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Scheme 1. Reaction for the synthesis of test molecules: UA1 (nitro group is atmeta position), UA6 (nitro group is at ortho position) and
UA7 (nitro group is at para position).
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Figure 1. (a) The UV-visible spectra of synthesized compounds taken for 50µM solution of each compound in 80% ethanol solution (b).
The extended resonance in the general structure of the compounds.

These novel compounds have been structurally characterized by instrumental methods like elemental
analysis, different spectroscopic techniques and cyclic voltammetry. The elemental analysis shows that
the suggested molecular composition is in good agreement with the experimental results and also
confines the bulk purity of the compounds. The vibrational spectroscopy shows the appearance of
C = N stretching band at 1510–1527 cm−1 indicating the formation guanidine nucleus in accordance
with the literature data [21,22]. The remaining FTIR data as reported in the experimental section explain
the structural features of the respective compounds.

In solution phase, the synthesized molecules have been characterized by NMR (1H, 13C), UV-visible
spectroscopy and cyclic voltammetry. The NMR data were recorded in CDCl3 and TMS was referenced
as the internal standard. Using the 1H NMR, the successful formation of UA1, UA6 and UA7 can be
judged from the proton chemical shift of the NH groups; those appeared in the range of 2.94–4.69 ppm
and the total number of protons (integration value) appeared in the spectra matches with the suggested
structures. In 13C NMR, the synthesis of UA1, UA6 and UA7 can be confirmed by the presence of the
most downfield guanidine carbon at 163.8, 163.3 and 163.7 ppm, respectively. In addition, the number of
carbon atoms that appeared in 13C NMR spectra for these compounds is in agreement with their confined
structures. The UV-visible spectra of all the synthesized compounds were taken in 80% ethanol/water
(20%) solution. The UV-visible spectra for all the synthesized compounds have been presented in figure 1.
The characteristic UV-visible spectrum contains two bands. One band is in the UV region of the spectrum
at 250–320 nm ranges with λmax at 265, 258 and 280 nm for UA1, UA6 and UA7, respectively. This UV-
region band can be assigned to the phenyl ring based π–π* electronic transitions in these compounds.
The other band in these compounds appeared in the visible region of the spectrum with a lower energy
shoulder. The bands appeared with λmax at 490,524 and 517 nm for UA1, UA6 and UA7, respectively, and
can be assigned to π–π* transition of the azo-group based on the extended resonance system as shown
in figure 1. The shoulders appeared at about 580 nm for all compounds and can be assigned to n–π*
transition of the system.

The compound UA1 was also characterized electrochemically by cyclic voltammetry in 80% ethanol.
TBAP was used as the supporting electrolyte as described in the Experimental section. The cyclic
voltammogram has been presented in figure 2. Two peaks were observed in the voltammogram of UA1
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Figure 2. Cyclic voltammogram of 50 µM UA1 in 80% ethanol, 0.1 M TBAP was used as the supporting electrolyte.

Figure 3. The change in the colour of the ethanolic solution of test sample UA6 after its interaction with DNA.

at potential values of −1.019 and −1.35 V, at current values of −119 and −142 µA, respectively. These
bands can be assigned to the electrochemical reduction of the nitro and azo groups, respectively, present
in UA1 as described in the literature [23–25].

3.2. DNA binding studies
DNA binding study is very important to evaluate the DNA detection ability of a material. The
synthesized compounds interact with DNA and show a clear colour change for the reaction as shown in
figure 3. To understand the colour change of solution, the reaction between samples and DNA has been
probed by using different techniques. In this regard, the DNA interaction of the synthesized samples has
been studied by UV-visible spectroscopy and viscosity measurement.

3.3. UV-visible spectrometric titration
UV-visible spectroscopy is a very effective technique to study DNA interaction. It provides very clear
clues about the interaction of small molecules with DNA. The electronic energy changes during the
reaction between DNA and the interacting molecules. The electronic spectra of all the synthesized
compounds have been explained in the previous section. In the case of UA7, the addition of DNA causes
a rapid change in the UV-visible spectrum of the sample as shown in figure 4. After the addition of
DNA, three types of changes in the spectra of UA7 were seen i.e. increase in absorbance at 260 nm and
around 500 nm, blue shift in λmax from 517 to 495 nm and decrease in absorbance around 580 nm. The
increase in absorbance seen around 260 nm region is due to the increase in the concentration of DNA, as
it is the specific region for DNA bases [26]. The hyperchromism around 500 nm indicates the increasing
probability of electrons in the π–π* transition of the extended resonance system (indicated in figure 1).
From this observation, it can be commented confidently that electron-rich DNA donates the electrons to
the π-orbitals of the system. The hypsochromic shift of 22 nm also supports the statement, as increasing
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Figure 4. UV-visible absorption spectrum of UA7 (50 µM) without DNA and with DNA (20–140 µM) in 80% ethanol, buffer (0.1 M,
pH= 7.0). Inset is the plot between A0/(A− A0) and 1/[DNA] for the calculation of binding constant.
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electron density in π-orbitals stabilizes the orbitals, which causes an increase in the energy gap between
π and π* orbitals.

Hypochromism around 580 nm indicates the reduced n–π* electronic transition. This may be due to
the involvement of a non-bonded electron in H-bonding between UA7 and the polar hydrogens of DNA.
This H-bonding further supports the penetration of UA7 into the DNA helical structure, which enhances
the chances of π-stacking. As a result of stacking, the interaction between π-orbitals and DNA increases,
which also support the blue shift for π–π* transition. The existence of hyperchomism and hypochromism
results in the formation of an isosbestic point, which confers the presence of two types of interactions
(H-bonding and π-stacking) in equilibrium. Compounds UA1 and UA6 behave in similar ways for UV-
visible spectroscopic analysis as a result of their interaction with DNA. As shown in figures 5 and 6, there
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Table 1. Comparative data for synthesized compounds and some reported DNA staining agents. CW= current work. The detection limit
of the synthesized compounds is calculated by change in absorbance (�A= 0.01) of sample, atλmax and using Lambert-Beer’s law, for
the changing concentration of DNA [27,28].

mode of binding constant change in detection limit

s. no. compound interaction K (M−1) λmax (nm) (ngµl−1) references

1 UA1 electrostatic 7.2× 103 24 1.8 CW
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 UA6 electrostatic 2.4× 103 42 5.8 CW
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 UA7 electrostatic 0.2× 103 22 4.0 CW
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 AG electrostatic 104 10 15 [3]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 EtB intercalation >105 44 1.0 [29,30]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 SYBR G-I groove binding >106 27 0.06 [4,31]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 TOTO-I intercalation 109a — 0.02 [32]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 YOYO-I intercalation >1010 — 0.5 [33–35]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 methylene blue intercalation/groove binding >104 3 5.0 [36,37]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

exist isosbestic points in the UV-visible spectroscopic response, upon the variation of DNA concentration,
of UA1 and UA6. There is hypsochromic shift at the visible region λmax of both the compounds. The
quantitative blue shift of all the compounds has been described in table 1 along with the other data.

Based upon the change in the concentration of DNA, at the constant concentration of test sample, the
DNA binding constant has been calculated. The following host–guest equation (3.1) was used to calculate
the DNA binding constant (K).

A0

A − A0
= εG

εH−G − εG
+ εG

εH−G − εG
× 1

K[DNA]
, (3.1)

where A0 and A are the absorbance of test sample, at λmax, in the absence and presence of DNA
respectively. Similarly εG and εH−G are the molar absorptivities of test sample, at λmax, in the absence
and presence of DNA, respectively. The value of binding constant (K) was calculated from the intercept to
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Figure 7. Variation of relative viscosity [η/ηo]1/3 of 0.1 mmol l−1 DNA with increasing concentration of UA1, UA6 and UA7.

slope ratio of the linear plot between A0/(A − A0) and 1/[DNA]. Further, from the binding constant (K),
the change in Gibb’s free energies (�G) of the reactions has been evaluated using the relation �G = −RT
ln (K), where R is the gas constant and T is the absolute temperature. The binding constant and Gibb’s
free energies data for all the samples has been described in table 1 with other data. The negative values
of �G indicate the spontaneous reaction between the test samples and DNA.

3.4. Viscometric titration
Optical studies alone are insufficient to conclude the binding mode of small molecules with DNA. To
understand the binding mode, hydrodynamics studies are considered to be the least ambiguous [17].
Viscosity measurement is normally used as a hydrodynamic tool for these kinds of studies. Generally,
two types of binding modes are associated with the change in viscosity of DNA solution. These modes
are intercalation and electrostatic interaction. The intercalation of small molecules into the DNA double
helical structure increases its hydrodynamic radius and hence increases the viscosity of the solution
[38]. On the other hand, the electrostatic interaction leads to formation of agglomerates which reduce
the number of independent moving particles in the solution, resulting in the decrease of viscosity of
the solution [39]. In this study, all the samples UA1, UA6 and UA7 were evaluated with viscosity
measurement to understand their mode of interaction with DNA. The result obtained has been presented
in figure 7 as a plot of relative viscosity versus concentration of the small molecules. The graph in figure 7
shows that the increasing concentration of test samples (UA1, UA6 and UA7) cause the decrease in
relative viscosity of the DNA solution. The decrease in viscosity clearly indicates the electrostatic-type
interaction between test samples (UA1, UA6 and UA7) and DNA.

3.5. Cyclic voltammetric titration
To further confirm the mode interaction between the synthesized compounds and DNA, electrochemical
probing of the reaction between UA1 and DNA was performed by cyclic voltammetry. Cyclic
voltammetry is a fine tool to understand the interaction between small molecules and DNA [40]. It
provides a lot of information about such reactions like: type of interaction, binding site, size of binding
site, diffusion coefficient and the binding constant [3]. In this study, UA1 was examined by cyclic
voltammetry in the presence and absence of DNA. The CV behaviour of UA1 has been discussed in
the previous characterization section. There were two peaks observed in voltammogram of free UA1
at potential values of −1.019 and −1.35 V with current values of −119 and −142 µA, respectively. As
shown in figure 8, on the addition of 80 µM DNA in UA1 solution, the peak potential shifted towards the
positive side (anodic side) by 39 and 32 mV, respectively.

The peak current was decreased by 32 and 26% in magnitude. This decrease in current peaks showed
the slow formation UA1–DNA complex and by forming complex, the concentration of free compound
UA1 decreased. This decreasing of free compound concentration is responsible for lowering current
values in cyclic voltammogram and showed DNA binding to facilitate the reduction of UA1. The shifting
in peak potential suggests the nature of interaction between small molecules and DNA [40]. In the
current experiment, peak potential was shifted towards the anodic side after the addition of 80 µM DNA
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which explained electrostatic mode of interaction, i.e. hydrogen bonding between DNA and UA1. This
anodic shift also showed that the complex is formed, which enhances the reduction of UA1 under the
electron-rich environment of DNA.

Based upon the change in peak current and DNA concentration (as shown in figure 9), the binding
constant (K) and size of binding site (S) were calculated according to literature methods [3]. The following
equation (3.2) was used for the calculation of Kb [19].

1
[DNA]

= Kb(1 − A)
(1 − I/Io)

− Kb, (3.2)

where Io and I are the peak current of UA1 solution in the absence and presence of DNA, respectively;
A is proportionality constant. The plot of 1/[DNA] versus 1/(1 − I/Io) gave a straight line (figure 10a)
with y-intercept equal to the binding constant (Kb = 5.74 × 103 M−1). In this way, the calculated value is
in agreement with that observed by UV-visible spectroscopy. The binding site size (S) is calculated in
accordance with the following literature reported equation (3.3) [3].

Cb

Cf
= Kb[DNA]

2S
, (3.3)

where Cf and Cb symbolize the concentration of the free and DNA-bound species, respectively. The
Cb/Cf ratio was determined as Cb/Cf = (Io − I)/I, and the plot of Cb/Cf versus [DNA] (figure 10b) yields
the slope Kb/2S [3]. S is calculated as 0.36 by using the value of Kb from (3.2). The small value of S also
confirms the electrostatic interaction between UA1 and DNA.

In this article, only UA1 was studied using cyclic voltammetry and the remaining two were assumed
to behave similarly, as all the compounds showed similar kinds of observations in other studied
techniques.
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3.6. DNA sensor properties
All of the tools used for the estimation of DNA binding mode confer the electrostatic interaction between
the test samples and DNA. UV-visible spectroscopic studies infer the clear colour change and fine change
in the λmax of the test samples (UA1, UA6 and UA7) upon interaction with DNA. As hypothesized in
the introduction, for a compound to be a good sensor for DNA, it is required to bind weakly with DNA
and present better change in probing property. The data in table 1 indicate that the sensing materials
already in use either interact strongly with DNA or intercalate into the DNA helical structure [29–35].
The intercalating compounds normally cause mutation [41,42]. Data also show that the in-use materials
give less λmax shifting in comparison to the compounds synthesized in this study.

Among the tested samples, in this study, UA6 shows better change in λmax in comparison with the
others as shown in figure 11. However, the detection limit of the synthesized compounds is comparable
to the materials already in use.

3.7. Conclusion
Three potential DNA sensors have been successfully synthesized and structurally characterized in the
solid and solution phase. Their DNA binding potency is estimated with a variety of techniques. It is
concluded that the binding mode is electrostatic and binding strength is moderate and is less than the
other existing DNA sensing molecules. The good changes in λmax conclude that these molecules may
be the better sensors for DNA. Also, these molecules are good to use in ethanol whereas the existing
molecules cannot be used in alcoholic media. The super-cooled ethanol is used for the quenching of DNA
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from water solution during the extraction process. During quenching, some of the DNA becomes soluble
in ethanol. Therefore, the estimation of DNA is important in alcoholic media for total quantification.
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