastic Environment</td>
<td>57</td>
</tr>
<tr>
<td>Grain Size and Thickness Data as Parameters for Milankovitch Cycles</td>
<td>58</td>
</tr>
<tr>
<td>REFERENCES CITED</td>
<td>60</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>71</td>
</tr>
<tr>
<td>A. MEASURED SECTIONS</td>
<td>71</td>
</tr>
<tr>
<td>B. PROCEDURES FOR GRAIN SIZE ANALYSIS</td>
<td>91</td>
</tr>
<tr>
<td>C. RAW DATA (GRAIN SIZE, SAND, SILT AND CLAY FRACTIONS)</td>
<td>93</td>
</tr>
<tr>
<td>D. GRAPHICAL PLOTS OF SAND, SILT AND CLAY FRACTIONS</td>
<td>103</td>
</tr>
<tr>
<td>E. CALCULATED TIMELINES</td>
<td>112</td>
</tr>
<tr>
<td>F. THICKNESS DATA</td>
<td>165</td>
</tr>
<tr>
<td>G. BIN DATA</td>
<td>185</td>
</tr>
<tr>
<td>VITA</td>
<td>196</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Scales of cyclic sedimentation in the Cretaceous Western Interior Basin</td>
<td>12</td>
</tr>
<tr>
<td>2. Decision Table</td>
<td>21</td>
</tr>
<tr>
<td>3. Names, designations and locations of measured sections</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Paleographic map of the North American continent during the Upper Cretaceous showing the location and extent of the Western Interior Seaway</td>
<td>1</td>
</tr>
<tr>
<td>2. Location of the Bighorn Basin in relation to other Laramide basins</td>
<td>2</td>
</tr>
<tr>
<td>3. Isopach map illustrating the depositional width of the Western Interior Basin during the late Cretaceous</td>
<td>4</td>
</tr>
<tr>
<td>4. Schematic cross sections illustrating the principle mechanisms of subsidence in retroarc foreland basins (modified from DeCelles and Giles, 1996)</td>
<td>5</td>
</tr>
<tr>
<td>5. Circulation in the upper 10 m of water column during the Cretaceous (from Slingerland et al., 1996)</td>
<td>7</td>
</tr>
<tr>
<td>6. Study area showing outcrop belt of the Mesaverde Group (dark band) in the Bighorn Basin</td>
<td>8</td>
</tr>
<tr>
<td>7. Stratigraphy of the Mesaverde Group within the Bighorn Basin</td>
<td>9</td>
</tr>
<tr>
<td>8. Simplified lithostratigraphic cross section through the depositional dip of the Eagle Formation within the Bighorn Basin (modified from Klug, 1994)</td>
<td>9</td>
</tr>
<tr>
<td>9. Numerical simulation of two high-frequency (fourth-order) sequences deposited over a 75,000 yr period</td>
<td>13</td>
</tr>
<tr>
<td>10. Shale interval above the Virgelle tongue</td>
<td>14</td>
</tr>
<tr>
<td>11. A fourth-order tongue in the Virgelle (marked by solid black lines)</td>
<td>15</td>
</tr>
<tr>
<td>12. Diagram showing the astronomical variables that influence Earth's climate (from de Boer, 1983)</td>
<td>16</td>
</tr>
</tbody>
</table>
13. The great Wyoming cross-section, extending 176 miles across the Bighorn and Powder River Basins (after Gill and Cobban, 1966a) .. 18

14. Generalized map of location of exposed Upper Cretaceous Eagle formation (shaded black area) with location of measured sections .. 25

15. Wagonhound Central measured section ... 26

16. Typical overall expression of the Telegraph Creek Shale between V-1 and V-2 27

17. Planar bedding in the Telegraph Creek Shale located between V-2 and V-3 27

18. Climbing ripples in sandstone beds within the Telegraph Creek Shale between V-1 and V-2 measuring between 2-6 cm thick ... 28

19. Planar beds at base grading into climbing ripples in the Telegraph Creek Shale between V-1 and V-2 measuring between 8-10 cm thick ... 28

20. Sandstone beds thickening upward toward the tongue of the Virgelle Member V-2 29

21. Ripple marks on a flooding surface at the top of a resistant sandstone bed in the Telegraph Creek Shale between V-2 and V-3 ... 29

22. Amalgamated sandstone of the Gebo Member at Wagonhound Central 1 meter above the Shannon Surface ... 30

23. Graphical plot of the raw data for average grain size for WHC .. 32

24. Graphical plot of the average grain size for WHC with the mean removed 32

25. Graphical plot of the average grain size for WHC with mean removed showing a linear trend .. 32

26. Graphical plot of the raw data for average grain size for WHS-3 33

27. Graphical plot of the average grain size for WHS-3 with the mean removed 33
28. Graphical plot of the average grain size for WHS-3 with the mean removed showing a linear trend ..33

29. Graphical plot of the raw data for average grain size for WHE-2 ..34

30. Graphical plot of the average grain size for WHE-2 with the mean removed ..34

31. Graphical plot of the average grain size for WHE-2 with the mean removed showing a linear trend ..34

32. Graphical plot for the average grain size of WHC with mean, linear and quadratic removed ..35

33. Graphical plot for the average grain size of WHS-3 with mean, linear and quadratic removed ..35

34. Graphical plot for the average grain size of WHE-2 with mean, linear and quadratic removed ...35

35. Spectral analysis results for WHC average grain size data ..36

36. Spectral analysis results for WHS-3 average grain size data ..36

37. Spectral analysis results for WHE-2 average grain size data ..37

38. Spectral analysis results for WHC sand fraction data ..37

39. Spectral analysis results for WHS-3 sand fraction data ..37

40. Spectral analysis results for WHE-2 sand fraction data ..38

41. Spectral analysis results for WHC silt fraction data ..38

42. Spectral analysis results for WHS-3 silt fraction data ..38

43. Spectral analysis results for WHE-2 silt fraction data ..39
LIST OF PLATES

Plate

1. Milankovitch cycles correlated along
 local paleoshoreline (WHS-3 to WHN-2) .. see back cover sleeve

2. Milankovitch cycles correlated along
 regional paleoshoreline (WHC to SR) ... see back cover sleeve

3. Milankovitch cycles correlated along
 the shore normal section (WHC to WHE-7) ... see back cover sleeve
INTRODUCTION

The purpose of this study is to investigate the origin of high-frequency stratigraphic cyclicity in the Cretaceous Foreland Basin of the North American western interior (Figure 1). The unit involved is the Upper Cretaceous (Santonian-Campanian) section (Eagle Formation) within the Bighorn Basin of Wyoming (Figure 2). Of particular concern is the 10^3 to 10^4 year band, the fifth-order cycles of Van Wagoner et al. (1990) and Plint (1996) in which tectonics, eustasy, and sediment supply have all been suggested as forcing mechanisms. The first step has been to determine how far such fifth-order cycles can be correlated in order to establish whether or not the forcing is therefore of at least regional scale. The question then becomes, what factors (or forces) are controlling sedimentation at the fifth-order scale? Possible factors included allocyclic factors (forces outside the basin), autecyclic factors (forces within the basin), or both. Allocyclicity may involve eustasy (long-period or Milankovitch band), or may involve hydrological mechanisms within the basin such as river avulsion or groundwater storage during climatic events involving large volumes of precipitation (monsoonal). Autocyclicly may involve tectonic forces within the basin.

Figure 1. Paleogeographic map of the North American continent during the Upper Cretaceous, showing the location and extent of the Western Interior Seaway. Black box denotes the state of Wyoming (modified from Williams and Stelck, 1975).

The model journal used for this dissertation was American Association of Petroleum Geologists Bulletin.
In the study, grain size distribution data and data for the spectral analysis of bed thickness in vertical profiles will be used to analyze the cyclic shales and sands within the Virgelle Member of the Eagle Formation. While the study is seen as complete in itself, it is designed to serve as a basis for exploring problems outside the Bighorn Basin, which can be pursued in following years. The Virgelle Member, coupled with the detailed measured sections in a small geographic area, serves as a control area for further studies. Once the cyclicity has been established for the control area, it is possible to investigate whether or not these cycles correlate within the basin, outside the basin, to other Upper Cretaceous units within the United States, and if possible, globally.

Figure 2. Location of the Bighorn Basin in relation to other Laramide basins.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
DESCRIPTION OF THE PROBLEM

GEOLOGIC HISTORY
Overview of the Cretaceous Western Interior Seaway

The Cretaceous Western Interior basin has been described as the result of a retroarc thrust belt resulting in architecture of a foreland basin. Retroarc basins form along the continental-interior flanks of continental margin orogenic belts (Jordan, 1995). The Cretaceous Western Interior Basin is an accessible, unusually large, and well-exposed example of a retroarc basin, about which an extensive literature has developed. The basin formed during the late Mesozoic westward drift of the North American plate, as the actively deforming leading edge was repeatedly thrust over the craton, resulting in flexural subsidence of the latter and the development of a retroarc foreland basin (Figure 3). The basin deposits are series of "clastic wedges" (King, 1959) whose sandstones and gravels fill the western foredeep, and interfinger with the shales and limestones of the central and eastern portion of the basin. The Cretaceous Western Interior Basin has served as the testing ground for recent ideas concerning the controlling forces of stratigraphic successions, and it has become a natural laboratory for "high resolution" sequence stratigraphers. Its stratigraphic interval, the Cretaceous period, is an important one in which to study the effects of eustasy; the existence of a "Great Cretaceous Transgression" was first suggested by Edward Suess (1875, in Howell and Flint, 2003), and later shown to be related to an interval of faster sea floor spreading rates (Pitman, 1978). The time interval is well documented; "... [this] is one of the best biostratigraphically constrained basins in the World" (Krystinik and DeJarnett, 1995).

A tectonic component in stratigraphic patterns of the Cretaceous western interior has long been inferred. The thick clastic wedges of the Upper Cretaceous were initially thought to mark periods of tectonic activity and sediment production in the source terrain (Armstrong, 1968), but arguments have been made that during much of the upper Cretaceous, tectonic activity meant thrust loading of the foreland with consequent subsidence (Heller et al., 1988). Gravels might accumulate at the thrust front, but subsidence would extend several hundred kilometers into the foreland, the distance depending on the flexural rigidity of the lithosphere. The resulting accommodation space would be filled by far-traveled fine sediment transported laterally along the basin axis. A clastic wedge would not prograde into the basin until after thrust loading ceased and isostatic uplift could begin. In this model, the proximal and distal stratigraphic sections would be out of phase with each other and the immediate signature of tectonic activity would, counter-intuitively, be the accumulation of shale (Heller et al., 1988). The situation becomes more
complex in the Campanian, as thin-skinned Sevier tectonics (thrusting) gave way to thick-skinned Laramide tectonics (basement uplifts). Within the Washakie and Red Desert Basins, contrasting depositional patterns of sedimentation during this period, as thrust-driven flexural subsidence (thin-skinned tectonics) and the new basement uplift processes interact (Devlin et al., 1993).

Geodynamics of thrust belts associated with the Cretaceous Western Interior Seaway have led to more complex insights into retroarc foreland dynamics in more recent studies. In regions far removed from thrust loading, in this case east of the Sevier Orogeny beyond the forebulge, subsidence would occur not due entirely to crustal loading, but from dynamic processes in the mantle, called dynamic subsidence (DeCelles, 2004; Figure 4). Subsidence over a broad region (large wavelength) is controlled by the downward migration of the oceanic plate to the west, taking with it the adjacent asthenosphere causing a vertical "pull" of the lithosphere above. This would then create accommodation space in a depocenter east of the foredeep and beyond the

Figure 3. Isopach map illustrating the depositional width of the Western Interior Basin during the late Cretaceous. From Beaumont et al., 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
forbulge (DeCelles, 2004). Deposits of the foredeep, forebulge and backbulge (large wavelength) are well represented in the Western Interior Seaway (Figure 3).

![FORELAND BASIN SYSTEM DEPOZONES](image)

Figure 4. Schematic cross sections illustrating the principal mechanisms of subsidence in retroarc foreland basins (modified from DeCelles and Giles, 1996).

Cyclic sedimentation in the Western Interior Basin is well documented; however, the relationship between sequence stratigraphy and cyclostratigraphy is not well understood. Orbital forcing (Milankovitch cyclicity) related to sedimentation is popular for the carbonate deposition in the eastern portion of the Western Interior Seaway; however, limited studies have been done on the clastics of the western portion of the Seaway. Deeper water deposits with good time constraints often provide clear evidence of orbital signals but not so clear sea level changes. The opposite is also true; shallow water deposits often provided clear evidence of sea level changes but not well-developed orbital signals (Gale et al., 2002). The clastic deposits of the Virgelle sandstone tongues and the Telegraph Creek Shales are potentially the record keepers of such signals. The methods and results of this project serve as tools for studying Milankovitch cyclicity in clastic depositional environments.

Paleoclimatology and Paleoceanography

The second half of the Cretaceous was a time of warm stable climate, often described at a greenhouse climate (Barron and Washington, 1982). Evidence includes geography of terrestrial plants (Parrish and Spicer, 1988) as well as marine organisms (Barnard, 1973; Kauffman, 1973;
Mutterlose, 1992). Other evidence includes sea level position, which was the highest in the Mesozoic. These extraordinarily high sea levels would lead to the notion that there were no ice caps and that temperatures must have been much warmer than they are today. A contradiction to this notion suggests that glacial-eustatic changes are the only explanation for the large and rapid changes in sea level (Miller et al., 2004); however, he also mentions that more studies need to be completed in order to fully explain sea level changes prior to the Eocene. Through the use of paleogeographic reconstructions and CO₂ estimates, climate models have also predicted significantly reduced thermal gradients (Barron and Washington, 1982; Barron, 1983; Crowley and North, 1991). These reduced atmospheric thermal gradients would then affect the ocean circulation producing a sluggish deep water circulation leading to the deposition of organic rich sediments in oxygen-deficient deep-ocean waters (Ryan and Cita, 1976; Arthur and Schlanger, 1979; Brass et al., 1982; Wilde and Berry, 1982). Changes in monsoon intensity have been shown to occur on Milankovitch frequencies (Clemens et al., 1991; Jacobs and Sahagian, 1995; Reinhardt and Ricken, 2000), and it has been suggested that changes in continental water storage on a Milankovitch scale is a possible mechanism for sea level changes equivalent to those seen with changing ice volumes (Jacobs and Sahagian, 1995). Monsoons driven on a precessional scale can produce enough precipitation that is stored in lakes and groundwater to influence sea level fluctuations. Calculations of such water storage suggests that sea level can change 2 to 8 meters, sufficient enough to cause the thickness variations in the carbonate deposits on the eastern side of the Western Interior Basin (Jacobs and Sahagian, 1995).

Surface circulation was generated for the Turonian through the application of modeling using five forcing fields: the wind field, latitudinal temperature gradient, precipitation minus evaporation, runoff and mixing of Boreal and Tethyan waters (Kump and Slingerland, 1999). These forcings coupled with a general circulation model for coastal areas produced a circulation pattern where runoff from the eastern side of the western interior exited to the north, and runoff from the western side exited to the south. The pattern generates two counterclockwise gyres, nearly connected, for the Western Interior Seaway (Figure 5). During fair-weather conditions, fine-grained suspended sediment was then transported primarily to the southeast. A well-developed shelf-slope morphology existed along the western margin of the seaway during Campanian time (Asquith, 1970). During storms, northeasterly winds generated south-trending, downwelling, geostrophically balanced flows that were capable of transporting sand southward along the shelf and offshore (Swift and Parsons, 1995).
The Upper Cretaceous of Wyoming

The modern day Bighorn Basin is a large-scale syncline that formed as a result of several Tertiary Laramide uplifts including the Abrasoka, Owl Creek, Bighorn and Crazy Horse ranges. These uplifts exposed several Mesozoic sections including the Upper Cretaceous Mesaverde Group (Figure 6), which contains continuous outcrop exposure for several kilometers along paleoshoreline as well as several kilometers into the basin. The Mesaverde Group is comprised of two formations, the Eagle and Judith River Formations (Fitzsimmons and Johnson, 2000; Figure 7). The lowermost Eagle Formation offers repetitive sandstone-shale successions with well-developed cyclicity at multiple scales (Figures 8). The focus of this research is the Virgelle Member and the interfingering Telegraph Creek Shale of the Eagle Formation, which presents an excellent expression of high frequency cyclicity (Fitzsimmons and Johnson, 2000). The Virgelle is separated by the overlying Gebo Member by a sequence boundary called the Shannon Surface. The Shannon Surface is a Type II sequence boundary (Van Wagoner et al., 1990) meaning it is a surface of sea level fall that can be traced several kilometers along paleoshoreline and several kilometers into the basin. This surface was used as the datum for comparing and correlating the 19 measured sections that were completed for this project.

The Virgelle includes eight down-dip sandstone tongues composed of shallow marine facies that pinch out and interfinger with the Telegraph Creek Shale (Figure 8). In sequence stratigraphic terms each of these tongues would represent a progradation of the shoreline due to sea level fall.
Figure 6. Study area showing outcrop belt of the Mesaverde Group (dark band) in the Bighorn Basin.
<table>
<thead>
<tr>
<th>AGE</th>
<th>STAGE</th>
<th>GROUP</th>
<th>FORMATION</th>
<th>MEMBER</th>
<th>AGE (Ma)</th>
<th>AMMONITE ZONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRETACEOUS</td>
<td>CAMPAIGN</td>
<td>MESAVERDE</td>
<td>JUDITH RIVER</td>
<td>TEAPOT</td>
<td>76 Ma</td>
<td>Bacculites scottii</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNNAMED</td>
<td>79.5 Ma</td>
<td>Bacculites obtusus</td>
</tr>
<tr>
<td>CRETACEOUS</td>
<td></td>
<td></td>
<td>EAGLE</td>
<td>CLAGGETT</td>
<td>80.54 Ma (± 0.55)</td>
<td>Bacculites sp. (weak ribs)</td>
</tr>
<tr>
<td>CODY</td>
<td>CODY</td>
<td></td>
<td></td>
<td>GEBO</td>
<td>83.1 Ma (± 0.5)</td>
<td>Bacculites sp. (smooth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VIRGELLE</td>
<td></td>
<td>Scaphites hippocrepis 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TELEGRAPH CREEK</td>
<td></td>
<td>Scaphites hippocrepis 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FISHTOOTH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7. Stratigraphy of the Mesaverde Group within the Bighorn Basin. Based on Gill and Cobban (1966a & b, 1973) and Fitzsimmons and Johnson (2000). Dates based on nomenclature by Obradovich (1993).

Figure 8. Simplified lithostratigraphic cross section through the depositional dip of the Eagle Formation within the Bighorn basin (modified from Klug, 1994).
followed by a succession of shoaling upward depositional facies called a parasequence (open marine, offshore transition, lower shoreface, middle shoreface, upper shoreface, foreshore and finally coastal plain deposits), capped by a marine flooding surface. The Virgelle tongues however, do not record the shoaling nature of facies succession normally found in a parasequence. Instead, there is a sharp base separating the open marine deposits from the shoreface deposits and only the offshore transition, and in some cases the lower shoreface, is preserved which is immediately followed by open marine deposits for several meters prior to the next sharp base (the next Virgelle sandstone tongue). These have been termed high frequency sequences (Fitzsimmons and Johnson, 2000), and the sharp base between the open marine and lower shoreface deposits is termed a regressive ravinement (Swift et al., 1991; Swift et al., 2003). This results in storm wave action on the sea floor due to a relative drop in sea level and decrease in accommodation space (Swift et al., 1991).
CYCLICITY

Historical Background

From the beginning of stratigraphy, it has been recognized that stratification is often cyclic; sediment types (sand, shale, or limestone) alternate (Grabau, 1913). Furthermore, the repetitions are hierarchical; small-scale alternations and large-scale alternations occur in the same deposits. Earlier workers had assumed that vertical variation in sediments is due mainly to tectonism (mountain building). In 1909, Chamberlain famously stated that "diastrophism [elevation change] is the ultimate basis of correlation". By mid-century, however interest had developed in eustasy (global sea level change) as an alternate explanation. Students of the Carboniferous began to talk about "cyclotherms" (Schwarzacher, 1964; Duff et al., 1967; Peach, 1988). The sedimentary portion of the North American craton was divided into 5 major eustatic sequences (Sloss, 1963). These ideas eventually crystallized as "sequence stratigraphy" in which eustasy is seen as the dominant driving force. (Vail et al., 1977).

Cyclicity and the Western Interior Basin

Cyclicity in the Cretaceous Western Interior Basin occurs through a range of spatial scales (Table 1). The basin fill as a whole has been designated by Sloss (1962) as the Zufii supersequence. Second-order sequences (probable periodicities of 10^7 yrs; Van Wagoner et al., 1990), were referred to as cyclothsms (Kauffman, 1977). Such low-frequency sequences are in turn composed of third order sequences (probable periodicities of 10^6 yrs; Van Wagoner et al., 1990); also known as alloformations (Plint, 1996). These units may be bundled into fourth-order sequences (Van Wagoner et al., 1990). Fourth-order periodicities are on the order of 10^5 yrs (Van Wagoner et al., 1988). Fourth-order sequences are also known as parasequence sets or high-frequency sequences, (O'Byrne and Flint, 1995), or allomembers (Bhattacharya and Walker, 1991). These last two terms are not fully synonymous; high frequency sequences are bounded by unconformities, while parasequences are bounded by flooding surfaces. Upward-coarsening bed sets have been described as fifth-order sequences or parasequences (Van Wagoner et al., 1990); or as shingles (Bhattacharya and Walker, 1991). Fifth-order periodicities are on the order of 10^3 to 10^4 yr (Schwans, 1995; Fitzsimmons and Johnson, 2000).
Table 1. Scales of cyclic sedimentation in the Cretaceous Western Interior Basin

<table>
<thead>
<tr>
<th>Order</th>
<th>Duration</th>
<th>Descriptive terms</th>
<th>Reference</th>
<th>Assumed Forcing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>10^6-10^7</td>
<td>Sequences, Cyclothemes, Clastic Wedges</td>
<td>Kauffman, 1977; Van Wagoner et al., 1990; Ryer, 1993; Plint, 1996</td>
<td>Eustatic</td>
</tr>
<tr>
<td>3rd</td>
<td>10^5-10^6</td>
<td>Sequences, sequence sets, Alloformations</td>
<td>Van Wagoner et al., 1990; Plint, 1996</td>
<td>Tectonic</td>
</tr>
<tr>
<td>4th</td>
<td>10^4-10^5</td>
<td>Sequences, high frequency sequences, allomembers (Milankovich band)</td>
<td>Van Wagoner et al., 1990; Plint, 1996</td>
<td>Tectonic, Lobe-switching or Milankovitch</td>
</tr>
<tr>
<td>5th</td>
<td>10^3-10^4</td>
<td>Parasequences, shingles (Milankovich band)</td>
<td>Van Wagoner et al., 1990; Plint, 1996</td>
<td>Milankovitch</td>
</tr>
</tbody>
</table>

Higher orders of complexity can be observed as the western margin of the basin is approached (Van Wagoner et al., 1988). The shoreline serves as a low-pass filter, which passes the effects of low frequency sea level motions onto the terrestrial environment, but filters out the high frequency motions (Fitzsimmons and Johnson, 2000). The cyclicity considered in this study occurs in the cliff-forming sandstones and intervening shales of the western margin of the basin. Here the cyclicity occurs as shaley bed sets centimeters to meters in thickness, whose member beds increase upward in sand content. Fifth-order cyclicity in this setting has not been previously studied.

Attempts have been made to identify third and fourth-order cycles for the Mesaverde Group. Four third order sequences have been identified in the Mesaverde located at the top of the Fishtooth, the top of the Virgelle, the top of the Claggett and the top of the unnamed Member of the Judith River (Fitzsimmons and Johnson, 2000). Each of the eight sandstone tongues of the
Virgelle are interpreted to be fourth-order cycles (Fitzsimmons and Johnson, 2000). Therefore, the natural location for fifth-order cycles would then be within the Telegraph Creek Shale that interfingers each of the fourth order Virgelle sandstone tongues. The Telegraph Creek Shale is often ignored with respect to outcrop detail and generally lumped into a thick shale unit. It is quite often easy to recognize the third and fourth order cycles due to significant changes in lithogies, whereas subtle changes in shales are not as apparent in outcrop expression. Large-scale storms, such as those generated by monsoons with periodicities on the fifth order scale could potentially drive both grain size and bed thickness changes within the Telegraph Creek Shale. Therefore, the subtle changes in bed thickness and grain size changes may represent the surfaces of fifth order cycles.

Storm Stratification

Numerical simulations by Storms and Swift (2003) indicate that fourth-order beds enshroud the successive highstand systems tracts of prograding high-frequency sequences (Figure 9).

![Figure 9. Numerical simulation of two high-frequency (fourth order) sequences deposited over a 75,000 yr period. Curvilinear time lines equal 600 yr intervals. They show the progressive development of the deposit at 15,000 yr intervals. Notice how the lowstand beds (closely spaced time lines) envelope the highstand deposits (widely spaced time lines). Modified from Storms and Swift, 2003.](image-url)

In the lowstand beds, fifth-order cyclicity is generally overprinted onto storm stratification patterns. The spacing of storm beds within the lowstand bed succession should vary randomly because the...
ocean and atmosphere comprise a coupled chaotic system (Zhang et al., 1997), and the intensity and frequency of storms is not predictable, but modulation by changes in relative sea level leads to characteristic patterns.

In one such pattern, there is a wide but regular spacing of storm beds (up to 3 m) in the shales between fourth-order sandstone tongues (Figure 10). Storm beds in this distal setting can only be deposited during fifth-order lowstand when the shoreline has arrived at its closest approach to the site of observation. A second style occurs within fourth-order sandstones (Figure 11). In this case, storm beds are closely spaced (1-2 m). Storm bed thickness increases in thickness and decreases in spacing up to the horizon of closest shoreline approach, followed by a repeat of the cycle.

Figure 10. Shale interval above the Virgelle tongue. Notice the widely spaced storm beds (fifth-order) in the shale interval. Approximately 2.5 – 3 meters between arrows.
Numerical simulations have shown that pseudo-cyclicity can appear in purely random storm bed successions (Thorne et al., 1991). Feedback between the grain size characteristics of the seabed after storm bed deposition, and erosion during the next event can generate a kind of autocyclicity. Consequently, an important aspect of this study will be separating the deterministic fifth-order signal from the random storm bed signal.

Figure 11. A fourth-order tongue in the Virgelle (marked by solid black lines). Notice the regular spacing of thicker (fifth-order) storm beds. Approximately 1 – 1.5 meters between arrows.

Causes of high-frequency Cyclicity: a Survey of the literature

Fifth-order cyclicity is often attributed to climatic variations driven by the Milankovitch mechanism of precession, obliquity and eccentricity (Figure 12). Precession is the "wobble" in the Earth's rotation (de Boer and Smith, 1994). The period in which precession occurs is 19,000 to 23,000 years. Obliquity is the shift in the tilt of Earth's axis from 22 to 24.5 degrees with a periodicity of 41,000 years. Finally, eccentricity is the path of Earth's orbit around the sun, which shifts from...
more circular to more elliptical over a period of 100,000 years. Each of these mechanisms cause the amount of solar radiation absorbed at a point on the Earth's surface to vary.

Figure 12. Diagram showing the astronomical variables that influence Earth's climate (from de Boer, 1983).

The most authoritative statement concerning fifth-order cyclicity compared bedding rhythms in Germany, Italy, and the Cretaceous Western Interior (Fischer, 1993)... "21 ky. (precessional) cycles are widely recorded in bedding couplets in the Niobrara Formation of the Western Interior", but cautioned that "even though plain to the eye, this frequency does not generally emerge from time series analysis, due to... irregularity in the precessional period [and] variations in accumulation rate." Frequency ratios in bed thickness, or bundling has been used to establish orbital forcing (Sageman et al., 1997). In the Bridge Creek Member of the Greenhorn Formation five precessional cycles are seen for every 100,000-year eccentricity cycle, called the precessional index (Sageman et al., 1997). Ideally, the precession and eccentricity terms as described by Milankovitch would interact to give a 1:2:5 ratio of cyclicity (Fischer, 1993). Impact of these cycles on climate invokes variations in water density and biological productivity, and sediment supply rather than glacioeustasy (Fischer, 1993). In the absence of worldwide fluctuations of glacial ice, climatic cycles in the mountains to the west of the basin could be expected to send brackish water across the seaway, producing bottom anoxia that would suppress carbonate production and would be accompanied by increased clastics (Fischer, 1993).

In contrast, interpretations of stratigraphic cyclicity as a response to tectonism is strongly supported (Yoshida et al., 1996). Modeling responses to periodic changes in interplate stress and flexural load on time scales down to that corresponding to the spacing of individual
earthquakes (10^{-1} to 10^{4} yr), making a case for tectonic cyclicity that could explain 4^{th} and 5^{th} order cycles (Peper et al., 1992). For instance, fourth-order cyclicity and fifth-order cyclicity could be tied to tectonism through the mechanism of in-phase and out-of-phase thrusting (Houston et al., 2000). Thrusts are usually sequentially younger towards the foreland, but much of the sediment load generated during each thrust movement is trapped on intra-orogen (piggyback) basins (fifth-order cyclicity?). However, the less frequent out-of-sequence thrusts, breaking out in the already-thrusted hinterland, elevate earlier thrust plates, and much more sediment is released (fourth-order cyclicity?).

Tectonism and eustasy are allocyclic mechanisms (driven by forces from outside the basin, beyond the actual Seaway). High-frequency cyclicity might also be driven by such autocyclic mechanisms as delta avulsion and lobe switching (Boyd et al., 1989). Numerical experiments by Hampson and Storms (2003) have shown that high frequency changes in sediment supply may result from delta avulsion or rhythmic beach ridge progradation, and may generate surfaces of discontinuity in shallow marine successions. So do high frequency changes in sea level or wave regime, but the allocyclic mechanisms generate facies shifts that are apparent across the surface of discontinuity, while changes in sediment supply do not. The change in sediment supply may not be the same across the entire basin, sediment supply is dependent on the orbitally-intensified monsoonal circulation, as well as position of river mouths, which supply to sediment to the basin.

Biostratigraphic control

A detailed ammonite zonation for the Cretaceous Western Interior basin (Figure 13) has been developed (Gill and Cobban, 1966a, 1966b, 1973). A careful comparison of this ammonite evolution with radiochronology (Obradovich 1993) has been undertaken (Krystinik and DeJarnett 1995). They note that the radiometric dates are spread unevenly through the Upper Cretaceous section. Throughout much of the section, resolution is on the order of 0.5 my per ammonite zone. In the late Santonian through lower Campanian, however, our section of maximum interest, the resolution increases to 300,000 years per ammonite zone, equivalent to the duration of longer 4th order cycles. The Telegraph Creek, Cody, and Claggett Shales of the Bighorn basin have yielded complete faunal successions of the Western interior Ammonite index fossils. Several faunal zones contain K/Ar dated bentonites (Obradovich and Cobban, 1975; Obradovich, 1988). The most serious limitation for the study lies in the difficulty of independently constraining thrust timing in the Sevier hinterland to less that 1 or 2 my (see analyses of Witschko and Dorr, 1983; Jordan, 1988). The role of thrusting must therefore be supported by multiple lines of evidence.
The Mesaverde Group falls between the *Scaphites hippocrepis* and *Baculites* sp. (smooth) ammonite biozones (Gill and Cobban 1973). This range encompasses approximately 2 million years of time (Kauffman et al., 1993) of which the Virgelle (based on thickness) envelopes approximately one half of that range. Assuming a constant sedimentation rate, the time between each of the eight sandstone tongues would be approximately 100,000 to 125,000 years.
FORMULATING THE HYPOTHESIS

Given the rich diversity of approach and opinion concerning the origin of stratigraphic cyclicity, how can the problem be reduced to manageable proportions? I reduced it by limiting my effort to the fifth-order cyclicity of the high-frequency cyclicity imprinted on the lowstand systems tract on the western margin of the Cretaceous seaway. In this study, I investigate the extent to which these fifth-order cycles in the Bighorn basin are responses to tectonic, eustatic (orbital), climatic (monsoonal) or autocyclic (delta building), specifically the interval between the first (V-1) and second (V-2) Virgelle tongues were investigated. I present as an hypothesis the proposition that the fifth-order cycles of the southern Bighorn basin are a result of orbital forcing and are potentially of eustatic origin.

TESTING THE HYPOTHESIS

Criteria for Orbital Forcing

Eustatic sea level changes due to orbital forcing have been demonstrated in many stratigraphic settings (Laferriere and Hattin, 1987; Kominz and Bond, 1990; Herbert et al., 1999; D'Argenio et al., 1999). Milankovitch cycles can lead either to changes in sea level or sediment supply. The bundling of beds at 5:1 ratios (five-20,000 year precession cycles within one-100,000 year eccentricity cycle) is diagnostic of orbital forcing (Laffiere and Hattin, 1987). Slight departures from the 5:1 ratio (i.e. 3:1, 7:1 and 9:1) may reflect orbital parameters at slightly different periodicities. These orbitally induced packages could theoretically be correlated along paleoshoreline and have been shown to correlate from the basin axis to the western margin (Elder et al., 1994; see Table 2).

Changes in monsoonal strength at Milankovitch frequencies has been proposed to cause a 2 to 8 meters of sea level change, due to increased precipitation of monsoons on a precessional scale will then increase the amount of water storage in lakes and groundwater systems, ultimately affecting the level of the shoreline. This has been shown to explain the sea level cycles in nearshore carbonates (Jacobs and Sahagian, 1995), however the literature lacks support for cycles of this nature in nearshore to offshore clastics.

Criteria for Tectonic Forcing

Tectonic forces in foreland basins can cause an alternation between uplift and subsidence across a range of temporal scales, with decadal to million year periodicities (Peper et al., 1992). Short-term vertical motions are related to small-scale thrust events, while long-term vertical motions are
induced by larger scale deformation in the overriding thrust wedge. At these various temporal scales, uplift and subsidence alternate in pseudo-periodic fashion in response to cycles of stress accumulation, rupture, and relaxation. These pseudo-cycles could mimic Milankovitch cyclicity in the associated sedimentary deposits (Peper et al., 1992). Since multiple time scales are present in the tectonic forcing (individual fault movements, successive in-sequence thrusts, episodic out-of-sequence thrusts) stratal bundling is at least theoretically possible (Houston et al., 2000). Since the tectonic events in question are not truly periodic and the presumed time interval for this project is no more than 250,000 years, such pseudocycles would presumably exhibit greater statistical variance in properties such as stratal thickness and grain size, and might be localized in areal extent over tens of kilometers (see Table 2).

Criteria for Autocyclic Shoreline Repetition

Delta lobe switching by channel avulsion, and rhythmic beach ridge accretion are pseudo-periodic shoreline processes that can lead to cyclic sedimentation (Hampson and Storms, 2003). As in the case of tectonic cycles, such pseudocycles would presumably exhibit greater statistical variance in properties such as stratal thickness and grain size. Modern coasts analogous to the western margin of the seaway such as the Costa de Nararit (Curry et al., 1969) suggest that such pseudocycles might be localized in areal extent to within ten km of the shoreline, with alongshore extents of 10 km or less, therefore stratal bundling is unlikely (see Table 2).

Criteria for Regional Variations in Sediment Supply

In depositional settings where delta lobe switching does not occur, sediment is transported into the basin via river systems and is dispersed along a continental shelf by storms. Storms have a significant influence on sediment supply from a terrigenous source. Intense storms erode a greater amount of continental material and carry a greater volume of sediment onto the continental shelf environment than weaker, short-lived storms. Intense storms during periods of intensified monsoons then, have the potential to disperse coarser grained material further seaward than during fair weather conditions. Monsoon conditions, which are large-scale sustained wind systems driven primarily by solar insolation, are seen today as seasonal patterns of climate change in Africa (Tuenter, et al., 2003) and Asia (Wang et al., 2003). Monsoonal strength variations on a Milankovitch scale have also been described in the Quaternary (Bloemendal and deMenocal, 1989; Quade et al., 1989; Clemens et al., 1991). During Pangaeanean time (Upper Triassic), the single landmass coupled with the location of the Tethys Sea produced a mega-monsoon circulation pattern (Parrish and Curtis, 1982; Crowley et al., 1989; Kutzback
and Gallimore, 1989; Parrish, 1993; Kutzbach, 1994). Varying degrees of monsoonal activity were also seen in the Upper Triassic playa deposits of Germany (Reinhardt and Ricken, 2000).

To date, the literature does not contain sufficient information regarding clastic deposition on a continental shelf as an indicator of the variation in sediment supply on a period scale such as the Milankovitch scale. If orbital forcing shifts the amount of solar insolation on the surface of the Earth, which is reflected by shifts in climate, then these monsoonal cycles, which have been related to Milankovitch periodicity (Reinhardt and Ricken, 2000), could then provide a mechanism by which coarser grained sediments are transported offshore. These clastic sediments in vertical section will then punctuate normal sedimentation (clays) in a periodic fashion, but of course rivers would be carrying more sediment also.

Table 2. Decision Table

<table>
<thead>
<tr>
<th>Thickness Bundling</th>
<th>5:1 Thickness Bundling</th>
<th>Slight Departure</th>
<th>Significant Departure</th>
<th>Correlate along paleoshoreline</th>
<th>Correlate along basin axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eustasy</td>
<td>Possible</td>
<td>Possibly</td>
<td>Possibly</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Orbital forcing</td>
<td>Interference</td>
<td>Orbital forcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>of orbital forcing</td>
<td></td>
<td>orbital forcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at different</td>
<td></td>
<td>orbital forcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frequencies</td>
<td></td>
<td>orbital forcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>orbital forcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>orbital forcing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tectonics</td>
<td>Yes</td>
<td>Moderately</td>
<td>Possibly</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lobe-switching</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment supply</td>
<td>Yes – orbital forcing</td>
<td>Yes – orbital</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

________ = not applicable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
FIELD PROCEDURES

Measured Sections

During the summers of 2002 and 2003 a total of 19 measured sections within the Thermopolis area of the Bighorn Basin of Wyoming were completed. Measurements began at the top of the Virgelle 1 (V1) sand and extended to the Shannon Surface, which is the stratigraphic boundary between the Virgelle and Gebo Members (see Figure 7 for the stratigraphic succession investigated in this study). Individual sites were pre-selected, but, accessibility problems either prevented the measuring of an entire section or resulted in the shifting of some locations. Names, designations and GPS locations of each section are outlined in Table 3. All measured sections with detailed descriptions were drafted in LogPlot2003™ and are located in Appendix A.

Table 3. Names, designations and locations of measured sections

<table>
<thead>
<tr>
<th>Place Name</th>
<th>Section Designation</th>
<th>Measured</th>
<th>Sampled for Grain Size</th>
<th>GPS Location (UTM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagonhound Bench</td>
<td>WH Central</td>
<td>X</td>
<td>X</td>
<td>N 0686191, W 4853837</td>
</tr>
<tr>
<td></td>
<td>WH North - 1</td>
<td>X</td>
<td></td>
<td>N 0685998, W 4854669</td>
</tr>
<tr>
<td></td>
<td>WH North - 2</td>
<td>X</td>
<td></td>
<td>N 0685877, W 4855043</td>
</tr>
<tr>
<td></td>
<td>WH North - 3</td>
<td>X</td>
<td>X</td>
<td>N 0686083, W 4856226</td>
</tr>
<tr>
<td></td>
<td>WH South - 1</td>
<td>X</td>
<td></td>
<td>N 0686313, W 4853491</td>
</tr>
<tr>
<td></td>
<td>WH South - 2</td>
<td>X</td>
<td></td>
<td>N 0687091, W 4852285</td>
</tr>
<tr>
<td></td>
<td>WH South - 3</td>
<td>X</td>
<td>X</td>
<td>N 0687404, W 4851618</td>
</tr>
<tr>
<td></td>
<td>WH East - 1</td>
<td>X</td>
<td></td>
<td>N 0686960, W 4856567</td>
</tr>
<tr>
<td></td>
<td>WH East - 2</td>
<td>X</td>
<td>X</td>
<td>N 0687564, W 4856241</td>
</tr>
<tr>
<td></td>
<td>WH East - 3</td>
<td>X</td>
<td></td>
<td>N 0688616, W 4855835</td>
</tr>
<tr>
<td></td>
<td>WH East - 4</td>
<td>X</td>
<td></td>
<td>N 0689302, W 4855593</td>
</tr>
<tr>
<td></td>
<td>WH East - 5</td>
<td>X</td>
<td></td>
<td>N 0695146, W 4856485</td>
</tr>
<tr>
<td></td>
<td>WH East - 6</td>
<td>X</td>
<td></td>
<td>N 069724, W 4855948</td>
</tr>
<tr>
<td></td>
<td>WH East - 7</td>
<td>X</td>
<td></td>
<td>N 0697159, W 4855862</td>
</tr>
<tr>
<td>Sand Draw</td>
<td>SD</td>
<td>X</td>
<td></td>
<td>N 0708399, W 4854384</td>
</tr>
<tr>
<td>Grass Creek</td>
<td>GC</td>
<td>X</td>
<td></td>
<td>N 0691375, W 4868091</td>
</tr>
<tr>
<td>Little Buffalo Basin</td>
<td>LBB</td>
<td>X</td>
<td></td>
<td>N 0675751, W 4885663</td>
</tr>
<tr>
<td>Sunshine Reservoir</td>
<td>SR</td>
<td>X</td>
<td></td>
<td>N 0656524, W 4880623</td>
</tr>
<tr>
<td>Zimmerman Butte</td>
<td>ZB</td>
<td>X</td>
<td></td>
<td>N 0260823, W 4848507</td>
</tr>
</tbody>
</table>
GPS coordinates and strike/dip measurements were recorded for each location prior to measuring. Measurements were made using a Jacob Staff with centimeter increments and a Brunton compass. Strike and dip measurements were used to ensure proper and correct thickness of beds. A bed-by-bed thickness was acquired and detailed descriptions of lithology, grain size and sedimentary structures were noted. Lithologies consisted of primarily sandstones and shale. Grain size was obtained using a hand lens and the American/Canadian Stratigraphic field grain size chart. Sedimentary structures noted ranged from no structures seen, planar bedding, hummocky cross stratification, trough cross bedding, wavy and climbing ripples, and trace fossils. Beds that were 2 cm in thickness or less were not recorded and noted as interbeds where appropriate. Care was taken that all parties involved were instructed on the proper techniques for data gathering and recording.

Grain Size Sampling

A total of 314 samples were collected from the Telegraph Creek Shale between the Virgelle -1 and Virgelle - 2 sandstone tongues (WHCentral, WH South-3 and WH East-2). Samples were collected every 0.5 meter and obtained by digging 30-50 cm into the section to ensure a fresh, undisturbed sample (based on appearance). Approximately 400-500 grams of sample were placed in a canvas sample bag, labeled and transported back to the lab.

LAB PROCEDURES
Measured Sections

All field data was transferred to computer files through the use of LogPlot2003™, plotting software written by Rockware, Inc. Sections include lithologic symbols, grain size data and detailed descriptions. All measured sections are located in Appendix A. Excel spreadsheets were created with thickness data to be used for statistical analysis.

Grain Size

The procedure used to obtain grain size measurements of each sample is located in Appendix B (modified from Folk, 1968). There were three samples, which could not be processed due to a significant amount of cement involved. Data for those three points were extrapolated based on the average grain size of the sample above and below.
ANALYSIS AND RESULTS

MEASURED SECTION DESCRIPTION

Measured section locations are depicted on Figure 14. A total of 19 measured sections were completed and from this point forward the following acronyms will be used: Wagonhound Central (WHC), Wagonhound North (WHN), Wagonhound South (WHS), Wagonhound East (WHE), Sunshine Reservoir (SR), Little Buffalo Basin (LBB), Grass Creek (GC), Sand Draw (SD) and Zimmerman Butte (ZB). WHN-3 and WHE-1 are sections that are geographically located within the nose of the Thermopolis anticline, and these sections were most likely altered and shortened during structural deformation and were not used for statistical analysis. The data sheet for the measured section for Wagonhound Central is shown in Figure 15. All other measured sections are located in Appendix A.

Within the Virgelle Member of the Eagle Formation there are a total of eight sandstone tongues that interfinger with the Telegraph Creek Shale (Fitzsimmons and Johnson, 2000; see Figure 8 in Description of the Problem section). Fitzsimmons and Johnson have labeled each of the sandstone tongues of the Virgelle Member Virgelle 1 (V1) through Virgelle 8 (V8). Sections including WHC, all WHN, all WHS, all WHE, GC, LBB and SR contain V1 through V3, each separated by a tongue of the Telegraph Creek Shale. SD contains V3 through V5, and Zimmerman Butte contains V8 only.

The base of each of the measured sections began with the V-1 tongue if it were present. When V-1 was buried, the base of the outcrop slope was the starting point. V-1 ranged in thickness from 2 to 3 meters with sedimentary structures that included planar bedding at the base grading into blocky structure. The Telegraph Creek Shale (Figure 16) between V1 and V2 is primarily shale punctuated by thin (up to 5cm thick) silty sands, fine sands, and a few medium sands. No body fossils were found and sedimentary structures within these thin sands included planar bedding and hummocky bedding, climbing ripples and in some lenses planar bedding grading into climbing ripples (Figure 17 -19). These sand lenses are interpreted as storm beds with rapidly accelerating flow and erosion creating a sharp base followed by rapidly waning flow producing the climbing ripples and hummocks. This type of storm sedimentation has been studied and the sedimentary structures are similar to those modeled on modern continental shelves (Myrow and Southard, 1996). Sand lenses tended to thicken toward V-2 (Figure 20). Overall, the Telegraph Creek Shale between V-1 and V-2 ranged in thickness from 50 to 60 meters. V-2 consisted of what appears to be amalgamated thin (50-100cm) blocky sand beds, separated by thin (2-10 cm) shale beds. These sands included sedimentary structures such as ripple marks, planar blocky bedding and bioturbation. The Telegraph Creek shale between V-2 and V-3 was similar in nature.
to the interval between V-1 and V-2, except that the sand lenses were thicker, on the order of 50-100 cm thick. The top of each of the thicker sand lenses was usually capped by a resistant ledge-forming layer with well developed ripples at the top, which represents a flooding surface (Figure 21). Sand lenses thickened toward V-3 and V-3 was similar in nature to V-2 and was capped by the Shannon Surface. The Gebo Member found above this surface included a succession of two thick amalgamated sandstones (Figure 22) often bleached white, with large iron concretions throughout. These stacked sandstones are a distinguishing feature of this section that can be seen at great distance. The bottom sand is V-3 and the top two sands are interpreted to be estuarine sands (Fitzsimmons and Johnson, 2000). The boundary between V-3 and the Gebo, interpreted here at the Shannon Surface was the datum used for correlation.

Figure 14. Generalized map of location of exposed Upper Cretaceous Eagle Formation (shaded black area) with location of measured sections. (adapted from Fitzsimmons and Johnson, 2000).
Figure 15. Wagonhound Central measured section.
Figure 16. Typical overall expression of the Telegraph Creek Shale between V-1 and V-2.

Figure 17. Planar bedding in the Telegraph Creek Shale located between V-2 and V-3. Blue section on scale card is 10 cm (indicated by black arrow).
Figure 18. Climbing ripples in sandstone beds within the Telegraph Creek Shale between V-1 and V-2 measuring between 2-6 cm thick.

Figure 19. Planar beds at base grading into climbing ripples in the Telegraph Creek Shale between V-1 and V-2 measuring between 8-10 cm thick.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 20. Sandstone beds thickening upward toward the tongue of the Virgelle Member V-2.

Figure 21. Ripple marks on a flooding surface at the top of a resistant sandstone bed in the Telegraph Creek Shale between V-2 and V-3.
Figure 22. Amalgamated sandstone of the Gebo Member at Wagonhound Central 1 meter above the Shannon Surface.
ANALYSIS OF GRAIN SIZE DATA

Field and laboratory work in this project has lead to a limited amount of labor-intensive grain size profiles, and a more extensive series of bed thickness profiles. Though limited in extent, the grain size data is valuable because it is evenly spaced, and can be subjected to spectral analysis. This is not possible for the thickness data, since beds of different thickness are beds of different duration, but the results of spectral analysis of the grain size data can be used to resolve periodicities in the thickness data as well.

Preparation of the Grain Size Data

Three of the four sections used for grain size sampling were then used for statistical analysis; WHC, WHS-3 and WHE-2 (see Figure 14). Raw data for average grain size data, "tuned" time, sand fraction (expressed in percent), silt fraction and clay fraction for the WHC, WHS-3 and WHE-2 sections are located in Appendix C. Once average grain size data were obtained (refer to Methods Section), several steps were taken in order to process the data used for statistical analyses. Those included (1) reviewing a simple plot of the grain size data for possible trends (2) an f-test to determine the significance of linear and quadratic trends (3) spectral analysis using the maximum entropy method (MEM). Each of these methods was also completed for the sand fraction, silt fraction and clay fraction.

With time series analysis, a plot of the data is necessary in order to visually determine if there are possible trends. For WHC, WHS-3 and WHE-2, the mean for each section was first removed, followed by an f-test, which determined if the data had linearity or quadratic trends. For all three sections, a linear trend was found to be present and was removed. A very minimal quadratic trend was present and was also removed. Figures 23 through 25 represent the graphical plots of the WHC section for the raw data of average grain size, average grain size data with the mean removed and average grain size with the mean removed showing a linear trend. On the x-axis, time in years is expressed from 0 to 1x10^5, which is 0 to 100,000 years. The 0 represents the beginning of the section, going back in time to a maximum of 100,000 years. Figures 26 through 28 represent the same graphical plots for WHS-3, and figures 29 through 31 for WHE-2. Figures 32, 33 and 34 are the plots of the WHC, WHS-3 and WHE-2 sections respectively, with the mean and linear trends removed. The data represented in figures 32 through 34 were then used for spectral analysis. Graphical plots for fraction of sand, silt and clay are located in Appendix D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 23. Graphical plot of the raw data for average grain size for WHC.

Figure 24. Graphical plot of the average grain size for WHC with the mean removed.

Figure 25. Graphical plot of the average grain size for WHC with mean removed showing a linear trend.
Figure 26. Graphical plot of the raw data for average grain size for WHS-3.

Figure 27. Graphical plot of the average grain size for WHS-3 with the mean removed.

Figure 28. Graphical plot of the average grain size for WHS-3 with mean removed showing a linear trend.
Figure 29. Graphical plot of the raw data for average grain size for WHE-2.

Figure 30. Graphical plot of the average grain size data for WHE-2 with the mean removed.

Figure 31. Graphical plot of the average grain size for WHE-2 with the mean removed showing a linear trend.
Figure 32. Graphical plot for the average grain size of WHC with mean, linear and quadratic removed.

Figure 33. Graphical plot for the average grain size of WHS-3 with mean, linear and quadratic removed.

Figure 34. Graphical plot for the average grain size of WHE-2 with mean, linear and quadratic removed.
Spectral Analysis

Spectral analysis is used to partition the variance of a time series as a function of frequency. For a stochastic time series, contributions from the different frequency components are measured in terms of the power (energy per unit frequency; Emery and Thompson, 1997). For the purposes of this research, Maximum Entropy Method (MEM) was used (Ulrych & Bishop, 1975). MEM was completed on mean grain size (Figures 35 through 37), sand fraction (Figures 38 through 40), silt fraction (Figures 41 through 43) and clay fraction (Figures 44 through 46) for WHC, WHS-3 and WHE-2. WHC and WHE-2 showed the best results, indicating that the 40,000 and 20,000 year cycles are present above the 95% confidence interval. WHS-3 did not produce results as convincing as WHC and WHE-2. In all cases the percent clay proved to be ambiguous.

![Figure 35. Spectral analysis results for WHC average grain size data.](image1)

![Figure 36. Spectral analysis results for WHS-3 average grain size data.](image2)
Figure 37. Spectral analysis results for WHE-2 average grain size data.

Figure 38. Spectral analysis results for WHC sand fraction data.

Figure 39. Spectral analysis results for WHS-3 sand fraction data.
Figure 40. Spectral analysis results for WHE-2 sand fraction data.

Figure 41. Spectral analysis results for WHC silt fraction data.

Figure 42. Spectral analysis results for WHS-3 silt fraction data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 43. Spectral analysis results for WHE-2 silt fraction data.

Figure 44. Spectral analysis results for WHC clay fraction data.

Figure 45. Spectral analysis results for WHS-3 clay fraction data.
Tuning the analysis

Time series analysis of data is a powerful method of determining whether cyclicity occurs in sedimentary successions. Time series methods have been developed based on events whose position in time are known. Age control for geologic events can pose a significant problem and certain assumptions must be made. In outcrop expression, events, such as the sand lenses within the Telegraph Creek Shale may be equally spaced based on thickness, but may not be equally spaced in time. For this project a constant sedimentation rate and a constant subsidence rate is assumed. This assumption will allow for the comparison and possible correlation of fifth-order events from one measured section to the next.

There are several methods for time series analysis, most of which were developed for engineering purposes with high frequency data sets. Using the biostratigraphic information provided by Obradovich (1993; Figure 8) the duration of the Virgelle Member has been determined to be approximately 1 million years (between 82.5 and 81.5 million years old). Dividing this time between the eight sandstone tongues yields approximately 100,000 to 125,000 years for each tongue. Grain size data were collected from the Telegraph Creek Shale at 0.5 meter intervals between sandstone tongue V1 and sandstone tongue V2 in sections WHC, WHS-3 and WHE-2. This interval yielded between 100,000 and 125,000 potential years of time to work with, allowing the possibility for five 20,000 to 22,000 yr cycles, three 40,000 to 43,000 yr cycles and one 100,000 year Milankovitch cycle to occur. Thickness data were collected from V1 to the Shannon Surface. For grain size analysis the Maximum Entropy Method (MEM; Ulrych and Bishop, 1975) was used and for thickness data the Sherman statistic was used (Sherman, 1950; Bartholomew, 1954; Sherman, 1957; Lamb, 1972). A detailed explanation of data and results are presented below.
Before a detailed statistical analysis can be performed on each section, the amount of time (duration) represented in each section must be known. Time for each section must be "tuned" by means of an assumed sedimentation rate, calculations of which will be described in a later section, and an iterative procedure using an initial MEM spectral analysis. The analysis was completed on the grain size data for the WHC section using an estimate of 100,000 years as the amount of time represented for the sampled interval. The MEM results of the spectral analysis (Figure 47) clearly showed two distinct peaks above the 99% confidence interval. Confidence intervals are based on a "red noise" spectrum derived from an auto regression process AR(1) with coefficient equal to the autocorrelation of the data at lag 1 (Ulrych and Bishop, 1975). Each peak is denoted by a number, which corresponds to a periodicity based on the estimated duration of the interval in years. The periods 46,753 years and 25,714 years were relatively close to the 2:1 ratio of the obliquity and precession period, 43,000 years and 21,000 years, generated by orbital forcing (Fischer, 1993). Therefore, assuming that these are in fact obliquity and precession periodicities, the true duration of the interval must be 90,000 years (89,946 years calculated). This is close to the 100,000 year predicted time with an error of +/- 10%.

![Figure 47. Initial spectral analysis results using 100,000 years for an estimated duration. The number associated with each peak is years.](image-url)
Verification of the Tuning Process: Sedimentation Rates

The sediment accumulation rate typically reaches a maximum on the inner shelf (Swift et al., 2003; Storms and Swift, 2003). Landward of the maximum, sediment discharge is high, but the fluid power expended on the sea floor by waves is correspondingly higher; much of the sediment is bypassed seaward. Seaward of the maximum, fluid power is lower, but the transport load is depleted, and there is less sediment to deposit. Recent studies of modern shelves suggest values on the order of 0.03 cm/yr to 0.06 cm/yr (Wheatcroft and Drake, 2003) at the inner shelf maximum. Numerical simulations suggest similar values (Storms and Swift, 2003).

Sedimentation rates were calculated for sections WHC, WHS-3 and WHE-2 using the thickness of the sampled interval and the amount of time represented for that interval. This information was used to develop a more detailed timeline for the entire measured section at each location. For example, the shale section for WHC in which grain size samples were collected was approximately 57 meters thick, and results from the spectral analysis revealed that there were 90,000 years (89,946 years calculated) represented. This then produces a net sedimentation rate of 0.06 cm/yr, similar to modern analogs. For WHS-3 the shale section in which grain size samples were taken was approximately 53 meters thick with 82,000 years (82,056 years calculated) represented yielding a sedimentation rate of 0.06 cm/yr. WHE-2 had a sampled interval of 44 meters with 69,000 years (69,078 years calculated) represented yielding a sedimentation rate of 0.06 cm/yr (Figure 48).

![Figure 48. Plot of accumulation rates for WHC, WHS-3 and WHE-2.](image)
Storm bed thickness follows a power law distribution of the form $\Delta \eta = a \cdot T^p$ (Thorne, 1988; Thorne et al., 1991), where $\Delta \eta$ is bed thickness for a storm of a given return period (T). P is return period power and a is the return period intercept, or the minimum bed thickness, equivalent to the thickness of the one year return period bed (Figure 49). For a moderate, mid-latitude wave climate such as the New Jersey shelf wave climate a value of 10 cm is reasonable (Niedoroda et al., 1989). Each of the sand layers was considered to be a storm event, and a sedimentation rate of 10 cm/yr was used. Once the timeline was established for each section, statistical analysis was completed on the thickness data. Calculated time lines for each section are located in Appendix E.

![Figure 49. Plot of power law for stratal thickness (from Thorne, 1988).](image-url)
ANALYSIS OF BED THICKNESS DATA

It is not possible to undertake spectral analysis of the thickness data, because the successive, discrete, thickness measurements of beds do not represent a constant time interval. However, since spectral analysis of the grain size data shows that obliquity and precessional cycles (41,000 yr and 20,000 yr cycles) are present, it is possible to map these cycles through the Telegraph Creek Shale, using other statistical methods. As noted in the previous section, storm beds form randomly spaced sequences, but their stacking patterns are likely to be modulated by shoreline shifts driven by orbital forcing. At a given depth, storm bed thickness is proportional to storm intensity. Parameterized as maximum wave height (Niedoroda et al., 1989; Thorne et al., 1991). Storm beds are liable to occur each year, with 5, 10, 20, 50, and 100-year return period beds interspersed with the 1-year return period beds. As water depth increased the shorter return beds drop out (Niedoroda et al., 1989). Modulation of the random storm bed succession would occur with at least a 20,000 year period, so thickness analysis must begin with identification of the very long return period beds, here termed "rare events", and determination of whether the rare event beds are periodic or random.

Rare Events

In order to determine which beds were to be considered rare events, thickness bins were set up. For example, the value for bin #1 contains the number of beds that measured between 0 and 5 cm, the value for bin #2 contains the number of beds that measured between 6 and 10 cm, and so on. A plot for WHC is shown on Figure 51 and it can be seen that data in bins 10 and beyond are most likely rare events. All other sections are located in Appendix G. A program called Powell's Method (Press et al., 1992) fitted an empirical exponential probability distribution to the 'number of beds per bin' values and determined at which point the bins began to be rare. The majority of the rare events were the thick shale layers. Deposited at the top of each of those rare shale layers was a 2-4 cm sand layer. Therefore, the top of those rare events were then assigned an age, based on the calculation method described in the 'Verification of the Tuning Process: Sedimentation Rates' section, and a Sherman statistic was completed to determine if those rare events were in fact periodic or random (Sherman, 1957).
Figure 50. Thickness data for Wagonhound Central.
Rare Events and the Sherman Statistic

The Sherman statistic is a way to evaluate whether the distribution of events are periodic or random (Sherman, 1957) and in this case, the amount of time between the events. Each thickness layer is an event whether it be sand or shale. On average the most common thickness was 10-15 cm. Layers with a thickness greater than 15 cm had the potential to be rare. For this study, a high percentage (> 70% for most sections) of the rare events were shale beds. It is assumed that these thick shale beds are portions of the random storm bed succession that have been "censored" by obliquity and precessional modulation. Their storm beds are represented by essentially invisible diastems; the sampling site was too far seaward and too deep for sand to be transported that far. In nearly every case, a thin (2-4 cm) sand bed caps these thick shale layers. The sand bed that caps them is random, impulsive storm event like its predecessors, but sand reaches the study site because the precessional cycle is now in phase of shallower water or intensified sediment supply or both.

The distribution of the Sherman statistic is shown on Figure 52. The Sherman statistic is calculated and plotted on the graph against the number of rare events. High percentage values
meant that events are clustered and episodic. Low percentage values means that the events are periodic. Values that fall somewhere in the middle means the data is ambiguous, neither episodic or periodic, possibly random (Craddock, 1968). Clearly WHC, WHN-2 and WHE-7 show that the rare events in those sections are periodic with high probability. WHE-3 and WHE-5 plotted between 95% and 98%, meaning those events are clustered and episodic. The average period of time between each rare event ranges from 4,000 to 6,000 years. Figures 53 through 57 show the plotted thickness data with those rare events for WHC, WHN-2, WHE-3, WHE-5 and WHE-7 that ultimately represented the nearly 40,000 yr and nearly 20,000 yr intervals. All sections had rare events associated with them and all thickness plots including rare events are located in Appendix F.

Figure 52. Plot of Sherman statistic values for study area. The percentiles of the distribution of Sherman’s statistic for values of \(n \) (the number of rare events based on bed thickness; after Craddock, 1968).
Figure 53. Wagonhound Central thickness data showing rare events with assigned time (red) and possible Milankovitch cycles (black).
Figure 54. Wagonhound North - 2 thickness data showing rare events with assigned time (red) and possible Milankovitch cycles (black).
Figure 55. Wagonhound East - 3 thickness data showing rare events with assigned time (red) and possible Milankovitch cycles (black).
Figure 56. Wagonhound East - 5 thickness data showing rare events with assigned time (red) and possible Milankovitch cycles (black).
Figure 57. Wagonhound East - 7 thickness data showing rare events with assigned time (red) and possible Milankovitch cycles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Correlation of Precession Cycles

In this study, results indicate that Milankovitch cyclicity is present and two parameters were used generating results that were repeated in more than one section. Those parameters are grain size and thickness variation. Grain size data were collected in the lower Telegraph Creek Shale, approximately the lower third of the entire section, and data for the WHC and WHE-2 sections produced the best results with respect to the application of the Maximum Entropy Method (MEM). Those results clearly indicate that a very strong 40,000 yr (obliquity) peak and a strong 20,000 yr (precession) peak exist. With respect to thickness data, which were collected for the entire section, rare event data and Sherman statistic data indicated that WHC, WHN-3 and WHE-7 clearly showed rare events as being periodic. Those events correspond to 20,000 yr and 40,000 yr periods and these Milankovitch periodicities correlate (Figure 58). These cycles appear to follow the same pattern as the member units (see Figure 8). Although the Sherman statistic did not deem all sections as having periodic rare events, each section did have rare events according to the Powell Method (see Rare Events section) and an observation was done to determine if there were 20,000 yr and 40,000 yr intervals between those rare events.

![Figure 58. Milankovitch cycles correlated between WHC, WHN-2 and WHE-7.](image)

In sections other than WHC, WHN-3 and WHE-7, rare events were also identified and the amount of time represented between those rare events were also determined. A visual inspection of those sections revealed time intervals between rare events, which coincide with the precessional cycle. The next step was to correlate these cycles and determine the spatial scales in which they correlate. How far basinward do they correlate, how far along paleoshoreline? Measured sections along a 6 km section of localized paleoshoreline around the Thermopolis Anticline.
included sections WHS-3 to WHN-2. Measured sections along a 100 km of regional paleoshoreline, or larger spatial scale included WHC, GC, LBB and SR. Measured sections along a 6 km localized shore normal transect included WHC and WHE-2 through WHE-7 (see Figure 14). Presentation of measured sections used for correlation is similar to those found in Figures 53 through 57. On these sections, the x-axis represents bed thickness and the y-axis represents bed number. Rare events and precessional cycles are noted on each section and all sections did show periodicity. Milankovitch cycles correlate along both the local and regional paleoshoreline (Plates 1 and 2) as do Milankovitch cycles out into the basin (Plate 3).

An offlapping pattern is not apparent in both the local and regional paleoshoreline sections (Plates 1 and 2), where truncation of a precessional cycle occurs in the WHS-2 section below both V-2 and V-3. Field reconnaissance of this area suggests that small scale normal faulting has occurred in this area. An offlapping pattern is also apparent in the shore normal section (Plate 3). In this case, the offlapping is occurring in a similar manner as the individual Virgelle tongues; however, they are not conformable with respect to the Virgelle tongues, instead they are truncated by the superjacent fourth order tongues of the Virgelle. This relationship is similar to the geometry predicted by the numerical simulations of Storms and Swift (2003; Figure 9) in which the lowstand beds envelope or "enshroud" the distal end of the tongue.
DISCUSSION AND CONCLUSIONS

General

Four most important variables controlling stratigraphic geometry are sea level change, sediment input, grain size, and sediment transport intensity (Sloss, 1962). The next question is what are the driving forces behind these variables? In the Cretaceous Western Interior Seaway the loading of the crust by the Sevier Orogeny drives subsidence and this has been documented extensively (Kauffman and Caldwell; 1993; Beaumont et al., 1993; DeCelles, 2004). Changes in eustasy can be driven by tectonics or ice buildup or terrestrial water storage on a global scale. Climate changes along with ice sheet dynamics drive the accumulation and ablation of continental ice sheets. Sediment flux is driven by the availability of a source. The Sevier Mountain Range coupled with climate changes (i.e., stronger monsoons), would set the stage for variations in sediment supply to the Western Interior Seaway. Collectively these variables could potentially comprise time scales on the order of 10^3 to 10^4 years.

Several forcing mechanisms were considered when testing the hypothesis for this project; eustasy, local tectonics, lobe-switching, and sediment supply (Table 2). Spectral analysis of the grain size data indicates cyclic variation at two frequencies, with a 2:1 ratio of periods. This relationship is seen as strong evidence for a precession to obliquity relationship and for orbital forcing as the cause of the cycles. Orbital forcing is considered to be an allocyclic phenomenon, or a force from outside the basin. Local tectonics and lobe-switching are considered autocyclic phenomena, or forces within the basin, which at this point can be dismissed as possible mechanisms. Eustasy and sediment supply are the remaining mechanisms, which need explanation with regard to allocyclicity. Both eustasy and sediment supply can be driven by orbital variations. Eustatic changes in sea level are often attributed to changes in ice volume. Precessional cycles cause varying degrees of solar radiation to the Earth’s surface, ultimately varying the growth and ablation of continental ice sheets, thus rising or lowering sea level (Ruddiman, 2000). During the Cretaceous it has been determined that ice may have been present, but in a minimal quantity (Miller et al., 2004). Ice that may have existed during the Cretaceous would have been constrained to higher elevations and would have had minimal effect on sea level changes (Miller et al., 2004). An explanation for sea level change in the Cretaceous is hydroospheric water storage, or fluctuations of lake and groundwater volume (Jacobs and Sahagian, 1995). Intensified monsoons, which take significant volumes of water from the oceans via evaporation, transfers that water in the form of precipitation onto the continents, is then stored in lakes and groundwater systems. The calculated volume transfer suggests that sea level could fluctuate on the order of 2 to 8 meters (Jacobs and Sahagian, 1995). Intensified monsoons, with
the increased amount of precipitation would also be a cause for fluctuations in sediment supply and have been interpreted as the mechanism for cyclicity seen in this study.

Monsoons as the Forcing Mechanism

Milankovitch cyclicity has been shown to be present within the Telegraph Creek Shale between V-1 and V-2 as well as between V-2 and V-3. The results of this study have been interpreted to be increases in sediment supply due to orbital forcing. The expected 5:1 precession to eccentricity ratio expressed on the eastern portion of the basin was not observed on the western portion; however, a 2:1 of precession to obliquity was present and the 41,000 year obliquity cycle was dominant, a contradiction to the carbonate systems where the 23,000 year precessional cycle is dominant.

The modern day Asian monsoon system has been studied in detail and has been traced back in time to at least the pre-Quaternary. It has revealed orbitally forced changes in monsoon intensity (Bloemendal and deMenocal, 1989; Quade et al., 1989; Clemens et al., 1991). The Upper Triassic tropical Pangean has also been studied and has shown ‘megamonsoon’ circulation associated with the Tethys Ocean (Parrish and Curtis, 1982; Crowley et al., 1989; Parrish, 1993; Kutzback, 1994). A study using the external insolation as a forcing mechanism has shown that summer insolation reaches a maximum at the precessional frequency in the north-tropical latitudes creating periodically intensified monsoons. This forcing mechanism is known as the orbital monsoon hypothesis (Kutzbach, 1981). The more intense modern monsoon systems are located in the northern hemisphere where land masses are large and elevated (Ruddiman, 2001).

Using the above notions, the following interpretations have been made for this study: (1) Monsoons that are generated from both the Pacific Ocean and Gulf of Mexico would form low pressure systems over the elevated Sevier Mountain range which would then serve as the source terrain for sediment supply into the Western Interior Basin, (2) Prior to the onset of the intensified monsoons every 23,000 years, sea level would be in a position where storm wave base could reach further into the basin. These intensified monsoonal systems would bring large amounts of sediment into the basin as well as a significant amount of precipitation. The large amount of water storage generated by these monsoons would be stored in lake and groundwater systems (Jacobs and Sahagian, 1995) and potentially lower relative sea level, pushing storm wave base eastward allowing for the deposition of coarser grained material, (3) The 41,000 years signal is often expressed at higher latitudes and considering the paleolatitude of the central portion of the Western Interior Seaway, which was approximately 30 degrees North, this is the explanation for the expression of both the precessional and the obliquity signal. (4) Milankovitch cyclicity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(precession and obliquity) can be correlated along paleoshoreline as well as into the basin at least a local level (i.e. on the western portion of the Bighorn Basin).

Milankovitch Studies in a Clastic Environment

Studies involving the recognition of Milankovitch cyclicity in a clastic environment, using thickness data coupled with grain size analysis have not previously been undertaken for the Cretaceous Western Interior Seaway. Earlier studies have mostly been concerned with the deep-water carbonate settings of the Seaway's eastern margin where Milankovitch cyclicity is clearly present and thickness data and lithology are the parameters used. The Cenomanian-Turonian Bridge Creek Limestone Member of the Greenhorn Formation in central Colorado is a classic example of Milankovitch cyclicity using lithologic as well as chemical data. Alternating siliciclastic deposits and hemipelagic carbonate beds (shale-limestone couplets) appear to be rhythmic, and spectral analysis of thickness data and percent carbon indicate cycles in the Milankovitch frequency band, specifically the precessional : eccentricity or 5:1 ratio (Sageman et al., 1997).

The use of thickness data as a parameter of Milankovitch-scale cyclicity has been carried over to this project; grain size data has been substituted for a lithologic parameter. Spectral analysis of the grain size data has produced results at Milankovitch frequencies, only in this clastic setting the ratio was 2:1. In other words, the carbonate rich eastern portion of the basin has been previously shown to reveal the precession : eccentricity cycles, and in this study the clastic-rich (sands and silts) western portion of the basin has revealed precession : obliquity cycles. Age control on the Bridge Creek Member is not clearly established, although a range of 0.6 to 3 Ma is suggested as the upper and lower limits of possibility. An age range including approximately 2.5 million years of time would certainly have the potential to produce the eccentricity cycle, however, obliquity was not as apparent in the Bridge Creek data. The interval of focus for this study encompasses approximately 250,000 years of time. Precession and obliquity are apparent but the eccentricity cycle was not seen. This is not to say that the eccentricity cycle was not recorded on the eastern margin; thicker sections would allow more time to be represented and would have the potential for eccentricity cycles to be revealed.

Another study which included the use of clastics in the recognition of Milankovitch cyclicity was within the Fort Hays Limestone (Coniacian) of Colorado, which used percent carbonate and percent organic matter in combination with clastic composition (Ricken, 1996). It was noted by this author that orbital signals are not well documented as well as not well developed on the western side of the Western Interior Seaway due to low carbonate production. This would suggest that Milankovitch cyclicity is only made apparent in depositional systems where
carbonate is present. This study has shown that a parameter other than carbonate or organic carbon, namely variation in grain size, can be used to study Milankovitch cyclicity in a clastic depositional environment with little to no carbonate production.

The interval of interest was between V-1 and the Shannon Surface where the 41,000 obliquity cycle and the 21,000 precession cycle were found within the Telegraph Creek Shale both above and below the V-2 sandstone tongue. The Virgelle tongues may be the result of and represent the 100,000 year eccentricity cycle; however, further research needs to be conducted in order to confirm this interpretation.

One of the goals of this research was to show that an easily measured parameter, thickness variation, used in several other environments (eastern portion of the Western Interior Seaway) can be used in a nearly pure clastic environment. It was also a goal of this research to find a second proxy (grain size variation) which had not been used previously and could potentially be shown to be unique to clastic environments or shown to be useful in other environments with respect to the recognition of Milankovitch cyclicity. Locally, with respect to the Bighorn Basin, Milankovitch has been shown to be present as well correlated along paleoshoreline and at least 10 km into the basin (Plates 1-3). The work completed here could be used as a model in which to test Milankovitch cyclicity in the Powder River Basin, located further east in Western Interior Basin and possibly correlate along a more regional scale. Once a firm timeline has been established for the Western Interior Basin, this model could be used in other Cretaceous basins and correlation on a global scale would be the next natural step.

Grain Size and Thickness Data as Parameters for Milankovitch Studies

In this study, grain size proved to be a valuable tool for recognizing Milankovitch cyclicity where sedimentary structures are limited. Although several studies have been completed using chemical proxies to show Milankovitch cyclicity (Fischer, 1993; Ricken, 1996; Sageman et al., 1997), this is the first study to use grain size as a proxy in clastic sediments of the western portion of the Western Interior Seaway. Grain size data were also useful in determining sedimentation rates, which ultimately produced a timeline for each section. The assumption here was that sedimentation rate was constant throughout the entire section, and that these same sedimentation rates occurred along paleoshoreline as well as offshore. For those sections other than WHC, WhN-2 and WHE-7, where the Sherman statistic deemed them not periodic, a grain size study for those particular sections may produce a different sedimentation rate, therefore a difference timeline and one more conducive to showing Milankovitch cyclicity.
Thickness data proved to be useful for sections that had both shale and sand beds. It is necessary to measure each and every bed very carefully and very meticulously in order to determine which thickness would ultimately be rare and therefore become a rare event and correlatable among sections. Although several studies have been completed using spectral analysis of thickness data, this is the first study to use the Powell Method and Sherman statistic in a geologic setting. Conventional studies involving Milankovitch cyclicity have been completed using either varved lake sediments (Olsen, 1986) or carbonate sediments (Fischer, 1993; Sageman et al., 1997). This study has shown that Milankovitch cyclicity can not only be found in clastics via grain size and thickness data, but that these cycles can also be correlated along paleoshoreline and into the basin. Future studies will include more detailed grain size analysis and a larger geographic area.
REFERENCES CITED

Chamberlain, T. C., 1909, Diastrophism as the ultimate basis of correlation: Journal of Geology, v. 17, p. 685-693.

Folk, R. L., 1968, Petrology of sedimentary rocks, University of Texas, Austin, p. 170.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thorne, J. A., 1988, Modeling storm bed genesis: oceanography or geology-which one holds the key? SEPM program workshop on quantitative dynamic stractigraphy, Deckers, Colorado, p. 12.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX A

MEASURED SECTIONS
Measured Section: Wagonhound Central

<table>
<thead>
<tr>
<th>Thickness (meter)</th>
<th>Lithology</th>
<th>Grain Size (mm)</th>
<th>Stratigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40.0 - 50.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.0 - 40.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0 - 30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0 - 20.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 - 10.0</td>
<td></td>
</tr>
</tbody>
</table>

Shannon Surface

LEGEND

- Sandstone
- Sandstone/Shale
- Interbeds
- Shale/Sand
- Interbeds
- Shale

Virgelle Member 1
Measured Section:
Wagonhound North - 1

<table>
<thead>
<tr>
<th>Thickness (meters)</th>
<th>Lithology</th>
<th>Grain Size (% by weight)</th>
<th>Stratigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 - 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 - 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 - 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 - 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 - 20</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND

- Sandstone
- Sandstone/Shale Interbeds
- Shale/Sand Interbeds
- Shale

V-3 Shannon Surface

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Measured Section: Wagonhound North - 3

<table>
<thead>
<tr>
<th>Thickness (m/ft)</th>
<th>Unkalp</th>
<th>Grain Size (mm)</th>
<th>Stratigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>4.0</td>
<td>0-0.5</td>
<td></td>
</tr>
<tr>
<td>90-99</td>
<td>5.0-35</td>
<td>0.5-2.0</td>
<td></td>
</tr>
<tr>
<td>80-89</td>
<td>3.5-30</td>
<td>2.0-2.5</td>
<td></td>
</tr>
<tr>
<td>70-79</td>
<td>2.5-25</td>
<td>2.5-3.0</td>
<td></td>
</tr>
<tr>
<td>60-69</td>
<td>2.0-20</td>
<td>2.5-3.0</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND

- **Sandstone**
- **Sandstone/Shale**
- **Interbeds**
- **Shale/Sand**
- **Shale**

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Measured Section:
Wagonhound South - 1

<table>
<thead>
<tr>
<th>Measured Section: Wagonhound South - 1</th>
</tr>
</thead>
</table>

Table

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Lithology</th>
<th>Grain Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Legend

- **Shannon Surface**
- **Sandstone**
- **Sandstone/Shale**
- **Interbeds**
- **Shale/Sand**
- **Interbeds**
- **Shale**

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Measured Section: Wagonhound East - 3

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Lithology</th>
<th>Grain Size</th>
<th>Sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 - 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 - 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 - 3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shannon Surface

LEGEND
- Sandstone
- Sandstone/Shaile
- Interbeds
- Shale/Sand
- Interbeds
- Shale

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Measured Section: Wagonhounds East - 4

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Grain Size (g/cm³)</th>
<th>Sedimentology</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 - 10.00</td>
<td>20.00 - 10.00</td>
<td>30.00 - 20.00</td>
<td>10.00 - 20.00</td>
</tr>
</tbody>
</table>

Legend

- **Sandstone**
- **Sandstone/Shale**
- **Interbeds**
- **Shale/Sand**
- **Interbeds**
- **Shale**

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Measured Section: Wagonhound East - 6

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Lithology</th>
<th>Grain Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.5</td>
<td>0 - 4</td>
<td>40 - 25</td>
</tr>
<tr>
<td>0.5 - 1.0</td>
<td>0.5 - 30</td>
<td>25 - 15</td>
</tr>
<tr>
<td>1.0 - 1.5</td>
<td>15 - 20</td>
<td>15 - 20</td>
</tr>
</tbody>
</table>

Shannon Surface

LEGEND

- Sandstone
- Sandstone/Shale
- Shale/Sand
- Interbeds
- Shale

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Measured Section: Grass Creek

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Lithology</th>
<th>Grain Size (mm2)</th>
<th>Sedimentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>lluvial</td>
<td>30-35</td>
<td>sandstone</td>
</tr>
<tr>
<td>30</td>
<td>eluvial</td>
<td>15-20</td>
<td>sandstone</td>
</tr>
<tr>
<td>40</td>
<td>eluvial</td>
<td>15-20</td>
<td>sandstone</td>
</tr>
</tbody>
</table>

LEGEND
- Sandstone
- Sandstone/Shale
- Interbeds
- Shale/Sand
- Interbeds
- Shale
<table>
<thead>
<tr>
<th>Thickness (meters)</th>
<th>Lithology</th>
<th>Grain Size (mm)</th>
<th>Sandstone</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

- Sandstone
- Sandstone/Shale
- Interbeds
- Shale/Sand
- Interbeds
- Shale
Procedure for Grain Size Analysis
(modified from Folk, 1968)

1. Assign an SDL # (Sediment Dynamics Lab #, unique for each sample).
2. Crush original sample to 1-2cm pieces.
3. In a 1000-1400ml beaker, place crushed sample + 10grams Sodium sulfite + D.I. water. Fill with D.I. water to approximately 300-400ml.
4. Let sample sit for at least 48-72 hours.
5. Boil sample for 3 hours.
6. A: If sample has broken down enough, take off hotplate and let cool.
 B: If sample has NOT broken down, this becomes a "problem child" and must continue to boil until enough material has broken down.
7. Flush sample 3 times (more if water does not become clear after 3 flushes). Do this by de­canting off water in container with syringe then filling container about halfway with D.I. water, mixing thoroughly and letting sit for 24 hours. Repeat two more times.
8. After the third flush, fill with D.I. water again and boil for one hour.
9. Wet sieve sample through the zero phi sieve. This separates the broken down material from the un-broken down material. Place un-broken material is placed back in original sample bag.
10. Let sample settle, decant, and place entire sample (more if necessary) into a 250ml beaker.
11. If the amount of material in the beaker exceeds 100 ml, then use a 400ml beaker.
12. Sonify for 4min.
13. Weigh a larger beaker (labeled SDL# <63) and a smaller beaker (labeled SDL# >63).
14. After sonifying, immediately wet sieve through the 125micron/63micron sieve stack. What falls through the 63micron sieve will be collected in the SDL# <63 beaker. What remains on the 125 & 63micron sieves will be placed in the SDL# >63micron beaker. Place both beakers in the oven to dry.
15. After material in both beakers (from step #14) are dry AND cool, weigh again and place on data sheet.
16. The material in the SDL# >63 beaker will be run through the dry sieve stack and all data placed on the data sheet.
17. The material that is collected in the pan (at the bottom of the sieve stack) will be placed in a triangle container and labeled SDL# PAN.
18. The material in the SDL# <63 beaker will be crushed gently with the mortar and pestle and placed in a triangle container and labeled SDL# <63.
19. The material from steps 17 & 18 will be combined together in the triangle container that is labeled SDL# PAN.
20. The PAN sample will then be run through the particle counter.
21. Combine SDL# >63 and particle counter data in excel spreadsheet and calculate the mean to be used for statistical analysis.
APPENDIX C

RAW DATA (GRAIN SIZE, SAND, SILT, AND CLAY FRACTIONS)
Wagonhound Central

<table>
<thead>
<tr>
<th>length (m)</th>
<th>"tuned" time (yrs)</th>
<th>grain size (phi)</th>
<th>sand fraction</th>
<th>silt fraction</th>
<th>clay fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.0</td>
<td>0</td>
<td>6.29</td>
<td>3.86</td>
<td>88.79</td>
<td>7.35</td>
</tr>
<tr>
<td>56.5</td>
<td>789</td>
<td>6.11</td>
<td>2.28</td>
<td>96.44</td>
<td>1.28</td>
</tr>
<tr>
<td>56.0</td>
<td>1578</td>
<td>6.33</td>
<td>1.92</td>
<td>93.11</td>
<td>4.96</td>
</tr>
<tr>
<td>55.5</td>
<td>2367</td>
<td>6.19</td>
<td>1.21</td>
<td>97.84</td>
<td>0.94</td>
</tr>
<tr>
<td>55.0</td>
<td>3156</td>
<td>6.53</td>
<td>1.07</td>
<td>90.04</td>
<td>8.88</td>
</tr>
<tr>
<td>54.5</td>
<td>3945</td>
<td>4.03</td>
<td>51.84</td>
<td>45.11</td>
<td>3.05</td>
</tr>
<tr>
<td>54.0</td>
<td>4734</td>
<td>5.44</td>
<td>14.59</td>
<td>75.87</td>
<td>9.5</td>
</tr>
<tr>
<td>53.5</td>
<td>5523</td>
<td>5.42</td>
<td>10.74</td>
<td>85.34</td>
<td>3.91</td>
</tr>
<tr>
<td>53.0</td>
<td>6312</td>
<td>5.70</td>
<td>5.22</td>
<td>85.43</td>
<td>9.31</td>
</tr>
<tr>
<td>52.5</td>
<td>7101</td>
<td>5.28</td>
<td>16.48</td>
<td>78.92</td>
<td>4.58</td>
</tr>
<tr>
<td>52.0</td>
<td>7890</td>
<td>5.38</td>
<td>11.18</td>
<td>85.77</td>
<td>3.05</td>
</tr>
<tr>
<td>51.5</td>
<td>8679</td>
<td>5.63</td>
<td>15.03</td>
<td>80.3</td>
<td>4.86</td>
</tr>
<tr>
<td>51.0</td>
<td>9468</td>
<td>5.37</td>
<td>11.37</td>
<td>85.34</td>
<td>3.29</td>
</tr>
<tr>
<td>50.5</td>
<td>10257</td>
<td>5.45</td>
<td>12.42</td>
<td>80.54</td>
<td>7.02</td>
</tr>
<tr>
<td>50.0</td>
<td>11046</td>
<td>5.29</td>
<td>22.80</td>
<td>73.88</td>
<td>3.31</td>
</tr>
<tr>
<td>49.5</td>
<td>11835</td>
<td>5.23</td>
<td>17.62</td>
<td>75.43</td>
<td>6.92</td>
</tr>
<tr>
<td>49.0</td>
<td>12624</td>
<td>5.55</td>
<td>5.20</td>
<td>90.96</td>
<td>3.83</td>
</tr>
<tr>
<td>48.5</td>
<td>13413</td>
<td>5.33</td>
<td>16.66</td>
<td>78.52</td>
<td>4.81</td>
</tr>
<tr>
<td>48.0</td>
<td>14202</td>
<td>5.99</td>
<td>6.16</td>
<td>91.5</td>
<td>2.35</td>
</tr>
<tr>
<td>47.5</td>
<td>14991</td>
<td>4.81</td>
<td>32.79</td>
<td>63.23</td>
<td>3.96</td>
</tr>
<tr>
<td>47.0</td>
<td>15780</td>
<td>5.38</td>
<td>27.50</td>
<td>68.84</td>
<td>3.66</td>
</tr>
<tr>
<td>46.5</td>
<td>16569</td>
<td>5.40</td>
<td>22.28</td>
<td>73.86</td>
<td>3.85</td>
</tr>
<tr>
<td>46.0</td>
<td>17358</td>
<td>5.74</td>
<td>0.00</td>
<td>96.28</td>
<td>3.72</td>
</tr>
<tr>
<td>45.5</td>
<td>18147</td>
<td>6.04</td>
<td>0.40</td>
<td>93.5</td>
<td>6.1</td>
</tr>
<tr>
<td>45.0</td>
<td>18936</td>
<td>5.80</td>
<td>2.42</td>
<td>90.83</td>
<td>6.73</td>
</tr>
<tr>
<td>44.5</td>
<td>19725</td>
<td>4.48</td>
<td>41.21</td>
<td>57.85</td>
<td>0.95</td>
</tr>
<tr>
<td>44.0</td>
<td>20514</td>
<td>5.44</td>
<td>7.58</td>
<td>91.82</td>
<td>0.59</td>
</tr>
<tr>
<td>43.5</td>
<td>21303</td>
<td>5.11</td>
<td>17.96</td>
<td>76.58</td>
<td>5.43</td>
</tr>
<tr>
<td>43.0</td>
<td>22092</td>
<td>5.85</td>
<td>10.68</td>
<td>80.7</td>
<td>8.59</td>
</tr>
<tr>
<td>42.5</td>
<td>22881</td>
<td>4.42</td>
<td>50.63</td>
<td>47.76</td>
<td>1.6</td>
</tr>
<tr>
<td>42.0</td>
<td>23670</td>
<td>4.78</td>
<td>40.05</td>
<td>56.5</td>
<td>3.44</td>
</tr>
<tr>
<td>41.5</td>
<td>24459</td>
<td>5.97</td>
<td>0.00</td>
<td>92.43</td>
<td>7.55</td>
</tr>
<tr>
<td>41.0</td>
<td>25248</td>
<td>6.14</td>
<td>0.00</td>
<td>97.83</td>
<td>2.17</td>
</tr>
<tr>
<td>40.5</td>
<td>26037</td>
<td>5.97</td>
<td>0.00</td>
<td>98.12</td>
<td>1.89</td>
</tr>
<tr>
<td>40.0</td>
<td>26826</td>
<td>6.19</td>
<td>4.11</td>
<td>94.41</td>
<td>1.48</td>
</tr>
<tr>
<td>39.5</td>
<td>27615</td>
<td>5.59</td>
<td>2.91</td>
<td>95.54</td>
<td>1.55</td>
</tr>
<tr>
<td>39.0</td>
<td>28404</td>
<td>5.75</td>
<td>1.05</td>
<td>97.13</td>
<td>1.82</td>
</tr>
<tr>
<td>38.5</td>
<td>29193</td>
<td>5.71</td>
<td>4.33</td>
<td>95.32</td>
<td>0.36</td>
</tr>
<tr>
<td>38.0</td>
<td>29982</td>
<td>6.26</td>
<td>0.00</td>
<td>94.54</td>
<td>5.45</td>
</tr>
<tr>
<td>37.5</td>
<td>30771</td>
<td>5.23</td>
<td>16.45</td>
<td>77.66</td>
<td>5.86</td>
</tr>
<tr>
<td>37.0</td>
<td>31560</td>
<td>5.88</td>
<td>3.75</td>
<td>93.5</td>
<td>2.75</td>
</tr>
<tr>
<td>length (m)</td>
<td>"tuned" time (yrs)</td>
<td>grain size (phi)</td>
<td>sand fraction</td>
<td>silt fraction</td>
<td>clay fraction</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>36.5</td>
<td>32349</td>
<td>5.74</td>
<td>1.61</td>
<td>98.13</td>
<td>0.16</td>
</tr>
<tr>
<td>36.0</td>
<td>33138</td>
<td>5.59</td>
<td>1.15</td>
<td>98.01</td>
<td>0.83</td>
</tr>
<tr>
<td>35.5</td>
<td>33927</td>
<td>5.57</td>
<td>8.47</td>
<td>91.15</td>
<td>0.38</td>
</tr>
<tr>
<td>35.0</td>
<td>34716</td>
<td>5.39</td>
<td>9.04</td>
<td>88.18</td>
<td>2.78</td>
</tr>
<tr>
<td>34.5</td>
<td>35505</td>
<td>5.37</td>
<td>7.14</td>
<td>89.85</td>
<td>3</td>
</tr>
<tr>
<td>34.0</td>
<td>36294</td>
<td>5.52</td>
<td>9.05</td>
<td>86.98</td>
<td>3.96</td>
</tr>
<tr>
<td>33.5</td>
<td>37083</td>
<td>5.47</td>
<td>8.51</td>
<td>87.1</td>
<td>4.35</td>
</tr>
<tr>
<td>33.0</td>
<td>37872</td>
<td>5.35</td>
<td>8.95</td>
<td>87.78</td>
<td>3.27</td>
</tr>
<tr>
<td>32.5</td>
<td>38661</td>
<td>5.08</td>
<td>27.09</td>
<td>64.66</td>
<td>8.2</td>
</tr>
<tr>
<td>32.0</td>
<td>39450</td>
<td>5.10</td>
<td>21.50</td>
<td>68.41</td>
<td>10.09</td>
</tr>
<tr>
<td>31.5</td>
<td>40239</td>
<td>5.12</td>
<td>16.50</td>
<td>79.79</td>
<td>3.68</td>
</tr>
<tr>
<td>31.0</td>
<td>41028</td>
<td>5.14</td>
<td>16.80</td>
<td>78.01</td>
<td>5.17</td>
</tr>
<tr>
<td>30.5</td>
<td>41817</td>
<td>5.21</td>
<td>10.02</td>
<td>87.7</td>
<td>2.27</td>
</tr>
<tr>
<td>30.0</td>
<td>42606</td>
<td>5.00</td>
<td>29.44</td>
<td>68.05</td>
<td>2.5</td>
</tr>
<tr>
<td>29.5</td>
<td>43395</td>
<td>5.27</td>
<td>8.36</td>
<td>89.66</td>
<td>1.97</td>
</tr>
<tr>
<td>29.0</td>
<td>44184</td>
<td>4.63</td>
<td>38.81</td>
<td>58.76</td>
<td>2.42</td>
</tr>
<tr>
<td>28.5</td>
<td>44973</td>
<td>4.90</td>
<td>31.43</td>
<td>64.1</td>
<td>4.45</td>
</tr>
<tr>
<td>28.0</td>
<td>45762</td>
<td>4.85</td>
<td>35.14</td>
<td>61.57</td>
<td>3.29</td>
</tr>
<tr>
<td>27.5</td>
<td>46551</td>
<td>4.58</td>
<td>42.15</td>
<td>54.63</td>
<td>3.21</td>
</tr>
<tr>
<td>27.0</td>
<td>47340</td>
<td>4.97</td>
<td>24.84</td>
<td>72.8</td>
<td>2.38</td>
</tr>
<tr>
<td>26.5</td>
<td>48129</td>
<td>4.88</td>
<td>31.36</td>
<td>65.54</td>
<td>3.1</td>
</tr>
<tr>
<td>26.0</td>
<td>48918</td>
<td>4.81</td>
<td>30.58</td>
<td>65.65</td>
<td>3.75</td>
</tr>
<tr>
<td>25.5</td>
<td>49707</td>
<td>4.95</td>
<td>25.98</td>
<td>70.18</td>
<td>3.83</td>
</tr>
<tr>
<td>25.0</td>
<td>50496</td>
<td>4.93</td>
<td>32.10</td>
<td>63.72</td>
<td>4.17</td>
</tr>
<tr>
<td>24.5</td>
<td>51285</td>
<td>4.77</td>
<td>34.67</td>
<td>60.44</td>
<td>4.87</td>
</tr>
<tr>
<td>24.0</td>
<td>52074</td>
<td>5.25</td>
<td>18.80</td>
<td>78.59</td>
<td>2.61</td>
</tr>
<tr>
<td>23.5</td>
<td>52863</td>
<td>5.00</td>
<td>29.38</td>
<td>66.11</td>
<td>4.49</td>
</tr>
<tr>
<td>23.0</td>
<td>53652</td>
<td>4.82</td>
<td>34.52</td>
<td>62.11</td>
<td>3.36</td>
</tr>
<tr>
<td>22.5</td>
<td>54441</td>
<td>5.28</td>
<td>23.05</td>
<td>70.36</td>
<td>6.57</td>
</tr>
<tr>
<td>22.0</td>
<td>55230</td>
<td>4.81</td>
<td>31.10</td>
<td>66.72</td>
<td>2.17</td>
</tr>
<tr>
<td>21.5</td>
<td>56019</td>
<td>5.44</td>
<td>16.81</td>
<td>78.87</td>
<td>4.32</td>
</tr>
<tr>
<td>21.0</td>
<td>56808</td>
<td>5.82</td>
<td>7.90</td>
<td>86.17</td>
<td>5.91</td>
</tr>
<tr>
<td>20.5</td>
<td>57597</td>
<td>5.79</td>
<td>3.32</td>
<td>94.75</td>
<td>1.93</td>
</tr>
<tr>
<td>20.0</td>
<td>58386</td>
<td>5.92</td>
<td>0.25</td>
<td>96.16</td>
<td>3.58</td>
</tr>
<tr>
<td>19.5</td>
<td>59175</td>
<td>5.41</td>
<td>14.03</td>
<td>83.21</td>
<td>2.76</td>
</tr>
<tr>
<td>19.0</td>
<td>59964</td>
<td>5.23</td>
<td>22.64</td>
<td>73.68</td>
<td>3.88</td>
</tr>
<tr>
<td>18.5</td>
<td>60753</td>
<td>5.32</td>
<td>14.63</td>
<td>81.66</td>
<td>3.71</td>
</tr>
<tr>
<td>18.0</td>
<td>61542</td>
<td>5.62</td>
<td>9.59</td>
<td>85.03</td>
<td>5.36</td>
</tr>
<tr>
<td>17.5</td>
<td>62331</td>
<td>5.50</td>
<td>9.36</td>
<td>85.01</td>
<td>5.61</td>
</tr>
<tr>
<td>17.0</td>
<td>63120</td>
<td>5.15</td>
<td>25.88</td>
<td>69.85</td>
<td>4.26</td>
</tr>
<tr>
<td>16.5</td>
<td>63909</td>
<td>5.23</td>
<td>26.27</td>
<td>69.56</td>
<td>4.17</td>
</tr>
<tr>
<td>16.0</td>
<td>64688</td>
<td>5.63</td>
<td>13.72</td>
<td>73.2</td>
<td>13.02</td>
</tr>
<tr>
<td>15.5</td>
<td>65487</td>
<td>5.41</td>
<td>19.08</td>
<td>79.36</td>
<td>1.56</td>
</tr>
<tr>
<td>length (m)</td>
<td>"tuned" time (yrs)</td>
<td>grain size (phi)</td>
<td>sand fraction</td>
<td>silt fraction</td>
<td>clay fraction</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>15.0</td>
<td>66276</td>
<td>4.36</td>
<td>44.25</td>
<td>54.09</td>
<td>1.66</td>
</tr>
<tr>
<td>14.5</td>
<td>67065</td>
<td>5.12</td>
<td>23.62</td>
<td>75.61</td>
<td>0.77</td>
</tr>
<tr>
<td>14.0</td>
<td>67854</td>
<td>5.04</td>
<td>17.00</td>
<td>81.21</td>
<td>1.95</td>
</tr>
<tr>
<td>13.5</td>
<td>68643</td>
<td>5.64</td>
<td>7.05</td>
<td>91.6</td>
<td>1.36</td>
</tr>
<tr>
<td>13.0</td>
<td>69432</td>
<td>5.52</td>
<td>4.97</td>
<td>93.82</td>
<td>1.22</td>
</tr>
<tr>
<td>12.5</td>
<td>70221</td>
<td>5.52</td>
<td>17.55</td>
<td>78.39</td>
<td>4.06</td>
</tr>
<tr>
<td>12.0</td>
<td>71010</td>
<td>4.96</td>
<td>21.33</td>
<td>76.87</td>
<td>1.79</td>
</tr>
<tr>
<td>11.5</td>
<td>71799</td>
<td>4.98</td>
<td>8.35</td>
<td>91.64</td>
<td>0.01</td>
</tr>
<tr>
<td>11.0</td>
<td>72588</td>
<td>5.41</td>
<td>10.89</td>
<td>87.35</td>
<td>1.76</td>
</tr>
<tr>
<td>10.5</td>
<td>73377</td>
<td>5.67</td>
<td>2.78</td>
<td>94.42</td>
<td>2.8</td>
</tr>
<tr>
<td>10.0</td>
<td>74166</td>
<td>5.26</td>
<td>9.74</td>
<td>88.88</td>
<td>1.38</td>
</tr>
<tr>
<td>9.5</td>
<td>74955</td>
<td>4.47</td>
<td>36.16</td>
<td>63.77</td>
<td>0.09</td>
</tr>
<tr>
<td>9.0</td>
<td>75744</td>
<td>5.42</td>
<td>8.23</td>
<td>89.18</td>
<td>2.58</td>
</tr>
<tr>
<td>8.5</td>
<td>76533</td>
<td>5.51</td>
<td>7.60</td>
<td>90.73</td>
<td>1.66</td>
</tr>
<tr>
<td>8.0</td>
<td>77322</td>
<td>5.35</td>
<td>9.01</td>
<td>88.71</td>
<td>2.28</td>
</tr>
<tr>
<td>7.5</td>
<td>78111</td>
<td>5.53</td>
<td>8.54</td>
<td>87.55</td>
<td>3.9</td>
</tr>
<tr>
<td>7.0</td>
<td>78900</td>
<td>5.65</td>
<td>9.50</td>
<td>88.48</td>
<td>2.01</td>
</tr>
<tr>
<td>6.5</td>
<td>79689</td>
<td>5.50</td>
<td>7.39</td>
<td>90</td>
<td>2.61</td>
</tr>
<tr>
<td>6.0</td>
<td>80478</td>
<td>5.48</td>
<td>7.77</td>
<td>90.04</td>
<td>2.2</td>
</tr>
<tr>
<td>5.5</td>
<td>81267</td>
<td>5.51</td>
<td>10.22</td>
<td>87.12</td>
<td>2.67</td>
</tr>
<tr>
<td>5.0</td>
<td>82056</td>
<td>5.60</td>
<td>5.27</td>
<td>92.47</td>
<td>2.26</td>
</tr>
<tr>
<td>4.5</td>
<td>82845</td>
<td>5.09</td>
<td>21.89</td>
<td>75.58</td>
<td>2.52</td>
</tr>
<tr>
<td>4.0</td>
<td>83634</td>
<td>4.94</td>
<td>26.46</td>
<td>71.24</td>
<td>2.3</td>
</tr>
<tr>
<td>3.5</td>
<td>84423</td>
<td>4.74</td>
<td>31.08</td>
<td>64.42</td>
<td>4.46</td>
</tr>
<tr>
<td>3.0</td>
<td>85212</td>
<td>4.79</td>
<td>28.51</td>
<td>70.27</td>
<td>1.22</td>
</tr>
<tr>
<td>2.5</td>
<td>86001</td>
<td>5.62</td>
<td>18.41</td>
<td>81.58</td>
<td>0.01</td>
</tr>
<tr>
<td>2.0</td>
<td>86790</td>
<td>4.68</td>
<td>15.68</td>
<td>84.24</td>
<td>0.08</td>
</tr>
<tr>
<td>1.5</td>
<td>87579</td>
<td>3.98</td>
<td>57.89</td>
<td>37.87</td>
<td>4.21</td>
</tr>
<tr>
<td>1.0</td>
<td>88368</td>
<td>4.31</td>
<td>48.08</td>
<td>50.64</td>
<td>1.29</td>
</tr>
<tr>
<td>0.5</td>
<td>89157</td>
<td>3.88</td>
<td>57.13</td>
<td>38.91</td>
<td>3.94</td>
</tr>
<tr>
<td>0.0</td>
<td>89946</td>
<td>3.56</td>
<td>70.89</td>
<td>29.11</td>
<td>0</td>
</tr>
</tbody>
</table>
Wagonhound South – 3

<table>
<thead>
<tr>
<th>length (m)</th>
<th>"tuned" time (yrs)</th>
<th>grain size (phi)</th>
<th>sand fraction</th>
<th>silt fraction</th>
<th>clay fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.0</td>
<td>0</td>
<td>6.10</td>
<td>0.12</td>
<td>90.82</td>
<td>9.03</td>
</tr>
<tr>
<td>51.5</td>
<td>789</td>
<td>5.41</td>
<td>3.4</td>
<td>88.38</td>
<td>8.18</td>
</tr>
<tr>
<td>51.0</td>
<td>1578</td>
<td>6.41</td>
<td>0.51</td>
<td>95.11</td>
<td>4.38</td>
</tr>
<tr>
<td>50.5</td>
<td>2367</td>
<td>5.51</td>
<td>1</td>
<td>97.97</td>
<td>1.03</td>
</tr>
<tr>
<td>50.0</td>
<td>3156</td>
<td>6.19</td>
<td>0.19</td>
<td>94.99</td>
<td>4.81</td>
</tr>
<tr>
<td>49.5</td>
<td>3945</td>
<td>5.32</td>
<td>2.04</td>
<td>95.49</td>
<td>2.46</td>
</tr>
<tr>
<td>49.0</td>
<td>4734</td>
<td>5.36</td>
<td>9.32</td>
<td>83.41</td>
<td>7.23</td>
</tr>
<tr>
<td>48.5</td>
<td>5523</td>
<td>5.49</td>
<td>11.31</td>
<td>80.87</td>
<td>7.79</td>
</tr>
<tr>
<td>48.0</td>
<td>6312</td>
<td>5.00</td>
<td>30.86</td>
<td>81.9</td>
<td>7.19</td>
</tr>
<tr>
<td>47.5</td>
<td>7101</td>
<td>5.16</td>
<td>22.59</td>
<td>70.98</td>
<td>6.41</td>
</tr>
<tr>
<td>47.0</td>
<td>7890</td>
<td>5.52</td>
<td>4.56</td>
<td>89.29</td>
<td>6.12</td>
</tr>
<tr>
<td>46.5</td>
<td>8679</td>
<td>5.61</td>
<td>13.01</td>
<td>79.8</td>
<td>7.16</td>
</tr>
<tr>
<td>46.0</td>
<td>9468</td>
<td>5.44</td>
<td>13.22</td>
<td>79.68</td>
<td>7.07</td>
</tr>
<tr>
<td>45.5</td>
<td>10257</td>
<td>5.20</td>
<td>18.04</td>
<td>75.73</td>
<td>6.21</td>
</tr>
<tr>
<td>45.0</td>
<td>11046</td>
<td>5.22</td>
<td>17.03</td>
<td>78.67</td>
<td>4.29</td>
</tr>
<tr>
<td>44.5</td>
<td>11835</td>
<td>4.95</td>
<td>23.58</td>
<td>71.65</td>
<td>4.76</td>
</tr>
<tr>
<td>44.0</td>
<td>12624</td>
<td>5.13</td>
<td>28.4</td>
<td>59.45</td>
<td>12.06</td>
</tr>
<tr>
<td>43.5</td>
<td>13413</td>
<td>5.19</td>
<td>25.09</td>
<td>67.5</td>
<td>7.37</td>
</tr>
<tr>
<td>43.0</td>
<td>14202</td>
<td>5.29</td>
<td>18.22</td>
<td>67.84</td>
<td>13.82</td>
</tr>
<tr>
<td>42.5</td>
<td>14991</td>
<td>5.15</td>
<td>21.19</td>
<td>71.02</td>
<td>7.74</td>
</tr>
<tr>
<td>42.0</td>
<td>15780</td>
<td>5.22</td>
<td>17.12</td>
<td>73.87</td>
<td>8.96</td>
</tr>
<tr>
<td>41.5</td>
<td>16569</td>
<td>5.36</td>
<td>21.86</td>
<td>67.98</td>
<td>10.11</td>
</tr>
<tr>
<td>41.0</td>
<td>17358</td>
<td>5.51</td>
<td>10.15</td>
<td>79.45</td>
<td>10.35</td>
</tr>
<tr>
<td>40.5</td>
<td>18147</td>
<td>5.35</td>
<td>18.61</td>
<td>73.27</td>
<td>8.08</td>
</tr>
<tr>
<td>40.0</td>
<td>18936</td>
<td>5.56</td>
<td>9.51</td>
<td>80.65</td>
<td>9.78</td>
</tr>
<tr>
<td>39.5</td>
<td>19725</td>
<td>5.51</td>
<td>14.41</td>
<td>73.55</td>
<td>11.98</td>
</tr>
<tr>
<td>39.0</td>
<td>20514</td>
<td>5.48</td>
<td>7.25</td>
<td>89.07</td>
<td>3.68</td>
</tr>
<tr>
<td>38.5</td>
<td>21303</td>
<td>5.65</td>
<td>6.82</td>
<td>91.58</td>
<td>1.6</td>
</tr>
<tr>
<td>38.0</td>
<td>22092</td>
<td>5.20</td>
<td>24.55</td>
<td>65.61</td>
<td>9.78</td>
</tr>
<tr>
<td>37.5</td>
<td>22881</td>
<td>5.66</td>
<td>12.78</td>
<td>76.28</td>
<td>10.9</td>
</tr>
<tr>
<td>37.0</td>
<td>23670</td>
<td>5.65</td>
<td>14.13</td>
<td>73.71</td>
<td>12.09</td>
</tr>
<tr>
<td>36.5</td>
<td>24459</td>
<td>5.47</td>
<td>16.57</td>
<td>74.42</td>
<td>8.99</td>
</tr>
<tr>
<td>36.0</td>
<td>25248</td>
<td>5.99</td>
<td>2.55</td>
<td>86.28</td>
<td>11.13</td>
</tr>
<tr>
<td>35.5</td>
<td>26037</td>
<td>5.84</td>
<td>2.44</td>
<td>92.58</td>
<td>4.97</td>
</tr>
<tr>
<td>35.0</td>
<td>26826</td>
<td>6.01</td>
<td>0.77</td>
<td>90.19</td>
<td>9</td>
</tr>
<tr>
<td>34.5</td>
<td>27615</td>
<td>5.36</td>
<td>1.51</td>
<td>97.04</td>
<td>1.45</td>
</tr>
<tr>
<td>34.0</td>
<td>28404</td>
<td>5.03</td>
<td>7.62</td>
<td>91.4</td>
<td>0.98</td>
</tr>
<tr>
<td>33.5</td>
<td>29193</td>
<td>5.54</td>
<td>2.86</td>
<td>96.22</td>
<td>0.92</td>
</tr>
<tr>
<td>33.0</td>
<td>29982</td>
<td>5.94</td>
<td>0.94</td>
<td>96.43</td>
<td>2.63</td>
</tr>
<tr>
<td>32.5</td>
<td>30771</td>
<td>5.77</td>
<td>5.16</td>
<td>89.45</td>
<td>5.37</td>
</tr>
<tr>
<td>32.0</td>
<td>31560</td>
<td>5.72</td>
<td>1.04</td>
<td>95.79</td>
<td>3.18</td>
</tr>
<tr>
<td>length (m)</td>
<td>"tuned" time (yrs)</td>
<td>grain size (phi)</td>
<td>sand fraction</td>
<td>silt fraction</td>
<td>clay fraction</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>31.5</td>
<td>32349</td>
<td>5.75</td>
<td>0.6</td>
<td>99.24</td>
<td>0.16</td>
</tr>
<tr>
<td>31.0</td>
<td>33138</td>
<td>5.93</td>
<td>0.47</td>
<td>98.1</td>
<td>1.43</td>
</tr>
<tr>
<td>30.5</td>
<td>33927</td>
<td>5.88</td>
<td>1.01</td>
<td>98.18</td>
<td>0.82</td>
</tr>
<tr>
<td>30.0</td>
<td>34716</td>
<td>5.55</td>
<td>6.36</td>
<td>86.83</td>
<td>6.77</td>
</tr>
<tr>
<td>29.5</td>
<td>35505</td>
<td>5.25</td>
<td>12.02</td>
<td>83.29</td>
<td>4.67</td>
</tr>
<tr>
<td>29.0</td>
<td>36294</td>
<td>5.50</td>
<td>14.58</td>
<td>77.73</td>
<td>7.65</td>
</tr>
<tr>
<td>28.5</td>
<td>37083</td>
<td>5.48</td>
<td>13.52</td>
<td>77.45</td>
<td>8.98</td>
</tr>
<tr>
<td>28.0</td>
<td>37872</td>
<td>5.50</td>
<td>8.29</td>
<td>85.46</td>
<td>6.22</td>
</tr>
<tr>
<td>27.5</td>
<td>38661</td>
<td>5.52</td>
<td>16.08</td>
<td>78.64</td>
<td>5.27</td>
</tr>
<tr>
<td>27.0</td>
<td>39450</td>
<td>5.37</td>
<td>18.74</td>
<td>74.13</td>
<td>7.1</td>
</tr>
<tr>
<td>26.5</td>
<td>40239</td>
<td>5.35</td>
<td>23.28</td>
<td>63.97</td>
<td>12.67</td>
</tr>
<tr>
<td>26.0</td>
<td>41028</td>
<td>5.47</td>
<td>9.66</td>
<td>88.49</td>
<td>1.84</td>
</tr>
<tr>
<td>25.5</td>
<td>41817</td>
<td>5.30</td>
<td>23.28</td>
<td>63.97</td>
<td>12.67</td>
</tr>
<tr>
<td>25.0</td>
<td>42606</td>
<td>5.22</td>
<td>31.26</td>
<td>62.33</td>
<td>6.39</td>
</tr>
<tr>
<td>24.5</td>
<td>43395</td>
<td>5.50</td>
<td>5.41</td>
<td>89.32</td>
<td>5.25</td>
</tr>
<tr>
<td>24.0</td>
<td>44184</td>
<td>4.71</td>
<td>43.44</td>
<td>49.05</td>
<td>7.47</td>
</tr>
<tr>
<td>23.5</td>
<td>44973</td>
<td>4.97</td>
<td>36.28</td>
<td>57.92</td>
<td>5.79</td>
</tr>
<tr>
<td>23.0</td>
<td>45762</td>
<td>5.19</td>
<td>24.45</td>
<td>61.77</td>
<td>13.68</td>
</tr>
<tr>
<td>22.5</td>
<td>46551</td>
<td>5.50</td>
<td>9.2</td>
<td>82.05</td>
<td>8.71</td>
</tr>
<tr>
<td>22.0</td>
<td>47340</td>
<td>4.98</td>
<td>32.4</td>
<td>57.19</td>
<td>10.35</td>
</tr>
<tr>
<td>21.5</td>
<td>48129</td>
<td>5.41</td>
<td>21.9</td>
<td>73.01</td>
<td>5.08</td>
</tr>
<tr>
<td>21.0</td>
<td>48918</td>
<td>5.43</td>
<td>12.96</td>
<td>78.82</td>
<td>8.38</td>
</tr>
<tr>
<td>20.5</td>
<td>49707</td>
<td>5.02</td>
<td>33.59</td>
<td>56.5</td>
<td>9.86</td>
</tr>
<tr>
<td>20.0</td>
<td>50496</td>
<td>5.46</td>
<td>5.3</td>
<td>94.09</td>
<td>0.39</td>
</tr>
<tr>
<td>19.5</td>
<td>51285</td>
<td>5.26</td>
<td>16.2</td>
<td>77.82</td>
<td>5.96</td>
</tr>
<tr>
<td>19.0</td>
<td>52074</td>
<td>5.97</td>
<td>4.46</td>
<td>86.59</td>
<td>8.93</td>
</tr>
<tr>
<td>18.5</td>
<td>52863</td>
<td>5.66</td>
<td>7.61</td>
<td>81.88</td>
<td>10.45</td>
</tr>
<tr>
<td>18.0</td>
<td>53652</td>
<td>5.58</td>
<td>8.33</td>
<td>83.12</td>
<td>8.52</td>
</tr>
<tr>
<td>17.5</td>
<td>54441</td>
<td>5.72</td>
<td>9.03</td>
<td>78.08</td>
<td>14.81</td>
</tr>
<tr>
<td>17.0</td>
<td>55230</td>
<td>5.65</td>
<td>14.93</td>
<td>74.47</td>
<td>10.57</td>
</tr>
<tr>
<td>16.5</td>
<td>56019</td>
<td>5.72</td>
<td>2.28</td>
<td>95.28</td>
<td>2.44</td>
</tr>
<tr>
<td>16.0</td>
<td>56808</td>
<td>5.75</td>
<td>7.19</td>
<td>85.83</td>
<td>6.95</td>
</tr>
<tr>
<td>15.5</td>
<td>57597</td>
<td>5.55</td>
<td>8.23</td>
<td>86.77</td>
<td>4.98</td>
</tr>
<tr>
<td>15.0</td>
<td>58386</td>
<td>5.58</td>
<td>4.51</td>
<td>92.87</td>
<td>2.61</td>
</tr>
<tr>
<td>14.5</td>
<td>59175</td>
<td>5.25</td>
<td>7.09</td>
<td>92.63</td>
<td>0.29</td>
</tr>
<tr>
<td>14.0</td>
<td>59964</td>
<td>5.46</td>
<td>7.84</td>
<td>89.36</td>
<td>2.8</td>
</tr>
<tr>
<td>13.5</td>
<td>60753</td>
<td>5.42</td>
<td>14.83</td>
<td>77.55</td>
<td>7.6</td>
</tr>
<tr>
<td>13.0</td>
<td>61542</td>
<td>5.51</td>
<td>3.36</td>
<td>91.81</td>
<td>4.82</td>
</tr>
<tr>
<td>12.5</td>
<td>62331</td>
<td>5.62</td>
<td>6.9</td>
<td>89.3</td>
<td>3.8</td>
</tr>
<tr>
<td>12.0</td>
<td>63120</td>
<td>5.50</td>
<td>10.02</td>
<td>79.08</td>
<td>10.83</td>
</tr>
<tr>
<td>11.5</td>
<td>63909</td>
<td>5.78</td>
<td>7.46</td>
<td>84.54</td>
<td>7.98</td>
</tr>
<tr>
<td>11.0</td>
<td>64698</td>
<td>5.72</td>
<td>4.08</td>
<td>88.87</td>
<td>7.03</td>
</tr>
<tr>
<td>10.5</td>
<td>65487</td>
<td>5.67</td>
<td>6.36</td>
<td>89.71</td>
<td>3.93</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>length (m)</th>
<th>“tuned” time (yrs)</th>
<th>grain size (phi)</th>
<th>sand fraction</th>
<th>silt fraction</th>
<th>clay fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>66276</td>
<td>5.92</td>
<td>2.52</td>
<td>84.9</td>
<td>12.51</td>
</tr>
<tr>
<td>9.5</td>
<td>67065</td>
<td>5.82</td>
<td>1.85</td>
<td>93.8</td>
<td>4.34</td>
</tr>
<tr>
<td>9.0</td>
<td>67854</td>
<td>5.81</td>
<td>4.25</td>
<td>89.99</td>
<td>5.75</td>
</tr>
<tr>
<td>8.5</td>
<td>68643</td>
<td>5.64</td>
<td>7.6</td>
<td>78.22</td>
<td>14.1</td>
</tr>
<tr>
<td>8.0</td>
<td>69432</td>
<td>5.58</td>
<td>7.57</td>
<td>83.2</td>
<td>9.2</td>
</tr>
<tr>
<td>7.5</td>
<td>70221</td>
<td>5.65</td>
<td>9.93</td>
<td>75.98</td>
<td>14</td>
</tr>
<tr>
<td>7.0</td>
<td>71010</td>
<td>5.53</td>
<td>8.38</td>
<td>77.02</td>
<td>14.49</td>
</tr>
<tr>
<td>6.5</td>
<td>71799</td>
<td>5.65</td>
<td>9.93</td>
<td>75.98</td>
<td>14</td>
</tr>
<tr>
<td>6.0</td>
<td>72588</td>
<td>5.73</td>
<td>4.64</td>
<td>88.44</td>
<td>6.91</td>
</tr>
<tr>
<td>5.5</td>
<td>73377</td>
<td>5.81</td>
<td>4.03</td>
<td>82.56</td>
<td>13.34</td>
</tr>
<tr>
<td>5.0</td>
<td>74166</td>
<td>5.93</td>
<td>5.03</td>
<td>89.33</td>
<td>5.63</td>
</tr>
<tr>
<td>4.5</td>
<td>74955</td>
<td>5.79</td>
<td>2.69</td>
<td>83.47</td>
<td>13.75</td>
</tr>
<tr>
<td>4.0</td>
<td>75744</td>
<td>5.60</td>
<td>8.71</td>
<td>80.56</td>
<td>10.68</td>
</tr>
<tr>
<td>3.5</td>
<td>76533</td>
<td>5.78</td>
<td>7.94</td>
<td>86.21</td>
<td>5.86</td>
</tr>
<tr>
<td>3.0</td>
<td>77322</td>
<td>5.63</td>
<td>8.57</td>
<td>83.04</td>
<td>8.36</td>
</tr>
<tr>
<td>2.5</td>
<td>78111</td>
<td>5.73</td>
<td>6.74</td>
<td>84.58</td>
<td>8.67</td>
</tr>
<tr>
<td>2.0</td>
<td>78900</td>
<td>5.59</td>
<td>6.81</td>
<td>82.07</td>
<td>11.05</td>
</tr>
<tr>
<td>1.5</td>
<td>79689</td>
<td>5.84</td>
<td>1.61</td>
<td>90.17</td>
<td>8.19</td>
</tr>
<tr>
<td>1.0</td>
<td>80478</td>
<td>5.73</td>
<td>2.13</td>
<td>92.38</td>
<td>5.48</td>
</tr>
<tr>
<td>0.5</td>
<td>81267</td>
<td>5.72</td>
<td>1.41</td>
<td>92.42</td>
<td>6.17</td>
</tr>
<tr>
<td>0.0</td>
<td>82056</td>
<td>5.90</td>
<td>1.2</td>
<td>95.18</td>
<td>3.61</td>
</tr>
<tr>
<td>length (m)</td>
<td>"tuned" time (yrs)</td>
<td>grain size (phi)</td>
<td>sand fraction</td>
<td>silt fraction</td>
<td>clay fraction</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>43.5</td>
<td>0</td>
<td>6.41</td>
<td>0.02</td>
<td>94.67</td>
<td>5.32</td>
</tr>
<tr>
<td>43.0</td>
<td>794</td>
<td>5.53</td>
<td>14.84</td>
<td>82.86</td>
<td>2.31</td>
</tr>
<tr>
<td>42.5</td>
<td>1588</td>
<td>5.18</td>
<td>3.51</td>
<td>95.29</td>
<td>1.19</td>
</tr>
<tr>
<td>42.0</td>
<td>2382</td>
<td>5.96</td>
<td>1.71</td>
<td>96.27</td>
<td>2.03</td>
</tr>
<tr>
<td>41.5</td>
<td>3176</td>
<td>5.61</td>
<td>8.44</td>
<td>84.96</td>
<td>6.58</td>
</tr>
<tr>
<td>41.0</td>
<td>3970</td>
<td>5.75</td>
<td>5.27</td>
<td>91.09</td>
<td>3.65</td>
</tr>
<tr>
<td>40.5</td>
<td>4764</td>
<td>5.71</td>
<td>0.74</td>
<td>94.49</td>
<td>5.77</td>
</tr>
<tr>
<td>40.0</td>
<td>5558</td>
<td>5.65</td>
<td>9.62</td>
<td>83.48</td>
<td>6.89</td>
</tr>
<tr>
<td>39.5</td>
<td>6352</td>
<td>5.87</td>
<td>3.58</td>
<td>91.4</td>
<td>5.01</td>
</tr>
<tr>
<td>39.0</td>
<td>7146</td>
<td>5.88</td>
<td>5.15</td>
<td>89.49</td>
<td>5.35</td>
</tr>
<tr>
<td>38.5</td>
<td>7940</td>
<td>5.54</td>
<td>9.22</td>
<td>84.37</td>
<td>6.39</td>
</tr>
<tr>
<td>38.0</td>
<td>8734</td>
<td>5.87</td>
<td>0.63</td>
<td>86.03</td>
<td>13.25</td>
</tr>
<tr>
<td>37.5</td>
<td>9528</td>
<td>5.55</td>
<td>9.35</td>
<td>81.43</td>
<td>9.16</td>
</tr>
<tr>
<td>37.0</td>
<td>10322</td>
<td>5.59</td>
<td>11.44</td>
<td>84.85</td>
<td>3.7</td>
</tr>
<tr>
<td>36.5</td>
<td>11116</td>
<td>5.35</td>
<td>22.81</td>
<td>68.77</td>
<td>8.4</td>
</tr>
<tr>
<td>36.0</td>
<td>11910</td>
<td>5.72</td>
<td>6.28</td>
<td>84.17</td>
<td>9.5</td>
</tr>
<tr>
<td>35.5</td>
<td>12704</td>
<td>5.74</td>
<td>9.22</td>
<td>80.47</td>
<td>10.27</td>
</tr>
<tr>
<td>35.0</td>
<td>13498</td>
<td>5.67</td>
<td>4.87</td>
<td>87.54</td>
<td>7.55</td>
</tr>
<tr>
<td>34.5</td>
<td>14292</td>
<td>5.23</td>
<td>2.87</td>
<td>92.41</td>
<td>4.7</td>
</tr>
<tr>
<td>34.0</td>
<td>15086</td>
<td>5.23</td>
<td>24.81</td>
<td>64.29</td>
<td>10.85</td>
</tr>
<tr>
<td>33.5</td>
<td>15880</td>
<td>5.55</td>
<td>6.81</td>
<td>83.38</td>
<td>9.94</td>
</tr>
<tr>
<td>33.0</td>
<td>16674</td>
<td>5.78</td>
<td>7.1</td>
<td>87.42</td>
<td>5.47</td>
</tr>
<tr>
<td>32.5</td>
<td>17468</td>
<td>5.50</td>
<td>10.79</td>
<td>81.44</td>
<td>7.73</td>
</tr>
<tr>
<td>32.0</td>
<td>18262</td>
<td>5.50</td>
<td>16.12</td>
<td>76.51</td>
<td>7.35</td>
</tr>
<tr>
<td>31.5</td>
<td>19056</td>
<td>5.77</td>
<td>9.49</td>
<td>79.72</td>
<td>10.75</td>
</tr>
<tr>
<td>31.0</td>
<td>19850</td>
<td>3.31</td>
<td>71.72</td>
<td>22.78</td>
<td>5.45</td>
</tr>
<tr>
<td>30.5</td>
<td>20644</td>
<td>3.16</td>
<td>76.28</td>
<td>19.23</td>
<td>4.45</td>
</tr>
<tr>
<td>30.0</td>
<td>21438</td>
<td>3.24</td>
<td>76.06</td>
<td>21.11</td>
<td>2.81</td>
</tr>
<tr>
<td>29.5</td>
<td>22232</td>
<td>4.49</td>
<td>40.48</td>
<td>56.77</td>
<td>2.75</td>
</tr>
<tr>
<td>29.0</td>
<td>23026</td>
<td>4.17</td>
<td>49.71</td>
<td>42.98</td>
<td>7.28</td>
</tr>
<tr>
<td>28.5</td>
<td>23820</td>
<td>6.01</td>
<td>9.85</td>
<td>76.93</td>
<td>13.39</td>
</tr>
<tr>
<td>28.0</td>
<td>24614</td>
<td>5.28</td>
<td>22.63</td>
<td>72.12</td>
<td>5.24</td>
</tr>
<tr>
<td>27.5</td>
<td>25408</td>
<td>5.80</td>
<td>11.31</td>
<td>82.48</td>
<td>6.2</td>
</tr>
<tr>
<td>27.0</td>
<td>26202</td>
<td>4.37</td>
<td>43.96</td>
<td>49.78</td>
<td>6.23</td>
</tr>
<tr>
<td>26.5</td>
<td>26996</td>
<td>5.21</td>
<td>24.36</td>
<td>69.54</td>
<td>6.07</td>
</tr>
<tr>
<td>26.0</td>
<td>27790</td>
<td>5.65</td>
<td>19.71</td>
<td>72.85</td>
<td>7.44</td>
</tr>
<tr>
<td>25.5</td>
<td>28584</td>
<td>4.53</td>
<td>40.95</td>
<td>51.28</td>
<td>7.71</td>
</tr>
<tr>
<td>25.0</td>
<td>29378</td>
<td>5.36</td>
<td>23.89</td>
<td>56.75</td>
<td>19.23</td>
</tr>
<tr>
<td>24.5</td>
<td>30172</td>
<td>5.91</td>
<td>12.07</td>
<td>70.62</td>
<td>17.24</td>
</tr>
<tr>
<td>24.0</td>
<td>30966</td>
<td>6.15</td>
<td>8.9</td>
<td>81.48</td>
<td>9.61</td>
</tr>
<tr>
<td>23.5</td>
<td>31760</td>
<td>3.95</td>
<td>56.43</td>
<td>39.5</td>
<td>4.05</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>length (m)</th>
<th>"tuned" time (yrs)</th>
<th>grain size (phi)</th>
<th>sand fraction</th>
<th>silt fraction</th>
<th>clay fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.0</td>
<td>32554</td>
<td>5.63</td>
<td>16.98</td>
<td>67.49</td>
<td>15.44</td>
</tr>
<tr>
<td>22.5</td>
<td>33348</td>
<td>3.09</td>
<td>77.35</td>
<td>18.04</td>
<td>4.57</td>
</tr>
<tr>
<td>22.0</td>
<td>34142</td>
<td>4.08</td>
<td>50.01</td>
<td>41.93</td>
<td>8</td>
</tr>
<tr>
<td>21.5</td>
<td>34936</td>
<td>3.48</td>
<td>68.15</td>
<td>26.06</td>
<td>5.72</td>
</tr>
<tr>
<td>21.0</td>
<td>35730</td>
<td>3.93</td>
<td>60.2</td>
<td>34.27</td>
<td>5.51</td>
</tr>
<tr>
<td>20.5</td>
<td>36524</td>
<td>4.20</td>
<td>47.17</td>
<td>50.37</td>
<td>2.45</td>
</tr>
<tr>
<td>20.0</td>
<td>37318</td>
<td>3.40</td>
<td>70.05</td>
<td>25.76</td>
<td>4.17</td>
</tr>
<tr>
<td>19.5</td>
<td>38112</td>
<td>4.08</td>
<td>54.52</td>
<td>39.88</td>
<td>5.59</td>
</tr>
<tr>
<td>19.0</td>
<td>38906</td>
<td>3.36</td>
<td>71.62</td>
<td>23.1</td>
<td>5.24</td>
</tr>
<tr>
<td>18.5</td>
<td>39700</td>
<td>3.16</td>
<td>77.21</td>
<td>19.41</td>
<td>3.36</td>
</tr>
<tr>
<td>18.0</td>
<td>40494</td>
<td>3.43</td>
<td>70.11</td>
<td>24.52</td>
<td>5.33</td>
</tr>
<tr>
<td>17.5</td>
<td>41288</td>
<td>3.13</td>
<td>76.68</td>
<td>20.46</td>
<td>2.85</td>
</tr>
<tr>
<td>17.0</td>
<td>42082</td>
<td>3.08</td>
<td>78.15</td>
<td>19.04</td>
<td>2.8</td>
</tr>
<tr>
<td>16.5</td>
<td>42876</td>
<td>4.85</td>
<td>36.22</td>
<td>51.77</td>
<td>11.96</td>
</tr>
<tr>
<td>16.0</td>
<td>43670</td>
<td>5.25</td>
<td>22.8</td>
<td>68.13</td>
<td>9.05</td>
</tr>
<tr>
<td>15.5</td>
<td>44464</td>
<td>4.45</td>
<td>39.08</td>
<td>48.44</td>
<td>12.35</td>
</tr>
<tr>
<td>15.0</td>
<td>45258</td>
<td>4.74</td>
<td>35.68</td>
<td>53.33</td>
<td>10.92</td>
</tr>
<tr>
<td>14.5</td>
<td>46052</td>
<td>6.03</td>
<td>4.12</td>
<td>90.39</td>
<td>5.48</td>
</tr>
<tr>
<td>14.0</td>
<td>46848</td>
<td>5.62</td>
<td>21.26</td>
<td>67.26</td>
<td>11.45</td>
</tr>
<tr>
<td>13.5</td>
<td>47640</td>
<td>5.30</td>
<td>17.11</td>
<td>74.5</td>
<td>8.37</td>
</tr>
<tr>
<td>13.0</td>
<td>48434</td>
<td>5.83</td>
<td>7.68</td>
<td>88.11</td>
<td>4.21</td>
</tr>
<tr>
<td>12.5</td>
<td>49228</td>
<td>5.96</td>
<td>6.62</td>
<td>82.16</td>
<td>8.21</td>
</tr>
<tr>
<td>12.0</td>
<td>50022</td>
<td>6.25</td>
<td>3.23</td>
<td>77.78</td>
<td>18.99</td>
</tr>
<tr>
<td>11.5</td>
<td>50816</td>
<td>6.09</td>
<td>9.1</td>
<td>78.96</td>
<td>11.92</td>
</tr>
<tr>
<td>11.0</td>
<td>51610</td>
<td>6.15</td>
<td>3.65</td>
<td>86.48</td>
<td>9.85</td>
</tr>
<tr>
<td>10.5</td>
<td>52404</td>
<td>6.36</td>
<td>0.39</td>
<td>90.08</td>
<td>9.52</td>
</tr>
<tr>
<td>10.0</td>
<td>53198</td>
<td>6.29</td>
<td>4.44</td>
<td>80.89</td>
<td>14.62</td>
</tr>
<tr>
<td>9.5</td>
<td>53992</td>
<td>5.00</td>
<td>27.17</td>
<td>68.09</td>
<td>3.73</td>
</tr>
<tr>
<td>9.0</td>
<td>54786</td>
<td>5.17</td>
<td>19.74</td>
<td>77.36</td>
<td>2.89</td>
</tr>
<tr>
<td>8.5</td>
<td>55580</td>
<td>5.71</td>
<td>3.56</td>
<td>94.48</td>
<td>1.94</td>
</tr>
<tr>
<td>8.0</td>
<td>56374</td>
<td>5.36</td>
<td>6.63</td>
<td>91.72</td>
<td>1.66</td>
</tr>
<tr>
<td>7.5</td>
<td>57168</td>
<td>5.09</td>
<td>25.26</td>
<td>69.42</td>
<td>5.3</td>
</tr>
<tr>
<td>7.0</td>
<td>57962</td>
<td>5.57</td>
<td>9.22</td>
<td>86.71</td>
<td>4.06</td>
</tr>
<tr>
<td>6.5</td>
<td>58756</td>
<td>5.11</td>
<td>25.3</td>
<td>70.25</td>
<td>4.44</td>
</tr>
<tr>
<td>6.0</td>
<td>59550</td>
<td>5.33</td>
<td>19.08</td>
<td>78.49</td>
<td>2.43</td>
</tr>
<tr>
<td>5.5</td>
<td>60344</td>
<td>5.30</td>
<td>19.59</td>
<td>76.9</td>
<td>3.51</td>
</tr>
<tr>
<td>5.0</td>
<td>61138</td>
<td>4.93</td>
<td>24.34</td>
<td>72.05</td>
<td>3.6</td>
</tr>
<tr>
<td>4.5</td>
<td>61932</td>
<td>4.86</td>
<td>33.88</td>
<td>53.8</td>
<td>12.24</td>
</tr>
<tr>
<td>4.0</td>
<td>62726</td>
<td>4.40</td>
<td>49.58</td>
<td>48.29</td>
<td>2.13</td>
</tr>
<tr>
<td>3.5</td>
<td>63520</td>
<td>4.91</td>
<td>32.85</td>
<td>62.78</td>
<td>4.35</td>
</tr>
<tr>
<td>3.0</td>
<td>64314</td>
<td>4.66</td>
<td>43.55</td>
<td>52.88</td>
<td>3.56</td>
</tr>
<tr>
<td>2.5</td>
<td>65108</td>
<td>4.84</td>
<td>35.49</td>
<td>59.93</td>
<td>4.56</td>
</tr>
<tr>
<td>2.0</td>
<td>65902</td>
<td>4.73</td>
<td>40.89</td>
<td>54.15</td>
<td>4.94</td>
</tr>
<tr>
<td>length (m)</td>
<td>"tuned" time (yrs)</td>
<td>grain size (phi)</td>
<td>sand fraction</td>
<td>silt fraction</td>
<td>clay fraction</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1.5</td>
<td>66696</td>
<td>6.13</td>
<td>0.57</td>
<td>99.17</td>
<td>0.25</td>
</tr>
<tr>
<td>1.0</td>
<td>67490</td>
<td>5.86</td>
<td>1.01</td>
<td>93.48</td>
<td>5.49</td>
</tr>
<tr>
<td>0.5</td>
<td>68284</td>
<td>5.46</td>
<td>9.78</td>
<td>88.83</td>
<td>1.39</td>
</tr>
<tr>
<td>0.0</td>
<td>69078</td>
<td>5.80</td>
<td>2.77</td>
<td>96.85</td>
<td>0.38</td>
</tr>
</tbody>
</table>
WHC sand fraction mean removed with linear overplot

WHC sand fraction mean, linear & quadratic removed
WHC clay fraction

raw data

WHC clay fraction
mean removed

Clay fraction

Time (years)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX E
CALCULATED TIMELINES

<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>indiv. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>272</td>
<td>900</td>
<td>180</td>
<td>1</td>
<td>53</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>271</td>
<td>450</td>
<td>90</td>
<td>2</td>
<td>30</td>
<td>45.00</td>
<td>135.00</td>
</tr>
<tr>
<td>270</td>
<td>300</td>
<td>60</td>
<td>3</td>
<td>28</td>
<td>30.00</td>
<td>165.00</td>
</tr>
<tr>
<td>269</td>
<td>400</td>
<td>80</td>
<td>4</td>
<td>14</td>
<td>40.00</td>
<td>205.00</td>
</tr>
<tr>
<td>268</td>
<td>1200</td>
<td>220</td>
<td>5</td>
<td>5</td>
<td>120.00</td>
<td>325.00</td>
</tr>
<tr>
<td>267</td>
<td>500</td>
<td>100</td>
<td>6</td>
<td>15</td>
<td>50.00</td>
<td>375.00</td>
</tr>
<tr>
<td>266</td>
<td>50</td>
<td>10</td>
<td>7</td>
<td>10</td>
<td>833.33</td>
<td>1206.33</td>
</tr>
<tr>
<td>265</td>
<td>450</td>
<td>90</td>
<td>8</td>
<td>13</td>
<td>46.00</td>
<td>1253.33</td>
</tr>
<tr>
<td>264</td>
<td>40</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>886.67</td>
<td>1920.00</td>
</tr>
<tr>
<td>263</td>
<td>7</td>
<td>2</td>
<td>10</td>
<td>13</td>
<td>0.70</td>
<td>1920.70</td>
</tr>
<tr>
<td>262</td>
<td>30</td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>500.00</td>
<td>2420.70</td>
</tr>
<tr>
<td>261</td>
<td>12</td>
<td>3</td>
<td>12</td>
<td>10</td>
<td>1.20</td>
<td>2421.90</td>
</tr>
<tr>
<td>260</td>
<td>65</td>
<td>13</td>
<td>13</td>
<td>4</td>
<td>1083.33</td>
<td>3505.23</td>
</tr>
<tr>
<td>259</td>
<td>140</td>
<td>28</td>
<td>14</td>
<td>3</td>
<td>14.00</td>
<td>3519.23</td>
</tr>
<tr>
<td>258</td>
<td>6</td>
<td>1</td>
<td>15</td>
<td>4</td>
<td>883.33</td>
<td>3602.57</td>
</tr>
<tr>
<td>257</td>
<td>30</td>
<td>6</td>
<td>16</td>
<td>7</td>
<td>3.00</td>
<td>3605.57</td>
</tr>
<tr>
<td>256</td>
<td>35</td>
<td>7</td>
<td>17</td>
<td>5</td>
<td>583.33</td>
<td>4188.90</td>
</tr>
<tr>
<td>255</td>
<td>50</td>
<td>10</td>
<td>18</td>
<td>2</td>
<td>5.00</td>
<td>4193.90</td>
</tr>
<tr>
<td>254</td>
<td>110</td>
<td>22</td>
<td>19</td>
<td>2</td>
<td>1833.33</td>
<td>6027.23</td>
</tr>
<tr>
<td>253</td>
<td>30</td>
<td>8</td>
<td>20</td>
<td>6</td>
<td>3.00</td>
<td>6030.23</td>
</tr>
<tr>
<td>252</td>
<td>15</td>
<td>3</td>
<td>21</td>
<td>1</td>
<td>250.00</td>
<td>6280.23</td>
</tr>
<tr>
<td>251</td>
<td>35</td>
<td>7</td>
<td>22</td>
<td>1</td>
<td>3.50</td>
<td>6283.73</td>
</tr>
<tr>
<td>250</td>
<td>40</td>
<td>8</td>
<td>23</td>
<td>3</td>
<td>666.67</td>
<td>6950.40</td>
</tr>
<tr>
<td>249</td>
<td>25</td>
<td>5</td>
<td>24</td>
<td>2</td>
<td>2.50</td>
<td>6952.90</td>
</tr>
<tr>
<td>248</td>
<td>50</td>
<td>10</td>
<td>25</td>
<td>3</td>
<td>833.33</td>
<td>7786.23</td>
</tr>
<tr>
<td>247</td>
<td>12</td>
<td>3</td>
<td>26</td>
<td>0</td>
<td>1.20</td>
<td>7787.43</td>
</tr>
<tr>
<td>246</td>
<td>80</td>
<td>16</td>
<td>27</td>
<td>0</td>
<td>1333.33</td>
<td>9120.77</td>
</tr>
<tr>
<td>245</td>
<td>13</td>
<td>3</td>
<td>28</td>
<td>4</td>
<td>1.30</td>
<td>9122.07</td>
</tr>
<tr>
<td>244</td>
<td>5</td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>83.33</td>
<td>9205.40</td>
</tr>
<tr>
<td>243</td>
<td>50</td>
<td>10</td>
<td>30</td>
<td>2</td>
<td>5.00</td>
<td>9210.40</td>
</tr>
<tr>
<td>242</td>
<td>85</td>
<td>17</td>
<td>31</td>
<td>0</td>
<td>1416.67</td>
<td>10627.07</td>
</tr>
<tr>
<td>241</td>
<td>8</td>
<td>2</td>
<td>32</td>
<td>0</td>
<td>0.80</td>
<td>10627.87</td>
</tr>
<tr>
<td>240</td>
<td>40</td>
<td>8</td>
<td>33</td>
<td>0</td>
<td>666.67</td>
<td>11294.53</td>
</tr>
<tr>
<td>239</td>
<td>3</td>
<td>1</td>
<td>34</td>
<td>0</td>
<td>0.30</td>
<td>11294.83</td>
</tr>
<tr>
<td>238</td>
<td>60</td>
<td>12</td>
<td>35</td>
<td>1</td>
<td>1000.00</td>
<td>12294.83</td>
</tr>
<tr>
<td>237</td>
<td>8</td>
<td>2</td>
<td>36</td>
<td>0</td>
<td>0.60</td>
<td>12295.63</td>
</tr>
<tr>
<td>236</td>
<td>25</td>
<td>5</td>
<td>37</td>
<td>1</td>
<td>416.67</td>
<td>12712.30</td>
</tr>
<tr>
<td>235</td>
<td>3</td>
<td>1</td>
<td>38</td>
<td>0</td>
<td>0.30</td>
<td>12712.60</td>
</tr>
<tr>
<td>234</td>
<td>75</td>
<td>15</td>
<td>39</td>
<td>2</td>
<td>1250.00</td>
<td>13962.60</td>
</tr>
<tr>
<td>233</td>
<td>12</td>
<td>3</td>
<td>40</td>
<td>1</td>
<td>1.20</td>
<td>13963.80</td>
</tr>
<tr>
<td>232</td>
<td>50</td>
<td>10</td>
<td>41</td>
<td>0</td>
<td>833.33</td>
<td>14797.13</td>
</tr>
<tr>
<td>231</td>
<td>3</td>
<td>1</td>
<td>42</td>
<td>1</td>
<td>0.30</td>
<td>14797.43</td>
</tr>
<tr>
<td>230</td>
<td>40</td>
<td>8</td>
<td>43</td>
<td>0</td>
<td>666.67</td>
<td>15464.10</td>
</tr>
<tr>
<td>229</td>
<td>6</td>
<td>2</td>
<td>44</td>
<td>0</td>
<td>0.60</td>
<td>15464.70</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number</th>
<th>bin number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>no. of beds per bin</th>
<th>indiv. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>120</td>
<td>24</td>
<td>45</td>
<td>0</td>
<td>2000.00</td>
<td>17464.70</td>
</tr>
<tr>
<td>227</td>
<td>30</td>
<td>6</td>
<td>48</td>
<td>0</td>
<td>3.00</td>
<td>17467.70</td>
</tr>
<tr>
<td>226</td>
<td>10</td>
<td>2</td>
<td>47</td>
<td>0</td>
<td>166.67</td>
<td>17634.37</td>
</tr>
<tr>
<td>225</td>
<td>6</td>
<td>2</td>
<td>48</td>
<td>0</td>
<td>0.60</td>
<td>17634.97</td>
</tr>
<tr>
<td>224</td>
<td>18</td>
<td>4</td>
<td>49</td>
<td>1</td>
<td>300.00</td>
<td>17934.97</td>
</tr>
<tr>
<td>223</td>
<td>7</td>
<td>2</td>
<td>50</td>
<td>0</td>
<td>0.70</td>
<td>17935.67</td>
</tr>
<tr>
<td>222</td>
<td>15</td>
<td>3</td>
<td>51</td>
<td>0</td>
<td>250.00</td>
<td>18165.67</td>
</tr>
<tr>
<td>221</td>
<td>4</td>
<td>1</td>
<td>52</td>
<td>0</td>
<td>0.40</td>
<td>18166.07</td>
</tr>
<tr>
<td>220</td>
<td>10</td>
<td>2</td>
<td>53</td>
<td>1</td>
<td>166.67</td>
<td>18352.73</td>
</tr>
<tr>
<td>219</td>
<td>6</td>
<td>2</td>
<td>54</td>
<td>1</td>
<td>0.60</td>
<td>18353.33</td>
</tr>
<tr>
<td>218</td>
<td>20</td>
<td>4</td>
<td>55</td>
<td>0</td>
<td>333.33</td>
<td>18686.67</td>
</tr>
<tr>
<td>217</td>
<td>4</td>
<td>1</td>
<td>56</td>
<td>1</td>
<td>0.40</td>
<td>18686.07</td>
</tr>
<tr>
<td>216</td>
<td>82</td>
<td>17</td>
<td>57</td>
<td>0</td>
<td>1366.67</td>
<td>20053.73</td>
</tr>
<tr>
<td>215</td>
<td>2</td>
<td>1</td>
<td>58</td>
<td>1</td>
<td>0.20</td>
<td>20053.93</td>
</tr>
<tr>
<td>214</td>
<td>62</td>
<td>13</td>
<td>59</td>
<td>0</td>
<td>1033.33</td>
<td>21067.27</td>
</tr>
<tr>
<td>213</td>
<td>10</td>
<td>2</td>
<td>60</td>
<td>1</td>
<td>1.00</td>
<td>21088.27</td>
</tr>
<tr>
<td>212</td>
<td>16</td>
<td>4</td>
<td>61</td>
<td>0</td>
<td>286.67</td>
<td>21354.93</td>
</tr>
<tr>
<td>211</td>
<td>5</td>
<td>1</td>
<td>62</td>
<td>0</td>
<td>0.50</td>
<td>21355.43</td>
</tr>
<tr>
<td>210</td>
<td>6</td>
<td>2</td>
<td>63</td>
<td>0</td>
<td>100.00</td>
<td>21455.43</td>
</tr>
<tr>
<td>208</td>
<td>8</td>
<td>2</td>
<td>64</td>
<td>0</td>
<td>0.80</td>
<td>21456.23</td>
</tr>
<tr>
<td>208</td>
<td>20</td>
<td>4</td>
<td>65</td>
<td>0</td>
<td>333.33</td>
<td>21789.57</td>
</tr>
<tr>
<td>207</td>
<td>12</td>
<td>3</td>
<td>66</td>
<td>0</td>
<td>1.20</td>
<td>21790.77</td>
</tr>
<tr>
<td>206</td>
<td>12</td>
<td>3</td>
<td>67</td>
<td>0</td>
<td>200.00</td>
<td>21990.77</td>
</tr>
<tr>
<td>205</td>
<td>5</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>0.50</td>
<td>21991.27</td>
</tr>
<tr>
<td>204</td>
<td>18</td>
<td>4</td>
<td>69</td>
<td>0</td>
<td>300.00</td>
<td>22291.27</td>
</tr>
<tr>
<td>203</td>
<td>1</td>
<td>1</td>
<td>70</td>
<td>0</td>
<td>0.10</td>
<td>22291.37</td>
</tr>
<tr>
<td>202</td>
<td>5</td>
<td>1</td>
<td>71</td>
<td>0</td>
<td>83.33</td>
<td>22374.70</td>
</tr>
<tr>
<td>201</td>
<td>4</td>
<td>1</td>
<td>72</td>
<td>1</td>
<td>0.40</td>
<td>22375.10</td>
</tr>
<tr>
<td>200</td>
<td>15</td>
<td>3</td>
<td>73</td>
<td>0</td>
<td>250.00</td>
<td>22625.10</td>
</tr>
<tr>
<td>199</td>
<td>1</td>
<td>1</td>
<td>74</td>
<td>0</td>
<td>0.10</td>
<td>22625.20</td>
</tr>
<tr>
<td>198</td>
<td>10</td>
<td>2</td>
<td>75</td>
<td>0</td>
<td>196.67</td>
<td>22791.87</td>
</tr>
<tr>
<td>197</td>
<td>10</td>
<td>2</td>
<td>76</td>
<td>0</td>
<td>1.00</td>
<td>22792.87</td>
</tr>
<tr>
<td>196</td>
<td>140</td>
<td>28</td>
<td>77</td>
<td>0</td>
<td>2333.33</td>
<td>25126.20</td>
</tr>
<tr>
<td>195</td>
<td>2</td>
<td>1</td>
<td>78</td>
<td>1</td>
<td>0.20</td>
<td>25126.40</td>
</tr>
<tr>
<td>194</td>
<td>15</td>
<td>3</td>
<td>79</td>
<td>0</td>
<td>260.00</td>
<td>25376.40</td>
</tr>
<tr>
<td>193</td>
<td>2</td>
<td>1</td>
<td>80</td>
<td>2</td>
<td>0.20</td>
<td>25378.60</td>
</tr>
<tr>
<td>192</td>
<td>35</td>
<td>7</td>
<td>81</td>
<td>0</td>
<td>583.33</td>
<td>25869.93</td>
</tr>
<tr>
<td>191</td>
<td>15</td>
<td>3</td>
<td>82</td>
<td>0</td>
<td>1.50</td>
<td>25981.43</td>
</tr>
<tr>
<td>190</td>
<td>75</td>
<td>15</td>
<td>83</td>
<td>0</td>
<td>1250.00</td>
<td>27211.43</td>
</tr>
<tr>
<td>189</td>
<td>4</td>
<td>1</td>
<td>84</td>
<td>0</td>
<td>0.40</td>
<td>27211.83</td>
</tr>
<tr>
<td>188</td>
<td>82</td>
<td>17</td>
<td>85</td>
<td>0</td>
<td>1366.67</td>
<td>28578.50</td>
</tr>
<tr>
<td>187</td>
<td>15</td>
<td>3</td>
<td>86</td>
<td>0</td>
<td>1.50</td>
<td>28580.00</td>
</tr>
<tr>
<td>186</td>
<td>55</td>
<td>11</td>
<td>87</td>
<td>0</td>
<td>916.87</td>
<td>29496.67</td>
</tr>
<tr>
<td>185</td>
<td>4</td>
<td>1</td>
<td>88</td>
<td>0</td>
<td>0.40</td>
<td>29497.07</td>
</tr>
<tr>
<td>184</td>
<td>400</td>
<td>80</td>
<td>89</td>
<td>0</td>
<td>6886.67</td>
<td>35163.73</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>183</td>
<td>2</td>
<td>2</td>
<td>90</td>
<td>2</td>
<td>1.00</td>
<td>36164.73</td>
</tr>
<tr>
<td>182</td>
<td>52</td>
<td>11</td>
<td>91</td>
<td>0</td>
<td>866.67</td>
<td>37031.40</td>
</tr>
<tr>
<td>181</td>
<td>1</td>
<td>1</td>
<td>82</td>
<td>0</td>
<td>0.10</td>
<td>37031.50</td>
</tr>
<tr>
<td>180</td>
<td>15</td>
<td>3</td>
<td>93</td>
<td>0</td>
<td>250.00</td>
<td>37281.50</td>
</tr>
<tr>
<td>179</td>
<td>40</td>
<td>8</td>
<td>96</td>
<td>0</td>
<td>666.67</td>
<td>37948.27</td>
</tr>
<tr>
<td>178</td>
<td>5</td>
<td>1</td>
<td>96</td>
<td>0</td>
<td>0.50</td>
<td>37948.77</td>
</tr>
<tr>
<td>176</td>
<td>20</td>
<td>4</td>
<td>97</td>
<td>0</td>
<td>333.33</td>
<td>38282.10</td>
</tr>
<tr>
<td>175</td>
<td>6</td>
<td>2</td>
<td>98</td>
<td>0</td>
<td>60.00</td>
<td>38282.70</td>
</tr>
<tr>
<td>174</td>
<td>58</td>
<td>12</td>
<td>99</td>
<td>0</td>
<td>966.67</td>
<td>39249.37</td>
</tr>
<tr>
<td>173</td>
<td>5</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>0.50</td>
<td>39249.87</td>
</tr>
<tr>
<td>172</td>
<td>45</td>
<td>9</td>
<td>101</td>
<td>0</td>
<td>750.00</td>
<td>39999.87</td>
</tr>
<tr>
<td>171</td>
<td>5</td>
<td>1</td>
<td>102</td>
<td>0</td>
<td>0.50</td>
<td>40000.37</td>
</tr>
<tr>
<td>170</td>
<td>150</td>
<td>30</td>
<td>103</td>
<td>0</td>
<td>2500.00</td>
<td>42500.37</td>
</tr>
<tr>
<td>169</td>
<td>20</td>
<td>4</td>
<td>104</td>
<td>0</td>
<td>2.00</td>
<td>42502.37</td>
</tr>
<tr>
<td>168</td>
<td>57</td>
<td>12</td>
<td>105</td>
<td>0</td>
<td>950.00</td>
<td>43452.37</td>
</tr>
<tr>
<td>167</td>
<td>8</td>
<td>2</td>
<td>106</td>
<td>0</td>
<td>0.80</td>
<td>43453.17</td>
</tr>
<tr>
<td>166</td>
<td>30</td>
<td>6</td>
<td>107</td>
<td>0</td>
<td>500.00</td>
<td>43953.17</td>
</tr>
<tr>
<td>165</td>
<td>5</td>
<td>1</td>
<td>108</td>
<td>0</td>
<td>0.50</td>
<td>43953.67</td>
</tr>
<tr>
<td>164</td>
<td>60</td>
<td>12</td>
<td>109</td>
<td>0</td>
<td>1000.00</td>
<td>44953.67</td>
</tr>
<tr>
<td>163</td>
<td>150</td>
<td>30</td>
<td>110</td>
<td>0</td>
<td>15.00</td>
<td>44968.67</td>
</tr>
<tr>
<td>162</td>
<td>4</td>
<td>1</td>
<td>111</td>
<td>0</td>
<td>0.40</td>
<td>44969.07</td>
</tr>
<tr>
<td>161</td>
<td>35</td>
<td>7</td>
<td>112</td>
<td>0</td>
<td>583.33</td>
<td>45552.40</td>
</tr>
<tr>
<td>160</td>
<td>25</td>
<td>5</td>
<td>113</td>
<td>0</td>
<td>2.50</td>
<td>45554.90</td>
</tr>
<tr>
<td>159</td>
<td>48</td>
<td>10</td>
<td>114</td>
<td>0</td>
<td>800.00</td>
<td>46354.90</td>
</tr>
<tr>
<td>158</td>
<td>38</td>
<td>8</td>
<td>115</td>
<td>0</td>
<td>3.80</td>
<td>46358.70</td>
</tr>
<tr>
<td>157</td>
<td>100</td>
<td>20</td>
<td>116</td>
<td>0</td>
<td>1886.67</td>
<td>47245.37</td>
</tr>
<tr>
<td>156</td>
<td>45</td>
<td>10</td>
<td>117</td>
<td>0</td>
<td>4.80</td>
<td>48030.17</td>
</tr>
<tr>
<td>155</td>
<td>100</td>
<td>20</td>
<td>118</td>
<td>0</td>
<td>1666.67</td>
<td>49996.83</td>
</tr>
<tr>
<td>154</td>
<td>15</td>
<td>3</td>
<td>119</td>
<td>0</td>
<td>1.50</td>
<td>49686.33</td>
</tr>
<tr>
<td>153</td>
<td>28</td>
<td>6</td>
<td>120</td>
<td>0</td>
<td>466.67</td>
<td>50165.00</td>
</tr>
<tr>
<td>152</td>
<td>15</td>
<td>3</td>
<td>121</td>
<td>1</td>
<td>1.50</td>
<td>50166.50</td>
</tr>
<tr>
<td>151</td>
<td>60</td>
<td>10</td>
<td>122</td>
<td>0</td>
<td>833.33</td>
<td>50999.83</td>
</tr>
<tr>
<td>150</td>
<td>15</td>
<td>3</td>
<td>123</td>
<td>0</td>
<td>1.50</td>
<td>51001.33</td>
</tr>
<tr>
<td>149</td>
<td>40</td>
<td>8</td>
<td>124</td>
<td>0</td>
<td>666.67</td>
<td>51668.00</td>
</tr>
<tr>
<td>148</td>
<td>8</td>
<td>2</td>
<td>125</td>
<td>0</td>
<td>0.80</td>
<td>51668.80</td>
</tr>
<tr>
<td>147</td>
<td>58</td>
<td>12</td>
<td>126</td>
<td>0</td>
<td>966.67</td>
<td>52635.47</td>
</tr>
<tr>
<td>146</td>
<td>10</td>
<td>2</td>
<td>127</td>
<td>0</td>
<td>1.00</td>
<td>52636.47</td>
</tr>
<tr>
<td>145</td>
<td>20</td>
<td>4</td>
<td>128</td>
<td>0</td>
<td>333.33</td>
<td>52969.80</td>
</tr>
<tr>
<td>144</td>
<td>15</td>
<td>3</td>
<td>129</td>
<td>0</td>
<td>1.50</td>
<td>52971.30</td>
</tr>
<tr>
<td>143</td>
<td>15</td>
<td>3</td>
<td>130</td>
<td>0</td>
<td>250.00</td>
<td>53221.30</td>
</tr>
<tr>
<td>142</td>
<td>55</td>
<td>11</td>
<td>131</td>
<td>0</td>
<td>5.50</td>
<td>53226.80</td>
</tr>
<tr>
<td>141</td>
<td>78</td>
<td>18</td>
<td>132</td>
<td>0</td>
<td>1300.00</td>
<td>54526.80</td>
</tr>
<tr>
<td>140</td>
<td>28</td>
<td>6</td>
<td>133</td>
<td>0</td>
<td>2.80</td>
<td>54529.60</td>
</tr>
<tr>
<td>139</td>
<td>30</td>
<td>6</td>
<td>134</td>
<td>0</td>
<td>500.00</td>
<td>55029.60</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>138</td>
<td>18</td>
<td>4</td>
<td>135</td>
<td>0</td>
<td>1.80</td>
<td>55031.40</td>
</tr>
<tr>
<td>137</td>
<td>280</td>
<td>56</td>
<td>138</td>
<td>0</td>
<td>4696.67</td>
<td>59988.07</td>
</tr>
<tr>
<td>136</td>
<td>6</td>
<td>2</td>
<td>137</td>
<td>0</td>
<td>0.60</td>
<td>59666.67</td>
</tr>
<tr>
<td>135</td>
<td>125</td>
<td>25</td>
<td>138</td>
<td>0</td>
<td>2083.33</td>
<td>61782.00</td>
</tr>
<tr>
<td>134</td>
<td>50</td>
<td>10</td>
<td>139</td>
<td>0</td>
<td>5.00</td>
<td>61787.00</td>
</tr>
<tr>
<td>133</td>
<td>50</td>
<td>10</td>
<td>140</td>
<td>0</td>
<td>833.33</td>
<td>62620.33</td>
</tr>
<tr>
<td>132</td>
<td>50</td>
<td>10</td>
<td>141</td>
<td>0</td>
<td>5.00</td>
<td>62625.33</td>
</tr>
<tr>
<td>131</td>
<td>20</td>
<td>4</td>
<td>142</td>
<td>0</td>
<td>333.33</td>
<td>62958.67</td>
</tr>
<tr>
<td>130</td>
<td>40</td>
<td>8</td>
<td>143</td>
<td>0</td>
<td>4.00</td>
<td>62962.67</td>
</tr>
<tr>
<td>129</td>
<td>58</td>
<td>12</td>
<td>144</td>
<td>0</td>
<td>986.67</td>
<td>63929.33</td>
</tr>
<tr>
<td>128</td>
<td>12</td>
<td>3</td>
<td>145</td>
<td>0</td>
<td>1.20</td>
<td>63930.53</td>
</tr>
<tr>
<td>127</td>
<td>44</td>
<td>9</td>
<td>146</td>
<td>0</td>
<td>733.33</td>
<td>64663.87</td>
</tr>
<tr>
<td>126</td>
<td>15</td>
<td>3</td>
<td>147</td>
<td>0</td>
<td>1.50</td>
<td>64665.37</td>
</tr>
<tr>
<td>125</td>
<td>78</td>
<td>16</td>
<td>148</td>
<td>0</td>
<td>1300.00</td>
<td>65965.37</td>
</tr>
<tr>
<td>124</td>
<td>10</td>
<td>2</td>
<td>149</td>
<td>0</td>
<td>1.00</td>
<td>65966.37</td>
</tr>
<tr>
<td>123</td>
<td>40</td>
<td>8</td>
<td>150</td>
<td>1</td>
<td>666.67</td>
<td>66633.03</td>
</tr>
<tr>
<td>122</td>
<td>800</td>
<td>160</td>
<td>151</td>
<td>0</td>
<td>80.00</td>
<td>67713.03</td>
</tr>
<tr>
<td>121</td>
<td>80</td>
<td>12</td>
<td>152</td>
<td>0</td>
<td>6.00</td>
<td>67719.03</td>
</tr>
<tr>
<td>120</td>
<td>200</td>
<td>40</td>
<td>153</td>
<td>0</td>
<td>3333.33</td>
<td>70652.37</td>
</tr>
<tr>
<td>119</td>
<td>80</td>
<td>16</td>
<td>154</td>
<td>0</td>
<td>8.00</td>
<td>70660.37</td>
</tr>
<tr>
<td>118</td>
<td>45</td>
<td>9</td>
<td>155</td>
<td>0</td>
<td>750.00</td>
<td>70810.37</td>
</tr>
<tr>
<td>117</td>
<td>15</td>
<td>3</td>
<td>156</td>
<td>0</td>
<td>1.50</td>
<td>70811.87</td>
</tr>
<tr>
<td>116</td>
<td>75</td>
<td>16</td>
<td>157</td>
<td>0</td>
<td>1250.00</td>
<td>72061.87</td>
</tr>
<tr>
<td>115</td>
<td>15</td>
<td>3</td>
<td>158</td>
<td>0</td>
<td>1.50</td>
<td>72063.37</td>
</tr>
<tr>
<td>114</td>
<td>100</td>
<td>20</td>
<td>159</td>
<td>0</td>
<td>1666.67</td>
<td>73730.03</td>
</tr>
<tr>
<td>113</td>
<td>750</td>
<td>160</td>
<td>160</td>
<td>1</td>
<td>75.00</td>
<td>73805.03</td>
</tr>
<tr>
<td>112</td>
<td>70</td>
<td>14</td>
<td>161</td>
<td>0</td>
<td>1186.67</td>
<td>74971.70</td>
</tr>
<tr>
<td>111</td>
<td>80</td>
<td>16</td>
<td>162</td>
<td>0</td>
<td>8.00</td>
<td>74979.70</td>
</tr>
<tr>
<td>110</td>
<td>20</td>
<td>4</td>
<td>163</td>
<td>0</td>
<td>333.33</td>
<td>75313.03</td>
</tr>
<tr>
<td>109</td>
<td>35</td>
<td>7</td>
<td>164</td>
<td>0</td>
<td>3.50</td>
<td>75316.53</td>
</tr>
<tr>
<td>108</td>
<td>80</td>
<td>16</td>
<td>165</td>
<td>0</td>
<td>1333.33</td>
<td>76849.87</td>
</tr>
<tr>
<td>107</td>
<td>30</td>
<td>6</td>
<td>166</td>
<td>0</td>
<td>3.00</td>
<td>76852.87</td>
</tr>
<tr>
<td>106</td>
<td>30</td>
<td>6</td>
<td>167</td>
<td>0</td>
<td>500.00</td>
<td>77152.87</td>
</tr>
<tr>
<td>105</td>
<td>30</td>
<td>6</td>
<td>168</td>
<td>0</td>
<td>3.00</td>
<td>77155.87</td>
</tr>
<tr>
<td>104</td>
<td>15</td>
<td>3</td>
<td>169</td>
<td>0</td>
<td>250.00</td>
<td>77405.87</td>
</tr>
<tr>
<td>103</td>
<td>70</td>
<td>14</td>
<td>170</td>
<td>0</td>
<td>7.00</td>
<td>77412.87</td>
</tr>
<tr>
<td>102</td>
<td>38</td>
<td>8</td>
<td>171</td>
<td>0</td>
<td>633.33</td>
<td>78046.20</td>
</tr>
<tr>
<td>101</td>
<td>60</td>
<td>12</td>
<td>172</td>
<td>0</td>
<td>6.00</td>
<td>78052.20</td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>15</td>
<td>173</td>
<td>0</td>
<td>1250.00</td>
<td>79302.20</td>
</tr>
<tr>
<td>99</td>
<td>68</td>
<td>14</td>
<td>174</td>
<td>0</td>
<td>6.80</td>
<td>79309.00</td>
</tr>
<tr>
<td>98</td>
<td>30</td>
<td>6</td>
<td>175</td>
<td>0</td>
<td>500.00</td>
<td>79609.00</td>
</tr>
<tr>
<td>97</td>
<td>3</td>
<td>1</td>
<td>176</td>
<td>0</td>
<td>0.30</td>
<td>79609.30</td>
</tr>
<tr>
<td>96</td>
<td>605</td>
<td>121</td>
<td>177</td>
<td>0</td>
<td>10083.33</td>
<td>89892.63</td>
</tr>
<tr>
<td>95</td>
<td>15</td>
<td>3</td>
<td>178</td>
<td>0</td>
<td>1.50</td>
<td>89894.13</td>
</tr>
<tr>
<td>94</td>
<td>31</td>
<td>7</td>
<td>179</td>
<td>0</td>
<td>518.67</td>
<td>90410.80</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>83</td>
<td>4</td>
<td>1</td>
<td>180</td>
<td>0</td>
<td>0.40</td>
<td>90411.20</td>
</tr>
<tr>
<td>92</td>
<td>5</td>
<td>1</td>
<td>181</td>
<td>0</td>
<td>10.00</td>
<td>91411.20</td>
</tr>
<tr>
<td>91</td>
<td>100</td>
<td>20</td>
<td>182</td>
<td>0</td>
<td>1533.33</td>
<td>92954.53</td>
</tr>
<tr>
<td>90</td>
<td>2</td>
<td>19</td>
<td>183</td>
<td>0</td>
<td>3.30</td>
<td>92957.83</td>
</tr>
<tr>
<td>88</td>
<td>140</td>
<td>28</td>
<td>186</td>
<td>0</td>
<td>2333.33</td>
<td>95288.17</td>
</tr>
<tr>
<td>87</td>
<td>32</td>
<td>7</td>
<td>188</td>
<td>0</td>
<td>3.50</td>
<td>95291.67</td>
</tr>
<tr>
<td>86</td>
<td>50</td>
<td>10</td>
<td>187</td>
<td>0</td>
<td>833.33</td>
<td>96125.00</td>
</tr>
<tr>
<td>85</td>
<td>5</td>
<td>1</td>
<td>188</td>
<td>0</td>
<td>0.50</td>
<td>96125.50</td>
</tr>
<tr>
<td>84</td>
<td>45</td>
<td>6</td>
<td>189</td>
<td>0</td>
<td>750.00</td>
<td>96875.50</td>
</tr>
<tr>
<td>83</td>
<td>5</td>
<td>1</td>
<td>190</td>
<td>0</td>
<td>0.50</td>
<td>96876.00</td>
</tr>
<tr>
<td>82</td>
<td>100</td>
<td>20</td>
<td>191</td>
<td>0</td>
<td>1666.67</td>
<td>98542.67</td>
</tr>
<tr>
<td>81</td>
<td>5</td>
<td>1</td>
<td>192</td>
<td>0</td>
<td>0.50</td>
<td>98543.17</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
<td>18</td>
<td>193</td>
<td>0</td>
<td>1500.00</td>
<td>100043.17</td>
</tr>
<tr>
<td>79</td>
<td>5</td>
<td>1</td>
<td>194</td>
<td>0</td>
<td>0.50</td>
<td>100043.67</td>
</tr>
<tr>
<td>78</td>
<td>193</td>
<td>39</td>
<td>195</td>
<td>0</td>
<td>3216.67</td>
<td>103260.33</td>
</tr>
<tr>
<td>77</td>
<td>2</td>
<td>1</td>
<td>196</td>
<td>0</td>
<td>0.20</td>
<td>103260.53</td>
</tr>
<tr>
<td>76</td>
<td>48</td>
<td>10</td>
<td>197</td>
<td>0</td>
<td>800.00</td>
<td>104060.83</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
<td>1</td>
<td>198</td>
<td>0</td>
<td>0.20</td>
<td>104080.73</td>
</tr>
<tr>
<td>74</td>
<td>360</td>
<td>72</td>
<td>199</td>
<td>0</td>
<td>8000.00</td>
<td>110060.73</td>
</tr>
<tr>
<td>73</td>
<td>30</td>
<td>8</td>
<td>200</td>
<td>0</td>
<td>3.00</td>
<td>110063.73</td>
</tr>
<tr>
<td>72</td>
<td>63</td>
<td>13</td>
<td>201</td>
<td>0</td>
<td>1050.00</td>
<td>111113.73</td>
</tr>
<tr>
<td>71</td>
<td>12</td>
<td>3</td>
<td>202</td>
<td>0</td>
<td>1.20</td>
<td>111114.93</td>
</tr>
<tr>
<td>70</td>
<td>111</td>
<td>23</td>
<td>203</td>
<td>0</td>
<td>1850.00</td>
<td>112964.93</td>
</tr>
<tr>
<td>69</td>
<td>4</td>
<td>1</td>
<td>204</td>
<td>0</td>
<td>0.40</td>
<td>112965.33</td>
</tr>
<tr>
<td>68</td>
<td>122</td>
<td>25</td>
<td>205</td>
<td>0</td>
<td>2033.33</td>
<td>114998.67</td>
</tr>
<tr>
<td>67</td>
<td>3</td>
<td>1</td>
<td>206</td>
<td>0</td>
<td>0.30</td>
<td>114999.07</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
<td>17</td>
<td>207</td>
<td>0</td>
<td>1416.67</td>
<td>116415.63</td>
</tr>
<tr>
<td>65</td>
<td>5</td>
<td>1</td>
<td>208</td>
<td>0</td>
<td>0.50</td>
<td>116416.13</td>
</tr>
<tr>
<td>64</td>
<td>92</td>
<td>19</td>
<td>209</td>
<td>0</td>
<td>1533.33</td>
<td>117949.47</td>
</tr>
<tr>
<td>63</td>
<td>26</td>
<td>6</td>
<td>210</td>
<td>0</td>
<td>2.80</td>
<td>117952.27</td>
</tr>
<tr>
<td>62</td>
<td>210</td>
<td>42</td>
<td>211</td>
<td>0</td>
<td>3600.00</td>
<td>121452.27</td>
</tr>
<tr>
<td>61</td>
<td>10</td>
<td>2</td>
<td>212</td>
<td>0</td>
<td>1.00</td>
<td>121453.27</td>
</tr>
<tr>
<td>60</td>
<td>105</td>
<td>21</td>
<td>213</td>
<td>0</td>
<td>1750.00</td>
<td>123203.27</td>
</tr>
<tr>
<td>59</td>
<td>40</td>
<td>6</td>
<td>214</td>
<td>0</td>
<td>4.00</td>
<td>123207.27</td>
</tr>
<tr>
<td>58</td>
<td>10</td>
<td>2</td>
<td>215</td>
<td>0</td>
<td>166.67</td>
<td>123373.93</td>
</tr>
<tr>
<td>57</td>
<td>55</td>
<td>11</td>
<td>216</td>
<td>0</td>
<td>5.50</td>
<td>123379.43</td>
</tr>
<tr>
<td>56</td>
<td>120</td>
<td>24</td>
<td>217</td>
<td>0</td>
<td>2000.00</td>
<td>125379.43</td>
</tr>
<tr>
<td>55</td>
<td>10</td>
<td>2</td>
<td>218</td>
<td>0</td>
<td>1.00</td>
<td>125380.43</td>
</tr>
<tr>
<td>54</td>
<td>15</td>
<td>3</td>
<td>219</td>
<td>0</td>
<td>250.00</td>
<td>125630.43</td>
</tr>
<tr>
<td>53</td>
<td>35</td>
<td>7</td>
<td>220</td>
<td>1</td>
<td>3.50</td>
<td>125633.93</td>
</tr>
<tr>
<td>52</td>
<td>115</td>
<td>23</td>
<td></td>
<td>0</td>
<td>1916.67</td>
<td>127550.60</td>
</tr>
<tr>
<td>51</td>
<td>20</td>
<td>4</td>
<td></td>
<td>0</td>
<td>2.0</td>
<td>127552.60</td>
</tr>
<tr>
<td>50</td>
<td>81</td>
<td>17</td>
<td></td>
<td>0</td>
<td>1350.00</td>
<td>128902.60</td>
</tr>
<tr>
<td>49</td>
<td>2</td>
<td>1</td>
<td></td>
<td>0</td>
<td>0.20</td>
<td>128902.80</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>48</td>
<td>184</td>
<td>37</td>
<td></td>
<td></td>
<td>3066.87</td>
<td>131969.47</td>
</tr>
<tr>
<td>47</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>0.30</td>
<td>131968.77</td>
</tr>
<tr>
<td>46</td>
<td>90</td>
<td>18</td>
<td></td>
<td></td>
<td>1500.00</td>
<td>133469.77</td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>0.50</td>
<td>133470.27</td>
</tr>
<tr>
<td>44</td>
<td>35</td>
<td>7</td>
<td></td>
<td></td>
<td>583.33</td>
<td>134053.60</td>
</tr>
<tr>
<td>43</td>
<td>60</td>
<td>12</td>
<td></td>
<td></td>
<td>6.00</td>
<td>134059.60</td>
</tr>
<tr>
<td>42</td>
<td>65</td>
<td>13</td>
<td></td>
<td></td>
<td>1083.33</td>
<td>135142.93</td>
</tr>
<tr>
<td>41</td>
<td>30</td>
<td>8</td>
<td></td>
<td></td>
<td>3.00</td>
<td>135145.93</td>
</tr>
<tr>
<td>40</td>
<td>22</td>
<td>5</td>
<td></td>
<td></td>
<td>366.67</td>
<td>135512.60</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>0.30</td>
<td>135512.90</td>
</tr>
<tr>
<td>38</td>
<td>23</td>
<td>5</td>
<td></td>
<td></td>
<td>383.33</td>
<td>135896.23</td>
</tr>
<tr>
<td>37</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td>1.20</td>
<td>135897.43</td>
</tr>
<tr>
<td>36</td>
<td>38</td>
<td>8</td>
<td></td>
<td></td>
<td>633.33</td>
<td>136630.77</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>0.40</td>
<td>136631.17</td>
</tr>
<tr>
<td>34</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>116.67</td>
<td>136647.63</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>0.30</td>
<td>136648.13</td>
</tr>
<tr>
<td>32</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td>200.00</td>
<td>136848.13</td>
</tr>
<tr>
<td>31</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td>0.60</td>
<td>136848.73</td>
</tr>
<tr>
<td>30</td>
<td>122</td>
<td>25</td>
<td></td>
<td></td>
<td>2033.33</td>
<td>138882.07</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>0.30</td>
<td>136682.37</td>
</tr>
<tr>
<td>28</td>
<td>32</td>
<td>7</td>
<td></td>
<td></td>
<td>533.33</td>
<td>139415.70</td>
</tr>
<tr>
<td>27</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
<td>0.70</td>
<td>139416.40</td>
</tr>
<tr>
<td>26</td>
<td>40</td>
<td>8</td>
<td></td>
<td></td>
<td>4.00</td>
<td>139420.40</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td>0.80</td>
<td>139421.20</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>83.33</td>
<td>139504.53</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td>0.80</td>
<td>139505.33</td>
</tr>
<tr>
<td>22</td>
<td>287</td>
<td>54</td>
<td></td>
<td></td>
<td>4450.00</td>
<td>143955.33</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>0.30</td>
<td>143955.63</td>
</tr>
<tr>
<td>20</td>
<td>195</td>
<td>39</td>
<td></td>
<td></td>
<td>3250.00</td>
<td>147205.63</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>0.50</td>
<td>147206.13</td>
</tr>
<tr>
<td>18</td>
<td>100</td>
<td>20</td>
<td></td>
<td></td>
<td>1866.67</td>
<td>148872.80</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>0.50</td>
<td>148873.30</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>4</td>
<td></td>
<td></td>
<td>283.33</td>
<td>148156.63</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>0.30</td>
<td>149156.93</td>
</tr>
<tr>
<td>14</td>
<td>122</td>
<td>25</td>
<td></td>
<td></td>
<td>2033.33</td>
<td>151190.27</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>0.30</td>
<td>151190.57</td>
</tr>
<tr>
<td>12</td>
<td>175</td>
<td>35</td>
<td></td>
<td></td>
<td>2916.67</td>
<td>154107.23</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>0.60</td>
<td>154107.73</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>28</td>
<td></td>
<td></td>
<td>2333.33</td>
<td>156441.07</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>0.60</td>
<td>156441.57</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>4</td>
<td></td>
<td></td>
<td>333.33</td>
<td>156774.90</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td>0.50</td>
<td>156775.40</td>
</tr>
<tr>
<td>6</td>
<td>115</td>
<td>23</td>
<td></td>
<td></td>
<td>1916.67</td>
<td>158692.07</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td>1.00</td>
<td>159693.07</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>18</td>
<td></td>
<td></td>
<td>1333.33</td>
<td>160026.40</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3</td>
<td></td>
<td></td>
<td>1.50</td>
<td>160027.90</td>
</tr>
<tr>
<td>2</td>
<td>390</td>
<td>78</td>
<td></td>
<td></td>
<td>6500.00</td>
<td>166527.90</td>
</tr>
<tr>
<td>1</td>
<td>260</td>
<td>58</td>
<td></td>
<td></td>
<td>29.00</td>
<td>166556.90</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>143</td>
<td>124</td>
<td>266</td>
<td>1</td>
<td>2</td>
<td>134.00</td>
<td>134.00</td>
</tr>
<tr>
<td>147</td>
<td>124</td>
<td>22</td>
<td>1</td>
<td>2</td>
<td>14.90</td>
<td>145.90</td>
</tr>
<tr>
<td>146</td>
<td>151</td>
<td>31</td>
<td>3</td>
<td>10</td>
<td>2516.67</td>
<td>2692.57</td>
</tr>
<tr>
<td>145</td>
<td>27</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2.76</td>
<td>2665.27</td>
</tr>
<tr>
<td>144</td>
<td>20</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2.00</td>
<td>2667.27</td>
</tr>
<tr>
<td>143</td>
<td>165</td>
<td>33</td>
<td>6</td>
<td>8</td>
<td>2750.00</td>
<td>5417.27</td>
</tr>
<tr>
<td>142</td>
<td>21</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td>2.10</td>
<td>5419.37</td>
</tr>
<tr>
<td>141</td>
<td>180</td>
<td>30</td>
<td>8</td>
<td>2</td>
<td>2500.00</td>
<td>7919.37</td>
</tr>
<tr>
<td>140</td>
<td>148</td>
<td>30</td>
<td>10</td>
<td>4</td>
<td>2466.67</td>
<td>10396.93</td>
</tr>
<tr>
<td>138</td>
<td>28</td>
<td>6</td>
<td>11</td>
<td>2</td>
<td>2.60</td>
<td>10399.63</td>
</tr>
<tr>
<td>137</td>
<td>69</td>
<td>14</td>
<td>12</td>
<td>4</td>
<td>1150.00</td>
<td>11549.63</td>
</tr>
<tr>
<td>136</td>
<td>26</td>
<td>6</td>
<td>13</td>
<td>4</td>
<td>2.80</td>
<td>11562.43</td>
</tr>
<tr>
<td>135</td>
<td>44</td>
<td>86</td>
<td>14</td>
<td>5</td>
<td>7350.00</td>
<td>18902.43</td>
</tr>
<tr>
<td>134</td>
<td>30</td>
<td>9</td>
<td>15</td>
<td>1</td>
<td>3.00</td>
<td>18905.43</td>
</tr>
<tr>
<td>133</td>
<td>112</td>
<td>23</td>
<td>16</td>
<td>4</td>
<td>1868.67</td>
<td>20772.10</td>
</tr>
<tr>
<td>132</td>
<td>22</td>
<td>5</td>
<td>17</td>
<td>0</td>
<td>2.20</td>
<td>20774.30</td>
</tr>
<tr>
<td>131</td>
<td>132</td>
<td>27</td>
<td>18</td>
<td>0</td>
<td>2200.00</td>
<td>22974.30</td>
</tr>
<tr>
<td>130</td>
<td>11</td>
<td>3</td>
<td>19</td>
<td>1</td>
<td>1.60</td>
<td>22975.40</td>
</tr>
<tr>
<td>129</td>
<td>50</td>
<td>10</td>
<td>12</td>
<td>2</td>
<td>833.33</td>
<td>23808.73</td>
</tr>
<tr>
<td>128</td>
<td>20</td>
<td>4</td>
<td>21</td>
<td>0</td>
<td>2.00</td>
<td>23810.73</td>
</tr>
<tr>
<td>127</td>
<td>116</td>
<td>24</td>
<td>22</td>
<td>2</td>
<td>1933.33</td>
<td>25744.07</td>
</tr>
<tr>
<td>126</td>
<td>11</td>
<td>3</td>
<td>23</td>
<td>3</td>
<td>1.10</td>
<td>25745.17</td>
</tr>
<tr>
<td>125</td>
<td>34</td>
<td>7</td>
<td>24</td>
<td>3</td>
<td>566.67</td>
<td>28311.83</td>
</tr>
<tr>
<td>124</td>
<td>12</td>
<td>3</td>
<td>25</td>
<td>1</td>
<td>1.20</td>
<td>28313.03</td>
</tr>
<tr>
<td>123</td>
<td>146</td>
<td>29</td>
<td>28</td>
<td>1</td>
<td>2418.67</td>
<td>28129.70</td>
</tr>
<tr>
<td>122</td>
<td>30</td>
<td>6</td>
<td>27</td>
<td>1</td>
<td>3.00</td>
<td>28132.70</td>
</tr>
<tr>
<td>121</td>
<td>148</td>
<td>30</td>
<td>28</td>
<td>0</td>
<td>2468.67</td>
<td>31199.37</td>
</tr>
<tr>
<td>120</td>
<td>62</td>
<td>13</td>
<td>26</td>
<td>3</td>
<td>8.20</td>
<td>31205.57</td>
</tr>
<tr>
<td>119</td>
<td>110</td>
<td>22</td>
<td>30</td>
<td>4</td>
<td>1833.33</td>
<td>33038.90</td>
</tr>
<tr>
<td>118</td>
<td>21</td>
<td>5</td>
<td>31</td>
<td>1</td>
<td>2.10</td>
<td>33041.00</td>
</tr>
<tr>
<td>117</td>
<td>62</td>
<td>13</td>
<td>32</td>
<td>2</td>
<td>1033.33</td>
<td>34074.33</td>
</tr>
<tr>
<td>116</td>
<td>10</td>
<td>2</td>
<td>33</td>
<td>2</td>
<td>1.00</td>
<td>34075.33</td>
</tr>
<tr>
<td>115</td>
<td>79</td>
<td>16</td>
<td>34</td>
<td>0</td>
<td>1318.67</td>
<td>35392.00</td>
</tr>
<tr>
<td>114</td>
<td>17</td>
<td>4</td>
<td>36</td>
<td>1</td>
<td>1.70</td>
<td>35393.70</td>
</tr>
<tr>
<td>113</td>
<td>28</td>
<td>6</td>
<td>36</td>
<td>1</td>
<td>466.67</td>
<td>35860.37</td>
</tr>
<tr>
<td>112</td>
<td>15</td>
<td>3</td>
<td>37</td>
<td>1</td>
<td>1.50</td>
<td>35861.87</td>
</tr>
<tr>
<td>111</td>
<td>70</td>
<td>14</td>
<td>38</td>
<td>2</td>
<td>1186.67</td>
<td>37028.53</td>
</tr>
<tr>
<td>110</td>
<td>40</td>
<td>8</td>
<td>39</td>
<td>1</td>
<td>4.00</td>
<td>37032.53</td>
</tr>
<tr>
<td>109</td>
<td>66</td>
<td>19</td>
<td>40</td>
<td>0</td>
<td>1583.33</td>
<td>38615.87</td>
</tr>
<tr>
<td>108</td>
<td>23</td>
<td>5</td>
<td>41</td>
<td>0</td>
<td>2.30</td>
<td>38518.17</td>
</tr>
<tr>
<td>107</td>
<td>43</td>
<td>9</td>
<td>42</td>
<td>1</td>
<td>716.67</td>
<td>39334.83</td>
</tr>
<tr>
<td>106</td>
<td>7</td>
<td>2</td>
<td>43</td>
<td>0</td>
<td>0.70</td>
<td>39335.53</td>
</tr>
<tr>
<td>105</td>
<td>195</td>
<td>38</td>
<td>44</td>
<td>0</td>
<td>3250.00</td>
<td>42585.53</td>
</tr>
<tr>
<td>104</td>
<td>9</td>
<td>2</td>
<td>45</td>
<td>0</td>
<td>0.90</td>
<td>42586.43</td>
</tr>
<tr>
<td>103</td>
<td>6</td>
<td>2</td>
<td>46</td>
<td>1</td>
<td>100.00</td>
<td>42686.43</td>
</tr>
<tr>
<td>102</td>
<td>3</td>
<td>1</td>
<td>47</td>
<td>0</td>
<td>0.30</td>
<td>42686.73</td>
</tr>
<tr>
<td>101</td>
<td>290</td>
<td>58</td>
<td>48</td>
<td>0</td>
<td>4833.33</td>
<td>47620.07</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>103</td>
<td>178</td>
<td>36</td>
<td>48</td>
<td>0</td>
<td>17.80</td>
<td>47537.87</td>
</tr>
<tr>
<td>96</td>
<td>32</td>
<td>7</td>
<td>50</td>
<td>1</td>
<td>533.33</td>
<td>48071.20</td>
</tr>
<tr>
<td>96</td>
<td>60</td>
<td>12</td>
<td>51</td>
<td>1</td>
<td>6.00</td>
<td>48077.20</td>
</tr>
<tr>
<td>97</td>
<td>10</td>
<td>2</td>
<td>52</td>
<td>1</td>
<td>166.67</td>
<td>48243.87</td>
</tr>
<tr>
<td>96</td>
<td>160</td>
<td>32</td>
<td>53</td>
<td>0</td>
<td>16.00</td>
<td>48259.87</td>
</tr>
<tr>
<td>95</td>
<td>165</td>
<td>33</td>
<td>54</td>
<td>0</td>
<td>2750.00</td>
<td>51009.87</td>
</tr>
<tr>
<td>94</td>
<td>25</td>
<td>6</td>
<td>55</td>
<td>0</td>
<td>2.00</td>
<td>51012.77</td>
</tr>
<tr>
<td>93</td>
<td>113</td>
<td>22</td>
<td>56</td>
<td>0</td>
<td>1883.33</td>
<td>52896.10</td>
</tr>
<tr>
<td>92</td>
<td>20</td>
<td>4</td>
<td>57</td>
<td>1</td>
<td>2.00</td>
<td>52898.10</td>
</tr>
<tr>
<td>91</td>
<td>15</td>
<td>3</td>
<td>58</td>
<td>1</td>
<td>250.00</td>
<td>53148.10</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>2</td>
<td>59</td>
<td>0</td>
<td>1.00</td>
<td>53149.10</td>
</tr>
<tr>
<td>88</td>
<td>2</td>
<td>1</td>
<td>60</td>
<td>0</td>
<td>33.33</td>
<td>53182.43</td>
</tr>
<tr>
<td>88</td>
<td>13</td>
<td>3</td>
<td>61</td>
<td>0</td>
<td>1.30</td>
<td>53183.73</td>
</tr>
<tr>
<td>87</td>
<td>67</td>
<td>14</td>
<td>62</td>
<td>0</td>
<td>1116.67</td>
<td>54300.40</td>
</tr>
<tr>
<td>86</td>
<td>100</td>
<td>20</td>
<td>63</td>
<td>0</td>
<td>10.00</td>
<td>54310.40</td>
</tr>
<tr>
<td>85</td>
<td>76</td>
<td>16</td>
<td>64</td>
<td>0</td>
<td>1266.67</td>
<td>55577.07</td>
</tr>
<tr>
<td>84</td>
<td>157</td>
<td>32</td>
<td>65</td>
<td>0</td>
<td>15.70</td>
<td>55592.77</td>
</tr>
<tr>
<td>83</td>
<td>50</td>
<td>10</td>
<td>66</td>
<td>0</td>
<td>833.33</td>
<td>56426.10</td>
</tr>
<tr>
<td>82</td>
<td>6</td>
<td>2</td>
<td>67</td>
<td>0</td>
<td>0.80</td>
<td>56426.70</td>
</tr>
<tr>
<td>81</td>
<td>5</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>83.33</td>
<td>56510.03</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
<td>12</td>
<td>69</td>
<td>0</td>
<td>6.00</td>
<td>56516.03</td>
</tr>
<tr>
<td>79</td>
<td>23</td>
<td>6</td>
<td>70</td>
<td>0</td>
<td>383.33</td>
<td>56699.37</td>
</tr>
<tr>
<td>78</td>
<td>52</td>
<td>11</td>
<td>71</td>
<td>0</td>
<td>5.20</td>
<td>56904.57</td>
</tr>
<tr>
<td>77</td>
<td>120</td>
<td>24</td>
<td>72</td>
<td>0</td>
<td>2000.00</td>
<td>56904.57</td>
</tr>
<tr>
<td>76</td>
<td>173</td>
<td>36</td>
<td>73</td>
<td>0</td>
<td>17.30</td>
<td>58921.87</td>
</tr>
<tr>
<td>75</td>
<td>57</td>
<td>12</td>
<td>74</td>
<td>0</td>
<td>950.00</td>
<td>58971.87</td>
</tr>
<tr>
<td>74</td>
<td>55</td>
<td>11</td>
<td>75</td>
<td>0</td>
<td>5.50</td>
<td>59877.37</td>
</tr>
<tr>
<td>73</td>
<td>186</td>
<td>37</td>
<td>76</td>
<td>0</td>
<td>3083.33</td>
<td>62960.70</td>
</tr>
<tr>
<td>72</td>
<td>13</td>
<td>3</td>
<td>77</td>
<td>0</td>
<td>1.30</td>
<td>62982.00</td>
</tr>
<tr>
<td>71</td>
<td>35</td>
<td>7</td>
<td>78</td>
<td>0</td>
<td>583.33</td>
<td>63546.33</td>
</tr>
<tr>
<td>70</td>
<td>227</td>
<td>46</td>
<td>79</td>
<td>0</td>
<td>22.70</td>
<td>65858.03</td>
</tr>
<tr>
<td>69</td>
<td>46</td>
<td>9</td>
<td>80</td>
<td>0</td>
<td>750.00</td>
<td>64318.03</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>1</td>
<td>81</td>
<td>0</td>
<td>0.10</td>
<td>64318.13</td>
</tr>
<tr>
<td>67</td>
<td>2</td>
<td>1</td>
<td>82</td>
<td>0</td>
<td>33.33</td>
<td>64351.47</td>
</tr>
<tr>
<td>66</td>
<td>35</td>
<td>7</td>
<td>83</td>
<td>1</td>
<td>3.50</td>
<td>64384.97</td>
</tr>
<tr>
<td>65</td>
<td>35</td>
<td>7</td>
<td>84</td>
<td>0</td>
<td>583.33</td>
<td>64938.90</td>
</tr>
<tr>
<td>64</td>
<td>25</td>
<td>6</td>
<td>85</td>
<td>0</td>
<td>2.50</td>
<td>64940.40</td>
</tr>
<tr>
<td>63</td>
<td>71</td>
<td>15</td>
<td>86</td>
<td>0</td>
<td>1183.33</td>
<td>66124.13</td>
</tr>
<tr>
<td>62</td>
<td>14</td>
<td>3</td>
<td>87</td>
<td>0</td>
<td>1.40</td>
<td>66125.53</td>
</tr>
<tr>
<td>61</td>
<td>210</td>
<td>42</td>
<td>88</td>
<td>0</td>
<td>3500.00</td>
<td>69625.53</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>2</td>
<td>89</td>
<td>1</td>
<td>0.80</td>
<td>69626.13</td>
</tr>
<tr>
<td>59</td>
<td>250</td>
<td>50</td>
<td>90</td>
<td>0</td>
<td>4166.67</td>
<td>73792.53</td>
</tr>
<tr>
<td>58</td>
<td>3</td>
<td>1</td>
<td>91</td>
<td>0</td>
<td>0.30</td>
<td>73793.10</td>
</tr>
<tr>
<td>57</td>
<td>126</td>
<td>26</td>
<td>92</td>
<td>0</td>
<td>2100.00</td>
<td>75893.10</td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>1</td>
<td>93</td>
<td>0</td>
<td>0.20</td>
<td>75893.30</td>
</tr>
<tr>
<td>55</td>
<td>122</td>
<td>25</td>
<td>94</td>
<td>0</td>
<td>2033.33</td>
<td>77926.63</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>1</td>
<td>95</td>
<td>0</td>
<td>0.20</td>
<td>77926.83</td>
</tr>
<tr>
<td>53</td>
<td>260</td>
<td>52</td>
<td>96</td>
<td>0</td>
<td>4333.33</td>
<td>82260.17</td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td>1</td>
<td>97</td>
<td>0</td>
<td>0.40</td>
<td>82260.57</td>
</tr>
<tr>
<td>Bed number</td>
<td>Thickness (cm)</td>
<td>Bin assignment</td>
<td>Bin number</td>
<td>No. of beds per bin</td>
<td>Indiv. Time (hrs)</td>
<td>Cum. Time (hrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>12</td>
<td>3</td>
<td>99</td>
<td>0</td>
<td>1.20</td>
</tr>
<tr>
<td>48</td>
<td>738</td>
<td>148</td>
<td>100</td>
<td>0</td>
<td>12286.67</td>
<td>86478.43</td>
</tr>
<tr>
<td>48</td>
<td>12</td>
<td>3</td>
<td>101</td>
<td>0</td>
<td>1.20</td>
<td>86478.43</td>
</tr>
<tr>
<td>47</td>
<td>68</td>
<td>14</td>
<td>102</td>
<td>0</td>
<td>1133.33</td>
<td>99879.68</td>
</tr>
<tr>
<td>46</td>
<td>10</td>
<td>2</td>
<td>103</td>
<td>0</td>
<td>1.00</td>
<td>99880.63</td>
</tr>
<tr>
<td>45</td>
<td>190</td>
<td>38</td>
<td>104</td>
<td>0</td>
<td>3168.67</td>
<td>103047.30</td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>1</td>
<td>105</td>
<td>0</td>
<td>0.30</td>
<td>103047.60</td>
</tr>
<tr>
<td>43</td>
<td>45</td>
<td>9</td>
<td>106</td>
<td>0</td>
<td>750.00</td>
<td>103797.60</td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>2</td>
<td>107</td>
<td>0</td>
<td>1.00</td>
<td>103798.60</td>
</tr>
<tr>
<td>41</td>
<td>412</td>
<td>83</td>
<td>108</td>
<td>0</td>
<td>6586.67</td>
<td>110865.27</td>
</tr>
<tr>
<td>40</td>
<td>7</td>
<td>2</td>
<td>109</td>
<td>0</td>
<td>0.70</td>
<td>110865.97</td>
</tr>
<tr>
<td>39</td>
<td>46</td>
<td>10</td>
<td>110</td>
<td>0</td>
<td>766.67</td>
<td>111432.63</td>
</tr>
<tr>
<td>38</td>
<td>5</td>
<td>1</td>
<td>111</td>
<td>0</td>
<td>0.50</td>
<td>111433.13</td>
</tr>
<tr>
<td>37</td>
<td>190</td>
<td>38</td>
<td>112</td>
<td>1</td>
<td>3168.67</td>
<td>114599.80</td>
</tr>
<tr>
<td>36</td>
<td>5</td>
<td>1</td>
<td>113</td>
<td>0</td>
<td>0.50</td>
<td>114600.30</td>
</tr>
<tr>
<td>35</td>
<td>57</td>
<td>12</td>
<td>114</td>
<td>0</td>
<td>950.00</td>
<td>115550.30</td>
</tr>
<tr>
<td>34</td>
<td>5</td>
<td>1</td>
<td>115</td>
<td>0</td>
<td>0.50</td>
<td>115550.80</td>
</tr>
<tr>
<td>33</td>
<td>77</td>
<td>16</td>
<td>116</td>
<td>0</td>
<td>1283.33</td>
<td>116834.13</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>1</td>
<td>117</td>
<td>0</td>
<td>0.20</td>
<td>116834.33</td>
</tr>
<tr>
<td>31</td>
<td>143</td>
<td>29</td>
<td>118</td>
<td>0</td>
<td>2383.33</td>
<td>119217.67</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>2</td>
<td>119</td>
<td>0</td>
<td>1.00</td>
<td>119218.67</td>
</tr>
<tr>
<td>29</td>
<td>112</td>
<td>23</td>
<td>120</td>
<td>0</td>
<td>1868.67</td>
<td>121085.33</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>1</td>
<td>121</td>
<td>0</td>
<td>0.40</td>
<td>121085.73</td>
</tr>
<tr>
<td>27</td>
<td>62</td>
<td>13</td>
<td>122</td>
<td>0</td>
<td>1033.33</td>
<td>122119.07</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>1</td>
<td>123</td>
<td>0</td>
<td>0.20</td>
<td>122119.27</td>
</tr>
<tr>
<td>25</td>
<td>144</td>
<td>28</td>
<td>124</td>
<td>0</td>
<td>2400.00</td>
<td>124519.27</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>1</td>
<td>125</td>
<td>0</td>
<td>0.40</td>
<td>124519.67</td>
</tr>
<tr>
<td>23</td>
<td>78</td>
<td>16</td>
<td>126</td>
<td>0</td>
<td>1300.00</td>
<td>125819.67</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>2</td>
<td>127</td>
<td>0</td>
<td>1.00</td>
<td>125820.67</td>
</tr>
<tr>
<td>21</td>
<td>48</td>
<td>10</td>
<td>128</td>
<td>0</td>
<td>816.67</td>
<td>126637.33</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>129</td>
<td>0</td>
<td>0.10</td>
<td>126637.43</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
<td>20</td>
<td>130</td>
<td>0</td>
<td>1668.67</td>
<td>128304.10</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>1</td>
<td>131</td>
<td>0</td>
<td>0.30</td>
<td>128304.40</td>
</tr>
<tr>
<td>17</td>
<td>32</td>
<td>7</td>
<td>132</td>
<td>0</td>
<td>533.33</td>
<td>128837.73</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>133</td>
<td>1</td>
<td>0.30</td>
<td>128838.03</td>
</tr>
<tr>
<td>15</td>
<td>147</td>
<td>30</td>
<td>134</td>
<td>0</td>
<td>2450.00</td>
<td>131288.03</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>1</td>
<td>135</td>
<td>0</td>
<td>0.20</td>
<td>131288.23</td>
</tr>
<tr>
<td>13</td>
<td>38</td>
<td>8</td>
<td>136</td>
<td>0</td>
<td>533.33</td>
<td>131921.57</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>137</td>
<td>0</td>
<td>0.20</td>
<td>131921.77</td>
</tr>
<tr>
<td>11</td>
<td>61</td>
<td>13</td>
<td>138</td>
<td>0</td>
<td>1016.67</td>
<td>132938.43</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>2</td>
<td>139</td>
<td>0</td>
<td>0.80</td>
<td>132939.23</td>
</tr>
<tr>
<td>9</td>
<td>668</td>
<td>112</td>
<td>140</td>
<td>0</td>
<td>9333.33</td>
<td>142272.57</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>141</td>
<td>0</td>
<td>0.30</td>
<td>142272.57</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>6</td>
<td>142</td>
<td>0</td>
<td>500.00</td>
<td>142772.87</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>143</td>
<td>0</td>
<td>0.20</td>
<td>142773.07</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>14</td>
<td>144</td>
<td>0</td>
<td>1133.33</td>
<td>143906.40</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>145</td>
<td>0</td>
<td>0.30</td>
<td>143906.70</td>
</tr>
<tr>
<td>3</td>
<td>282</td>
<td>57</td>
<td>146</td>
<td>0</td>
<td>4708.00</td>
<td>148805.70</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>147</td>
<td>0</td>
<td>0.20</td>
<td>148806.90</td>
</tr>
<tr>
<td>1</td>
<td>668</td>
<td>133</td>
<td>148</td>
<td>1</td>
<td>11033.33</td>
<td>169640.23</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>ind. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>41</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>683.33</td>
<td>683.33</td>
</tr>
<tr>
<td>115</td>
<td>44</td>
<td>8</td>
<td>2</td>
<td>13</td>
<td>4.40</td>
<td>695.37</td>
</tr>
<tr>
<td>114</td>
<td>93</td>
<td>19</td>
<td>3</td>
<td>13</td>
<td>1559.00</td>
<td>2237.73</td>
</tr>
<tr>
<td>113</td>
<td>1940</td>
<td>387</td>
<td>4</td>
<td>7</td>
<td>194.00</td>
<td>2431.73</td>
</tr>
<tr>
<td>112</td>
<td>32</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>533.33</td>
<td>2965.07</td>
</tr>
<tr>
<td>111</td>
<td>173</td>
<td>35</td>
<td>6</td>
<td>17</td>
<td>17.30</td>
<td>2982.37</td>
</tr>
<tr>
<td>110</td>
<td>77</td>
<td>16</td>
<td>7</td>
<td>8</td>
<td>1283.33</td>
<td>4265.70</td>
</tr>
<tr>
<td>109</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>1.30</td>
<td>4267.00</td>
</tr>
<tr>
<td>108</td>
<td>77</td>
<td>16</td>
<td>9</td>
<td>3</td>
<td>1283.33</td>
<td>5550.33</td>
</tr>
<tr>
<td>107</td>
<td>43</td>
<td>9</td>
<td>10</td>
<td>2</td>
<td>4.30</td>
<td>5554.63</td>
</tr>
<tr>
<td>106</td>
<td>204</td>
<td>41</td>
<td>11</td>
<td>1</td>
<td>5400.00</td>
<td>6954.63</td>
</tr>
<tr>
<td>105</td>
<td>34</td>
<td>7</td>
<td>12</td>
<td>0</td>
<td>3.40</td>
<td>8958.03</td>
</tr>
<tr>
<td>104</td>
<td>165</td>
<td>37</td>
<td>13</td>
<td>2</td>
<td>3083.33</td>
<td>12041.37</td>
</tr>
<tr>
<td>103</td>
<td>8</td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>0.80</td>
<td>12042.17</td>
</tr>
<tr>
<td>102</td>
<td>199</td>
<td>24</td>
<td>15</td>
<td>2</td>
<td>1983.33</td>
<td>14028.65</td>
</tr>
<tr>
<td>101</td>
<td>19</td>
<td>4</td>
<td>18</td>
<td>4</td>
<td>1.90</td>
<td>14027.40</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>5</td>
<td>17</td>
<td>0</td>
<td>416.67</td>
<td>14444.07</td>
</tr>
<tr>
<td>99</td>
<td>14</td>
<td>3</td>
<td>18</td>
<td>0</td>
<td>1.40</td>
<td>14445.47</td>
</tr>
<tr>
<td>98</td>
<td>22</td>
<td>5</td>
<td>19</td>
<td>2</td>
<td>356.67</td>
<td>14812.13</td>
</tr>
<tr>
<td>97</td>
<td>13</td>
<td>3</td>
<td>20</td>
<td>0</td>
<td>3.30</td>
<td>14813.43</td>
</tr>
<tr>
<td>96</td>
<td>10</td>
<td>2</td>
<td>21</td>
<td>0</td>
<td>266.67</td>
<td>14980.10</td>
</tr>
<tr>
<td>95</td>
<td>15</td>
<td>3</td>
<td>22</td>
<td>1</td>
<td>1.40</td>
<td>14981.60</td>
</tr>
<tr>
<td>94</td>
<td>244</td>
<td>49</td>
<td>23</td>
<td>1</td>
<td>4086.67</td>
<td>19048.27</td>
</tr>
<tr>
<td>93</td>
<td>8</td>
<td>2</td>
<td>24</td>
<td>1</td>
<td>0.80</td>
<td>19049.07</td>
</tr>
<tr>
<td>92</td>
<td>77</td>
<td>16</td>
<td>25</td>
<td>0</td>
<td>1283.33</td>
<td>20332.40</td>
</tr>
<tr>
<td>91</td>
<td>19</td>
<td>4</td>
<td>26</td>
<td>0</td>
<td>1.90</td>
<td>20334.30</td>
</tr>
<tr>
<td>90</td>
<td>19</td>
<td>4</td>
<td>27</td>
<td>1</td>
<td>316.67</td>
<td>20650.97</td>
</tr>
<tr>
<td>89</td>
<td>26</td>
<td>6</td>
<td>28</td>
<td>2</td>
<td>2.60</td>
<td>20653.57</td>
</tr>
<tr>
<td>88</td>
<td>30</td>
<td>6</td>
<td>29</td>
<td>1</td>
<td>3.00</td>
<td>20656.57</td>
</tr>
<tr>
<td>87</td>
<td>299</td>
<td>48</td>
<td>30</td>
<td>1</td>
<td>3983.33</td>
<td>24656.90</td>
</tr>
<tr>
<td>86</td>
<td>12</td>
<td>3</td>
<td>31</td>
<td>0</td>
<td>1.20</td>
<td>24654.10</td>
</tr>
<tr>
<td>85</td>
<td>247</td>
<td>60</td>
<td>32</td>
<td>1</td>
<td>4110.67</td>
<td>28757.77</td>
</tr>
<tr>
<td>84</td>
<td>13</td>
<td>3</td>
<td>33</td>
<td>0</td>
<td>1.30</td>
<td>28759.07</td>
</tr>
<tr>
<td>83</td>
<td>33</td>
<td>7</td>
<td>34</td>
<td>1</td>
<td>550.00</td>
<td>29309.07</td>
</tr>
<tr>
<td>82</td>
<td>26</td>
<td>6</td>
<td>35</td>
<td>2</td>
<td>2.60</td>
<td>29311.67</td>
</tr>
<tr>
<td>81</td>
<td>533</td>
<td>107</td>
<td>36</td>
<td>0</td>
<td>8863.33</td>
<td>38196.00</td>
</tr>
<tr>
<td>80</td>
<td>12</td>
<td>3</td>
<td>37</td>
<td>2</td>
<td>1.20</td>
<td>38194.20</td>
</tr>
<tr>
<td>79</td>
<td>143</td>
<td>29</td>
<td>38</td>
<td>1</td>
<td>2363.33</td>
<td>40975.53</td>
</tr>
<tr>
<td>78</td>
<td>12</td>
<td>3</td>
<td>39</td>
<td>0</td>
<td>1.20</td>
<td>40980.73</td>
</tr>
<tr>
<td>77</td>
<td>108</td>
<td>22</td>
<td>40</td>
<td>0</td>
<td>1800.00</td>
<td>42380.73</td>
</tr>
<tr>
<td>76</td>
<td>24</td>
<td>5</td>
<td>41</td>
<td>2</td>
<td>2.40</td>
<td>42383.13</td>
</tr>
<tr>
<td>75</td>
<td>352</td>
<td>71</td>
<td>42</td>
<td>6</td>
<td>8808.67</td>
<td>46245.80</td>
</tr>
<tr>
<td>74</td>
<td>21</td>
<td>5</td>
<td>43</td>
<td>1</td>
<td>2.10</td>
<td>48251.90</td>
</tr>
<tr>
<td>73</td>
<td>211</td>
<td>43</td>
<td>44</td>
<td>0</td>
<td>3518.67</td>
<td>51768.57</td>
</tr>
<tr>
<td>72</td>
<td>6</td>
<td>2</td>
<td>45</td>
<td>0</td>
<td>0.60</td>
<td>51779.17</td>
</tr>
<tr>
<td>71</td>
<td>158</td>
<td>32</td>
<td>46</td>
<td>2</td>
<td>2033.33</td>
<td>54402.50</td>
</tr>
<tr>
<td>70</td>
<td>6</td>
<td>2</td>
<td>47</td>
<td>0</td>
<td>0.60</td>
<td>54403.40</td>
</tr>
<tr>
<td>69</td>
<td>226</td>
<td>46</td>
<td>48</td>
<td>1</td>
<td>3766.67</td>
<td>58170.07</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>Ind. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>10</td>
<td>2</td>
<td>49</td>
<td>1</td>
<td>1.00</td>
<td>58171.07</td>
</tr>
<tr>
<td>67</td>
<td>11</td>
<td>3</td>
<td>50</td>
<td>1</td>
<td>183.33</td>
<td>58354.40</td>
</tr>
<tr>
<td>66</td>
<td>16</td>
<td>4</td>
<td>51</td>
<td>0</td>
<td>1.60</td>
<td>58356.00</td>
</tr>
<tr>
<td>65</td>
<td>158</td>
<td>34</td>
<td>52</td>
<td>0</td>
<td>2800.00</td>
<td>61156.02</td>
</tr>
<tr>
<td>64</td>
<td>22</td>
<td>5</td>
<td>53</td>
<td>0</td>
<td>2.20</td>
<td>61158.20</td>
</tr>
<tr>
<td>63</td>
<td>11</td>
<td>3</td>
<td>54</td>
<td>0</td>
<td>183.33</td>
<td>61341.53</td>
</tr>
<tr>
<td>62</td>
<td>20</td>
<td>4</td>
<td>55</td>
<td>0</td>
<td>2.00</td>
<td>61343.53</td>
</tr>
<tr>
<td>61</td>
<td>14</td>
<td>3</td>
<td>56</td>
<td>0</td>
<td>233.33</td>
<td>61576.87</td>
</tr>
<tr>
<td>60</td>
<td>32</td>
<td>7</td>
<td>57</td>
<td>0</td>
<td>3.20</td>
<td>61580.07</td>
</tr>
<tr>
<td>59</td>
<td>30</td>
<td>6</td>
<td>58</td>
<td>0</td>
<td>500.00</td>
<td>62080.07</td>
</tr>
<tr>
<td>58</td>
<td>8</td>
<td>2</td>
<td>59</td>
<td>0</td>
<td>0.80</td>
<td>62080.87</td>
</tr>
<tr>
<td>57</td>
<td>74</td>
<td>15</td>
<td>60</td>
<td>0</td>
<td>1233.33</td>
<td>63314.20</td>
</tr>
<tr>
<td>56</td>
<td>4</td>
<td>1</td>
<td>61</td>
<td>0</td>
<td>0.40</td>
<td>63314.60</td>
</tr>
<tr>
<td>55</td>
<td>189</td>
<td>38</td>
<td>62</td>
<td>1</td>
<td>3133.33</td>
<td>98447.93</td>
</tr>
<tr>
<td>54</td>
<td>25</td>
<td>5</td>
<td>63</td>
<td>0</td>
<td>2.50</td>
<td>68650.43</td>
</tr>
<tr>
<td>53</td>
<td>111</td>
<td>23</td>
<td>64</td>
<td>0</td>
<td>1250.00</td>
<td>68800.43</td>
</tr>
<tr>
<td>52</td>
<td>34</td>
<td>7</td>
<td>65</td>
<td>0</td>
<td>3.40</td>
<td>68833.83</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>11</td>
<td>66</td>
<td>0</td>
<td>886.67</td>
<td>69170.50</td>
</tr>
<tr>
<td>50</td>
<td>11</td>
<td>3</td>
<td>67</td>
<td>0</td>
<td>1.10</td>
<td>69171.60</td>
</tr>
<tr>
<td>49</td>
<td>76</td>
<td>16</td>
<td>68</td>
<td>0</td>
<td>1266.67</td>
<td>70438.27</td>
</tr>
<tr>
<td>48</td>
<td>17</td>
<td>4</td>
<td>69</td>
<td>0</td>
<td>1.70</td>
<td>70439.97</td>
</tr>
<tr>
<td>47</td>
<td>93</td>
<td>18</td>
<td>70</td>
<td>0</td>
<td>1560.00</td>
<td>71986.97</td>
</tr>
<tr>
<td>46</td>
<td>24</td>
<td>5</td>
<td>71</td>
<td>1</td>
<td>2.40</td>
<td>71992.37</td>
</tr>
<tr>
<td>45</td>
<td>750</td>
<td>160</td>
<td>72</td>
<td>0</td>
<td>12500.00</td>
<td>84492.37</td>
</tr>
<tr>
<td>44</td>
<td>2753</td>
<td>581</td>
<td>73</td>
<td>0</td>
<td>275.20</td>
<td>84767.57</td>
</tr>
<tr>
<td>43</td>
<td>48</td>
<td>10</td>
<td>74</td>
<td>0</td>
<td>786.67</td>
<td>85554.23</td>
</tr>
<tr>
<td>42</td>
<td>23</td>
<td>5</td>
<td>75</td>
<td>0</td>
<td>2.30</td>
<td>85556.53</td>
</tr>
<tr>
<td>41</td>
<td>19</td>
<td>4</td>
<td>76</td>
<td>0</td>
<td>316.67</td>
<td>85853.20</td>
</tr>
<tr>
<td>40</td>
<td>22</td>
<td>5</td>
<td>77</td>
<td>0</td>
<td>2.20</td>
<td>85855.40</td>
</tr>
<tr>
<td>39</td>
<td>33</td>
<td>7</td>
<td>78</td>
<td>0</td>
<td>550.00</td>
<td>86405.40</td>
</tr>
<tr>
<td>38</td>
<td>23</td>
<td>5</td>
<td>79</td>
<td>0</td>
<td>2.30</td>
<td>86407.70</td>
</tr>
<tr>
<td>37</td>
<td>484</td>
<td>91</td>
<td>80</td>
<td>0</td>
<td>7586.67</td>
<td>93957.47</td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>2</td>
<td>81</td>
<td>0</td>
<td>0.60</td>
<td>93957.97</td>
</tr>
<tr>
<td>35</td>
<td>185</td>
<td>37</td>
<td>82</td>
<td>0</td>
<td>3083.33</td>
<td>97055.30</td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>1</td>
<td>83</td>
<td>0</td>
<td>0.40</td>
<td>97055.70</td>
</tr>
<tr>
<td>33</td>
<td>136</td>
<td>25</td>
<td>84</td>
<td>0</td>
<td>2300.00</td>
<td>99355.70</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>1</td>
<td>85</td>
<td>0</td>
<td>0.40</td>
<td>99355.10</td>
</tr>
<tr>
<td>31</td>
<td>72</td>
<td>16</td>
<td>86</td>
<td>0</td>
<td>1200.00</td>
<td>100559.10</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>1</td>
<td>87</td>
<td>0</td>
<td>0.30</td>
<td>100559.40</td>
</tr>
<tr>
<td>29</td>
<td>62</td>
<td>13</td>
<td>88</td>
<td>0</td>
<td>1033.33</td>
<td>101592.73</td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>2</td>
<td>89</td>
<td>0</td>
<td>0.60</td>
<td>101593.33</td>
</tr>
<tr>
<td>27</td>
<td>50</td>
<td>10</td>
<td>90</td>
<td>0</td>
<td>833.33</td>
<td>102426.67</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>2</td>
<td>91</td>
<td>1</td>
<td>0.60</td>
<td>102427.27</td>
</tr>
<tr>
<td>25</td>
<td>206</td>
<td>42</td>
<td>92</td>
<td>0</td>
<td>3433.33</td>
<td>105860.60</td>
</tr>
<tr>
<td>24</td>
<td>28</td>
<td>6</td>
<td>93</td>
<td>0</td>
<td>2.80</td>
<td>105863.40</td>
</tr>
<tr>
<td>23</td>
<td>990</td>
<td>180</td>
<td>94</td>
<td>0</td>
<td>15000.00</td>
<td>120563.40</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>2</td>
<td>95</td>
<td>0</td>
<td>0.70</td>
<td>120564.10</td>
</tr>
<tr>
<td>21</td>
<td>527</td>
<td>106</td>
<td>96</td>
<td>0</td>
<td>8763.33</td>
<td>129647.43</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>2</td>
<td>97</td>
<td>0</td>
<td>0.80</td>
<td>129648.23</td>
</tr>
<tr>
<td>bed number thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>203</td>
<td>41</td>
<td>98</td>
<td>0</td>
<td>3363.39</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>1</td>
<td>99</td>
<td>0</td>
<td>333031.87</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>6</td>
<td>100</td>
<td>0</td>
<td>133531.87</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>2</td>
<td>101</td>
<td>0</td>
<td>133532.87</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>228</td>
<td>48</td>
<td>102</td>
<td>0</td>
<td>3916.67</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>1</td>
<td>103</td>
<td>0</td>
<td>37349.93</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>310</td>
<td>62</td>
<td>104</td>
<td>0</td>
<td>5186.67</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>105</td>
<td>0</td>
<td>51819.60</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>147</td>
<td>32</td>
<td>106</td>
<td>0</td>
<td>24517.20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>2</td>
<td>107</td>
<td>0</td>
<td>144967.20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>135</td>
<td>27</td>
<td>108</td>
<td>0</td>
<td>22250.00</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2</td>
<td>109</td>
<td>0</td>
<td>147217.90</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>174</td>
<td>35</td>
<td>110</td>
<td>0</td>
<td>28000.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>13</td>
<td>111</td>
<td>0</td>
<td>150124.80</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>8</td>
<td>112</td>
<td>0</td>
<td>150758.13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>3</td>
<td>113</td>
<td>0</td>
<td>150759.43</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>143</td>
<td>28</td>
<td>114</td>
<td>0</td>
<td>150773.43</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1422</td>
<td>285</td>
<td>115</td>
<td>0</td>
<td>174473.43</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>8</td>
<td>116</td>
<td>0</td>
<td>174477.33</td>
<td></td>
</tr>
</tbody>
</table>
Wagonhound North - 3

<table>
<thead>
<tr>
<th>Bed number</th>
<th>Thickness (cm)</th>
<th>Bin assignment</th>
<th>Bin number per beds</th>
<th>No. of beds</th>
<th>Ind.time (yrs)</th>
<th>Cum.time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>250</td>
<td>50</td>
<td>1</td>
<td>10</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>68</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>250.00</td>
<td>275.00</td>
</tr>
<tr>
<td>67</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>1.10</td>
<td>276.10</td>
</tr>
<tr>
<td>66</td>
<td>100</td>
<td>20</td>
<td>4</td>
<td>1</td>
<td>1866.67</td>
<td>1942.77</td>
</tr>
<tr>
<td>65</td>
<td>35</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>3.50</td>
<td>1946.27</td>
</tr>
<tr>
<td>64</td>
<td>410</td>
<td>82</td>
<td>6</td>
<td>5</td>
<td>6833.33</td>
<td>8779.60</td>
</tr>
<tr>
<td>63</td>
<td>25</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>2.50</td>
<td>8782.10</td>
</tr>
<tr>
<td>62</td>
<td>630</td>
<td>128</td>
<td>8</td>
<td>0</td>
<td>10500.00</td>
<td>19282.10</td>
</tr>
<tr>
<td>61</td>
<td>28</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>2.80</td>
<td>19284.90</td>
</tr>
<tr>
<td>60</td>
<td>648</td>
<td>129</td>
<td>10</td>
<td>0</td>
<td>10760.00</td>
<td>30034.90</td>
</tr>
<tr>
<td>59</td>
<td>30</td>
<td>6</td>
<td>11</td>
<td>0</td>
<td>3.00</td>
<td>30037.90</td>
</tr>
<tr>
<td>58</td>
<td>176</td>
<td>36</td>
<td>12</td>
<td>2</td>
<td>2986.67</td>
<td>33004.57</td>
</tr>
<tr>
<td>57</td>
<td>24</td>
<td>5</td>
<td>13</td>
<td>1</td>
<td>2.40</td>
<td>33006.97</td>
</tr>
<tr>
<td>56</td>
<td>525</td>
<td>105</td>
<td>14</td>
<td>0</td>
<td>8750.00</td>
<td>41756.97</td>
</tr>
<tr>
<td>55</td>
<td>8</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>0.80</td>
<td>41757.77</td>
</tr>
<tr>
<td>54</td>
<td>353</td>
<td>71</td>
<td>16</td>
<td>1</td>
<td>5883.33</td>
<td>47641.10</td>
</tr>
<tr>
<td>53</td>
<td>6</td>
<td>2</td>
<td>17</td>
<td>0</td>
<td>0.60</td>
<td>47641.70</td>
</tr>
<tr>
<td>52</td>
<td>430</td>
<td>88</td>
<td>18</td>
<td>0</td>
<td>7166.67</td>
<td>54808.37</td>
</tr>
<tr>
<td>51</td>
<td>60</td>
<td>12</td>
<td>19</td>
<td>0</td>
<td>6.00</td>
<td>54814.37</td>
</tr>
<tr>
<td>50</td>
<td>245</td>
<td>49</td>
<td>20</td>
<td>2</td>
<td>4083.33</td>
<td>58897.70</td>
</tr>
<tr>
<td>49</td>
<td>25</td>
<td>5</td>
<td>21</td>
<td>0</td>
<td>2.50</td>
<td>56900.20</td>
</tr>
<tr>
<td>48</td>
<td>205</td>
<td>41</td>
<td>22</td>
<td>2</td>
<td>3416.67</td>
<td>62316.87</td>
</tr>
<tr>
<td>47</td>
<td>30</td>
<td>6</td>
<td>23</td>
<td>0</td>
<td>3.00</td>
<td>62319.87</td>
</tr>
<tr>
<td>46</td>
<td>240</td>
<td>48</td>
<td>24</td>
<td>1</td>
<td>4000.00</td>
<td>68319.87</td>
</tr>
<tr>
<td>45</td>
<td>11</td>
<td>3</td>
<td>25</td>
<td>1</td>
<td>1.10</td>
<td>66320.97</td>
</tr>
<tr>
<td>44</td>
<td>430</td>
<td>87</td>
<td>26</td>
<td>0</td>
<td>7250.00</td>
<td>73570.97</td>
</tr>
<tr>
<td>43</td>
<td>45</td>
<td>9</td>
<td>27</td>
<td>0</td>
<td>4.50</td>
<td>73575.47</td>
</tr>
<tr>
<td>42</td>
<td>600</td>
<td>120</td>
<td>28</td>
<td>1</td>
<td>10000.00</td>
<td>83575.47</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>0.30</td>
<td>83575.77</td>
</tr>
<tr>
<td>40</td>
<td>63</td>
<td>13</td>
<td>30</td>
<td>0</td>
<td>1050.00</td>
<td>84625.77</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>1</td>
<td>31</td>
<td>0</td>
<td>0.30</td>
<td>84626.07</td>
</tr>
<tr>
<td>38</td>
<td>195</td>
<td>39</td>
<td>32</td>
<td>0</td>
<td>3250.00</td>
<td>87876.07</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>1</td>
<td>33</td>
<td>0</td>
<td>0.50</td>
<td>87876.57</td>
</tr>
<tr>
<td>36</td>
<td>35</td>
<td>7</td>
<td>34</td>
<td>0</td>
<td>583.33</td>
<td>88459.90</td>
</tr>
<tr>
<td>35</td>
<td>12</td>
<td>3</td>
<td>35</td>
<td>1</td>
<td>1.20</td>
<td>88461.10</td>
</tr>
<tr>
<td>34</td>
<td>80</td>
<td>16</td>
<td>36</td>
<td>2</td>
<td>1333.33</td>
<td>89794.43</td>
</tr>
<tr>
<td>33</td>
<td>20</td>
<td>4</td>
<td>37</td>
<td>0</td>
<td>2.00</td>
<td>89796.43</td>
</tr>
<tr>
<td>32</td>
<td>120</td>
<td>24</td>
<td>38</td>
<td>0</td>
<td>2000.00</td>
<td>91796.43</td>
</tr>
<tr>
<td>31</td>
<td>21</td>
<td>5</td>
<td>39</td>
<td>1</td>
<td>2.10</td>
<td>91798.53</td>
</tr>
<tr>
<td>30</td>
<td>42</td>
<td>9</td>
<td>40</td>
<td>0</td>
<td>4.20</td>
<td>91802.73</td>
</tr>
<tr>
<td>29</td>
<td>470</td>
<td>94</td>
<td>41</td>
<td>2</td>
<td>7833.33</td>
<td>99636.07</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>2</td>
<td>42</td>
<td>0</td>
<td>0.80</td>
<td>99636.87</td>
</tr>
<tr>
<td>27</td>
<td>178</td>
<td>36</td>
<td>43</td>
<td>0</td>
<td>2933.33</td>
<td>102570.20</td>
</tr>
<tr>
<td>26</td>
<td>12</td>
<td>3</td>
<td>44</td>
<td>0</td>
<td>1.20</td>
<td>102571.40</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>12</td>
<td>45</td>
<td>0</td>
<td>1000.00</td>
<td>103571.40</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>2</td>
<td>48</td>
<td>1</td>
<td>1.00</td>
<td>105240.07</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>20</td>
<td>47</td>
<td>0</td>
<td>1666.67</td>
<td>105239.07</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>2</td>
<td>48</td>
<td>1</td>
<td>1.00</td>
<td>105240.07</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind.time (yrs)</td>
<td>cum.time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
<td>230</td>
<td>46</td>
<td>49</td>
<td>1</td>
<td>3833.33</td>
<td>109073.40</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>1</td>
<td>60</td>
<td>1</td>
<td>0.50</td>
<td>109073.90</td>
</tr>
<tr>
<td>18</td>
<td>110</td>
<td>22</td>
<td>51</td>
<td>0</td>
<td>1833.33</td>
<td>110907.23</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>52</td>
<td>0</td>
<td>0.30</td>
<td>110907.53</td>
</tr>
<tr>
<td>17</td>
<td>138</td>
<td>28</td>
<td>63</td>
<td>0</td>
<td>2300.00</td>
<td>113207.53</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>54</td>
<td>0</td>
<td>0.30</td>
<td>113207.83</td>
</tr>
<tr>
<td>15</td>
<td>110</td>
<td>22</td>
<td>56</td>
<td>0</td>
<td>1833.33</td>
<td>115041.17</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>3</td>
<td>56</td>
<td>0</td>
<td>1.20</td>
<td>115042.37</td>
</tr>
<tr>
<td>13</td>
<td>125</td>
<td>25</td>
<td>57</td>
<td>0</td>
<td>2083.33</td>
<td>117125.70</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>1</td>
<td>59</td>
<td>0</td>
<td>0.50</td>
<td>117126.20</td>
</tr>
<tr>
<td>11</td>
<td>54</td>
<td>11</td>
<td>59</td>
<td>0</td>
<td>900.00</td>
<td>118026.20</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>1</td>
<td>60</td>
<td>0</td>
<td>0.30</td>
<td>118026.50</td>
</tr>
<tr>
<td>9</td>
<td>589</td>
<td>118</td>
<td>61</td>
<td>0</td>
<td>8816.67</td>
<td>127843.17</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2</td>
<td>62</td>
<td>0</td>
<td>0.70</td>
<td>127843.87</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>10</td>
<td>63</td>
<td>0</td>
<td>800.00</td>
<td>128643.87</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>64</td>
<td>0</td>
<td>0.20</td>
<td>128644.07</td>
</tr>
<tr>
<td>5</td>
<td>175</td>
<td>35</td>
<td>65</td>
<td>0</td>
<td>2916.67</td>
<td>131560.73</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2</td>
<td>68</td>
<td>0</td>
<td>0.70</td>
<td>131561.43</td>
</tr>
<tr>
<td>3</td>
<td>204</td>
<td>41</td>
<td>67</td>
<td>0</td>
<td>3400.00</td>
<td>134961.43</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>0.30</td>
<td>134961.73</td>
</tr>
<tr>
<td>1</td>
<td>423</td>
<td>85</td>
<td>68</td>
<td>0</td>
<td>7050.00</td>
<td>142011.73</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>indiv. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>131</td>
<td>1050</td>
<td>210</td>
<td>1</td>
<td>1</td>
<td>105.00</td>
<td>105.00</td>
</tr>
<tr>
<td>130</td>
<td>60</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>1000.00</td>
<td>1105.00</td>
</tr>
<tr>
<td>129</td>
<td>113</td>
<td>23</td>
<td>3</td>
<td>7</td>
<td>11.30</td>
<td>1116.30</td>
</tr>
<tr>
<td>128</td>
<td>150</td>
<td>30</td>
<td>4</td>
<td>8</td>
<td>2500.00</td>
<td>3616.30</td>
</tr>
<tr>
<td>127</td>
<td>75</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>7.50</td>
<td>3623.80</td>
</tr>
<tr>
<td>126</td>
<td>150</td>
<td>30</td>
<td>6</td>
<td>4</td>
<td>2500.00</td>
<td>6123.80</td>
</tr>
<tr>
<td>125</td>
<td>20</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>2.00</td>
<td>6125.80</td>
</tr>
<tr>
<td>124</td>
<td>72</td>
<td>15</td>
<td>8</td>
<td>5</td>
<td>1200.00</td>
<td>7325.80</td>
</tr>
<tr>
<td>123</td>
<td>330</td>
<td>66</td>
<td>6</td>
<td>5</td>
<td>35.00</td>
<td>7360.80</td>
</tr>
<tr>
<td>122</td>
<td>150</td>
<td>30</td>
<td>10</td>
<td>4</td>
<td>2800.00</td>
<td>9858.80</td>
</tr>
<tr>
<td>121</td>
<td>198</td>
<td>40</td>
<td>11</td>
<td>3</td>
<td>19.80</td>
<td>9878.60</td>
</tr>
<tr>
<td>120</td>
<td>158</td>
<td>32</td>
<td>12</td>
<td>4</td>
<td>15.80</td>
<td>9894.40</td>
</tr>
<tr>
<td>119</td>
<td>25</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>416.67</td>
<td>10311.07</td>
</tr>
<tr>
<td>118</td>
<td>100</td>
<td>20</td>
<td>14</td>
<td>3</td>
<td>10.00</td>
<td>10321.07</td>
</tr>
<tr>
<td>117</td>
<td>602</td>
<td>121</td>
<td>15</td>
<td>5</td>
<td>10033.33</td>
<td>20354.40</td>
</tr>
<tr>
<td>116</td>
<td>20</td>
<td>4</td>
<td>16</td>
<td>1</td>
<td>2.00</td>
<td>20356.40</td>
</tr>
<tr>
<td>115</td>
<td>195</td>
<td>39</td>
<td>17</td>
<td>3</td>
<td>3250.00</td>
<td>23806.40</td>
</tr>
<tr>
<td>114</td>
<td>25</td>
<td>6</td>
<td>18</td>
<td>0</td>
<td>2.60</td>
<td>23809.00</td>
</tr>
<tr>
<td>113</td>
<td>242</td>
<td>49</td>
<td>18</td>
<td>1</td>
<td>4033.33</td>
<td>27642.33</td>
</tr>
<tr>
<td>112</td>
<td>17</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>1.70</td>
<td>27644.03</td>
</tr>
<tr>
<td>111</td>
<td>36</td>
<td>8</td>
<td>21</td>
<td>1</td>
<td>633.33</td>
<td>28277.37</td>
</tr>
<tr>
<td>110</td>
<td>13</td>
<td>3</td>
<td>22</td>
<td>1</td>
<td>1.30</td>
<td>28278.67</td>
</tr>
<tr>
<td>109</td>
<td>157</td>
<td>32</td>
<td>23</td>
<td>3</td>
<td>2816.67</td>
<td>30895.33</td>
</tr>
<tr>
<td>108</td>
<td>5</td>
<td>1</td>
<td>24</td>
<td>1</td>
<td>0.50</td>
<td>30895.83</td>
</tr>
<tr>
<td>107</td>
<td>126</td>
<td>25</td>
<td>25</td>
<td>1</td>
<td>2083.33</td>
<td>32979.17</td>
</tr>
<tr>
<td>106</td>
<td>10</td>
<td>2</td>
<td>28</td>
<td>3</td>
<td>1.00</td>
<td>32980.17</td>
</tr>
<tr>
<td>105</td>
<td>80</td>
<td>16</td>
<td>27</td>
<td>2</td>
<td>1333.33</td>
<td>34313.50</td>
</tr>
<tr>
<td>104</td>
<td>10</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td>1.00</td>
<td>34314.50</td>
</tr>
<tr>
<td>103</td>
<td>84</td>
<td>17</td>
<td>29</td>
<td>1</td>
<td>1400.00</td>
<td>35714.50</td>
</tr>
<tr>
<td>102</td>
<td>30</td>
<td>6</td>
<td>30</td>
<td>5</td>
<td>3.00</td>
<td>35717.50</td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>29</td>
<td>31</td>
<td>1</td>
<td>2416.67</td>
<td>38134.17</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>2</td>
<td>32</td>
<td>2</td>
<td>1.00</td>
<td>38135.17</td>
</tr>
<tr>
<td>99</td>
<td>55</td>
<td>11</td>
<td>33</td>
<td>0</td>
<td>916.67</td>
<td>39051.83</td>
</tr>
<tr>
<td>98</td>
<td>15</td>
<td>3</td>
<td>34</td>
<td>1</td>
<td>1.50</td>
<td>39053.33</td>
</tr>
<tr>
<td>97</td>
<td>75</td>
<td>15</td>
<td>35</td>
<td>0</td>
<td>1250.00</td>
<td>40303.33</td>
</tr>
<tr>
<td>96</td>
<td>4</td>
<td>1</td>
<td>36</td>
<td>0</td>
<td>0.40</td>
<td>40303.73</td>
</tr>
<tr>
<td>95</td>
<td>45</td>
<td>9</td>
<td>37</td>
<td>0</td>
<td>750.00</td>
<td>40103.73</td>
</tr>
<tr>
<td>94</td>
<td>80</td>
<td>12</td>
<td>38</td>
<td>1</td>
<td>6.00</td>
<td>40109.73</td>
</tr>
<tr>
<td>93</td>
<td>120</td>
<td>24</td>
<td>33</td>
<td>1</td>
<td>2000.00</td>
<td>43099.73</td>
</tr>
<tr>
<td>92</td>
<td>60</td>
<td>12</td>
<td>40</td>
<td>1</td>
<td>6.00</td>
<td>43065.73</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>19</td>
<td>41</td>
<td>0</td>
<td>1533.33</td>
<td>44599.07</td>
</tr>
<tr>
<td>90</td>
<td>15</td>
<td>3</td>
<td>42</td>
<td>0</td>
<td>1.50</td>
<td>44600.57</td>
</tr>
<tr>
<td>89</td>
<td>360</td>
<td>72</td>
<td>43</td>
<td>1</td>
<td>8000.00</td>
<td>50600.00</td>
</tr>
<tr>
<td>88</td>
<td>403</td>
<td>81</td>
<td>44</td>
<td>0</td>
<td>40.30</td>
<td>50640.30</td>
</tr>
<tr>
<td>87</td>
<td>242</td>
<td>49</td>
<td>46</td>
<td>0</td>
<td>24.20</td>
<td>50664.50</td>
</tr>
<tr>
<td>86</td>
<td>136</td>
<td>28</td>
<td>46</td>
<td>0</td>
<td>2266.67</td>
<td>52931.17</td>
</tr>
<tr>
<td>85</td>
<td>65</td>
<td>13</td>
<td>47</td>
<td>0</td>
<td>8.50</td>
<td>52939.27</td>
</tr>
<tr>
<td>84</td>
<td>20</td>
<td>4</td>
<td>48</td>
<td>0</td>
<td>333.33</td>
<td>53271.57</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>ind. time (yrs)</th>
<th>cum. time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>70</td>
<td>14</td>
<td>49</td>
<td>2</td>
<td>7.00</td>
<td>53278.57</td>
</tr>
<tr>
<td>82</td>
<td>130</td>
<td>26</td>
<td>50</td>
<td>0</td>
<td>2166.67</td>
<td>56445.23</td>
</tr>
<tr>
<td>81</td>
<td>45</td>
<td>9</td>
<td>51</td>
<td>0</td>
<td>4.50</td>
<td>56449.73</td>
</tr>
<tr>
<td>80</td>
<td>55</td>
<td>11</td>
<td>52</td>
<td>0</td>
<td>916.67</td>
<td>56366.40</td>
</tr>
<tr>
<td>79</td>
<td>35</td>
<td>7</td>
<td>53</td>
<td>0</td>
<td>3.50</td>
<td>56369.90</td>
</tr>
<tr>
<td>78</td>
<td>47</td>
<td>10</td>
<td>54</td>
<td>0</td>
<td>783.33</td>
<td>57153.23</td>
</tr>
<tr>
<td>77</td>
<td>8</td>
<td>2</td>
<td>55</td>
<td>0</td>
<td>0.60</td>
<td>57154.03</td>
</tr>
<tr>
<td>76</td>
<td>15</td>
<td>3</td>
<td>56</td>
<td>0</td>
<td>250.00</td>
<td>57404.03</td>
</tr>
<tr>
<td>75</td>
<td>88</td>
<td>17</td>
<td>57</td>
<td>1</td>
<td>8.50</td>
<td>57412.53</td>
</tr>
<tr>
<td>74</td>
<td>26</td>
<td>5</td>
<td>58</td>
<td>0</td>
<td>416.67</td>
<td>57829.20</td>
</tr>
<tr>
<td>73</td>
<td>45</td>
<td>9</td>
<td>59</td>
<td>0</td>
<td>4.50</td>
<td>57833.70</td>
</tr>
<tr>
<td>72</td>
<td>40</td>
<td>8</td>
<td>60</td>
<td>0</td>
<td>4.00</td>
<td>57837.70</td>
</tr>
<tr>
<td>71</td>
<td>110</td>
<td>22</td>
<td>61</td>
<td>0</td>
<td>11.00</td>
<td>57848.70</td>
</tr>
<tr>
<td>70</td>
<td>130</td>
<td>28</td>
<td>62</td>
<td>0</td>
<td>13.00</td>
<td>57861.70</td>
</tr>
<tr>
<td>69</td>
<td>70</td>
<td>14</td>
<td>63</td>
<td>0</td>
<td>7.00</td>
<td>57868.70</td>
</tr>
<tr>
<td>68</td>
<td>35</td>
<td>7</td>
<td>64</td>
<td>0</td>
<td>3.50</td>
<td>57872.20</td>
</tr>
<tr>
<td>67</td>
<td>190</td>
<td>38</td>
<td>65</td>
<td>0</td>
<td>3166.67</td>
<td>61038.67</td>
</tr>
<tr>
<td>66</td>
<td>45</td>
<td>9</td>
<td>66</td>
<td>1</td>
<td>4.50</td>
<td>61043.37</td>
</tr>
<tr>
<td>65</td>
<td>136</td>
<td>27</td>
<td>67</td>
<td>0</td>
<td>2250.00</td>
<td>63293.37</td>
</tr>
<tr>
<td>64</td>
<td>138</td>
<td>26</td>
<td>68</td>
<td>0</td>
<td>13.80</td>
<td>63307.17</td>
</tr>
<tr>
<td>63</td>
<td>112</td>
<td>23</td>
<td>69</td>
<td>0</td>
<td>1886.67</td>
<td>65173.83</td>
</tr>
<tr>
<td>62</td>
<td>65</td>
<td>13</td>
<td>70</td>
<td>0</td>
<td>6.50</td>
<td>65180.33</td>
</tr>
<tr>
<td>61</td>
<td>39</td>
<td>8</td>
<td>71</td>
<td>0</td>
<td>650.00</td>
<td>65830.33</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>14</td>
<td>72</td>
<td>1</td>
<td>7.00</td>
<td>65837.33</td>
</tr>
<tr>
<td>59</td>
<td>8</td>
<td>2</td>
<td>73</td>
<td>0</td>
<td>133.33</td>
<td>65907.07</td>
</tr>
<tr>
<td>58</td>
<td>74</td>
<td>13</td>
<td>74</td>
<td>1</td>
<td>7.40</td>
<td>65978.07</td>
</tr>
<tr>
<td>57</td>
<td>25</td>
<td>8</td>
<td>75</td>
<td>1</td>
<td>416.67</td>
<td>66394.73</td>
</tr>
<tr>
<td>56</td>
<td>7</td>
<td>2</td>
<td>76</td>
<td>0</td>
<td>0.70</td>
<td>66395.43</td>
</tr>
<tr>
<td>55</td>
<td>20</td>
<td>4</td>
<td>77</td>
<td>1</td>
<td>2.00</td>
<td>66397.43</td>
</tr>
<tr>
<td>54</td>
<td>30</td>
<td>6</td>
<td>78</td>
<td>0</td>
<td>500.00</td>
<td>66897.43</td>
</tr>
<tr>
<td>53</td>
<td>84</td>
<td>17</td>
<td>79</td>
<td>0</td>
<td>8.40</td>
<td>66905.83</td>
</tr>
<tr>
<td>52</td>
<td>114</td>
<td>23</td>
<td>80</td>
<td>0</td>
<td>1900.00</td>
<td>68805.83</td>
</tr>
<tr>
<td>51</td>
<td>23</td>
<td>8</td>
<td>81</td>
<td>1</td>
<td>2.30</td>
<td>68808.13</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>8</td>
<td>82</td>
<td>0</td>
<td>2.50</td>
<td>68101.63</td>
</tr>
<tr>
<td>49</td>
<td>35</td>
<td>7</td>
<td>83</td>
<td>0</td>
<td>583.33</td>
<td>69393.97</td>
</tr>
<tr>
<td>48</td>
<td>25</td>
<td>5</td>
<td>84</td>
<td>0</td>
<td>2.50</td>
<td>69396.47</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>10</td>
<td>85</td>
<td>0</td>
<td>783.33</td>
<td>70179.90</td>
</tr>
<tr>
<td>46</td>
<td>10</td>
<td>2</td>
<td>86</td>
<td>0</td>
<td>1.00</td>
<td>70180.90</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>9</td>
<td>87</td>
<td>0</td>
<td>4.50</td>
<td>70185.30</td>
</tr>
<tr>
<td>44</td>
<td>15</td>
<td>3</td>
<td>88</td>
<td>0</td>
<td>250.00</td>
<td>70435.30</td>
</tr>
<tr>
<td>43</td>
<td>35</td>
<td>8</td>
<td>89</td>
<td>0</td>
<td>3.90</td>
<td>70439.20</td>
</tr>
<tr>
<td>42</td>
<td>39</td>
<td>77</td>
<td>90</td>
<td>0</td>
<td>63200.00</td>
<td>78789.20</td>
</tr>
<tr>
<td>41</td>
<td>8</td>
<td>2</td>
<td>91</td>
<td>0</td>
<td>0.80</td>
<td>76799.00</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>2</td>
<td>92</td>
<td>1</td>
<td>166.67</td>
<td>76965.67</td>
</tr>
<tr>
<td>39</td>
<td>16</td>
<td>4</td>
<td>93</td>
<td>0</td>
<td>1.60</td>
<td>78958.27</td>
</tr>
<tr>
<td>38</td>
<td>610</td>
<td>122</td>
<td>94</td>
<td>0</td>
<td>10186.67</td>
<td>87124.83</td>
</tr>
<tr>
<td>37</td>
<td>4</td>
<td>1</td>
<td>95</td>
<td>0</td>
<td>0.40</td>
<td>87125.23</td>
</tr>
<tr>
<td>36</td>
<td>18</td>
<td>4</td>
<td>96</td>
<td>0</td>
<td>266.67</td>
<td>87392.00</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>1</td>
<td>97</td>
<td>0</td>
<td>0.40</td>
<td>87392.40</td>
</tr>
<tr>
<td>34</td>
<td>368</td>
<td>74</td>
<td>98</td>
<td>0</td>
<td>6133.33</td>
<td>93525.73</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness(cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>ind.time (yrs)</th>
<th>cum.time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>4</td>
<td>1</td>
<td>98</td>
<td>0</td>
<td>0.40</td>
<td>93528.13</td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>30</td>
<td>100</td>
<td>0</td>
<td>2500.00</td>
<td>96028.13</td>
</tr>
<tr>
<td>31</td>
<td>7</td>
<td>2</td>
<td>101</td>
<td>0</td>
<td>0.70</td>
<td>96028.83</td>
</tr>
<tr>
<td>30</td>
<td>215</td>
<td>43</td>
<td>102</td>
<td>0</td>
<td>3583.33</td>
<td>99610.17</td>
</tr>
<tr>
<td>29</td>
<td>20</td>
<td>4</td>
<td>103</td>
<td>0</td>
<td>2.00</td>
<td>99612.17</td>
</tr>
<tr>
<td>28</td>
<td>154</td>
<td>31</td>
<td>104</td>
<td>0</td>
<td>2566.67</td>
<td>102178.83</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>1</td>
<td>105</td>
<td>0</td>
<td>0.30</td>
<td>102179.13</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>1</td>
<td>106</td>
<td>0</td>
<td>83.33</td>
<td>102262.47</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>2</td>
<td>107</td>
<td>0</td>
<td>0.70</td>
<td>102263.17</td>
</tr>
<tr>
<td>24</td>
<td>103</td>
<td>21</td>
<td>108</td>
<td>0</td>
<td>1716.67</td>
<td>103979.83</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>1</td>
<td>109</td>
<td>0</td>
<td>0.30</td>
<td>103980.13</td>
</tr>
<tr>
<td>22</td>
<td>62</td>
<td>13</td>
<td>110</td>
<td>0</td>
<td>1033.33</td>
<td>105013.47</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1</td>
<td>111</td>
<td>0</td>
<td>0.30</td>
<td>105013.67</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>1</td>
<td>112</td>
<td>0</td>
<td>66.67</td>
<td>105080.33</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>1</td>
<td>113</td>
<td>0</td>
<td>0.20</td>
<td>105090.53</td>
</tr>
<tr>
<td>18</td>
<td>168</td>
<td>34</td>
<td>114</td>
<td>0</td>
<td>2766.67</td>
<td>107847.20</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>2</td>
<td>115</td>
<td>0</td>
<td>0.90</td>
<td>107848.10</td>
</tr>
<tr>
<td>16</td>
<td>73</td>
<td>15</td>
<td>116</td>
<td>0</td>
<td>1216.67</td>
<td>109064.77</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
<td>7</td>
<td>117</td>
<td>0</td>
<td>3.60</td>
<td>109068.27</td>
</tr>
<tr>
<td>14</td>
<td>128</td>
<td>26</td>
<td>118</td>
<td>0</td>
<td>2100.00</td>
<td>111168.27</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
<td>8</td>
<td>119</td>
<td>0</td>
<td>4.00</td>
<td>111172.27</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>3</td>
<td>120</td>
<td>0</td>
<td>1.50</td>
<td>111173.77</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>10</td>
<td>121</td>
<td>1</td>
<td>5.00</td>
<td>111178.77</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>30</td>
<td>122</td>
<td>1</td>
<td>2500.00</td>
<td>113678.77</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>11</td>
<td>123</td>
<td>0</td>
<td>5.50</td>
<td>113684.27</td>
</tr>
<tr>
<td>8</td>
<td>133</td>
<td>27</td>
<td>124</td>
<td>0</td>
<td>2216.67</td>
<td>115909.93</td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>10</td>
<td>125</td>
<td>0</td>
<td>4.70</td>
<td>115905.63</td>
</tr>
<tr>
<td>6</td>
<td>373</td>
<td>75</td>
<td>126</td>
<td>0</td>
<td>8218.67</td>
<td>122122.20</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>3</td>
<td>127</td>
<td>0</td>
<td>1.40</td>
<td>122123.70</td>
</tr>
<tr>
<td>4</td>
<td>480</td>
<td>92</td>
<td>128</td>
<td>0</td>
<td>7966.67</td>
<td>123790.37</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>12</td>
<td>129</td>
<td>0</td>
<td>5.80</td>
<td>129796.17</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>6</td>
<td>130</td>
<td>0</td>
<td>500.00</td>
<td>130296.17</td>
</tr>
<tr>
<td>1</td>
<td>183</td>
<td>171</td>
<td>131</td>
<td>0</td>
<td>85.30</td>
<td>130381.47</td>
</tr>
</tbody>
</table>
Wagonhound South – 2

<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>ind. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>2347</td>
<td>473</td>
<td>1</td>
<td>2</td>
<td>234.70</td>
<td>234.70</td>
</tr>
<tr>
<td>141</td>
<td>112</td>
<td>23</td>
<td>2</td>
<td></td>
<td>13</td>
<td>1886.67</td>
</tr>
<tr>
<td>145</td>
<td>320</td>
<td>85</td>
<td>3</td>
<td></td>
<td>7</td>
<td>32.60</td>
</tr>
<tr>
<td>136</td>
<td>193</td>
<td>39</td>
<td>4</td>
<td></td>
<td>7</td>
<td>3216.67</td>
</tr>
<tr>
<td>138</td>
<td>849</td>
<td>170</td>
<td>5</td>
<td></td>
<td>5</td>
<td>84.69</td>
</tr>
<tr>
<td>137</td>
<td>61</td>
<td>13</td>
<td>6</td>
<td>8</td>
<td>6.10</td>
<td>5441.23</td>
</tr>
<tr>
<td>136</td>
<td>156</td>
<td>32</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>8091.23</td>
</tr>
<tr>
<td>135</td>
<td>12</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>1.20</td>
<td>8092.43</td>
</tr>
<tr>
<td>134</td>
<td>88</td>
<td>18</td>
<td>9</td>
<td>3</td>
<td>1486.67</td>
<td>9559.10</td>
</tr>
<tr>
<td>133</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>0.80</td>
<td>9559.90</td>
</tr>
<tr>
<td>132</td>
<td>210</td>
<td>42</td>
<td>11</td>
<td>4</td>
<td>21.00</td>
<td>9560.90</td>
</tr>
<tr>
<td>131</td>
<td>146</td>
<td>30</td>
<td>12</td>
<td>2</td>
<td>14.60</td>
<td>9569.50</td>
</tr>
<tr>
<td>130</td>
<td>661</td>
<td>133</td>
<td>13</td>
<td>3</td>
<td>55.10</td>
<td>9561.60</td>
</tr>
<tr>
<td>129</td>
<td>27</td>
<td>6</td>
<td>14</td>
<td>2</td>
<td>2.70</td>
<td>9864.30</td>
</tr>
<tr>
<td>128</td>
<td>166</td>
<td>32</td>
<td>15</td>
<td>3</td>
<td>2600.00</td>
<td>12284.30</td>
</tr>
<tr>
<td>127</td>
<td>443</td>
<td>85</td>
<td>16</td>
<td>3</td>
<td>44.20</td>
<td>12308.50</td>
</tr>
<tr>
<td>126</td>
<td>205</td>
<td>41</td>
<td>17</td>
<td>4</td>
<td>3416.67</td>
<td>15725.17</td>
</tr>
<tr>
<td>125</td>
<td>163</td>
<td>33</td>
<td>18</td>
<td>2</td>
<td>16.30</td>
<td>15741.47</td>
</tr>
<tr>
<td>124</td>
<td>252</td>
<td>52</td>
<td>19</td>
<td>1</td>
<td>25.90</td>
<td>15767.37</td>
</tr>
<tr>
<td>123</td>
<td>19</td>
<td>4</td>
<td>20</td>
<td>2</td>
<td>1.90</td>
<td>15769.27</td>
</tr>
<tr>
<td>122</td>
<td>256</td>
<td>54</td>
<td>21</td>
<td>3</td>
<td>26.80</td>
<td>15796.17</td>
</tr>
<tr>
<td>121</td>
<td>46</td>
<td>10</td>
<td>22</td>
<td>0</td>
<td>4.60</td>
<td>15800.77</td>
</tr>
<tr>
<td>120</td>
<td>178</td>
<td>36</td>
<td>23</td>
<td>2</td>
<td>17.80</td>
<td>15818.57</td>
</tr>
<tr>
<td>119</td>
<td>340</td>
<td>96</td>
<td>24</td>
<td>2</td>
<td>5556.67</td>
<td>21465.23</td>
</tr>
<tr>
<td>118</td>
<td>289</td>
<td>64</td>
<td>25</td>
<td>1</td>
<td>26.90</td>
<td>21612.13</td>
</tr>
<tr>
<td>117</td>
<td>84</td>
<td>17</td>
<td>26</td>
<td>1</td>
<td>1400.00</td>
<td>22512.13</td>
</tr>
<tr>
<td>116</td>
<td>30</td>
<td>6</td>
<td>27</td>
<td>0</td>
<td>3.00</td>
<td>22515.13</td>
</tr>
<tr>
<td>115</td>
<td>217</td>
<td>44</td>
<td>28</td>
<td>0</td>
<td>21.70</td>
<td>22536.83</td>
</tr>
<tr>
<td>114</td>
<td>79</td>
<td>18</td>
<td>29</td>
<td>1</td>
<td>7.90</td>
<td>22604.73</td>
</tr>
<tr>
<td>113</td>
<td>48</td>
<td>10</td>
<td>30</td>
<td>2</td>
<td>816.67</td>
<td>23761.40</td>
</tr>
<tr>
<td>112</td>
<td>120</td>
<td>24</td>
<td>31</td>
<td>0</td>
<td>12.00</td>
<td>23773.40</td>
</tr>
<tr>
<td>111</td>
<td>118</td>
<td>24</td>
<td>32</td>
<td>3</td>
<td>11.80</td>
<td>23785.20</td>
</tr>
<tr>
<td>110</td>
<td>16</td>
<td>4</td>
<td>33</td>
<td>1</td>
<td>1.60</td>
<td>23786.80</td>
</tr>
<tr>
<td>109</td>
<td>86</td>
<td>18</td>
<td>34</td>
<td>1</td>
<td>8.60</td>
<td>23795.40</td>
</tr>
<tr>
<td>108</td>
<td>26</td>
<td>6</td>
<td>35</td>
<td>0</td>
<td>2.60</td>
<td>23798.00</td>
</tr>
<tr>
<td>107</td>
<td>122</td>
<td>28</td>
<td>36</td>
<td>1</td>
<td>12.20</td>
<td>23810.20</td>
</tr>
<tr>
<td>106</td>
<td>28</td>
<td>6</td>
<td>37</td>
<td>0</td>
<td>2.80</td>
<td>23813.00</td>
</tr>
<tr>
<td>105</td>
<td>60</td>
<td>12</td>
<td>38</td>
<td>0</td>
<td>1000.00</td>
<td>24813.00</td>
</tr>
<tr>
<td>104</td>
<td>53</td>
<td>11</td>
<td>38</td>
<td>1</td>
<td>5.30</td>
<td>24818.30</td>
</tr>
<tr>
<td>103</td>
<td>73</td>
<td>15</td>
<td>40</td>
<td>0</td>
<td>1216.67</td>
<td>26034.97</td>
</tr>
<tr>
<td>102</td>
<td>31</td>
<td>7</td>
<td>41</td>
<td>1</td>
<td>3.10</td>
<td>26038.07</td>
</tr>
<tr>
<td>101</td>
<td>40</td>
<td>8</td>
<td>42</td>
<td>2</td>
<td>666.67</td>
<td>26704.73</td>
</tr>
<tr>
<td>100</td>
<td>70</td>
<td>14</td>
<td>43</td>
<td>1</td>
<td>7.00</td>
<td>26711.73</td>
</tr>
<tr>
<td>99</td>
<td>100</td>
<td>20</td>
<td>44</td>
<td>1</td>
<td>10.00</td>
<td>26721.73</td>
</tr>
<tr>
<td>98</td>
<td>28</td>
<td>6</td>
<td>45</td>
<td>0</td>
<td>2.90</td>
<td>26724.63</td>
</tr>
<tr>
<td>97</td>
<td>96</td>
<td>20</td>
<td>46</td>
<td>0</td>
<td>8.60</td>
<td>26734.23</td>
</tr>
<tr>
<td>96</td>
<td>46</td>
<td>10</td>
<td>47</td>
<td>0</td>
<td>4.60</td>
<td>26738.83</td>
</tr>
<tr>
<td>Bed number</td>
<td>Thickness (cm)</td>
<td>Bin assignment</td>
<td>Bin number</td>
<td>No. of beds per bin</td>
<td>Ind. time (yrs)</td>
<td>Cum. time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>95</td>
<td>210</td>
<td>42</td>
<td>48</td>
<td>0</td>
<td>21.00</td>
<td>26759.83</td>
</tr>
<tr>
<td>94</td>
<td>20</td>
<td>4</td>
<td>49</td>
<td>1</td>
<td>2.00</td>
<td>26761.83</td>
</tr>
<tr>
<td>93</td>
<td>58</td>
<td>14</td>
<td>50</td>
<td>1</td>
<td>6.80</td>
<td>26765.63</td>
</tr>
<tr>
<td>92</td>
<td>157</td>
<td>32</td>
<td>51</td>
<td>0</td>
<td>2616.67</td>
<td>29385.30</td>
</tr>
<tr>
<td>91</td>
<td>145</td>
<td>23</td>
<td>52</td>
<td>2</td>
<td>14.50</td>
<td>29399.80</td>
</tr>
<tr>
<td>90</td>
<td>63</td>
<td>13</td>
<td>53</td>
<td>0</td>
<td>1050.00</td>
<td>30449.80</td>
</tr>
<tr>
<td>89</td>
<td>44</td>
<td>9</td>
<td>54</td>
<td>2</td>
<td>4.40</td>
<td>30452.00</td>
</tr>
<tr>
<td>88</td>
<td>115</td>
<td>23</td>
<td>55</td>
<td>0</td>
<td>11.50</td>
<td>30460.50</td>
</tr>
<tr>
<td>87</td>
<td>52</td>
<td>11</td>
<td>56</td>
<td>0</td>
<td>868.87</td>
<td>31332.37</td>
</tr>
<tr>
<td>86</td>
<td>22</td>
<td>5</td>
<td>57</td>
<td>1</td>
<td>1.80</td>
<td>31340.57</td>
</tr>
<tr>
<td>85</td>
<td>2</td>
<td>1</td>
<td>58</td>
<td>1</td>
<td>33.33</td>
<td>31343.90</td>
</tr>
<tr>
<td>84</td>
<td>8</td>
<td>9</td>
<td>59</td>
<td>0</td>
<td>0.90</td>
<td>31386.80</td>
</tr>
<tr>
<td>83</td>
<td>21</td>
<td>9</td>
<td>60</td>
<td>0</td>
<td>416.87</td>
<td>31795.47</td>
</tr>
<tr>
<td>82</td>
<td>10</td>
<td>2</td>
<td>61</td>
<td>0</td>
<td>1.00</td>
<td>31796.47</td>
</tr>
<tr>
<td>81</td>
<td>71</td>
<td>15</td>
<td>62</td>
<td>0</td>
<td>1183.33</td>
<td>32965.80</td>
</tr>
<tr>
<td>80</td>
<td>21</td>
<td>9</td>
<td>63</td>
<td>0</td>
<td>2.10</td>
<td>32990.00</td>
</tr>
<tr>
<td>79</td>
<td>3</td>
<td>1</td>
<td>64</td>
<td>0</td>
<td>50.00</td>
<td>33020.00</td>
</tr>
<tr>
<td>78</td>
<td>15</td>
<td>3</td>
<td>65</td>
<td>1</td>
<td>1.80</td>
<td>33021.80</td>
</tr>
<tr>
<td>77</td>
<td>9</td>
<td>2</td>
<td>66</td>
<td>0</td>
<td>150.00</td>
<td>33171.80</td>
</tr>
<tr>
<td>76</td>
<td>29</td>
<td>6</td>
<td>67</td>
<td>0</td>
<td>2.90</td>
<td>33178.70</td>
</tr>
<tr>
<td>75</td>
<td>19</td>
<td>4</td>
<td>68</td>
<td>1</td>
<td>316.87</td>
<td>33492.97</td>
</tr>
<tr>
<td>74</td>
<td>54</td>
<td>11</td>
<td>69</td>
<td>0</td>
<td>5.40</td>
<td>33498.37</td>
</tr>
<tr>
<td>73</td>
<td>248</td>
<td>50</td>
<td>70</td>
<td>0</td>
<td>4150.00</td>
<td>37648.37</td>
</tr>
<tr>
<td>72</td>
<td>13</td>
<td>3</td>
<td>71</td>
<td>0</td>
<td>1.30</td>
<td>37649.67</td>
</tr>
<tr>
<td>71</td>
<td>244</td>
<td>42</td>
<td>72</td>
<td>0</td>
<td>4065.67</td>
<td>41716.33</td>
</tr>
<tr>
<td>70</td>
<td>3</td>
<td>1</td>
<td>73</td>
<td>0</td>
<td>0.30</td>
<td>41716.63</td>
</tr>
<tr>
<td>69</td>
<td>283</td>
<td>57</td>
<td>74</td>
<td>0</td>
<td>4716.87</td>
<td>46433.30</td>
</tr>
<tr>
<td>68</td>
<td>47</td>
<td>10</td>
<td>75</td>
<td>0</td>
<td>4.70</td>
<td>46438.00</td>
</tr>
<tr>
<td>67</td>
<td>86</td>
<td>17</td>
<td>76</td>
<td>1</td>
<td>1416.87</td>
<td>47854.87</td>
</tr>
<tr>
<td>66</td>
<td>21</td>
<td>5</td>
<td>77</td>
<td>0</td>
<td>2.10</td>
<td>47856.77</td>
</tr>
<tr>
<td>65</td>
<td>36</td>
<td>7</td>
<td>78</td>
<td>0</td>
<td>583.33</td>
<td>48440.10</td>
</tr>
<tr>
<td>64</td>
<td>9</td>
<td>2</td>
<td>79</td>
<td>0</td>
<td>0.90</td>
<td>48441.00</td>
</tr>
<tr>
<td>63</td>
<td>78</td>
<td>16</td>
<td>80</td>
<td>0</td>
<td>1300.00</td>
<td>49741.00</td>
</tr>
<tr>
<td>62</td>
<td>6</td>
<td>2</td>
<td>81</td>
<td>0</td>
<td>0.60</td>
<td>49741.60</td>
</tr>
<tr>
<td>61</td>
<td>212</td>
<td>43</td>
<td>82</td>
<td>0</td>
<td>3533.33</td>
<td>53374.93</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>5</td>
<td>83</td>
<td>0</td>
<td>2.20</td>
<td>53377.13</td>
</tr>
<tr>
<td>59</td>
<td>20</td>
<td>4</td>
<td>84</td>
<td>0</td>
<td>333.33</td>
<td>53910.47</td>
</tr>
<tr>
<td>58</td>
<td>3</td>
<td>1</td>
<td>85</td>
<td>0</td>
<td>0.30</td>
<td>53810.77</td>
</tr>
<tr>
<td>57</td>
<td>377</td>
<td>76</td>
<td>86</td>
<td>0</td>
<td>6283.33</td>
<td>60594.10</td>
</tr>
<tr>
<td>56</td>
<td>8</td>
<td>2</td>
<td>87</td>
<td>0</td>
<td>0.80</td>
<td>58994.90</td>
</tr>
<tr>
<td>55</td>
<td>39</td>
<td>6</td>
<td>88</td>
<td>0</td>
<td>650.00</td>
<td>60544.90</td>
</tr>
<tr>
<td>54</td>
<td>3</td>
<td>1</td>
<td>89</td>
<td>1</td>
<td>0.30</td>
<td>60545.20</td>
</tr>
<tr>
<td>53</td>
<td>14</td>
<td>3</td>
<td>90</td>
<td>0</td>
<td>233.33</td>
<td>60784.53</td>
</tr>
<tr>
<td>52</td>
<td>10</td>
<td>2</td>
<td>91</td>
<td>0</td>
<td>1.00</td>
<td>60795.53</td>
</tr>
<tr>
<td>51</td>
<td>299</td>
<td>58</td>
<td>92</td>
<td>0</td>
<td>4933.33</td>
<td>65612.87</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>1</td>
<td>93</td>
<td>0</td>
<td>0.20</td>
<td>65613.07</td>
</tr>
<tr>
<td>49</td>
<td>42</td>
<td>8</td>
<td>94</td>
<td>0</td>
<td>700.00</td>
<td>66313.07</td>
</tr>
<tr>
<td>48</td>
<td>14</td>
<td>3</td>
<td>95</td>
<td>0</td>
<td>1.40</td>
<td>66314.47</td>
</tr>
<tr>
<td>47</td>
<td>75</td>
<td>15</td>
<td>96</td>
<td>0</td>
<td>1250.00</td>
<td>67564.47</td>
</tr>
<tr>
<td>bed number (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>ind. time (yrs)</td>
<td>cum. time (yrs)</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>7</td>
<td>2</td>
<td>97</td>
<td>0.70</td>
<td>67565.17</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>44</td>
<td>9</td>
<td>98</td>
<td>733.33</td>
<td>68298.50</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2</td>
<td>1</td>
<td>98</td>
<td>0.20</td>
<td>68298.70</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>150</td>
<td>30</td>
<td>100</td>
<td>2500.00</td>
<td>70799.70</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>2</td>
<td>101</td>
<td>0.60</td>
<td>70799.30</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>92</td>
<td>19</td>
<td>102</td>
<td>1533.33</td>
<td>72332.63</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>1</td>
<td>103</td>
<td>0.20</td>
<td>72332.83</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>170</td>
<td>34</td>
<td>104</td>
<td>17.00</td>
<td>72349.83</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>1</td>
<td>105</td>
<td>0.30</td>
<td>72350.13</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>1</td>
<td>106</td>
<td>16.67</td>
<td>72366.80</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>1</td>
<td>107</td>
<td>0.20</td>
<td>72367.00</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>128</td>
<td>28</td>
<td>108</td>
<td>12.60</td>
<td>72379.80</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>1</td>
<td>109</td>
<td>0.30</td>
<td>72380.10</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td>7</td>
<td>110</td>
<td>3.20</td>
<td>72383.30</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3</td>
<td>1</td>
<td>111</td>
<td>0.30</td>
<td>72383.60</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>1</td>
<td>112</td>
<td>0.50</td>
<td>72384.10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>1</td>
<td>113</td>
<td>0.20</td>
<td>72384.30</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2</td>
<td>6</td>
<td>114</td>
<td>2.90</td>
<td>72387.20</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>1</td>
<td>115</td>
<td>0.20</td>
<td>72387.40</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>16</td>
<td>4</td>
<td>116</td>
<td>206.67</td>
<td>72594.07</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>1</td>
<td>117</td>
<td>0.30</td>
<td>72595.37</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>1</td>
<td>118</td>
<td>33.33</td>
<td>72628.70</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>1</td>
<td>119</td>
<td>0.30</td>
<td>72629.00</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>1</td>
<td>120</td>
<td>33.33</td>
<td>72721.33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>1</td>
<td>121</td>
<td>0.40</td>
<td>72721.73</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td>17</td>
<td>122</td>
<td>8.30</td>
<td>72730.03</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>280</td>
<td>52</td>
<td>123</td>
<td>4333.33</td>
<td>77063.37</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>17</td>
<td>124</td>
<td>8.50</td>
<td>77071.87</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>4</td>
<td>125</td>
<td>283.33</td>
<td>77355.20</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>1</td>
<td>126</td>
<td>0.40</td>
<td>77355.60</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>51</td>
<td>11</td>
<td>127</td>
<td>850.00</td>
<td>78206.60</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>2</td>
<td>128</td>
<td>0.70</td>
<td>78206.30</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>58</td>
<td>12</td>
<td>129</td>
<td>963.33</td>
<td>79190.63</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>3</td>
<td>130</td>
<td>1.10</td>
<td>79190.73</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>1</td>
<td>131</td>
<td>66.67</td>
<td>79257.40</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>132</td>
<td>0.20</td>
<td>79257.60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>79</td>
<td>16</td>
<td>133</td>
<td>1316.67</td>
<td>80574.27</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2</td>
<td>134</td>
<td>0.80</td>
<td>80574.87</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>13</td>
<td>135</td>
<td>1086.67</td>
<td>81641.53</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>3</td>
<td>136</td>
<td>1.30</td>
<td>81642.83</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>2</td>
<td>137</td>
<td>1.00</td>
<td>81643.83</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>138</td>
<td>0.30</td>
<td>81644.13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>139</td>
<td>33.33</td>
<td>81677.47</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>140</td>
<td>0.40</td>
<td>81677.87</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>10</td>
<td>141</td>
<td>800.00</td>
<td>82477.87</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>27</td>
<td>6</td>
<td>142</td>
<td>2.70</td>
<td>82480.57</td>
<td></td>
</tr>
</tbody>
</table>
Wagonhound South - 3

<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>Ind. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>750</td>
<td>156</td>
<td>1</td>
<td>1</td>
<td>75.00</td>
<td>75.00</td>
</tr>
<tr>
<td>137</td>
<td>627</td>
<td>164</td>
<td>2</td>
<td>1</td>
<td>52.00</td>
<td>157.00</td>
</tr>
<tr>
<td>138</td>
<td>600</td>
<td>120</td>
<td>3</td>
<td>8</td>
<td>80.00</td>
<td>217.00</td>
</tr>
<tr>
<td>135</td>
<td>840</td>
<td>128</td>
<td>4</td>
<td>8</td>
<td>84.00</td>
<td>281.00</td>
</tr>
<tr>
<td>134</td>
<td>90</td>
<td>18</td>
<td>5</td>
<td>7</td>
<td>9.00</td>
<td>290.00</td>
</tr>
<tr>
<td>133</td>
<td>430</td>
<td>66</td>
<td>6</td>
<td>11</td>
<td>43.00</td>
<td>333.00</td>
</tr>
<tr>
<td>132</td>
<td>410</td>
<td>82</td>
<td>7</td>
<td>2</td>
<td>41.00</td>
<td>374.00</td>
</tr>
<tr>
<td>131</td>
<td>60</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>6.00</td>
<td>380.00</td>
</tr>
<tr>
<td>130</td>
<td>60</td>
<td>12</td>
<td>9</td>
<td>4</td>
<td>6.00</td>
<td>386.00</td>
</tr>
<tr>
<td>129</td>
<td>520</td>
<td>104</td>
<td>10</td>
<td>4</td>
<td>52.00</td>
<td>438.00</td>
</tr>
<tr>
<td>128</td>
<td>18</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>1.60</td>
<td>439.60</td>
</tr>
<tr>
<td>127</td>
<td>80</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td>1333.33</td>
<td>1772.93</td>
</tr>
<tr>
<td>126</td>
<td>95</td>
<td>19</td>
<td>13</td>
<td>6</td>
<td>9.60</td>
<td>1782.43</td>
</tr>
<tr>
<td>125</td>
<td>260</td>
<td>56</td>
<td>14</td>
<td>1</td>
<td>28.00</td>
<td>1810.43</td>
</tr>
<tr>
<td>124</td>
<td>230</td>
<td>46</td>
<td>15</td>
<td>3</td>
<td>23.00</td>
<td>1833.43</td>
</tr>
<tr>
<td>123</td>
<td>30</td>
<td>6</td>
<td>16</td>
<td>2</td>
<td>50.00</td>
<td>2353.43</td>
</tr>
<tr>
<td>122</td>
<td>40</td>
<td>8</td>
<td>17</td>
<td>1</td>
<td>4.00</td>
<td>2337.43</td>
</tr>
<tr>
<td>121</td>
<td>130</td>
<td>26</td>
<td>18</td>
<td>1</td>
<td>13.00</td>
<td>2359.43</td>
</tr>
<tr>
<td>120</td>
<td>15</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>1.50</td>
<td>2351.93</td>
</tr>
<tr>
<td>119</td>
<td>45</td>
<td>9</td>
<td>20</td>
<td>1</td>
<td>75.00</td>
<td>3101.93</td>
</tr>
<tr>
<td>118</td>
<td>28</td>
<td>6</td>
<td>21</td>
<td>0</td>
<td>2.80</td>
<td>3104.73</td>
</tr>
<tr>
<td>117</td>
<td>40</td>
<td>8</td>
<td>22</td>
<td>1</td>
<td>666.67</td>
<td>3771.40</td>
</tr>
<tr>
<td>116</td>
<td>15</td>
<td>3</td>
<td>23</td>
<td>0</td>
<td>1.50</td>
<td>3772.90</td>
</tr>
<tr>
<td>115</td>
<td>65</td>
<td>13</td>
<td>24</td>
<td>0</td>
<td>6.50</td>
<td>3779.40</td>
</tr>
<tr>
<td>114</td>
<td>10</td>
<td>2</td>
<td>25</td>
<td>1</td>
<td>1.00</td>
<td>3780.40</td>
</tr>
<tr>
<td>113</td>
<td>60</td>
<td>12</td>
<td>28</td>
<td>2</td>
<td>1000.00</td>
<td>4780.40</td>
</tr>
<tr>
<td>112</td>
<td>48</td>
<td>10</td>
<td>27</td>
<td>1</td>
<td>4.80</td>
<td>4785.20</td>
</tr>
<tr>
<td>111</td>
<td>60</td>
<td>12</td>
<td>28</td>
<td>1</td>
<td>1000.00</td>
<td>5785.20</td>
</tr>
<tr>
<td>110</td>
<td>30</td>
<td>6</td>
<td>29</td>
<td>0</td>
<td>3.00</td>
<td>5788.20</td>
</tr>
<tr>
<td>109</td>
<td>25</td>
<td>5</td>
<td>30</td>
<td>1</td>
<td>416.67</td>
<td>6204.87</td>
</tr>
<tr>
<td>108</td>
<td>50</td>
<td>10</td>
<td>31</td>
<td>0</td>
<td>5.00</td>
<td>6209.87</td>
</tr>
<tr>
<td>107</td>
<td>65</td>
<td>13</td>
<td>32</td>
<td>1</td>
<td>1083.33</td>
<td>7293.20</td>
</tr>
<tr>
<td>106</td>
<td>12</td>
<td>3</td>
<td>33</td>
<td>0</td>
<td>1.20</td>
<td>7294.40</td>
</tr>
<tr>
<td>105</td>
<td>2</td>
<td>1</td>
<td>34</td>
<td>0</td>
<td>0.20</td>
<td>7294.60</td>
</tr>
<tr>
<td>104</td>
<td>130</td>
<td>26</td>
<td>35</td>
<td>0</td>
<td>2166.67</td>
<td>9461.27</td>
</tr>
<tr>
<td>103</td>
<td>7</td>
<td>2</td>
<td>36</td>
<td>0</td>
<td>0.70</td>
<td>9461.97</td>
</tr>
<tr>
<td>102</td>
<td>50</td>
<td>10</td>
<td>37</td>
<td>1</td>
<td>833.33</td>
<td>10295.30</td>
</tr>
<tr>
<td>101</td>
<td>12</td>
<td>3</td>
<td>38</td>
<td>2</td>
<td>1.20</td>
<td>10296.50</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>6</td>
<td>39</td>
<td>0</td>
<td>500.00</td>
<td>10796.50</td>
</tr>
<tr>
<td>99</td>
<td>8</td>
<td>2</td>
<td>40</td>
<td>0</td>
<td>0.80</td>
<td>10797.30</td>
</tr>
<tr>
<td>98</td>
<td>10</td>
<td>2</td>
<td>41</td>
<td>0</td>
<td>186.67</td>
<td>10963.97</td>
</tr>
<tr>
<td>97</td>
<td>6</td>
<td>2</td>
<td>42</td>
<td>1</td>
<td>0.60</td>
<td>10964.57</td>
</tr>
<tr>
<td>96</td>
<td>30</td>
<td>6</td>
<td>43</td>
<td>0</td>
<td>500.00</td>
<td>11464.57</td>
</tr>
<tr>
<td>95</td>
<td>22</td>
<td>5</td>
<td>44</td>
<td>0</td>
<td>2.20</td>
<td>11466.77</td>
</tr>
<tr>
<td>94</td>
<td>25</td>
<td>5</td>
<td>45</td>
<td>1</td>
<td>416.67</td>
<td>11883.43</td>
</tr>
<tr>
<td>93</td>
<td>5</td>
<td>1</td>
<td>46</td>
<td>1</td>
<td>0.50</td>
<td>11883.93</td>
</tr>
<tr>
<td>92</td>
<td>60</td>
<td>12</td>
<td>47</td>
<td>0</td>
<td>1000.00</td>
<td>12883.93</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>ind. time (yrs)</th>
<th>cum. time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>60</td>
<td>12</td>
<td>48</td>
<td>0</td>
<td>6.00</td>
</tr>
<tr>
<td>90</td>
<td>110</td>
<td>22</td>
<td>49</td>
<td>0</td>
<td>8.00</td>
</tr>
<tr>
<td>88</td>
<td>40</td>
<td>8</td>
<td>50</td>
<td>0</td>
<td>4.00</td>
</tr>
<tr>
<td>88</td>
<td>20</td>
<td>4</td>
<td>51</td>
<td>0</td>
<td>3.33</td>
</tr>
<tr>
<td>87</td>
<td>20</td>
<td>4</td>
<td>52</td>
<td>0</td>
<td>2.00</td>
</tr>
<tr>
<td>86</td>
<td>18</td>
<td>4</td>
<td>53</td>
<td>0</td>
<td>2.67</td>
</tr>
<tr>
<td>85</td>
<td>30</td>
<td>6</td>
<td>54</td>
<td>0</td>
<td>3.00</td>
</tr>
<tr>
<td>84</td>
<td>225</td>
<td>48</td>
<td>55</td>
<td>0</td>
<td>2.25</td>
</tr>
<tr>
<td>83</td>
<td>44</td>
<td>9</td>
<td>56</td>
<td>0</td>
<td>2.00</td>
</tr>
<tr>
<td>82</td>
<td>82</td>
<td>13</td>
<td>57</td>
<td>0</td>
<td>2.00</td>
</tr>
<tr>
<td>81</td>
<td>5</td>
<td>1</td>
<td>58</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>80</td>
<td>98</td>
<td>20</td>
<td>59</td>
<td>0</td>
<td>1.63</td>
</tr>
<tr>
<td>79</td>
<td>7</td>
<td>2</td>
<td>60</td>
<td>0</td>
<td>0.70</td>
</tr>
<tr>
<td>78</td>
<td>28</td>
<td>6</td>
<td>61</td>
<td>0</td>
<td>4.66</td>
</tr>
<tr>
<td>77</td>
<td>8</td>
<td>6</td>
<td>62</td>
<td>0</td>
<td>0.80</td>
</tr>
<tr>
<td>76</td>
<td>143</td>
<td>28</td>
<td>63</td>
<td>0</td>
<td>2.33</td>
</tr>
<tr>
<td>75</td>
<td>4</td>
<td>1</td>
<td>64</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>74</td>
<td>166</td>
<td>32</td>
<td>66</td>
<td>0</td>
<td>2.60</td>
</tr>
<tr>
<td>73</td>
<td>15</td>
<td>3</td>
<td>66</td>
<td>0</td>
<td>1.50</td>
</tr>
<tr>
<td>72</td>
<td>93</td>
<td>19</td>
<td>67</td>
<td>0</td>
<td>1.56</td>
</tr>
<tr>
<td>71</td>
<td>5</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>70</td>
<td>55</td>
<td>11</td>
<td>69</td>
<td>0</td>
<td>0.91</td>
</tr>
<tr>
<td>69</td>
<td>23</td>
<td>5</td>
<td>70</td>
<td>0</td>
<td>2.30</td>
</tr>
<tr>
<td>68</td>
<td>60</td>
<td>12</td>
<td>71</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>67</td>
<td>12</td>
<td>3</td>
<td>72</td>
<td>0</td>
<td>1.20</td>
</tr>
<tr>
<td>66</td>
<td>58</td>
<td>12</td>
<td>73</td>
<td>0</td>
<td>0.96</td>
</tr>
<tr>
<td>65</td>
<td>18</td>
<td>4</td>
<td>74</td>
<td>0</td>
<td>1.80</td>
</tr>
<tr>
<td>64</td>
<td>72</td>
<td>15</td>
<td>75</td>
<td>0</td>
<td>1.20</td>
</tr>
<tr>
<td>63</td>
<td>7</td>
<td>2</td>
<td>76</td>
<td>0</td>
<td>0.70</td>
</tr>
<tr>
<td>62</td>
<td>185</td>
<td>37</td>
<td>77</td>
<td>0</td>
<td>3.06</td>
</tr>
<tr>
<td>61</td>
<td>4</td>
<td>1</td>
<td>78</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>60</td>
<td>240</td>
<td>48</td>
<td>79</td>
<td>0</td>
<td>4.00</td>
</tr>
<tr>
<td>59</td>
<td>40</td>
<td>8</td>
<td>80</td>
<td>0</td>
<td>4.00</td>
</tr>
<tr>
<td>58</td>
<td>280</td>
<td>58</td>
<td>81</td>
<td>0</td>
<td>4.00</td>
</tr>
<tr>
<td>57</td>
<td>35</td>
<td>7</td>
<td>82</td>
<td>1</td>
<td>3.50</td>
</tr>
<tr>
<td>56</td>
<td>85</td>
<td>17</td>
<td>83</td>
<td>0</td>
<td>1.41</td>
</tr>
<tr>
<td>55</td>
<td>35</td>
<td>7</td>
<td>84</td>
<td>0</td>
<td>3.50</td>
</tr>
<tr>
<td>54</td>
<td>80</td>
<td>16</td>
<td>85</td>
<td>0</td>
<td>8.00</td>
</tr>
<tr>
<td>53</td>
<td>8</td>
<td>2</td>
<td>86</td>
<td>1</td>
<td>0.80</td>
</tr>
<tr>
<td>52</td>
<td>190</td>
<td>38</td>
<td>87</td>
<td>0</td>
<td>3.19</td>
</tr>
<tr>
<td>51</td>
<td>14</td>
<td>3</td>
<td>88</td>
<td>0</td>
<td>1.40</td>
</tr>
<tr>
<td>50</td>
<td>150</td>
<td>30</td>
<td>89</td>
<td>0</td>
<td>2.50</td>
</tr>
<tr>
<td>49</td>
<td>22</td>
<td>5</td>
<td>90</td>
<td>0</td>
<td>2.20</td>
</tr>
<tr>
<td>48</td>
<td>95</td>
<td>19</td>
<td>91</td>
<td>0</td>
<td>1.58</td>
</tr>
<tr>
<td>47</td>
<td>20</td>
<td>4</td>
<td>92</td>
<td>0</td>
<td>2.00</td>
</tr>
<tr>
<td>46</td>
<td>190</td>
<td>38</td>
<td>93</td>
<td>0</td>
<td>1.90</td>
</tr>
<tr>
<td>45</td>
<td>38</td>
<td>8</td>
<td>94</td>
<td>0</td>
<td>3.80</td>
</tr>
<tr>
<td>44</td>
<td>208</td>
<td>42</td>
<td>95</td>
<td>0</td>
<td>20.80</td>
</tr>
<tr>
<td>43</td>
<td>25</td>
<td>6</td>
<td>96</td>
<td>0</td>
<td>2.50</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignments</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>ind. time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>42</td>
<td>125</td>
<td>26</td>
<td>97</td>
<td>0</td>
<td>12.50</td>
</tr>
<tr>
<td>41</td>
<td>10</td>
<td>2</td>
<td>98</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>75</td>
<td>15</td>
<td>96</td>
<td>0</td>
<td>1250.00</td>
</tr>
<tr>
<td>39</td>
<td>30</td>
<td>6</td>
<td>102</td>
<td>0</td>
<td>3.00</td>
</tr>
<tr>
<td>38</td>
<td>45</td>
<td>8</td>
<td>101</td>
<td>0</td>
<td>4.50</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>9</td>
<td>102</td>
<td>0</td>
<td>616.67</td>
</tr>
<tr>
<td>36</td>
<td>45</td>
<td>9</td>
<td>103</td>
<td>0</td>
<td>4.50</td>
</tr>
<tr>
<td>35</td>
<td>50</td>
<td>10</td>
<td>104</td>
<td>1</td>
<td>833.33</td>
</tr>
<tr>
<td>34</td>
<td>30</td>
<td>6</td>
<td>105</td>
<td>0</td>
<td>3.00</td>
</tr>
<tr>
<td>33</td>
<td>65</td>
<td>13</td>
<td>106</td>
<td>0</td>
<td>6.50</td>
</tr>
<tr>
<td>32</td>
<td>75</td>
<td>15</td>
<td>107</td>
<td>0</td>
<td>1250.00</td>
</tr>
<tr>
<td>31</td>
<td>5</td>
<td>1</td>
<td>108</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>30</td>
<td>135</td>
<td>27</td>
<td>109</td>
<td>0</td>
<td>2260.00</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>1</td>
<td>110</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>28</td>
<td>25</td>
<td>5</td>
<td>111</td>
<td>0</td>
<td>416.67</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>1</td>
<td>112</td>
<td>0</td>
<td>0.30</td>
</tr>
<tr>
<td>26</td>
<td>64</td>
<td>13</td>
<td>113</td>
<td>0</td>
<td>1066.67</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>2</td>
<td>114</td>
<td>0</td>
<td>0.60</td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>6</td>
<td>115</td>
<td>0</td>
<td>433.33</td>
</tr>
<tr>
<td>23</td>
<td>5</td>
<td>1</td>
<td>116</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>22</td>
<td>65</td>
<td>13</td>
<td>117</td>
<td>0</td>
<td>1083.33</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>1</td>
<td>118</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>14</td>
<td>119</td>
<td>0</td>
<td>1133.33</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>1</td>
<td>120</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>4</td>
<td>121</td>
<td>0</td>
<td>333.33</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>1</td>
<td>122</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>16</td>
<td>54</td>
<td>11</td>
<td>123</td>
<td>0</td>
<td>900.00</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>1</td>
<td>124</td>
<td>0</td>
<td>0.30</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>3</td>
<td>125</td>
<td>0</td>
<td>250.00</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1</td>
<td>126</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>8</td>
<td>127</td>
<td>0</td>
<td>686.67</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>1</td>
<td>128</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>4</td>
<td>129</td>
<td>0</td>
<td>300.00</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2</td>
<td>130</td>
<td>0</td>
<td>0.60</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2</td>
<td>131</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>132</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>8</td>
<td>133</td>
<td>0</td>
<td>686.67</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>2</td>
<td>134</td>
<td>0</td>
<td>0.60</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>6</td>
<td>135</td>
<td>0</td>
<td>500.00</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>136</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>137</td>
<td>0</td>
<td>100.00</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>138</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>51</td>
<td>605</td>
<td>121</td>
<td>1</td>
<td>1</td>
<td>60.50</td>
</tr>
<tr>
<td>52</td>
<td>1470</td>
<td>293</td>
<td>2</td>
<td>7</td>
<td>147.00</td>
</tr>
<tr>
<td>49</td>
<td>70</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td>1186.67</td>
</tr>
<tr>
<td>48</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1.00</td>
</tr>
<tr>
<td>47</td>
<td>60</td>
<td>12</td>
<td>6</td>
<td>5</td>
<td>1000.00</td>
</tr>
<tr>
<td>46</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>0.60</td>
</tr>
<tr>
<td>45</td>
<td>80</td>
<td>16</td>
<td>7</td>
<td>0</td>
<td>1333.33</td>
</tr>
<tr>
<td>44</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>1.90</td>
</tr>
<tr>
<td>43</td>
<td>25</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>416.67</td>
</tr>
<tr>
<td>42</td>
<td>22</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>2.20</td>
</tr>
<tr>
<td>41</td>
<td>25</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>416.67</td>
</tr>
<tr>
<td>40</td>
<td>22</td>
<td>5</td>
<td>12</td>
<td>2</td>
<td>2.20</td>
</tr>
<tr>
<td>39</td>
<td>30</td>
<td>6</td>
<td>13</td>
<td>0</td>
<td>500.00</td>
</tr>
<tr>
<td>38</td>
<td>6</td>
<td>2</td>
<td>14</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>37</td>
<td>200</td>
<td>40</td>
<td>15</td>
<td>0</td>
<td>3333.33</td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>2</td>
<td>16</td>
<td>3</td>
<td>0.70</td>
</tr>
<tr>
<td>35</td>
<td>100</td>
<td>20</td>
<td>17</td>
<td>0</td>
<td>10.00</td>
</tr>
<tr>
<td>34</td>
<td>19</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>1.90</td>
</tr>
<tr>
<td>33</td>
<td>250</td>
<td>50</td>
<td>19</td>
<td>1</td>
<td>25.00</td>
</tr>
<tr>
<td>32</td>
<td>110</td>
<td>22</td>
<td>20</td>
<td>2</td>
<td>1833.33</td>
</tr>
<tr>
<td>31</td>
<td>210</td>
<td>42</td>
<td>21</td>
<td>0</td>
<td>21.00</td>
</tr>
<tr>
<td>30</td>
<td>92</td>
<td>19</td>
<td>22</td>
<td>2</td>
<td>1533.33</td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>2</td>
<td>23</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>6</td>
<td>24</td>
<td>0</td>
<td>500.00</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>4</td>
<td>25</td>
<td>0</td>
<td>1.80</td>
</tr>
<tr>
<td>26</td>
<td>412</td>
<td>83</td>
<td>26</td>
<td>0</td>
<td>6868.67</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>6</td>
<td>27</td>
<td>0</td>
<td>3.00</td>
</tr>
<tr>
<td>24</td>
<td>108</td>
<td>22</td>
<td>28</td>
<td>0</td>
<td>1800.00</td>
</tr>
<tr>
<td>23</td>
<td>80</td>
<td>16</td>
<td>29</td>
<td>2</td>
<td>8.00</td>
</tr>
<tr>
<td>22</td>
<td>90</td>
<td>18</td>
<td>30</td>
<td>0</td>
<td>1500.00</td>
</tr>
<tr>
<td>21</td>
<td>55</td>
<td>11</td>
<td>31</td>
<td>0</td>
<td>5.50</td>
</tr>
<tr>
<td>20</td>
<td>450</td>
<td>90</td>
<td>32</td>
<td>0</td>
<td>7500.00</td>
</tr>
<tr>
<td>19</td>
<td>78</td>
<td>18</td>
<td>33</td>
<td>0</td>
<td>7.80</td>
</tr>
<tr>
<td>18</td>
<td>325</td>
<td>65</td>
<td>34</td>
<td>0</td>
<td>5416.67</td>
</tr>
<tr>
<td>17</td>
<td>2320</td>
<td>484</td>
<td>35</td>
<td>0</td>
<td>232.00</td>
</tr>
<tr>
<td>16</td>
<td>295</td>
<td>58</td>
<td>36</td>
<td>0</td>
<td>4916.67</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>5</td>
<td>37</td>
<td>0</td>
<td>2.60</td>
</tr>
<tr>
<td>14</td>
<td>145</td>
<td>29</td>
<td>38</td>
<td>0</td>
<td>2416.67</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>2</td>
<td>39</td>
<td>0</td>
<td>0.60</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
<td>12</td>
<td>40</td>
<td>1</td>
<td>1000.00</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>2</td>
<td>41</td>
<td>0</td>
<td>0.70</td>
</tr>
<tr>
<td>10</td>
<td>440</td>
<td>88</td>
<td>42</td>
<td>1</td>
<td>7333.33</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>4</td>
<td>43</td>
<td>0</td>
<td>1.70</td>
</tr>
<tr>
<td>8</td>
<td>145</td>
<td>29</td>
<td>44</td>
<td>0</td>
<td>2416.67</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>4</td>
<td>45</td>
<td>0</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>60</td>
<td>46</td>
<td>0</td>
<td>5000.00</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>47</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>6</td>
<td>48</td>
<td>0</td>
<td>500.00</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>ind. time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>48</td>
<td>0</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>660</td>
<td>132</td>
<td>50</td>
<td>1</td>
<td>11000.00</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>20</td>
<td>51</td>
<td>0</td>
<td>10.00</td>
</tr>
<tr>
<td>Bed number</td>
<td>Thickness (cm)</td>
<td>Bin assignment</td>
<td>Bin number</td>
<td>Ind. Time (yrs)</td>
<td>Cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>201</td>
<td>489</td>
<td>84</td>
<td>1</td>
<td>48.90</td>
<td>48.90</td>
</tr>
<tr>
<td>200</td>
<td>389</td>
<td>74</td>
<td>2</td>
<td>36.90</td>
<td>85.80</td>
</tr>
<tr>
<td>199</td>
<td>60</td>
<td>12</td>
<td>3</td>
<td>6.00</td>
<td>89.80</td>
</tr>
<tr>
<td>198</td>
<td>169</td>
<td>34</td>
<td>4</td>
<td>2816.87</td>
<td>2906.47</td>
</tr>
<tr>
<td>197</td>
<td>59</td>
<td>12</td>
<td>5</td>
<td>5.90</td>
<td>2912.37</td>
</tr>
<tr>
<td>196</td>
<td>122</td>
<td>25</td>
<td>6</td>
<td>2033.33</td>
<td>4945.70</td>
</tr>
<tr>
<td>195</td>
<td>22</td>
<td>6</td>
<td>7</td>
<td>2.20</td>
<td>4947.90</td>
</tr>
<tr>
<td>194</td>
<td>153</td>
<td>31</td>
<td>8</td>
<td>2550.00</td>
<td>7497.90</td>
</tr>
<tr>
<td>193</td>
<td>40</td>
<td>8</td>
<td>8</td>
<td>4.00</td>
<td>7501.90</td>
</tr>
<tr>
<td>192</td>
<td>158</td>
<td>32</td>
<td>13</td>
<td>2633.33</td>
<td>10135.23</td>
</tr>
<tr>
<td>191</td>
<td>7</td>
<td>2</td>
<td>11</td>
<td>0.70</td>
<td>10135.93</td>
</tr>
<tr>
<td>190</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>100.00</td>
<td>10235.93</td>
</tr>
<tr>
<td>189</td>
<td>6</td>
<td>2</td>
<td>13</td>
<td>0.60</td>
<td>10236.53</td>
</tr>
<tr>
<td>188</td>
<td>10</td>
<td>2</td>
<td>14</td>
<td>166.67</td>
<td>10403.20</td>
</tr>
<tr>
<td>187</td>
<td>7</td>
<td>2</td>
<td>16</td>
<td>0.70</td>
<td>10403.90</td>
</tr>
<tr>
<td>186</td>
<td>148</td>
<td>30</td>
<td>16</td>
<td>2496.67</td>
<td>12879.57</td>
</tr>
<tr>
<td>185</td>
<td>8</td>
<td>2</td>
<td>17</td>
<td>0.80</td>
<td>12871.37</td>
</tr>
<tr>
<td>184</td>
<td>20</td>
<td>4</td>
<td>18</td>
<td>333.33</td>
<td>13204.70</td>
</tr>
<tr>
<td>183</td>
<td>16</td>
<td>4</td>
<td>18</td>
<td>1.60</td>
<td>13206.30</td>
</tr>
<tr>
<td>182</td>
<td>205</td>
<td>41</td>
<td>20</td>
<td>3416.67</td>
<td>16622.97</td>
</tr>
<tr>
<td>181</td>
<td>4</td>
<td>1</td>
<td>21</td>
<td>0.40</td>
<td>16623.37</td>
</tr>
<tr>
<td>180</td>
<td>55</td>
<td>11</td>
<td>22</td>
<td>916.67</td>
<td>17540.03</td>
</tr>
<tr>
<td>179</td>
<td>5</td>
<td>1</td>
<td>23</td>
<td>0.50</td>
<td>17540.53</td>
</tr>
<tr>
<td>178</td>
<td>92</td>
<td>19</td>
<td>24</td>
<td>1533.33</td>
<td>19073.87</td>
</tr>
<tr>
<td>177</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>0.40</td>
<td>19074.27</td>
</tr>
<tr>
<td>176</td>
<td>20</td>
<td>4</td>
<td>26</td>
<td>333.33</td>
<td>19407.60</td>
</tr>
<tr>
<td>175</td>
<td>3</td>
<td>1</td>
<td>27</td>
<td>0.30</td>
<td>19407.90</td>
</tr>
<tr>
<td>174</td>
<td>60</td>
<td>12</td>
<td>28</td>
<td>1000.00</td>
<td>20407.90</td>
</tr>
<tr>
<td>173</td>
<td>10</td>
<td>2</td>
<td>29</td>
<td>1.00</td>
<td>20408.90</td>
</tr>
<tr>
<td>172</td>
<td>40</td>
<td>8</td>
<td>30</td>
<td>688.67</td>
<td>21075.57</td>
</tr>
<tr>
<td>171</td>
<td>15</td>
<td>3</td>
<td>31</td>
<td>1.50</td>
<td>21077.07</td>
</tr>
<tr>
<td>170</td>
<td>138</td>
<td>26</td>
<td>32</td>
<td>2300.00</td>
<td>23397.07</td>
</tr>
<tr>
<td>169</td>
<td>30</td>
<td>6</td>
<td>33</td>
<td>3.00</td>
<td>23380.07</td>
</tr>
<tr>
<td>168</td>
<td>100</td>
<td>20</td>
<td>34</td>
<td>1686.67</td>
<td>25046.73</td>
</tr>
<tr>
<td>167</td>
<td>8</td>
<td>2</td>
<td>35</td>
<td>0.80</td>
<td>25047.53</td>
</tr>
<tr>
<td>166</td>
<td>72</td>
<td>15</td>
<td>36</td>
<td>1200.00</td>
<td>26247.53</td>
</tr>
<tr>
<td>165</td>
<td>18</td>
<td>4</td>
<td>37</td>
<td>1.80</td>
<td>26249.33</td>
</tr>
<tr>
<td>164</td>
<td>125</td>
<td>25</td>
<td>38</td>
<td>2063.33</td>
<td>28332.67</td>
</tr>
<tr>
<td>163</td>
<td>3</td>
<td>1</td>
<td>39</td>
<td>0.30</td>
<td>28332.97</td>
</tr>
<tr>
<td>162</td>
<td>40</td>
<td>8</td>
<td>40</td>
<td>668.67</td>
<td>28999.83</td>
</tr>
<tr>
<td>161</td>
<td>6</td>
<td>2</td>
<td>41</td>
<td>0.60</td>
<td>29000.23</td>
</tr>
<tr>
<td>160</td>
<td>150</td>
<td>30</td>
<td>42</td>
<td>15.00</td>
<td>29015.23</td>
</tr>
<tr>
<td>159</td>
<td>12</td>
<td>3</td>
<td>43</td>
<td>1.20</td>
<td>29016.43</td>
</tr>
<tr>
<td>158</td>
<td>8</td>
<td>2</td>
<td>44</td>
<td>133.33</td>
<td>29149.77</td>
</tr>
<tr>
<td>157</td>
<td>7</td>
<td>2</td>
<td>45</td>
<td>0.70</td>
<td>29150.47</td>
</tr>
<tr>
<td>156</td>
<td>138</td>
<td>26</td>
<td>46</td>
<td>2286.67</td>
<td>31417.13</td>
</tr>
<tr>
<td>155</td>
<td>4</td>
<td>1</td>
<td>47</td>
<td>0.40</td>
<td>31417.53</td>
</tr>
<tr>
<td>154</td>
<td>120</td>
<td>24</td>
<td>48</td>
<td>2000.00</td>
<td>33417.53</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>ind.time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>153</td>
<td>8</td>
<td>2</td>
<td>49</td>
<td>0.80</td>
<td>33418.33</td>
</tr>
<tr>
<td>152</td>
<td>10</td>
<td>21</td>
<td>50</td>
<td>1750.00</td>
<td>35168.33</td>
</tr>
<tr>
<td>151</td>
<td>18</td>
<td>4</td>
<td>51</td>
<td>1.60</td>
<td>35169.93</td>
</tr>
<tr>
<td>150</td>
<td>10</td>
<td>2</td>
<td>52</td>
<td>186.67</td>
<td>35336.60</td>
</tr>
<tr>
<td>149</td>
<td>48</td>
<td>10</td>
<td>53</td>
<td>4.80</td>
<td>35541.40</td>
</tr>
<tr>
<td>148</td>
<td>70</td>
<td>14</td>
<td>54</td>
<td>1186.67</td>
<td>36608.07</td>
</tr>
<tr>
<td>147</td>
<td>5</td>
<td>1</td>
<td>56</td>
<td>0.50</td>
<td>36508.57</td>
</tr>
<tr>
<td>146</td>
<td>49</td>
<td>28</td>
<td>55</td>
<td>2383.33</td>
<td>36841.96</td>
</tr>
<tr>
<td>145</td>
<td>10</td>
<td>2</td>
<td>57</td>
<td>1.00</td>
<td>38842.90</td>
</tr>
<tr>
<td>144</td>
<td>20</td>
<td>4</td>
<td>58</td>
<td>333.33</td>
<td>39176.23</td>
</tr>
<tr>
<td>143</td>
<td>14</td>
<td>3</td>
<td>59</td>
<td>1.40</td>
<td>39177.63</td>
</tr>
<tr>
<td>142</td>
<td>62</td>
<td>13</td>
<td>60</td>
<td>1033.33</td>
<td>40210.97</td>
</tr>
<tr>
<td>141</td>
<td>12</td>
<td>3</td>
<td>61</td>
<td>1.20</td>
<td>40212.17</td>
</tr>
<tr>
<td>140</td>
<td>78</td>
<td>1</td>
<td>62</td>
<td>1300.00</td>
<td>41512.17</td>
</tr>
<tr>
<td>139</td>
<td>8</td>
<td>2</td>
<td>63</td>
<td>0.80</td>
<td>41512.97</td>
</tr>
<tr>
<td>138</td>
<td>197</td>
<td>34</td>
<td>64</td>
<td>2783.33</td>
<td>44296.30</td>
</tr>
<tr>
<td>137</td>
<td>6</td>
<td>2</td>
<td>65</td>
<td>0.80</td>
<td>44266.90</td>
</tr>
<tr>
<td>136</td>
<td>416</td>
<td>84</td>
<td>66</td>
<td>5933.33</td>
<td>51250.23</td>
</tr>
<tr>
<td>135</td>
<td>18</td>
<td>4</td>
<td>67</td>
<td>1.80</td>
<td>51232.03</td>
</tr>
<tr>
<td>134</td>
<td>130</td>
<td>26</td>
<td>68</td>
<td>13.00</td>
<td>61245.03</td>
</tr>
<tr>
<td>133</td>
<td>25</td>
<td>5</td>
<td>69</td>
<td>2.50</td>
<td>51247.53</td>
</tr>
<tr>
<td>132</td>
<td>250</td>
<td>50</td>
<td>70</td>
<td>4186.67</td>
<td>55414.20</td>
</tr>
<tr>
<td>131</td>
<td>29</td>
<td>9</td>
<td>71</td>
<td>2.60</td>
<td>55416.80</td>
</tr>
<tr>
<td>130</td>
<td>250</td>
<td>50</td>
<td>72</td>
<td>4166.67</td>
<td>55638.47</td>
</tr>
<tr>
<td>129</td>
<td>22</td>
<td>5</td>
<td>73</td>
<td>2.20</td>
<td>55963.67</td>
</tr>
<tr>
<td>128</td>
<td>223</td>
<td>44</td>
<td>74</td>
<td>3986.67</td>
<td>55352.33</td>
</tr>
<tr>
<td>127</td>
<td>4</td>
<td>1</td>
<td>75</td>
<td>0.40</td>
<td>63525.73</td>
</tr>
<tr>
<td>126</td>
<td>25</td>
<td>5</td>
<td>76</td>
<td>4166.67</td>
<td>63666.40</td>
</tr>
<tr>
<td>125</td>
<td>12</td>
<td>3</td>
<td>77</td>
<td>1.20</td>
<td>63670.60</td>
</tr>
<tr>
<td>124</td>
<td>8</td>
<td>2</td>
<td>78</td>
<td>133.33</td>
<td>63903.93</td>
</tr>
<tr>
<td>123</td>
<td>10</td>
<td>2</td>
<td>79</td>
<td>1.00</td>
<td>63804.93</td>
</tr>
<tr>
<td>122</td>
<td>10</td>
<td>2</td>
<td>80</td>
<td>166.67</td>
<td>63971.80</td>
</tr>
<tr>
<td>121</td>
<td>12</td>
<td>3</td>
<td>81</td>
<td>1.20</td>
<td>63572.80</td>
</tr>
<tr>
<td>120</td>
<td>38</td>
<td>8</td>
<td>82</td>
<td>833.33</td>
<td>64808.13</td>
</tr>
<tr>
<td>119</td>
<td>13</td>
<td>3</td>
<td>83</td>
<td>1.30</td>
<td>65467.43</td>
</tr>
<tr>
<td>118</td>
<td>395</td>
<td>73</td>
<td>84</td>
<td>5063.33</td>
<td>70690.77</td>
</tr>
<tr>
<td>117</td>
<td>20</td>
<td>4</td>
<td>85</td>
<td>2.00</td>
<td>70692.77</td>
</tr>
<tr>
<td>116</td>
<td>35</td>
<td>7</td>
<td>86</td>
<td>583.33</td>
<td>71276.10</td>
</tr>
<tr>
<td>115</td>
<td>170</td>
<td>34</td>
<td>87</td>
<td>17.00</td>
<td>71283.10</td>
</tr>
<tr>
<td>114</td>
<td>668</td>
<td>134</td>
<td>88</td>
<td>1113.33</td>
<td>82428.43</td>
</tr>
<tr>
<td>113</td>
<td>38</td>
<td>8</td>
<td>89</td>
<td>3.80</td>
<td>82430.03</td>
</tr>
<tr>
<td>112</td>
<td>158</td>
<td>34</td>
<td>90</td>
<td>2800.00</td>
<td>85530.08</td>
</tr>
<tr>
<td>111</td>
<td>38</td>
<td>8</td>
<td>91</td>
<td>3.80</td>
<td>85223.83</td>
</tr>
<tr>
<td>110</td>
<td>433</td>
<td>87</td>
<td>92</td>
<td>43.30</td>
<td>85277.13</td>
</tr>
<tr>
<td>109</td>
<td>35</td>
<td>7</td>
<td>93</td>
<td>3.80</td>
<td>85220.63</td>
</tr>
<tr>
<td>108</td>
<td>142</td>
<td>28</td>
<td>94</td>
<td>2338.67</td>
<td>87647.30</td>
</tr>
<tr>
<td>107</td>
<td>27</td>
<td>6</td>
<td>95</td>
<td>2.70</td>
<td>87650.00</td>
</tr>
<tr>
<td>106</td>
<td>147</td>
<td>30</td>
<td>96</td>
<td>14.70</td>
<td>87864.70</td>
</tr>
<tr>
<td>105</td>
<td>156</td>
<td>32</td>
<td>97</td>
<td>15.80</td>
<td>87880.30</td>
</tr>
<tr>
<td>104</td>
<td>32</td>
<td>7</td>
<td>98</td>
<td>3.20</td>
<td>87983.50</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>ind.time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>103</td>
<td>27</td>
<td>6</td>
<td>99</td>
<td>2.70</td>
<td>87688.20</td>
</tr>
<tr>
<td>102</td>
<td>267</td>
<td>60</td>
<td>100</td>
<td>28.70</td>
<td>87715.90</td>
</tr>
<tr>
<td>101</td>
<td>70</td>
<td>14</td>
<td>101</td>
<td>7.00</td>
<td>87722.90</td>
</tr>
<tr>
<td>100</td>
<td>28</td>
<td>6</td>
<td>102</td>
<td>2.60</td>
<td>87725.70</td>
</tr>
<tr>
<td>99</td>
<td>25</td>
<td>5</td>
<td>103</td>
<td>2.50</td>
<td>87728.20</td>
</tr>
<tr>
<td>98</td>
<td>1</td>
<td>1</td>
<td>104</td>
<td>16.67</td>
<td>87744.87</td>
</tr>
<tr>
<td>97</td>
<td>13</td>
<td>3</td>
<td>105</td>
<td>1.30</td>
<td>87746.17</td>
</tr>
<tr>
<td>96</td>
<td>2</td>
<td>1</td>
<td>106</td>
<td>33.33</td>
<td>87779.50</td>
</tr>
<tr>
<td>95</td>
<td>27</td>
<td>6</td>
<td>107</td>
<td>2.70</td>
<td>87782.20</td>
</tr>
<tr>
<td>94</td>
<td>3</td>
<td>1</td>
<td>108</td>
<td>60.00</td>
<td>87832.20</td>
</tr>
<tr>
<td>93</td>
<td>9</td>
<td>2</td>
<td>109</td>
<td>0.90</td>
<td>87833.10</td>
</tr>
<tr>
<td>92</td>
<td>17</td>
<td>4</td>
<td>110</td>
<td>1.70</td>
<td>87834.80</td>
</tr>
<tr>
<td>91</td>
<td>17</td>
<td>4</td>
<td>111</td>
<td>1.70</td>
<td>87835.50</td>
</tr>
<tr>
<td>90</td>
<td>14</td>
<td>3</td>
<td>112</td>
<td>233.33</td>
<td>88069.83</td>
</tr>
<tr>
<td>89</td>
<td>43</td>
<td>9</td>
<td>113</td>
<td>4.30</td>
<td>88074.13</td>
</tr>
<tr>
<td>88</td>
<td>5</td>
<td>1</td>
<td>114</td>
<td>83.33</td>
<td>88157.47</td>
</tr>
<tr>
<td>87</td>
<td>47</td>
<td>10</td>
<td>115</td>
<td>4.70</td>
<td>88162.17</td>
</tr>
<tr>
<td>86</td>
<td>10</td>
<td>2</td>
<td>116</td>
<td>166.67</td>
<td>88326.83</td>
</tr>
<tr>
<td>85</td>
<td>39</td>
<td>8</td>
<td>117</td>
<td>3.90</td>
<td>88332.73</td>
</tr>
<tr>
<td>84</td>
<td>4</td>
<td>1</td>
<td>118</td>
<td>0.40</td>
<td>88333.13</td>
</tr>
<tr>
<td>83</td>
<td>7</td>
<td>2</td>
<td>119</td>
<td>0.70</td>
<td>88333.83</td>
</tr>
<tr>
<td>82</td>
<td>1</td>
<td>1</td>
<td>120</td>
<td>16.67</td>
<td>88350.50</td>
</tr>
<tr>
<td>81</td>
<td>4</td>
<td>1</td>
<td>121</td>
<td>0.40</td>
<td>88350.90</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>1</td>
<td>122</td>
<td>50.00</td>
<td>88400.90</td>
</tr>
<tr>
<td>79</td>
<td>12</td>
<td>3</td>
<td>123</td>
<td>1.20</td>
<td>88402.10</td>
</tr>
<tr>
<td>78</td>
<td>25</td>
<td>5</td>
<td>124</td>
<td>416.67</td>
<td>88618.77</td>
</tr>
<tr>
<td>77</td>
<td>19</td>
<td>3</td>
<td>125</td>
<td>1.50</td>
<td>88820.27</td>
</tr>
<tr>
<td>76</td>
<td>5</td>
<td>1</td>
<td>126</td>
<td>63.33</td>
<td>88903.60</td>
</tr>
<tr>
<td>75</td>
<td>13</td>
<td>4</td>
<td>127</td>
<td>1.90</td>
<td>88905.50</td>
</tr>
<tr>
<td>74</td>
<td>3</td>
<td>1</td>
<td>128</td>
<td>50.00</td>
<td>88955.50</td>
</tr>
<tr>
<td>73</td>
<td>6</td>
<td>2</td>
<td>129</td>
<td>0.60</td>
<td>88956.10</td>
</tr>
<tr>
<td>72</td>
<td>3</td>
<td>1</td>
<td>130</td>
<td>50.00</td>
<td>89006.10</td>
</tr>
<tr>
<td>71</td>
<td>33</td>
<td>6</td>
<td>131</td>
<td>3.00</td>
<td>89009.10</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td></td>
<td>132</td>
<td>83.33</td>
<td>89092.43</td>
</tr>
<tr>
<td>69</td>
<td>6</td>
<td>1</td>
<td>132</td>
<td>0.60</td>
<td>89093.03</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>2</td>
<td>133</td>
<td>15.67</td>
<td>89108.70</td>
</tr>
<tr>
<td>67</td>
<td>6</td>
<td>2</td>
<td>134</td>
<td>0.60</td>
<td>89110.30</td>
</tr>
<tr>
<td>66</td>
<td>20</td>
<td>4</td>
<td>135</td>
<td>2.00</td>
<td>89112.30</td>
</tr>
<tr>
<td>65</td>
<td>11</td>
<td>3</td>
<td>136</td>
<td>183.33</td>
<td>89296.63</td>
</tr>
<tr>
<td>64</td>
<td>8</td>
<td>2</td>
<td>137</td>
<td>0.80</td>
<td>89296.43</td>
</tr>
<tr>
<td>63</td>
<td>30</td>
<td>6</td>
<td>138</td>
<td>3.00</td>
<td>89299.43</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>1</td>
<td>139</td>
<td>33.33</td>
<td>89332.77</td>
</tr>
<tr>
<td>61</td>
<td>6</td>
<td>2</td>
<td>140</td>
<td>0.60</td>
<td>89333.37</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>2</td>
<td>141</td>
<td>100.00</td>
<td>89433.37</td>
</tr>
<tr>
<td>59</td>
<td>14</td>
<td>3</td>
<td>142</td>
<td>1.40</td>
<td>89434.77</td>
</tr>
<tr>
<td>58</td>
<td>7</td>
<td>2</td>
<td>143</td>
<td>116.67</td>
<td>89551.43</td>
</tr>
<tr>
<td>57</td>
<td>11</td>
<td>3</td>
<td>144</td>
<td>1.10</td>
<td>89552.53</td>
</tr>
<tr>
<td>56</td>
<td>14</td>
<td>3</td>
<td>145</td>
<td>2368.67</td>
<td>91918.20</td>
</tr>
<tr>
<td>55</td>
<td>14</td>
<td>3</td>
<td>146</td>
<td>1.40</td>
<td>91920.60</td>
</tr>
<tr>
<td>54</td>
<td>20</td>
<td>4</td>
<td>147</td>
<td>333.33</td>
<td>92263.93</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>end time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>53</td>
<td>11</td>
<td>3</td>
<td>148</td>
<td>1.10</td>
<td>92255.03</td>
</tr>
<tr>
<td>52</td>
<td>8</td>
<td>2</td>
<td>149</td>
<td>1.33</td>
<td>92388.37</td>
</tr>
<tr>
<td>51</td>
<td>11</td>
<td>3</td>
<td>150</td>
<td>1.10</td>
<td>92389.47</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
<td>3</td>
<td>151</td>
<td>1.30</td>
<td>92390.77</td>
</tr>
<tr>
<td>48</td>
<td>14</td>
<td>8</td>
<td>233.33</td>
<td>233.33</td>
<td>92624.10</td>
</tr>
<tr>
<td>47</td>
<td>16</td>
<td>4</td>
<td>1.60</td>
<td>1.60</td>
<td>92625.70</td>
</tr>
<tr>
<td>46</td>
<td>13</td>
<td>1</td>
<td>1.30</td>
<td>1.30</td>
<td>94069.03</td>
</tr>
<tr>
<td>45</td>
<td>12</td>
<td>3</td>
<td>92705.37</td>
<td>92706.37</td>
<td>94710.33</td>
</tr>
<tr>
<td>44</td>
<td>10</td>
<td>2</td>
<td>1.00</td>
<td>1.00</td>
<td>94711.33</td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>3</td>
<td>183.33</td>
<td>183.33</td>
<td>94894.07</td>
</tr>
<tr>
<td>42</td>
<td>12</td>
<td>3</td>
<td>1.20</td>
<td>1.20</td>
<td>94895.67</td>
</tr>
<tr>
<td>41</td>
<td>13</td>
<td>8</td>
<td>633.33</td>
<td>633.33</td>
<td>95529.20</td>
</tr>
<tr>
<td>40</td>
<td>13</td>
<td>8</td>
<td>1.30</td>
<td>1.30</td>
<td>95530.50</td>
</tr>
<tr>
<td>39</td>
<td>13</td>
<td>8</td>
<td>1150.00</td>
<td>1150.00</td>
<td>96680.50</td>
</tr>
<tr>
<td>38</td>
<td>13</td>
<td>28</td>
<td>13.60</td>
<td>13.60</td>
<td>96694.30</td>
</tr>
<tr>
<td>37</td>
<td>120</td>
<td>24</td>
<td>12.00</td>
<td>12.00</td>
<td>96706.30</td>
</tr>
<tr>
<td>36</td>
<td>10</td>
<td>2</td>
<td>1.00</td>
<td>1.00</td>
<td>96707.30</td>
</tr>
<tr>
<td>35</td>
<td>13</td>
<td>3</td>
<td>1.30</td>
<td>1.30</td>
<td>96708.60</td>
</tr>
<tr>
<td>34</td>
<td>19</td>
<td>4</td>
<td>318.67</td>
<td>318.67</td>
<td>97025.27</td>
</tr>
<tr>
<td>33</td>
<td>63</td>
<td>13</td>
<td>8.30</td>
<td>8.30</td>
<td>97031.67</td>
</tr>
<tr>
<td>32</td>
<td>31</td>
<td>7</td>
<td>518.67</td>
<td>518.67</td>
<td>97548.23</td>
</tr>
<tr>
<td>31</td>
<td>33</td>
<td>7</td>
<td>3.30</td>
<td>3.30</td>
<td>97551.53</td>
</tr>
<tr>
<td>30</td>
<td>63</td>
<td>126</td>
<td>10800.00</td>
<td>10801.53</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>10</td>
<td>2</td>
<td>1.00</td>
<td>1.00</td>
<td>10905.53</td>
</tr>
<tr>
<td>28</td>
<td>678</td>
<td>118</td>
<td>9933.33</td>
<td>9933.33</td>
<td>117685.87</td>
</tr>
<tr>
<td>27</td>
<td>7</td>
<td>2</td>
<td>0.70</td>
<td>0.70</td>
<td>117688.57</td>
</tr>
<tr>
<td>26</td>
<td>66</td>
<td>17</td>
<td>1418.67</td>
<td>1418.67</td>
<td>119103.23</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>7</td>
<td>2.20</td>
<td>2.20</td>
<td>119105.43</td>
</tr>
<tr>
<td>24</td>
<td>142</td>
<td>23</td>
<td>2263.67</td>
<td>2263.67</td>
<td>121472.10</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>4</td>
<td>1.80</td>
<td>1.80</td>
<td>121473.90</td>
</tr>
<tr>
<td>22</td>
<td>800</td>
<td>160</td>
<td>13933.33</td>
<td>13933.33</td>
<td>134807.23</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>5</td>
<td>2.40</td>
<td>2.40</td>
<td>134809.63</td>
</tr>
<tr>
<td>20</td>
<td>352</td>
<td>71</td>
<td>5886.67</td>
<td>5886.67</td>
<td>140676.30</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>4</td>
<td>2.00</td>
<td>2.00</td>
<td>140678.30</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>5</td>
<td>366.67</td>
<td>366.67</td>
<td>141044.97</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>3</td>
<td>1.50</td>
<td>1.50</td>
<td>141046.47</td>
</tr>
<tr>
<td>16</td>
<td>709</td>
<td>141</td>
<td>11760.06</td>
<td>11760.06</td>
<td>152796.47</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>2</td>
<td>1.00</td>
<td>1.00</td>
<td>152797.47</td>
</tr>
<tr>
<td>14</td>
<td>130</td>
<td>28</td>
<td>2186.67</td>
<td>2186.67</td>
<td>154994.13</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>1</td>
<td>0.50</td>
<td>0.50</td>
<td>154994.63</td>
</tr>
<tr>
<td>12</td>
<td>94</td>
<td>18</td>
<td>1568.87</td>
<td>1568.87</td>
<td>156531.30</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>5</td>
<td>2.60</td>
<td>2.60</td>
<td>156533.80</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>5</td>
<td>418.67</td>
<td>418.67</td>
<td>156660.47</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>2</td>
<td>0.70</td>
<td>0.70</td>
<td>156951.17</td>
</tr>
<tr>
<td>8</td>
<td>91</td>
<td>19</td>
<td>1618.67</td>
<td>1618.67</td>
<td>158467.83</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0.30</td>
<td>0.30</td>
<td>159488.13</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>12</td>
<td>950.00</td>
<td>950.00</td>
<td>159418.13</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0.30</td>
<td>0.30</td>
<td>159418.43</td>
</tr>
<tr>
<td>4</td>
<td>228</td>
<td>44</td>
<td>3666.67</td>
<td>3666.67</td>
<td>153085.10</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td></td>
<td>0.60</td>
<td>163085.70</td>
</tr>
<tr>
<td>2</td>
<td>230</td>
<td>48</td>
<td></td>
<td>3833.33</td>
<td>168919.03</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>22</td>
<td></td>
<td>11.00</td>
<td>168930.03</td>
</tr>
</tbody>
</table>
Wagonhound East – 3

<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>Ind. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>157.70</td>
<td>157.70</td>
</tr>
<tr>
<td>51</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1.50</td>
<td>159.40</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>200.00</td>
<td>359.40</td>
</tr>
<tr>
<td>49</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0.90</td>
<td>360.30</td>
</tr>
<tr>
<td>48</td>
<td>115</td>
<td>23</td>
<td>5</td>
<td>3</td>
<td>11.50</td>
<td>371.80</td>
</tr>
<tr>
<td>47</td>
<td>16</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>1.60</td>
<td>373.40</td>
</tr>
<tr>
<td>46</td>
<td>78</td>
<td>16</td>
<td>7</td>
<td>3</td>
<td>1300.00</td>
<td>1673.40</td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>1.50</td>
<td>1674.90</td>
</tr>
<tr>
<td>44</td>
<td>849</td>
<td>170</td>
<td>9</td>
<td>1</td>
<td>84.90</td>
<td>1759.80</td>
</tr>
<tr>
<td>43</td>
<td>25</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>2.50</td>
<td>1762.30</td>
</tr>
<tr>
<td>42</td>
<td>252</td>
<td>51</td>
<td>11</td>
<td>0</td>
<td>25.20</td>
<td>1787.50</td>
</tr>
<tr>
<td>41</td>
<td>8</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td>0.80</td>
<td>1788.30</td>
</tr>
<tr>
<td>40</td>
<td>243</td>
<td>49</td>
<td>13</td>
<td>0</td>
<td>24.30</td>
<td>1812.60</td>
</tr>
<tr>
<td>39</td>
<td>29</td>
<td>6</td>
<td>14</td>
<td>1</td>
<td>2.90</td>
<td>1815.50</td>
</tr>
<tr>
<td>38</td>
<td>320</td>
<td>64</td>
<td>15</td>
<td>0</td>
<td>32.00</td>
<td>1847.50</td>
</tr>
<tr>
<td>37</td>
<td>77</td>
<td>16</td>
<td>16</td>
<td>3</td>
<td>7.70</td>
<td>1855.20</td>
</tr>
<tr>
<td>36</td>
<td>126</td>
<td>25</td>
<td>17</td>
<td>0</td>
<td>12.50</td>
<td>1867.70</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>1.00</td>
<td>1868.70</td>
</tr>
<tr>
<td>34</td>
<td>578</td>
<td>118</td>
<td>19</td>
<td>0</td>
<td>57.80</td>
<td>1926.80</td>
</tr>
<tr>
<td>33</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>4</td>
<td>1.00</td>
<td>1927.60</td>
</tr>
<tr>
<td>32</td>
<td>206</td>
<td>42</td>
<td>21</td>
<td>0</td>
<td>20.60</td>
<td>1948.10</td>
</tr>
<tr>
<td>31</td>
<td>40</td>
<td>8</td>
<td>22</td>
<td>0</td>
<td>4.00</td>
<td>1952.10</td>
</tr>
<tr>
<td>30</td>
<td>285</td>
<td>57</td>
<td>23</td>
<td>1</td>
<td>28.50</td>
<td>1980.60</td>
</tr>
<tr>
<td>29</td>
<td>130</td>
<td>26</td>
<td>28</td>
<td>1</td>
<td>13.00</td>
<td>2090.30</td>
</tr>
<tr>
<td>28</td>
<td>267</td>
<td>54</td>
<td>29</td>
<td>2</td>
<td>26.70</td>
<td>2077.00</td>
</tr>
<tr>
<td>27</td>
<td>126</td>
<td>26</td>
<td>30</td>
<td>1</td>
<td>12.60</td>
<td>2069.60</td>
</tr>
<tr>
<td>26</td>
<td>418</td>
<td>84</td>
<td>31</td>
<td>0</td>
<td>41.80</td>
<td>2111.40</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>5</td>
<td>32</td>
<td>1</td>
<td>2.20</td>
<td>2133.60</td>
</tr>
<tr>
<td>24</td>
<td>33</td>
<td>7</td>
<td>33</td>
<td>1</td>
<td>550.00</td>
<td>2683.60</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>4</td>
<td>34</td>
<td>1</td>
<td>1.80</td>
<td>2685.40</td>
</tr>
<tr>
<td>22</td>
<td>35</td>
<td>7</td>
<td>35</td>
<td>0</td>
<td>563.33</td>
<td>3248.73</td>
</tr>
<tr>
<td>21</td>
<td>274</td>
<td>55</td>
<td>36</td>
<td>0</td>
<td>27.40</td>
<td>3276.13</td>
</tr>
<tr>
<td>20</td>
<td>146</td>
<td>30</td>
<td>37</td>
<td>0</td>
<td>14.60</td>
<td>3310.73</td>
</tr>
<tr>
<td>19</td>
<td>66</td>
<td>14</td>
<td>38</td>
<td>0</td>
<td>6.60</td>
<td>3317.33</td>
</tr>
<tr>
<td>18</td>
<td>321</td>
<td>65</td>
<td>39</td>
<td>0</td>
<td>32.10</td>
<td>3349.43</td>
</tr>
<tr>
<td>17</td>
<td>134</td>
<td>27</td>
<td>40</td>
<td>0</td>
<td>13.40</td>
<td>3362.83</td>
</tr>
<tr>
<td>16</td>
<td>96</td>
<td>20</td>
<td>41</td>
<td>1</td>
<td>1600.00</td>
<td>4962.83</td>
</tr>
<tr>
<td>15</td>
<td>159</td>
<td>32</td>
<td>42</td>
<td>1</td>
<td>15.90</td>
<td>4978.73</td>
</tr>
<tr>
<td>14</td>
<td>554</td>
<td>111</td>
<td>43</td>
<td>0</td>
<td>55.40</td>
<td>5034.15</td>
</tr>
<tr>
<td>13</td>
<td>99</td>
<td>20</td>
<td>44</td>
<td>0</td>
<td>9.90</td>
<td>5044.03</td>
</tr>
<tr>
<td>12</td>
<td>168</td>
<td>34</td>
<td>45</td>
<td>0</td>
<td>2600.00</td>
<td>7844.03</td>
</tr>
<tr>
<td>11</td>
<td>57</td>
<td>18</td>
<td>46</td>
<td>0</td>
<td>8.70</td>
<td>7852.73</td>
</tr>
<tr>
<td>10</td>
<td>290</td>
<td>58</td>
<td>47</td>
<td>0</td>
<td>29.00</td>
<td>7881.73</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds Per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>9</td>
<td>48</td>
<td>0</td>
<td>750.00</td>
<td>8631.73</td>
</tr>
<tr>
<td>14</td>
<td>98</td>
<td>20</td>
<td>49</td>
<td>1</td>
<td>9.80</td>
<td>8641.53</td>
</tr>
<tr>
<td>13</td>
<td>817</td>
<td>186</td>
<td>50</td>
<td>0</td>
<td>13616.87</td>
<td>22269.20</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>8</td>
<td>51</td>
<td>1</td>
<td>2.70</td>
<td>22260.90</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>7</td>
<td>52</td>
<td>0</td>
<td>516.67</td>
<td>22777.57</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>3</td>
<td>53</td>
<td>0</td>
<td>1.10</td>
<td>22778.67</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>4</td>
<td>54</td>
<td>1</td>
<td>283.33</td>
<td>23062.00</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>3</td>
<td>55</td>
<td>1</td>
<td>1.40</td>
<td>23063.40</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>12</td>
<td>56</td>
<td>0</td>
<td>1000.00</td>
<td>24063.40</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>4</td>
<td>57</td>
<td>1</td>
<td>1.90</td>
<td>24065.30</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>18</td>
<td>58</td>
<td>1</td>
<td>1316.67</td>
<td>25381.97</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>3</td>
<td>59</td>
<td>0</td>
<td>1.50</td>
<td>25383.47</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>20</td>
<td>60</td>
<td>0</td>
<td>1633.33</td>
<td>27016.80</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>3</td>
<td>61</td>
<td>0</td>
<td>1.30</td>
<td>27018.10</td>
</tr>
<tr>
<td>1</td>
<td>1500</td>
<td>300</td>
<td>62</td>
<td>0</td>
<td>25000.00</td>
<td>52018.10</td>
</tr>
</tbody>
</table>
Wagonhound East – 4

<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>ind. Time (hrs)</th>
<th>Time (hrs)</th>
<th>cum. Time (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>950</td>
<td>190</td>
<td>1</td>
<td>10</td>
<td>95.00</td>
<td>95.00</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>1600</td>
<td>230</td>
<td>2</td>
<td>17</td>
<td>180.00</td>
<td>255.00</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>150</td>
<td>30</td>
<td>4</td>
<td>1</td>
<td>2500.00</td>
<td>2765.00</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1.20</td>
<td>2766.20</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>200</td>
<td>40</td>
<td>6</td>
<td></td>
<td>3333.33</td>
<td>6099.53</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>25</td>
<td>5</td>
<td>7</td>
<td></td>
<td>2.50</td>
<td>6102.03</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>200</td>
<td>40</td>
<td>8</td>
<td></td>
<td>20.00</td>
<td>6122.03</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>320</td>
<td>64</td>
<td>9</td>
<td></td>
<td>5333.33</td>
<td>11455.37</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td></td>
<td>0.50</td>
<td>11455.87</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>150</td>
<td>30</td>
<td>11</td>
<td></td>
<td>2500.00</td>
<td>13955.87</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>7</td>
<td>2</td>
<td>12</td>
<td></td>
<td>0.70</td>
<td>13956.57</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>108</td>
<td>22</td>
<td>13</td>
<td></td>
<td>1800.00</td>
<td>15756.57</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>3</td>
<td>1</td>
<td>14</td>
<td></td>
<td>0.30</td>
<td>15756.87</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>145</td>
<td>29</td>
<td>15</td>
<td></td>
<td>2416.67</td>
<td>18173.53</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>10</td>
<td>2</td>
<td>16</td>
<td></td>
<td>1.00</td>
<td>18174.53</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>201</td>
<td>41</td>
<td>17</td>
<td></td>
<td>3350.00</td>
<td>21524.53</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>15</td>
<td>3</td>
<td>18</td>
<td></td>
<td>1.50</td>
<td>21526.03</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>65</td>
<td>13</td>
<td>19</td>
<td></td>
<td>1083.33</td>
<td>22609.37</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td></td>
<td>0.30</td>
<td>22609.67</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>65</td>
<td>13</td>
<td>21</td>
<td></td>
<td>1083.33</td>
<td>23893.00</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4</td>
<td>1</td>
<td>22</td>
<td></td>
<td>0.40</td>
<td>23893.40</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>10</td>
<td>2</td>
<td>23</td>
<td></td>
<td>168.67</td>
<td>23860.07</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4</td>
<td>1</td>
<td>24</td>
<td></td>
<td>0.40</td>
<td>23860.47</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>300</td>
<td>60</td>
<td>25</td>
<td></td>
<td>30.00</td>
<td>23890.47</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>6</td>
<td>2</td>
<td>26</td>
<td></td>
<td>0.60</td>
<td>23891.07</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>170</td>
<td>34</td>
<td>27</td>
<td></td>
<td>2833.33</td>
<td>26724.40</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td>1</td>
<td>28</td>
<td></td>
<td>0.40</td>
<td>26724.80</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>90</td>
<td>18</td>
<td>29</td>
<td></td>
<td>1500.00</td>
<td>28224.80</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>2</td>
<td>30</td>
<td></td>
<td>0.80</td>
<td>28225.60</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>63</td>
<td>13</td>
<td>31</td>
<td></td>
<td>1050.00</td>
<td>29275.60</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>6</td>
<td>2</td>
<td>32</td>
<td></td>
<td>0.80</td>
<td>29275.40</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>80</td>
<td>16</td>
<td>33</td>
<td></td>
<td>1333.33</td>
<td>30609.73</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4</td>
<td>1</td>
<td>34</td>
<td></td>
<td>0.40</td>
<td>30610.13</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>98</td>
<td>20</td>
<td>35</td>
<td></td>
<td>1633.33</td>
<td>32243.47</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>15</td>
<td>3</td>
<td>36</td>
<td></td>
<td>1.50</td>
<td>32244.97</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>443</td>
<td>68</td>
<td>37</td>
<td></td>
<td>7383.33</td>
<td>39626.30</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>2</td>
<td>38</td>
<td></td>
<td>1.00</td>
<td>39629.30</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>10</td>
<td>2</td>
<td>39</td>
<td></td>
<td>166.67</td>
<td>39795.97</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>2</td>
<td>40</td>
<td></td>
<td>0.80</td>
<td>39796.77</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>150</td>
<td>30</td>
<td>41</td>
<td></td>
<td>2500.00</td>
<td>42296.77</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>5</td>
<td>1</td>
<td>42</td>
<td></td>
<td>0.50</td>
<td>42297.27</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>125</td>
<td>25</td>
<td>43</td>
<td></td>
<td>2083.33</td>
<td>44380.60</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>1</td>
<td>44</td>
<td></td>
<td>0.40</td>
<td>44381.00</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>150</td>
<td>30</td>
<td>45</td>
<td></td>
<td>2500.00</td>
<td>46881.00</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>7</td>
<td>2</td>
<td>46</td>
<td></td>
<td>0.70</td>
<td>46881.70</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>12</td>
<td>3</td>
<td>47</td>
<td></td>
<td>200.00</td>
<td>47081.70</td>
<td></td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds Per bin</td>
<td>ind. Time (hrs)</td>
<td>cum. Time (hrs)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>48</td>
<td>1</td>
<td>0.30</td>
<td>47082.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>420</td>
<td>84</td>
<td>48</td>
<td>0</td>
<td>7000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>50</td>
<td>1</td>
<td>1.80</td>
<td>54083.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>6</td>
<td>51</td>
<td>0</td>
<td>500.00</td>
<td>54833.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>52</td>
<td>0</td>
<td>1.00</td>
<td>54584.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>53</td>
<td>0</td>
<td>250.00</td>
<td>54834.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>54</td>
<td>0</td>
<td>1.00</td>
<td>54835.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>407</td>
<td>56</td>
<td>0</td>
<td>6783.33</td>
<td>61819.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>120</td>
<td>56</td>
<td>0</td>
<td>12.00</td>
<td>61831.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>720</td>
<td>57</td>
<td>0</td>
<td>72.00</td>
<td>61703.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>520</td>
<td>58</td>
<td>0</td>
<td>82.00</td>
<td>61755.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>180</td>
<td>59</td>
<td>0</td>
<td>18.00</td>
<td>61773.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>150</td>
<td>60</td>
<td>1</td>
<td>15.00</td>
<td>61788.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>150</td>
<td>61</td>
<td>0</td>
<td>15.00</td>
<td>61803.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>6</td>
<td>0</td>
<td>2.80</td>
<td>61805.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>56</td>
<td>12</td>
<td>0</td>
<td>5.60</td>
<td>61811.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1.00</td>
<td>61812.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>65</td>
<td>13</td>
<td>0</td>
<td>6.50</td>
<td>61819.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>165</td>
<td>33</td>
<td>0</td>
<td>16.50</td>
<td>61835.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>450</td>
<td>67</td>
<td>0</td>
<td>7500.00</td>
<td>69335.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>68</td>
<td>0</td>
<td>60.00</td>
<td>69396.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>600</td>
<td>69</td>
<td>0</td>
<td>11333.33</td>
<td>80069.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>70</td>
<td>0</td>
<td>1.00</td>
<td>80070.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1377</td>
<td>71</td>
<td>0</td>
<td>17263.33</td>
<td>97953.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>72</td>
<td>0</td>
<td>1.40</td>
<td>97955.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>240</td>
<td>73</td>
<td>0</td>
<td>4000.00</td>
<td>101955.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>74</td>
<td>0</td>
<td>1.40</td>
<td>101956.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>121</td>
<td>75</td>
<td>0</td>
<td>2016.87</td>
<td>103973.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>76</td>
<td>0</td>
<td>0.80</td>
<td>103974.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>134</td>
<td>77</td>
<td>0</td>
<td>2233.33</td>
<td>106207.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>78</td>
<td>0</td>
<td>0.80</td>
<td>106208.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1116</td>
<td>79</td>
<td>0</td>
<td>18500.00</td>
<td>124908.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>Cum. Time (yrs)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>130</td>
<td>260</td>
<td>1</td>
<td>8</td>
<td>130.00</td>
<td>130.00</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>2</td>
<td>11</td>
<td>2165.67</td>
<td>2295.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>20</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>2.00</td>
<td>2298.67</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>30</td>
<td>6</td>
<td>4</td>
<td>11</td>
<td>500.00</td>
<td>2798.67</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>16</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1.60</td>
<td>2800.27</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>280</td>
<td>56</td>
<td>2</td>
<td>5</td>
<td>4667.67</td>
<td>7469.93</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>12</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>1.20</td>
<td>7498.13</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>30</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>500.00</td>
<td>7998.13</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>14</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>1.40</td>
<td>7999.53</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>20</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>333.33</td>
<td>8302.87</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>16</td>
<td>4</td>
<td>11</td>
<td>0</td>
<td>1.60</td>
<td>8304.47</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>138</td>
<td>23</td>
<td>12</td>
<td>0</td>
<td>2300.00</td>
<td>10504.47</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>10</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>1.00</td>
<td>10605.47</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>60</td>
<td>16</td>
<td>14</td>
<td>1</td>
<td>1600.00</td>
<td>12105.47</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>12</td>
<td>3</td>
<td>16</td>
<td>1</td>
<td>1.20</td>
<td>12106.67</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>20</td>
<td>4</td>
<td>16</td>
<td>0</td>
<td>333.33</td>
<td>12440.00</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0.30</td>
<td>12440.30</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>20</td>
<td>4</td>
<td>18</td>
<td>1</td>
<td>333.33</td>
<td>12773.63</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>4</td>
<td>1</td>
<td>19</td>
<td>0</td>
<td>0.40</td>
<td>12774.03</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>150</td>
<td>30</td>
<td>20</td>
<td>0</td>
<td>2500.00</td>
<td>15274.03</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>10</td>
<td>2</td>
<td>21</td>
<td>0</td>
<td>1.00</td>
<td>15275.03</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>150</td>
<td>35</td>
<td>22</td>
<td>2</td>
<td>2500.00</td>
<td>17776.03</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1200</td>
<td>210</td>
<td>23</td>
<td>0</td>
<td>1050.00</td>
<td>17820.03</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>120</td>
<td>24</td>
<td>24</td>
<td>1</td>
<td>12.00</td>
<td>17902.03</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>30</td>
<td>6</td>
<td>25</td>
<td>1</td>
<td>500.00</td>
<td>18392.03</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>20</td>
<td>4</td>
<td>26</td>
<td>1</td>
<td>2.00</td>
<td>18394.03</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>30</td>
<td>6</td>
<td>27</td>
<td>1</td>
<td>500.00</td>
<td>18864.03</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>10</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td>1.00</td>
<td>18865.03</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>130</td>
<td>28</td>
<td>28</td>
<td>0</td>
<td>2165.67</td>
<td>21061.70</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>150</td>
<td>30</td>
<td>30</td>
<td>4</td>
<td>15.00</td>
<td>21076.70</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>25</td>
<td>5</td>
<td>31</td>
<td>0</td>
<td>418.67</td>
<td>21493.37</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>16</td>
<td>4</td>
<td>32</td>
<td>1</td>
<td>1.80</td>
<td>21494.97</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>440</td>
<td>88</td>
<td>33</td>
<td>0</td>
<td>7333.33</td>
<td>28828.30</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>10</td>
<td>2</td>
<td>34</td>
<td>1</td>
<td>1.00</td>
<td>28829.30</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>70</td>
<td>14</td>
<td>36</td>
<td>0</td>
<td>1168.67</td>
<td>29995.97</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4</td>
<td>1</td>
<td>36</td>
<td>0</td>
<td>0.40</td>
<td>29996.37</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>160</td>
<td>32</td>
<td>37</td>
<td>0</td>
<td>2686.67</td>
<td>32663.03</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>20</td>
<td>4</td>
<td>38</td>
<td>0</td>
<td>2.00</td>
<td>32665.03</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>30</td>
<td>6</td>
<td>39</td>
<td>0</td>
<td>500.00</td>
<td>33165.03</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>2</td>
<td>40</td>
<td>1</td>
<td>1.00</td>
<td>33166.03</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>128</td>
<td>25</td>
<td>41</td>
<td>0</td>
<td>2083.33</td>
<td>35249.37</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>25</td>
<td>5</td>
<td>42</td>
<td>0</td>
<td>2.50</td>
<td>35261.87</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>40</td>
<td>8</td>
<td>43</td>
<td>0</td>
<td>666.67</td>
<td>35918.53</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>8</td>
<td>2</td>
<td>44</td>
<td>0</td>
<td>0.80</td>
<td>35919.33</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>75</td>
<td>18</td>
<td>45</td>
<td>0</td>
<td>1250.00</td>
<td>37169.33</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>170</td>
<td>34</td>
<td>46</td>
<td>0</td>
<td>17.00</td>
<td>37186.33</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1700</td>
<td>340</td>
<td>47</td>
<td>0</td>
<td>170.00</td>
<td>37356.33</td>
<td></td>
</tr>
<tr>
<td>bed number thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>2</td>
<td>48</td>
<td>0</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>200</td>
<td>40</td>
<td>48</td>
<td>0</td>
<td>333.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>2</td>
<td>50</td>
<td>0</td>
<td>40690.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>258</td>
<td>52</td>
<td>51</td>
<td>0</td>
<td>44991.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>18</td>
<td>4</td>
<td>52</td>
<td>1</td>
<td>44992.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>460</td>
<td>92</td>
<td>53</td>
<td>0</td>
<td>52859.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>3</td>
<td>54</td>
<td>0</td>
<td>52860.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>108</td>
<td>22</td>
<td>55</td>
<td>0</td>
<td>54480.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>1</td>
<td>56</td>
<td>1</td>
<td>54481.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>95</td>
<td>17</td>
<td>57</td>
<td>0</td>
<td>55878.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>1</td>
<td>58</td>
<td>0</td>
<td>55878.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>40</td>
<td>8</td>
<td>59</td>
<td>0</td>
<td>56545.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>3</td>
<td>60</td>
<td>0</td>
<td>56848.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>132</td>
<td>27</td>
<td>61</td>
<td>0</td>
<td>58746.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>6</td>
<td>62</td>
<td>0</td>
<td>58748.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>35</td>
<td>7</td>
<td>63</td>
<td>0</td>
<td>59332.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>59332.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>10</td>
<td>65</td>
<td>0</td>
<td>60166.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>66</td>
<td>0</td>
<td>60166.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>4</td>
<td>67</td>
<td>0</td>
<td>60499.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>1</td>
<td>68</td>
<td>0</td>
<td>60500.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>2</td>
<td>69</td>
<td>0</td>
<td>60616.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>2</td>
<td>70</td>
<td>0</td>
<td>60617.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>8</td>
<td>71</td>
<td>0</td>
<td>61284.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>2</td>
<td>72</td>
<td>0</td>
<td>61285.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>22</td>
<td>73</td>
<td>0</td>
<td>63118.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>3</td>
<td>74</td>
<td>0</td>
<td>63119.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>198</td>
<td>28</td>
<td>78</td>
<td>0</td>
<td>65419.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>550</td>
<td>110</td>
<td>79</td>
<td>0</td>
<td>65474.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>30</td>
<td>77</td>
<td>0</td>
<td>67974.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>416</td>
<td>83</td>
<td>78</td>
<td>0</td>
<td>68016.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>5</td>
<td>79</td>
<td>0</td>
<td>68432.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>3</td>
<td>80</td>
<td>0</td>
<td>68433.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>320</td>
<td>64</td>
<td>81</td>
<td>0</td>
<td>73767.23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Wagonhound East - 6

<table>
<thead>
<tr>
<th>Bed number thickness (cm)</th>
<th>Bin assignment</th>
<th>Bin number</th>
<th>No. of beds per bin</th>
<th>Ind. Time (yrs)</th>
<th>Cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>550</td>
<td>110</td>
<td>1</td>
<td>5</td>
<td>25.00</td>
</tr>
<tr>
<td>56</td>
<td>20</td>
<td>4</td>
<td>2</td>
<td>10</td>
<td>2.00</td>
</tr>
<tr>
<td>55</td>
<td>150</td>
<td>36</td>
<td>3</td>
<td>2</td>
<td>18.00</td>
</tr>
<tr>
<td>54</td>
<td>155</td>
<td>31</td>
<td>4</td>
<td>6</td>
<td>2583.33</td>
</tr>
<tr>
<td>53</td>
<td>70</td>
<td>14</td>
<td>5</td>
<td>0</td>
<td>7.00</td>
</tr>
<tr>
<td>52</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>250.00</td>
</tr>
<tr>
<td>51</td>
<td>20</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>2.00</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
<td>24</td>
<td>8</td>
<td>0</td>
<td>2000.00</td>
</tr>
<tr>
<td>49</td>
<td>16</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>1.00</td>
</tr>
<tr>
<td>48</td>
<td>250</td>
<td>50</td>
<td>10</td>
<td>1</td>
<td>25.00</td>
</tr>
<tr>
<td>47</td>
<td>1115</td>
<td>223</td>
<td>11</td>
<td>0</td>
<td>18583.33</td>
</tr>
<tr>
<td>46</td>
<td>45</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>4.50</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>4.80</td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td>9</td>
<td>14</td>
<td>2</td>
<td>4.50</td>
</tr>
<tr>
<td>43</td>
<td>100</td>
<td>20</td>
<td>15</td>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td>42</td>
<td>34</td>
<td>7</td>
<td>16</td>
<td>0</td>
<td>3.40</td>
</tr>
<tr>
<td>41</td>
<td>20</td>
<td>4</td>
<td>17</td>
<td>0</td>
<td>333.33</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>39</td>
<td>280</td>
<td>56</td>
<td>19</td>
<td>0</td>
<td>28.00</td>
</tr>
<tr>
<td>38</td>
<td>5</td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>0.50</td>
</tr>
<tr>
<td>37</td>
<td>130</td>
<td>28</td>
<td>21</td>
<td>1</td>
<td>13.00</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>2</td>
<td>22</td>
<td>0</td>
<td>0.90</td>
</tr>
<tr>
<td>35</td>
<td>260</td>
<td>52</td>
<td>23</td>
<td>0</td>
<td>26.00</td>
</tr>
<tr>
<td>34</td>
<td>10</td>
<td>2</td>
<td>24</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>33</td>
<td>260</td>
<td>52</td>
<td>25</td>
<td>0</td>
<td>26.00</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>2</td>
<td>26</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>31</td>
<td>200</td>
<td>40</td>
<td>27</td>
<td>0</td>
<td>20.00</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>2</td>
<td>28</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>29</td>
<td>70</td>
<td>14</td>
<td>29</td>
<td>0</td>
<td>1166.67</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>1</td>
<td>30</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>27</td>
<td>30</td>
<td>6</td>
<td>31</td>
<td>1</td>
<td>500.00</td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>3</td>
<td>33</td>
<td>0</td>
<td>250.00</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>2</td>
<td>34</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>23</td>
<td>258</td>
<td>56</td>
<td>35</td>
<td>0</td>
<td>28.80</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>4</td>
<td>36</td>
<td>1</td>
<td>2.00</td>
</tr>
<tr>
<td>21</td>
<td>190</td>
<td>38</td>
<td>37</td>
<td>0</td>
<td>19.00</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>2</td>
<td>38</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>19</td>
<td>97</td>
<td>20</td>
<td>39</td>
<td>0</td>
<td>1616.67</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>2</td>
<td>40</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>17</td>
<td>75</td>
<td>15</td>
<td>41</td>
<td>0</td>
<td>1250.00</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>1</td>
<td>42</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td>15</td>
<td>252</td>
<td>51</td>
<td>43</td>
<td>0</td>
<td>4200.00</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>2</td>
<td>44</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>13</td>
<td>686</td>
<td>132</td>
<td>45</td>
<td>0</td>
<td>11583.33</td>
</tr>
<tr>
<td>12</td>
<td>65</td>
<td>13</td>
<td>46</td>
<td>2</td>
<td>8.50</td>
</tr>
<tr>
<td>11</td>
<td>780</td>
<td>156</td>
<td>47</td>
<td>0</td>
<td>13000.00</td>
</tr>
<tr>
<td>10</td>
<td>156</td>
<td>34</td>
<td>48</td>
<td>0</td>
<td>16.90</td>
</tr>
<tr>
<td>bed numberthickness (cm)</td>
<td>bin assignment</td>
<td>bin number per bin</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>104</td>
<td>48</td>
<td>0.00</td>
<td>5.7748.27</td>
</tr>
<tr>
<td>6</td>
<td>222</td>
<td>46</td>
<td>50</td>
<td>1.00</td>
<td>5.7725.47</td>
</tr>
<tr>
<td>7</td>
<td>222</td>
<td>46</td>
<td>51</td>
<td>1.00</td>
<td>5.7748.27</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
<td>52</td>
<td>2.00</td>
<td>5.7748.77</td>
</tr>
<tr>
<td>5</td>
<td>103</td>
<td>21</td>
<td>53</td>
<td>0.00</td>
<td>5.9465.43</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>9</td>
<td>54</td>
<td>0.00</td>
<td>5.9469.63</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2</td>
<td>55</td>
<td>1.00</td>
<td>5.9470.63</td>
</tr>
<tr>
<td>2</td>
<td>4903</td>
<td>981</td>
<td>56</td>
<td>1.00</td>
<td>141187.30</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>4</td>
<td>57</td>
<td>0.00</td>
<td>141188.90</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (hrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>68</td>
<td>127</td>
<td>26</td>
<td>1</td>
<td>2</td>
<td>2116.67</td>
</tr>
<tr>
<td>67</td>
<td>80</td>
<td>18</td>
<td>2</td>
<td>10</td>
<td>8.00</td>
</tr>
<tr>
<td>66</td>
<td>120</td>
<td>24</td>
<td>3</td>
<td>4</td>
<td>2000.00</td>
</tr>
<tr>
<td>65</td>
<td>88</td>
<td>18</td>
<td>4</td>
<td>3</td>
<td>8.80</td>
</tr>
<tr>
<td>64</td>
<td>104</td>
<td>21</td>
<td>5</td>
<td>3</td>
<td>1733.33</td>
</tr>
<tr>
<td>63</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td>62</td>
<td>589</td>
<td>118</td>
<td>7</td>
<td>2</td>
<td>9666.87</td>
</tr>
<tr>
<td>61</td>
<td>21</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>2.10</td>
</tr>
<tr>
<td>60</td>
<td>610</td>
<td>102</td>
<td>9</td>
<td>2</td>
<td>8800.00</td>
</tr>
<tr>
<td>59</td>
<td>700</td>
<td>150</td>
<td>10</td>
<td>1</td>
<td>78.00</td>
</tr>
<tr>
<td>58</td>
<td>148</td>
<td>30</td>
<td>11</td>
<td>0</td>
<td>2468.67</td>
</tr>
<tr>
<td>57</td>
<td>210</td>
<td>42</td>
<td>12</td>
<td>0</td>
<td>20.00</td>
</tr>
<tr>
<td>56</td>
<td>1050</td>
<td>210</td>
<td>13</td>
<td>2</td>
<td>17600.00</td>
</tr>
<tr>
<td>55</td>
<td>15</td>
<td>3</td>
<td>14</td>
<td>4</td>
<td>1.50</td>
</tr>
<tr>
<td>54</td>
<td>40</td>
<td>8</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>53</td>
<td>70</td>
<td>14</td>
<td>16</td>
<td>3</td>
<td>7.00</td>
</tr>
<tr>
<td>52</td>
<td>70</td>
<td>14</td>
<td>17</td>
<td>1</td>
<td>1166.67</td>
</tr>
<tr>
<td>51</td>
<td>40</td>
<td>8</td>
<td>18</td>
<td>1</td>
<td>4.00</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>14</td>
<td>19</td>
<td>1</td>
<td>1166.67</td>
</tr>
<tr>
<td>49</td>
<td>30</td>
<td>8</td>
<td>20</td>
<td>1</td>
<td>3.00</td>
</tr>
<tr>
<td>48</td>
<td>500</td>
<td>100</td>
<td>21</td>
<td>1</td>
<td>8333.33</td>
</tr>
<tr>
<td>47</td>
<td>7</td>
<td>2</td>
<td>22</td>
<td>1</td>
<td>0.70</td>
</tr>
<tr>
<td>46</td>
<td>276</td>
<td>65</td>
<td>23</td>
<td>0</td>
<td>4533.33</td>
</tr>
<tr>
<td>45</td>
<td>9</td>
<td>2</td>
<td>24</td>
<td>2</td>
<td>0.90</td>
</tr>
<tr>
<td>44</td>
<td>160</td>
<td>32</td>
<td>25</td>
<td>2</td>
<td>2666.67</td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>2</td>
<td>26</td>
<td>2</td>
<td>0.60</td>
</tr>
<tr>
<td>42</td>
<td>128</td>
<td>26</td>
<td>27</td>
<td>2</td>
<td>2150.00</td>
</tr>
<tr>
<td>41</td>
<td>6</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td>0.60</td>
</tr>
<tr>
<td>40</td>
<td>470</td>
<td>94</td>
<td>28</td>
<td>0</td>
<td>7833.33</td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>38</td>
<td>110</td>
<td>22</td>
<td>31</td>
<td>2</td>
<td>1833.33</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>1</td>
<td>32</td>
<td>2</td>
<td>0.30</td>
</tr>
<tr>
<td>36</td>
<td>63</td>
<td>17</td>
<td>33</td>
<td>2</td>
<td>1383.33</td>
</tr>
<tr>
<td>35</td>
<td>18</td>
<td>4</td>
<td>34</td>
<td>0</td>
<td>1.80</td>
</tr>
<tr>
<td>34</td>
<td>120</td>
<td>24</td>
<td>35</td>
<td>0</td>
<td>2000.00</td>
</tr>
<tr>
<td>33</td>
<td>6</td>
<td>2</td>
<td>36</td>
<td>0</td>
<td>0.60</td>
</tr>
<tr>
<td>32</td>
<td>776</td>
<td>169</td>
<td>37</td>
<td>0</td>
<td>12916.67</td>
</tr>
<tr>
<td>31</td>
<td>157</td>
<td>32</td>
<td>38</td>
<td>0</td>
<td>15.70</td>
</tr>
<tr>
<td>30</td>
<td>76</td>
<td>16</td>
<td>39</td>
<td>0</td>
<td>1300.00</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>2</td>
<td>40</td>
<td>0</td>
<td>0.70</td>
</tr>
<tr>
<td>28</td>
<td>396</td>
<td>73</td>
<td>41</td>
<td>0</td>
<td>6883.33</td>
</tr>
<tr>
<td>27</td>
<td>22</td>
<td>5</td>
<td>42</td>
<td>1</td>
<td>2.20</td>
</tr>
<tr>
<td>26</td>
<td>80</td>
<td>16</td>
<td>43</td>
<td>1</td>
<td>1333.33</td>
</tr>
<tr>
<td>25</td>
<td>32</td>
<td>7</td>
<td>44</td>
<td>0</td>
<td>3.20</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>4</td>
<td>45</td>
<td>0</td>
<td>333.33</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>20</td>
<td>46</td>
<td>0</td>
<td>10.00</td>
</tr>
<tr>
<td>22</td>
<td>138</td>
<td>28</td>
<td>47</td>
<td>0</td>
<td>2300.00</td>
</tr>
<tr>
<td>21</td>
<td>32</td>
<td>7</td>
<td>48</td>
<td>0</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>Ind. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>8</td>
<td>2</td>
<td>48</td>
<td>0</td>
<td>133.33</td>
<td>102839.07</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>2</td>
<td>50</td>
<td>0</td>
<td>1.00</td>
<td>102840.07</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>51</td>
<td>0</td>
<td>1083.33</td>
<td>103923.40</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>2</td>
<td>52</td>
<td>0</td>
<td>0.70</td>
<td>103924.10</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>3</td>
<td>63</td>
<td>0</td>
<td>250.00</td>
<td>104174.10</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>3</td>
<td>54</td>
<td>0</td>
<td>1.10</td>
<td>104175.20</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>5</td>
<td>56</td>
<td>0</td>
<td>2.40</td>
<td>105344.27</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>8</td>
<td>57</td>
<td>0</td>
<td>566.67</td>
<td>106010.93</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>3</td>
<td>68</td>
<td>0</td>
<td>1.50</td>
<td>106012.43</td>
</tr>
<tr>
<td>10</td>
<td>42</td>
<td>9</td>
<td>59</td>
<td>0</td>
<td>700.00</td>
<td>106712.43</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>4</td>
<td>60</td>
<td>0</td>
<td>1.90</td>
<td>106714.33</td>
</tr>
<tr>
<td>8</td>
<td>140</td>
<td>28</td>
<td>61</td>
<td>0</td>
<td>2333.33</td>
<td>109047.67</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
<td>13</td>
<td>62</td>
<td>0</td>
<td>6.40</td>
<td>109054.07</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>8</td>
<td>63</td>
<td>0</td>
<td>600.00</td>
<td>109954.07</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>10</td>
<td>64</td>
<td>0</td>
<td>4.60</td>
<td>109958.67</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>6</td>
<td>65</td>
<td>0</td>
<td>433.33</td>
<td>110092.00</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>8</td>
<td>66</td>
<td>0</td>
<td>3.70</td>
<td>110095.70</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>19</td>
<td>67</td>
<td>0</td>
<td>1583.33</td>
<td>111679.03</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>9</td>
<td>68</td>
<td>0</td>
<td>4.20</td>
<td>111683.23</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
<td>1</td>
<td>25</td>
<td>60.00</td>
<td>60.00</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>10</td>
<td>2</td>
<td>14</td>
<td>1.00</td>
<td>51.00</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>30</td>
<td>3</td>
<td>14</td>
<td>15.00</td>
<td>76.00</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>1800</td>
<td>4</td>
<td>7</td>
<td>180.00</td>
<td>256.00</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>180</td>
<td>5</td>
<td>5</td>
<td>90.00</td>
<td>346.00</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>270</td>
<td>6</td>
<td>3</td>
<td>135.00</td>
<td>481.00</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>9.00</td>
<td>490.00</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>4.00</td>
<td>494.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>2.20</td>
<td>496.20</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>5.00</td>
<td>501.20</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>18</td>
<td>11</td>
<td>4</td>
<td>9.00</td>
<td>510.20</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>80</td>
<td>12</td>
<td>4</td>
<td>500.00</td>
<td>5510.20</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>5512.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>12</td>
<td>1</td>
<td>4</td>
<td>10000.00</td>
<td>45512.20</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>5.50</td>
<td>5617.70</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>1418.67</td>
<td>7934.37</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>17</td>
<td>1</td>
<td>3</td>
<td>0.40</td>
<td>7934.77</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>30</td>
<td>18</td>
<td>3</td>
<td>2509.00</td>
<td>10443.77</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>14</td>
<td>19</td>
<td>3</td>
<td>1.40</td>
<td>10436.17</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>3333.33</td>
<td>13769.50</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>9</td>
<td>21</td>
<td>0</td>
<td>4.20</td>
<td>13773.70</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>14</td>
<td>22</td>
<td>0</td>
<td>1168.67</td>
<td>14940.37</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>7</td>
<td>23</td>
<td>1</td>
<td>0.70</td>
<td>14941.07</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>14</td>
<td>24</td>
<td>0</td>
<td>1133.33</td>
<td>19074.40</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>4</td>
<td>25</td>
<td>0</td>
<td>2.00</td>
<td>19076.40</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>2</td>
<td>26</td>
<td>0</td>
<td>118.67</td>
<td>16193.07</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>27</td>
<td>0</td>
<td>1</td>
<td>1.00</td>
<td>16194.07</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>916.67</td>
<td>17110.73</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0.20</td>
<td>17110.93</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td>2</td>
<td>2</td>
<td>1000.00</td>
<td>18110.93</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>5.10</td>
<td>18116.03</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>33</td>
<td>5</td>
<td>15335.33</td>
<td>32348.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>33</td>
<td>0</td>
<td>80.00</td>
<td>33509.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>34</td>
<td>1</td>
<td>833.33</td>
<td>34342.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>35</td>
<td>0</td>
<td>9.00</td>
<td>34351.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>36</td>
<td>0</td>
<td>105.00</td>
<td>34456.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>37</td>
<td>0</td>
<td>77.00</td>
<td>34533.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>38</td>
<td>0</td>
<td>50.00</td>
<td>34583.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>39</td>
<td>0</td>
<td>4.50</td>
<td>34588.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>40</td>
<td>1</td>
<td>100.00</td>
<td>34688.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>41</td>
<td>0</td>
<td>1.20</td>
<td>34689.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>42</td>
<td>0</td>
<td>200.00</td>
<td>34889.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>43</td>
<td>0</td>
<td>2.50</td>
<td>34891.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>44</td>
<td>0</td>
<td>250.00</td>
<td>35141.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>45</td>
<td>0</td>
<td>0.40</td>
<td>35142.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>46</td>
<td>0</td>
<td>250.00</td>
<td>35392.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>47</td>
<td>0</td>
<td>0.30</td>
<td>35392.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bed number (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>15</td>
<td>3</td>
<td>48</td>
<td>0</td>
<td>250.00</td>
<td>36442.60</td>
</tr>
<tr>
<td>71</td>
<td>7</td>
<td>2</td>
<td>49</td>
<td>0</td>
<td>0.70</td>
<td>35843.30</td>
</tr>
<tr>
<td>70</td>
<td>15</td>
<td>3</td>
<td>50</td>
<td>0</td>
<td>250.00</td>
<td>35893.30</td>
</tr>
<tr>
<td>69</td>
<td>4</td>
<td>1</td>
<td>51</td>
<td>0</td>
<td>0.40</td>
<td>35893.70</td>
</tr>
<tr>
<td>68</td>
<td>40</td>
<td>8</td>
<td>52</td>
<td>0</td>
<td>666.67</td>
<td>36560.37</td>
</tr>
<tr>
<td>67</td>
<td>15</td>
<td>3</td>
<td>53</td>
<td>0</td>
<td>1.50</td>
<td>36561.87</td>
</tr>
<tr>
<td>66</td>
<td>6</td>
<td>1</td>
<td>54</td>
<td>0</td>
<td>83.33</td>
<td>36645.20</td>
</tr>
<tr>
<td>65</td>
<td>6</td>
<td>2</td>
<td>55</td>
<td>0</td>
<td>0.60</td>
<td>36645.80</td>
</tr>
<tr>
<td>64</td>
<td>56</td>
<td>11</td>
<td>56</td>
<td>0</td>
<td>916.67</td>
<td>37582.47</td>
</tr>
<tr>
<td>63</td>
<td>5</td>
<td>1</td>
<td>57</td>
<td>0</td>
<td>0.50</td>
<td>37582.97</td>
</tr>
<tr>
<td>62</td>
<td>65</td>
<td>13</td>
<td>58</td>
<td>0</td>
<td>1083.33</td>
<td>38646.30</td>
</tr>
<tr>
<td>61</td>
<td>8</td>
<td>2</td>
<td>59</td>
<td>1</td>
<td>0.80</td>
<td>38647.10</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>8</td>
<td>60</td>
<td>1</td>
<td>666.67</td>
<td>39313.77</td>
</tr>
<tr>
<td>59</td>
<td>5</td>
<td>1</td>
<td>61</td>
<td>0</td>
<td>0.50</td>
<td>39314.27</td>
</tr>
<tr>
<td>58</td>
<td>25</td>
<td>5</td>
<td>62</td>
<td>0</td>
<td>416.67</td>
<td>39730.93</td>
</tr>
<tr>
<td>57</td>
<td>15</td>
<td>3</td>
<td>63</td>
<td>0</td>
<td>1.50</td>
<td>39732.43</td>
</tr>
<tr>
<td>56</td>
<td>700</td>
<td>140</td>
<td>64</td>
<td>0</td>
<td>11666.67</td>
<td>51889.13</td>
</tr>
<tr>
<td>55</td>
<td>4</td>
<td>1</td>
<td>65</td>
<td>0</td>
<td>0.40</td>
<td>51890.50</td>
</tr>
<tr>
<td>54</td>
<td>740</td>
<td>148</td>
<td>66</td>
<td>0</td>
<td>12333.33</td>
<td>63732.83</td>
</tr>
<tr>
<td>53</td>
<td>3</td>
<td>1</td>
<td>67</td>
<td>0</td>
<td>0.30</td>
<td>63733.13</td>
</tr>
<tr>
<td>52</td>
<td>430</td>
<td>86</td>
<td>68</td>
<td>0</td>
<td>7166.67</td>
<td>70999.80</td>
</tr>
<tr>
<td>51</td>
<td>2</td>
<td>1</td>
<td>69</td>
<td>0</td>
<td>0.20</td>
<td>70999.90</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>5</td>
<td>70</td>
<td>0</td>
<td>416.67</td>
<td>71316.87</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>2</td>
<td>71</td>
<td>0</td>
<td>0.60</td>
<td>71317.27</td>
</tr>
<tr>
<td>48</td>
<td>20</td>
<td>4</td>
<td>72</td>
<td>0</td>
<td>333.33</td>
<td>71650.80</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>1</td>
<td>73</td>
<td>0</td>
<td>0.20</td>
<td>71650.80</td>
</tr>
<tr>
<td>46</td>
<td>170</td>
<td>34</td>
<td>74</td>
<td>0</td>
<td>2333.33</td>
<td>74484.13</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>1</td>
<td>75</td>
<td>0</td>
<td>0.20</td>
<td>74484.33</td>
</tr>
<tr>
<td>44</td>
<td>58</td>
<td>12</td>
<td>76</td>
<td>0</td>
<td>966.67</td>
<td>75451.00</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td>1</td>
<td>77</td>
<td>0</td>
<td>0.20</td>
<td>75451.20</td>
</tr>
<tr>
<td>42</td>
<td>82</td>
<td>17</td>
<td>78</td>
<td>0</td>
<td>1366.67</td>
<td>78217.67</td>
</tr>
<tr>
<td>41</td>
<td>7</td>
<td>2</td>
<td>79</td>
<td>0</td>
<td>0.70</td>
<td>78218.37</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>3</td>
<td>80</td>
<td>0</td>
<td>250.00</td>
<td>77088.57</td>
</tr>
<tr>
<td>39</td>
<td>5</td>
<td>1</td>
<td>81</td>
<td>0</td>
<td>0.50</td>
<td>77089.07</td>
</tr>
<tr>
<td>38</td>
<td>78</td>
<td>16</td>
<td>82</td>
<td>0</td>
<td>1300.00</td>
<td>80369.07</td>
</tr>
<tr>
<td>37</td>
<td>4</td>
<td>1</td>
<td>83</td>
<td>0</td>
<td>0.40</td>
<td>80369.47</td>
</tr>
<tr>
<td>36</td>
<td>25</td>
<td>5</td>
<td>84</td>
<td>0</td>
<td>416.67</td>
<td>80788.13</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>2</td>
<td>85</td>
<td>0</td>
<td>0.60</td>
<td>80788.73</td>
</tr>
<tr>
<td>34</td>
<td>85</td>
<td>17</td>
<td>86</td>
<td>1</td>
<td>1416.67</td>
<td>80203.40</td>
</tr>
<tr>
<td>33</td>
<td>18</td>
<td>4</td>
<td>87</td>
<td>0</td>
<td>1.90</td>
<td>80205.30</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>2</td>
<td>88</td>
<td>0</td>
<td>168.67</td>
<td>80371.97</td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>1</td>
<td>89</td>
<td>0</td>
<td>0.40</td>
<td>80372.37</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>4</td>
<td>90</td>
<td>0</td>
<td>333.33</td>
<td>80705.70</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>1</td>
<td>91</td>
<td>0</td>
<td>0.50</td>
<td>80706.20</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>2</td>
<td>92</td>
<td>0</td>
<td>133.33</td>
<td>80839.63</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
<td>93</td>
<td>0</td>
<td>0.10</td>
<td>80839.73</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>1</td>
<td>94</td>
<td>0</td>
<td>50.00</td>
<td>80889.63</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>95</td>
<td>0</td>
<td>0.10</td>
<td>80889.73</td>
</tr>
<tr>
<td>24</td>
<td>70</td>
<td>14</td>
<td>96</td>
<td>0</td>
<td>1166.67</td>
<td>82058.40</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1</td>
<td>97</td>
<td>0</td>
<td>0.10</td>
<td>82056.50</td>
</tr>
<tr>
<td>22</td>
<td>140</td>
<td>28</td>
<td>98</td>
<td>0</td>
<td>2.233</td>
<td>84389.52</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>5</td>
<td>96</td>
<td>0</td>
<td>2.50</td>
<td>84392.32</td>
</tr>
<tr>
<td>20</td>
<td>112</td>
<td>23</td>
<td>100</td>
<td>0</td>
<td>1856.67</td>
<td>86259.00</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>1</td>
<td>101</td>
<td>0</td>
<td>0.20</td>
<td>86259.20</td>
</tr>
<tr>
<td>18</td>
<td>294</td>
<td>69</td>
<td>102</td>
<td>0</td>
<td>4918.67</td>
<td>91175.87</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>3</td>
<td>103</td>
<td>0</td>
<td>1.20</td>
<td>91177.07</td>
</tr>
<tr>
<td>16</td>
<td>90</td>
<td>18</td>
<td>104</td>
<td>0</td>
<td>1800.00</td>
<td>92877.07</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>4</td>
<td>105</td>
<td>0</td>
<td>1.80</td>
<td>92878.87</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>4</td>
<td>106</td>
<td>0</td>
<td>3.333</td>
<td>93012.20</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>2</td>
<td>107</td>
<td>0</td>
<td>0.90</td>
<td>93013.10</td>
</tr>
<tr>
<td>12</td>
<td>25</td>
<td>5</td>
<td>108</td>
<td>0</td>
<td>416.67</td>
<td>93429.77</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>3</td>
<td>109</td>
<td>0</td>
<td>1.20</td>
<td>93430.97</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>6</td>
<td>110</td>
<td>0</td>
<td>500.00</td>
<td>93930.97</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>6</td>
<td>111</td>
<td>0</td>
<td>2.80</td>
<td>93933.77</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>3</td>
<td>112</td>
<td>0</td>
<td>250.00</td>
<td>94183.77</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>5</td>
<td>113</td>
<td>0</td>
<td>2.20</td>
<td>94185.97</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>18</td>
<td>114</td>
<td>0</td>
<td>1500.00</td>
<td>95685.97</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>115</td>
<td>0</td>
<td>0.40</td>
<td>95686.37</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>12</td>
<td>116</td>
<td>0</td>
<td>1000.00</td>
<td>96686.37</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3</td>
<td>117</td>
<td>0</td>
<td>1.50</td>
<td>96687.87</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>14</td>
<td>118</td>
<td>0</td>
<td>1166.67</td>
<td>97854.53</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>6</td>
<td>119</td>
<td>0</td>
<td>3.00</td>
<td>97857.53</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>114</td>
<td>900</td>
<td>180</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>90.00</td>
</tr>
<tr>
<td>113</td>
<td>1050</td>
<td>210</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>105.00</td>
</tr>
<tr>
<td>112</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>195.80</td>
</tr>
<tr>
<td>111</td>
<td>30</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>695.80</td>
</tr>
<tr>
<td>110</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>696.20</td>
</tr>
<tr>
<td>109</td>
<td>90</td>
<td>18</td>
<td>6</td>
<td>6</td>
<td>1600.00</td>
<td>2196.20</td>
</tr>
<tr>
<td>108</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2196.60</td>
</tr>
<tr>
<td>107</td>
<td>60</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>1000.00</td>
<td>3198.80</td>
</tr>
<tr>
<td>106</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0.30</td>
<td>3198.80</td>
</tr>
<tr>
<td>105</td>
<td>110</td>
<td>22</td>
<td>10</td>
<td>2</td>
<td>1833.33</td>
<td>5030.23</td>
</tr>
<tr>
<td>104</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>1.20</td>
<td>5031.43</td>
</tr>
<tr>
<td>103</td>
<td>120</td>
<td>24</td>
<td>12</td>
<td>4</td>
<td>2000.00</td>
<td>7031.43</td>
</tr>
<tr>
<td>102</td>
<td>12</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>1.20</td>
<td>7032.63</td>
</tr>
<tr>
<td>101</td>
<td>10</td>
<td>2</td>
<td>14</td>
<td>1</td>
<td>186.67</td>
<td>7199.30</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>0.30</td>
<td>7199.60</td>
</tr>
<tr>
<td>99</td>
<td>135</td>
<td>27</td>
<td>16</td>
<td>4</td>
<td>2250.00</td>
<td>9449.60</td>
</tr>
<tr>
<td>98</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0.30</td>
<td>9449.90</td>
</tr>
<tr>
<td>97</td>
<td>12</td>
<td>3</td>
<td>18</td>
<td>2</td>
<td>200.00</td>
<td>9849.90</td>
</tr>
<tr>
<td>96</td>
<td>4</td>
<td>1</td>
<td>19</td>
<td>2</td>
<td>0.40</td>
<td>9850.30</td>
</tr>
<tr>
<td>95</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>3</td>
<td>166.67</td>
<td>6816.97</td>
</tr>
<tr>
<td>94</td>
<td>6</td>
<td>2</td>
<td>21</td>
<td>0</td>
<td>0.60</td>
<td>9817.57</td>
</tr>
<tr>
<td>93</td>
<td>95</td>
<td>19</td>
<td>22</td>
<td>1</td>
<td>1833.33</td>
<td>11400.90</td>
</tr>
<tr>
<td>92</td>
<td>4</td>
<td>1</td>
<td>23</td>
<td>1</td>
<td>0.40</td>
<td>11401.30</td>
</tr>
<tr>
<td>91</td>
<td>90</td>
<td>18</td>
<td>24</td>
<td>3</td>
<td>1333.33</td>
<td>12734.93</td>
</tr>
<tr>
<td>90</td>
<td>2</td>
<td>1</td>
<td>25</td>
<td>0</td>
<td>0.20</td>
<td>12734.93</td>
</tr>
<tr>
<td>89</td>
<td>50</td>
<td>10</td>
<td>26</td>
<td>0</td>
<td>833.33</td>
<td>13598.17</td>
</tr>
<tr>
<td>88</td>
<td>25</td>
<td>5</td>
<td>27</td>
<td>1</td>
<td>2.50</td>
<td>13570.87</td>
</tr>
<tr>
<td>87</td>
<td>10</td>
<td>2</td>
<td>28</td>
<td>0</td>
<td>166.67</td>
<td>13737.33</td>
</tr>
<tr>
<td>86</td>
<td>2</td>
<td>1</td>
<td>29</td>
<td>0</td>
<td>0.20</td>
<td>13737.53</td>
</tr>
<tr>
<td>85</td>
<td>55</td>
<td>11</td>
<td>30</td>
<td>1</td>
<td>916.67</td>
<td>14654.20</td>
</tr>
<tr>
<td>84</td>
<td>2</td>
<td>1</td>
<td>31</td>
<td>0</td>
<td>0.20</td>
<td>14654.40</td>
</tr>
<tr>
<td>83</td>
<td>115</td>
<td>23</td>
<td>32</td>
<td>1</td>
<td>1916.67</td>
<td>16571.07</td>
</tr>
<tr>
<td>82</td>
<td>3</td>
<td>1</td>
<td>33</td>
<td>2</td>
<td>0.30</td>
<td>16571.37</td>
</tr>
<tr>
<td>81</td>
<td>30</td>
<td>6</td>
<td>34</td>
<td>1</td>
<td>900.00</td>
<td>17071.37</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>4</td>
<td>35</td>
<td>0</td>
<td>2.00</td>
<td>17073.37</td>
</tr>
<tr>
<td>79</td>
<td>15</td>
<td>3</td>
<td>36</td>
<td>1</td>
<td>250.00</td>
<td>17323.37</td>
</tr>
<tr>
<td>78</td>
<td>25</td>
<td>5</td>
<td>37</td>
<td>0</td>
<td>2.50</td>
<td>17325.87</td>
</tr>
<tr>
<td>77</td>
<td>60</td>
<td>12</td>
<td>38</td>
<td>0</td>
<td>1000.00</td>
<td>18325.87</td>
</tr>
<tr>
<td>76</td>
<td>5</td>
<td>1</td>
<td>39</td>
<td>0</td>
<td>0.50</td>
<td>18326.37</td>
</tr>
<tr>
<td>75</td>
<td>180</td>
<td>32</td>
<td>40</td>
<td>1</td>
<td>2888.87</td>
<td>20993.03</td>
</tr>
<tr>
<td>74</td>
<td>8</td>
<td>2</td>
<td>41</td>
<td>0</td>
<td>0.80</td>
<td>20993.93</td>
</tr>
<tr>
<td>73</td>
<td>30</td>
<td>6</td>
<td>42</td>
<td>0</td>
<td>900.00</td>
<td>21493.83</td>
</tr>
<tr>
<td>72</td>
<td>8</td>
<td>2</td>
<td>43</td>
<td>0</td>
<td>0.80</td>
<td>21494.63</td>
</tr>
<tr>
<td>71</td>
<td>120</td>
<td>24</td>
<td>44</td>
<td>0</td>
<td>2000.00</td>
<td>23494.63</td>
</tr>
<tr>
<td>70</td>
<td>4</td>
<td>1</td>
<td>45</td>
<td>0</td>
<td>0.40</td>
<td>23495.03</td>
</tr>
<tr>
<td>69</td>
<td>200</td>
<td>40</td>
<td>46</td>
<td>0</td>
<td>3333.33</td>
<td>26828.37</td>
</tr>
<tr>
<td>68</td>
<td>35</td>
<td>7</td>
<td>47</td>
<td>0</td>
<td>3.50</td>
<td>26831.87</td>
</tr>
<tr>
<td>bed number</td>
<td>Thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (hrs)</td>
<td>cum. Time (hrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>67</td>
<td>65</td>
<td>15</td>
<td>48</td>
<td></td>
<td>0</td>
<td>1563.33</td>
</tr>
<tr>
<td>68</td>
<td>10</td>
<td>2</td>
<td>49</td>
<td></td>
<td>0</td>
<td>1564.20</td>
</tr>
<tr>
<td>69</td>
<td>16</td>
<td>20</td>
<td>60</td>
<td></td>
<td>0</td>
<td>1668.67</td>
</tr>
<tr>
<td>64</td>
<td>4</td>
<td>1</td>
<td>51</td>
<td></td>
<td>0</td>
<td>30083.27</td>
</tr>
<tr>
<td>82</td>
<td>68</td>
<td>16</td>
<td>52</td>
<td></td>
<td>0</td>
<td>31416.60</td>
</tr>
<tr>
<td>62</td>
<td>7</td>
<td>2</td>
<td>53</td>
<td></td>
<td>0</td>
<td>31417.30</td>
</tr>
<tr>
<td>61</td>
<td>165</td>
<td>33</td>
<td>54</td>
<td></td>
<td>1</td>
<td>34167.30</td>
</tr>
<tr>
<td>60</td>
<td>22</td>
<td>5</td>
<td>55</td>
<td></td>
<td>0</td>
<td>34169.50</td>
</tr>
<tr>
<td>59</td>
<td>60</td>
<td>12</td>
<td>58</td>
<td></td>
<td>0</td>
<td>38619.90</td>
</tr>
<tr>
<td>58</td>
<td>3</td>
<td>1</td>
<td>57</td>
<td></td>
<td>0</td>
<td>38619.80</td>
</tr>
<tr>
<td>57</td>
<td>60</td>
<td>18</td>
<td>58</td>
<td></td>
<td>0</td>
<td>38650.13</td>
</tr>
<tr>
<td>56</td>
<td>3</td>
<td>1</td>
<td>58</td>
<td></td>
<td>0</td>
<td>38650.43</td>
</tr>
<tr>
<td>55</td>
<td>12</td>
<td>3</td>
<td>60</td>
<td></td>
<td>0</td>
<td>38703.43</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>1</td>
<td>61</td>
<td></td>
<td>0</td>
<td>38703.63</td>
</tr>
<tr>
<td>53</td>
<td>120</td>
<td>24</td>
<td>62</td>
<td></td>
<td>0</td>
<td>38703.63</td>
</tr>
<tr>
<td>52</td>
<td>5</td>
<td>1</td>
<td>63</td>
<td></td>
<td>0</td>
<td>38704.03</td>
</tr>
<tr>
<td>51</td>
<td>100</td>
<td>20</td>
<td>64</td>
<td></td>
<td>0</td>
<td>40379.70</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>18</td>
<td>65</td>
<td></td>
<td>0</td>
<td>40379.70</td>
</tr>
<tr>
<td>49</td>
<td>270</td>
<td>54</td>
<td>66</td>
<td></td>
<td>0</td>
<td>44879.70</td>
</tr>
<tr>
<td>48</td>
<td>70</td>
<td>14</td>
<td>67</td>
<td></td>
<td>0</td>
<td>44886.70</td>
</tr>
<tr>
<td>47</td>
<td>10</td>
<td>2</td>
<td>68</td>
<td></td>
<td>0</td>
<td>45063.37</td>
</tr>
<tr>
<td>46</td>
<td>18</td>
<td>4</td>
<td>69</td>
<td></td>
<td>0</td>
<td>45055.17</td>
</tr>
<tr>
<td>45</td>
<td>4150</td>
<td>206</td>
<td>70</td>
<td></td>
<td>0</td>
<td>85186.67</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>1</td>
<td>71</td>
<td></td>
<td>0</td>
<td>85186.67</td>
</tr>
<tr>
<td>43</td>
<td>150</td>
<td>30</td>
<td>72</td>
<td></td>
<td>0</td>
<td>114222.23</td>
</tr>
<tr>
<td>42</td>
<td>22</td>
<td>5</td>
<td>73</td>
<td></td>
<td>0</td>
<td>116722.23</td>
</tr>
<tr>
<td>41</td>
<td>185</td>
<td>33</td>
<td>74</td>
<td></td>
<td>0</td>
<td>119474.43</td>
</tr>
<tr>
<td>40</td>
<td>18</td>
<td>4</td>
<td>75</td>
<td></td>
<td>0</td>
<td>119476.23</td>
</tr>
<tr>
<td>39</td>
<td>380</td>
<td>70</td>
<td>76</td>
<td></td>
<td>1</td>
<td>126808.87</td>
</tr>
<tr>
<td>38</td>
<td>20</td>
<td>4</td>
<td>77</td>
<td></td>
<td>0</td>
<td>125811.57</td>
</tr>
<tr>
<td>37</td>
<td>400</td>
<td>80</td>
<td>78</td>
<td></td>
<td>0</td>
<td>132479.23</td>
</tr>
<tr>
<td>36</td>
<td>21</td>
<td>5</td>
<td>79</td>
<td></td>
<td>0</td>
<td>132460.33</td>
</tr>
<tr>
<td>35</td>
<td>85</td>
<td>17</td>
<td>80</td>
<td></td>
<td>1</td>
<td>133887.00</td>
</tr>
<tr>
<td>34</td>
<td>50</td>
<td>10</td>
<td>81</td>
<td></td>
<td>0</td>
<td>133902.00</td>
</tr>
<tr>
<td>33</td>
<td>40</td>
<td>8</td>
<td>82</td>
<td></td>
<td>0</td>
<td>134588.67</td>
</tr>
<tr>
<td>32</td>
<td>35</td>
<td>7</td>
<td>83</td>
<td></td>
<td>0</td>
<td>134572.17</td>
</tr>
<tr>
<td>31</td>
<td>75</td>
<td>15</td>
<td>84</td>
<td></td>
<td>0</td>
<td>135822.17</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>12</td>
<td>85</td>
<td></td>
<td>0</td>
<td>135828.17</td>
</tr>
<tr>
<td>29</td>
<td>40</td>
<td>8</td>
<td>86</td>
<td></td>
<td>0</td>
<td>136494.83</td>
</tr>
<tr>
<td>28</td>
<td>25</td>
<td>5</td>
<td>87</td>
<td></td>
<td>0</td>
<td>136497.33</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>2</td>
<td>88</td>
<td></td>
<td>0</td>
<td>136664.00</td>
</tr>
<tr>
<td>26</td>
<td>20</td>
<td>4</td>
<td>89</td>
<td></td>
<td>0</td>
<td>136686.00</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>7</td>
<td>90</td>
<td></td>
<td>0</td>
<td>137249.33</td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>3</td>
<td>91</td>
<td></td>
<td>0</td>
<td>137250.53</td>
</tr>
<tr>
<td>23</td>
<td>15</td>
<td>3</td>
<td>92</td>
<td></td>
<td>0</td>
<td>137500.53</td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td>2</td>
<td>93</td>
<td></td>
<td>0</td>
<td>137501.33</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>4</td>
<td>94</td>
<td></td>
<td>0</td>
<td>137801.33</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>2</td>
<td>95</td>
<td></td>
<td>0</td>
<td>137802.33</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>4</td>
<td>96</td>
<td></td>
<td>0</td>
<td>138135.67</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>6</td>
<td>97</td>
<td>0</td>
<td>2.50</td>
<td>138138.17</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>4</td>
<td>98</td>
<td>0</td>
<td>333.33</td>
<td>138471.50</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>3</td>
<td>99</td>
<td>0</td>
<td>1.20</td>
<td>138472.70</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>6</td>
<td>100</td>
<td>0</td>
<td>500.00</td>
<td>138972.70</td>
</tr>
<tr>
<td>14</td>
<td>25</td>
<td>5</td>
<td>101</td>
<td>0</td>
<td>2.50</td>
<td>138975.20</td>
</tr>
<tr>
<td>13</td>
<td>28</td>
<td>6</td>
<td>102</td>
<td>0</td>
<td>466.67</td>
<td>139441.87</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>2</td>
<td>103</td>
<td>0</td>
<td>0.60</td>
<td>139442.47</td>
</tr>
<tr>
<td>11</td>
<td>88</td>
<td>20</td>
<td>104</td>
<td>0</td>
<td>1883.33</td>
<td>141075.80</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>3</td>
<td>105</td>
<td>0</td>
<td>1.50</td>
<td>141077.30</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>11</td>
<td>106</td>
<td>0</td>
<td>918.67</td>
<td>141993.97</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>4</td>
<td>107</td>
<td>0</td>
<td>2.00</td>
<td>141995.97</td>
</tr>
<tr>
<td>7</td>
<td>168</td>
<td>34</td>
<td>108</td>
<td>0</td>
<td>2800.00</td>
<td>144798.27</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>5</td>
<td>109</td>
<td>0</td>
<td>2.30</td>
<td>144798.27</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>16</td>
<td>110</td>
<td>0</td>
<td>1333.33</td>
<td>146131.60</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>6</td>
<td>111</td>
<td>0</td>
<td>3.00</td>
<td>146134.60</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>3</td>
<td>112</td>
<td>0</td>
<td>200.00</td>
<td>146334.60</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2</td>
<td>113</td>
<td>0</td>
<td>0.80</td>
<td>146335.40</td>
</tr>
<tr>
<td>1</td>
<td>180</td>
<td>36</td>
<td>114</td>
<td>0</td>
<td>3000.00</td>
<td>149335.40</td>
</tr>
<tr>
<td>bed number thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>950</td>
<td>136</td>
<td>1</td>
<td>16.00</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>750</td>
<td>150</td>
<td>3</td>
<td>16.00</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>15</td>
<td>3</td>
<td>3</td>
<td>16.00</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>60</td>
<td>12</td>
<td>4</td>
<td>16.00</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>16.00</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>120</td>
<td>24</td>
<td>6</td>
<td>23.00</td>
<td>23.00</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>150</td>
<td>32</td>
<td>7</td>
<td>23.00</td>
<td>23.00</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>230</td>
<td>42</td>
<td>8</td>
<td>23.00</td>
<td>23.00</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1350</td>
<td>270</td>
<td>2</td>
<td>22500.00</td>
<td>22702.00</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>22702.00</td>
<td>22702.00</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>170</td>
<td>34</td>
<td>11</td>
<td>23333.33</td>
<td>25635.63</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>25556.23</td>
<td>25556.23</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>110</td>
<td>22</td>
<td>13</td>
<td>27333.33</td>
<td>27333.33</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>9</td>
<td>2</td>
<td>14</td>
<td>27370.47</td>
<td>27370.47</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>40</td>
<td>8</td>
<td>16</td>
<td>28037.13</td>
<td>28037.13</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>25</td>
<td>5</td>
<td>16</td>
<td>28039.63</td>
<td>28039.63</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>480</td>
<td>90</td>
<td>17</td>
<td>7500.00</td>
<td>35829.63</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4</td>
<td>1</td>
<td>18</td>
<td>35540.03</td>
<td>35540.03</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>220</td>
<td>47</td>
<td>19</td>
<td>3916.67</td>
<td>39455.67</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>4</td>
<td>1</td>
<td>20</td>
<td>39457.10</td>
<td>39457.10</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>650</td>
<td>130</td>
<td>21</td>
<td>50920.43</td>
<td>50920.43</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>9</td>
<td>2</td>
<td>22</td>
<td>50291.33</td>
<td>50291.33</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>210</td>
<td>42</td>
<td>23</td>
<td>53791.39</td>
<td>53791.39</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>12</td>
<td>24</td>
<td>53797.33</td>
<td>53797.33</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>320</td>
<td>64</td>
<td>26</td>
<td>59130.67</td>
<td>59130.67</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>9</td>
<td>2</td>
<td>26</td>
<td>59131.57</td>
<td>59131.57</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>220</td>
<td>44</td>
<td>27</td>
<td>6279.02</td>
<td>6279.02</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>15</td>
<td>3</td>
<td>28</td>
<td>6279.73</td>
<td>6279.73</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>118</td>
<td>25</td>
<td>29</td>
<td>64718.40</td>
<td>64718.40</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>7</td>
<td>2</td>
<td>30</td>
<td>64717.10</td>
<td>64717.10</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>896</td>
<td>121</td>
<td>31</td>
<td>10003.33</td>
<td>74910.43</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>15</td>
<td>3</td>
<td>32</td>
<td>74901.93</td>
<td>74901.93</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>100</td>
<td>20</td>
<td>33</td>
<td>75468.60</td>
<td>75468.60</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>6</td>
<td>34</td>
<td>78471.60</td>
<td>78471.60</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>60</td>
<td>12</td>
<td>35</td>
<td>77471.60</td>
<td>77471.60</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>30</td>
<td>6</td>
<td>36</td>
<td>77474.60</td>
<td>77474.60</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>12</td>
<td>3</td>
<td>38</td>
<td>77975.80</td>
<td>77975.80</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>25</td>
<td>5</td>
<td>39</td>
<td>78392.47</td>
<td>78392.47</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>20</td>
<td>4</td>
<td>40</td>
<td>78394.47</td>
<td>78394.47</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>130</td>
<td>26</td>
<td>41</td>
<td>78581.13</td>
<td>78581.13</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>150</td>
<td>22</td>
<td>42</td>
<td>80572.13</td>
<td>80572.13</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>180</td>
<td>32</td>
<td>43</td>
<td>87405.77</td>
<td>87405.77</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>3</td>
<td>44</td>
<td>87407.97</td>
<td>87407.97</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>250</td>
<td>50</td>
<td>45</td>
<td>87407.97</td>
<td>87407.97</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>12</td>
<td>3</td>
<td>46</td>
<td>87407.97</td>
<td>87407.97</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>75</td>
<td>16</td>
<td>47</td>
<td>88657.97</td>
<td>88657.97</td>
<td></td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>1</td>
<td>48</td>
<td>0</td>
<td>0.50</td>
<td>88658.47</td>
</tr>
<tr>
<td>27</td>
<td>58</td>
<td>12</td>
<td>49</td>
<td>0</td>
<td>988.67</td>
<td>88625.13</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>1</td>
<td>50</td>
<td>1</td>
<td>0.50</td>
<td>88625.53</td>
</tr>
<tr>
<td>23</td>
<td>45</td>
<td>9</td>
<td>51</td>
<td>0</td>
<td>750.00</td>
<td>90375.63</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>1</td>
<td>52</td>
<td>0</td>
<td>0.40</td>
<td>90376.03</td>
</tr>
<tr>
<td>21</td>
<td>50</td>
<td>10</td>
<td>53</td>
<td>0</td>
<td>833.33</td>
<td>91209.37</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>2</td>
<td>54</td>
<td>0</td>
<td>800.00</td>
<td>91210.17</td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>4</td>
<td>55</td>
<td>0</td>
<td>300.00</td>
<td>91510.17</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>1</td>
<td>56</td>
<td>0</td>
<td>500.00</td>
<td>91510.67</td>
</tr>
<tr>
<td>17</td>
<td>60</td>
<td>12</td>
<td>57</td>
<td>0</td>
<td>1000.00</td>
<td>92510.67</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>1</td>
<td>58</td>
<td>0</td>
<td>500.00</td>
<td>92511.17</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>9</td>
<td>59</td>
<td>0</td>
<td>750.00</td>
<td>93261.17</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>2</td>
<td>60</td>
<td>0</td>
<td>700.00</td>
<td>93261.87</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>6</td>
<td>61</td>
<td>0</td>
<td>500.00</td>
<td>93761.87</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>2</td>
<td>62</td>
<td>0</td>
<td>700.00</td>
<td>93762.57</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>8</td>
<td>63</td>
<td>0</td>
<td>666.67</td>
<td>94429.23</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>2</td>
<td>64</td>
<td>1</td>
<td>0.80</td>
<td>94430.03</td>
</tr>
<tr>
<td>9</td>
<td>120</td>
<td>24</td>
<td>65</td>
<td>0</td>
<td>2000.00</td>
<td>98430.03</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>8</td>
<td>66</td>
<td>0</td>
<td>4000.00</td>
<td>98434.03</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>24</td>
<td>67</td>
<td>0</td>
<td>2000.00</td>
<td>98434.03</td>
</tr>
<tr>
<td>6</td>
<td>140</td>
<td>23</td>
<td>68</td>
<td>0</td>
<td>1400.00</td>
<td>98448.03</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>8</td>
<td>69</td>
<td>0</td>
<td>666.67</td>
<td>99114.70</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>33</td>
<td>70</td>
<td>0</td>
<td>1600.00</td>
<td>99131.20</td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>133</td>
<td>71</td>
<td>0</td>
<td>11500.00</td>
<td>110831.20</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
<td>72</td>
<td>0</td>
<td>700.00</td>
<td>110831.90</td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>18</td>
<td>73</td>
<td>0</td>
<td>1333.33</td>
<td>111965.23</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>94</td>
<td>40</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>93</td>
<td>130</td>
<td>26</td>
<td>2</td>
<td>13</td>
<td>2168.67</td>
<td>2170.57</td>
</tr>
<tr>
<td>92</td>
<td>85</td>
<td>17</td>
<td>3</td>
<td>11</td>
<td>8.50</td>
<td>2179.17</td>
</tr>
<tr>
<td>91</td>
<td>128</td>
<td>26</td>
<td>4</td>
<td>10</td>
<td>2093.23</td>
<td>4265.50</td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3.00</td>
<td>4265.50</td>
</tr>
<tr>
<td>89</td>
<td>110</td>
<td>22</td>
<td>9</td>
<td>1</td>
<td>1833.33</td>
<td>4099.83</td>
</tr>
<tr>
<td>88</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>0.60</td>
<td>4099.83</td>
</tr>
<tr>
<td>87</td>
<td>150</td>
<td>36</td>
<td>8</td>
<td>4</td>
<td>2500.00</td>
<td>6599.43</td>
</tr>
<tr>
<td>86</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>0.80</td>
<td>6599.43</td>
</tr>
<tr>
<td>85</td>
<td>165</td>
<td>33</td>
<td>10</td>
<td>4</td>
<td>2750.00</td>
<td>11369.23</td>
</tr>
<tr>
<td>84</td>
<td>12</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>1.20</td>
<td>11361.43</td>
</tr>
<tr>
<td>83</td>
<td>40</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>666.67</td>
<td>12018.10</td>
</tr>
<tr>
<td>82</td>
<td>40</td>
<td>8</td>
<td>13</td>
<td>0</td>
<td>4.00</td>
<td>12022.10</td>
</tr>
<tr>
<td>81</td>
<td>50</td>
<td>10</td>
<td>14</td>
<td>2</td>
<td>833.33</td>
<td>12855.43</td>
</tr>
<tr>
<td>80</td>
<td>23</td>
<td>5</td>
<td>16</td>
<td>0</td>
<td>2.50</td>
<td>12857.93</td>
</tr>
<tr>
<td>79</td>
<td>50</td>
<td>10</td>
<td>16</td>
<td>0</td>
<td>833.33</td>
<td>13691.27</td>
</tr>
<tr>
<td>78</td>
<td>13</td>
<td>3</td>
<td>17</td>
<td>2</td>
<td>1.30</td>
<td>13692.57</td>
</tr>
<tr>
<td>77</td>
<td>180</td>
<td>30</td>
<td>18</td>
<td>1</td>
<td>2500.00</td>
<td>16192.57</td>
</tr>
<tr>
<td>76</td>
<td>130</td>
<td>30</td>
<td>20</td>
<td>4</td>
<td>2500.00</td>
<td>18702.57</td>
</tr>
<tr>
<td>75</td>
<td>190</td>
<td>30</td>
<td>20</td>
<td>4</td>
<td>2500.00</td>
<td>18702.57</td>
</tr>
<tr>
<td>74</td>
<td>12</td>
<td>4</td>
<td>21</td>
<td>0</td>
<td>1.80</td>
<td>18704.37</td>
</tr>
<tr>
<td>73</td>
<td>60</td>
<td>12</td>
<td>22</td>
<td>3</td>
<td>1000.00</td>
<td>19704.37</td>
</tr>
<tr>
<td>72</td>
<td>18</td>
<td>4</td>
<td>23</td>
<td>0</td>
<td>1.80</td>
<td>19706.17</td>
</tr>
<tr>
<td>71</td>
<td>300</td>
<td>80</td>
<td>24</td>
<td>1</td>
<td>5009.00</td>
<td>24706.17</td>
</tr>
<tr>
<td>70</td>
<td>15</td>
<td>3</td>
<td>25</td>
<td>1</td>
<td>1.50</td>
<td>24707.67</td>
</tr>
<tr>
<td>69</td>
<td>50</td>
<td>10</td>
<td>26</td>
<td>2</td>
<td>833.33</td>
<td>25541.00</td>
</tr>
<tr>
<td>68</td>
<td>20</td>
<td>10</td>
<td>27</td>
<td>0</td>
<td>1.00</td>
<td>25542.00</td>
</tr>
<tr>
<td>67</td>
<td>10</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>833.33</td>
<td>26255.33</td>
</tr>
<tr>
<td>66</td>
<td>3</td>
<td>1</td>
<td>28</td>
<td>0</td>
<td>0.30</td>
<td>26255.63</td>
</tr>
<tr>
<td>65</td>
<td>180</td>
<td>30</td>
<td>30</td>
<td>8</td>
<td>2500.00</td>
<td>28212.63</td>
</tr>
<tr>
<td>64</td>
<td>20</td>
<td>4</td>
<td>31</td>
<td>0</td>
<td>2.00</td>
<td>28212.63</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td>833.33</td>
<td>28210.97</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>1</td>
<td>33</td>
<td>2</td>
<td>0.20</td>
<td>28211.17</td>
</tr>
<tr>
<td>61</td>
<td>120</td>
<td>40</td>
<td>34</td>
<td>0</td>
<td>2780.00</td>
<td>30921.17</td>
</tr>
<tr>
<td>60</td>
<td>25</td>
<td>5</td>
<td>35</td>
<td>0</td>
<td>2.50</td>
<td>30953.67</td>
</tr>
<tr>
<td>59</td>
<td>20</td>
<td>4</td>
<td>36</td>
<td>0</td>
<td>333.33</td>
<td>31297.00</td>
</tr>
<tr>
<td>58</td>
<td>14</td>
<td>3</td>
<td>37</td>
<td>1</td>
<td>1.40</td>
<td>31298.40</td>
</tr>
<tr>
<td>57</td>
<td>180</td>
<td>30</td>
<td>38</td>
<td>0</td>
<td>2500.00</td>
<td>33798.40</td>
</tr>
<tr>
<td>56</td>
<td>14</td>
<td>3</td>
<td>39</td>
<td>0</td>
<td>1.40</td>
<td>33799.80</td>
</tr>
<tr>
<td>55</td>
<td>150</td>
<td>30</td>
<td>40</td>
<td>0</td>
<td>2500.00</td>
<td>36299.80</td>
</tr>
<tr>
<td>54</td>
<td>40</td>
<td>8</td>
<td>41</td>
<td>0</td>
<td>4.00</td>
<td>36303.80</td>
</tr>
<tr>
<td>53</td>
<td>20</td>
<td>4</td>
<td>42</td>
<td>0</td>
<td>333.33</td>
<td>36637.13</td>
</tr>
<tr>
<td>52</td>
<td>40</td>
<td>120</td>
<td>43</td>
<td>0</td>
<td>60.00</td>
<td>36697.13</td>
</tr>
<tr>
<td>51</td>
<td>700</td>
<td>140</td>
<td>44</td>
<td>2</td>
<td>11966.67</td>
<td>48392.60</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>3</td>
<td>45</td>
<td>0</td>
<td>1.50</td>
<td>48385.30</td>
</tr>
<tr>
<td>49</td>
<td>35</td>
<td>7</td>
<td>46</td>
<td>0</td>
<td>563.33</td>
<td>48948.63</td>
</tr>
<tr>
<td>48</td>
<td>15</td>
<td>3</td>
<td>47</td>
<td>0</td>
<td>1.50</td>
<td>48950.13</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>bed number</th>
<th>thickness (cm)</th>
<th>bin assignment</th>
<th>bin number</th>
<th>no. of beds per bin</th>
<th>Ind. Time (yrs)</th>
<th>cum. Time (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>220</td>
<td>44</td>
<td>46</td>
<td>0</td>
<td>3638.87</td>
<td>82816.80</td>
</tr>
<tr>
<td>46</td>
<td>6</td>
<td>2</td>
<td>46</td>
<td>0</td>
<td>0.60</td>
<td>52617.40</td>
</tr>
<tr>
<td>45</td>
<td>100</td>
<td>23</td>
<td>60</td>
<td>0</td>
<td>10866.67</td>
<td>54284.07</td>
</tr>
<tr>
<td>44</td>
<td>8</td>
<td>2</td>
<td>51</td>
<td>0</td>
<td>0.60</td>
<td>54284.87</td>
</tr>
<tr>
<td>43</td>
<td>60</td>
<td>12</td>
<td>52</td>
<td>0</td>
<td>1000.00</td>
<td>55284.87</td>
</tr>
<tr>
<td>42</td>
<td>10</td>
<td>2</td>
<td>53</td>
<td>0</td>
<td>1.00</td>
<td>56285.87</td>
</tr>
<tr>
<td>41</td>
<td>120</td>
<td>20</td>
<td>54</td>
<td>0</td>
<td>2166.67</td>
<td>57452.59</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>7</td>
<td>55</td>
<td>0</td>
<td>3.50</td>
<td>57456.03</td>
</tr>
<tr>
<td>38</td>
<td>120</td>
<td>24</td>
<td>56</td>
<td>0</td>
<td>2000.00</td>
<td>59456.03</td>
</tr>
<tr>
<td>37</td>
<td>70</td>
<td>14</td>
<td>57</td>
<td>0</td>
<td>7.00</td>
<td>59463.03</td>
</tr>
<tr>
<td>36</td>
<td>135</td>
<td>3</td>
<td>59</td>
<td>0</td>
<td>1.40</td>
<td>60631.10</td>
</tr>
<tr>
<td>35</td>
<td>100</td>
<td>26</td>
<td>60</td>
<td>1</td>
<td>1666.67</td>
<td>62297.77</td>
</tr>
<tr>
<td>34</td>
<td>10</td>
<td>2</td>
<td>61</td>
<td>0</td>
<td>1.00</td>
<td>62298.77</td>
</tr>
<tr>
<td>33</td>
<td>15</td>
<td>3</td>
<td>62</td>
<td>0</td>
<td>250.00</td>
<td>62548.77</td>
</tr>
<tr>
<td>32</td>
<td>10</td>
<td>2</td>
<td>63</td>
<td>0</td>
<td>1.00</td>
<td>62549.77</td>
</tr>
<tr>
<td>31</td>
<td>55</td>
<td>11</td>
<td>64</td>
<td>0</td>
<td>916.67</td>
<td>63466.43</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>3</td>
<td>65</td>
<td>0</td>
<td>1.20</td>
<td>63467.63</td>
</tr>
<tr>
<td>29</td>
<td>85</td>
<td>17</td>
<td>66</td>
<td>0</td>
<td>1416.67</td>
<td>64884.30</td>
</tr>
<tr>
<td>28</td>
<td>20</td>
<td>4</td>
<td>67</td>
<td>0</td>
<td>2.00</td>
<td>64886.30</td>
</tr>
<tr>
<td>27</td>
<td>220</td>
<td>44</td>
<td>68</td>
<td>0</td>
<td>3638.87</td>
<td>85625.97</td>
</tr>
<tr>
<td>26</td>
<td>20</td>
<td>4</td>
<td>69</td>
<td>0</td>
<td>2.00</td>
<td>85554.97</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
<td>10</td>
<td>70</td>
<td>0</td>
<td>833.33</td>
<td>93888.30</td>
</tr>
<tr>
<td>24</td>
<td>110</td>
<td>22</td>
<td>71</td>
<td>0</td>
<td>11.00</td>
<td>93999.30</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
<td>26</td>
<td>72</td>
<td>0</td>
<td>1666.67</td>
<td>71065.97</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>2</td>
<td>73</td>
<td>0</td>
<td>0.70</td>
<td>71066.67</td>
</tr>
<tr>
<td>21</td>
<td>400</td>
<td>60</td>
<td>74</td>
<td>0</td>
<td>6666.67</td>
<td>77733.33</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>4</td>
<td>75</td>
<td>0</td>
<td>1.80</td>
<td>77735.13</td>
</tr>
<tr>
<td>19</td>
<td>700</td>
<td>140</td>
<td>76</td>
<td>0</td>
<td>11666.67</td>
<td>89401.86</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>2</td>
<td>77</td>
<td>0</td>
<td>0.60</td>
<td>89402.40</td>
</tr>
<tr>
<td>17</td>
<td>565</td>
<td>113</td>
<td>78</td>
<td>0</td>
<td>9416.67</td>
<td>98819.07</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>3</td>
<td>79</td>
<td>0</td>
<td>1.20</td>
<td>98820.27</td>
</tr>
<tr>
<td>15</td>
<td>185</td>
<td>37</td>
<td>80</td>
<td>1</td>
<td>3083.33</td>
<td>101903.60</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>2</td>
<td>81</td>
<td>0</td>
<td>0.70</td>
<td>101904.30</td>
</tr>
<tr>
<td>13</td>
<td>90</td>
<td>18</td>
<td>82</td>
<td>0</td>
<td>1500.00</td>
<td>103404.30</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>4</td>
<td>83</td>
<td>0</td>
<td>2.00</td>
<td>103406.30</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
<td>5</td>
<td>84</td>
<td>0</td>
<td>416.67</td>
<td>103822.97</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>2</td>
<td>85</td>
<td>0</td>
<td>0.80</td>
<td>103823.77</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>1</td>
<td>86</td>
<td>0</td>
<td>83.33</td>
<td>103907.10</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>1</td>
<td>87</td>
<td>0</td>
<td>0.20</td>
<td>103907.30</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1</td>
<td>88</td>
<td>0</td>
<td>83.33</td>
<td>103990.63</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1</td>
<td>89</td>
<td>0</td>
<td>0.40</td>
<td>103991.03</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>5</td>
<td>90</td>
<td>0</td>
<td>416.67</td>
<td>104497.70</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
<td>91</td>
<td>0</td>
<td>0.60</td>
<td>104498.30</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>4</td>
<td>92</td>
<td>0</td>
<td>333.33</td>
<td>104741.63</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>93</td>
<td>0</td>
<td>0.40</td>
<td>104742.03</td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>22</td>
<td>94</td>
<td>0</td>
<td>1833.53</td>
<td>106575.57</td>
</tr>
<tr>
<td>bed number</td>
<td>thickness (cm)</td>
<td>bin assignment</td>
<td>bin number</td>
<td>no. of beds per bin</td>
<td>Ind. Time (yrs)</td>
<td>cum. Time (yrs)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>28</td>
<td>150</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>27</td>
<td>300</td>
<td>60</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5000</td>
</tr>
<tr>
<td>25</td>
<td>370</td>
<td>74</td>
<td>4</td>
<td>0</td>
<td>13.5</td>
<td>11181.96667</td>
</tr>
<tr>
<td>24</td>
<td>135</td>
<td>27</td>
<td>5</td>
<td>0</td>
<td>2500</td>
<td>13695.46667</td>
</tr>
<tr>
<td>23</td>
<td>150</td>
<td>30</td>
<td>6</td>
<td>0</td>
<td>25</td>
<td>13720.46667</td>
</tr>
<tr>
<td>22</td>
<td>250</td>
<td>50</td>
<td>7</td>
<td>0</td>
<td>25</td>
<td>13720.46667</td>
</tr>
<tr>
<td>21</td>
<td>300</td>
<td>60</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>5000</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>3</td>
<td>9</td>
<td>0</td>
<td>1.5</td>
<td>18721.96667</td>
</tr>
<tr>
<td>19</td>
<td>80</td>
<td>16</td>
<td>10</td>
<td>0</td>
<td>1333.333333</td>
<td>20055.3</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>20056.3</td>
</tr>
<tr>
<td>17</td>
<td>60</td>
<td>12</td>
<td>12</td>
<td>2</td>
<td>1000</td>
<td>21056.3</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>21056.3</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>12</td>
<td>14</td>
<td>0</td>
<td>1000</td>
<td>22057.3</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>0.8</td>
<td>22058.1</td>
</tr>
<tr>
<td>13</td>
<td>110</td>
<td>22</td>
<td>18</td>
<td>0</td>
<td>21833.333333</td>
<td>23891.433333</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>0</td>
<td>0.3</td>
<td>23891.733333</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>2500</td>
<td>26391.733333</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>2</td>
<td>19</td>
<td>0</td>
<td>0.6</td>
<td>26392.333333</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>16</td>
<td>20</td>
<td>0</td>
<td>1333.333333</td>
<td>27725.666667</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>3</td>
<td>21</td>
<td>0</td>
<td>1.2</td>
<td>27726.866667</td>
</tr>
<tr>
<td>7</td>
<td>350</td>
<td>70</td>
<td>22</td>
<td>1</td>
<td>15833.333333</td>
<td>33560.2</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>4</td>
<td>23</td>
<td>0</td>
<td>2</td>
<td>33662.2</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>8</td>
<td>24</td>
<td>0</td>
<td>666.6666665</td>
<td>34228.866667</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>25</td>
<td>0</td>
<td>0.5</td>
<td>34229.366667</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>26</td>
<td>0</td>
<td>66.6666665</td>
<td>34296.033333</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>27</td>
<td>1</td>
<td>0.3</td>
<td>34296.333333</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>8</td>
<td>28</td>
<td>0</td>
<td>666.6666665</td>
<td>34963</td>
</tr>
</tbody>
</table>
APPENDIX F

THICKNESS DATA
Wagonhound South - 3

bed number

thicknness (cm)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Wagonhound East - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Sand Draw

Shannon Surface

117
113
109
105
101
97
93
89
85
81
77
73
69
65
61
57
53
49
45
41
37
33
29
25
21
17
13
9
5
1

load number

0 500 1000 1500 2000
thickess (cm)

shale

sand

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WHN-2 thickness range
Total thickness = 162m

WHN-3 thickness range
Total thickness = 116m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WHS-1 thickness range

Total thickness = 141m

WHS-2 thickness range

Total thickness = 196m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WHS-3 thickness range
Total thickness = 136m

WHE-1 thickness range
Total thickness = 109m
WHE - 2 thickness range
Total thickness = 146m

WHE-3 thickness range
Total thickness = 118m
WHE-4 thickness range

Total thickness = 142m

WHE-5 thickness range

Total thickness = 106m
WHE-6 thickness range
Total thickness = 129m

WHE-7 thickness range
Total thickness = 85m
Sand Draw thickness range
Total thickness = 141 m

Grass Creek thickness range
Total thickness = 118 m
Little Buffalo Basin thickness range
Total thickness = 95m

Sunshine Reservoir thickness range
Total thickness = 80m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Zimmerman Butte thickness range

Total thickness = 27m
VITA

KIMBERLY ANN JOHNSON

EDUCATION:

Ph.D. in Geological Oceanography, January 1999 – May 2005
Old Dominion University, Norfolk, VA
GPA 3.70
Dissertation title: Correlation and Causes of Fifth Order Cycles within the Bighorn Basin of Wyoming

M.S. in Geology
Old Dominion University, Norfolk, VA, August 1995
GPA 3.58
Thesis title: Late Cretaceous Foraminifera as Indicators of Sequence Boundaries, Book Cliffs, Utah, U.S.A. - Conducted under National Science Foundation Grant #NSF-EAR-9304422

B.S. in Geology/Minor in Biology
Old Dominion University, Norfolk, VA, August 1992
GPA 2.8 overall; 3.3 in major

EXPERIENCE:

Research Assistant, Old Dominion University, 1/98 to 5/05
Under direct supervision of a Principle Investigator; responsible for field work, including applying geologic principles, collection of sediment samples, laboratory work that consisted of sample processing, grain size analysis, permeability studies, statistical analysis, ground penetrating radar (GPR) and tomography analysis.

Field assistant for instructor of geology field course (Field Camp) mapping areas in Colorado, Utah, and New Mexico. Responsible for evaluating student geologic maps, organizing field trips, food and field supplies.

Adjunct Faculty, Old Dominion University, Norfolk, Virginia, 8/02 to present
Instructor for Geology and Introductory Oceanography lectures and labs. Responsible for oral presentations and lectures, preparing and administering tests as well as evaluating student performance.

Adjunct Faculty, Tidewater Community College, Virginia Beach Campus, 1/00 to present
Instructor for Geology and Introductory Oceanography lectures and labs. Responsible for oral presentations and lectures, preparing and administering tests as well as evaluating student performance. Conducted cruises on the R/V Matthew F. Maury and instructed students on the use of various oceanographic equipment.

Field Geologist/Site Manager, IT Corporation, NC and VA, 1/96 to 5/98
Responsible for all aspects of field work which included supervising drilling projects, soil and groundwater sampling, remediation system installation and maintenance as well as Phase I and Phase II environmental site assessments. Managerial duties included scheduling, preparing cost estimates and report writing. Responsible for up to 20 different sites.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.