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ABSTRACT

EXTERNAL AERODYNAMICS OF HEAVY GROUND VEHICLES:
COMPUTATIONS AND WIND TUNNEL TESTING

Ilhan Bayraktar
Old Dominion University, 2002
Director: Dr. Oktay Baysal

Aerodynamic characteristics of a ground vehicle affect vehicle operation in many
ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top
speed and acceleration performance. In addition, engine cooling, air conditioning, wind
noise, visibility, stability and crosswind sensitvity are some other tasks for vehicle
aerodynamics. All of these areas benefit from drag reduction and changing the lift force in
favor of the operating conditions. This can be achieved by optimization of external body
geometry and flow modification devices. Considering the latter, a thorough understanding
of the airflow is a prerequisite.

The present study aims to simulate the external flow field around a ground vehicle
using a computational method. The model and the method are selected to be three
dimensional and tdme-dependent. The Reynolds-averaged Navier Stokes equatons are
solved using a finite volume method. The Renormalizatdon Group (RNG) k-€ model was

elected for closure of the turbulent quanttes. Initally, the aerodynamics of a generic bluff
body is studied computationally and experimentally to demonstrate a number of relevant
issues including the validation of the computational method. Experimental study was
conducted at the Langley Full Scale Wind Tunnel using pressure probes and force

measurement equipment. Experiments and computations are conducted on several
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geometric configurations. Results are compared in an attempt to validate the computational
model for ground vehicle acrodynamics.

Then, the external aerodynamics of a heavy truck is simulated using the validated
computational fluid dynamics method, and the external flow is presented using computer
visualization. Finally, to help the estimation of the error due to two commonly practiced
engineering simplifications, a parametric study on the tires and the moving ground effect are
conducted on full-scale tractor-trailer configuration. Force and pressure coefficients and
velocity distribution around tractor-trailer assembly are computed for each case and the
results compared with each other.

Finally, this study demonstrates that it is possible to apply computational fluid
dynamics for ground vehicle aerodynamics with substantial derail and fidelity. With the
latest developments on computing power, computational fluid dynamics can be applied on
teal-life transportation problems with reasonable turn-around times, reliability, ease of
accessibility and affordability. The next step is deemed to be considering such a
computational methodology for analysis within an automated optimization process in

improving aerodynamic designs of heavy ground vehicles.
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CHAPTER 1

INTRODUCTION?

1.1 GROUND VEHICLE AERODYNAMICS

One of the objectives considered in designing the new generation heavy trucks is fuel
efficiency. This can be achieved by improving the combustion process in the diesel engine
and by reducing the overall drag force on the truck in motion. Considering the latter, a
thorough understanding of the airflow, both in and around the truck, is necessary.

The fluid flow in and around a ground vehicle in motion may be grouped into the
following two major categories. The external flow includes the undercarriage flow, the flow
in the gap between the tractor and the trailer(s) and the wake behind the truck. The external
flow is estimated to be responsible for about 85% of the drag force. It generates the wake
that the nearby road vehicles experience and carries the splashed water or mud to the truck’s
immediate vicinity. The internal flows include the under-the-hood flow and the flow inside
the cabin. The airflow that enters through the front grill starts the under-the-hood flow;
after it cools the engine block, it is diverted by the bulkhead to the wheel wells.

Both the external and the intemal flows are highly turbulent, dominated by large
separation regions, large and small vortices and complex recirculation regions (Hucho, 1998).
Due to one or more of the aforementioned factors, some of these flows are also unsteady.
Therefore, they require time-accurate solutions of the viscous-flow equations on
computational domains with moving boundaries or even dynamic meshes (Baysal, 1999,

Baysal and Luo, 1999,).

t The format of this dissertation is based on the ASME Journal of Fludds Engineering,
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Bluff body flows get attention in many areas in vehicle design, missile configuration
and building and railroad aerodynamics. In addition, it is necessary in many vehicle designs
to lessen the length to reduce weight. Furthermore, it is essential in ground vehicle
aerodynamics to satisfy a design principle, which is the maximum utlization of the enclosed
vehicle volume. Because of this design concept, bluff body shapes widely appear in many
cases.

Bluff body wakes are of particular interest as low pressures can develop in this
region, resulting in base drag that can be a significant portion of the total body drag. Drag
force, which is generated by the vortices behind a bluff body, is also time dependent. If the
frequency of this unsteady force matches with the natural frequency of the bluff body, it can
induce noise and vibration. Flow induced vibration of the bluff body can take the form of
vortex resonance, galloping or flutter depending on the flow conditions and geometry of the
body. Therefore, studying of such flow structures is important to the design of safe
products.

Most of the studies into subsonic bluff body flows (square and circular cylinder
studies) are simple two-dimensional configurations. Many practical engineering problems,
such as heat exchanger flows, can be analyzed in two dimensions; however, many wake
flows require three-dimensional analysis. For example, ground vehicles, buildings and
aircraft fuselage design require axisymmertric or a three dimensional analysis.

The flowfield around a ground vehicle, which is being investigated in this study, is a
three dimensional, turbulent and unsteady phenomenon. Typical tractor-trailer
configurations produce several stagnation points, separations, secondary flow regions and

large wakes. In addition, under-the-hood and underbody flows make the external flowfield
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even more difficult to handle. These all increase the total vehicle drag coefficient and
eventually influence the fuel consumption unfavorably.

It has been reported that heavy trucks consume approximately 68% of all
commercial truck fuel used in United States, even though they comprise less than 17% of
the commercial vehicle fleet. Nearly 70% of the fuel consumption of these heavy trucks
occurs during trips longer than 100 miles (Bradley, 2000). Therefore, the heavy trucks stand
to benefit most from any technology that will improve fuel efficiency.

Fuel consumption for heavy trucks can be reduced by external shape modificaton.
Aerodynamically improved external geometry decreases the drag force on the vehicle in
motion. Characteristics of such vehicle aerodynamics can be itemized as follows; (i) Heavy
trucks have a relatively high drag coefficient, which is usually greater than 0.5 (Bradley,
2000), (ii) they have large frontal areas (iii) and they are operated mostly at highway speeds.
Detailed research in these areas could lead to drag reduction and considerable fuel savings.

There are numerous studies that have been conducted either with entire trucks or
local geometries and their resulting flow characteristics. Until recently, most of these studies
have been based upon wind tunnel experiments. This is mainly because there was no better
method available for a long tme. Therefore, most of the design improvements were
achieved from these limited quanttative data from tradidonal methods. Recent
improvements on computer speed and architecture provide a new opportunity for the
aerodynamic development of ground vehicles. However, most computational methods have
yet to be proven on ground vehicle aerodynamics.

1.2 MOTIVATION AND OBJECTIVE OF THE STUDY
Road vehicles are the most common transportation utilities on Earth. There are

millions of road vehicles that are used to transport of people and goods everyday. Almost all
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of these vehicles consume petroleum products, which are not renewable and will be depleted
in the future. Therefore, the primary motivation for this study is fuel efficiency.

Fuel efficiency can be obtained by not only improving the combustion process, but
also reducing the overall aerodynamic resistance of the vehicle in motion. In addidon, a
lowered aerodynamic resistance increases vehicle acceleration capability and the top speed.
Aerodynamic characteristics also play an important role in vehicle control, stability, wind
noise, interaction with other vehicles and road safety.

Every type of road vehicle uses aerodynamics in different ways. For example,
NASCAR class racecars use spoilers on the rear end to gain an aerodynamic advantage.
They even use another cars’ wake to lessen drag. Open wheel racecars like NASCAR cars
also have wings, strakes, wickers and many other aerodynamic devices. They typically use
aerodynamics to increase negative lift and improve vehicle stability at high speed (Katz,
1995). In contrast, passenger cars, vans and trucks are not designed for negatve lift. The
aerodynamic design goal for those kind of vehicles is to reduce the drag force. Therefore,
they are not associated with such aerodynamic devices. Moreover, solar cars present another
interesting aerodynamic design objective. Since their top velocity is relatively low, they are
built on a zero-lift principle, and unlike passenger cars, drag minimization is the primary
variable for optimizing the external geometry (Hucho, 1998).

Historically, aerodynamics has not been a big concern in the vehicle design process.
Increasing fuel prices and environmental pollution have made acrodynamics more important
in the last half of the 20" century. First improvement was accomplished by moving from a
carriage-like body to a three-volume body (pontoon) with reduction of the drag coefficient
from ¢,<0.8 to c;,=0.45. The next development in drag reduction started at the beginning

of the 1970s. The first oil crisis during the winter of 1973-74 made the automobile industry
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ready to accept arguments from aerodynamicists, and so a trend to lower drag became rather
pronounced. Presently, an average mid-size car has ¢;,=0.30 value and it is believed that this
value still can be improved by applying basic acrodynamic principles (Hucho, 1993).

The objectives of this dissertation are to investigate the principles in ground vehicle
aerodynamics and simulate the external flow using a computational method. Efforts are
especially directed towards code validation, force coefficient calculation, rear end vehicle
configuration and full-scale heavy truck simulation. This dissertation is founded on
numerical calculations; however, an attempt at wind tunnel verificaton is also made.

The first part of the present study is a continuation of previous bluff body research
in vehicle aerodynamics. Previous bluff body research, which is discussed in Chapter 2,
addresses the relatonship between drag coefficient and rear end vehicle configuradon. The
present study examines this relationship in detail using a Computational Fluid Dynamics
method. Later, the same method will be applied to a full-scale heavy tractor-trailer
configuration. A parametric study is conducted to understand the effects of a moving
ground and dres. Results are presented using numerical visualizaton techniques and

compared with each other.
1.3 ROADMAP OF DISSERTATION

This disserration is structured in seven chapters. The background, a short description
of the methodology, motivation and objectives have been presented in this chapter. Chapter
2 is devoted to literature survey, a detailed review of the research work conducted in the
area. Chapter 3 briefly discusses the numerical tools, solution procedure and turbulence
modeling that are being used in this dissertation. Then, Chapters 4 and 5 investigate bluff
body aerodynamics on an Ahmed Body. Presented in Chapter 4 are the experimental

measurements from the wind tunnel, and in Chapter 5 the numerical results and their
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comparison with experimental measurements are provided. Chapter 6 investigates heavy
truck aerodynamics using this methodology. Finally, conclusions of the present study and

recommendations for future enhancement of the work are given in Chapter 7.
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CHAPTER 2

LITERATURE SURVEY

The first vehicle that moved by its own gasoline power was built more than 100
years ago. The people who built it cerrainly did not think about aerodynamics; interest in the
aerodynamic design of road vehicles developed much later. The first efforts to modify
automobile aerodynamics were simply to transfer shapes from naval and aeronautical
applicatons. These efforts could not succeed mainly because the approach of directly
transplanting (with almost no change) shapes that had been developed for aeronautical and
marine purposes was not suitable. There were different functional, economical and aesthetic
design concepts involved in ground vehicle design. In addition, aerodynamic benefits were
not needed at that ime. Those preliminary modifications could only be adapted if some
important changes in car design were considered together, e.g., engine location, or layout of
the passenger compartment.

Development of ground vehicle aerodynamics in the automobile industry has been
discussed in many articles (Gleason et al. 1998, Hucho 1998, Sumantran et al. 1995).
Therefore, acknowledging the danger of being superficial, only critical events in the past will
be highlighted. If we outline them in chronological order:

1. First, Klemperer (1922) recognized that the pattern of flow around half a

body of revolution is significantly changed when that half body is brought
close to the ground in 1922 (Figure 2.1).
2 Kamm et al. (1934) and Koenig-Fachsenfeld (1951) conducted rear body

end truncadon studies.
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3. Hucho et al. (1976) introduced “detailed optimization” into vehicle
development.
4. Morel (1978) and Ahmed et al. (1984) investigated detailed flow patterns

at car rear ends.

5. T. Han (1989) implemented CFD methods to ground vehicle
aerodynamics.
6. Today, aerodynamic design analysis on “add-on” devices such as mirrors,

air dams, fairings and wings to passenger cars, trucks and race cars are

getting attention.

With these six steps, aerodynamics has been implemented in the vehicle design procedure.

'—_ (o N

EE S

JARAY

ol

L 6.’:..";.” ,@m

-

Figure 2.1. Historical development of vehicle aerodynamics (with permission, from the Anaual Review of
Fluid Mechanics, Volume 25, ©1993, by Annual Reviews www.AnnualReviews.org).

Figure 2.1 shows first examples of early aerodynamic studies. In the first half of the

century, vehicle aerodynamicists worked on streamlining the cars. Many streamlined vehicles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



were tested under impression of marine and aviation applications (Hucho and Sovran, 1993).
In the 1930s, a parametric study on front and rear end configurations and their interactions
was investigated by Lay (1933). That study revealed a strong interaction between front and
rear end design. Therefore, front and rear end configurations got most of the attention at
the dme. In the 1960s, detail optimization was introduced to reduce the drag force by
modifying small components on the vehicle. Details such as radii of edges and pillars,
camber of panels and size and location of spoilers were changed and significant results were
obtained (Hucho, 1998). In the 1970s, total shape optimization also came into the play. In
this optimization process, the acrodynamic development starts on the main dimensions of
vehicle, such as length, height and width, and then goes through the external shaping
process. In day-to-day operations, of course these two optimization strategies could not be
strictly separated. Actually, today both detail and shape optimization strategies are
successfully used on the aerodynamic vehicle development process.

Higher fuel price, increased operation speed in average and higher comfort standards
have made aerodynamics an even more important design variable than before. Current fuel
prices are much higher than those of 50 years ago, and average road vehicle speed has been
doubled in the last 40 years. Although high operating speed increases aerodynamic forces
exponentially, drag coefficient has dropped in half in last five decades. Figure 2.2 shows
average drag coefficient change for ground vehicles in the last century. User comfort has
also played a role in this aerodynamic improvement. Wind noise has become as important
issue as engine noise at high speed. Quiet, fuel-efficient and environment friendly

production vehicles have become more attractive in these days.
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Figure 2.2. Drag coefficient improvement in history (with permission, from the Annual Review of Fluid
Mechanics, Volume 25, ©1993, by Annual Reviews www.AnnualReviews.org).

In this section, the literature on ground vehicle aerodynamics is reviewed and
underlying concepts highlighted. Although for today’s ground vehicle aerodynamics have
been extensively investigated under many sub-titles, for the benefit of this study, the
literature review is classified as follows:

¢ Bluff Body Aerodynamics

e External Car Aerodynamics

e External Truck Aerodynamics

As the primary concern of this dissertation is external truck aerodynamics, the survey
of literature in this particular area has been covered more extensively than the other areas
mentioned above. Nevertheless, it is also intended to provide the reader with an informative
review of the work conducted in the other areas, where the present study will broaden the

possibilities.
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2.1 BLUFF BODY AERODYNAMICS

In general, there are two common bluff body geometries that have been used as a
benchmark case in the early automotive aerodynamics literature. The first generic bluff body
case for ground vehicle aerodynamics was introduced by Morel (1978), and then Ahmed et
al. (1984) modified this geometry and published similar bluff body study. Both geometries
are almost the same size and shape, except the first one is slightly longer than the second.
Later, more complex geometries, like Asmo II Body, were introduced. However, detailed
geometry definition and easy manufacturability made Ahmed Body the first choice for most
bluff body studies in ground vehicle aerodynamics.

Each bluff body research simplified and investigated a ground vehicle in different
ways. The studies, which have been conducted by Morel (1978) and Ahmed et al. (1984)
investigated rear end configuration on a bluff body model using time averaged measurement
technique, and reported drag coefficient change and flow characteristics on the base. They
both revealed the drag breakdown at ~30-deg backlight angle. Ahmed et al. (1984) also
measured local drag from each surface and represented afterbody wake structure with ten
hole directional probe measurements and oil visualization. Then, Han (1989) investigated
Ahmed’s model using steady Reynolds-averaged Navier-Stokes solver with k-€ model
Although his calculations predicted the location of separation and trailing vortices,
calculations of pressure coefficient on the base did not match because of the lack of accuracy
of the turbulence modeling. Later, the same model was experimentally studied by Sims-
Williams and Domini (1998) with several techniques including twin hot-wire probes in the
wake region. They investigated the flow unsteadiness at the critical backlight angle and
pressure distribution on the longjtudinal centerline of the model. Anagnost et al. (1997)

presented drag, lift and pressure distribution for Morel Body, which is similar to Ahmed
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Body, using a numerical method. They illustrated the simulaton of fluid flow over the
Morel body at different backlight angles, and predicted vortex flow phenomena. Original
Ahmed body geometry later investigated by Baysal and Bayrakrar (2001) solving the tme-
dependent, three-dimensional, Reynolds-averaged Navier Stokes (RANS) equations on flow-
adapted unstructured meshes. The solutions were obtained after an extensive mesh

refinement study and on a parallel computer. They presented pressure, lift and drag

coefficients for several backlight angles using RNG k-€ turbulence modeling method. The
unsteady wake flow, generated by virtue of the blunt base, was presented using
computational flow visualization, and power spectral analysis was conducted on the recorded
force data on the model. In addition, Bayraktar et al. (2001) also conducted an experimental
study on an automobile-size Ahmed body model. In order to examine aerodynamics of a
ground vehicle, wind averaged drag coefficient and Reynolds number dependencies were
investigated.

Several other studies investigated similar bluff body structures for the variables other
than backlight angle. Wake structure of a bluff body investigated by Duell and George
(1992) in terms of ground clearance, aspect ratio of body and ground plane movement. Free
stagnation point was measured with a hot wire anemometer and power spectral density
analysis was conducted on several points in the wake using microphones. It was determined
that modifying unsteady wake with insertion of a splitter plate cause a 75% reduction in the
base pressure fluctuations, and a 6% cut in overall drag. Ground clearance and ground type
(moving or stationary) for a bluff body, which represents an automobile, then investigated by
Kim and Geropp (1998). Top and bottom pressure distributions were measured and
Strouhal number was calculated for each ground clearance configuraton. Measurements

showed that the low ground clearance diminishes the periodic flow behind the model, and
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the effect increases with a moving ground plane. Another bluff body study was conducted
by Baysal and Bayraktar in 2001. Flowfield around different backlight angle configurations
were computed and unsteady flow in the wake region was visualized. Similarly, Khalighi et al.
(2001) have studied a small bluff body geometry in terms of ground vehicle aerodynamics,
and reported the flow behavior in the wake region. Differently, model base configuration
was altered using panels instead of backlight angle. Study reported up to 20% drug
reduction with the drag reduction panels on the base. Another bluff body study in ground
vehicle aerodynamics area was conducted for a wheel located within a wheelhouse cavity by
Axon et al. in 1999. Three dimensional steady Navier-Stokes model was employed and both
fixed and rotating wheel on moving ground were considered. Computational results
compared with experimental measurements, and it was found that the rotating wheel
produced more drag than the stationary wheel whilst wheelhouse cover drag decrease when
the ground plane was moving compared to when it was stationary.

The latest improvements in computation power have introduced more sophisticated
numerical methods into bluff body aerodynamics. It is still not possible to apply Large Eddy
Simulation and Direct Numerical Simulation on the real industrial problems, but there are
studies that are being conducted on simple geometries. For example, flow around a surface
mounted cube was investigated with Large Eddy Simulation by Krajnovic and Davidson
(2001a). Time averaged velocities and turbulent stresses were computed and compared with
experiments. Drag and lift coefficients are presented along with other global quantities.
Similatly, flowfield around a square cylinder at ground proximity was studied by Hwang et al.
(2001). Unsteady, incompressible Navier-Stokes code with k-0 SST turbulence model was
employed in the study and results from several ground proximity cases were reported.

Finally, Large Eddy Simulation was applied to a simple bluff body in ground proximity by
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Krajnovic and Davidson (2001b). Wake flow and base pressure coefficient were presented.
Strouhal number was calculated for wake flow and compared with an experiment.
2.2 EXTERNAL CAR AERODYNAMICS

Ground vehicle aerodynamics has mostly been applied on automobiles. Especially in
the early stages of the automotive industry, almost all the attenton was focused on
automobile aerodynamics. Though the present study focuses on heavy truck aecrodynamics,
computational examples from the last decade in external car aerodynamics are considered
necessary to be mentioned.

One of the first published computational studies on certain automobile configuration
was the Simulation of Corvette ZR-1 by Summa (1992). Potental flow and boundary layer
schemes with simple, thin-shear-layer wake models were used in the calculations. Steady yaw
effects and unsteady pitching moton were simulated, and centerline pressure distribution
was reported. Faster design process in computational methods allowed parametric studies on
specific automobile models. Aoki et al. (1993) tested several rear end configuradons using
the finite volume technique. Different configurations resulting different flow features in the
wake region were simulated with computer visualization, and their effect on drag coefficient
was discussed.

Later, increase in the number of computational studies made validation and accuracy
investigation more important. Accuracy in drag prediction on automobiles was investgated
by Ramnefors et al. in 1994. Both two dimensional and three-dimensional calculations were
performed. Numerical scheme effect and mesh accuracy and its outcome on drag
coefficient were investigated. Similarly, Okumura and Kuriyama (1995) compared the drag
coefficients from different numerical schemes with experimental measurements and

conducted a practical aerodynamic simulation on different yaw angle and door mirror
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configuration. Investigation on other add-on devices continued with lateral tapering around
the wheels by Horinouchi et al. (1995). In addition, front-end cooling grill configuration was
investigated by Hytopoulos et al. (1998). Different configurations were studied with
different inlet speeds, and numerical results and experimental measurements were compared.
Later, Baysal and Meck (2002) investigated a NASCAR racecar model using a computational
method. Both pressure and force coefficients for the model were reported with
experimental results.

Both full body simulations and detailed investigations on add-on devices are still in
the spotlight in automobile aerodynamics. As a continuation of this effort, several
computational and experimental studies have been and are being conducted in the area.

2.3 EXTERNAL TRUCK AERODYNAMICS

Drag reduction studies of heavy trucks were started as a safety concern. Interaction
between trucks and small vehicles in crosswinds was the primary matter. Then, special
interest on external heavy truck aerodynamics gained more importance with the oil crisis in
1970s. Higher fuel prices forced industry to study on aerodynamic drag reduction methods.

With this impetus, experimental and analytical research projects were instigated.
Two studies by Bauer and Servais (1974) and Mason (1975) can be given as the first
examples of the drag reduction efforts for heavy trucks. Both studies conducted wind
tunnel tests and reported drag coefficient difference for each model. The study by Bauer et
al. was conducted with 5% scale wind tunnel models, and the results reported 30-65% drag
reduction with 20-40% fuel efficiency depend on vehicle speed and weight. In addition,
research by Mason developed an effective and practical add-on device (an air deflector) to
reduce the aerodynamic drag on tractor-trailer configuration. The study was conducted on

1/16 and 1/7 scale models with different free stream velocity, and up to 30-35% drag
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reduction was obtained. Another air deflector study was conducted by Kettinger (1982).
Wind averaged drag coefficient was calculated for different deflector configurations and drag
reduction was reported for different Reynolds numbers.

After body configuraton also got into attendon in aerodynamic development
process. An aerodynamic full-scale boattail configuration was tested by Lanser et al. in 1991.
Wind averaged drag coefficients and pressure distribution on centerline were presented for
different boattail and yaw angle configurations. Results indicated that aerodynamic boattail
reduced wind averaged drag coefficient about 9.8%. Similarly, a computadonal study was
conducted on a boattail configuration by Hassan et al. (1995). The computatdon was
performed on several boattail configurations, and the aerodynamic drag was reduced by
12.7%. Base flow investigation on tractor-trailer configuration with aerodynamic boartail
device continued with the study by Guterrez et al. (1996). Both computational and
experimental methods were used in the study. Several boattail geometries were tested at 1/8
scale in a low speed wind tunnel, and pressure distribution, velocity contours and drag
coefficients from both computational and experimental methods were compared. Another
computational calculation was petformed by Elankumaran (1997). Different boattail
configurations with the length allowed by the Federal Regulations for US highways (see
Appendix B) were investigated, up to 14% drag reduction obtained and computational
visualization was performed in the wake region. Latest boatrail study with simplified tractor-
trailer geometry was published by McCallen et al. (2000). The study was conducted with
numerical simulation with an experimental validation. Unsteady RANS and LES methods
were employed for numerical calculations and the results presented with PIV (Particle Image

Velocimetry) measurements.
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Another interesting research was conducted on boundary layer control for drag
reduction of a tractor-trailer model. The study conducted by Modi et al. (1992) investigated
momentum injection and tripped boundary layer using judiciously located fences to interfere
the flow and recover the pressure. Flow visualizaton study was conducted in a water
channel, and drag measurements were indicated around 26% and 31% reduction on the
configurations with momentum injection cylinders and fences. The same concept was also
used later on automotive aerodynamics and a 35% reduction in drag coefficient was
measured on an automobile model (Englar, 2000).

In recent years, computational simulations on truck aerodynamics started to be
applied not only on partial or simplified geometties, but on also more complicated and full
tractor-trailer combinations. Computational simulation for the external aerodynamics of
heavy trucks was investigated in this manner by Baysal and Bayrakrar (2000). The study was
conducted on a 3D tractor-trailer combination, and external flow was presented using
computer visualization. A parametric study was conducted on two commonly practiced
engineering simplifications, which are tire and ground effects. Calculated total drag change
was computed with and without tires (-6% drag error), and with and without ground plane
motion (+9 drag error). Another parametric study was conducted by McLandress et al.
(2001). The computational study aimed to design optimum aerodynamic shapes, such as grill
bars, sun-visors, and profiles of hoods, windshields and roofs. A 2D design of a sun-visor
was given as an example with an experimental validation. The study was also a sample of a

rapid computational design and testing procedure, which evaluated 22 cases in 30 days.
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CHAPTER 3

COMPUTATIONAL METHODOLOGY

Computers have been used to solve fluid flow problems for many years. Numerous
programs have been written to solve either specific problems or specific classes of problems.
From the mid-1970s, the complex mathematics required to generalize the algorithms began
to be understood, and general-purpose CFD solvers were developed. The first commercial
CFD software packages began to appear in the early 1980s and required what were then very
powerful computers, as well as an in-depth knowledge of fluid dynamics and large amounts
of time to set up simulations.

Consequently, CFD was a tool used almost exclusively in research. Recent advances
in computing power, together with powerful graphics and interactive 3D manipulation of
models, mean that the process of creating a CFD model and analyzing the results is much
less labor-intensive, reducing the time and therefore the cost. Advanced solvers contain
algorithms, which enable robust solution of the flow field in a reasonable time.

Because of these factors, Computational Fluid Dynamics is now an established
industrial design tool, helping to reduce design timescales and improving processes
throughout the engineering world. CFD provides a cost-effective and accurate alternative to
scale model testing, with variations on the simulation being performed quickly, offering
obvious advantages.

The set of equations that describe the processes of momentum, heat and mass

transfer are known as the Navier-Stokes equations. These are partial differential equations,
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which were derived in the early nineteenth century. They have no known general analytical
solution but can be discretized and solved numerically.

There are a number of different solution methods that are used in CFD codes. The
most common, and the one which has been used in the present dissertation, is the finite
volume technique. In this technique, the region of interest is divided into small sub-regions,
called control volumes. The equations are discretized and solved iteratively for each control
volume. As a result, an approximation of the value of each variable at specific points
throughout the domain can be obtained. In this way, one derives a full picrure of the
behavior of the flow.

31 MATHEMATICAL FORMULATION

The set of equations solved for the present study are the Navier-Stokes equations in

their conservation form. The general form of the mass conservation equation, which is valid

for incompressible as well as compressible one-phase flows, can be written as follows:
—+—(pu;)=0 3.1

Similarly, conservation of momentum in the / direction in an inertial (non-accelerating)

reference frame is described by:

d d dp 97,
—(pu)+—(puu.)=—=—+—_L+pg. +F 3.2)
at( ')+ax,.( ,u,) dx, Ox, *Pg L (

where p is the static pressure, 7, is the stress tensor (described below), and pg; and F; are the
gravitational body force and external body forces in the / direction, respectively.

The stress tensor 7;;is given by,

= —t L | |-=u—L6. 3.3
% [,{ij T )] il ax, "’ 63

4
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where # is the molecular viscosity and the second term on the right hand side is the effect of

volume dilatation. In addition, conservation of energy is written by:

d d dJ aT
5(pE)+a—x‘(u,(pE+ p))=a—xi(k'”a—x'.+uj (1',1 )4}-&-8,, (3.4
p u
E=h —;4'—2- (3.5)

and for incompressible flow,

(3.6)

-
I
® s

where kg is the effective conductivity (& + £, )where £, is the turbulent thermal conductivity,

defined according to the turbulence model being used). The terms on the right-hand side of
Equation 3.4 represent energy transfer due to conducton and viscous dissipation,
respectively. §, covers any other volumetric heat sources, that could exist. Equations (3.1)-
(3.4) will be solved by a finite volume method. This approach involves discretization of the
integral form of the governing equations, which are solved over a number of (finite) volumes
within the fluid domain.
3.2 DISCRETIZATION METHOD

Analytical solutions to the Navier-Stokes equations exist for only the simplest flows
under ideal conditions. Solutions for real fluid flow cases need a numerical approach, where
the equations are replaced by algebraic approximations, which may be solved using a
numerical method.

The finite volume method has been used in the present dissertation. This approach
involves discretization of the integral form of the govemning equations, which are solved

over a2 number of (finite) volumes within the fluid domain. The Figure 3.1 shows a typical
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mesh with unit depth, on which one surface of the finite volume is represented by the

shaded area.

B
) o xll 0 OO
-.;33-?- e ]
o5 73 B -
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. : '_
Element

Finite Voiume surface

Figure 3.1 Typical mesh of finite volume discretization.

It is clear that each node is surrounded by a set of surfaces, which comprise the finite
volume. All the solution variables and fluid properties are stored at the element nodes. Each
node is surrounded by a set of surfaces, which comprise the finite volume. All the solution
variables and fluid properties are stored at the element nodes. To demonstrate the method,
consider the general scalar equation for the variable ¢ with no sources:

a(§¢)+a(p0,¢) ? (” 3¢)=0 3.7

- ox;

ox, ox,;

J J

This can be integrated over the control volume to give,
a -~ a¢ Py
— | pdV + N @dA — —i,dA=0 -8
at"[ j;wlnl ,‘;/‘cﬁaxj J (3.8)

where 7, is the surface outward normal vector and .4 and [ are the outer surface area and

volume, respectively. The first step in solving these continuous equations numerically is to

approximate them using discrete functions.
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Figure 3.2. Mesh element on the surface

Now consider an isolated mesh element on the surface such as the one shown in

Figure 3.2. The surface integrals are evaluated using integration points, ip,, which are

located at the center of each surface segment in a 3D element surrounding the finite volume.

Using this notation, the advection (or transport) term can be approximated by,

JpU i pdA =Y 1,0, (3.9)
ip p

where nit, = pU ;i AA is the discrete mass flow through a surface of the finite volume, AA
is the surface area, ¢, is the discrete value of ¢ at the integration point and the sum is over
all surfaces of the finite volume. To complete the discretization of the advection term, the
variable ¢, must be related to the dependent variables stored at the nodes of the element, ¢, .

Many difference schemes developed for CFD are based on series expansion
approximations (such as the Taylor series) for continuous functions. The upwind difference
scheme (UDS) has been employed in this study. In the upwind difference scheme, the

variable at ip is set equal to the upstream nodal variable at # as transported variables move

with flow. The upwind difference scheme can be presented as

@, =9, 3-10)
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The use of more expansion terms in the difference scheme brings more accuracy to
the approximation. However, it should be noted that higher order schemes increase the
computational load. The order of the scheme used is denoted by the order of the largest
term in the truncated part of the series expansion. UDS as expressed in equation (3.10) is
only first-order accurate, but it is usually very robust (numerically stable). However, this
scheme, and others like it, can be susceptible to a phenomenon known as numerical
diffusion or “gradient smearing” (see section 3.4.1 below).

Generally, the higher order schemes are more accurate because of the reduction in
the truncation error. However, they may incur high computational penaltdes, because they
require the evaluation of more terms than lower order schemes, and they can be less robust.
They may display non-physical over and under-shoots in the solution generally attributed to
a phenomenon called numerical dispersion (see section 3.4.2 below).

The basic discretization technique adopted in the present higher-order calculations is
a conventional UDS with numerical advection correction (NAC) (AEA Tech., 1999) for the
advection terms in the momentum and energy equations. NAC improves the accuracy of

the UDs scheme by including a blending term in the discretization in the following way:
8, =0+ Pbuc @3.11)
This gives a family of higher order accurate discretization. When =10, the full
NAC discretization is implemented. With this value of B, the scheme is second-order

accurate and is much better able to preserve large gradients and total pressure in the
solution.

The pressure-velocity coupling in the mass and momentum equations is handled by
the introduction of a fourth order “pressure redistribution” term in the discredized

equations to overcome the problem of checkerboard oscillations which are found when the
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variables are co-located. The method is similar to that used by Rhie and Chow (1982), with a
number of extensions which improve the robustness of the discretization when the pressure
varies rapidly or is affected by body forces.

The linear set of equations that arise by applying the Finite Volume Method to all
elements in the domain are discrete conservation equations. The system of equations can be

written in the form:

Y a’¢ =b, (3.12)

where @ is the solution, 4 the right hand side, 4 the coefficients of the equation, i is the
idendfying number of the finite volume or node in question and 76 means “ neighbor,” but
also includes the central coefficient multiplying the solution at the #th locatdon. The node
may have any number of such neighbors, so that the method is equally applicable to both
structured and unstructured meshes. The set of these, for all finite volumes, constitutes the
whole linear equation system. For a scalar equation (e.g., enthalpy or turbulent kinetic
energy), each a®, @,, and b, is a single number. For the coupled, 3D mass-momentum

equation set they are a (4 x 4) matrix or a (4 x 1) vector, which can be expressed as:

nb
a, a, a4, a,,p
a a a a
a®?= " T " ® (3.13)
a, a4, a, a,
aP" aPV al’" aPP i
and
9= (3.19)

R
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It is at the equation level that the coupling in question is retained, and at no point are
any of the rows of the matrix treated any differently (e.g. different solution algorithms for
momentum versus mass). The advantages of such a coupled treatment over a non-coupled
or segregated approach are several: robustness, efficiency, generality and simplicity. These
advantages all combine to make the coupled solver an extremely powerful feature of any
CFD code. The principal drawback is the high storage needed for all the coefficients.

3.3 COUPLED SOLUTION METHOD

Segregated solvers employ a solution strategy where the momentum equations are
first solved, using a guessed pressure, and an equation for a pressure correction is obtained.
Because of the ‘guess-and-correct’ nature of the linear system, a large number of iteradons is
typically required in addition to the need for judiciously selecting relaxation parameters for
the variables.

A coupled solution approach (AEA Tech., 1999), which solves the hydrodynamic
equations (for the state variables u, v, w, p) as a single system, has been used in the present
study. This solution approach uses a fully implicit discretization of the equations at any
given tme step. For steady state problems, the time-step behaves like an “acceleration
parameter” to guide the approximate solutions in a physically based manner to a steady-state
solution. This reduces the number of iterations required for convergence to a steady state,

or to calculate the solution for each time step in a ime-dependent analysis.
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3.3.1  General Solution

The overall solution process consists of two numerically intensive operations. For
each time step:

1. The non-linear equations are linearized (coefficient iteration).

2. The linear equations are solved (equation solution iteration).

The time step iteration is controlled by the physical time step (global) or local dme
step factor (local) setting to advance the solution in time for a steady state simulation. In this
case, there is only one linearization (coefficient) iteration per time step. For transient
analyses, the time step and coefficient iterations can be changed.

3.3.2  Linear Equation Solution
Multigrid (MG) accelerated Incomplete Lower Upper (ILU) factorization technique

has been used for solving the discrete system of linearized equations. It is an iterative solver

whereby the exact solution of the equations is approached during the course of several

iterations.

The linearized system of discrete equations described above can be written in the

general matrix form
[Alo]=[b] (3.16)
where [A] is the coefficient matrix, [¢] the solution vector and [b] the right hand side. The
above equation can be solved iteratively by starting with an approximate solution, ¢", thatis
to be improved by a correction, ¢’, to yield a better solution, ¢, i.e.
P ="+ (3.17)
where ¢ is a solution of
Ay =r (3.18)

with r", the residual, obtained from,
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r" =b—-A¢" (3.19)
Repeated application of this algorithm yields a solution of the desired accuracy.

Iteradve solvers, such as ILU, by themselves tend to rapidly decrease in performance
as the number of computational mesh elements increases, or if there are large element aspect
ratios present. The performance of the solver can be greatly improved by employing a
technique called “multigridding.”

3.3.3 Algebraic Multigrid Technique

The convergence behavior of many matrix inversion techniques can be greatly
enhanced by the use of a technique called “multigridding.” The process of multigridding
involves carrying out early iterations on a fine mesh and later iterations on progressively
coarser virtual ones. The results are then transferred back from the coarsest mesh to the
original fine mesh.

From a numerical standpoint, the multigrid approach offers a significant advantage.
For a given mesh size, iterative solvers are only efficient at reducing errors, which have a
wavelength of the order of the mesh spacing. So, while shorter wavelength errors disappear
quite quickly, errors with longer wavelengths, of the order of the domain size, can take an
extremely long time to disappear. The multigrid method bypasses this problem by
coarsening virtual mesh spacing during the course of the iterations, and then re-refining the
mesh to still obtain an accurate solution. This technique significantly improves the
convergence rates. The current solver uses a particular implementation of algebraic multigrid
called additive correction. This approach is ideally suited to the solver implementation,
because it takes advantage of the fact that the discrete equations are representative of the
balance of conserved quantities over a finite volume. The coarse mesh equations can be

created by merging of the original finite volumes to create larger ones as shown in Figure
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3.3. (Figure 3.3 shows the merged coarse finite volume meshes to be regular, but in general,
their shape becomes very irregular.) The coarse mesh equations thus impose conservation

requirements over a larger volume and in so doing reduce the error components at longer

wavelengths.

LAPPDOD

S
A
Figure 3.3 Multigrid algorithm.

3.4 DISCRETIZATION EFFECTS

All numerical approximation schemes are subject to a degree of error. Some errors
are because of truncation of additional terms in series expansions. Others as a result of the
order of the differencing scheme used for the approximation. Many of these effects can be
significantly reduced or eliminated altogether by understanding why they occur and when
they are likely to affect the accuracy of the solution.

34.1  Naumerical Diffusion
Numerical diffusion is usually exhibited by difference equations whose advection

term has been approximated using an odd-order scheme, for instance UDS, which is first
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order accurate. Consider a three-dimensional Cartesian coordinate system. On a mesh of
quadrilateral elements, the flow direction may be normal to the faces of each element. In
this case, the flow from one element to the next can be accurately represented to the limit of
the mesh size. In a case where the flow is not normal to the faces of the elements, perhaps in
a region where the flow is recirculating, the flow must move from one element into more
than one element downstream. Consequently, some flow moves into each of the adjacent

elements as shown in Figure 3.4.

is more
accurate than
——
.
—_

Figure 3.4 Flow direction and accuracy on a structured mesh.

The effect of this over a whole flow domain is that the features of the flow are
smeared out. Figure 3.5 illustrates this effect. If a step function is used to define the inlet
profile but not aligned with the mesh, the step is progressively smeared out as flow moves

through the domain. This phenomenon is therefore sometimes called “‘gradient smearing.”

u‘ u?

Figure 3.5 Gradient smearing effect.
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The effect varies according to the alignment of the mesh with the flow direction. It is
therefore relatively straightforward to achieve highly accurate solutions to simple flow
problems, such as flow in a duct where alignment of the mesh with the predominant flow is
relatively simple. However, for situations in which the flow is predominantly not aligned
with the mesh, numerical diffusion effects limit the accuracy of the solution.

Consider a similar flow modeled on a totally unstructured tetrahedral mesh, as
shown in Figure 3.6. With this type of mesh, there is no flow direction, which is more or less
prone to numerical diffusion than any other. Consequently, the inaccuracy for simple
unidirectional flows is greater than for a mesh of hexahedral elements aligned with the flow.
However, the numerical diffusion errors for a mesh of tetrahedral are consistent, and of the
same otder, throughout the flow domain. This means that for real flows, tetrahedral control
volumes will not exhibit additional inaccuracies in areas such as recirculation, because there

is no single flow direction which may be aligned with the mesh.

__. 1>
_. ,eg;;-;,,,/
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Figure 3.6 Flow direction and accuracy on unstructured mesh.

It is a fact that using the UDS scheme with tetrahedral element meshes will produce

solutions that exhibit a larger degree of numerical diffusion than would exist from a solution
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obtained with a similarly refined mesh of hexahedral elements. However, this difference
diminishes rapidly as the advective discretization is made more second-order accurate, and
by working towards a grid independent solution. In order to minimize the effects of
numerical diffusion in the present study, computational calculations are started by using
UDS and mesh refinement for initial results, and then switched to the second-order
discretization. In addition, hybrid mesh (Figure 3.7), structured in the boundary layer region
and unstructured in the rest of the domain, is used to minimize this problem.

Tetrahedral (unstructured) volume mesh

inflated (structured) volume mesh

Figure 3.7 Hybrid mesh structure.

3.4.2  Numerical Dispersion

Numerical dispersion is usually exhibited by discretized equations whose advection
term has been approximated using schemes that are even-order accurate. When numerical
advection correction is fully implemented (with a value of $=1.0 in Equation 3.11) the
scheme is second-order accurate. This can lead, in some cases, to numerical dispersion.

Dispersion results in oscillations or “wiggles” in the solution particularly where there
are steep flow gradients (e.g., across a shock). Again the effects can be illustrated using the
step function as shown in the Figure 3.8; just before and just after the step, the solution

exhibits oscillations which are the direct result of numerical dispersion.
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Figure 3.8 Numerical dispersion.

3.4.3  Rbie-Chow Discretization Errors
Rhie-Chow (1982) interpolation scheme has been used to locate the solution of the

pressure and velocity fields at the same nodal locations in the mesh. The Rhie-Chow term,
or equivalently, 4™-order smoothing of pressure, has for many years provided a reliable way
to permit physically sensible solutions on co-located meshes (versus staggered meshes). For
the vast majority of general flows, this treatment ties together the pressure fields to yield
smooth solutions, while only minimally affecting the mass carrying velocities.

The adjustment to the mass carrying velocities appears as a 3™-order zero term
multiplying a higher derivative of pressure. For some analytical flow fields, on coarse
meshes, the error introduced by the Rhie-Chow term can appear as non-negligible and, in
fact, produce very spurious velocity fields.

The higher derivative of pressure mentioned above is not zero in these cases and
does therefore dominate the mass carrying velocity (which should be zero). As the exact
velocities are zero any disruption becomes very visible if scaled by the computed velocity
field. However, comparing the resultant non-zero velocities to the velocity scale implied by

the static head of the pressure field will show that they are small. And very importantly, they
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will diminish by third order under mesh refinement (for a uniform mesh). For example,
reducing the element size by a factor of 2 will reduce the error by a factor of 8.

In summary, whereas this effect can look very alarming under certain circumstances,
it is in fact not a problem for most general flows (with a non-zero velocity scale), and can be
made arbitrarily small for these benchmark flows by mesh refinement.

3.5 REYNOLDS AVERAGED APPROACH VERSUS LARGE EDDY
SIMULATION
There are two methods being employed to transform the Navier-Stokes equations in
such a way that the small-scale turbulent fluctuations do not have to be directly simulated:
“"Reynolds averaging” and “filtering.” Both methods introduce additional terms in the
governing equations that need to be modeled in order to achieve “closure.”

The Reynolds-averaged Navier-Stokes (RANS) equations represent transport
equations for the mean flow quantities only, with all the scales of the turbulence being
modeled. The approach of permitting a solution for the mean flow variables greatly reduces
the computational effort. If the mean flow is steady, the governing equations will not
contain time derivatives and a steady-state solution can be obtained economically. A
computational advantage is seen even in transient situations, since the time step will be
determined by the global unsteadiness in the mean flow rather than by the turbulence. The
Reynolds-averaged approach is generally adopted for practical engineering calculations, and
it uses turbulence models such as Spalart-Allmaras, k-€ and its variants and the RSM.

Large eddy simulation (LES) provides an altemative approach in which the large
eddies are computed in a time-dependent simulation that uses a set of “filtered” equations.
Filtering is essendally a manipulation of the exact Navier-Stokes equations to remove only

the eddies that are smaller than the size of the filter, which is usually taken as the mesh size.
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Like Reynolds averaging, the filtering process creates additional unknown terms that must be
modeled in order to achieve closure. Statstics of the mean flow quanttes, which are
generally of most engineering interest, are gathered during the time-dependent simulaton.
The attraction of LES is that, by modeling less of the turbulence (and solving more), the
error induced by the turbulence model will be reduced. One might also argue that it ought
to be easier to find a “universal” model for the small scales, which tend to be more isotropic
and less affected by the macroscopic flow features than the large eddies.

It should, however, be stressed that the applicaton of LES to industrial fluid
simulations is in its infancy. As highlighted in a review publication (Galperin and Orszag
1993), typical applications to date have been for simple geometries. This is mainly because
of the large computer resources required to resolve the energy-containing turbulent eddies.
Most successful LES has been done using high-order spatial discretization, with great care
being taken to resolve all scales larger than the inertial subrange. The degradation of
accuracy in the mean flow quandties with poorly resolved LES is not well documented. In
additon, the use of wall functions with LES is an approximation that requires further
validation.

Therefore, Reynolds-averaged approach is employed in this dissertation. The LES
approach, brefly described in here, should become more feasible for industrial problems
when the computational resources become significantly more powerful than what is available
today. The rest of this section will deal with the computational procedure using the
Reynolds-averaged approach, which is explained in Appendix C.

3.5.1 Eddy Viscosity Models
One proposal suggests that turbulence consists of small eddies which are

continuously forming and dissipating, and in which the Reynolds stresses are assumed to be
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proportional to mean velocity gradients. This defines an “eddy viscosity model.” The effect
of the Reynolds stress contribution is then described by the addition of a turbulence
component of viscosity so that

by =H+AH, (3:20)
where 4, is the “effective viscosity” and 4, is the “turbulence viscosity” contribution from

the Reynolds stress.

3.5.1.1  Zero Equation Models
Very simple eddy viscosity models compute a global value for 4 from the mean

velocity and a geometric length scale using an empirical formula. Because no additional
transport equations are solved, these models are termed “zero equation.” Simple to
implement and use, zero-equation models can produce approximate results very quickly and
provide a good initial guess for simulations using more advanced turbulence models.

The zero equation model is a simple eddy-viscosity concept which uses an algebraic

equation to calculate the viscous contribution from rurbulent eddies.

The turbulence viscosity is modeled as the product of a turbulent velocity scale,U, ,

and a turbulence length scale, /,, as proposed by Prandtd and Kolmogorov,
#=pfUl (3.21)
where f, (=0.01) is a proportionality constant. The velocity scale is taken to be the

maximum velocity in the fluid domain. The length scale is derived using the formula:

Vll3
| ==2— 3.22
$ = (3.22)

where V), is the fluid domain vohime.
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3.5.1.2 Tuwo Equation Models
Two-equation models are much more sophisticated than the zero equadon models.

Both the velocity and length scale are solved using separate transport equations (hence the
term “two-equation”). An example of this type is the k-€ model, where k is the turbulence

kinetic energy, and € is the turbulence eddy dissipation. The k-€ model is a significant
advancement over zero equation models because the turbulence viscosity can vary locally. It
can also preserve flow history effects.

Two-equation turbulence models are very widely used, as they offer a good
compromise between numerical effort and computational accuracy. The k-€ two-equation
model has been built into most general-purpose computational fluid dynamic solvers. This
model uses the gradient diffusion hypothesis to relate the Reynolds stresses to the mean
velocity gradients and the turbulent viscosity. The turbulent viscosity is modeled as the
product of a turbulent velocity and turbulent length scale.

In two-equation models, the turbulence velocity scale is computed from the
turbulent kinetic enetgy, which is provided from the solution of its transport equation. The
turbulent length scale is estimated from two properties of the turbulence field, usually the
turbulent kinetic energy and its dissipation rate. The dissipation rate of the turbulent kinetic
energy is provided from the solution of its transport equation. The k-€ model uses an eddy
viscosity hypothesis for the turbulence and introduces two new variables into the system of
equations.

The momentum equation becomes,

'a%‘l'Vo(pU@U)-—Vo(urﬂVU)=Vp'+Vo(deU)T+8 (3.23)
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where B is the sum of body forces, W4 is the effective viscosity accounting for turbulence

and ' is the modified pressure given by,
, 2
p=p+ ; Pk (3.24)

The k-€ model, like the zero equation model, is based on the eddy viscosity concept,
so that,
Ky =B+ 4, (3:25)
where M, is the turbulence viscosity. The k-€ model assumes that the turbulence viscosity is
linked to the turbulence kinetic energy and dissipation via the relation,

kZ
#,=Cop— (3.26)

where C, is a constant. The values of k and € come directly from the differential transport

equations for the turbulence kinetic energy and turbulence dissipation rate,

a’* +V o (pUk)- v.(‘;'f Vk) P, - pe 3.27)

k

%€ L9 (pve)- v-(‘;f ve] £(Ck ~Corpe) 628

(3

where C,, Co, O and O are constants, which are given in Table 3.1. Py is the shear

production due to turbulence, which for incompressible flows is,
P, =uvVUe(VU +VUT)-§V0U(;J,V0U + pk) (3.29)

Although the k-€ model is an industry standard, it can produce unreliable results

particularly in regions of highly separated flow, due to the general assumptions of the eddy
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viscosity model concept. Therefore, RNG k-€ model is selected at all computational

calculations in the present dissertation.

3.5.1.3 RNG k—& Model
The RNG k-€ model by Yakhot and Orszag (1986) is an alternative to the standard

k-€ model. It is based on renormalization group analysis of the Navier-Stokes equations to
develop a theory for the large scales in which the effects of the small scales are represented

by modified transport coefficients. Further details of the RNG k-€ model can be found in

Gatski et al. (1996).
The transport equations for turbulence generation and dissipation of the RNG k-€
model are the same as those for the standard k-€ model. The difference arises in the kinetic

energy dissipation rate transport equations, where the constant C,, is replaced by a functon.

The functon for C,, (see Equation 3.32) contains strain dependency to aid the model in

dealing with flows that experience large separation and recirculation regions (Gatski et al,,
1996). Since the flowfield in current study heavily involves in such flow conditions, the
RNG k-& model is chosen as the appropriate turbulence model.

In the RNG k-€ model, the transport equations for turbulence kinetic energy and

turbulence dissipation rate become,

a"" 9% ¥ o(pUK)~- v.(’:’ Vk] P, - pe (3.30)
k
a;e +Ve(pUs)- v-(‘;‘i’ V‘)=I C..P, —C,,p¢€) (3.31)
where
C,=142-f, (3.32)
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and

n
1——_
_ "( 4.33)

fo= (1+ ﬂrf’) (3.33)
n= pg . (3.34)

where C, Cgo, O; and O are constants (AEA Tech., 1999), which are listed in Table 3.1.

Although the original derivation of coefficients and constants used in the RNG k-€ model
were theoretical, the coefficients in the latest RNG model come from experimental results

(as with the standard k-& model).

Table 3.1 Coefficient list for k-€ and RNG k-& models.

3.5.2 Wall Functions

Under certain turbulent flow conditions, such as fully developed flow and attached
flow, the velocity profile near a wall assumes a characteristic shape. This boundary layer
profile tends to contain a region where the velocity profile is logarithmic and universally
expressible in terms of the wall shear stress. The assumed applicability of this profile
provides a means to numerically compute the wall shear stress as a function of the velocity at
a given distance from the wall. The mathematical basis is called a “wall function” and the

logarithmic nature gives rise to the well known “law of the wall.”
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Figure 3.9 Turbulent boundary layers.

The obvious advantage of the wall function approach is that the high gradient shear
layers near the wall can be modeled with a relatively coarse mesh yielding substantial savings
in CPU dme and storage.

Very close to the wall, the profile changes from logarithmic to linear, i.e., similar to
that of laminar flow. This innermost region is sometimes called the “laminar sub-layer”
(Figure 3.9). To complete the mathematical description of the boundary layer, therefore, the
logarithmic function is merged with a linear one.

All rurbulence models in the solver use wall functions. Under certain idealized
conditions, such as fully developed, attached turbulent flow, the velocity profile assumes a
characteristic shape. The boundary layer tends to contain a region where the velocity profile

is logarithmic, and universally expressible in terms of the fluid shear stress, 7:

1

u= (%)z Tl(-log(y*b") (3.35)

where u is the near wall velocity, y™ is the dimensionless distance from the wall, 7 is the
fluid shear stress, & (=0.41) is the Von Karman constant and E (=9.793) is a log-laj'er

constant (natural logarithms are used). If this profile reasonably approximates the velocity
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distribution near the wall, it provides a means to numerically compute the fluid shear stress
as a functon of the velocity at a given distance from the wall. The alternative is to actually
fully resolve the details of the boundary layer profile with the mesh, but this requires a
prohibitively fine mesh and correspondingly large number of nodes. Thus, the advantage of
the wall functon approach is that the high gradient shear layers near walls can be modeled
with relatively coarse meshes, yielding substantial savings in CPU ume and storage.

In order to benefit from these advantages, the standard wall function is employed in
the present dissertaton. y* value is monitored for each computational calculation and kept
less than 50 for the best accuracy at the wall boundaries.

3.6 BOUNDARY CONDITIONS

The equations relating to fluid flow can be closed (numerically) by the specification
of conditions on the external boundary of the fluid domain. Hence, boundary conditions
determine to a large extent the characteristics of the solution.

There are currently five boundary condition types in this study:

* Inlet

* Outlet

* Opening

* Wall

* Symmetry plane '

Several options can be set for the various types of boundary conditions, which are
related to different aspects of the boundary condidon. Next, a brief description of each

boundary condition is given.
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3.6.1 Inle
An inlet boundary condition is used where it is known that the flow is directed into
the domain. The inlet boundary condition can be set in a number of ways, such as specifying
mass flow rate, inlet velocity components or total velocity normal to boundary surface. It is
depend on flow components that is known at the boundary and the particular physical
model, which is being used for the simulation.
In the current study, Cartesian velocity components were given as inlet boundary
condition. The component values are relative to the selected coordinate frame. The

boundary velocity components were specified, with 2 non-zero resultant into the domain.

Ulnla = U.vpzci + Vspctj + “,:peck (3'36)

For the RNG k-g turbulence model, the inlet turbulence quantities, k and €, are

calculated using expressions which scale the distribution at the inlet according to the
turbulence intensity, I, where,

u

=— 3.3
U 3.37)
Then, the inlet turbulence energy is calculated using,
3 o] 2
Kitee = 3 ' (3.38)
and the turbulence dissipation calculated using,
kl
Enter = PCoupnc — (3.39)
H
where
4, =1000/ u (3.40)

Because the inlet flows of k and € involve advection and diffusion,
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Ot = Qasvers + Qi (341)

Qi = Qovees + s (3.42)

The advection flows are evaluated using the computed Inlet values of k and g,

Qitvecr = 11k (3.43)
Q:dnct = Iil8 Inler (3 44)

The diffusion flows are assumed negligible compared to advection and are equated to zero.

3.6.2 Outlet

An outlet boundary condition is used where it is known that flow is directed out of
the domain. The hydrodynamic boundary condition specification for a subsonic outet
engages some constraint on the boundary static pressure. In the present study, relative static

pressure is constrained such that the average is the standard atmospheric pressure,
1 | paa (3.45)
pav A 3 p ¢

where the integral is over the entire outlet boundary surface. At the boundary, the relatve
static pressure is allowed to vary locally over the entire boundary surface, but the average
value is constrained to the static atmospheric pressure.

In addition, for scalar quantties, a constant gradient constraint is imposed at the
outlet boundary. The variables are extrapolated from the upstream location to the outet
boundary using the upstream gradient values.

3.6.3 Opening
An opening boundary condition allows the fluid to cross the boundary surface in

either direction. In the current study, when the outlet of the boundary is relatively close to

the wake region, the opening boundary condition is applied to minimize the boundary effect
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in the wake region. With the opening boundary condition, all of the fluid might flow into the
domain at the opening or out of the domain, or a2 mixture of the two might occur.

An opening boundary condition in this study is specified to atmospheric pressure

value,

p Opening = p spec (3'46)
The value is taken as relative total pressure for inflow and relative static pressure for outflow.

Also, flow direction component for the opening boundary is set to normal to the boundary
surface.

364 Wall
Walls are solid (impermeable) boundaries to fluid flow. Depending on the boundary

location, there are three different wall boundary conditions used in the present dissertation:

No Slip (Stationary): The velocity of the fluid at the wall boundary is set to zero, so
the boundary condition for the velocity becomes,

Uyar =0 (3.47)

On the model surface of all computational calculations, no-slip wall boundary
condition is applied.

Free Slip: In this case, the velocity component parallel to the wall has a finite value
(which is computed), but the velocity normal to the wall, and the wall shear stress, are both
set to zero,

U, wan =0 (3.48)

7, =0 (3.49)
Free slip boundary condition is applied to the far field boundaries (except in and out

boundary surfaces) in the computational domain of the present study.
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No Slip (Moving): With this option, a velocity is specified on a boundary surface.
With this specification, the fluid at the wall boundary moves at the same velocity as the wall.

Therefore, the boundary condition is,
Uwar SU i + Vo j+ W K (3.50)
In this case, the velocity specification defines a wall vector, which is perpendicular to
the wall boundary normal. In the present study, moving wall boundary condition is used to

simulate moving belt in a wind tunnel.

3.6.5 Symmetry Plane
Symmetry plane boundary condition is used when all the properties of physical flow

are symmetric about some physical (flat) plane. In the present case, flow assumed to be
symmetric at longitudinal symmetry plane, and symmetry plane boundary condition is
applied to this surface.

The symmetry plane boundary condition imposes constraints, which “mirror” the
flow on either side of it. At the symmetry boundary, the normal velocity component and the

scalar variable gradients normal to the boundary are zero.

U,=0 (3.51)
99 _
o= (3.52)

It should be noted that even a symmetrical geometry does not require that the flow is
symmetrical in the domain. Therefore, in the present study, symmetry boundary condition is
only used after testing its affect on the flow field.

With the definition of the boundary conditions used in this dissertation,
computational methodology, governing equations for the computational method, their finite

volume discretization, turbulence modeling and boundary conditions were discussed in the
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current chapter. Now, this methodology needs to be validated for ground vehicle
aerodynamics. Therefore, a benchmark case will be constructed in the next two chapters

and the computational method and procedure will be investigated.
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CHAPTER 4

EXPERIMENTAL MEASUREMENTS OF AHMED BODY AERODYNAMICS

Ahmed Body is the most common bluff body model in ground vehicle
aerodynamics. Detailed geometry definition and easy manufacturability made it the final
choice for the benchmark study in this dissertation. In this chapter, we describe the
experimental measurements and demonstrate the results from Ahmed Body experiments.

Measurements for Ahmed body were performed at Langley Full-Scale Wind Tunnel
(LFST). Old Dominion University (ODU), working under a Memorandum of Agreement
with NASA Langley Research Center, operates the Langley Full-Scale Tunnel (Landman and
Britcher, 1998, Landman, 2000). This facility is currently the second largest in the United
States in terms of test section size and is the largest university-run wind tunnel in the world.
The open jet test section is semi-elliptical in cross section with a width of 18.29 m (60 ft) and
a height of 9.14 m (30 fr). The ground board is 13 m (42.5 ft) wide by 16 m (52.3 ft) long
and features a turntable with a diameter of 8.7 m (28.5 ft) Vehicle drag and individual wheel
down force can be measured using the current automobile balance. The overall aerodynamic
layout of the facility, showing the double return design, is given in Figure 4.1. Power is
supplied by two 3 MW (4000 HP) electric motors driving two 11 m (36 ft) diameter four-
bladed fans. The current maximum speed is limited by a fan speed of 210 RPM, which is
about 130 kph (~80 mph) in the test section. Vehicle drag and individual wheel down force
are measured using the current automobile balance, which became fully operational in

January of 1998 (Landman, 2000).
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Figure 4.1 Layout of the Langley Full Scale Tunnel

41 MODEL SPECIFICATIONS

The experimental model, Ahmed body, consists of a steel space frame with a sheet

metal skin welded on the outside surface (Figure 4.2). First, the steel frame was constructed

to make the model structurally rigid. Then the skin surface was butted together from sheet

metal panels and small gaps were taped with metal foil type.

Ahmed body was originally built to model a Sedan type passenger car. Backlight

angle on the model characterizes the vertical angle between roof of the car and the trunk. In

order to investigate different backlight angle effects on the aerodynamic behavior of the

model, there were three different back panels (0-deg, 12.5-deg and 25-deg) constructed for

the model. Each panel was built in same way, steel frame inside and metal sheet cover

outside, and attached on the model.
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Figure 4.2 Ahmed body. (a) Experimental model steel frame and its back panel
configurations and backlight angle o. (b) Model frame covered with sheet metal and

mounted in the tunnel.

An Ahmed body (Ahmed et al. 1984) has been modeled experimentally at a true
automotive scale in order to avoid well-known Reynolds number effects, such as varying
separation points. Dimensions for the model were 4.91x1.83x1.35 m. The front surface was
rounded with 0.51 m radii to minimize any separation on the front. The model was
mounted on faired stands, as shown in Figure 4.2(b), at a height of 0.83 m above the ground
board. In order to diminish the aerodynamic force on the model legs, each model leg was
also covered with airfoil-shaped envelope. The current model is 4.7 dmes larger than the
model that was used in the original study by Ahmed et al. (1984). The frontal area to test
section area ratio is about 1.4%, representing a very small blockage (Hucho, 1998). The free
jet and relatively nonexistent blockage make for a very low level of experimental uncertainty.
42 MEASUREMENT METHODS

Surface pressures and force coefficients (drag and lift coefficients) at full-scale
Reynolds numbers were measured for all three different backlight angles: 0-deg, 12.5-deg,
and 25-deg.
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Pressures were measured on the centerline of the four sides and over the entire
surface of the nose and the base regions. A total of 56 pressure probes were installed on the
model surface. Pressure taps distributed on the longitudinal symmetry plane (16 on top, 12
on bottom), each side of the model (8 on right side, 8 on left side) and the back surfaces (12

on back). Figure 4.3 shows pressure tap connections in the model.
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Figure 4.3 Pressure tap connections inside the model.

Pressures were measured with a Pressure Systems Inc. model 8400, 10-inch water
column, electronic-scanning module. The estimated uncerrainty in the pressure coefficient is
+ 0.005 (Landman, 2000).

The ground board is freestanding, such that a new boundary layer begins at the
leading edge with flow both over and under the planar surface. A boundary layer control
suction slot was used for all runs to reduce the displacement thickness at the center of the

model to about 0.5 inches. The ground board is shown to scale in Figure 4.4 with the

outline of the model.
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Figure 4.4 The ground board in the test section of Langley Full Scale Tunnel.

Force components on the experimental model were measured using LFST Trapeze
Force Balance System. Force balance system was called the “Trapeze Balance,” due to the
swinging frame, which is used to measure drag. The overall concept is shown in Figure 4.5.
In order to measure drag, a rigid frame is suspended on flexible elements (flexures) under
the ground board turntable and is free to translate in the streamwise direction. The rigidity of
the flexures in the axial direction is several orders-of-magnitude lower than a typical beam
style strain gage loadcell. The frame, therefore, transfers the drag force on the model to a

loadcell contacting the aft cross bar.
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Figure 4.5 LFST Trapeze Force Balance System and the model.

This arrangement allows quick replacement of drag loadcells with load ranges chosen
for maximum sensidvity up to 2.22 kN (500 lbs.). Tire support struts are rigidly mounted to
the frame and support multi-element beam loadcell modules, which measure the downforce
at each leg. The acceptable weight plus aerodynamic downforce is limited primarily by the
flexure cross sectional area and the loadcell capacity. In this study, force coefficients were
measured using the aforementioned automotive balance system and has an estimated
absolute uncertainty of + 0.003 (Landman, 2000).

Backlight angle, yaw angle and Reynolds number are counted as pamary vanables for
the current experimental study. Backlight angle o is known as the critical design parameter
for the wake flow. Therefore, three different @ values (0-deg, 12.5-deg, 25-deg) and six

different Reynolds numbers (2.2 M to 13.2M) were chosen for the experiments (Table 4.1).
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This wide range of Reynolds number measurements also allowed us to be able to compare
with both previous low Reynolds number studies (Ahmed et al. 1984, Morel 1978) and full

scale car or light truck cases (Landman, 2000, Landman and Britcher, 1998).

Table 4.1 Experimental measurements for test cases with varying backlight angle, yaw angje
and Reynolds number (Re number in millions: i=2.2M, ii=4.4M, iii=8.8M, iv=13.2M).

* * oo sew o » ew T . T3 ron

0.0-deg Sl i 'If v _ -
_mseeg | AV | AV hd _ _
?S-W ii,jii,iv i, fi,iv il il ii,jié i, il i, il

In order to calculate the wind-averaged drag coefficients, measurements have been
repeated at several yaw angles (0-deg, +3-deg, +6-deg, +9-deg, +12-deg, +15-deg). Given
below is the formula to obrain the wind-averaged drag, where the arguments of the terms on
the right hand side indicate the yaw angle for that particular drag value.

Cp.me =0.219C,(0) +0.185(C,, (+3) + C,, (-3))
+0.110(C,, (+6) + C,, (—6)) + 0.078(C,, (+12) 4.1)
+Cp(~12))+0.022(C,, (+15) + C, (~15))

4.3 EXPERIMENTAL RESULTS

Experimental results were obtained from both surface pressure and force
measurements. Pressure and force data collection managed by Labview® Data Acquisition
Software. Figure 4.6 shows graphical user interface (GUI) for pressure and force data
measurements. Data measurements were conducted using two personal computers

simultaneously. Sampling time was 2.5 minutes with average standard deviation of 0.3% for

pressure measurements.
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Figure 4.6 Graphical user interface (GUI) for pressure and force measurements.

Reynolds number is the one of the most important variables in vehicle aerodynamics.
Figure 4.7 shows the Reynolds number effect on pressure coefficient on the top surface
centerline at zero yaw angle. As clearly seen from the figure, the pressure coefficient values
follow the same path at all cases. The figure shows that there is not much change (max.
0.06) in the pressure coefficient with Reynolds number. In the front region, pressure
coefficient drops up to -1.45 and then recovers immediately. Then, on the top surface, the

average C, value stays around -0.1.

1
—@— Re=2.2M
4 - O Re=4.4M
—o— Re=8.8M

—7-- Re=13.2M
Body surface, a=0°

-1 4

X (m)

Figure 4.7 Reynolds number effect on pressure coefficient (zero yaw angle).
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Since the experimental model is symmetric and the free stream flow is parallel to the
model, pressure coefficient variation is supposed to be same on the right and left sides of the
model. In order to prove this assumption and validate the model symmertry, pressure
coefficients along thc centerline of left and night side walls were measured and plotted in
Figure 4.8. Figure shows a clear match in between right and left pressure coefficient

distribution. Especially, increasing Re number makes the agreement even closer.

| = Body surface

| =@ Laft surface, Re=22 M

| +-¥-- Left surface, Re=4.4 M

1A . —@- Leftsurface, Re=88M

. =@ LeRt Surface. Re=13.2M
—@— Right surface, Re<22M
-9 Right surface, Re=4.4 M
~8 - Right surface. Re=8.8 M
~O-- Right surface, Re=13.2M

0 1 2 X(l‘l’l) 3 4

Figure 4.8 Pressure coefficient variation on the side surfaces (zero yaw angle).

Shown in Figure 4.9 is the dependency of the drag and lift coefficients on the
Reynolds number. In general, drag coefficient decreases and lift coefficient stays relatvely

constant with Reynolds number. As Reynolds number ranges from 2.2M to 13.2M, C,
differs up to £0.0052. The C, variation in this range stays within $0.0024 except for the 0-
deg back-angle case. Although the biggest change on C; occurs at 0-deg back-angle case

with $0.017, the overall change on C, versus Reynolds number is barely evident.
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Figure 4.9 Effect of varying the flow Reynolds number on drag and lift coefficients (zero yaw
angle).

Backlight angle is another important parameter in the present study. Figure 4.10
shows the time averaged pressure coefficient distribution along the top surface centerline for
different backlight angle configurations. Although the values for different back angles
collapse on each other during the expansion followed by the recompression near the front,

the rates of the second expansion and their recovery vastly differs.

0 1 2 X (m) 3 4

Figure 4.10 Experimental pressure coefficient distributions on the top surface at body
symmetry plane for various backlight angles.
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Figure 4.11 shows the variation of the drag coefficient versus the yaw angle. The
wind averaged drag coefficients provide a true measure of vehicle performance under road
conditions found in nature (Hucho, 1998). When comparing the drag values of the three
backlight angle configurations in Figure 4.11, they appear to be consistent in that the
difference in C, between cases at zero-yaw is closely matched by the difference in wind-
averaged drag results. One interesting feature is the asymmetry found in the 12.5° backlight
angle case. The difference between right and left yaw measurements may indicate flow
hysteresis. Flow that is separated from the body at —15° may not become artached over the
same area as the body is yawed through +15° under continuous flow conditions in the wind
runnel. This effect is of course common in airfoil testing as an airfoil’s angle-of-attack is
increased beyond stall and then decreased back to a value where flow was previously
attached(Abbott and VonDoenhoff, 1959). The influence of the trailing vortex system may

also play a role in the flow physics.

0.32
0.30
0.28
0.26 -
Q
O 0.24
o,
..-Q
0.22 - o
—e— 0° Backiight angle,  wind ave.C,=0.264
0.20 - --O-- 12.5° Backiight angle, wind ave. C,=0.241
—v— 25°Backlight angle,  wind ave.C,=0.294
0.18 4
15 -10 -5 o 5 10 13

Yaw angle
Figure 4.11 Wind-averaged drag coefficients for bodies with three different backlight angles
(Re=8.8M) (with permission, from SAE 2001-01-2742).
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Figure 4.12 shows time-averaged drag and lift coefficients that were measured with
LFST Trapeze Force Balance System. As expected, the lift increases with the increasing
backlight angle almost linearly. Minimum drag occurs at 12.5-deg backlight angle case.

However, the drag is faitly insensitive to backlight angle changes.

0.5 1 -9
0.4 -
0.3

e

0.1 4

Co G,

0.0 4

] 5 10 15 20 25
Backlight angle, o

Figure 4.12 Drag and lift coefficients versus backlight angle (Re=8.8M).

Force coefficient measurements and flow visualization with twft presented
aerodynamic characteristics Ahmed Body in terms of ground vehicle. After current
experimental measurements, a benchmark case was prepared for the numerical calculaton.
Computational results and comparison with experimental outcome for Ahmed Body are

discussed in the following chapter.
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CHAPTER 5

COMPUTATIONS OF AHMED BODY AERODYNAMICS

In the course of this chapter, we explore the case of bluff body aerodynamics using
the Computational Fluid Dynamics (CFD) technique described in Chapter 3. Experimental
measurements, which were used to build a benchmark case for numerical calculations, were
highlighted before in the previous chapter. In this chapter, the Ahmed body geometry is
submitted to the computational solution procedure and results are compared.

The computer simulation of such a flow field requires solving its governing
equations. First, the computer-aided-design (cAD) model of the vehicle-like-body was
developed. Then, a hybrid unstructured mesh, consisting of prismatic and tetrahedral cells,
was generated for the computational domain. The details of the computer code are given in
Chapter 3, and its implementation for ground vehicle aerodynamics is given in recent
publications (Baysal and Bayraktar 2000, Baysal and Bayrakrar, 2001).

The present investigation looks at the problem and studies the Ahmed body as a
comparison and validation case. Therefore, the external aerodynamics of the Ahmed body
that is representative of a car or light truck is investigated in detail. The numerical
calculations used a Reynolds-averaged, unsteady Navier-Stokes formulation. Computational
results are presented for backlight angles of 0-, 5-, 15-, 20-, 25- and 30-degrees, then
compared with the experimental results and the data available in the literature.

Since the flowfield being considered herein is in ground proximity and can be
unsteady, it requires time-accurate solutions of the viscous-flow equations. Therefore, the

set of equations solved for the present study are the time-dependent, Reynolds-averaged,
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Navier-Stokes equations in their conservative form. Reynolds-averaged quantdes are
obnained through a time-averaging process. To achieve these simulatdons within the
currently available computer resources and the project milestones, the effects of turbulence
needed to be “modeled.” It was realized, however, that none of the existing turbulence
models was developed for unsteady flows. Therefore, the present time-accurate, finite-
volume CFD methodology with its RNG k-€ turtbulence model was previously benchmarked
using a series of well-documented flows (Han, 1989, Baysal and Bayraktar, 2001). Iteratve
solvers, such as the incomplete lower upper (ILU) factorization technique used herein, by
themselves tend to rapidly decrease in performance as the number of computational mesh
elements increases, or if there are large element aspect ratios present. Therefore, the
performance of the solver was greatly improved by employing a multigrid technique (see
section 3.3.3 above).

There are several parameters affect on CFD calculations. Proposed method and
procedure are vulnerable to most of them indeed. Before proceeding further, these
parameters on the numerical solution need to be investigated. Easy-producible bluff body
shape and availability of the experimental results made the Ahmed Body one of the best
choices for this investigadon. Following, we enumerate the variable conditions and
investigate their effect on the numerical results.

51 COMPUTATIONAL DOMAIN SIZE

Domain size influence on the results is not desired in any CFD calculation.
Therefore, computational domain needs to be defined carefully. Domain size not only has
an effect on numerical results, it also changes the mesh size. Size of the domain in current

calculations is primarily selected with experience, and then refined with cut-and-try
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approach. Selecting far field boundary is also taken into the consideration, because subsonic
boundary conditions and their location could influence the solution in entire domain.

Figure 5.1 illustrates the three different computational domains for the Ahmed body
case. Because primary calculations present no unsteady effect in the front and side regions,
attention is given to the wake flow. Although all domains predicted pressure distribution on

the model very well, unsteady calculations were conducted at model 5.1(b).

Fignre 5.1 Computational domains and their dimensions ¢l units in meters).
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5.2 MESH SENSITIVITY ANALYSIS

To study the attainment of mesh independence, several cases were run with
sequentially refined meshes. Presented in Figure 5.2 are the drag coefficients computed on
these meshes, the value measured in the wind tunnel and the discrepancy between the
computed and measured values (ACp). Based on this study, the mesh employed for the cases
presented herein had 150x70x60 cells on the body and the total mesh contained about 5.4
million cells. In order to improve the computational accuracy, the final mesh was also
adapted to the flow with hierarchical adaptation process (Grosso and Greiner, 1998).
Adaptaton variables were selected as pressure and total velocity. Figure 5.3 shows the inital
and the final mesh distribution after 3-step adaptation for zero- deg backlight angle case.

For the computational study, six cases based on different values of the backlight

angle a (0-deg, 5-deg, 15-deg, 20-deg, 25-deg and 30-deg) have been considered.
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Figure 5.2 Improvement in drag computations by increasing mesh density and their
comparison with wind-tunnel measurements (0-deg. backlight angle, Re=4.4 M). (with permission, from SAE
2001-01-2742).
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A

Figure 5.3 Inital mesh and refined mesh on longitudinal symmetry plane (side view) after
three flow adaptations

5.3 INVESTIGATION OF FLOW SYMMETRY

The size of the computational domain (Figure 5.1b) was determined after several test
runs with outer boundaries at varying distances. Although the shape is symmetric with
respect to its longitudinal center plane and the oncoming flow is at zero yaw by virtue of the
shape bluffness and the Izl\unt base, the flow is expected to develop some asymmetry. To
determine the extent of asymmetry, computations were performed for both full-body and
half-body geometties (Figure 5.4). The asymmetry detected via the base pressure
coefficients was deemed small (Baysal and Bayraktar, 2001). Despite this finding, all

unsteady computations were performed on the full body configuration.
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Figure 5.4 Half body versus full body comparison: Pressure coefficient variation on side

walls.

54 PARALLEL COMPUTATIONAL EFFICIENCY

All the computations were performed in parallel mode on the 64-processor SUN

HPC 10000 multiprocessor computer of Old Dominion University. Mesh parution was

obuained by using Meus algorithm (AEA Tech., 1999). Figure 5.5 shows mesh partitioning

on a Ahmed body computatdonal domain. Documented by Figure 5.6 is the speed up

achieved by increasing the number of the processors in comparison to the ideal speed-up. It

was observed that parallel computation efficiency does not go up linearly when the number

of CPU is increased. This kind of parallel compurtation response is mainly because of the

overlapped regions in mesh partitions and communication overhead between the processors.

Moreover, benchmark results about parallel performance of the computer systems that were

used in this study are available in Appendix A.
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5.5 COMPUTED RESULTS

Presented in Figure 5.7 are the instantaneous pressure coefficient values on the top
surface of the body at its symmetry plane. Although the values for different backlight angles
collapse on each other during the expansion followed by the recompression near the front,
the rates of the second expansion and their recovery vastly differ. These results indicate very
similar trends to those reported in Ahmed et al. (1984). Further, the present computational

and experimental results agree with each other fairly well.

...... a=5° (ctd)
— = a=15%ctd)
= o=20%(ctd)
— a=25%ctd)
" a=307(ctd)
®  a=0° (exp)
O  @=12.5%exp)
¥ as25° (exp)

Figure 5.7 Experimental (=xp) and computational (cFp) pressure coefficient distributions on
the top surface at body symmetry plane for various backlight angles (with permission, from SAE 2001-
01-2742).

The instantaneous force coefficients from the computations and the measurements
were time averaged and plotted in Figure 5.8. As expected, the lift increases with the
increasing backlight angle almost linearly. However, the drag coefficient does not show a
linear change with backlight angle, and it stays in 30% range except when the backlight angle
is at 30-deg. The difference between present computations and experimental measurements
is less than 5%. Even though the ground clearance for present study is 3.44 times larger

than Ahmed’s model (Ahmed et al., 1984), the difference on drag coefficient from present
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computations and Ahmed’s data (Ahmed et al., 1984) is about 15%. In conclusion, the
present computations agree reasonably well with the present measurements as well as the

data from Ahmed et al. (1984).

Co. C,
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a

Figure 5.8 Comparisons of time-averaged drag and lift coefficients from present
computational and experimental (exp) studies and the experimental data from Ahmed et al.
(1984) (Re=4.4M) (with permission, from SAE 2001-01-2742).
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Figure 5.9 (a) Schematic view of wake flow pattern (with permission, from the Annual Review of Fluid
Mechames, Volume 25, ©1993, by Annual Reviews www.AnnuaReviews.org), (b) Velocity vector plot at longitudional
symmetry plane and recirculation regions (@=25°, Re=4.4M).
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Variation of force coefficients in Figure 5.8 can be explained with the help of Figure
59. A schematic view of the wake pattern and a velocity vector plot at longitudinal
symmetry plane of present bluff body cases are presented in Figure 5.9. Typically, two
trailing vortices that come from each upper comer and two circulating regions in front of the
back surface are the basis of the drag coefficient variation. Increasing backlight angle o
causes stronger trailing vortices resulting drag force increase on the back surface. On the
contrary, the other two circulating regions help the pressure recovery and keep the flow
attached on the back surface. Induced drag also cause more drag force with higher backlight
angle. In result, the total drag changes with respect to the summation of these opposite
forces. Interestingly, around the 30° backlight angle, trailing vortices reach into their
strongest power and generate extraordinary drag force. At that point, a small perturbation in
the flow or small increase in backlight angle could lead tailing vortices to take off from
model surface and lessen the drag force (Ahmed et al., 1984, Hucho, 1993). Therefore, two
different drag coefficients are presented at 30° backlight angle by Ahmed (Ahmed et al.,
1984).

Although six cases with different backlight angles were computed (Figure 5.10), for
brevity, only the cases with backlight angles of 0-deg and 25-deg are presented herein via
their instantaneous pressure contours at 0.01 sec. intervals (Figure 5.11). Since most of the
unsteady phenomena occur in the back region, only one top view from both cases was
plotted in Figure 5.12. Among the salient features of the flow is the clearly visible shedding
of the wake vortices. The shedding from the upper and lower corners is non-symmetric due
to the effect of the ground. Further, the shear layer emanating from the lower comer is
weaker by the presence of the ground, which in turn weakens the vorticity concentration.

The instantaneous velocity streamlines around the body at t = 0.23 sec. for 0-deg backlight
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angle and Re=4.4 M flow are presented in Figure 5.13. The formation of a very formidable
wake is now visualized in three dimensions. Another visualization is presented in Figure
5.14, from both the experiments and the computations, for the top surface. The flowfield is

fairly uniform on the top surface.

Figure 5.10 Computed instantaneous pressure contours of the longitudinal symmetry plane
(@) a=0°, (b) a=5° (c) a=15° (d) @=20° (e) @=25°, (f) @=30".
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Figure 5.11 Computed instantaneous pressure contours of the longitudinal symmetry plane

att = 0.20, 0.21, 0.22, and 0.23 sec. (a)-(d) ¢=0°, (€)-(h) =25 (with permission, from SAE 2001-01-
2742).
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Figure 5.12 Instantaneous pressure contours on the top surface at t=0.23 sec. (a) a=0°, (b)
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Figure 5.13 Computed instantaneous velocity streamlines at t=6.3050 sec.
(0-deg backlight angle, 60m/'s freestream velocity, Re=4.4M).
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Figure 5.14 Tuft visualization from the wind tunnel and computed instantaneous vector
plots on the top surface (0-deg backlight angie, Re=8.8M) (with permission, from SAE 2001-01-2742).

5.6 ANALYSIS OF TIME-DEPENDENT DATA

A dme history of the unsteady forces on the body is generated during a ime-accurate
computational run. Figure 5.15 shows force components on the model surface versus
simulation time. Although computed drag force represents the biggest component of the
total aerodynamic force, fluctuations on lift force are bigger than drag force oscillaton. In

addition, magnitude of the side force is much smaller than the other two force components.
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Figure 5.15 Time variation of force components on the body (0-deg backlight angle, Re=4.4 M) (with
permission, from SAE 2001-01-2742).

These forces, shown in Figure 5.15, are then analyzed in the frequency domain. The
power spectral density from the case with 0-deg backlight angle and Re = 4.4M, is presented
in Figure 5.16 for the lift, drag and side forces. The dominant frequencies can then be used

to calculate the Strouhal numbers,

_fH
St = U 4.2

where H is the body height and U is the flow speed. The Strouhal numbers for the lift and
the side force for the case in Figure 5.16 are calculated to be 0.106 and 0.086, respectively.
To provide some reference values, the values from (Khalighi et al., 2001) and (Krajnovic and
Davidson, 2001b) will be considered. The Strouhal number reported in (Khalighi et al.,
2001b) for a similar flow but computed from its pressure fluctuations is 0.070. The Strouhal
numbers reported in (Krajnovic and Davidson, 2001b), again for a similar flow but
computed from its trapped vortices and trailing vortices, were 0.073 and 0.110, respectively.

Therefore, the present values can be deemed in qualitative agreement with these reported

results.
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Power Spectral Density

Figure 5.16 Power spectral density variation on the force data (0-deg backlighe angie, Re=4.4 M) (with
permission, from SAE 2001-01-2742).

Benchmark case on Ahmed Body is completed in this chapter. Computational and
experimental results were presented together. Quantitative results were compared and the
computational model was validated. Furthermore, wft visualization of experimental
measurements and unsteady pressure variations from computational calculations were
presented for qualitative purpose. The next chapter simulates a heavy truck model based on
the procedure that was followed for Ahmed Body. Knowledge obtained from this chapter

lights the way for full-scale heavy truck simulations.
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CHAPTER 6

COMPUTATIONS OF EXTERNAL AERODYNAMICS FOR HEAVY TRUCK

In this chapter, the computational results for the external aerodynamics of a tractor-
trailer configuration are discussed. Computational procedure, which was highlighted in the
previous chapter, is applied to a very complex geometry. CAD model was created using a
CAE package (PtoEngincctQ) and then imported to the CFD solver. In addition, parametric
work on external geometry is conducted, and the results are presented with the help of
computer visualization.

Some of the salient features of external flow of tractor-trailer configuration manifest
themselves in: i) the flow conditions immediately ahead of the trailer’s front grill; ii) the flow
inside the gap between the tractor and the trailer; iii) the undercarriage flow; iv) the wake
behind the trailer. A stagnaton flow is formed immediately ahead of the tractor. An
accurate computation of this region is highly dependent on the distance at which the inlet
boundary is placed. The stagnation is followed by a series of expansions over the tractor
resulting in the highest velocities over the canopy with their values exceeding that of the
freestream. A recirculating flow with low pressures is formed in the gap region between the
tractor and the trailer. This gap clearly contributes to a significant increase in the drag. The
undercarriage flow resembles a distorted Couette flow due to the suction by the gap and the
effects of the tres. A significant wake is formed at the trailing end of the trailer with non-
symmetrical expansions from the top and the bottom comers. This further contributes to

the vortex shedding as a consequence of a blunt base. In what follows, the procedure
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starting from CAD model, mesh generation and boundary conditions on the computational
domain will be highlighted.
6.1 COMPUTATIONAL DOMAIN AND MESH

Tractor-trailer geometry was modeled at true scale with the dimensions of
19.5mx2.5mx3.9m. The size of the computational domain is shown in Figure 6.1.
Computational domain for tractor-trailer simulation was selected with the experience from
the previous validation case with the dimensions of 71.0mx11.0mx12.5m. The distance

between the model and farfield domain boundaries are carefully selected to minimize the

spurious boundary effects.
e
1100 \
<
" \

\"m

Figure 6.1 Computational domain for the tractor-trailer simulations (all units are meters).

A computer-aided-design (CAD) model of the truck is developed with the
aforementioned dimensions, and then a domain mesh is generated (Sorrells, 1999). After
importing these solid surfaces into a mesh generator, the volume between these surfaces and

the outer boundaries is discretized using 16 million cells of hybrid shapes containing
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tetrahedra, prisms and hexahedra. A view of the surface mesh is presented in Figure 6.2.
Because of the boundary layer growth on the solid surfaces, this hybrid mesh has stretched
prismatic elements close to the body, which are, in turn, connected to the tetrahedral cells
off the surfaces. Far from the body, hexahedral elements have been used all the way to the

outer boundaries (see sectdon 3.4.1 for details).

Figure 6.2 A partial view of the computational mesh.

6.2 BOUNDARY CONDITIONS

As this is a simulation of the external flows, the size of the computational domain,
shown in Figure 6.1, delineated by its outer boundaries, is 2 compromise between accuracy
and computational efficiency. Figure 6.3 shows boundary conditions in the computational
domain. The domain is bounded by the ground plane, the flow inlet boundary, the flow
outlet boundary and three free-slip wall boundaries (two sides and the top). The conditions
imposed at these boundaries are required to represent the effect of the events outside of the

domain. The surface of the tractor and the trailer provides the internal boundaries (walls).
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Figure 6.3 Boundary conditions for tractor-trailer configuration.

The inlet plane is located at about one-half body length ahead of the model and the
magnitude of the inlet velocity (30 m/s) is specified with the direction taken to be normal to
this boundary (as in a wind tunnel). Here, a uniform velocity profile is prescribed, that is,
the boundary layer thickness is assumed to be zero. The prescribed condition at an open
boundary allows for the fluid to cross the boundary surface in either direction. For example,
all of the fluid might flow into the domain at the opening, or all of the fluid might flow out
of the domain, or a mixture of the two might occur. The velocity of the fluid on the surface
of the tractor and the trailer is set to zero to satisfy the no-slip condition.

On the ground boundary, the velocity of the flow is set to be equal to the flow at the
inlet boundary. This emulates the ground moving with respect to the truck, as is the case on

the road. In the case of wind tunnel testing, it emulates a moving conveyor beit floor.
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6.3 COMPUTED RESULTS

In the aerodynamic simulation of tractor-trailer assembly, two commonly practiced
engineering simplifications, tire and moving ground affects, are investigated. First, the
external flow past the tractor-trailer assembly was computed with tires and moving ground
boundary condition. Then, stationary ground relative to the truck (Case 2) (see, e.g., Summa
(1992), Fukuda et al. (1995), Honnouchi et al. (1995) and other results from wind tunnels
without moving belts) and truck without the tires (Case 3) (see, e.g., Perzon et al. (1999) for

this simplification) were simulated. Table 6.1 shows case descriptions for each tractor-trailer

configuration.
Table 6.1 Descriptions of truck simulation cases.
Case 1 2 3
Tires Yes | Yes No

Moving ground Yes | No Yes

Sample results are presented in Figs. 6.4-6.6, which can be contrasted to observe the
effects of tres and the moving ground. As expected, the undercarriage flow is significantly
different when the tires are removed. Interestingly, the flow in the gap between the tractor
and the trailer is also dramatically altered. Because of the gap, there is a significant pressure
loss in that region. Even more significant differences are clearly observed in the regions,
where tres are located (Figure 6.6). Different pressure coefficient distributions in between
Case 1 and Case 3 present that dre effect on undercarriage flow even effective on
longitudinal symmetry plane. In addition, undercarriage flow is also getting affected from
ground motion. When the ground is stationary with respect to the truck (Case 2), the

boundary layer on the ground thickens to alter the eatire undercarriage flow. The velocities
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in this region are less than 10% of the freestream. The trailer wake is now skewed and

driven towards the ground.

Figure 6.4 Isometric view of instantaneous pressure coefficient contours on longirudinal
symmetry plane and on surface of tractor-trailer assembly. (a) Case 1, (b) Case 2, (c) Case 3.
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Figure 6.5 Side view of instantaneous pressure coefficient contours on longitudinal
symmetry plane and on surface of tractor-trailer assembly. (a) Case 1, (b) Case 2, (c) Case 3.
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Pressure coefficient distributions on the longitudinal symmetry plane of
computational domain in Figure 6.4 and 6.5 are reduced on tractor-trailer assembly
symmetry surface and plotted in Figure 6.6. Although the values for different configurations
collapse on each other, the values for Case 3 are slighdy differs on lower surface because of
the tire effect. The biggest pressure jump in the symmetry plane occurs at the tractor-trailer

gap region causing huge expansion and recompression on pressure coefficient values.

10 1

Truck surface

E 5 €
> >
4 -
3 A a3
-2 4 2 4
2 A 2 4
1 4 14
0--3 ' - v y od 3 , . r .
0 s 10 15 20 o s 10 15 20
X (m) X (m)
(@) ®)

Figure 6.6 Pressure coefficients on the longitudinal symmetry plane of tractor-trailer
configuration. (a) lower surface, (b) upper surface.

After summation of the force data on the surfaces of the tractor-trailer assembly,
drag coefficient values are presented in Figure 6.7. The results show that the computed drag
value at Case 3 is about 13.3% less as a result of removing the tires. Drag difference occurs
in Case 2 because of the stationary ground (simulates wind tunnel without a moving belt),
thus, the total computed drag value reduces by 4.8%. In addition, total drag coefficient is
split up to its components to analyze the local drag force on the body, the tires and the
mirrors (Figure 6.7). As expected, most of the drag (82.9%) comes from tractor-trailer body.

Tires and mirrors contribute 12.5% and 4.6% tespectively, of the total drag coefficient.
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Although the effect of the local components on drag coefficient depends on the overall
vehicle design, present study shows that presence of tires and moving ground increase the

drag coefficient. The similar results were also obtained in the literature (Hucho, 1998).

| e rT——
- Mirror'

} @ Tire

Case 1 ’ Case 2 Case 3

Figure 6.7 Drag coefficients and their components for each tractor-trailer configuration
case.

The wake flow, which is one of the most important features of bluff body
aerodynamics, is presented in Figure 6.8 and Figure 6.9. Superimposed in Figure 6.8 are the
instantaneous velocity streamlines in the computational domain and the pressure coefficient
contours on the model surface and the floor. When steady ground (Case 2) and moving
ground (Case 1) cases are compared, it is observed that moving ground generates a larger
wake region while the other wake vanishes on the steady ground. On the other hand,
because of the relatively higher undercarriage velocities, the wake region is more off the
ground in the case without the tres (Case 3) than it is with the tres (Case 1). This
phenomenon is also clearly seen in Figure 6.9.

In order to visualize complex wake flow behind the tractor-trailer assembly, velocity

vectors in the wake region are plotted on cross-section planes. The first at cross-section is
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taken just before the rear end of the trailer, and all of the others follow at one-meter
intervals. A total of eleven cross-section planes are plotted for each case, and each column

in Figure 6.9 represents a different case.

(<] Velocity [m s~-1)

Figure 6.8 Instantaneous pressure coefficient contours on the surface of tractor-trailer
assembly and instantaneous velocity streamlines. (a) Case 1, (b) Case 2, (c) Case 3.
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Figure 6.9 Instantaneous velocity vectors in the wake region of tractor-trailer assembly at
different distances from the model base. First row: Case 1, Second row: Case 2, Third row:
Case 3 (conunued).
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Figure 6.9 Instantaneous velocity vectors in the wake region of tractor-trailer assembly at
different distances from the model base. First row: Case 1, Second row: Case 2, Third row:
Case 3 (conunued).
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Figure 6.9 Instantaneous velocity vectors in the wake region of tractor-trailer assembly at

different distances from the model base. First row: Case 1, Second row: Case 2, Third row:
Case 3 (concluded).
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The first thing that attracts attention is the wake structure, which is completely three-
dimensional in all cases. Even the formation and dissipation of side vortices are clearly seen,
especially in Case 1 and Case 3. Because of the sudden expansion, the secondary circulations
regions are remarkably noticeable. In addition, the steady ground boundary condition
unveils itself when closer to the ground in Case 2. Case 1 and Case 3 show no boundary
layer region on the ground, while the lower velocities exist in Case 2. Another interesting
feature is noticed in Case 3. After 10 meters behind the rear end of the model, the wake
regions in Case 1 and Case 2 start to dissipate onto the ground. However, wake flow in Case

3 holds off ground with the help of stronger undercarriage flow.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

Understanding external aerodynamics of a ground vehicle is a prerequisite for low-
drag ground vehicle design. With this impetus, the external aecrodynamics of a tractor-trailer
assembly was simulated using computational fluid dynamics and the external flow was
presented using computer visualization.

In this dissertation, a method of Computational Fluid Dynamics (CFD) has been
setup and successfully applied to ground vehicle aerodynamics. In the course of the
computations, experimental validations of each case, procedures and implementations to the
problem have been discussed. In the following, a summary of the achievements and
conclusions in each of the aforementioned cases is presented.

71 SUMMARY

In the first half of this dissertation, a brief introduction and a literature survey for the
ground vehicle aerodynamics are presented, which are followed by, motivation and the
objectives of the present work. Following the descripion of the computational
methodology for the external aerodynamics of an Ahmed body was studied. In the
computational portion of the study, time-dependent, three-dimensional, Reynolds-averaged
Navier Stokes (RANS) equations wete solved using a finite volume method. The RNG k-¢
model was elected for the closure of the turbulent quantities. Several concerns, such as
mesh density, far field boundary locadon, validity of flow symmetry and parallel

computational efficiency, were also investigated.
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In the experimental aspect of the Ahmed body case, full-scale wind tunnel
experiments were conducted at Langley Full Scale Wind Tunnel. The pressure distributions
on the longitudinal symmetry plane and the side planes were measured. Reynolds number
dependency and wind averaged drag coefficients were also calculated for each of the
experimental cases. The results from both experimental and computational methods were
presented for different backlight angles and compared with each other. Then, pressure and
force coefficients along with qualitative measurements were compared, and the
computational method was validated for ground vehicle aerodynamics.

Discussed in the second half of the dissertation are the computational method, its
application to a full-size tractor-trailer assembly and the conducted parametric study. In
order to analyze tire and moving ground effects for the sake of wind tunnel testing, a case
without tires, and another case with steady ground were simulated. Results were contrasted
with each other. Drag coefficients for each case were calculated and the errors, which come
from the removal of tires and the stationary ground simplifications, were estimated. In
addition, drag force on mirrors and tires were calculated separately, so the components of
drag coefficient could be presented. Furthermore, the wake flow for tractor-trailer assembly
was simulated and depicted with velocity vector plots in the region, and the flow
characteristics in the wake were compared to understand the effects of tire and moving

ground.
7.2 CONCLUSIONS

In the section on computational code validaton, a comprehensive analysis was
conducted on Ahmed Body geometry. Parallel computations, domain and mesh size
efficiency studies were conducted. About 5.4 million mesh elements were used for parallel

Ahmed Body computations. Pressure and force coefficients were determined both from
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CFD and the experimental measurements. The computed and measured pressure
coefficients presented a good agreement with each other. Although C, was slightly
underpredicted, variations with backlight angle followed the same trend as observed in the
experimental data. It was observed that C; increased very rapidly with increasing backlight
angle with a switch from downward force to an upward force at about 3°. During the
analysis of time dependent force data, Strouhal number for lift and side force were calculated
to be 0.106 and 0.086, respectively. Moreover, Reynolds number dependency was
investigated in the experimental part of the study, and interestingly, it was observed that drag
coefficient only changes about 3.5% in the range of Reynolds numbers from 2.2 million to
13.2 million.

In the computations of external aerodynamics of heavy trucks, two commonly
practiced engineering simplifications, removal of tires and moving ground effects, were
investigated. In order to compare their influence on drag coefficient, the external flow of
the tractor-trailer assembly was computed with and without the tires, then with or without
ground motion. It was concluded that differences were —13.3% for the tires and —4.8% for
steady ground. From the surface pressure distributions, it was noted that tractor-trailer gap
caused big pressure losses, and even tires on the side of the body had significant affect on
the pressure in the longitudinal symmetry plane. When drag values were investigated, it was
shown that most of the drag force (82.9%) come from tractor-trailer body. Tires and

mirrors contributed 12.5% and 4.6%, respectively, of total drag.

7.3 RECOMMENDATIONS FOR FUTURE WORK
Based on the experience gained in this work with ground vehicle acrodynamics, an
extension to the under-the-hood flow and heat transfer studies remains to be investigated.

Conceivably, present external flowfield simulations can be used as initial conditions for
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detailed simulation of add-on devices, such as mirrors, antenna and windshield design. Also,
these results can be used to determine the truck’s stability for safe handling and the
minimization of adverse interactions with other vehicles on the road.

For the computational studies, turbulence modeling for such bluff body flows is an
open area for further investigations. Since none of the turbulence models is designed for
unsteady flows, accurate turbulence modeling of unsteady wake behind a ground vehicle
remains as a future study.

Mesh adaptation in the present study was not time dependent. Therefore, time-
dependent mesh adaptation would be beneficial for wake flow simulation of such bluff body
problems. Furthermore, since resolving the wake flow requires smaller mesh size, time-
dependent mesh refinement reduces the computation time and improve accuracy.

The 4-gigabyte memory allocation limit for 32-bit operating systems remains a limit
for large-size computations on PC based computers. At the time of the present study, there
are some operating systems are available for 64-bit calculations. Although large eddy
simulation and direct numerical simulation of such complex geometries are still not possible
today, fast development on computational hardware and parallel computation in the near

future seems promising.
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APPENDIX A

PARALLEL COMPUTATION EFFICIENCY

Numerical calculations in this dissertation were conducted on a Sun HPC 10000
supercomputer and a 12-CPU PC cluster. The following figures present the performance of
these computer systems. Parallel computatdon performance was calculated using PMB
software from Pallas. More information about benchmark procedure can be obtained from

ftp:/ /ftp.pallas.de/pub/PALLAS/PMB/PMB-MPI1.pdf .

Compared Systems:

PC, 933 MHz CPU, (MPICH) and Sun HPC 10000, 400 MHz CPU, (Sun MPI),

100
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Figure A.1 Send-receive and exchange benchmark results (message length versus bandwith).
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APPENDIX B

AERODYNAMIC DEVICES - FEDERAL REGULATIONS

Federal Register: August 18, 2000 (Volume 65, Number 161)

Section: Proposed Rules

Agency: FEDERAL HIGHWAY ADMINISTRATION

Title: Truck Length and Width Exclusive Devices

Action: Notice of proposed rulemaking (NPRM),; request for comments.
Page: 50471-50479

FEDERAL HIGHWAY ADMINISTRATION

DEPARTMENT OF TRANSPORTATION 23 CFR Part 658

[FHWA Docket No. 1997-2234 (formerly 87-5 and 89-12)] RIN 2125-AC30
Truck Length and Width Exclusive Devices

AGENCY: Federal Highway Administration (FHWA), DOT.

ACTION: Notice of proposed rulemaking (NPRM); request for comments. SUMMARY: The
FHWA is requesting comments on proposed criteria for excluding safety or efficiency enhancing
devices from measurement of vehicle length and width.

Background

Section 411(h)of the Surface Transportation Assistance Act of 1982 (STAA) (Public Law 97-
424, 96 Stat. 2097) gave the Secretary of Transportation (Secretary) authority to exclude from the
measurement of vehicle length any safety and energy conservation devices found necessary for
the safe and efficient operation of commercial motor vehicles (CMVs). That authority is now
codified at 49 U.S.C. 31111(d). Section 416(b), now 49 U.S.C. 31113(b), authorized similar
exclusions when measuring vehicle width. Section 411(h) also provided that no device excluded
from length measurement by the Secretary could have, by design or use, the capability to carry
cargo.

Since enactment of the STAA, four Federal Register notices have identified some 55 devices
as length or width exclusive. Copies of all of them are available on-iine under the FHWA docket
number cited at the beginning of this document. (See 52 FR 7834, March 13, 1987; 54 FR 52591,
December 26, 1989; 55 FR 10468, March 21, 1990; and 55 FR 25673, June 22, 1990.)

Prior to 1979, the FHWA operated under an administrative definition of the term “vehicle”
that included the main structure of the vehicle with attachments unless an exception or tolerance
was allowed by State law as of July 1, 1956. The width limit for trucks and buses at that time was
96 inches (2.44 meters) on the Interstate System, as established by the Federal-Aid Highway Act
of 1956 (Public Law 84-627, 70 Stat. 374, at 381). However, it was the practice of the States to

aliow certain exceptions to that limit for mirrors, hand hoids, and tum signals. The maximum
width limit of buses was increased from 96 inches (2.44 meters) to 102 inches (2.6 meters) by the
Federal-Aid Highway Act of 1976 (Public Law 94-280, 90 Stat. 425, at 438).

The States' practice of allowing exceptions to the width limit was acknowledged and
endorsed in the American Association of State Highway Officials’ (AASHO) 1963 "Recommended
Policy on Maximum Dimensions and Weights of Motor Vehicles to be Operated Over the
Highways of the United States.” Width was defined as follows:

Width: The total outside transverse dimension of a vehicle inciuding any load or load-hoiding
devices thereon, but excluding approved safety devices and tire buige due to load. This definition
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has been part of AASHO, now the American Association of State Highway and Transportation
Officials (AASHTO), recommended practice since it was adopted in 1963.

The difference between the AASHO/AASHTO recommended policy and the FHWA's
administrative interpretation generated inquiries which were answered in a Notice of
Interpretation (NOI) published on June 28, 1979 (44 FR 37710). The FHWA adopted the
AASHO/AASHTO definition of width and allowed the States to exclude certain safety devices
from the measurement of a vehicle's width. These consisted of load-induced tire buige, rearview
mirrors, turn signal lamps, and hand holds for cab entry/egress. A subsequent NOI published on
January 2, 1981 (46 FR 32), allowed States to expand the list of safety devices which could
extend beyond the 96-inch (2.44-meter) load surface. A final rule published on June 5, 1984 (49
FR 23302) and codified in part 658, reiterated the FHWA's previous policy of allowing States to
exciude from vehicle width measurements those safety devices that do not extend more than 3
inches (76 miliimeters) from either side. The rule interpreted the 102-inch width limit to include its
approximate metric equivalent of 2.6 meters. in addition, it defined length exclusive devises as all
non-cargo carrying appurtenances at the front or rear of a CMV semitrailer or trailer whose
function is related to the safe and efficient operation of the semitrailer or trailer. Two additional
NOI's on length and width exclusive devices were issued on January 13, 1986, (51 FR 1367) and
on March 13, 1987 (52 FR 7834). While these documents remain active, they simply represent
FHWA's interpretations of statutory provisions and have no binding regulatory effect, either or: the
States or the motor carrier industry.

The January 13, 1986, NOI specifically excluded from any length measurement 6-inch and 8-
inch (152mm and 203mm) front locking devices (boisters) and a 12-inch (0.30-meter) rear lift
tailgate in the "up” position. The NOI declined to exclude a 7-foot (2.13-meter) front trailer frame
extension from length measurements on grounds that it was load bearing, but reiterated that this
did not necessarily preciude its use because States could recognize it as a length exclusive
device.

The March 13, 1987, NOI held that lift gates not over 24 inches (0.61 meters) from the rear of
the trailer in the "up"® position, B-train assemblies, and about 35 other devices qualified as length
or width exclusive devices. It also provided that the width of a trailer be measured across the
sidemost load-carrying structures, support members, and structural fasteners, and that the length
of a semitrailer be measured from the front vertical plane of the foremost transverse load-carrying
structure to the rear vertical of the rearmost traverse load-carrying structure.

The STAA required States to allow 102-inch (2.6-meter) wide CMVs on the National Network
(NN). The NN consists of the Interstate System and other highways designated in 23 CFR part
658, appendix A. Hawaii, however, was allowed to keep its 108-inch (2.74-meter) width limit.

In addition, the STAA set minimum length limitations for semitrailers operating in a truck
tractor-semitrailer combination on the NN. The States were required to allow semitrailers with a
length of 48 feet (14.63-meters), unless the State allowed a longer semitrailer on December 1,
1982. In that case, the longer length was grandfathered and the State must continue to allow the
use of semitrailers up to that length on the NN. A list of grandfathered semitrailer lengths is
published in 23 CFR part 658, appendix B.

The minimum length limit for each semitrailer or trailer in a truck tractor-semitrailer-trailer
combination was established at 28 feet (8.53 meters), or 28.5 feet (8.69 meters) if in legal
operation on December 1, 1982, within an overall length of 65 feet (19.81 meters). States may
not limit the overall length of a truck tractor semitrailer, or truck tractor-semitrailer-trailer
combination, on the NN.

Pursuant to its authority under section 411(d) of the STAA, the FHWA designated several CMV
combinations with unique characteristics as "specialized equipment” and established length
parameters for their operation on the NN. The most common of these specialized vehicles are
automobile transporters. Minimum length limits established include 65 feet (19.81 meters) for
standard automobile transporters and 75 feet (22.86 meters) for stinger steered units, i.e., the fifth
wheel is located on a drop frame located behind and below the rear-most axle of the power unit.
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Boat transporters are also aliowed the same lengths based on the fifth wheel connection
location. in addition, ail automobile and boat transporters are allowed cargo overhangs of up to 3

feet (0.91 meters) in front of the truck tractor and 4 feet (1.22 meters) beyond the rear of the
semitrailer.

Other combinations considered specialized equipment include truck tractor-semitrailer-
semitrailer vehicles with a "B-train” connection, Maxi-cubes, and beverage semitrailers. The
length requirements established for these combinations are described in 23 CFR 658.13.

The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA), Public Law 102-240,
105 Stat. 1914, established a minimum length limit for buses of 45 feet (13.72 meters) on the NN.
There are no Federal laws or regulations regardng the length of straight trucks.

The ISTEA also prohibited the States from allowing the cargo-carrying units of CMVs with
two or more such units to exceed the length allowed and in actual use on the NN on June 1,
1991. It also provided that the length of the cargo-carrying units is to be measured from the front
of the first unit to the rear of the last unit. These provisions did not affect the authority of the
Secretary to exclude devices from the measurement of length and width if the vehicles are
subject to Federal size requirements.

Today's proceeding was originally initiated through an advance notice of proposed
rulemaking (ANPRM) issued on December 26, 1989 (54 FR 52951), which requested information
on a series of issues. The comment period, originally established at 90 days, was subsequently
extended to August 21, 1980 (55 FR 25673). After considering the comments received in
response to the ANPRM, the statutory language on length and width exclusive devices in 49
U.S.C. 31111(d), 31113(b), and developments in the industry since 1990, the FHWA is proposing
regulatory changes to 23 CFR part 658. The FHWA is requesting comments on proposed criteria
for excluding safety or efficiency enhancing devices from measurement of vehicle length and
width.

In 1997, the FHWA rearranged its docket system in accord with the electronic system
adopted by the Department of Transportation. A new docket was established to receive the
information with the number FHWA Docket 1997-2234. Material previously submitted to Docket
Nos. 87-5 and 89-12 was transferred and scanned into FHWA Docket 1997-2234.

Sixty-eight comments were submitted in response to the ANPRM (FHWA Docket Nos. 87-5
and 89-12). Those commenting fell into the following groups: States--17, automobile transporter
companies--14, trade associations--6, trailer manufacturers--5, bus and truck manufacturers--4,
tarp and tarp hardware manutacturers--3, individuals--3, port authorities--1, carpet manufacturer--
1, walkway and platform manufacturers--1, employees union--1, U.S. Government agencies--1,
and comments relating to extending the comment period--2. Several respondents commented
more than once. Questions in the ANPRM and Comments from Respondents from the
measurement of length and width of vehicles would be necessary.

Further details can be found on the following website:
hitp://ir.cos.com/cgi-bin/getRec?id=20000818a19
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APPENDIX C

REYNOLDS AVERAGING

Like laminar flow, turbulence is governed by the unsteady Navier-Stokes equations.
Turbulence consists of small-scale fluctuations in the flow characteristics over time. It is a
complex process, mainly because it is three dimensional, unsteady and chaotic, and it can
have a significant effect on the characteristics of the flow.

Turbulence occurs when the inertia forces in the fluid become significant compared
to viscous forces, and is characterized by a high Reynolds number.

Turbulence generally involves length scales much smaller than the smallest finite
volume mesh, which can be practically used in a numerical analysis. To resolve the features
of the flow at this level directly would require, even in the simplest cases, an extremely large
number of small mesh elements. Although direct numerical simulaton (DNS) of the
unsteady flow equations is possible for very simple cases, for most practical cases it is not
performed due to current limits on computer memory and processor speed.

To enable the effects of turbulence to be predicted, a large amount CFD research
has concentrated on methods that make use of turbulence madels. Turbulence models have
been specifically developed to account for the effects of turbulence without recourse to a
prohibitively fine mesh. In general, turbulence models seek to modify the governing
equations by inclusion of additional terms or equations to account for turbulence effects.

A number of models have been developed that can be used to approximate
turbulence. Some have very specific applications, while others can be applied to a wider class

of flows with a reasonable degree of confidence.
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Turbulence models solve transport equations for the Reynolds averaged quantities.
For example, a velocity U may be divided into an average component, U, and a time varying
component, 4, in the following way:
s

U=U+u where E=L IUdr (C.1)
At

'
and At is a time scale large relative to the turbulent fluctuations, but small relative to the dme
scale to which the equations are solved.

In the following equations, the bar is dropped for time-averaged quantities, except
for products of fluctuating quantities. By substituting the time-averaged quantdes, the

Reynolds averaged equations then become:

%—f+Vo(pU)=0 €2
apU-t~V0(pU®U) Vo(a u®u)+S (C3
ap“’ 902 1V o(pUd)=V e[V - pud)+5, (C4)

The continuity equation has not been altered, but the momentum and scalar
transport equations contain turbulent flux terms additional to the molecular diffusive fluxes.
These are the Reynolds stress, pu®u, and the Reynolds flux, pug . These terms arise from
the non-linear convective term in the un-averaged equations, not the linear diffusive one.
They reflect the fact that convective transport due to turbulent velocity fluctuations will act
to enhance mixing over and above that caused by thermal fluctuations at the molecular level
At high Reynolds numbers, turbulent velocity fluctuations occur over a length scale much

larger than the mean free path of thermal fluctuations, so that the turbulent fluxes are much

larger than the molecular fluxes.
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Turbulence models close the Reynolds-averaged equations by providing models for
the computation of the Reynolds stresses and Reynolds fluxes. So, turbulence models can be
broadly divided into two classes: eddy viscosity models and Reynolds stress models.

In eddy viscosity models, the Reynolds stresses and fluxes are modeled algebraically
in terms of known mean quantities. The eddy viscosity hypothesis assumes that the Reynolds
stresses can be linearly related to the mean velocity gradients, in a manner analogous to the

relationship between the stress and strain tensors in laminar Newtonian flow:
—_— 2 2 T
~PuBu=-2pkS-SpVeUS+4, (vu +(VU) ) (C.5)

Here, W, is the eddy viscosity or turbulent viscosity. This has to be prescribed.
Analogous to the eddy viscosity hypothesis is the eddy diffusivity hypothesis, which

states that the Reynolds fluxes of a scalar are linearly related to the mean scalar gradient:
~pup=I,v¢ )
Here, T, is the eddy diffusivity, and this has to be prescribed. The eddy diffusivity

can be written:

H,
4 P (

where Pr, is the turbulent Prandd number. Eddy diffusivities are then prescribed using the
turbulent Prandtl number. Subject to these hypotheses, the Reynolds averaged momentum

and scalar transport equations become:

dpU - ‘'iVe T
B4V e(pU®U)=B-p'+V (1 (VU +(vU))) (C8)
a%"w-(pw-r,,w):s )

where 4, is the Effective Viscosity, and I' ; is the Effective Diffusivity, defined by,
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Bg =4+ U (C.10)
and,
I, =C+T, (C.11)

and p’is a modified pressure, defined by:
’ 2 2
p =p+§pk+VOU ;y,, -4 (C.12)

The Reynolds averaged energy equation becomes:

d(ph) opP
ot ot

+Ve pUh,, =v-(,1vr +€‘jvn)+se (C.13)
Note that although the transformation of the molecular diffusion term may be
inexact if enthalpy depends on variables other than temperature, the turbulent diffusion term
is correct, subject to the eddy diffusivity hypothesis. Moreover, as turbulent diffusion is
usually much larger than molecular diffusion, small errors in the latter can be ignored.

The Reynolds averaged transport equation for additional variables (non-reacting

scalars) becomes:

a_g.gq»Vo(pU(D —(F, +—&JV¢J=S (C14)
®

Eddy viscosity models are distinguished by the manner in which they prescribe the
eddy viscosity and eddy diffusivity.

Reynolds stress turbulence models solve an equation for the transport of Reynolds
stresses in the fluid. Algebraic Reynolds stress models solve an algebraic equation for the
Reynolds stresses, whereas differential Reynolds stress models solve a differential equation.

The Reynolds averaged momentum equations for the mean velocity are:
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a—gfj-+Vo(pU®U)—Vo(”VU)=—Vp'-V0(p-u-§;)+B (C.15)

where p”is a modified pressure, B is the sum of body forces and the fluctuating Reynolds

stress contribution is pu®u . Unlike eddy viscosity models, the modified pressure has no

turbulence contribution and is related to the static (thermodynamic) pressure by:
P 2
p =p+VoU(§ﬂ-{) (C.16)

In the differential stress model, u®u is made to satisfy a transport equation. A

separate transport equation must be solved for each of the six Reynolds stress components
of pu®u. The differential equation Reynolds stress transport is:

opuDu
ot

+Vo(puBueU)-ve{ pcXuu(visu) )= P+Gro-2 pescr

where P and G are shear and buoyancy turbulence production terms of the Reynolds
stresses respectively, @is the pressure-strain tensor and C'is a constant. Next, let look at the
Reynolds stress models (RSM).

These models do not use the eddy viscosity concept, but use transport equations for
the individual Reynolds stresses. The Reynolds stress model transport equations are solved
for the individual stress components.

Reynolds stress models are more suited to flows where the strain fields are complex,
and reproduce the anisotropic nature of turbulence itself. They are particularly useful where
there is strong flow curvature, separation or swirl.

Their general use has been limited because of the additional number of equations

requiring solution and hence additional loads on computational resources and subsequent
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increases in solution times. They are also less numerically robust than the previously
described eddy viscosity models.

In the differential Reynolds stress model, differendal transport equations are solved
individually for each Reynolds stress component. The exact production term and the
inherent modelling of stress anisotropies give superior results for flows with streamline

curvature and in rotating systems.

The CFD solver calculates the following equations for the transport of the Reynolds

stresses:

—_— - 2 U
o e

which can be written in index notation as

9
[ s

where @ is the pressure-strain correlation, and P, the exact production term, is given by:
P=-p(u®u(VU) +(VU)u®u) (C.20)

As the turbulence dissipation appears in the individual stress equations, an equation

for € is stll required. This now has the form:

aape +Ve(pUe)= (cE,P-c,zpe)-t-Vo[al

RS

[y + PC 55 "—:)v ° 8] (C.21)

In these equations, the anisotropic diffusion coefficients of the original models are
replaced by an isotropic formulation, which increases the robustness of the Reynolds stress

model. The model constants are listed below for each model.
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One of the most important terms in Reynolds stress models is the pressure-strain

correlation, ¢.

The pressure strain correlations can be expressed in the general form

P=4+¢, (C.22)
where
é= -pé’(Cs,a +C;, (aa -%a 0a5)) (C.23)
@, =-C,Pa+C,,pkS —C,,pkS\aea +
2 (C.29)
C,‘pk(aSr +Sa’ -39 SJ)-!-C,,pk (aw™ +Wa")
and
u®u 2
= -=0 C.
a==""3 (C.25)
1 T
S =5(VU +(VUY') (C.26)
1 T
W= —E(VU ~(vu)) (C.27)

In this formulation, @ is the anisotropy tensor, § is the strain rate and Wis the
vorticity. This general form can be used to model linear and quadratic correlations by using
appropriate values for the constants. The model constants are listed below.

There are three different Reynolds stress models available in the solver. These are
known as LRR-IP, LRR-QI and SSG. Each model has different model constants.

The LRR-IP and LRR-QI models were developed by Launder et al. (1975). “IP”

stands for Isotropisation of Production, and “QI” stands for Quasi-Isotropic. In these
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models, the pressure-strain correlation is linear. The LRR-IP model is a simpler version
which is less accurate but a little more stable.
The SSG model was developed by Speziale et al. (1991). This model uses a quadratic

relation for the pressure-strain correlation. The Table 3.1 below shows the values of the

constants for each model.

Table C.1 Coefficient list for Reynolds Stress Models.

|
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