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ABSTRACT

HIGH PERFORMANCE LARGE GRAPH ANALYTICS BY 
ENHANCING LOCALITY

Naga Shailaja Dasari 
Old Dominion University, 2015 

Co-Directors: Dr. Desh Ranjan and Dr. Mohammad Zubair

Graphs are widely used in a variety of domains for representing entities and their 
relationship to each other. Graph analytics helps to understand, detect, extract and 
visualize insightful relationships between different entities. Graph analytics has a 
wide range of applications in various domains including computational biology, com
merce, intelligence, health care and transportation. The breadth of problems that 
require large graph analytics is growing rapidly resulting in a need for fast and effi
cient graph processing.
One of the major challenges in graph processing is poor locality of reference. Local
ity of reference refers to the phenomenon of frequently accessing the same memory 
location or adjacent memory locations. Applications with poor data locality reduce 
the effectiveness of the cache memory. They result in large number of cache misses, 
requiring access to high latency main memory. Therefore, it is essential to have good 
locality for good performance. Most graph processing applications have highly ran
dom memory access patterns. Coupled with the current large sizes of the graphs, 
they result in poor cache utilization. Additionally, the computation to data access 
ratio in many graph processing applications is very low, making it difficult to cover 
the memory latency using computation. It is also challenging to efficiently paral
lelize most graph applications. Many graphs in real world have unbalanced degree 
distribution. It is difficult to achieve a balanced workload for such graphs. The 
parallelism in graph applications is generally fine-grained in nature. This calls for 
efficient synchronization and communication between the processing units. 
Techniques for enhancing locality have been well studied in the context of regular 
applications like linear algebra. Those techniques are in most cases not applicable to 
the graph problems. In this dissertation, we propose two techniques for enhancing 
locality in graph algorithms: access transformation and task-set reduction. Access



transformation can be applied to algorithms to improve the spatial locality by chang
ing the random access pattern to sequential access. It is applicable to iterative algo
rithms that process random vertices/edges in each iteration. The task-set reduction 
technique can be applied to enhance the temporal locality. It is applicable to algo
rithms which repeatedly access the same data to perform certain task. Using the two 
techniques, we propose novel algorithms for three graph problems: k-core decompo
sition, maximal clique enumeration and triangle listing. We have implemented the 
algorithms. The results show that these algorithms provide significant improvement 
in performance and also scale well.
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CHAPTER 1 

INTRODUCTION

A graph is a set of vertices and edges that represent entities and the relationship 
between entities, respectively. Graphs are widely used in various domains. For 
example, the air traffic network can be represented using a graph where each vertex 
represents an airport and an edge represents a connection between the two airports. 
In a social network, each person can be represented by a vertex and the relationships 
can be represented by edges. In a web graph, each web page can be represented by 
a node and a hyperlink between web pages can be denoted by an edge. Graphs are 
also heavily used in many other fields including computational biology, commerce 
and sociometry.

The volume of data has been exploding in recent years. There is massive amounts 
of data being generated every minute. According to the statistics published in 2012 
[1] [2], every minute, Facebook users share over 700k posts , Twitter users send over 
100k tweets, Instagram users share over 3600 photos, and over 500 new websites are 

created. Walmart receives over 1 million transactions per hour which is stored in its 
database which is estimated to be more than 2.5 petabytes. Now more than ever, 
the data collected is being made use of. The data is processed, modified, combined, 
analysed and visualized to extract useful information. The benefits of the extracted 
information can be very substantial. According to a case study published in [3], UPS, 
a postal service company acquired data from the sensors attached to more than 46,000 
vehicles to track the speed, direction, braking and drive train performance. The data 
was then analysed and led to savings of over 8.4 million gallons of fuel by cutting 85 
million miles off of daily routes.

In the recent years, a lot of attention has been paid for analysis of graphs. There 
has been significant rise in the breadth of problems requiring graph analytics. As a 
result, it is becoming increasingly important to efficiently solve the graph problems. 
There are many interesting and complex graph problems that needs to be solved for 
graph analysis. Unfortunately many graph problems are computationally expensive 
to solve. Coupled with the current large sizes of the graphs, it is highly challenging to 
solve many graph problems in practical amount of time. One of the major challenges
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in graph processing relates to the poor locality of reference. In this thesis, we focus 
on the problem of locality and present two techniques, access transformation and 
task-set reduction, to improve the memory locality in graph applications.

In this chapter, we present a brief introduction of graph analytics and its applica
tions. We then discuss the challenges in large graph processing. A brief description of 
some high performance computing systems is presented. We then present an overview 
of the dissertation and contributions.

1.1 BIG DATA GRAPH ANALYTICS

In this era of big data, graphs are widely being used to model data. The graph 
based problems are evolving in multiple disciplines including social networks, trans
portation, bioinformatics, health care, security and intelligence analysis. The volume 
of data being represented in graph structure is rapidly increasing. As a result, graph 
analytics has emerged as a topic of great interest. Graph analytics is applied to 
uncover insightful relationships between people, places, objects and other entities. 
The graphs conform to the three Vs associated with big data: volume, velocity and 
variety. The volume refers to the large amounts of data generated every second. The 
velocity refers to the speed at which the new data is generated. The variety refers 
to the different kinds of data both structured and unstructured.

Graphs analytics has large number of applications in various fields. They axe used 
in health care to study the spread of diseases, to detect and prevent epidemics [4]. 
Graph analysis plays a crucial role in systems biology [5] [6]. It is used in the study 
of protein-protein interaction complex. It is an important tool in understanding the 
gene expression. Graphs are used to model the gene regulatory networks. Graph 
analytics is used in finding motifs and patterns in large gene networks. It is used 
in identifying new protein complexes and for studying and modelling metabolism 
in various organisms. Graphs are used to represent social networks. The range of 
applications of social network analysis is rapidly growing. It is used in studying 
the spread of information and influence [7] [8]. It is used for targeted advertising [9], 
recommender system development [10], and community detection [11]. It is also used 
in intelligence, in anomaly detection, for example, in uncovering terrorist networks 

[12]-
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1.2 RESEARCH CHALLENGES IN LARGE GRAPH PROCESSING

Graph analytics is emerging as a powerful tool to extract value from big data. 
However, there are many difficult challenges to be addressed. The irregular nature of 
the graph processing applications makes it difficult to efficiently utilize the computa
tional resources. As data from different domains are mapped to the graph model and 
as the scale of the data continues to grow, the graph problems outgrow the current 
computational and memory capabilities of sequential processors. It is essential to use 
the parallel computing resources to solve problems of large scale. Unfortunately, it 
is not straight forward to directly map the graph problems to the parallel hardware. 
Again, the irregular structure of the graph makes it highly difficult to parallelize the 
graph problems. The techniques that work for regular scientific applications may 
not be suitable to solve the graph problems. In this section, we discuss the problems 
involved in large graph processing.

1.2.1 POOR LOCALITY OF REFERENCE

Locality of reference is a fundamental principle of computing. It is the principle 
behind the caching technique that is used to improve computer system performance. 
There are two kinds of locality: temporal and spatial. Temporal locality is based 
on the idea that when some data/instruction is referred to, it is likely that it will 
be referred to again within a small duration. Spatial locality is based on the idea 
that when data/instructions are accessed, it is likely that nearby data/instructions 
will be accessed. Any data that an application needs to access is accessed through 
cache memory. If the data is not present in cache memory, it is first brought to cache 
memory from the global memory(main memory) and then accessed. However, if the 
data is present in cache memory it can be accessed directly from cache. The access 
to cache is orders of magnitude faster than access to main memory. Therefore, it is 
important for an application to exploit the cache memory to improve its performance.

An important factor that adversely affects the performance of a graph application 
is poor locality of reference. A graph application, typically, proceeds by visiting 
vertices. Visiting a vertex refers to accessing its adjacency list or some other data 
related to the vertex. The order in which the vertices are visited is very random 
in nature for many graph applications. Therefore, those graph applications tend to 
have highly random memory access pattern. By random access we mean access to
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memory addresses that are not sequential and that are not to the same address or 
adjacent addresses. The principle of locality might not be applicable when the access 
pattern is random. The cache utilization for many graph applications is low when 
processing large graphs, resulting in high data access time. Therefore, it is hard to 
extract good performance from such graph applications, even on serial computers.

The random access pattern also makes it difficult for the hardware prefetcher to 
work efficiently. Most modern processors are equipped with hardware prefetchers. 
The purpose of a prefetcher is to bring the data from the memory into the cache 
before they are needed. When the application needs to access data that has been 
prefetched, it can directly access it from the cache instead of waiting for it to be 
loaded from main memory. The prefetching mechanism can result in significant per
formance improvement as it reduces the number of cache misses. A prefetcher works 
by monitoring the data access pattern and predicting which data will be accessed. 
However, in the case of many graph applications, since the memory access pattern is 
random, it is often difficult for the prefetchers to predict which data will be accessed.

1.2.2 LOW COMPUTATION TO DATA ACCESS RATIO

Many graph applications only explore the vertices and edges of the graph without 
performing large computations using the accessed data. The applications spend most 
of the time accessing the data and there is very little computation performed on the 
accessed data. In applications involving large amount of computations it is often 
possible to hide the memory latency by overlapping the data access with computation. 
However, in case of aforementioned graph applications, since the computation to data 
access ratio is low, it is difficult to hide the memory latency using computation.

1.2.3 SEQUENTIAL NATURE OF ALGORITHMS

Most traditional graph algorithms are sequential in nature. The outcome of an it
eration/task influences the following iteration/task. So the iterations/tasks can only 
be executed in sequence. It is difficult to efficiently map the traditional algorithms 
to the current parallel systems. Therefore, for many graph problems new parallel 
algorithms have been developed that can take advantage of the parallel resources. 
However, often these algorithms come at the expense of increased computational 
complexity. In most cases, the parallel implementations fail to outperform the most 
efficient sequential implementations.
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1.2.4 LOAD BALANCING

Another major challenge in developing parallel graph applications is load balanc
ing. For most graph problems, the computations are data-driven. The computations 
performed by an application is dictated by the graph structure. For efficient paral- 
lelization the tasks must be fairly distributed among the available computing units. 
In the case of graph algorithms, it is difficult to predict the work load corresponding 
to a task. The work load is not known until the data assigned to a task is accessed. 
Adding to this, many graphs in real world networks are irregular and have highly 
unbalanced degree distribution. This poses additional challenges in achieving load 
balanced partitioning.

1.2.5 SYNCHRONIZATION AND COMMUNICATION COST

The parallelism in most graph applications is fine-grained. It is difficult to divide 
a task into multiple tasks that can work independently. Often the tasks need to 
communicate and synchronize. In multicore architecture, the tasks communicate by 
reading and writing data into common segments of shared memory. Each core has 
one or more private caches. When multiple tasks are accessing the same data, it is 
possible to have copies of the data in multiple caches. To maintain consistency of 
the data, cache coherency protocols are used. The cache coherency protocols can 
severely impact the scalability of the application.

Synchronization is essential for the correctness of the algorithms. However, heavy 
synchronization can result in degraded performance. Synchronization is achieved in 
multicore architecture using barriers, locks and atomic operations. These constructs 
are expensive and often result in temporarily blocking the tasks. Therefore, it is 
necessary to carefully design applications so that the impact of cache coherency 
protocols and synchronization is minimized. In distributed memory systems, the 
tasks communicate by passing messages. Since most graph applications exhibit fine
grained parallelism, the communication cost can be very significant.

1.3 PARALLEL ARCHITECTURES

With the current scale of the graphs and the rate at which it is growing, it is 
becoming inevitable to use parallel computing. The current graphs are very large, 
with number of vertices and edges ranging from several millions to billions. The
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current workstations are incapable of processing such large graphs in practical time 
due to physical memory limitations and also the processing capacity. In recent years, 
there have been significant advance in parallel computing capabilities. There are 
different types of parallel architectures currently available. Based on the memory 
accessibility, they can be classified into shared memory and distributed memory 
architectures.

1.3.1 SHARED MEMORY ARCHITECTURE

In shared memory architecture all the processors have access to all memory as 
global address space. The processes can run in parallel on multiple processors/cores 
and they communicate by reading from and writing into the shared memory. Mul
ticore processors are the most commonly used systems with shared memory archi
tecture. Over the past few decades, there has been a consistent improvement in the 
computational power of the hardware. According to Moore’s law, the number of tran
sistors in an integrated circuit has doubled approximately every two years. However, 
due to heating issues and increased power consumption, it has become impractical 
to follow the phenomenon. Instead, the industry has moved toward multicore pro
cessors, which contain multiple computing units called cores integrated on a single 
chip.

Multicore processors typically have multiple levels of caches and may also have a 
shared cache. In this dissertation, most of the results are obtained using Intel Xeon 
X7560 processor. It has four sockets and each socket has eight cores. Figure 1 shows 
an overview of the architecture. Each core has a 32KB LI data cache and 256KB L2 
cache. Additionally, there is also an L3 cache of size 24MB which is shared by all 
the cores in a socket. All the sockets are connected using a high speed QuickPath 
Interconnect which gives over a lOOGB/sec bandwidth. IMC and QPI in the figure 
refer to integrated memory controller and QuickPath Interconnect respectively.

Shared memory machines are often classified into uniform memory access and 
non-uniform memory access(NUMA), based on the memory access times. In uniform 
access, all the processes take equal time to access the memory. These are often called 
as symmetric multiprocessors(SMP). In NUMA architecture, the memory access time 
depends on the memory location relative to the processor. These are often made 
by linking multiple SMPs like the X7560 architecture shown in Figure 1. Each 
core has access to memory in all the sockets but the access to non-local memory is
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(a) Single Socket
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(b) Four sockets connected using Quick Path Interconnect 

Figure 1: Architectural overview of Intel Xeon X7560 processor



slower. OpenMP and Pthreads are the most common programming interfaces used 
for developing programs for shared memory architecture.

1.3.2 DISTRIBUTED MEMORY ARCHITECTURE

Distributed memory architecture constitutes multiple processors connected by a 
communication network. Each processor has its own local memory. Memory ad
dresses of one processor do not map with another processor. Interprocess communi
cation is achieved using message passing. The individual processors in a distributed 
architecture are usually made of commodity hardware.

MPI is the most commonly used interface for distributed computing. In dis
tributed memory machines, the users are responsible to distribute the data among 
the processors and assigning tasks to the processors. When a processor needs to ac
cess the data in another processor, it is usually the task of the programmer to define 
how the data will be communicated. As the processors are connected by a network, 
the remote access time can take much longer time than the local access time, based on 
the network. The communication time is an important aspect to be considered when 
developing applications for distributed systems. The major advantage of distributed 
systems is its scalability. The computing and memory capacity of a distributed sys
tem can easily be extended by adding more processors. However, as the number of 
processors in a distributed system increases, so does the chance of hardware, software 
or network failures. Since programming on distributed systems can be an arduous 
task, there are many frameworks developed to make the task of programming easier. 
These frameworks provide features like fault tolerance, load balancing, scalability 
and reliability. The most popular frameworks include MapReduce [13], Spark [14], 
Pregel [15] and Graphlab [16]. Among these Pregel and Graphlab are developed for 
graph processing.

1.4 OVERVIEW OF DISSERTATION AND CONTRIBUTIONS

The performance of many graph processing applications is dominated by memory 
access time. Therefore, it is critical to exploit the data locality to improve the per
formance. Graph processing application have highly random memory access pattern. 
When the graph size is large, random access to large data results in frequent cache 
misses, resulting in degraded performance. Optimizing the data locality is well stud
ied for regular applications like linear algebra. Blocking is a well known optimization
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technique that improves the effective cache utilization [17]. The idea of blocking is 
to organize the memory accesses such that a small subset of data is loaded into the 
cache and is used/reused. It ensures that the data remains in cache across multiple 

accesses. The technique has been proven to be very effective for regular applications.
In this dissertation, we propose two techniques to improve the locality in graph 

algorithms: access transformation and task-set reduction. Access transformation 
technique changes the random memory access pattern in an application to more 
of a sequential access pattern. In many graph algorithms, the vertices/edges are 
systematically processed based on some property. In each iteration, a subset of 
vertices are processed. Most often the vertices are processed in a random order and 
the order is determined by some data structure. The key idea of access transformation 
technique is to use scan-and-extract operation in each iteration which sequentially 
scans all the vertices and extracts the vertices that are to be processed in a given 
iteration. The order of vertices obtained by the scan-and-extract operation is more 
likely to result in sequential access improving the spacial locality of the algorithm. 
We show the applicability of the technique using the k-core decomposition algorithm 
and triangle listing algorithm.

The task-set reduction technique focuses on improving the temporal locality. We 
define task-set as the collection of data that is repeatedly accessed to process a 
task. If the size of task-set is very large, then repeated random accesses to the 
data in task-set can result in large number of cache misses, severely impacting the 
performance. It is, therefore, very crucial to keep the task-set to a minimal size. 
Task-set reduction can be achieved in different ways like compression, blocking and 
elimination. Compression refers to storing the data using minimal amount of memory. 
By carefully examining the nature of the data and possible values of the data, it is 
often possible to reduce the size of the data structure that stores the data. For 
example, representing data in bit format can result in significant reduction in task- 
set size. The blocking technique [17] used for regular applications can also be used 
for task-set reduction. The idea is to partition the tasks such that each task works 
on a smaller task-set. However, unlike in regular applications, it may not be easily 
applicable. It might require significant changes to the algorithm to utilize blocking 
technique. Elimination refers to disposing of data structures which store data that 
can be extracted using other sources/data structures.

In this dissertation, we propose algorithms using these techniques for three graph
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problems: k-core decomposition, maximal clique enumeration and triangle listing. 
The k-core of a graph is the largest induced subgraph with minimum degree k. The 
largest value of k that a vertex belongs to a k-core is called core number of the vertex. 
The k-core decomposition problem is to find the core number of all the vertices in a 
graph. It has applications in many areas including network analysis, computational 
biology and graph visualization. The primary reason for it being widely used is the 
availability of an 0 (n  +  m) algorithm. The algorithm was proposed by Batagelj and 
Zaversnik [18] and is considered the state-of-the-art algorithm for k-core decomposi
tion. However, the algorithm is less suitable for parallelization and to the best of our 
knowledge there is no algorithm proposed for fc-core decomposition on multicore pro
cessors. Also, the algorithm has not been experimentally analyzed for large graphs. 
In Chapter 2, we present an experimental analysis of the algorithm of Batagelj and 
Zaversnik and propose a new algorithm, ParK, that uses the access transformation 
technique to improve the memory locality. We provide an experimental analysis of 
the algorithm using graphs with up to 65 million vertices and 1.8 billion edges. We 
compare the ParK algorithm with state-of-the-art algorithm and show that it is 
up to 6 times faster than the state-of-the-art algorithm. We also provide a parallel 
methodology and show that the algorithm is amenable to parallelization on multicore 
architecture. We present experimental results obtained using a 4 socket Nehalem-EX 
processor which has 8 cores per socket which show that the algorithm scales up to 
21 times using 32 cores.

A clique in a graph is a subgraph in which every pair of vertices is connected by an 
edge. A maximal clique is a clique which is not contained in any other clique. Maxi
mal clique enumeration(MCE) problem is to find all the maximal cliques in a graph. 
MCE is a fundamental problem in graph theory. It plays a vital role in many network 
analysis applications and in computational biology. MCE is an extensively studied 
problem [60] [61] [32] [65] [69]. Recently, Eppstein et al. [32] proposed a state-of-the- 
art sequential algorithm that uses degeneracy based ordering of vertices to improve 
the efficiency. In Chapter 3, we present an analysis of task-set size of Eppstein et 
al.’s algorithm. We propose a new algorithm using the task-set reduction technique. 
The new algorithm uses a new bit-based data structure. The new data structure 
not only reduces the task-set size significantly but also improves the performance of 
the algorithm by enabling the use of bit-parallelism. We illustrate the significance 
of degeneracy ordering in load balancing and experimentally evaluate the impact of
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scheduling on the performance of the algorithm. We present experimental results 
on several types of synthetic and real-world graphs with up to 50 million vertices 
and 100 million edges. We show that our approach outperforms Eppstein et al.’s 
approach by up to 4 times and also scales up to 29 times when run on a multicore 
machine with 32 cores. We have also implemented the new algorithm on distributed 
architecture and the experimental results show that the algorithm scales well, upto 
106 times using 128 processes.

A triangle in a graph refers to a clique of size 3. Triangle listing problem is to find 
all the triangles in a graph. The triangle counting/listing problems are of high interest 
in network analysis applications. They are primarily used in finding a key statistical 
property of a graph called clustering coefficient. Many algorithms for the triangle 
listing problem exist in the literature [92] [93] [94]. Out of those, the edge-iterator 
algorithm [93] is the most widely used algorithm. The algorithm repeatedly accesses 
the adjacency lists of the vertices and in random order resulting in poor memory 
locality. In Chapter 4, we propose a new algorithm, called window-iterator that uses 
the access transformation and task-set reduction techniques to improve the locality. 
Unlike, the edge-iterator algorithm, the window-iterator algorithm has limited num
ber of iterations, each iteration working on a smaller task-set. The window-iterator 
outperforms the edge-iterator algorithm for large graphs(upto 1.4 times) and the gap 
increases as the graph size increases. We have implemented the approach for multi
core architecture. Our experimental results show that the new algorithm scales well, 
more than 29 times using 32 cores.
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CHAPTER 2

ACCESS TRANSFORMATION

Graphs are ubiquitous. There are many interesting and complex graph problems 
that have applications in different domains. Graph problems have been well stud
ied and there exist efficient algorithms for most of the problems. The main focus 
of the traditional algorithms was to reduce the computational complexity. Though 
many algorithms are NP-hard, since the graphs were small in size, the problems were 
solvable in practical amount of time. However, since the graph problems are being 
applied in a variety of domains and as the graph sizes are rapidly growing, it is be
coming increasingly important to redesign traditional algorithms considering various 
other factors like memory access pattern, data structures and memory bandwidth.

One of the major factors governing performance of graph algorithms is poor 
locality of reference. The memory access pattern in most graph algorithms is highly 
random. The random access pattern coupled with the large size of the graphs results 
in poor utilization of the cache memory. Most of the data accesses result in cache 
misses and the data has to be accessed from the main memory which has greater 
latency, degrading the performance of the application.

In this chapter, we present a technique called access transformation which im
proves the locality of reference by changing the memory access pattern. Many graph 
algorithms are based on systematic exploration of the graphs. They traverse the 
nodes in some order that is specific to the problem. For example, in BFS, the nodes 
are traversed based on their distance from the source node, in k-core decomposition 
algorithm, the nodes are traversed based on their degree. The algorithms explore the 
graphs in multiple iterations, processing a subset of nodes in each iteration. However, 
the order of vertices processed in an iteration is mostly random which can severely 
impact the performance.

To show the impact of random access, we ran an experiment which performs read 
and writes on all the elements in an integer array in random order. The graph in 
Figure 2 clearly shows that the memory latency increases as the data size increases. 
The array size is shown in millions(m) and billions(b).
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Figure 2: Plot showing the memory latency for random writes

The access transformation technique refers to changing the random access pat
tern to sequential access. In some algorithms it may be straight forward to achieve 
it while in some cases it may be required to redesign the algorithm. Often, some 
data structure is used to store problem specific data such as the vertices to be pro
cessed in the next iteration, the order of vertices, or the distance of a vertex from a 
source vertex. This data structure, in general, governs the access pattern of the next 
iteration. The main idea behind access transformation technique is to use scan-and- 
extract operation to extract the data when required instead of storing it in a data 
structure. By eliminating the random access causing data structure, the operation 
results in a relatively more sequential access pattern thus improving the performance 
of the application.

The scan-and-extract operation reduces the random nature of the access pattern. 
However, it comes at the expense of increased number of operations which are re
quired for the scan operation. As, the scan operation is performed in each iteration, 
if the number of iterations is too high, the overall time taken for the scan operation 
can be significant and might result in degraded performance. Therefore, the number
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of iterations and the cost of scan-and-extract operation must be considered when 
applying the access transformation technique.

The technique is inspired from the paper [19] which proposes a new read-based 
algorithm for BFS. The traditional BFS algorithms are queue-based in which a queue 
is used to store the vertices to be processed. Processing a vertex involves accessing its 
adjacency list (array) and adding its neighbors to the queue if they have not already 
been processed. The vertices are added in random order to the queue resulting in 
a highly random access pattern. The new algorithm eliminates the use of queue 
by scanning all the vertices to extract the vertices that are to be processed in the 
current iteration. Since the vertices extracted are not in random order, the algorithm 
improves the opportunity of sequential access pattern and is shown to outperform 
the traditional BFS algorithms.

The access transformation technique is applicable to algorithms with limited num
ber of iterations that process a subset of vertices in each iteration. The applicability 
of the technique is, nevertheless, not limited to those algorithms. It is a more general 
approach and can also be applied in other scenarios. However, the algorithms might 
need to be redesigned to limit the number of iterations. For example, the triangle 
listing problem has highly random access pattern but the algorithm has large number 
of iterations. In Chapter 4, we show how the algorithm can be redesigned to limit 
the number of iterations facilitating the use of access transformation technique and 
also the task-set reduction technique discussed in the next chapter.

There is also an added advantage to the access transformation technique. The 
technique, in general, results in an approach that is amicable to parallelization. Since 
the random access pattern limits the benefits of parallelism, by transforming the ac
cess pattern to sequential the technique results in a better scalable approach. We 
have seen that the access transformation technique can be used at the expense of 
increased cost of scan-and-extract operation. However, the scan-and-extract opera
tion is embarrassingly parallel and the computational time for the operation can be 
greatly reduced by using parallelism.

In the rest of the chapter, we show how the access transformation technique can 
be applied to the k-core decomposition algorithm. We first present, in Section 2.1, 
some definitions and notations and then in Section 2.2 explain in detail the state-of- 
the-art algorithm for k-core decomposition focusing on its memory access pattern. 
In Section 2.3, we discuss how the access transformation technique can be used for
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Figure 3: An example graph showing different cores

this problem and present a new algorithm, called ParK, that adopts the technique. 
The parallel methodology of ParK algorithm is discussed in Section 2.4. In Section 
2.5, we present the experimental results using various graphs from different datasets 
and show that the new algorithm outperforms the start-of-the-art algorithm by upto 
6 times and the performance gap becomes larger as the graph size grows. Also the 
new algorithm is scalable resulting in speed-up of upto 21 time using 32 cores.

2.1 A-CORE DECOMPOSITION

The k-core of a graph is the largest induced subgraph with minimum degree k. 
The notion of a core was first introduced in 1983 by Seidman et al. [20], Since then, it 
has been extensively studied and used in applications in many areas including network 
analysis, computation biology and visualization, k-core has been primarily applied in 
identifying the cohesive subgroups in a network. Many notions can be considered for 
identifying such groups including cliques, A;-plexes, n-cliques [21]. While most other 
approaches are computationally expensive, A;-core decomposition can be computed 
in linear time.

2.1.1 DEFINITION AND NOTATIONS

Let G = (V,E) be a graph where V is the set of vertices and E  is the set of 
edges and let n — |F | and m = |E|. The k-core of the graph G, is the largest
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induced subgraph in which every vertex has degree at least k. The core number or 
coreness of a vertex v, is the largest value of k for which v belongs to the k-core 
i.e. core(v) =  max{k\v € fc-core}. Note that (k +  l)-core is a subset of k core. A 
fc-shell of a graph G is the subgraph induced by the set of vertices in G whose core 
number is k, i.e. the vertices that belong to k-core but not (k + l)-core. In Figure 
3, all the vertices inside the blue, green and red boundaries belong to 1-core, 2-core 
and 3-core respectively. The vertices colored in blue, green and red belong to 1-shell, 
2-shell and 3-shell respectively and have core numbers 1, 2 and 3 respectively. The 
problem of k-core decomposition of the graph is to find all the k-cores of the graph 

or in other words, find the core numbers of all the vertices in the graph. In the rest 
of the chapter, we use N(y) to denote the neighborhood of v (note that v £  jV (v)) 

and core(v) to denote the core number of v. The degree of vertex v is denoted by 
deg(v). n and m  denote the number of vertices and edges in the graph, respectively.

2.1.2 APPLICATIONS

k-core decomposition has been used in analyzing and understanding the internet 
topology [22] [23]. It has been used in the study of influential spreaders in complex 
networks [24]. It was shown that the most efficient spreaders are those located 
within the core of the network. It was used in detecting dense communities in 
large, social networks [25] [26]. k-core decomposition is considered as an important 
tool in visualization [27] [28j[29j. In computational biology it was used in analyzing 
and detecting protein interactions [30] and analyzing gene networks [31]. fc-core 
decomposition is used as a pre-processing step in other graph problems like finding 
maximal and maximum cliques [32] [33]. It is considered an important tool in network 
analysis and is included in network analysis packages [34] [35] [16].

2.2 RELATED WORK

The algorithm for computing the core numbers of all the vertices in the graph 
is shown in Figure 4. It involves repeatedly removing the minimum degree vertices 
from the graph. The degree of the vertex when it is being removed is the core number 
of the vertex. The function getSmallestDegreeVertex in Figure 4 returns the smallest 
degree vertex in the remaining graph. The main challenge in k-core decomposition 
is to find, in each iteration, the minimum degree vertex in the remaining graph. A 
simple way is to scan the degrees of all the vertices in the graph. Clearly, this method
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1: while G is not empty do
2: v = getSmallestDegreeVertex(G)
3: core(v) =  deg(v)
4: for each vertex u e 7V(u) do
5: decrement deg(u) by 1
6: end for
7: delete v from G
8: end while

Figure 4: The fc-core decomposition algorithm outline

is highly inefficient. Another method is to maintain a sorted list of vertices. This is 
the idea behind the BZ algorithm explained in the next section.

2.2.1 THE BZ ALGORITHM

The algorithm for k-core decomposition that is considered state-of-the-art is pro
posed by Batagelj and Zaversnik (we refer to it as BZ algorithm in the rest of the 
chapter). It is a linear time algorithm. It solves the problem of finding the minimum 
degree vertex in the graph by maintaining a list of vertices sorted in increasing order 
of degree. In each iteration, when a vertex is processed and the degree of its neigh
bors is reduced, the neighbors are moved to the appropriate position in the sorted 
list. The algorithm uses count sort to compute the initial sorted list.

Figure 5 shows the BZ algorithms. The algorithm takes the graph G as input. 
It uses four arrays: deg, vert, pos and bin, to keep tract of their degree and the 
order of the vertices to be processed. The arrays deg, vert, pos are of size n, where 
n is the number of vertices in the graph. The array bin is of size M  + 1 where M  
is the maximum degree of the graph. The function getSortedArray takes the graph 
as input, It initializes the four arrays and returns them as output. The array deg is 
initialized to contain the degree of the vertices in the graph. Note that the vertices 
are numbered from 0 to n — 1. deg[i\ represents the degree of vertex i. The vert 
array contains all the vertices in the graph in increasing order of degree. The pos 
array stores the positions/indexes of vertices in vert array. For example, if vertex u 
is at index i in vert array i.e vert[i] =  u, then pos[u) = i. The sorted array vert can 
be viewed as an array of bins, each bin containing a set of vertices of same degree. 
So, the array vert is nothing but bin of degree 0 vertices followed by bin of degree 1
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procedure kcoreBZ(G)
(deg, vert, pos, bin) = getSortedArray(G) 
for i = 0 to n — 1 do 

v = vert[i]
for each vertex u E N(v) do 

if deg[u] > deg[v] then  
pu — pos{u\
pw — bin[deg[u]] t> get the position of first vertex in bin
w = vert\pw\ > get the first vertex in bin
if u ^ w  then

vert\pu] = w vert\pw\ =  u t> swap u and w in vert
pos[w} = pu pos[u] = pw > update their positions in pos

end if
increment bin[deg[u}} by 1 
decrement deg[u] by 1 

end if 
end for 

end for 
end procedure 
function getSortedArray(G) 

maxDeg — 0 
for i — 0 to n — 1 do

deg[i] =  getDegree(i, G)
if deg[i] > maxDeg then maxDeg =  deg[i] end if 

end for
for i = 0 to maxDeg do bin[i\ =  0 end for
for i = 0 to n — 1 do increment bin[deg[i]\ by 1 end for
start =  0
for i — 0 to maxDeg do 

num  = bin[i] 
bin[i] =  start 
increment start by num  

end for
for i = 0 to n — 1 do 

pos[i] =  bin[deg[i]] 
vert\pos[i\\ =  i 
increment bin[deg[i]] by 1 

end for
for i = maxDeg down to 1 do bin[i] — bin[i — 1] end for 
return (deg, vert,pos, bin) 

end function

Figure 5: The algorithm of Batagelj et al.
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Figure 6: A figure showing the memory accesses required for an iteration in BZ 
algorithm

vertices and so on. The array bin contains the index of the first vertex in each bin
i.e. bin[i] contains the index of the first vertex with degree i in the vert array.

The function getSortedArray uses count sort to compute the sorted array vert 
which can be computed in 0 (n ) time. The function getDegree in line 23 returns the 
degree of a vertex. Once the initial four arrays are returned by the getSortedArray 
function, the vertices are processed one at a time in the order given in vert array. 
Processing a vertex v involves reducing the degree of all its neighbors by 1 and 
updating the vert, pos and bin arrays accordingly. Whenever, the degree of a vertex 
is decremented (by 1) it needs to be moved to appropriate bin (to the preceding 
bin). To achieve that, the vertex is swapped with the first vertex in the current 
bin by updating appropriate values in vert and pos arrays. And then, bin array is 
updated such that the vertex belongs to the preceding bin. The time complexity of 
the algorithm is shown to be 0 (n  +  m).

Memory access pattern in BZ algorithm

We have seen that BZ algorithm provides a linear time solution for k-cove de
composition and is considered the state-of-the-art algorithm. However, we observe 
that the memory access pattern of the algorithm is more random in nature. As can 
be seen in Figure 5, the algorithm uses four arrays deg, vert, pos and bin. It can 
be observed that the memory access pattern of these arrays is highly random. Each 
iteration requires random read and write access to these arrays. Figure 6 shows the
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memory accesses required when a vertex v is processed and its neighbor it’s degree 
is reduced, du in the figure denotes deg[u). The operation requires read and write 
access to deg[u], vert\pu\, vert\pw], pos[u], pos[w] and bin[du]. Notice that all these 
data elements are in random positions in the four arrays. While the size of bin array 
may be small, the sizes of the other three arrays can be very large. So there is a high 
chance that the access to each of these data elements incurs a cache miss and requires 
access to main memory. The access pattern of the adjacency lists also impacts the 
performance. It can be seen from Figure 5 that the adjacency list of a vertex is 
accessed exactly once in the algorithm. The order in which the adjacency lists are 
accessed is governed by the vert array. Though, the accesses are more sequential in 
the initial iterations, as the vertices are processed and as the vert array is updated, 
the access pattern of adjacency lists becomes more random in nature.

Parallelizing the BZ algorithm

We have seen in Section 2.2.1 that the vert array can be viewed as an array of 
bins. Each bin consists of vertices of same degree. Parallelizing the BZ algorithm 
for multicore architecture can be done by distributing all the vertices in a bin to the 
available processing units. Each processing unit processes the vertices assigned to 
it. Recall that processing a vertex involves reducing the degree of its neighbors and 
accessing multiple locations in the four arrays (for example, in Figure 6 the locations 
deg [it], vert\pu], vert\pw], pos [it], pos[w] and bin[du] are accessed). However, since 
multiple processing units are sharing the four arrays and reading and writing into 
the arrays, it might result in race conditions and inconsistent results. To avoid that, 
synchronization constructs like locks need to be used. For example, in Figure 6, all 
the data elements deg [it], vert\pu], vert\pw\, pos [it], pos{w\ and bin[du] should be 
locked before reading from and writing into them. Due to the high cost of synchro
nization constructs which are very expensive, the BZ algorithm is not amicable to 
parallelization.

2.2.2 DISTRIBUTED ALGORITHM

There is a distributed algorithm proposed for k-core decomposition [36]. Each 
process is assigned a set of vertices and is responsible for calculating the core numbers 
of the vertices assigned to it. If there are p processes, numbered 0 to p — 1, then a 
vertex i is assigned to the process numbered i mod p. For each vertex assigned to
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a process, it stores an array consisting of core numbers of its neighbors. The core 
number of each vertex is initialized to the degree of the vertex and is updated during 
the decomposition process. The algorithm is based on the idea that the core number 
of a vertex can be calculated based on the core number of its neighbors according to 
the following theorem:

Theorem: For each vertex u £ V, core(u) = k if and only if

1. there is a subset 14 Q N(u) such that |14| =  k and W £ 14 : core(v) > k

2. there is no subset 14+i C N(u) such that |V*+i| =  k + 1 and Vu £ 14+i : 
core(v) > k +  1

The core number of the vertices is calculated using the core number of their neigh
bors. Once the core number of a vertex is updated it is communicated to the other 
processes to which its neighbors are assigned. This is repeated until core number of 
none of the vertices is updated. Unlike the BZ algorithm, in which the adjacency list 
of a vertex is accessed only once, the adjacency list of a vertex is accessed multiple 
times i.e. whenever the core number of any of its neighbors is updated. This approach 
results in significant increase in number of operations. Therefore, it is more suitable 
to a distributed environment where there are large number of computing nodes and 
each computing node is assigned only a few vertices. However, this approach is less 
suitable for multicore architecture with only a limited number of threads and each 
thread is assigned large number of vertices. Since each thread has to repeatedly ac
cess the adjacency lists of the vertices assigned to it, the working set for the thread 
consists of all its vertices and their neighbors which can be too large to fit in cache 
memory thus resulting in poor locality of reference.

There are approaches proposed for for k-core decomposition of dynamic networks 
[37] [38] [39], These approaches primarily focus on efficiently maintaining the core 
numbers of the vertices as the graph changes over time.

2.3 P A R K  ALGORITHM

The k-core decomposition problem is a good candidate for applying the access 
transformation technique. It uses different arrays (vert, pos, bin) that result in 
random memory access pattern. Though the original approach, i.e. BZ, requires n 
iterations, it can easily be modified to limit the number of iterations to maximum de
gree, M. We propose a new algorithm for k-core decomposition called ParK (parallel
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procedure kcoreParK(G) 
todo =  n 
level =  0
for i =  0 to n -  1 do deg[i\ =  getDegree{i, G) end for 
while todo > 0 do

curr = scan-and-extract {deg, level) 
while | curr | > 0 do

decrement todo by |curr| 
next = processSublevel(curr, deg, level) 
curr = next 

end while 
increment level by 1 

end while 
end procedure
function scan-and-extract(deg, level) 

curr =  0
for i = 0 to n — 1 do 

if deg[i] — level then 
add i to curr 

end if 
end for 
return curr 

end function
function processSublevel(curr, deg, level) 

next =  0
for each vertex v in curr do

for each vertex u adjacent to v do 
if deg[u] > level then 

decrement deg [u] by 1 
if deg[u] =  level then 

add u to next 
end if 

end if 
end for 

end for 
return next 

end function

Figure 7: ParK algorithm
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fc-core) which adapts the access transformation technique. The algorithm eliminates 
the use of the three arrays (vert, pos and bin) and uses scan-and-extract operation 
to get the list of vertices to be processed in an iteration.

2.3.1 DESCRIPTION

The ParK algorithm processes the vertices in levels. Processing a vertex refers 
to accessing its adjacency list and reducing the degree of its neighbors that have not 
already been processed. In level i, all the vertices in shell i are processed (recall that 
fc-shell contains all the vertices that belong to fc-core but not k -F 1-core). The ParK 
algorithm is based on the idea that instead of maintaining a sorted array of vertices, 
we can generate the array at each level. The outline of the ParK algorithm is given 
in Figure 7. The algorithm uses three arrays deg, curr and next. The deg array is 
initialized to contain the degree of the vertices similar to the BZ algorithm. Note 
that the vertices in the graph are numbered from 0 to n — 1. deg[v] contains the 
degree of vertex v. As the vertices are processed and degree of their neighbors are 
reduced, the deg array is updated. The deg array at the end of kcoreParK procedure 
contains the core numbers of all the vertices in the graph.

Processing a level I is done in two phases: scan phase and loop phase. In scan 
phase (which is same as scan-and-extract operation in access transformation tech
nique), the deg array is scanned and the vertices that are to be processed in the 
current level are extracted into curr array. Note that the vertices in curr are in 
sequential order i.e. if u =  curr[i} and v = curr\j] where i < j  then u < v. The scan 
phase is performed using scan-and-extract function given in Figure 7. The loop phase 
consists of one or more sub-levels (or iterations). In each sub-level, all the vertices 
in curr array are processed. When processing a vertex v in curr, if any neighbor 
vertex, u, is moved to the current level i.e. deg[u] is reduced to I, then u is added 
to next array. At the end of each sub-level, the contents of next are transferred to 
curr so that they can be processed in the next sub-level. The lines 7 through 11 
in Figure 7 correspond to the loop phase. The processSublevel function in Figure 7 
processes the vertices in current sub-level and returns the array of vertices that are 
to be processed in the next sub-level.
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Figure 8: A plot showing the percentage of vertices processed in first sub-level of all 
the levels

2.3.2 MEMORY ACCESS PATTERN OF THE P A R K  ALGORITHM

As can be seen in Figure 7, the ParK algorithm uses three arrays deg, curr and 
next arrays. The read and write accesses to curr and next arrays is sequential. Also, 
the access to deg array in scan-and-extract function is sequential. However, the loop 
phase requires random access to the deg array (line 28 in Figure 7). Note that, BZ 
algorithm also performs the same random accesses to the deg array.

The access pattern of the adjacency lists in ParK algorithm is governed by the 
order in which vertices are added to the curr and next arrays. In the scan-and- 
extract function, the order of vertices added to the curr array is guaranteed to be 
sequential. Therefore, the first sub-level in each level of the algorithm results in 
sequential access of the adjacency lists. However, in subsequent sub-levels there is 
no such guarantee and the adjacency lists are accessed in random order. From our 
experiments, we observe that, for most graphs, the majority of vertices are processed 
in first sub-level. The plot in the Figure 8 shows the percentage of vertices processed 
in first sub-level in all the levels.
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2.3.3 ANALYSIS OF TH E A LG O RITH M

In this section, we analyse the time complexity of the ParK algorithm.
Lem m a 1. The maximum number of levels in ParK algorithm is kmax, where 

kmax is the largest value of k for which k-core is present in the graph.
Proof: The algorithm uses a variable todo to keep track of the number of vertices 

to be processed. It can be seen from the procedure kcoreParK in Figure 7 that todo 
is decremented in each sub-level by the number of vertices processed in the sub-level. 
Therefore, todo always contains the count of number of vertices to be processed. 
Since at the end of level kmax all the vertices have been processed and the value of 
todo is zero, the maximum number of levels is kmax.

Lem m a 2. The combined time taken for scan phase in all the levels is 0 (k maxn ) 
Proof: The scan phase in each level takes 0(n) and since there are kmax levels, 

the combined scan time for all the levels is 0 (kmaxn)
Lem m a 3. The combined time taken for loop phase in all the levels is 0 (m ) 
Proof: In a single call to processSublevel a subset of vertices is processed. Com- 

binedly in all the calls to processSublevel, all the n vertices are processed. Note 
that, each vertex is processed exactly once i.e. when its degree becomes equal to the 
current level. We have seen that processing a vertex v includes reducing the degree 
for each of its neighbor if it has not already been processed which takes 0(dv) time 
where dv is the degree of vertex v. Therefore, to process all the n vertices it takes 

0 (m ) time.
Combining lemmas 2 and 3 (and 0(m ) time for line 4), the computational com

plexity of ParK algorithm is 0(fcmairi 4- m). Though the computational complexity 
of BZ algorithm, which is 0 (n  + m), is less compared to the ParK algorithm, our ex
perimental results show that ParK algorithm outperforms BZ algorithm. The reason 
is that by using the scan phase, ParK significantly reduces the number of random 
memory access resulting in better locality of reference. The BZ algorithm requires 
random read and write accesses to three different arrays of size n while in ParK 
algorithm requires random access to only one array. Though the theoretical time 
taken for the scan phase seems significant, in practice the time taken for scan phase 
is less compared to the time saved due to the scan phase. Another major advantage 
of scan phase is that it is embarrassingly parallel. It can easily and efficiently be 
distributed among different processors and can scale linearly.
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2.4 PARALLEL METHODOLOGY OF PA R K  ALGORITHM

In this section, we describe a level-synchronous approach to parallelizing the 
ParK algorithm. We have seen that the ParK algorithm processes the vertices 
in levels. Since the number of levels is limited, there is generally sufficient degree 
of parallelism available in each level. Parallelizing the ParK algorithm involves 
individually parallelizing the two phases in the algorithm: scan phase and loop phase. 
Parallelizing the scan phase is simple and trivial. The n vertices are equally divided 
among the t threads and each thread scans n /t  vertices. Note that distributing the 
n vertices among t threads can be done in several ways. To minimize cache misses, 
contiguous chunks of vertices are assigned to the threads. To process each vertex, 
a thread reads its degree and if it is equal to the current level it adds the vertex to 
curr array. Since there are only a few operations performed for each vertex, the load 
is well balanced resulting in linear speed-up.

Though, it is simple to parallelize the scan phase, there is one issue to be ad
dressed. It is to be noted that, the array curr is shared between all the threads and 
multiple threads writing to it may result in race conditions. The parallel version of 
scan — and — extract function that addresses the issue of race conditions is shown 
in Figure 9. The function atomicIncrement{idx, 1) increments the value of idx by 1 

and returns its old value atomically (implemented using atomic capture construct in 
OpenMP). Using atomic operations the race conditions are eliminated. However, the 
atomic operations are expensive and too many atomic operations can significantly 
downgrade the performance. To reduce the number of atomic operations, the ver
tices are added in batches instead of a single vertex. We use a local buffer of size 
b. Instead of adding each vertex to curr, they are first added to the local buffer. 
When the buffer is full, idx is atomically incremented by b and all the vertices are 
transferred from local buffer to curr. This reduces the number of atomic operations 
by a factor of b. Note that, to avoid cache invalidation we choose the size of local 
buffer to be a multiple of cache line size.

The major component in loop phase is the function processSublevel. We have seen 
that in processSublevel all the vertices in curr are processed i.e. the degree of all their 
neighbors are reduced and if any of the neighbors belong to the current level, it is 
added to next. Parallelizing the function is done by equally distributing the vertices 
in curr to all the threads. However, it might result in race conditions as multiple 
threads access the deg and next arrays. To avoid race conditions, all updates to
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these arrays are performed atomically. However, it is possible that the degree of a 
neighbor u, i.e. deg[u\ is reduced to a value less than the current level value. For 
example, let deg[u] =  level 4-1 and two or more threads execute the line 17 at the 
same time, test positive for the condition and execute line 18. The resultant value of 
deg[u] will be less than level which the correct value of deg[u\ is level. This issue is 
fixed using the lines 19 through 21. Vertices are added to the next array in batches 
similar to the way vertices are added to curr in the scan phase i.e. using atomic 
increments and local buffers.

The individual phases are executed by the threads in parallel without much in
terference (except for the atomic operations). However, after each phase, the threads 
need to synchronize before beginning the next phase operations. Note that the 
loop phase consists of multiple sub-levels(iterations) with a call to the processSub
level function in each sub-level. Therefore loop-phase is also level-synchronous as the 
threads synchronize after each sub-level. To synchronize the threads we use OpenMP 
barrier construct. Synchronizing all the threads is an expensive operation. It blocks 
all the threads until the last thread completes the work assigned. High usage of syn
chronization constructs can degrade the performance significantly. However, we have 
found that for most graphs, the number of levels and sub-levels is limited. There
fore the approach in general results in good speed-up. We observe that there is an 
alternative approach to parallelizing the loop phase which eliminates the need to syn
chronize after each sub-level. The idea of the approach is that in the first sub-level 
when a thread encounters a vertex that needs to be added to the next array, instead 
of adding it to the array it stores in a temporary local array and then process the ver
tex by itself at a later point of time. Consequently, all the vertices that correspond to 
a level are processed in the first sub-level. We have experimented using both the ap
proaches and noticed that, though the second approach reduces the synchronization 
cost, it results in severe load imbalance. Therefore, the level-synchronous approach 
performs better in general compared to the second approach.

2.5 EXPERIMENTAL RESULTS

All the results presented in this section are obtained using a four socket 2.27GHz 
Xeon X7560(Nehalem-EX) with 256 GB shared memory and running 64-bit Ubuntu 
12.04. Each socket consists of 8 cores. Each core has a private 32 KB LI cache 
and 256 KB L2 cache. A 24 MB L3 cache is shared by all the cores in a socket.
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Table 1: Details of graphs and time(in seconds) taken by BZ and ParK Algorithms. 
n, m  and kmax denote the number of vertices and edges (both in millions) and the 
maximum core value of the graphs_________________________________________

graph n m kmax B Z

ParK  

total scan

amazon0601 0.4 2.4 10 0.16 0.09 0.005

web-BerkStan 0.6 6.6 201 0.23 0.22 0.11

web-Google 0.9 4.3 44 0.31 0.19 0.03

wiki-Talk 2.4 4.6 131 0.35 0.45 0.25

as-Skitter 1.7 11.1 111 0.84 0.49 0.16

soc-Pokec 1.6 30.6 47 2.29 0.83 0.07

cit-Patents 3.8 16.5 64 3.42 1.44 0.22

rand-er-lm 1.0 95.0 160 4.36 1.85 0.12

com-Orkut 3.1 117.2 253 18.02 5.48 0.64

soc-LiveJoumall 4.8 69.0 362 5.47 3.04 1.42

rmat-32-256 32.0 256.0 29 147.67 24.16 1.86

rmat-32-512 32.0 512.0 59 288.1 41.17 3.65

rand-32-512 32.0 512.0 23 231.38 51.5 1.47

com-Priendster 65.6 1806.0 289 981.58 158.68 36.07



All the implementation is done using C programming language and compiled using 
gcc compiler with -03 optimization flag. The parallel implementation is done using 
OpenMP.

For our experiments we have used several graphs from the Stanford Large Network 
Collection [40] and also synthetic graphs. The synthetic graphs are generates using 
GTGraph [41], a graph generator tool. The details of the graphs in the dataset are 
as follows:

• amazon0601: Amazon product co-purchasing network. If a product i is fre
quently co-purchased with product j ,  the graph contains and edge from i to

i-

• web-BerkStan: Berkeley Stanford web graph. Vertices represent pages from 
berkeley.edu and stanford.edu and edges represent hyperlinks between them.

• web-Google: Google web graph. Vertices represent web pages and edges repre
sent hyperlinks between the pages.

• wiki-Talk: Wikipedia talk network. Vertices represent users and an edge from 
vertex i to vertex j  indicates that user i edited the page of user j  atleast once.

• as-Skitter: Internet topology graph i.e graph representing the network topology 
of the internet.

• soc-Pokec, com-Orkut, soc-LiveJoumall, com-Friendster: Social networks. Ver
tices represent users and the edge represents friendship between users.

• cit-Patents: Patent citation network. Vertices represent patents and the edges 
represent citations.

• rand-er-lm: Synthetic graph generated using GTGraph. It is generated using 
Erdos-Renyi graph model with probability 10~3

• rmat-32-256, rmat-32-512: Synthetic graphs generated using GTGraph. They 
are generated using the R-MAT model with default parameter values i.e. (a, b, c, d) 
(0.45,0.15,0.15,0.25)

• rand-32-512: Synthetic graph generated using GTGraph. It graph generated 
by adding each edge to a randomly chosen pair of vertices.
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Additional properties of the graph, i.e number of vertices, edges and maximum 
core value, kmax, are given in Table 3. Also given in table are the timing results of 
the BZ algorithm and the sequential ParK algorithm. Note that we have included 
a column that shows the time taken for the scan phase of the ParK algorithm. 
All the timing results shown in table are in seconds. All the graphs are treated as 
undirected graphs and the timing results include the time taken for initialization.lt 
can be clearly seen from the table that the ParK algorithm outperforms the state- 
of-the-art BZ algorithm for all the graphs (except wihi-Talk)) and the performance 
gap widens as the graph size increases. We observe that there are two reasons for 
ParK algorithm not performing better than BZ algorithm for the wiki-Talk graph. 
The first reason is that more than 70 percent of the vertices have degree 1. This is 
beneficial for the BZ algorithm as the adjacency lists of these vertices are accessed 
in sequential order. The second reason is that the time taken for scan phase is 
a significant (more than half) portion of the total time taken. However, since the 
scan phase is embarrassingly parallel, the time taken for scan phase can be made 
negligible with the use of parallelism and the ParK algorithm performs better as it 
is better scalable than the BZ algorithm. To verify the cache performance we used 
a tool called [42]. For soc-LiveJoumall graph, the BZ algorithm resulted in 227 
million(148m read +  79m write) LI data cache misses and 46m(31m read + 15m 
write) L3 cache misses while the sequential ParK resulted in 202m(192m read 4- 
10m write) LI cache misses and 32m(22m read 4- 10m write).

We measure the performance of the ParK algorithm in terms of millions of edges 
per second which is computed using ma/tim e  where m a is the number of edges 
accessed and time is the running time of the algorithm in seconds. Since the ParK 
algorithm processes all the vertices exactly once by accessing all of their neighbors, 
each edge in the graph is accessed exactly twice and so ma =  2m. For the results to 
correctly reflect the performance, we exclude the initialization time from the running 
time. To avoid unexpected behaviour, for all our experiments we pin the threads to 
specific cores such that threads 0 to 7, 8 to 15, 16 to 23, 24 to 31 run on 1st, 2nd, 
3rd and 4th socket respectively.

Figures 10a and 10b plot the speedup and processing rates respectively for three 
graphs: rmat-32-512, rand-32-512 and com-Friendster. We can see that the approach 
scales well for both rmat-32-512 and rand-32-512 graphs. Also, the processing rate
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increases gradually with the increase in number of threads. However, for the com- 
Friendster graph, the approach does not scale considerably and shows only limited 
growth in processing rate. We closely analyze the graphs to understand the behavior 
of the approach. We consider the following factors to analyze a graph: number 
of levels, number of sub-levels and percentage of vertices processed in each level. 
We have seen that the task of processing the vertices in sub-level is distributed 
among multiple threads and the threads are synchronized after each sub-level. If 
number of vertices processed in a level is large, the threads spend most of the time 
in processing the vertices and the synchronization overhead incurred after every sub- 
level is minimum. However, if there are only a few vertices in a level and the number 
of sub-levels is large, the threads spend most of their time at the synchronization 
barrier resulting in huge synchronization overhead.

Figures 2.5, 2.5 and 2.5 plot the number of sub-levels and percentage of vertices 
processed in each level for the graphs rand-32-512, rmat-32-512 and com-Friendster 
respectively. Note that the missing percentage of vertices in the plots belong to level 
0. In rand-32-512 graph, most of the levels have low percentage of vertices. However, 
since these levels have only few sub-levels, the synchronization overhead is minimum 
and so the approach is able to scale well. In case of rmat-32-512 graph, all the levels 
process approximately the same number of vertices (around 1 to 2 percent which is 
320,000 to 640,000) which is large enough to keep the threads busy for longer time 
than the synchronization time. And, there are only few levels with large number 
of sub-levels. Therefore, the approach achieves good speed-up for the graph. In 
com-Friendster graph, however, the majority of the vertices are processed in the 
lower levels (level less than 50). Interestingly, the number of sub-levels is also low 
for these levels. All the remaining levels (beyond 50), process very few vertices and 
large number of sub-levels. This incurs in huge synchronization overhead justifying 
the speedup and processing rate shown in Figure 10.

2.6 SUMMARY

In this chapter, we have discussed the access transformation technique to improve 
locality of reference. The technique helps in reducing the random memory access 
nature of an algorithm. The technique is mainly applicable to an iterative approach 
with limited number of iterations. The main idea of the technique is to use scan- 
and-extract operation to extract the required data the directs the order in which
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the vertices/edges are processed. We demonstrate the effectiveness of the technique 
using fc-core decomposition problem.

We have defined the k-core decomposition problem and discussed the state-of- 
the-art algorithm for k-core decomposition. We have analysed the access pattern of 
the algorithm and pointed out the random nature of the algorithm and also showed 
that the algorithm is not amicable to parallelization due to synchronization issues. 
We then proposed a new new algorithm, called ParK, that adapts the access trans
formation technique. The algorithm eliminates the use of some data structures that 
result in random access and improves the opportunity for sequential access.

We then discussed the parallelization of the ParK algorithm. The scan phase of 
the algorithm is embarrassingly parallel while the loop phase requires synchronizing 
the threads after each sub-level. The parallelization methodology discussed in this 
chapter can be improved further by reducing the synchronization overhead caused due 
to large number of sub-levels. Since ParK algorithm is a level-synchronous approach 
similar to the BFS algorithm of Agarwal et al., the parallelization techniques used 
in [43] can be applied to ParK. For example, as the inter-socket atomic operations 
cannot scale efficiently across sockets, they are avoided using a channel mechanism. 
The vertices can be divided among the sockets and the threads process only the 
vertices that are assigned to the socket in which the thread is running. Any vertex 
that is to be processed and is assigned to other socket is placed in a socket queue of 
the corresponding socket. This confines the atomic operations to the sockets. There 
are also other techniques [44] proposed to improve the level-synchronous approaches 
which can be applied to the ParK algorithm to reduce the synchronization cost.
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function scan-and~extract(deg, level) 
curr =  0 
idx =  0
for i =  0 to n -  1 do in parallel 

if deg[i] = level then
a =  atomicIncrement(idx, 1) 
curr [a] =  i 

end if 
end for 
return curr 

end function
function processSublevel(curr, deg, level) 

idx = 0 
next =  0
for each vertex v in curr do in parallel 

for each vertex u adjacent to v do 
if deg[u] > level then

a =  atomicDecrement(deg[u], 1) 
if a < level then

atomicIncrement(deg[u}, 1) 
end if
if a — 1 =  level then

b =  atomicInarement{idx, 1) 
next [6] =  u 

end if 
end if 

end for 
end for 
return next 

end function

Figure 9: Parallel version of ParK algorithm
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CHAPTER 3 

TASK-SET REDUCTION

In the previous chapter, we have seen the impact of memory access pattern on 
memory locality. We have discussed a technique called access transformation which 
reduces the random nature of the memory access pattern to improve locality. In 
this chapter, we propose another technique, called task-set reduction, to improve 
locality. While the access transformation technique improves the spatial locality by 
focusing on the memory access pattern, the task-set reduction technique improves 
the temporal locality by focusing on the size of the data.

We define task-set as the collection of data that is repeatedly accessed to process 
a task. We argue that the size of task-set plays a critical role in memory locality and 
hence in the overall performance of an algorithm. We have seen that the memory 
access pattern in graph algorithms is generally very random in nature. Therefore, for 
most graph algorithms the task-set is repeatedly accessed and in random order. If 
the size of task-set is larger compared to the size of last level cache, then the number 

of cache misses can be large and can significantly degrade the performance. We ran a 
simple benchmark to verify the impact of task-set size on the memory performance. 
The results are reported in Figure 14. As it can be seen, as the size of the task-set 
increases, the memory latency increases. Therefore it is important to keep the size 
of task-set as minimal as possible.

Reducing the task-set size can be achieved in different ways. For example, for the 
k-core decomposition problem explained in the previous chapter, the task-set size of 
the BZ algorithm is 3n where n, is number of vertices(ignoring the size of bin array). 
For a graph with 1 million vertices, the task-set size is around 12MB (3million * 
4 bytes for integer). If the cache size is not large enough to hold the task-set, it 
can severely hurt the performance. We have proposed a new algorithm for k-core 
decomposition. Though the new algorithm improves performance by reducing the 
random nature of the memory access pattern, it is to be noted that the algorithm 
also reduces the task-set size from 3n to n(as only deg array is used). Therefore, the 
scan-and-extract operation used in the algorithm also resulted in reduced task-set 
size.
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Another method that can be used for reducing the size of task-set is compression. 
Compression refers to storing the data using minimal amount of memory. Graphs 
algorithms use different task related data, like the degree of vertices, distance of 
vertices from a source vertex. The data is stored by the program in some data 
structure like array. By carefully examining the nature of the data and possible 
values of the data, it is often possible to reduce the size of the data structure that 
stores the data. For example, many graph applications repeatedly access the degree 
of vertices which is generally stored in an integer array. An integer uses 4 bytes of 
memory and store any value from 0 to 232 (unsigned integers). However, for most 
graphs the maximum degree is very less and do not require 4 bytes to store the 
degree. Therefore, the degree array can be compressed, 2 to 4 times for most graphs, 
based on the number of bits required to store the maximum degree.

Another method that is commonly used for regular applications is called blocking 
[17]. In this technique, the memory accesses are organized in such a way that a small 
subset of data is loaded into the cache and is used/reused. For graph algorithms, 
the blocking technique can be applied by diving a task into smaller sub-tasks such 
that each sub-task works on a smaller task-set. We apply this method of task-set
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reduction to the triangle listing problem explained in Chapter 4.
While in some cases reduction of task-set is easy to achieve, it generally requires 

careful examination of the algorithm and the data required to process a task. In this 
chapter, we present a new algorithm for maximal clique enumeration problem which 
uses the task-set reduction technique to improve the memory locality. We first define 
the problem and present some popular algorithms for maximal clique enumeration. 
We then analyze the state-of-the-art algorithm (Eppstein et al.’s algorithm) [32] [45] 
in terms of the size of the task-set. We propose a new algorithm for maximal clique 
enumeration, called pbitMCE, that significantly reduces the task-set size by using 
bit representation of data. The experimental results comparing the new algorithm 
with the state-of-the-art algorithm are presented. We show that the new algorithm 
outperforms the other algorithms for most graphs. We also present results that show 
that the algorithm scales well, up to 29 times using 32 cores on multicore and up to 
106 times using 128 processes on distributed memory architecture.

3.1 MAXIMAL CLIQUE ENUMERATION

Clique is a fundamental concept in graph theory. In a graph G(V, E), a clique is 
a complete subgraph, i.e., a subgraph in which every pair of vertices is connected by 
an edge. A maximal clique is a clique that is not contained in any other clique. A 
maximum clique on the other hand is the largest clique in the graph. In Figure 15 , 
{1,2,3}, {1,3,4} and {3,4,5,6} are maximal cliques and {3,4,5, 6} is a maximum 
clique. {4,5,6} is a clique but not maximal clique as it is contained in {3,4, 5,6}.

Clique finding plays a vital role in many applications. It plays a major role in 
analyzing social networks. Cliques in social networks represent a group of people 
who are closely tied together that share common interests. Community detection is 
a common task in social network analysis and clique finding plays a major role in 
community detection [46] [47]. Clique finding is also used in other analysis application 
like social hierarchy detection using email communications [48], in the recovery of 
depth from stereoscopic image data [49], in data mining for discovery of association 
rules [50].

Another area that cliques are widely used is bioinformatics. It is common to 
represent the biological data like protein structure in the form of a graph. Finding 
cliques is a major part in detecting protein-protein interaction complex [51], motif 
discovery [52], detect structural motifs from protein similarities [53] and aligning 3D
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Figure 15: A simple graph

Figure 16: A Moon-Moser graph

structures [54] and many other applications [55] [56] [57].
The problem of finding all the maximal cliques in a graph is referred to as maximal 

clique enumeration(MCE). MCE is equivalent to finding all maximal independent sets 
in a complimentary graph. An algorithm which finds all the maximal cliques in a 
graph takes exponential time in worst-case as there can be exponential number of 
cliques in a graph. It has been shown that there can be 3"/3 maximal cliques in the 
worst case [58], where n is the number of vertices. Figure 16 shows such a graph. 
These kind of graphs are referred to as Moon-Moser graphs. However, in reality, 
these kind of graphs are highly unlikely to occur.
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3.2 RELATED WORK

Clique finding is an extensively studied problem. There are a large number of 
approaches available in the literature. The first attempt to finding cliques was made 
in 1957 [59]. It was applied for analysis of sociometric data. In this section, a brief 
overview of some of the approaches for maximal clique enumeration is presented. 
First we briefly describe some of the sequential approaches. There are relatively very 
few parallel algorithms available in literature. We describe the parallel algorithms 
later in the section. Then we describe in detail three popular sequential algorithms 
for MCE: the BK algorithm [60], the Tomita et al.’s algorithm [61] and the Eppstein 
et al.’s algorithm [32].

3.2.1 SEQUENTIAL ALGORITHMS

The initial algorithms proposed for MCE were referred to as point removal meth
ods. The cliques of a graph G are generated from the cliques in the graph G \  {v} 
which is obtained by removing v from G. Approaches that are based on point re
moval method are given in [62] [63] [64]. These approaches initially generate a set of 
cliques, C, that may contain duplicate or non-maximal cliques. The non-maximal 
and duplicate cliques are then filtered out in some way to extract the final set of 
maximal cliques. For the purpose of filtering, the set C must be stored in memory 
and in general, the size of C  is much greater in size that these approaches quickly fall 
into memory problems. These approaches therefore could not be applied to larger 
graphs.

The real breakthrough in MCE algorithms came in 1973 when two different ap
proaches were proposed, one by Bron and Kerbosch [60] and the other by Akkoyunlu 
[65]. Unlike the previous approaches, these approaches do not generate non-maximal 
and duplicate cliques. They use different techniques to avoid generating those cliques. 
For example, the BK algorithm by Bron and Kerbosch uses a special data structure 
that stores the already explored paths so that the paths which might result in dupli
cate or non-maximal cliques are not revisited.

The algorithm by Akkoyunlu is a depth first search algorithm. It recursively 
partitions the graph such that each maximal clique can be generated by one of the 
partitions. Similar to Akkoyunlu’s algorithm, BK algorithm is also a depth first 
search algorithm. The BK algorithm maintains three lists throughout the procedure:
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the compsub list, the not list and the cand list. At each step, the compsub list 
consists of the vertices that form a clique and possibly a maximal clique. The cand 
list contains the vertices that are connected to all the vertices in compsub list and 
are candidates to be added to the current clique. The not list also contains the 
vertices that are connected to all the vertices in the compsub list but adding these 
vertices to the current clique results in duplicate cliques. The BK algorithm proceeds 
by selecting a vertex from the cand list and updating the three lists based on the 
currently selected vertex. If the cand and not lists are both empty, then the vertices 
in the compsub list constitute a maximal clique. The BK algorithm is described in 
much detail later in the Section 3.2.3.

There were two variations of the BK algorithm proposed in [60] : the basic version 
and the pivoting version. In the pivoting version, at each level, a vertex called pivot 
is selected from the candidate list that meets some criteria. The number of recursive 
calls depend on the pivot vertex selected. The details of the pivoting version of the 
BK algorithm are presented later in section. Though both Akkoyunlu’s algorithm 
and BK algorithm perform equally well, the BK algorithm has been more widely 
used due to its simplicity. Many variations and extension to the BK algorithm have 
been proposed. These approaches vary based on their pivot selection rule. Johnston 
et al. [66] proposed a number of variations of the BK algorithm. It was shown that 
the original BK algorithm performed well against the other variations. Another set 
of variations was presented by Koch et al. [67] and Tomita et al. [61]. Tomita et 
al. also provided the theoretical time complexity for their approach and showed that 
their approach is worst case optimal. The time complexity is shown to be 0(3n 3̂). 
Later Karande et al. [68] investigated the three approaches: the BK algorithm, the 
Koch et al.’s variation and Tomita et al.’s variation. They tried to bridge the gap 
between the three approaches and showed that Tomita et al.’s approach is a variation 
of the BK algorithm based on an unexplored observation made by Koch et al. We 
present the details of the Tomita et al.’s algorithm later in the Section 3.2.4.

Another set of algorithms have been proposed and are referred to in the litera
ture as reverse search algorithms. The first reverse search algorithm was proposed by 
Tsukiyama et al. [69]. The time complexity for this algorithm is O(nmp) where n 
is the number of vertices, m is the number of edges and p. is the number of maximal 
cliques. The results of Tsukiyama et al. are further generalized by Lawler et al. 
[70] and an improvement for the algorithm is presented by Chiba et al. [71] with
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computational complexity 0(a(G)m[i) where a(G) is the arboricity of the graph. 
Later, Makino and Uno [72] proposed new algorithms based on Tsukiyama et al’s 
algorithm. One of their variations has a computational complexity 0 (A 4̂ i) where A 
is the maximal degree of G. They presented a number of experimental results and 
showed that their algorithm is considerably faster than the Tsukiyama et al’s algo
rithm. However, the experimental results presented in Tomita et al. that compare 
Tomita et al.’s approach with that of Chiba et al’s and Makino and Uno’s algorithm 
show that in practice, Tomita et al.’s algorithm performs well compared to the other 

approaches.
The main disadvantage of the Tomita et al’s approach is that both the theo

retical computational complexity and the experimental running time were based on 
adjacency matrix representation of the input graph. Adjacency matrix has an advan
tage of taking a constant time for checking the adjacency of two vertices. However, 
for large sparse graphs, which most real world graphs are, adjacency matrix is not 
practical due to memory limitations.

Recently, another notable contribution to the MCE problem was made by Epp- 
stein et al. [32][45]. Eppstein et al.’s approach was based on the BK algorithm and 
Tomita et al.’s pivot selection rule. Eppstein et al. showed that the ordering of the 
vertices plays a vital role in the overall performance of an algorithm. They use an 
ordering based on the degeneracy of the graph. Degeneracy is the smallest number 
d such that every subgraph of the graph has atleast one vertex with degree less than 
or equal to d. The degeneracy ordering of vertices is the ordering in which every 
vertex has at most d neighbors that have order greater than itself. Eppstein et al.’s 
approach is based on Tomita et al.’s approach but uses adjacency list representation 
of the input graph, thus making it applicable to larger graphs. By using the degen
eracy ordering and a special data structure to store only the current working set, 
Eppstein et al.’s approach achieves a computation complexity of 0(dn3d/3) where d 
is the degeneracy and n is the number of vertices of the input graph. Eppstein et 
al. also presented considerable amount of experimental results and showed that their 
approach is faster than the Tomita et al.’s algorithm for most graphs, sometimes 
faster by a large factor. Eppstein et al.’s approach is described in detail in Section 
3.2.5.

3.2.2 PARALLEL ALGORITHMS
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While there have been many sequential approaches present in the literature, there 
are only a handful of parallel approaches available for MCE. In addition to solving 
the problem of MCE, the parallel algorithms should also consider various factors like 
load balancing and scalability. The parallel algorithms should be able to effectively 
use the underlying hardware to efficiently enumerate the maximal cliques. In this 
section, we present different parallel algorithms and how they address the challenges 
involved in parallelizing.

The first parallel approach was proposed in [73]. It is referred to as pCliques. 
pCliques is based on an the approach of Kose et al. [74]. It generates the cliques in 
increasing order of clique size. The cliques of size k+ 1 are computed using the cliques 
of size k. So the cliques of size k must be present in memory and scanned multiple 
times to generate larger size cliques. This makes the approach memory intensive and 
impractical for large scale graphs. In [73] the authors also presented experimental 
results for pCliques. pCliques was only able to achieve a speedup of 91 using 256 
processors.

Peamc [75] is another parallel algorithm proposed for MCE. It uses triangle struc
ture as the basis. At each level it generates a set of vertices that form triangles with 
the current vertex and its neighbors. It proceeds recursively by selecting a vertex from 
the set of vertices generated from the previous level. By selecting the vertices in the 
increasing order peamc avoids the chance of generating duplicate cliques. However, 
it might generate non-maximal cliques. It uses an additional filtering step to check 
if the clique is maximal, peamc uses a simple strategy for parallelizing. The vertices 
are distributed to the available computing nodes and the nodes independently work 
on the vertices assigned. Most real world graphs follow power-law degree distribu
tion. peamc does not work well for these graphs as the load is not balanced. Some 
computing nodes terminate earlier while other nodes are still processing. The exper
imental results presented in [75] show that peamc is able to achieve a speedup of 23 
with 30 processes.

[76] presents a state-of-the- art parallel MCE algorithm. We refer to the algorithm 
as PSMCE. PSMCE parallelizes the original BK algorithm. It uses different strategies 
to efficiently parallelize the BK algorithm. PSMCE uses a special data structure 
called candidate path structure which is a basic unit of work that can be shared 
between processes. We have seen that the BK algorithm uses three lists: the cand 
list, the not list and the compsub list. The candidate path structure essentially
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1: p ro ce d u re  BK(P, X , R)
2: i f  P  is empty th e n
3: i f  X  is empty th e n
4: R  is a maximal clique
5: en d  i f
6: e lse
7: for each vertex v in P  d o
8: ctd\BK{PnN(v) ,  X n N { v ) ,  R u { v } )
9: P  =  P \ v

10: X  = X U v
11: en d  for
12: en d  if
13: en d  p ro ced u re

Figure 17: The BK algorithm

consists of cand list, not list, the current vertex and the level of the search tree node.
PSMCE uses a simple strategy for parallelization. Like peamc, it equally dis

tributes all the vertices to the available processing units. However, the major con
tribution of PSMCE is its more refined level of load balancing. It achieves such 
fine level of load balancing by using the candidate path data structure and a stack 
structure. At each level, a candidate path(cp) structure is removed from the stack 
structure and using the cp it generates the candidate path structures for the next 
level and pushes into the stack structure. If a processing unit completes the work 
assigned to it, instead of terminating, it requests work from a randomly selected pro
cess or task. The process that receives request can share its work by removing some 
of the candidate path structures from its stack structure and sending them to the 
requesting process. In [76] PSMCE, the authors presented the experimental results 
of PSMCE and showed that PSMCE scales linearly up to 2048 processes.

dMaximalCliques [77] is a distributed algorithm for maximal clique enumeration. 
It is based on Tsukiyama’s algorithm. Similar to peamc, this algorithm does not 
include any strategies for dynamic load balancing and hence was not able to scale 
well.

3.2.3 THE BK ALGORITHM

The BK algorithm (short for Bron-Kerbosch algorithm) is the most commonly
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used algorithm for clique finding. It is a recursive backtracking algorithm. It uses 
three lists throughout the enumeration process: cand list, not list and compsub list, 
commonly denoted as P, X  and R  respectively ( their sizes are denoted by p, x  and 
r respectively). The set of vertices in R  form a clique, but it might not be maximal. 
The idea is to extend R  until it forms a maximal clique. P  contains the set of vertices 
that are adjacent to all the vertices in R  and are potential candidates to be added 
to the maximal clique. X  list also contains the vertices that are adjacent to all the 
vertices in R  list but adding these vertices to the clique results in duplicate or non- 
maximal cliques. The BK algorithm is presented in Figure 17. N(v)  in the algorithm 
represents the adjacency list of a vertex v (note that v ^ N(v)).  In each call to BK 
procedure, it iterates p times once for each vertex in P. In each iteration, a vertex 
from P  is added to R, new sets of vertices of P  and X  are computed and input to 
a subsequent recursive call. The BK algorithm can be viewed as exploring a search 
tree. Figure 18b shows the search tree corresponding to the graph in Figure 18a. 
Each node in the tree represents a call to BK procedure. The algorithm proceeds 
by exploring the search tree in a depth first style, backtracking when P  becomes 
empty. Each node in the search tree has three rows showing the compsub list(P), 
cand list(P) and not list(X) that are input to the recursive call. The leaf nodes with 
empty cand and not list correspond to maximal cliques.

3.2.4 THE TOMITA ET AL.’S ALGORITHM

The algorithm described in previous section is the basic version of the BK algo
rithm. Another variation of the BK algorithm exists that involves a technique called 
pivoting. We have seen in the previous section that the BK algorithm makes P  re
cursive calls. Pivoting improves the basic BK algorithm by reducing the number of 
recursive calls. This is done by selecting a vertex u called pivot , and all the subse
quent maximal cliques must contain a non-neighbor of u. This reduces the number 
of recursive calls by |P f lN(u)\. A number of variations for selecting the pivot vertex 
were proposed [61] [67]. The variation by Tomita et al. [61] is shown to be best in 
theory and practice. Tomita et al.’s pivot selection method is to select a vertex u 
from PU  X  that maximizes |P f l A(u)|. Obviously, this results in minimum number 
of recursive calls among all possible pivots. We denote Tomita et al.’s algorithm by 
TTT in the rest of the chapter. The TTT algorithm is shown in Figure 19 and the 
TTT search tree for the example graph in Figure 18a is shown in 20. By comparing
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48

1: procedure TTT{P, X , R)
2: if P is empty then
3: if X is empty then
4: E is a maximal clique
5: end if
6: else
7: choose a pivot vertex u in P  U X  that maximizes |P fl N(u)\
8: for each vertex v in P \  N(u) do
9: call TTT(P fl N(v), X  fl N(v), R  U N(v))

10: P  = P \ v
11: X  = X U v
12: end for
13: end if
14: end procedure

Figure 19: The Tomita et al.’s algorithm

Figures 18b and 20 it can be clearly seen that the TTT algorithm results in reduced 
number of child nodes compared to the BK algorithm, i.e. TTT algorithm reduces 
the number of recursive calls.

The analysis and the implementation of the TTT algorithm presented in [61] 

is based on adjacency matrix representation of the input graph. The two major 
components of the algorithm are pivot selection and set intersections(lines 7 and 9 
respectively in Figure 19). To select the pivot vertex, we need to perform P  fl N(u) 
for each u E P  U X . By using adjacency matrix representation, the pivot selection 
can be done in 0{p{p+x)) wherep =  |P | and x = \X\. Similarly, the set intersections 
in line 9 can be performed in 0(p  + x). The worst case time complexity for TTT is 
shown to be 0(3"/3). However, most real world graphs are large sparse graphs and 
the adjacency matrix representation is impractical for such graphs.

3.2.5 THE EPPSTEIN ET AL.’S ALGORITHM

To overcome the drawback of the TTT algorithm, Eppstein et al. proposed a 
new algorithm. In the rest of the chapter, we refer to the new algorithm as ELS 
algorithm. The ELS algorithm is based on TTT algorithm but uses adjacency list 
representation of the graph. The ELS algorithm is given in Figure 21. Unlike the 
BK and TTT algorithms, ELS algorithm explores multiple search trees, one search 
tree corresponding to each vertex in the graph. This makes it a more suitable choice
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Figure 20: TTT search tree for the graph in Figure 18a

for being used in a parallel approach. Once the root node for the search tree is 
obtained, the rest of the search tree exploration is similar to the TTT algorithm. 
ELS uses an initial ordering of vertices based on degeneracy. Degeneracy of a graph 
G is the smallest number d such that every subgraph of G has atleast one vertex 
with degree at most d. Degeneracy ordering is the ordering of vertices such that 
every vertex has at most d neighbors that come later in the ordering. Degeneracy 
ordering of vertices in a graph can be computed in linear time by using the k-core 
decomposition algorithm explained in Chapter 2. The order in which the vertices 
are deleted from the graph in the k-core decomposition algorithm is the degeneracy 
ordering. The degeneracy ordering for the graph in Figure 18a is {2,7,1,3,4,5,6}.

For each vertex v in the graph, an initial list of vertices in P, X  and R  are com
puted based on the degeneracy ordering of vertices and input to the TTT procedure. 
The set P  is computed by adding all the neighbors of v that come later in the or
dering. Similarly, the set X  is computed by adding all the neighbors of v that come
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1: p ro ce d u re  ELS{V, E)
2: for each vertex Vi in the degeneracy ordering V o , V \ , vn-i d o
3: P = N ( v i ) n { v i+i , . . . , vn-x}
4: X  = N{Vi)f){v0,...,Vi-i}
5: call TTT(P, X, {Vi})
6: en d  for
7: en d  p ro ced u re

Figure 21: The Eppstein et al.’s algorithm

before v  in the ordering. Degeneracy ordering makes sure that there are no more 
than d neighbors that come later in the ordering. Therefore, the size of P  is limited 
to d in the outermost call to TTT (line 5 in Figure 21). This reduces the number of 
recursive calls within the outermost TTT call. The ELS search trees for the graph 
in Figure 18a can be seen in Figure 22. The figure shows 7 search trees, each tree 
corresponding to a vertex.

The ELS algorithm uses adjacency list representation for the input graph. After 
computing the initial R, P  and X  lists, the ELS algorithm makes a call to TTT 
procedure from which point the enumeration is done using TTT algorithm. We have 
seen that TTT procedure consists of two major components: pivot selection and set 
intersections. Since TTT algorithm uses adjacency matrix representation, the two 
components take 0(p(p  +  x)) time. This time complexity is no more valid when 
adjacency list representation is used. In case of adjacency matrix representation the 
operation P  n  N(u) for some vertex u can be done in O(p) time since it only takes 
constant time to check if a vertex belongs to N(u). In the case of adjacency list 
representation the same operation takes 0(p  • |iV(u)|) time, if both P  and N(u) are 
unsorted, takes 0(p-log(\N(u)\)) time, if N(u) is sorted, takes 0(p+  |iV(u)|) time, if 
both P  and N (u ) are sorted. For pivot selection, p +  x such intersection operations 
need to be performed.

To make pivot selection fast, the ELS approach employs a subgraph representa
tion, Hptx (we refer to it as hypergraph in this chapter. Note that, this hypergraph 
is not the same as standard hypergraph defined in the literature). The hypergraph 
contains all the vertices in P  U X  at the current level, and edges connecting a vertex 
in P  to a vertex in P  U X . Using the hypergraph representation, ELS computes 
the pivot vertex in 0 ( |P |( |P | +  |X |) and the set intersections in 0 ( |P |2(|P | +  |X|).
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Figure 22: ELS search trees for the graph in Figure 18a. The degeneracy ordering 
for the graph is {2,7,1,3,4,5,6}. Each search tree in the figure corresponds to a 
vertex in the graph.

The running time of ELS is shown to be 0(dn3d/’3), where d is the degeneracy of 
the graph, which is worst case optimal for large sparse graphs. More details of the 
hypergraph are given in the next section.

A similar approach that explores multiple search trees is used in PSMCE [76] 
with a difference in the ordering and the underlying algorithm used. PSMCE uses 
the initial ordering of the vertices as is, that is the ordering based on the vertex 
numbers while ELS uses degeneracy ordering. While ELS uses the Tomita et al.’s 
pivoting rule, i.e selects a pivot vertex u from P  U X  that maximizes P  fl  N(u), 
PSMCE selects a pivot vertex u from P  that maximizes P  D N(u).

Task-set size of ELS algorithm

We have seen that the ELS algorithm has separate tasks defined for each vertex. 
Compared to most other graph algorithms, which generally have very large task-sets,
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the ELS algorithm has relatively smaller task-set. The initial task-set of the ELS 
algorithm consists of the hypergraph. As the enumeration proceeds, intermediate 
data is added to the task-set. Notice that, for each recursive call a new cand and 
not list is to be generated. The maximum size of a hypergraph is Md  where M  
is the maximum degree and d is the degeneracy. However, in reality, it is much 
smaller than that. The size of intermediate data depends on the granularity of the 
task. If the search tree corresponding to a vertex is large with high depth and large 
number of branches then the intermediate data can be significant. In general, from 
our experiments we have noticed that in most cases the task-set is not small enough 
to fit in the faster caches(Ll and L2). The task-set may fit in the slower cache(L3) 
but since L3 is a shared cache, large task-sets can result in cache contention and can 
have significant impact on performance.

3.3 PBITM CE  APPROACH

We propose an algorithm, called pbitMCE, which reduces the size of task-set by 
using bit representation. pbitMCE employs a novel data structure called partial bit 
adjacency matrix(pfcam) which stores the initial hypergraph in a compressed form. 
Also, most of the intermediate data is stored in bit format, reducing the overall size 
of the task-set. pbitMCE approach not only reduces the memory requirement but 
also facilitates the use of bit-parallelism. Due to the intrinsic parallelism of the bit 
operations, the number of operations can be greatly reduced, by a factor of up to u , 
the computer word size.

3.3.1 DEGENERACY ORDERING

Like in ELS algorithm, before the enumeration process, the vertices are reordered 
by degeneracy. As we have seen, degeneracy of a graph G is the smallest number 
d such that every subgraph of G has atleast one vertex with degree at most d. De
generacy ordering is the ordering of vertices such that every vertex has at most d 
neighbors that come later in the ordering. Degeneracy ordering of vertices in a graph 
can be computed using the k-core decomposition algorithm given in Chapter 2. In 
pbitMCE, the advantage of using degeneracy ordering is two fold. The first is that, 
like in ELS, it reduces the number of recursive calls improving the overall perfor
mance. The second advantage comes in the context of parallelization. Although not 
explicitly, degeneracy ordering significantly contributes to load balancing. The role
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of degeneracy ordering on load balancing is explained in Section 3.5.1.

3.3.2 PRE-PROCESSING

As we have seen in the previous section, the degeneracy ordering places the ver
tices such that each vertex has no more than d neighbors that come later in the 
ordering. In the rest of the section, we refer to the neighbors of a vertex v that come 
before v in the degeneracy ordering as pre-neighbors of v and the neighbors of v that 
come after v as post-neighbors of v. During enumeration, most of the time only the 
post-neighbors of vertices are used. The pre-neighbors of a vertex v are accessed 
only once during the enumeration process, i.e. to compute the root node of search 
tree of v. So to avoid unnecessary processing of the pre-neighbors, we partition the 
adjacency list into two separate lists: pre-adjacency list and post-adjacency list. We 
denote these lists as preN  and postN  respectively. By the property of degeneracy, 
the maximum size of post-adjacency list of any vertex in the graph is d, the degen
eracy of the graph. The initial adjacency list can be discarded at this point as it is 
no longer required.

3.3.3 PARTIAL BIT ADJACENCY MATRIX

As in ELS, pbitMCE also uses Tomita et al.’s TTT algorithm as the basis. We 
have seen that the TTT uses adjacency matrix representation of the graph. The 
best asset of adjacency matrix is its constant lookup time. However, for large sparse 
graphs, which most real world graphs are, the adjacency matrix representation is not 
feasible because of the memory limitations. We propose a method by which we can 
take advantage of the constant lookup time of adjacency matrix representation and 
yet meeting the memory constraints.

Notice that to process the TTT call in line 5 of procedure ELS(Figure 21), the 
only data that is required is the list of vertices in P  and X  and their adjacency 
lists i.e a subgraph, denoted by S(Vs,E s), with Va = P U X  and Es = {(u,v)|u € 
P, v G {P  U A } } .  Note that we did not include the edges connecting a vertex in 
X  with another vertex in X  since such edges are never used in the TTT algorithm. 
This subgraph is represented using a partial bit adjacency matrix (pbarn). pbam 
is essentially a set of bit vectors of size P, each corresponding to a vertex in the 
subgraph. Each bit in a bit vector corresponds to a vertex in P. If a vertex u in 
P U X  is connected to a vertex v in P, then the bit corresponding to v is set to 1 in the
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bit vector corresponding to u. Before each initial call to TTT in line 5 in procedure 
ELS, we construct a pbam and pass it to the TTT procedure. The construction of 
pbam is described in the following section.

Construction of Partial Bit Adjacency Matrix

To construct pbam we use a technique called renumbering. Renumbering maps 

the vertices in P  U X  which are originally numbered in the range [ 0 . . .  | Vj — 1] to a 

new number in the range [0. .  . p +  x  — 1] where p  =  |P | and x — |X |. Each vertex in 

P  is assigned a unique number in the range [0 . . .  p — 1] and each vertex in the set X  
is assigned a unique number in the range \p.. .p + x — 1]. Let r)(v) denote the new  

number assigned to a vertex v. The key value pairs (v,r)(v)) are stored in a hash 

table. We denote a bit vector corresponding to  a vertex v by Bv(vy If a vertex u in 

P  U X  is connected to a vertex v in P  then a bit is set at index t](v) in bit vector 

Bv(u). The bits are set in pbam by iterating through the post-adjacency lists of the 

vertices in P  U X . The structure is called partial bit adjacency matrix because like 

adjacency matrix it only takes a constant lookup time but it only has a portion of 

the adjacency matrix.

The procedure for constructing pbam(Constructpbam) is given in Figure 23. The 
function takes P  and X  as input and outputs pbam which is a set of bit vectors. 
The operations in lines 25 and 27 requires querying the hash table. If a vertex is 
not present in the hash table then the query returns —1. Assuming constant time 
to retrieve a value from hash table, pbam can be constructed in 0((p + x)d) time 
where d is the degeneracy of the graph. Note that d is the maximum possible size of 
post-adjacency list of any vertex in the graph. The maximum size of pbam is Md/ui 
where M  is the maximum degree of the graph and lj is the computer word size.

Figure 24a shows an example graph with vertices arranged in degeneracy order. 
The initial subgraph of 2 is highlighted in the figure. The post-neighbors and pre
neighbors of 2 are shown in yellow and green respectively and the edges are shown in 
red. Figure 24c shows the vertices and the new numbers assigned to the vertices i.e. 
(v, r)(v)) for all vertices in the subgraph. Figure 24d shows the pbam representation 
of the subgraph. Also shown in graph is the hypergraph representation used in ELS 
algorithm(Figure 24b). To give an idea of the memory requirement, consider the 
cit-Patents graph from the Stanford large network collection(details in Section 2.5). 
It has 3.7 million vertices and 16.5 million vertices. It has degeneracy 64, so the
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maximum size of a bit vector is 8 bytes. The maximum degree for the graph is 793. 
Therefore, the maximum size required for pbam is 793 * 8 =  6344 bytes which is small 
enough to fit in Ll cache(which is 8KB for the machine used in out experiments).

3.3.4 ENUMERATION

Figure 23 shows the pbitMCE algorithm. For each vertex vt in the graph, PVi 
and X Vi in lines 3 and 9 represent the post-adjacency list and pre-adjacency list of 
Vi respectively. During the construction of pbam all the vertices in PVi and X Vi are 
assigned new numbers and these new numbers are used in the rest of the enumeration 
process instead of the original vertex numbers. Once the pbam is constructed all 
the processing is done using the bit vectors. The cand list P  in each iteration is 
represented using a bit vector(by setting appropriate bits to 1). Notice the input 
parameters passed to the TTT procedure in line 9. In addition to the P, X  and R  
lists, we also pass pbam and bit vector representation of P. The function getBitVector 
returns the bit vector representation of the input. In the following sections, we explain 
how pbam can be used for efficiently performing the two major components in TTT 
algorithm: pivot selection and set intersections.

Pivot selection using pbam

Pivot selection is a crucial part of the algorithm and takes a significant portion of 
the total enumeration time. We have seen that in TTT algorithm a vertex u € P J X  
that maximizes |Pn./V(u)| is selected as pivot vertex. This operation requires a total 
of |P | + |A| intersection operations. Therefore efficiently performing an intersec
tion operation is crucial to the overall performance of the approach. In pbitMCE 
approach, we pass the bit vector representation of P, Bp, as input parameter to 
the T T T  procedure along with pbam. The intersection operation P  fl N(u) can be 
easily performed by doing logical AND of bit vectors Bp and Bu. \P D N(u)\ can 
be obtained by counting the number of set bits in the resultant bit vector. Since we 
need to perform |P | +  |X | such intersection operations, the pivot selection can be 
performed in 0 (( |P | +  |A|)p„) time where pv is the size of a bit vector(which is equal 
to the size of post-adjacency list of vertex v, the vertex whose search tree is being 
explored.
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1: p ro ce d u re  pbitMCE(V, E)
2: for each vertex Vi in the degeneracy ordering v0, v i , d o
3: PVi =  N(vi)  n  {ui+1, v „ _ i }
4: X Vi = Ar(uj)n{r;o,-,Vi-i}
5: pbamVi =  Constructpbam(PVi,X Vi)
6: Tf(PVi) =  { 0 ,1 ,. . . , |PV(| — 1}
7: V(Nv,) = {\PVi\ , . . . , \P Vi\ + \XVi\ - l \ }
8: Bp = getBitVector(r](PVi))
9: call TTT(r?(P„J, p(XVi), {v*}, pbamVi, BP)

10: en d  for
11: en d  p ro ced u re
12: fu n c tio n  Constructpbam(P, X )
13: counter=0
14: for each vertex v  in P  d o
15: T]{v) = counter
16: increment counter by 1
17; add (v,r](v)) to hash table
18: en d  for
19: for each vertex v in X  d o
20: r](v) = counter
21: increment counter by 1
22: add (v,T)(v)) to hash table
23: en d  for
24: for each vertex v in P  U X  d o
25: x = T)(v) t> obtained using hash table
26: for each vertex u in postN(v) d o
27: y =  rj(u) > obtained using hash table
28: if y >=  0 and y < |P| then
29: set bit at index y in Bx
30: if x > =  0 and x < |P| then
31: set bit at index x  in By
32: en d  i f
33: en d  if
34: en d  for
35: en d  for
36: return B = {B0, B u - - , P |p u x |-i}
37: en d  fu n ctio n

Figure 23: The pbitMCE algorithm
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Set intersection using pbam

The set intersections in line 9 of TTT procedure in Figure 19 are also major 
components of the TTT algorithm. The operation P  U N(v) is straight forward to 
perform using pbam. Each vertex u € P  can be checked if it is present in N(v) in 
constant time. If nth bit in bit vector of v i.e. Bv is set to 1 then it is present in 
N(v). However, the operation X  UN(v) is a little tricky. We cannot check if a vertex 
u E X  is present in N(v) using bit vector of v since Bv only stores the post-neighbors 
of v but u is a pre-neighbor of u(if it is a neighbor). However, we can check if u is 
adjacency to v using the the bit vector of u. If u and v are neighbors, then oth bit 
will be set in Bu. The set intersections can therefore be performed in (|P | -I- |X|) 
time. Let newP — (P  fl N(v)). Notice that we also need to input the bit vector 
representation of newP to the T T T  procedure(see line 9 in procedure pbitMCE in 
Figure 23). This can be obtained by performing logical AND on the bit vectors Bp 
and Bv.
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Table 2: Comparing pbam and hyper graph

Operation hypergraph pbam

construction 0(i(\P\  +  |X|) 0(d(\p\ +  \X\)

updating 0 ( |P |2(|P| +  |X|)) -

pivot selection 0 (|P |(|P | +  |X|)) 0(d(\P\ +  |X|))

set intersection 0 ( |p | ( |p |+ m ) ) 0 ( |P | +  |X|)

3.3.5 H Y PE R G R A PH  VS P B A M

We have seen in Section 3.2.5 that ELS algorithm uses a hypergraph structure 
to improve the performance of the approach. When processing the search tree of a 
vertex v, the hypergraph structure initially stores for each neighbor u of v an array 
consisting of neighbors of u in postN(v). Like, pbam, construction of hypergraph 
takes 0 (d(|P | +  |X |)) time where d is degeneracy. However, pbam doesn’t need to 
be modified once it is constructed while hypergraph needs to be updated for every 
iteration in each recursive call. Figure 24 shows an example graph and the hypergraph 
and pbam representations. In each recursive call to TTT procedure, updating the 
hypergraph incurs an additional cost of 0 ( |P |2(|P | +  \X\)) time. Computing the 
pivot vertex using hypergraph takes 0 ( |P |( |P | +  |A|) time (recall that pbam takes 
0(P„(|P | +  |A |)) time). Set intersections using hypergraph take 0 ( |P |( |P | +  |A|)) 
time(while with pbam it takes 0{\P\ +  |X |). Table 2 summarizes the computational 
complexities for each of the steps using pbam and hypergraph.

3.3.6 CO M PUTATIONAL C O M PLEX ITY

The time complexity of pbitMCE approach can be computed similar to the ELS 
approach in [32]. Let D (p,x) be the running time of TTT procedure using pbam. 
By the description of TTT procedure and the complexities of individual operations



59

described in the previous section, D satisfies the following recurrence relation:

maxk{kD(p — k, x)} +  dip + x) i f p > 0
D(p, x) <

c if p =  0«.

where c is a constant greater than 0. Eventhough in [32], the second term i.e. 
dip +  x is replaced by cxp2{p + x) in the above relation, solving both the recurrence 
relations result in same complexity 0({d  +  x)3p/<3). The time complexity for the 
pbitMCE approach is therefore:

Y .O {{d+  |X„|)3|P“I/3) =  OHdn +  m)3d/3) =  0(dn3d/3)
V

3.3.7 OPTIMIZATION

We have seen that pivot selection process involves performing logical AND op
eration between two bit vectors. The maximum size of a bit vector is d bits. To 
intersect two bit vectors d /u  logical AND operations are required where u  is the 
computer word size. This is efficient for higher levels of the search tree where most 
of the bits are set in bit vector of P. However as we reach the lower levels, the size 
of P  reduces and the bit vector of P  is mostly sparse. Even then, the intersection 
of two bit vectors require d /u  logical AND operation. This is highly inefficient. To 
overcome this drawback we introduce hierarchical renumbering.

Hierarchical renumbering

After the candidate list size reduces to a certain value r , we construct a new partial 
bit adjacency matrix by using the renumbering logic explained in Section 3.3.3. The 
new pbam constructed is much smaller in size compared to the previous one. This 
new smaller matrix is used in further processing instead of the old larger pbam. 
This addresses the problem of requiring d /u  logical operations. It now only requires 
t / u  operations instead. This process can be repeated when the candidate list size is 
further reduced. However, if this process is repeated more often, there is a possibility 
that the time taken for renumbering and constructing the partial adjacency matrices 
dominates the overall time taken for enumeration. Based on empirical observations, 
for all our experiments we have used two levels of renumbering one at r  =  128 and 
the other at r  =  32 i.e. whenever the candidate list size reduces to 128 or 32 we do 
renumbering and construct new partial adjacency matrices.
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3.4 SEQUENTIAL PERFORMANCE RESULTS

All the results we present in this section are obtained on a four socket 2.27GHz 
Xeon X7560(Nehalem-EX) with 256 GB shared memory and running 64-bit Ubuntu 
12.04. Each socket consists of 8 cores. Each core has a private 32 KB LI cache 
and 256 KB L2 cache. A 24 MB L3 cache is shared by all the cores in a socket. 
All the implementation is done using C programming language and compiled using 
gcc compiler with -03 optimization flag. The parallel implementation is done using 
OpenMP. We have used compressed sparse row(CSR) format to store the graph.

We experimented with several networks obtained from different collections. Table 
3 describes the properties of the graphs used in our experiments. All the graphs 
are treated as undirected graphs. |C|, d, M  in the table represent the number of 
cliques in the graph, degeneracy and maximum degree of the graph respectively. 
The description of the datasets used for experiments is given below:

Dataset 1: Stanford large network collection [40]

• roadNet-CA, roadNet-TX: Road networks. Intersections and endpoints are rep
resented by vertices and roads connecting them axe represented by undirected 
edges.

• soc-Pokec, wiki-Talk, cit-Patents, web-BerkStan, web-Google, amazon0601 and 
as-Skitter are described in Section 2.5.

Dataset 2: Florida sparse matrix collection [78]. All the four graphs are from 
the 10th Dimaes challenge group [79]

• coPapersDBLP, coPapersCiteseer: Citation networks

• channel-b050: Graph from numerical simulations

• europe-osm: Street network

Dataset 3: Synthetic graphs generated using GTGraph, a graph generator [41].

• rmat-lOm-lOOm: Generated using R-MAT model with default parameter values 
in GTgraph i.e. (a, b, c, d) = (0.45,0.15,0.15,0.25)

• er-lm: Generated using Erdos-Renyi graph model with probability 10~3.
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D ataset 4: Graphs used in [45] to evaluate Eppstein et al.’s algorithm. We 
have selected the graphs that either take considerable amount of time or for which 
Eppstein et al.’s approach is slower than other approaches.

• biogrid-yeast: A protein-protein interaction network

• random-100-0.9, random-300-0.6, random-500-0.5, random-1000-0.3: Random 
graph with edge densities 0.9, 0.6, 0.5, 0.3 respectively.

• p.hat300-2: A DIMACS challenge graph [80] that has been algorithmically 
generated and is intended as difficult example for clique finding algorithms.

• m-m-51: A Moon-Moser graph [58].

We compare our approach with Eppstein et al.’s approach which is considered 
the state-of-the-art approach for maximal clique enumeration. We also compare 
with the Tomita et al.’s approach. We have seen that the Tomita et al.’s approach 
uses adjacency matrix representation. However, for some of the graphs used in our 
experiments, the adjacency matrix representation is not feasible. Therefore, for large 
graphs (datasets 1,2,3) we have used an adjacency list implementation of Tomita 
et al.’s algorithm and for smaller graphs(dataset 4) we use the original Tomita et 
al’s approach, i.e. with adjacency matrix representation. The code for both the 
approaches is obtained from [81]. A comparison of time taken by different approaches 
is presented in Table 3. All these results are obtained by running the experiments on 
the multicore machine using a single thread. pbitMCE-b and pbitMCE in the table 
refer to the versions of pbitMCE without and with optimization discussed in Section
3.3.7 respectively. Unless otherwise stated, pbitMCE refers to the optimized version. 
All the results shown refer to the time taken in seconds.

It can be clearly seen from the Table 3 that pbitMCE is faster than the ELS 
algorithm for all the graphs and by upto 4.2 times. pbitMCE is faster than TTT al
gorithm for most graphs, sometimes by a larger factor. The adjacency list variation of 
TTT algorithm, in general performs better for extremely sparse graphs(roadnet-TX, 
roadnet-CA, europe-osm). For these graphs, both ELS and pbitMCE are 3 to 4 times 
slower than TTT algorithm. However, for other graphs, TTT algorithm is slower 
than ELS and pbitMCE by a large factor(> 300). For smaller dense graphs, the TTT 
algorithm with adjacency matrix is expected to perform well compared to ELS and 
pbitMCE. The graphs in dataset 4 are examples of such graphs. The ELS algorithm is
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slower than the TTT algorithm for all the graphs in the dataset. However, pbitMCE 
is faster than TTT algorithm for most graphs including the Moon-Moser graph, m- 
m-51, which is a highly dense graph with largest number of maximal cliques possible 
among all graphs with 51 vertices. pbitMCE is slower for two gr&ph.s(random-500- 
0.5, random-1000-0.3) but by a very small factor(< 1.1). Also, it can be seen from 
the table that the optimization improves the performance for all the graphs tested 
and the improvement is significant for some of the gT&phs(wiki-Talk, for example) 
depending on the structure of the search trees explored. Note that the timing results 
shown for all the approaches do not include the time taken to read the input file and 
constructing the adjacency list or matrix. Also, the timing results do not include the 
time taken to write the output to a file.

3.5 PARALLEL METHODOLOGY AND EXPERIMENTAL 
RESULTS

The pbitMCE algorithm cleaxly defines multiple tasks, each corresponding to a 
vertex. Thus, the task of parallelizing the code is as simple as distributing the vertices 
between different processing units. However as the workload corresponding to the 
vertices can widely vary, balancing the workload is a challenging issue that needs to 
be addressed.

3.5.1 LOAD BALANCING

Most of the real world graphs are power-law degree distributed i.e few vertices 
have relatively very high degree compared to the majority of vertices. For many 
graph problems, it is highly challenging to achieve a balanced workload for these 
graphs. pbitMCE relies on degeneracy ordering and scheduling for balancing the 
workload between the processing units. Note that, in our parallelization results, we 
didn’t include the degeneracy ordering. We only focus on the enumeration process as 
degeneracy ordering is a pre-processing step and parallel computation of degeneracy 
ordering is discussed in Chapter 2.

Degeneracy

As we have seen, the ELS and pbitMCE approaches use degeneracy ordering 
of vertices before starting the enumeration process. In the parallel context, the 
degeneracy ordering has an added advantage. It facilitates a balanced distribution
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of workload. Observe from the TTT and ELS algorithms that a maximal clique 
C is generated by exploring the tree corresponding to the least numbered vertex 
in C. If a vertex with high degree is placed early in the ordering, its candidate 
list p would be large and so exploring its search tree takes more time compared to 
the other vertices. This problem is alleviated by using degeneracy ordering. The 
degeneracy ordering places the vertices in such a way that no vertex has more than 
d neighbors that come later in the ordering. This reduces the candidate list size and 
so the workload corresponding to large degree vertices and increases the workload 
corresponding to their neighbors with smaller degree. The impact of degeneracy on 
load balancing can be clearly seen from Figure 25. The plots show the distribution 
of time taken by the vertices of biogrid-yeast graph. Notice the difference in time 
taken by different vertices. When degeneracy ordering is not used, there are few 
vertices that take considerably more amount of time compared to the vast majority 
of vertices. Whereas, when degeneracy ordering is used the difference between time 
taken by different vertices is greatly diminished.

Scheduling

The degeneracy ordering alleviates the problem of workload imbalance between 
all the vertices. However, the problem is not completely eliminated. The type of 
scheduling used for distributing the vertices between the computing nodes also im
pacts the workload imbalance. OpenMP provides different types of scheduling op
tions including dynamic, static and guided. Since the vertices have varying amount 
of workload, the dynamic scheduling is the most appropriate in this case. However, 
dynamic scheduling results in huge synchronization overhead. Static scheduling, on 
the other hand, has no synchronization overhead, but might result in load imbal
ance. We have experimented with different scheduling options with varying chunk 
sizes. Guided scheduling is similar to dynamic scheduling except that the chunk 
sizes decrease as the number of vertices to be assigned decreases. The plot in Figure 
26 shows the time taken by each thread using dynamic scheduling with chunk sizes 
1, 10 and 50, static and guided scheduling. The timing results are obtained using 
the wiki-Talk graph. It can be seen that, the dynamic scheduling with chunk size 1 
resulted in a much balanced load but took longer time than other scheduling options. 
Dynamic scheduling with chunk size 50 resulted in a wide variation in time taken by 
the threads. The static and guided scheduling resulted in similar performance with
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Figure 27: Scalability plot for dataset 1

only a slight variation in time taken by the threads.
We have experimented with other load balancing methods like work stealing. 

Any attempt for further load balancing involves communication between the pro
cessing units through data sharing. This resulted in synchronization overhead and 
significantly degraded the performance.

3.5.2 SCALABILITY

Figures 27 28, 29 and 30 plot the speed-up obtained for the graphs in the four 
datasets. The speed-up is defined as the ratio of processing time taken by t threads 
over 1 thread. For each graph, we have chosen the scheduling mechanism that re
sulted in maximum speed-up. Our algorithm scales well to all the 32 threads available 
giving a speed-up of upto 29. The only exception is the m-m-51 graph which is a 
Moon-Moser graph [58]. The graph has 51 vertices with degeneracy of 48. The 
minimum time that pbitMCE takes to finish the enumeration using sufficiently large 
number of processing units is max(Tv), for v € V, where Tv is the time taken to 
perform computation corresponding to a vertex v. For m-m-51 this minimum time 
is achieved with 8 threads and so pbitMCE cannot scale-up beyond 8. However, 
m-m-51 is a highly dense graph and these kind of graphs are uncommon in practice.
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3.5.3 RESULTS ON DISTRIBUTED ARCHITECTURE

We have also performed some experiments on a distributed system to show that 
the pbitMCE algorithm can also be used in a distributed environment. The ex
periments were performed on a cluster with 32 nodes, each with Intel Xeon E5504 
processor with 4 cores. MPI is used for inter-process communication and the code 
is compiled using mpicc. The pre-processing is done by all the processes and the 
data i.e. pre- and post-adjacency lists are stored locally at all the nodes. The task 
of enumeration is distributed among the processes and workload is dynamically bal
ances. The initial distribution of workload is done by equally assigning the vertices to 
them. The processes independently work by exploring the search trees corresponding 
to the vertices assigned to them. When a process completes the work assigned to it, 
it selects a computing node at random and requests for work. If it doesn’t receive 
work, it requests another process. The process which receives the request shares its 
work by assigning some of its vertices to the requesting node. A process terminates 
when it completes all its assigned work and doesn’t receive work from any of the 
other processes. Figure 31 shows the scalability results for some of the graphs from 
the four datasets. It can be seen that pbitMCE scales upto 106 times using 128 
processes. The speed-up is poor for m-m-51 graph for the same reason as in the case 
of multicore architecture.

3.6 PBITM CE  ON HADOOP FRAMEWORK

In the previous section, we have discussed how to implement pbitMCE algorithm 
for distributed environment using MPI. The implementation assumes that the each 
node in the cluster has a copy of the entire graph. For very large graphs, the as
sumption may not be practical. In this section, we discuss the implementation of 
pbitMCE algorithm for a distributed environment where the graphs is partitioned 
and distributed among the nodes.

We have seen in Section 3.3 that in the pbitMCE algorithm, before the enumera
tion process, the vertices are ordered based on degeneracy. Degeneracy ordering can 
be computed in linear time. However, when the graph is distributed, it is challenging 
to compute the ordering as it requires extensive communication between the nodes. 
In some cases, computing the degeneracy ordering can take significant time than the 
time saved in enumeration by using the ordering. In such cases, a different ordering,
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like degree ordering, which can be quickly computed may be a better choice. In this 
section, we experimentally study the impact of various orderings on the performance 
of pbitMCE algorithm in the context of MapReduce framework. Our experiments 
show that the degree ordering performs comparable to the degeneracy ordering for 
most graphs.

As we have seen, MCE is an extensively studied problem. There are many al
gorithms both sequential and parallel algorithms proposed for MCE. Wu et al. [82] 
proposed an approach for MCE using MapReduce framework. The approach is based 
on a variation of BK algorithm. The approach partitions the enumeration process 
into tasks, each task corresponding to a vertex. All the data that is required for a 
task is first collected at a node. This is achieved by emitting the adjacency list of a 
vertex to all its neighbors. This can result in enormous amount intermediate data 
transfer between nodes. Also, the approach does not address the issue of unbalanced 
load which is crucial, especially for power-law degree distributed graphs.

To aid with processing of large scale data on clusters, many frameworks have 
been developed including MapReduce [13], Pregel [15] and Graphlab [16]. These 
frameworks have built-in capabilities including fault tolerance, storage and retrieval 
of large files, communication and synchronization between processes. These frame
works also simplify the task of parallel programming which otherwise is very hard. 
However, it is not always easy to modify the approaches to use a framework.

MapReduce is a widely used programming model for processing large data sets 
in parallel on a cluster. A MapReduce program consists of two key functions: map 
and reduce. In the map function, the input values are converted into key value pairs. 
These key value pairs are then shuffled and sorted and a key with all its values are 
input to a reduce function. The reduce function then produces the desired output. 
Hadoop is a software framework that uses MapReduce programming model for large 
scale data processing. Hadoop uses its own file system called Hadoop distributed file 
system (HDFS) to effectively store and retrieve the files.

One of the major challenges in implementing pbitMCE on Hadoop framework is 
to compute the degeneracy ordering of the vertices. As discussed in Section 3.3.1, 
the degeneracy ordering can be obtained in linear time by repeatedly removing the 
smallest degree vertex and its edges from the graph. Though it only takes linear 
time, the time taken can be significant for larger graphs. Also generating degeneracy 
ordering in a distributed environment where the graph is partitioned across multiple
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computing nodes is challenging. Alberto et al. [36] have proposed a distributed 
algorithm for k-core decomposition, which is equivalent to degeneracy ordering. The 
proposed approach has been used in an evaluation study of different frameworks 
including Hadoop. The results presented in [83] show that the Hadoop framework 
takes longer time when compared to other frameworks. The results show that for the 
web-BerkStan graph(Table 3) the degeneracy ordering takes more than 2000 seconds 
on a cluster with 32 nodes while the time for clique enumeration takes less than 70 
seconds on a much smaller cluster. Clearly, using degeneracy ordering in this case is 
not advisable. However, pbitMCE can be easily modified to use any vertex ordering. 
Some of the choices for vertex ordering include degree ordering, random ordering, 
original ordering and partial degeneracy ordering.

pbitMCE produces all and only the maximal cliques without any duplication ir
respective of the vertex ordering used. In [32], Eppstein et al. proved the correctness 
of the ELS algorithm with respect to the degeneracy ordering. The same proof can 
be applied to any given ordering of vertices. A clique C will be generated by the 
minimum ordered vertex v in C. For any other vertex in C, v will be in the not list 
,X , and so the clique C will not be repeated. Compared to the degeneracy ordering, 
the other orderings i.e. degree, random, original and partial degeneracy orderings can 
be generated in significantly less time. We present the implementation of pbitMCE 
using Hadoop framework and empirically compare the performance of different or
derings. Note that we only focus on comparing the performance of pbitMCE using 
different orderings to see if the degeneracy ordering can be replaced by other order
ing. We don’t compute the ordering using the Hadoop framework, instead we use a 
precomputed ordering stored in a map file.

3.6.1 IMPLEMENTATION

We have seen that pbitMCE works by exploring multiple search trees, each cor
responding to a vertex in the graph. We have also seen that pbitMCE uses pbam to 
perform the enumeration. To construct pbam corresponding to a vertex v the list of 
neighbors of v i.e N(v) and the post adjacency list of each u in N(v) i.e. postN(u) 
for each u €E N(v) are required. To extract the required data from the input, we use 
three different MapReduce jobs. Two files, one containing the graph with each edge 
in a line, and the other containing a map file with a vertex of the graph and its new 
order in each line are given as input.
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1: function MapperIi 
Input: key =  u, value = v 

2: emit(u, v)
3: emit(u, u)
4: end function

5: function Mapper^
Input: key =  u, value =  0 U 

6: emit(u, 0 U)
7: end function

8: function ReducerI
Input: key = u, values — (0 U, V\, V2 ■ • -)

9: Nu = 0
10: remove Ou from values
11: for each vertex v in values do
12: add v to Nu
13: end for
14: emit((u,Ou), Nu)
15; end function

Figure 32: First job

The first job given in Algorithm 4 is a simple and commonly used job in graph 
algorithms. The input files containing edge information and mapping information 
are processed and converted to adjacency lists. The job consists of two mappers and 
a reducer. The first mapper receives as input a set of lines from the file containing 
the graph while the second mapper is input a set of lines from the map file containing 
the new order of each vertex. The map methods simply forward the input keys and 
values that they receive. The reducer receives as input a vertex, its set of neighbors 
and also its new order. The reducer converts the set of values into adjacency list and 
emits the vertex and its new order along with its adjacency lists.

After the first job, each record contains, a vertex, its new order and its adjacency 
list. The second job is used to obtain the new order of each vertex in the adjacency 
list. This data is required to partition the adjacency list into pre and post adjacency 
lists. As we have seen in the Section 3.3.2, partitioning is done to avoid processing of 
unnecessary data as we only need the post adjacency lists to construct pbam. Note 
that we can skip using the second job and instead perform partitioning in the third
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1: function Mapper2
Input: key = (u , Ou), value = Nu 

2: for each vertex v in Nu do
3: emit(v, (u,Ou))
4: end for
5: emit(u, (u ,0 u))
6: end function

7: function Reducer2
Input: key — u, values=((u,Ou), (v i,0 Vl), {V2 ,0 V2) ...) 

preNu =  0 
postNu = 0
remove (u , Ou) from values 
for each (v, Ov) in values do 

if Ov > Ou then 
add v to postNu 

else
add v to preNu 

end if 
end for
emit((u,Ou), (preNu,postNu)) 

end function

Figure 33: Second job

job explained later in the section. However, this results in enormous of data that 
needs to be communicated. For example, in the wiki-Talk graph(Table 3), one of 
the vertices has a degree of more than 100,000 and its adjacency list requires 400K 
bytes. If the adjacency list is not partitioned, the whole adjacency list needs to be 
emitted(in the third job) for each vertex in the adjacency list, i.e the data of size 
100,000 * 400K bytes =  40G bytes are to be emitted. If partitioning is used based 
on degeneracy ordering, since the degeneracy of the graph is 131, the maximum size 
of post adjacency list would be 524 bytes and only 100,000 * 524 bytes =  52M bytes 
are to be emitted. Hence, partitioning plays a significant role in minimizing the data 
required for communication.

To generate the required information the second job uses a mapper and a re- 
ducer(Figure 33). For each input that the mapper receives which consists of a vertex 
u, its new order Ou, and its adjacency list Nu, the mapper emits the value (u,O u) 
with each vertex in Nu as the key. Each record that is input to the reducer contains

9
10
11
12
13
14
15
16
17
18
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1: function Mapper3
Input: key =  (u, Ou), value = (preNu,postNu)

2: for each vertex v in preNu U postN(u) do
3: emit(u, (u,Ou,postNu))
4: end for
5: emit(u, (u ,0 u, postNu)))
6: end function

7: function Reducer3
8: Input: key = u, values=((u,Ou,postNu), (v \ ,0 Vl,postNVl),

(VilOv^POStNy,)...)
9: P = 0

10: X  = 0
11: remove (u,Ou,postNu) from values
12: for each (v,O v,postNv) in values do
13: if 0„ > 0 U then
14: add v to P
15: else
16: add v to X
17: end if
18: end for
19: B  =  constructpbam(P, X )
20: T T T (P ,X ,{u } ,B )
21: end function

Figure 34: Third job

a vertex u, its new order Ou, and the list of vertices in its adjacency list along with 
their new orders. Using this data the reducer partitions the vertices in its neighbor 
list into pre and post adjacency lists denoted as preNu and postNu respectively. All 
the vertices that have new order greater then Ou are added to the post adjacency 
list and all the other vertices are added to the pre adjacency list. The generated pre 
and post adjacency lists are forwarded to the next job.

The third job is the final job and it includes all the processing of data and enu
meration of cliques. The job includes a mapper and a reducer(Figure 34). While the
mapper is simple, the reducer performs the actual work of enumeration. Each input 
to the mapper consists of a vertex u, its new order Ou and its pre adjacency list preNu 
and post adjacency list postNu . The mappers forwards the value (u,Ou,postNu) to 
all the vertices in the pre and post adjacency lists. Each input to the reducer then
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Table 4: Degeneracy vs k-degree

dataset degeneracy k-degree

cit-Patents 64 77
wiki- Talk 131 340
copapers 336 336

web-Berkstan 201 201
soc-LiveJoumall 372 686

contains all the information required to construct pbam corresponding to a vertex u 
and perform enumeration. For each (v,Ov,postNv) in the value list, the vertex v is 
added to the candidate list P  if Ov > Ou, otherwise it is added to the not list X . 
pbam is then constructed and used in the enumeration process. The maximal cliques 
generated can be output to a file.

3.6.2 ANALYSIS

We experiment using different vertex orderings in the pbitMCE algorithm. How
ever, our main focus is the degree ordering. To aid with the analysis of pbitMCE 
using degree ordering, we introduce a parameter called k-degree. k-degree of a graph 
is defined as the smallest value k such that every vertex v of the graph has at most 
k neighbors that have degree greater than or equal to its degree. We denote k-degree 
by k. In degree ordering, since the vertices are ordered by non decreasing order of 
their degrees, for any vertex v in the graph, there can be no more than k neighbors 
that come later in the ordering. Therefore, in degree ordering the size of P  is limited 
by fc as in the degeneracy ordering the size of P  is limited by d. Therefore d can 
be replaced by k in the analysis of the pbitMCE algorithm given in Section 3.3.6. 
This results in a time complexity of 0(kn3k/3). However, it is not clear how the two 
values, d and k, can be compared. So, we have done an empirical comparison of 
both the values. Table 4 shows the values of degeneracy and k-degree for the graphs 
described in Section 3.4. It can be seen that the k — degree value is greater than or 
equal to the degeneracy for all the graphs.

3.6.3 EXPERIMENTAL RESULTS

We have performed our experiments using three different clusters. For the initial
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Table 5: Time taken(in seconds) for enumeration using various orderings
dataset degeneracy degree partial degeneracy random original

cit-Patents 129 126 125 211 153
wiki-Talk 133 130 117 - -
copapers 351 330 383 515 500

web-Berkstan 55 48 481 16690 >17000

experiments to compare various orderings we have used a Hadoop cluster consisting 
of 8 heterogeneous computing nodes. All but one node have 4 cores and 4GB of 
RAM and the other node has 2 cores and 2 GB RAM. The total storage capacity 
of the cluster is 1TB. To compare the scalability of degree and degeneracy ordering 
we have used Amazon web services. We ran our experiments on a cluster with 
64 standard EC2 compute units for slaves and 2 EC2 compute units for master. 
To experiment with very large graphs(soc-LiveJournall) we have used an Amazon 
cluster with 512 EC2 compute units for slaves and 4 compute units for master. We ran 
our experiments using graphs from two different collections: Stanford large network 
data collection [40] and University of Florida sparse matrix collection [78]. The 
graphs mki-Talk, web-BerkStan, cit-Patents, soc-Live Journal are from the Stanford 
collection and the graph coPapersDBLPis from the University of Florida collection. 
The description of these graphs can be found in Section 3.4.

We have precomputed all the orderings i.e degeneracy, degree, partial degeneracy, 
random and original orderings and stored in map files. The degeneracy ordering 
is computed using the BZ algorithm explained in Chapter 2. Degree ordering is 
computed by sorting the vertices in non decreasing order of their degree. Partial 
degeneracy order is obtained by using the distributed k-core decomposition algorithm
[36] and limiting the number of iterations to 10. We have used the shuffling algorithm 
in [84] to generate random ordering. The original ordering is the given ordering of 
the vertices.

Two files are given as input: the graph file containing one edge of the graph in 
each line, and a map file containing in each line a mapping of a vertex of the graph 
from the original order given to a new order. Given the input files, the approach uses 
three MapReduce jobs to generate the required output, i.e. maximal cliques. The 
first job and the second job are used to collect the adjacency list of each vertex and
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the new order of the vertices in the adjacency list. These two jobs do not depend on 
the ordering used. These jobs take the same time irrespective of the order chosen. 
Since they do not contribute to the comparison of different orders, we ignore the 
timing results of the two jobs.

We have performed our initial experiments using a small cluster with 8 nodes. 
Table 5 shows the results of different ordering on some of the graphs. The results were 
obtained by using 8 reducers. The values in the table represent the wall clock time 
taken in seconds by the third job including the time for map, shuffle, sort and reduce. 
It can be seen from the table that the degree ordering performs comparable to the 
degeneracy ordering while random and original orderings perform significantly poorer 
compared to the other orderings. For the wiki-Talk graph, the original and random 
ordering ran out of disk space due to the enormous size of data that needs to be 
communicated. Partial degeneracy order performance is comparable to degeneracy 
ordering for some graphs but for other graphs it is slower by a large factor. For 
further experiments we have focused only on degree and degeneracy ordering. To 
compare the scalability of both the orderings we have performed our experiments on 
Amazon cluster with 64 EC2 compute units. To better compare the two ordering we 
measured the cumulative time taken by a reducer to execute the reduce function. Let 
U be the cumulative time spent by a reducer i in the reduce function and maxTime =  
max{U |1 < i < n }  where n is the number of reducers. Figures 35 through 38 shows 
the results obtained on different graphs using the degeneracy and degree ordering. 
The time in seconds along y-axis represents the maxTime. Note that, this does 
not include the time taken for map, shuffle and sort phases. It can be seen from 
the plots that both degeneracy and degree orderings perform comparably for all 
the graphs except the wiki-Talk graph for which the degeneracy ordering performs 
slightly better.

To further evaluate the two orderings, we have experimented using the graph 
soc-LiveJournall which has 4.8 million nodes and 42.8 million edges. While experi
menting we found that the graph has immensely dense subgraphs and these subgraphs 
contain enormous number of maximal cliques. We found that each such subgraph 
has more than a trillion maximal cliques. Exploring all the maximal cliques for such 
a graph requires very large amount of computing resources and takes a huge amount 
of time. Since our focus is to compare the two orderings, we have applied a rule to 
shorten the time taken for enumeration. During enumeration, if the clique size goes
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beyond 100 i.e when R > 100 and if the remaining candidate vertices are less than 
100 i.e P  < 100, instead of further enumerating, we increment the clique count and 
backtrack. Note that this will not generate maximal cliques, but only a portion of 
each maximal clique. However, it will generate all the maximal cliques of size less 
than 100. Also, the degree and degeneracy orderings might produce different num
ber of cliques. We ran the experiment using an Amazon cluster with 512 standard 
EC2 compute units with 512 reducers. The degeneracy ordering yielded 583.8 billion 
cliques and took 4.5 hours while the degree ordering generated 513.7 billion cliques 
and took 6.2 hours.

The experimental results obtained reflect the analysis in Section 3.6.2. For graphs 
with comparable degeneracy and k — degree values, both the degree and degeneracy 
ordering result in similar performance, while for the graphs for which k — degree is 
greater than degeneracy by a large factor, soc-Live Journal for example, the degree 
ordering results in poorer performance compared to the degeneracy ordering.

3.7 SUMMARY

In this chapter, we define a task-set and discuss how the size of task-set can 
influence locality. We present a technique called task-set reduction which helps in 
improving the temporal locality of an algorithm by reducing the size of task-set. We 
demonstrate the effectiveness of the technique by using it to develop an algorithm 
for maximal clique enumeration.

Finding maximal cliques is a fundamental problem arising in many areas. In this 
chapter, we define the maximal clique enumeration problem and present some ap
plications. We briefly discuss some MCE algorithms existing in the literature. The 
state-of-the-art algorithm for MCE referred to as ELS algorithm is described and its 
memory locality with respect to the task-set size is analysed. We propose a new algo
rithm, called pbitMCE, which uses a bit-based data structure to significantly reduce 
the task-set size. We have implemented the algorithm and we compare the results 
with the ELS algorithm and TTT algorithm. We have shown that our approach is 
faster than both the approaches for most graphs and slower only by a small factor 
for few graphs. We have implemented a parallel approach on a multicore machine 
and showed that it is scalable giving a speed-up of upto 29 times using 32 cores. 
We have also implemented the algorithm on distributed memory architecture and 
showed that pbitMCE scales upto 106 times using 128 processes.
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CHAPTER 4 

TRIANGLE LISTING

Memory Locality is a key aspect in the performance of an application. In the 
previous chapters, we have discussed two techniques for improving the memory lo
cality in graph algorithms: access transformation and task-set reduction. We have 
also seen how the techniques are applied to the k-core decomposition and maximal 
clique enumeration problems. In this chapter, we show another example application, 
triangle listing, which uses both the techniques. Triangle listing algorithms have 
highly random memory access pattern and also large task-set sizes. Therefore, im
proving the memory locality can result in significant performance benefits. Many 
algorithms for the triangle listing problem exist in the literature. Out of those, the 
edge-iterator algorithm is the most widely used algorithm. The algorithm repeatedly 
accesses the adjacency lists of the vertices in random order resulting in poor memory 
locality. To apply the access transformation technique, the algorithm should have 
limited number of iterations. But the edge-iterator algorithm does not satisfy the 
property. The task-set of the edge-iterator algorithm is very large and also cannot 
be compressed using bit representation or other techniques. Therefore, the task-set 
reduction technique is not easily applicable to the edge-iterator algorithm.

We propose a new algorithm, called windoui-iterator, which is a modification 
of the edge-iterator algorithm. The window-iterator algorithms uses both the access 
transformation and task-set reduction techniques to improve locality. Unlike the edge- 
iterator algorithm, the window-iterator algorithm has limited number of iterations, 
each iteration working on a smaller task-set.

4.1 DEFINITION AND NOTATIONS

Given an undirected simple graph G{V} E), the triangle listing problem is to find 
a set T  = {(u ,v,w )\u ,v,w  6 Vand(u,v),(v,w ),(w ,u) 6 E}. Note that the set T  is 
a set of cliques of size 3. Triangle counting problem, a variation of triangle listing 
problem, is to find the number of triangles in the graph. The neighborhood of a 
vertex v is denoted by N(v) and the degree of v is denoted by deg(v). The number 
of triangles in a graph is denoted by A.
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4.2 A PPLICA TIO N S

The triangle counting/listing problems are of high interest in network analy
sis applications. They are used in finding a key statistical property of a graph 
called clustering coefficient [85], Also they are used in finding transitivity coeffi
cient [86] [87] [88], another key property of a graph. The triangle problems play an 
important role in bioinformatics in the study of motifs and protein-protein interac
tion networks [89] [90]. Triangle listing is regarded as one of the fundamental graph 
mining problem. It is used for detecting sybil accounts and measuring content quality
[91], detection of spamming activities, uncovering of hidden thematic relationships 
in web [91].

4.3 RELATED W O RK

Triangle listing problem has been extensively studied and many algorithms exist 
in the literature [71] [92] [93] [94] [95] [96] [97] [98]. In a recent study of listing algorithms 
by Mark et al. [92], it was shown that most listing algorithms have a common 
abstraction. They showed that the running time of nearly every triangle listing 
variant is in 0(a(G)m), where a{G) is the arboricity of the graph and m  is number 
of edges. It was shown that most triangle listing algorithms fall into one of the two 
categories: neighborhood intersection and adjacency testing.

Neighborhood intersection: The algorithms in this category iterate over all 
the edges. For each edge (u , v), the neighborhoods of u and v are intersected to get all 
the triangles that include the edge (u ,v ). The algorithms edge-iterator [93], forward
[93] and compact-forward [94] belong to this category. To make the intersection 
efficient, the adjacency lists are first sorted. To further improve the efficiency of 
intersection, two other variants, edge-iterator-hashed [93] and forward-hashed [93] 
use hashing technique which required 0{m) extra space. Another variant, new- 
vertex-listing [94], performs the intersection using an extra 0{n) space. It uses a bit 
array to mark all the neighbors of a vertex u. The bit array is used in neighborhood 
intersections corresponding to all edges connected to u.

A djacency testing: The algorithms in this category iterate over all the vertices. 
For each vertex u, every pair of vertices in its neighborhood are tested for adjacency. 
The algorithms node-iterator [93] and node-iterator-core [93] belong to this category. 
Both these algorithms use hashing to perform the adjacency testing in constant time
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1: procedure edge-iterator(G(V,E))
2: for each edge (u , w) in E  d o
3: for each v in N(u) n  N(w) d o
4: output (u ,v ,w )
5: en d  for
6: en d  for
7: en d  p ro ce d u re

Figure 39: The edge-iterator algorithm

and so require 0(m ) additional space.
O rdering: The vertex ordering plays a key role in the performance of a triangle 

listing algorithm. Generally, the neighborhood of a vertex v, is divided into two 
parts: one containing the neighbors that come later than v in the ordering and the 
other containing the neighbors that come before v. The sizes of these neighborhoods 
depend on the vertex ordering. The most common orderings used by different algo
rithms include the degree ordering and degeneracy ordering. While some algorithms 
order the vertices by non-increasing order of degree, some algorithms use the reverse 
order. Mark et al. [92] presented a unified framework based on the ordering of
vertices, the base algorithm(edge based or vertex based) and the amount of extra 
memory required. They have performed experiments using various graphs and the 
experiments revealed that their variant of neighborhood intersection algorithm that 
uses non-decreasing degree ordering along with an intersection strategy that requires 
O(n) additional space outperformed all other algorithms.

As triangle listing algorithms are computationally expensive, many parallel algo
rithms have been proposed to tackle the massive volume of current graphs [99] [100] [101]
[102] [103] [104] most of which use Hadoop framework.

4.3.1 E D G E -IT E R A T O R  A LG O RITH M

We have seen that many algorithms exist for triangle listing. The edge-iterator 
algorithm [93] has been widely used and the the studies [92] show that the edge- 
iterator and its variants outperform the other algorithms. Figure 39 shows the basic 
edge-iterator algorithm. It iterates over all edges and intersects the neighborhood 
of vertices connected by an edge. Different variants of the edge-iterator algorithm 
use different vertex ordering and different strategy for intersection. The variant we
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1: procedure edge-iterator-deg(G(V, E))
2: G'(V', E') = pre-process(G(V, E))
3: for each vertex u in V' do
4: > Let { f o , f i ,  ... ,f j t - i}  = postN(u) where k =  |postiV(u)|
5: for each vertex v2 in postN(u) do > 0 < jr < A: — 1
6: for each w in {vj+i,Vj+2 , ...,ffc_i} f l postN(vj) do
7: Output (U,Vj,W)
8: end for
9: end for

10: end for
11: end procedure

Figure 40: The edge-iterator with degree ordering algorithm

use in this chapter, uses non-decreasing degree ordering i.e if deg(u) < deg(v) then 
u comes before v in the ordering. We use a simple sort-merge approach which does 
not require any extra space for neighborhood intersection. We refer to this variant as 
edge-iterator-deg. This variant is equivalent to S l+ l variant discussed in [92]. The 
algorithm for edge-iterator-deg is presented in Figure 40.

Pre-processing

The original graph is preprocessed before starting the edge iteration. The degree 
ordering of the vertices is first computed. This can be done using count sort which can 
be performed in 0 (n ) time. Based on the ordering, the adjacency list (neighborhood) 
of each vertex v is partitioned into pre- and post-adjacency lists containing the neigh
bors that come before v in the ordering and that come after v respectively. We denote 
the adjacency list, pre- and post-adjacency lists of v by N(v), preN(v) and postN(v) 
respectively. Let 77(11) denote the position of v in the degree ordering. A new graph 
G'(V’,E ') is generated from the input graph G(V,E), where V' C V  and E' C E, 
by replacing each vertex v by 77(f ) . Also, while generating the new graph we remove 
all the vertices(and their edges) with 0 and 1 degree as they do not belong to any 
triangle. We only use the post-adjacency fists during the edge iteration. Therefore 
we don’t store the pre-adjacency fists. To make the intersection faster, the post
adjacency fists are sorted. We use Compressed Sparse Eow(CSR) format to store 
the graph.



Figure 41: Memory access pattern of the edge-iterator-deg algorithm

Edge iteration

After pre-processing, the newly generated graph G'(V', E') is used in edge itera
tion. We only use the post-adjacency lists during the edge iteration. The rationale 
behind using the non-decreasing degree order is to reduce the sizes of post-adjacency 
lists. In the non-decreasing degree vertex ordering, the large degree vertices are 
placed at the end and so their post-adjacency lists have smaller sizes. Note that 
this also facilitates in balancing the workload when using multiple processing units. 
For each vertex u € V7, for each vertex in its post-adjacency list, an intersection 

operation is performed between postN(u) and postN(vj). Note that only the vertices 
that come after Vj in postN(u) are included in the intersection operation.

4.3.2 ANALYSIS OF MEMORY LOCALITY

In this section, we analyze the memory locality of edge-iterator-deg algorithm 
focusing on access pattern and the size of task-set. In the rest of the chapter, we call 
the minimum numbered vertex in an edge as s-vertex and the other vertex in the 
edge as e-vertex. From the Figure 40, it can be seen that the algorithm processes 
all the edges corresponding to a s-vertex before moving to the next s-vertex. The 
memory access pattern for the edge-iterator-deg algorithm is depicted in Figure 41. 
In the example given in figure, the order in which the adjacency lists are accessed is as 
follows: {0,1264,0,7296,1,3854,1,5369,2,1050,2,4263,2,5432}. As it can be seen, 
the access pattern of the s-vertices is sequential. However, the access pattern of the 
e-vertices is highly random. The task of edge iteration requires the adjacency lists of 
all the vertices and the lists are repeatedly accesses during the processing. Therefore,
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the task-set for the edge-iterator-deg algorithm constitutes the entire graph. When 
the graph size is very large i.e significantly larger than the cache memory, the edge- 
iterator algorithm suffers from poor memory locality issues severely impacting the 
performance.

4.4 WINDOW-ITERATOR  ALGORITHM

We have seen that the edge-iterator-deg algorithm have highly random access 
pattern and also large task-set. We propose a new algorithm, called window-iterator, 
which uses the access-transformation and task-reduction techniques to improve the 
memory locality. In the edge-iterator-deg algorithm, the e-vertices are accessed in a 
random order resulting in a large task-set. To reduce the task-set, in window-iterator 
algorithm, we limit the range of the e-vertices that a task accesses. We use multiple 
tasks, with a subset of consecutive e-vertices assigned to each task. We refer to this 
subset as a window. Also, the number of iterations is now limited to the number of 
windows, facilitating the use of access transformation technique. Note that, in the 
case of edge-iterator-deg algorithm, the number of iterations is |V| which is too large 
for the access transformation technique.

Figure 42 shows the window-iterator algorithm. A window consists of vertices in 
the range [wsv...wev] where wsv and wev stand for window start vertex and window 
end vertex. In each iteration, i.e for each window, all the vertices from 0 to wev are 
scanned and intersection is only performed when an e-vertex belongs to the current 
window. After processing all the edges with e-vertices in the current window, the 
window is moved to the next set of vertices.

The function getWindowEndVertex in Figure 42 returns the last vertex in the 
window. We measure the physical window size in terms of the number of bytes taken 
to store the adjacency lists of vertices in the window. The end vertex of the window 
is calculated such that the physical window size does not exceed a fixed value r. The 
criteria for selecting the value of r  is discussed in Section 4.4.1.

4.4.1 MEMORY LOCALITY ANALYSIS

The memory locality of the window-iterator algorithm and the overall perfor
mance of the algorithm is governed by the physical size of the window chosen. When 
the value of r  is very large, i.e larger enough to fit the adjacency lists of all the 
vertices, then the window-iterator algorithm is equivalent to the edge-iterator-deg
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procedure window-iterator{G(V, E))
G’{V\ E') = p r e -  process(G(V, E )) 
wsv = 0
wev =  getWindowEndV ertex{G' ,wsv) 
while wev < |V"| do

for each vertex u in [CLwev] do
o Let {vo, Vi, =  postN(u) where k =  \postN(u)
for each vertex Vj in postN(u) and wsv < V j <  wev do 

> 0 <  j  <  fc — 1
for each w in {v]+i,v]+2 , Vfc-i} DpostN(vj) do 

Output (U,Vj,W) 
end for 

end for 
end for 
wsv =  wev +  1
wev = getWindowEndVertex(G,wsv) 

end while 
end procedure
function getWindowEndVertex(Gr,wsv) 

if wsv > |V'| then 
return wsv 

end if
wev = wsv +  1 
size — \postN(wsv)\
while wev < \V'\ and size +  \postN(wev)\ < r  do 

increment size by \postN(wev)\ 
increment wev by 1 

end while 
return wev — 1 

end function

Figure 42: The window-iterator algorithm
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window I window i +1 window*

I vswi - », .>

Figure 43: Memory access pattern of the window-iterator algorithm

algorithm. We have seen that the edge-iterator algorithm has poor memory locality 
for large graphs. On the other hand, if the value of r  is too small, then the number 
iterations will be large. Since in each iteration, all the vertices (that are < wev) need 
to be scanned, the time for scan operation can be dominating. The value of r  must 
be carefully chosen considering the cache memory size and the number of vertices 
in the graph. Based on experiments, we have chosen the maximum physical window 
size to be less than 16MB which is around 2/3 of the L3 cache memory size of the 
machine used for experiments.

Figure 43 shows the memory access pattern of the window-iterator algorithm.
In the example given in figure, the memory access pattern is as follows: {postN(0), 
window i, postN( 1), window i, postN(2), window i, postN(0), window i+1, postN( 1), 
window i + 1, postN(2), window i +  1, postN(2), window i + 1}. As in edge-iterator- 
deg algorithm, the s-vertices are accessed sequentially. Since all the e-vertices pro
cessed in an iteration belong to the same window and the window size is chosen to 
be small enough to fit in cache, the order in which the e-vertices are accessed does 
not impact the performance.

4.4.2 IMPLEMENTATION

Efficient implementation is crucial for the performance of any algorithm. The 
data structures should be carefully chosen so that the memory latency is minimized.
In the window-iterator algorithm, the scan operation can take considerable amount 
of time as it needs to access the adjacency list of each vertex involved in an itera
tion. We have used a special data structure to optimize the scan operation which 
resulted in significant performance benefits. In this section, we give the details of the 
implementation and the data structure.
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In our implementation, we use compressed sparse row(CSR) format to store the 
graph. In this format, the adjacency lists of all the vertices are stored consecutively 
in one single array, i.e. all the neighbors of vertex 0 , followed by all the neighbors 
of vertex 1 and so on. We refer to this array as edge Array. Another array, referred 
by vertexArray, stores the starting indices of corresponding adjacency lists. For 
example, if the starting index of adjacency list of vertex v in edgeArray is i then 
vertexArray[v] = i. Note that, to access adjacency list of a vertex v, atleast two 
memory accesses are required, one to access vertexArray[v] to get the starting index 
of the adjacency list and the other to access the adjacency lists in edgeArray. The 
access to edgeArray has high possibility of a cache miss as the edgeArray for large 
graphs is much larger than the cache.

In the window-iterator algorithm, the outer for-loop(line 6) corresponds to s- 
vertices and inner for-loop(line 8) corresponds to e-vertices. For each s-vertex the 
outer for-loop needs to be executed at-least once to verify if there is an e-vertex in 
the window. This requires access to the edgeArray. In most cases, only a small 
percentage of s-vertices have e-vertices in the window. This is especially true for 
the iterations at the end. To avoid the access to edgeArray, we use a structure 
<  m inV  ertex, m inVertex I  dx > for each vertex in the graph. For a vertex v, the 
minVertex  stores the minimum vertex in its adjacency list that has not yet been 
processed(note that the adjacency lists are sorted). minVertex Idx  stores the index 
of the minVertex in the edgeArray. Before executing the inner for-loop, we first 
check if minVertex belongs to the window. If it does not belong, then the access 
to edgeArray is not required. If it belongs then the edgeArray is accessed using the 
minVertexIdx and after the inner loop is executed, < m inV  ertex, m inVertex I  dx > 
is updated. Note that the structure is stored in an array and accessed sequentially. 
The use of the structure eliminates the unnecessary accesses to edgeArray.

There is also one minor optimization that needs to be mentioned as it is gen
erally applicable to other graph problems which require performing intersection of 
adjacency lists. To perform intersection operation on adjacency lists of two vertices 
u and v, it is a general practice to use the degree information of the vertices which 
is most often stored in a separate structure. Procedure intersectNeighborsl in Fig
ure 44 shows an example code that uses degree information. Accessing the degree 
information results in increased task-set size and also in most cases requires random 
access to the degree array. We propose an optimization which is shown in procedure
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1: p ro ce d u re  intersectNeighborsl (u,v)
2: * =  0  j  =  0
3: w h ile  i < degree[u] and j  < degree[v\ d o
4: o uList and vList are adjacency lists of u and v respectively
5: i f  uList[i] =  vList\j] th e n
6: > some code
7: en d  i f
8: > some code
9: en d  w h ile

10: en d  p ro ced u re
11: p ro ce d u re  intersectNeighbors2(u,v)
12: i =  0 j  =  0
13: > uList and vList are adjacency lists of u and v respectively
14: w h ile  uList[i\ ^  A and vList[j] ^  A d o
15: i f  uList[i] =  vList\j] th e n
16: > some code
17: en d  i f
18: > some code
19: en d  w h ile
20: en d  p ro ced u re

Figure 44: A simple optimization

intersectNeighborsZ. We mark the end of an adjacency list using a special value A. 
This eliminates the need to access degree information.

4.5 EXPERIMENTAL RESULTS

All the results presented in this section are obtained using a four socket 2.27GHz 
Xeon X7560(Nehalem-EX) with 256 GB shared memory and running 64-bit Ubuntu 
12.04. Each socket consists of 8 cores(can run 16 threads with hyper-threading). 
Each core has a private 32 KB LI cache and 256 KB L2 cache. A 24 MB L3 cache 
is shared by all the cores in a socket. All the implementation is done using C++ 
programming language and compiled using g++ compiler with -03 optimization flag.

We have used graphs from the Stanford large network collection [40] and a syn
thetic graph generated using GTGraph tool [41]. The description of all the graphs 
is given in Section 2.5 of Chapter 2. The timing results comparing the edge-iterator- 
deg algorithm and window-iterator algorithm are given in Table 6 . Note that the 
time for pre-processing is not included in the timing results for both the algorithm.
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Table 6: Comparison of edge-iterator-deg and window-iterator algorithms, n, m  and
T  refer to number o vertices, edges and triangles(all in millions) and time(in seconds)

graph n m T edge -  iterator 

(in seconds)

window -  iterator 

(in seconds)

cit-Patents 3.8 16.5 7.5 1.87 1.73

soc-Pokec 1.6 30.6 32.5 6.33 5.13

soc-LiveJoumall 4.8 69.0 285.7 13.27 10.77

com-Orkut 3.1 117.2 627.6 89.30 68.9

rmat-32-512 32.0 512.0 2.6 326.27 247.33

com-Friendster 65.6 1806.0 4173.7 2645.20 1851.50

64
soc-Pokec

soc-LiveJoumaM
com-Orkut

rmat-32-512
com-Friendster

32

16

8

4

2

1
2 41

number of threads

Figure 45: Scalability of window-iterator algorithm
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Also, for experimental purpose we only output the number of triangles, we don’t 
output all the triangles. It can be clearly seen that the window-iterator outperforms 
edge-iterator-deg for all the graph and the gap widens as the graph size increases. 
We have also experimented using smaller graphs. In case of smaller graphs both the 
algorithms resulted in similar performance.

The parallel implementation is done using OpenMP. window-iterator is amicable 
to parallelization and it is straightforward to parallelize the algorithm. The workload 
of each iteration is distributed to all the available threads. After each iteration, before 
entering the next iteration all the threads are synchronized using a barrier. One major 
advantage of window-iterator algorithm is that, all the threads share the same task- 
set, i.e. the chunk of edgeArray corresponding to the window. There are only read 
accesses to the task-set eliminating the overhead of the cache coherency protocol. 
Also, the shared cache memory is efficiently used as all the threads in the core access 
the same window. The scalability results of the window-iterator algorithm can be 
seen in the Figure 4.4.2. The algorithm scales more than 29 times using 32 threads 
and more than 44 times using 64 threads(note that there are only 32 physical cores 
in the machine).

4.6 SUMMARY

In this chapter, we define the triangle listing problem and present some applica
tions. Different existing triangle listing algorithms are briefly described. A variant of 
edge-iterator algorithm that uses degree ordering of vertices is discussed in detail and 
its memory locality is analysed. We propose a new algorithm, called window-iterator, 
that combines the access transformation and task-set reduction techniques discussed 
in previous chapters to improve the memory locality. To reduce the task-set size, it 
uses an idea similar to the blocking technique [17] used for regular applications. The 
task-set is limited to a window which consists of adjacency lists of a smaller set of 
vertices. The size of the window is chosen such that the window fits in one of the 
caches(L3 cache in our experiments). By limiting the task-set size, the impact of 
random memory access pattern is greatly reduced. The window-iterator algorithm 
is compared with a variant of edge-iterator algorithm and is shown to outperform 
for large graphs, window-iterator algorithm is amicable to parallelization. we have 
implemented the algorithm for multicore architecture. We present the scalability 
results showing that the algorithm scales well, more than 29 times using 32 threads.
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CHAPTER 5

CONCLUSION

One of the major differences between the regular applications like linear algebra 
applications and graphs applications is the memory access pattern. The current 
commodity processors are dominated by multicore systems. Multicore processors 
have multiple processing units called cores. Each core has a private LI cache(and 
possible more cache levels). Each core also has access to a shared cache and also main 
memory. Caches are typically orders or magnitude faster and smaller than the main 
memory. When the access pattern is sequential the cache memory is better utilized 
reducing the need to access the main memory. The hardware prefetcher can analyze 
the access pattern and make better predictions to bring the data into the cache before 
it is accessed. In the case of graph algorithms, the memory access pattern is highly 
random. It is generally not possible for the hardware prefetcher to predict what data 
is going to be accessed. When the graph size is small such that most data can fit in 

the cache, the access pattern does not pose a major problem. However, for the current 
large sizes of the graphs, the impact of the access pattern can be substantial. Since 
most data accesses result in cache misses requiring access to the main memory which 
has high latency, the performance of graphs algorithms is dominated by the memory 
access time. Locality also impacts the degree of parallelism due to the effect of cache 
coherency protocols. Therefore improving the locality in graph applications is crucial 
to the performance. The main motivation of the thesis is to show the importance 
of locality in graph algorithms and present techniques to improve locality that can 
result in significant performance benefits.

Improving locality in graph algorithms is highly challenging. Achieving good lo
cality requires careful analysis of the data structures and the access pattern. An 
algorithm can be implemented in different ways using different data structures. The 
data structures chosen play a crucial role in the performance. For example, a graph 
can be represented using an adjacency matrix, adjacency list, adjacency array or in 
compressed row format (CSR) and the choice of representation influences the perfor
mance.
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In this thesis, we present two techniques to improve locality. The first technique, 
access transformation focuses on the access pattern while the second technique fo
cuses on the size of the data. The access transformation technique is applicable to 
iterative approaches in which a subset of vertices/edges are processed in each iter
ation. The idea of this technique is to scan all the vertices to extract the order in 
which they are processed. This technique adds 0 (kn ) to the complexity of the algo
rithm where k is the number of iterations and n is the number of vertices. However, 
since the access pattern of scan operation in sequential, it is not much overhead when 

the number of iterations is limited. Moreover, the scan operation is embarrassingly 
parallel. We apply the technique to the k-core decomposition and triangle listing 
problems.

The task-set reduction technique is a more general technique. It refers to reducing 
the size of the data that a task repeatedly accesses. The reduction can be achieved 
using different methods. Once method, that we used in the maximal clique enumera
tion problem, is called compression. In compression, the task-set is not modified but 
the memory required to store the task-set is reduced by using a different format like 
bit representation. Another method, that is used in the triangle listing problem, is 
based on the blocking technique. In this method, the task is divided into sub-tasks 

each sub-task working on a smaller task-set. Another method, used in k-core decom
position problem, is called elimination. This requires eliminating the use of some 
data structures by modifying the tasks such that the data in those data structures 
is generated from other sources when required.

The two techniques, access transformation and task-set reduction have been ap
plied to three graphs problems, fc-core decomposition, maximal clique enumeration 
and triangle listing. The applicability of these techniques requires a thorough under
standing of the algorithms, the data structures used for implementing and analysis of 
the access pattern. Intuitively, the algorithms that have scope for temporal locality 
like the enumeration of vertex covers, enumeration of spanning trees and enumer
ation of matchings are candidates for task-set reduction technique. And the graph 
problems which access the vertices/edges only once(or constant number of times) 
but in random order like the minimum spanning trees, approximate vertex cover, 
single source shortest path are candidates for access transformation technique. The 
memory locality of other graph algorithms needs to be analyzed and improved using 
the proposed techniques.
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