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Abstract 

This paper presents a modified reliability centered maintenance (RCM) methodology developed by The Applied Research Laboratory at The 
Pennsylvania State University (ARL Penn State) to meet challenges in decreasing life cycle sustainment costs for critical Naval assets.  The focus 
of this paper is on the requirements for the development of the on-board Prognostics and Health Management (PHM) system with a discussion on 
the implementation progress for two systems: the high pressure air compressor (HPAC), and the advanced carbon dioxide removal unit (ACRU).  
Recent Department of Defense (DoD) guidance calls for implementing Condition Based Maintenance (CBM) as an alternative to traditional 
reactive and preventative maintenance strategies that rely on regular and active participation from subject matter experts to evaluate the health 
condition of critical systems.  

The RCM based degrader analysis utilizes data from multiple sources to provide a path for selecting systems and components most likely to 
benefit from the implementation of diagnostic and predictive capabilities for monitoring and managing failure modes by determining various 
options of possible CBM system designs that provide the highest potential ROI.  Sensor data collected by the PHM system can be used with 
machine learning applications to develop failure mode predictive algorithms with greatest benefit in terms of performance, sustainment costs, and 
increasing platform operational availability.  The approach supports traditional maintenance strategy development by assessing the financial 
benefit of the PHM technology implementation with promising potential for many industrial and military complex adaptive system applications. 
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1. Background  

CBM capabilities, including implementation of continuous or periodic assessment of system condition via integrated sensors or 
at-platform tests and measurements, are built upon the foundation that is based on the idea that maintenance should be performed 
only when there is evidence of need from the asset being monitored.   
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1.1. Condition Based Maintenance (CBM) 

 
Operations and maintenance costs not only comprise a significant portion of the total ownership cost, they can be difficult to 

accurately assess at the outset of any acquisition project and even more difficult to control during the operation of an asset. CBM 
represents one of three maintenance philosophies that can be implemented over the lifetime of any asset, the other two being 
reactive maintenance and preventative maintenance. While all three strategies have valid applications for various asset types, 
successful implementation of a CBM philosophy has the ability to significantly decrease total asset lifetime cost by reducing overall 
maintenance costs associated with downtime for inspection and replacement or repair of components before their lifetime has been 
fully exhausted [1]. With proper implementation, CBM reduces unplanned downtime and increases asset availability, further 
enhancing the potential value of a successful program to asset owners and other stakeholders.   

CBM relies on accurately assessing an asset’s condition when making maintenance decisions regarding the asset.  Given a 
defined CBM approach, regularly scheduled preventative maintenance inspections can be reduced if an asset is categorized in a 
condition of good health based on the sensor data analysis results.  Components of the asset discovered in a condition of poor health 
that are likely to fail, are replaced before they undergo a catastrophic failure regardless of how long they have been in service.  
These potential benefits have not gone unnoticed – private companies from pulp and paper manufacturing to automotive assembly 
are investing heavily in CBM as an additional maintenance philosophy.  CBM principles are now being adopted widely, leading to 
significant cost savings for many organizations by enabling improved maintenance and logistics practices for identifying and 
scheduling maintenance tasks through advances in business practices, engineering, maintenance tools, technologies, and processes, 
computer resources, and information systems.  Many studies have demonstrated the efficiency and economic benefits of CBM 
strategies for applicable systems [2], including applications for detection of transient faults in the variable stator vane of aero gas 
turbine engines [3], detection and diagnosis of faults using Supervisory Control and Data Acquisition (SCADA) system data from 
wind turbines [4], predicting milling machine tool wear [5], and degradation trend analysis on turbofan engines [6].  Essentially, any 
field with complex mechanical/electrical systems and high operational readiness requirements can be a good candidate for CBM [7], 
where the ability to leverage monitoring of system performance conditions in real-time data for detection of failure and 
identification of recommended actions would enable an advantageous maintenance philosophy. 

In recent decades, CBM has been embraced by the US Navy and DoD at large due to its ability to diagnose problems before they 
occur, reduce costs associated with maintenance, improve mission reliability, maintain or enhance safety, extend time between 
overhaul and reduce unnecessary downtime [7]. 
 
1.1. Condition Based Maintenance Plus (CBM+) 
 

In 2002, the DoD instituted a policy in a memorandum signed by the Deputy Under Secretary of Defense for Logistics and 
Materiel Readiness directing CBM+ to be “implemented to improve maintenance agility and responsiveness, increase operational 
availability, and reduce life cycle total ownership costs” [8]. The policy requires that CBM+ tenets (many of which are basic 
concepts to CBM) are to be applied in both the maintenance and logistics realms across the DoD wherever they are found to be cost 
effective [8].  The original promulgation of the CBM+ strategy and related policy and instruction has since been updated and 
reissued, as it remains an essential readiness enabler and a recommended primary strategy for achieving cost-effective system 
lifecycle sustainment [9]. 

CBM+ is not a single process, rather it is a comprehensive strategy for selection, integration, and focus on a number of process 
improvement capabilities for maintainers and operators to cost-effectively attain the desired readiness across the total system 
lifecycle, particularly in operations and support (O&S) where roughly 65-80% of total ownership costs are incurred [10].  CBM+ 
strategies in organizations and programs include a variety of interrelated or independent capabilities and initiatives, both procedural 
and technical, that provides flexibility and optimization of maintenance tasks and reduces requirements for maintenance manpower 
and resources, facilities, and equipment [10].  The evolutionary approach seeks to improve accuracy of detection and prediction of 
early indications of fault or impending failure.  CBM can be implemented to provide visibility of asset health status with monitored 
data over a usage period [11], to prompt maintenance and supply channels to correct system health prior to occurrence of a serious 
problem, while maintaining operational readiness and reduce life-cycle costs associated with scheduled or reactive maintenance.   

Following CBM+ guidance involves “a conscious effort to shift equipment maintenance from an unscheduled, reactive approach 
at the time of failure to a more proactive and predictive approach that is driven by condition sensing and integrated, analysis-based 
decisions” [10]. 
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2. Degrader analysis and implementation of CBM+ 

Degrader analysis, developed by ARL Penn State, is a modified reliability centered maintenance based methodology to determine 
where the implementation of platform health management technology could potentially provide the greatest value to stakeholders by 
decreasing total ownership costs, which are largely comprised of maintenance and sustainment costs (Figure 1) [12]. 

Figure 1. Degrader Analysis, adapted from [12]  

This methodology was designed to meet requirements of Department of Defense CBM+ initiatives but is broadly applicable to 
any complex adaptive system to support enhanced, maintenance-centric logistics response by providing proactive and predictive 
capabilities. 

Naval assets have demanding deployment and refit availability requirements, which contribute to the high total ownership costs 
for these platforms. Integrating Prognostics and Health Management (PHM) systems into the design and manufacturing of systems 
will better allow early prediction of degrading asset health and identification of supply and maintenance support needs [12].  The 
degrader analysis began with analysis of platform part replacement 3M data to provide a statistical based assessment of component 
failure rate, Navy sailor interview data for insight of indications of maintainability and troubleshooting issues, and system SME 
questionnaire data to regarding existing system capability and criticality, with the goal of identifying components and subsystems 
that  
would benefit from CBM+.   Two systems identified during the analysis and were subsequently selected based on potential for 
return on investment (ROI) by implementing CBM+: (1) the high-pressure air compressors (HPAC) and (2) the advanced carbon 
dioxide removal unit (ACRU), a new system being developed to replace the old “CO2 Scrubber” systems.   

For both systems, the design process for insertion of PHM sensor technology for selected system components included 
consideration of multiple factors to generate a solution.  This included considering platform spatial arrangement, current 
maintenance methods, and Technical Readiness Level (TRL) of the health management technologies, with the goal of using 
advanced analyses to influence system design to achieve efficient scheduled maintenance and reduce operation and support (O&S) 
costs.  

3. Machine learning for machine condition assessment and maintenance decision-making 

Rapid advances in computing power, digital storage density, and network connectivity between assets have led to a data 
explosion and demand for big data analytics in CBM strategies. This wave of data availability combined with advanced statistical 
techniques drive demand in the fields of machine learning, predictive analytics, and artificial intelligence.  By applying 
mathematical techniques to enormous datasets, highly accurate insights can be divulged from previously underutilized data in fields 
including defense, manufacturing, healthcare, financial forecasting, and automation.  Advanced techniques can be applied to large 
datasets to provide early anomaly detection, accurate fault type classification, and actionable predictions of remaining useful life to 
enable condition monitoring and support condition based (rather than schedule-based) maintenance to provide operation 
optimization, maximal equipment uptime, and cost-efficiency [3].   
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Although these methods supplement and/or replace physically driven condition assessments for assets with moderate to advanced 
control systems, how and when they are used makes a difference in their potential for return on investment, as experienced with the 
two CBM+ applications. 

3.1. Barriers to Machine Learning Implementation in CBM 

Healthy data machine learning training: (e.g. Digital Twin Modeling) uses data from a wide range of operating conditions during 
normal healthy condition state to train the machine learning techniques. The advantage of this approach is that it does not require 
fault data that typically is unavailable for new systems, such as the ACRU.  However, it can be difficult to develop a fault 
identification/isolation and Remaining Useful Life (RUL) estimates with only the utilization of health condition data.   In contrast, 
using fault/failure data to train the machine learning techniques can provide a prognostic capability (includes RUL) with fault 
identification/isolation capability.  In addition, with this technique, maintenance records and/or log books are used to identify failure 
occurrences with associated sensor data to train the machine learning techniques.  However this approach requires fault/failure data 
for each failure mode, which is not always available or may be lacking in the quantity/quality necessary to perform the desired 
analyses, as seen with the HPAC application. 

Creating machine learning models that are accurate and reliable enough to provide useful predictions of machine health condition 
at any given point in time is non-trivial work. For all efforts involving machine learning, multiple models should be tested fairly to 
determine the most effective strategies, but often data density, available data collection rates, and accurate data labeling information 
cause issues even when data sources are enormous.  While the model building and evaluation has not finished for the ACRU 
datasets, comparisons of data availabilities will be drawn between the data provided for the ACRU efforts with the data that was 
provided from the HPAC efforts. 

 
Table 1. Data Quality Statistics 

Data Sources 25th Percentile of Time Gap Mean Time Gap Median Time Gap 75th Percentile of Time Gap 
HPAC 2 minutes 188.7 minutes 21 minutes 60 minutes 
ACRU 1 second 7.1 seconds 1 second 1 second 

  
The time gaps between concurrent measurements in the data provided for the HPAC datasets are on the order of minutes, while 

at least 75% of all observations in the ACRU dataset are only separated by 1 second. This enormous difference in sample rate 
significantly changes the maximum amount of information that can be contained in the data.  In disconnected environments, data 
transfer from asset to a centralized data warehouse is often the step in which data is decimated down.  

On top of this difference in sampling rate, roughly 15% of all values received for the HPAC data were missing values, most 
likely as a result of the data collection and exportation scheme.  These missing values are scattered throughout the datasets, meaning 
many observations are not necessarily complete and need to be either dropped or have their missing values inputted. For 
comparison, the ACRU dataset contains 0.02% missing values.   

3.2.  Circumventing Challenges for Machine Learning Implementation  

Data-driven techniques like data mining or machine learning are essential to detecting anomalous behavior in systems displaying 
complex, nonlinear behavior due to high dimensionality and multiple operating conditions that are often too difficult to design a 
reliable, analytical system model, yet present interesting challenges for mitigating unfavorable machine learning circumstances [3].  
In some circumstances, characterization of deviance from stakeholders’ reliability requirements and normal system behavior for 
novelty detection to indicate system faults may be limited to unsupervised/self-supervised learning.  Reliability problems stem from 
lack of involvement leading to poor definition of reliability requirements, a lack of understanding by the system developers on how 
to operate and maintain the fielded system, lack of reliability incentives in contracting, and poor tracking of reliability growth during 
system development.  A costly mitigation for when limited or no fault data exists involves running systems to failure to enable 
supervised learning to train for detection of anomalous behavior requires the existence of targeted fault data.  

A proactive approach is vital to CBM+ and ROI, with early involvement in establishing requirements and reliability investment 
(ideally, early in the design process), with industry being a key in this area [14].  With DoD guidance for reliability growth, the 
Navy reliability, availability, and maintainability (RAM) program, as an integral part of design and development, demonstrated 
credible reliability assessment in its technical review process by instituting a failure review board for its ACRU R&D program.  
Early on, the program office sponsored and formally managed the reliability aspect of development by instituting disciplined 
systems engineering processes during prototyping to categorize failure with formal and regular reviews of failure data to establish 
higher quality maintenance data that will potentially enable CBM+ and supervised machine learning implementation.  

The quality of sensor data and maintenance record log books is essential to the effort to develop predictive algorithms, which 
allowed for controlled conditions to provide for improved data quality in the case for ACRU.  For candidate systems of supervised 
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learning, performing time series representations are possible with advanced machine learning techniques, such as remaining useful 
life (RUL) estimation techniques (e.g. Embed-RUL utilizing sequence-to-sequence model based on Recurrent Neural Networks) to 
generate embeddings for multivariate time series sub-sequences to accommodate noisy conditions [6].  

To overcome data availability challenges in the future, reasonable care should be taken when designing data acquisition and 
transportation schemes to potentially preserve relatively high sample rate data and full data density. Considering potential future 
data science and machine learning projects during the design phase of complex systems provides the most cost effective way to 
avoid these challenges. If the programmable logic controller (PLC) of a complex system is accessible, retrofit data collection 
systems can be added which read data traffic across the communication port and store data of a high enough sample rate and quality 
to facilitate machine learning implementation of CBM. This is one of the primary goals behind the health management system 
(HMS) under development for the HPAC. 

4. Health Monitoring System development and implementation process 

The HMS was developed with a concurrent, iterative approach of simultaneously designing the data-driven HMS and model-
driven HMS for a holistic hardware and software design solution with an information interface shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The first step in the HMS development process involves data gathering from the existing embedded sensors and any additional 

required sensors located on the critical asset in focus.  Signal processing is then conducted to extract health features from the data, 
which provides the capability to diagnose fault severity and isolate the fault location.  The signal processing is conducted by two 
methods: the data driven and the model driven approaches, which provided greater capability to diagnose and prognose faults with a 
higher confidence in the health assessment.  The final step is the automated reasoning that allows the HMS to operate autonomously 
and provide health assessments to the operators and maintainers. 

 
4.1.  Selection of the Appropriate Predictive and Prognostics Approach 
 

Research in CBM approaches involves identifying applicable characteristics of the system of interest and datasets to build an 
appropriate predictive and prognostics model.  In each application, insight is provided with respect to dataset quality and other 
contextual factors to inform selection of the appropriate approach, which may be experience-based, physics-based, or data-driven, or 
some combination to form a hybrid approach.  Each of the categories of approaches is described in Table 2, with their respective 
strengths and weaknesses outlined in [15]. 
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Table 2. Predictive and Prognostics Approach Overview 
Approach Description Strength Weakness 
Experience 
Based 

 Uses expert 
knowledge and engineering experience to create logic and rules (i.e. If-Then 
statements) that correlate with the observed situation to infer RUL from historic 
sensor measurement or events.  

 Widely used for 
diagnostic capability and predictive/prognostic. 

Does not require 
historical data to 
develop the 
techniques; only 
an understanding 
of the system 
function is 
needed. 

Approaches 
are highly 
dependent 
on the 
knowledge 
of the 
domain 
experts. 

Physics 
Based 
 

 Approaches require a 
knowledge of a systems failure mechanisms to build mathematical 
models/algorithms to estimate the degradation process for the RUL. 

 Experiments/empirical 
data are used to develop an understand of the degradation parameters of a complex 
system. 

Highly effective 
for components 
with well 
understood failure 
modes. 

Requires a 
strong 
correlation 
between 
the sensor 
data and 
the 
mechanism 
of failure 
over the 
range of 
operating 
conditions. 

Data 
Driven 

 Approaches rely only 
on historical data to predict the projection of a system failure or to match patterns 
of past failure evolutions to estimate RUL. 

 Statistic based models 
are widely used for these approaches.    

Effective for a 
broad range of 
applications and 
does not require a 
deep 
understanding of 
the system 
operational/failure 
dynamics a priori. 

Requires a 
significant 
number of 
sensor 
inputs and 
quantity of 
historical 
data to train 
the models.   

 
For the ACRU, a hybrid approach combining a physics-based model and data-driven model was selected to leverage the strengths 

of each and improve prediction performance.  

4.2. Predictive Algorithm Development 

The CBM Features Toolbox within Mathworks Matlab contains a set of conventional, publicly available standard signal 
processing routines for development and selection of diagnostics and predictive techniques tools, supplemented by novel features 
developed at the ARL Penn State to build diagnostic and predictive fault detection algorithms for the system’s functional failure 
modes using data-driven and model-driven approaches.  This combination provided significant capability for diagnosis of faults and 
prediction of failures with higher confidence in the health assessment by utilizing data from a variety of signal processing 
techniques. The output of the analyses identified potential predictive algorithms that were tailored to results of the enhanced failure 
modes, effects, and criticality analysis.  Following the testing and validation of the algorithms and techniques, data fusion 
techniques were applied to combine data from multiple sensors and related information to capture specific inferences of component 
and subsystem damage on measured parameters, as well as to reduce the incidence of false alarms.   

4.3. Multi-Signal Sensor System Data 

The sample rate of data collection from multiple sensors was standardized to provide data for the machine learning application 
over a common interval.  The frequency of data, relational to the amount of data samples, provided input data from two sets of 
sensors.  The goal was to isolate the earliest warning of predicted failure to a particular failure mode, by simultaneously monitoring 
signals indicating the early stages of variation using thresholds and rules.  By monitoring multiple signals, the incidence of false 
alarms is dramatically reduced.   

 
4.4. Machine Learning Training 
 

Critical components at risk for degradation and failure were identified as good targets for CBM.  In order to train and test the data 
driven machine learning techniques to develop a predictive maintenance capability for the ACRU, data was acquired from NSWC 
Philadelphia from the prototype ACRU.   Data was collected from 45 existing control system sensors at a sample rate of 1 Hz during 
development testing.  NSWC Philadelphia also provided well annotated log books that provided a description, date, and fault code 
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for all available anomalous events during the ACRU testing over a several year period.  The data analysis team transferred the log 
book data to a data table that was cross referenced to the data based that contained the associated sensor data.  Similar 
anomalies/failure mode events were identified from the log books and the sensor data that preceded the event dates was extracted 
from the data based to provide training and test data for the machine learning.  The data analysis team is applying the data to several 
machine learning techniques, listed in Table 3. 
 

Table 3. Machine Learning Techniques 

Method Data Driven Approach Type Computation Complexity/Implementation Complexity 

Ordinary Least Squares Regression Fault Data Simple/Simple 

Statistical Classifier: Linear Discriminant 

Analysis (LDA)-Bayes, Random-Forest, 

Support Vector Machine (SVM), etc. 

Fault Data 
Difficult/Moderate (already government-owned property 

and implemented in CMAS development server) 

RNN Embedding Auto-encoder Healthy Data Difficult/Difficult 

Survival Regression Fault Data Moderate/Moderate 

Decision Tree Fault Data Moderate/Moderate 

Mahalanobis Distance Clustering Healthy Data Simple/Moderate 

Unsupervised learning (DBSCAN, k-means, 

k-nearest neighbor) 
Fault Data Unknown 

General Linear Model auto-encoder Healthy Data Difficult/Difficult 

 

 

The table lists the machine learning methods that are being used for this application, the type of data that is applied, and the relative 
computational and implementation complexity for each method.   

As of the date of publication, the data analysis team applied the ordinary least squares regression method to the ACRU time 
series data from the 45 sensors for a selected component failure events.  One training data set was used and the results of using one 
test set is shown in Figure 3.  The figure indicates the predicted remaining useful life on the Y-axis and the actual remaining cycles 
on the X-axis.  The preliminary results show a potential capability to predict failure at 50 remaining cycles.  The team will continue 
to conduct more testing using this method and the other listed methods, to be reported in the future.         

 

 

Figure 3. Ordinary Least Squares Regression Method Applied to ACRU Data 

 
The focus of our analysis provides utility to users through continued development of an automated reasoning capability to provide 
system health assessments as a representation complex system while allowing the health management system to operate 
autonomously.   
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5. Conclusion 

The goal of the research and development was to evaluate the potential of using existing control system sensors with machine 
learning techniques for the development of predictive maintenance for critical complex systems. 

Degrader analysis revealed two sub systems that represented high value targets for the application of CBM, the HPAC and the 
ACRU. Detailed engineering analysis was used to determine physics based approaches likely to provide accurate information on the 
health status of both newly delivered and legacy HPACs. An integrated hardware and software solution is being developed, which 
not only supports the physics based approaches, it also increases the quality of data available for use in developing data driven 
approaches to HPAC. Both physics and data-driven approaches are in development for multiple critical components of the ACRU.  
These efforts have demonstrated the clear value of the reliability growth program, which in turn provided for good maintenance 
records to allow correlation of failures with sensor data.  Key to be involved early in system development in order to collect usable 
machine learning data 

The health management system design provides a prototype solution from which data collection and a hybrid approach supports 
evolutionary planning of a proactive maintenance strategy.  The proposed integration of the onboard machinery monitoring system 
and the health management system is scheduled for implementation and demonstration on the ACRU in 2030.   
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