
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2015

High Performance Large Graph Analytics by Enhancing Locality High Performance Large Graph Analytics by Enhancing Locality

Naga Shailaja Dasari
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dasari, Naga S.. "High Performance Large Graph Analytics by Enhancing Locality" (2015). Doctor of
Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/3080-hj26
https://digitalcommons.odu.edu/computerscience_etds/52

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/52?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

HIGH PERFORMANCE LARGE GRAPH ANALYTICS

B.Tech. June 2003, Kakatiya University, India
M.Tech. June 2006, Indian Institute of Technology, Kanpur, India

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

BY ENHANCING LOCALITY

by

Naga Shailaja Dasari

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2015

Desh Ranjan (Co-Director)

Mohammad Zubair (Co-Director)

Bharat Madan (Member)

ProQuest Number: 3664141

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 3664141

ProQuestQue

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

HIGH PERFORMANCE LARGE GRAPH ANALYTICS BY
ENHANCING LOCALITY

Naga Shailaja Dasari
Old Dominion University, 2015

Co-Directors: Dr. Desh Ranjan and Dr. Mohammad Zubair

Graphs are widely used in a variety of domains for representing entities and their
relationship to each other. Graph analytics helps to understand, detect, extract and
visualize insightful relationships between different entities. Graph analytics has a
wide range of applications in various domains including computational biology, com­
merce, intelligence, health care and transportation. The breadth of problems that
require large graph analytics is growing rapidly resulting in a need for fast and effi­
cient graph processing.
One of the major challenges in graph processing is poor locality of reference. Local­
ity of reference refers to the phenomenon of frequently accessing the same memory
location or adjacent memory locations. Applications with poor data locality reduce
the effectiveness of the cache memory. They result in large number of cache misses,
requiring access to high latency main memory. Therefore, it is essential to have good
locality for good performance. Most graph processing applications have highly ran­
dom memory access patterns. Coupled with the current large sizes of the graphs,
they result in poor cache utilization. Additionally, the computation to data access
ratio in many graph processing applications is very low, making it difficult to cover
the memory latency using computation. It is also challenging to efficiently paral­
lelize most graph applications. Many graphs in real world have unbalanced degree
distribution. It is difficult to achieve a balanced workload for such graphs. The
parallelism in graph applications is generally fine-grained in nature. This calls for
efficient synchronization and communication between the processing units.
Techniques for enhancing locality have been well studied in the context of regular
applications like linear algebra. Those techniques are in most cases not applicable to
the graph problems. In this dissertation, we propose two techniques for enhancing
locality in graph algorithms: access transformation and task-set reduction. Access

transformation can be applied to algorithms to improve the spatial locality by chang­
ing the random access pattern to sequential access. It is applicable to iterative algo­
rithms that process random vertices/edges in each iteration. The task-set reduction
technique can be applied to enhance the temporal locality. It is applicable to algo­
rithms which repeatedly access the same data to perform certain task. Using the two
techniques, we propose novel algorithms for three graph problems: k-core decompo­
sition, maximal clique enumeration and triangle listing. We have implemented the
algorithms. The results show that these algorithms provide significant improvement
in performance and also scale well.

Copyright, 2015, by Naga Shailaja Dasari, All Rights Reserved.

V

ACKNOWLEDGEMENTS

Foremost, I would like to thank my advisors, Dr. Desh Ranjan and Dr. Moham­
mad Zubair, for their continuous support and guidance. They have always been very
encouraging and provided with valuable advise, both academic and non-academic. I
have been very fortunate to have them as my advisors and without their support I
would not have finished my thesis.

I would like to thank my committee members, Dr. Jing He and Dr. Bharat
Madan, for their valuable time and support, for reviewing my thesis and for con­
structive feedback.

A big fat thanks to my husband, Neel, for being by my side through out the
journey, for his love and support, and especially for taking care of our little daughter
while I work.

I would like to express my gratitude to my parents, Narasaiah and Anjani, for
their unconditional love, support, encouragement and for giving me the freedom of
choice.

I would like to thank my little daughter, Lasya, for letting me work despite how
much she hated it. Her smile and charm always kept me going.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES...viii

LIST OF FIGURES... xi

Chapter

1. INTRODUCTION... 1
1.1 BIG DATA GRAPH ANALYTICS.. 2
1.2 RESEARCH CHALLENGES IN LARGE GRAPH PROCESSING . . . 3

1.2.1 POOR LOCALITY OF REFERENCE....................................... 3
1.2.2 LOW COMPUTATION TO DATA ACCESS RATIO 4
1.2.3 SEQUENTIAL NATURE OF ALGORITHMS.......................... 4
1.2.4 LOAD BALANCING.. 4
1.2.5 SYNCHRONIZATION AND COMMUNICATION COST 5

1.3 PARALLEL ARCHITECTURES.. 5
1.3.1 SHARED MEMORY ARCHITECTURE................................... 6
1.3.2 DISTRIBUTED MEMORY ARCHITECTURE 8

1.4 OVERVIEW OF DISSERTATION AND CONTRIBUTIONS............. 8

2. ACCESS TRANSFORMATION... 12
2.1 AT-CORE DECOMPOSITION.. 15

2.1.1 DEFINITION AND NOTATIONS... 15
2.1.2 APPLICATIONS .. 16

2.2 RELATED W O R K ... 16
2.2.1 THE BZ ALGORITHM... 17
2.2.2 DISTRIBUTED ALGORITHM... 20

2.3 PARK ALGORITHM.. 21
2.3.1 DESCRIPTION.. 23
2.3.2 MEMORY ACCESS PATTERN OF THE PARK ALGORITHM 24
2.3.3 ANALYSIS OF THE ALGORITHM... 24

2.4 PARALLEL METHODOLOGY OF PARK ALGORITHM................. 25
2.5 EXPERIMENTAL RESULTS.. 27
2.6 SUMMARY ... 31

3. TASK-SET REDUCTION.. 37
3.1 MAXIMAL CLIQUE ENUMERATION .. 39
3.2 RELATED W O RK ... 41

3.2.1 SEQUENTIAL ALGORITHMS... 41
3.2.2 PARALLEL ALGORITHMS ... 43
3.2.3 THE BK ALGORITHM ... 45

Vll

3.2.4 THE TOMITA ET AL.’S ALGORITHM................................. 46
3.2.5 THE EPPSTEIN ET AL.’S ALGORITHM.............................. 48

3.3 PBITMCE APPROACH... 52
3.3.1 DEGENERACY ORDERING ... 52
3.3.2 PRE-PROCESSING... 53
3.3.3 PARTIAL BIT ADJACENCY MATRIX 53
3.3.4 ENUMERATION... 55
3.3.5 HYPERGRAPH VS P B A M ... 57
3.3.6 COMPUTATIONAL COMPLEXITY....................................... 58
3.3.7 OPTIMIZATION ... 59

3.4 SEQUENTIAL PERFORMANCE RESULTS.. 59
3.5 PARALLEL METHODOLOGY AND EXPERIMENTAL RESULTS . 63

3.5.1 LOAD BALANCING... 63
3.5.2 SCALABILITY... 66
3.5.3 RESULTS ON DISTRIBUTED ARCHITECTURE................ 66

3.6 PBITMCE ON HADOOP FRAMEWORK .. 69
3.6.1 IMPLEMENTATION... 71
3.6.2 ANALYSIS.. 75
3.6.3 EXPERIMENTAL RESULTS... 75

3.7 SUMMARY .. 80

4. TRIANGLE LISTING... 81
4.1 DEFINITION AND NOTATIONS... 81
4.2 APPLICATIONS.. 81
4.3 RELATED W O RK ... 82

4.3.1 EDGE-ITERATOR ALGORITHM... 83
4.3.2 ANALYSIS OF MEMORY LOCALITY.................................... 85

4.4 WINDO W-ITERA TOR ALGORITHM.. 86
4.4.1 MEMORY LOCALITY ANALYSIS... 86
4.4.2 IMPLEMENTATION... 88

4.5 EXPERIMENTAL RESULTS... 90
4.6 SUMMARY .. 92

5. CONCLUSION.. 93

REFERENCES... 95

VITA..105

LIST OF TABLES

Table Page

1. Details of graphs and time(in seconds) taken by BZ and ParK Algorithms,
n, m and kmax denote the number of vertices and edges (both in millions)
and the maximum core value of the graphs... 28

2. Comparing pbam and hyper graph ... 58

3. Experimental results on different datasets... 62

4. Degeneracy vs k-degree... 75

5. Time taken(in seconds) for enumeration using various orderings.............. 76

6. Comparison of edge-iterator-deg and mndow-iterator algorithms, n, m
and T refer to number of vertices, edges and triangles(all in millions) and
time(in seconds) .. 91

ix

LIST OF FIGURES

Figure Page

1. Architectural overview of Intel Xeon X7560 processor................................. 7

2. Plot showing the memory latency for random writes.................................... 13

3. An example graph showing different cores... 15

4. The k-core decomposition algorithm outline.. 17

5. The algorithm of Batagelj et al... 18

6. A figure showing the memory accesses required for an iteration in BZ
algorithm... 19

7. ParK algorithm... 22

8. A plot showing the percentage of vertices processed in first sub-level of
all the levels.. 24

9. Parallel version of ParK algorithm... 33

10. Scalability and Performance results for different graphs.............................. 34

11. Plots showing the number of sub-levels in a level and the percentage of
vertices processed in a level for rand-32-512 g rap h 35

12. Plots showing the number of sub-levels in a level and the percentage of
vertices processed in a level for rmat-32-512 g raph 35

13. Plots showing the number of sub-levels in a level and the percentage of
vertices processed in a level for com-Friendster graph................................. 36

14. Plot showing the memory latency relative to the task-set size.................... 38

15. A simple graph.. 40

16. A Moon-Moser g ra p h ... 40

17. The BK algorithm... 45

18. An example graph and its BK search tre e .. 47

19. The Tomita et al.’s algorithm ... 48

X

20. TTT search tree for the graph in Figure 18a ... 49

21. The Eppstein et al.’s algorithm... 50

22. ELS search trees for the graph in Figure 18a. The degeneracy ordering for
the graph is {2,7,1,3,4,5,6}. Each search tree in the figure corresponds
to a vertex in the graph.. 51

23. The pbitMCE algorithm... 56

24. An example h — graph and pbam ... 57

25. Plot showing the impact of degeneracy on load balance in biogrid-yeast
graph ... 64

26. Plot showing the impact of different scheduling types on the load balance
and overall time taken.. 64

27. Scalability plot for dataset 1 ... 66

28. Scalability plot for dataset 2 ... 67

29. Scalability plot for dataset 3 ... 67

30. Scalability plot for dataset 4 ... 68

31. Scalability on distributed memory architecture .. 68

32. First job ... 72

33. Second job ... 73

34. Third job ... 74

35. Comparison of time taken by pbitMCE using different orderings for cit-
Patents graph.. 78

36. Comparison of time taken by pbitMCE using different orderings for wiki-
Talk graph .. 78

37. Comparison of time taken by pbitMCE using different orderings for web-
BerkStan g ra p h .. 79

38. Comparison of time taken by pbitMCE using different orderings for co-
PapersDBLP graph.. 79

39. The edge-iterator algorithm.. 83

xi

40. The edge-iterator with degree ordering algorithm .. 84

41. Memory access pattern of the edge-iterator-deg algorithm 85

42. The uuindow-iterator algorithm ... 87

43. Memory access pattern of the window-iterator algorithm 88

44. A simple optimization... 90

45. Scalability of window-iterator algorithm .. 91

1

CHAPTER 1

INTRODUCTION

A graph is a set of vertices and edges that represent entities and the relationship
between entities, respectively. Graphs are widely used in various domains. For
example, the air traffic network can be represented using a graph where each vertex
represents an airport and an edge represents a connection between the two airports.
In a social network, each person can be represented by a vertex and the relationships
can be represented by edges. In a web graph, each web page can be represented by
a node and a hyperlink between web pages can be denoted by an edge. Graphs are
also heavily used in many other fields including computational biology, commerce
and sociometry.

The volume of data has been exploding in recent years. There is massive amounts
of data being generated every minute. According to the statistics published in 2012
[1] [2], every minute, Facebook users share over 700k posts , Twitter users send over
100k tweets, Instagram users share over 3600 photos, and over 500 new websites are

created. Walmart receives over 1 million transactions per hour which is stored in its
database which is estimated to be more than 2.5 petabytes. Now more than ever,
the data collected is being made use of. The data is processed, modified, combined,
analysed and visualized to extract useful information. The benefits of the extracted
information can be very substantial. According to a case study published in [3], UPS,
a postal service company acquired data from the sensors attached to more than 46,000
vehicles to track the speed, direction, braking and drive train performance. The data
was then analysed and led to savings of over 8.4 million gallons of fuel by cutting 85
million miles off of daily routes.

In the recent years, a lot of attention has been paid for analysis of graphs. There
has been significant rise in the breadth of problems requiring graph analytics. As a
result, it is becoming increasingly important to efficiently solve the graph problems.
There are many interesting and complex graph problems that needs to be solved for
graph analysis. Unfortunately many graph problems are computationally expensive
to solve. Coupled with the current large sizes of the graphs, it is highly challenging to
solve many graph problems in practical amount of time. One of the major challenges

2

in graph processing relates to the poor locality of reference. In this thesis, we focus
on the problem of locality and present two techniques, access transformation and
task-set reduction, to improve the memory locality in graph applications.

In this chapter, we present a brief introduction of graph analytics and its applica­
tions. We then discuss the challenges in large graph processing. A brief description of
some high performance computing systems is presented. We then present an overview
of the dissertation and contributions.

1.1 BIG DATA GRAPH ANALYTICS

In this era of big data, graphs are widely being used to model data. The graph
based problems are evolving in multiple disciplines including social networks, trans­
portation, bioinformatics, health care, security and intelligence analysis. The volume
of data being represented in graph structure is rapidly increasing. As a result, graph
analytics has emerged as a topic of great interest. Graph analytics is applied to
uncover insightful relationships between people, places, objects and other entities.
The graphs conform to the three Vs associated with big data: volume, velocity and
variety. The volume refers to the large amounts of data generated every second. The
velocity refers to the speed at which the new data is generated. The variety refers
to the different kinds of data both structured and unstructured.

Graphs analytics has large number of applications in various fields. They axe used
in health care to study the spread of diseases, to detect and prevent epidemics [4].
Graph analysis plays a crucial role in systems biology [5] [6]. It is used in the study
of protein-protein interaction complex. It is an important tool in understanding the
gene expression. Graphs are used to model the gene regulatory networks. Graph
analytics is used in finding motifs and patterns in large gene networks. It is used
in identifying new protein complexes and for studying and modelling metabolism
in various organisms. Graphs are used to represent social networks. The range of
applications of social network analysis is rapidly growing. It is used in studying
the spread of information and influence [7] [8]. It is used for targeted advertising [9],
recommender system development [10], and community detection [11]. It is also used
in intelligence, in anomaly detection, for example, in uncovering terrorist networks

[12]-

3

1.2 RESEARCH CHALLENGES IN LARGE GRAPH PROCESSING

Graph analytics is emerging as a powerful tool to extract value from big data.
However, there are many difficult challenges to be addressed. The irregular nature of
the graph processing applications makes it difficult to efficiently utilize the computa­
tional resources. As data from different domains are mapped to the graph model and
as the scale of the data continues to grow, the graph problems outgrow the current
computational and memory capabilities of sequential processors. It is essential to use
the parallel computing resources to solve problems of large scale. Unfortunately, it
is not straight forward to directly map the graph problems to the parallel hardware.
Again, the irregular structure of the graph makes it highly difficult to parallelize the
graph problems. The techniques that work for regular scientific applications may
not be suitable to solve the graph problems. In this section, we discuss the problems
involved in large graph processing.

1.2.1 POOR LOCALITY OF REFERENCE

Locality of reference is a fundamental principle of computing. It is the principle
behind the caching technique that is used to improve computer system performance.
There are two kinds of locality: temporal and spatial. Temporal locality is based
on the idea that when some data/instruction is referred to, it is likely that it will
be referred to again within a small duration. Spatial locality is based on the idea
that when data/instructions are accessed, it is likely that nearby data/instructions
will be accessed. Any data that an application needs to access is accessed through
cache memory. If the data is not present in cache memory, it is first brought to cache
memory from the global memory(main memory) and then accessed. However, if the
data is present in cache memory it can be accessed directly from cache. The access
to cache is orders of magnitude faster than access to main memory. Therefore, it is
important for an application to exploit the cache memory to improve its performance.

An important factor that adversely affects the performance of a graph application
is poor locality of reference. A graph application, typically, proceeds by visiting
vertices. Visiting a vertex refers to accessing its adjacency list or some other data
related to the vertex. The order in which the vertices are visited is very random
in nature for many graph applications. Therefore, those graph applications tend to
have highly random memory access pattern. By random access we mean access to

4

memory addresses that are not sequential and that are not to the same address or
adjacent addresses. The principle of locality might not be applicable when the access
pattern is random. The cache utilization for many graph applications is low when
processing large graphs, resulting in high data access time. Therefore, it is hard to
extract good performance from such graph applications, even on serial computers.

The random access pattern also makes it difficult for the hardware prefetcher to
work efficiently. Most modern processors are equipped with hardware prefetchers.
The purpose of a prefetcher is to bring the data from the memory into the cache
before they are needed. When the application needs to access data that has been
prefetched, it can directly access it from the cache instead of waiting for it to be
loaded from main memory. The prefetching mechanism can result in significant per­
formance improvement as it reduces the number of cache misses. A prefetcher works
by monitoring the data access pattern and predicting which data will be accessed.
However, in the case of many graph applications, since the memory access pattern is
random, it is often difficult for the prefetchers to predict which data will be accessed.

1.2.2 LOW COMPUTATION TO DATA ACCESS RATIO

Many graph applications only explore the vertices and edges of the graph without
performing large computations using the accessed data. The applications spend most
of the time accessing the data and there is very little computation performed on the
accessed data. In applications involving large amount of computations it is often
possible to hide the memory latency by overlapping the data access with computation.
However, in case of aforementioned graph applications, since the computation to data
access ratio is low, it is difficult to hide the memory latency using computation.

1.2.3 SEQUENTIAL NATURE OF ALGORITHMS

Most traditional graph algorithms are sequential in nature. The outcome of an it­
eration/task influences the following iteration/task. So the iterations/tasks can only
be executed in sequence. It is difficult to efficiently map the traditional algorithms
to the current parallel systems. Therefore, for many graph problems new parallel
algorithms have been developed that can take advantage of the parallel resources.
However, often these algorithms come at the expense of increased computational
complexity. In most cases, the parallel implementations fail to outperform the most
efficient sequential implementations.

5

1.2.4 LOAD BALANCING

Another major challenge in developing parallel graph applications is load balanc­
ing. For most graph problems, the computations are data-driven. The computations
performed by an application is dictated by the graph structure. For efficient paral-
lelization the tasks must be fairly distributed among the available computing units.
In the case of graph algorithms, it is difficult to predict the work load corresponding
to a task. The work load is not known until the data assigned to a task is accessed.
Adding to this, many graphs in real world networks are irregular and have highly
unbalanced degree distribution. This poses additional challenges in achieving load
balanced partitioning.

1.2.5 SYNCHRONIZATION AND COMMUNICATION COST

The parallelism in most graph applications is fine-grained. It is difficult to divide
a task into multiple tasks that can work independently. Often the tasks need to
communicate and synchronize. In multicore architecture, the tasks communicate by
reading and writing data into common segments of shared memory. Each core has
one or more private caches. When multiple tasks are accessing the same data, it is
possible to have copies of the data in multiple caches. To maintain consistency of
the data, cache coherency protocols are used. The cache coherency protocols can
severely impact the scalability of the application.

Synchronization is essential for the correctness of the algorithms. However, heavy
synchronization can result in degraded performance. Synchronization is achieved in
multicore architecture using barriers, locks and atomic operations. These constructs
are expensive and often result in temporarily blocking the tasks. Therefore, it is
necessary to carefully design applications so that the impact of cache coherency
protocols and synchronization is minimized. In distributed memory systems, the
tasks communicate by passing messages. Since most graph applications exhibit fine­
grained parallelism, the communication cost can be very significant.

1.3 PARALLEL ARCHITECTURES

With the current scale of the graphs and the rate at which it is growing, it is
becoming inevitable to use parallel computing. The current graphs are very large,
with number of vertices and edges ranging from several millions to billions. The

6

current workstations are incapable of processing such large graphs in practical time
due to physical memory limitations and also the processing capacity. In recent years,
there have been significant advance in parallel computing capabilities. There are
different types of parallel architectures currently available. Based on the memory
accessibility, they can be classified into shared memory and distributed memory
architectures.

1.3.1 SHARED MEMORY ARCHITECTURE

In shared memory architecture all the processors have access to all memory as
global address space. The processes can run in parallel on multiple processors/cores
and they communicate by reading from and writing into the shared memory. Mul­
ticore processors are the most commonly used systems with shared memory archi­
tecture. Over the past few decades, there has been a consistent improvement in the
computational power of the hardware. According to Moore’s law, the number of tran­
sistors in an integrated circuit has doubled approximately every two years. However,
due to heating issues and increased power consumption, it has become impractical
to follow the phenomenon. Instead, the industry has moved toward multicore pro­
cessors, which contain multiple computing units called cores integrated on a single
chip.

Multicore processors typically have multiple levels of caches and may also have a
shared cache. In this dissertation, most of the results are obtained using Intel Xeon
X7560 processor. It has four sockets and each socket has eight cores. Figure 1 shows
an overview of the architecture. Each core has a 32KB LI data cache and 256KB L2
cache. Additionally, there is also an L3 cache of size 24MB which is shared by all
the cores in a socket. All the sockets are connected using a high speed QuickPath
Interconnect which gives over a lOOGB/sec bandwidth. IMC and QPI in the figure
refer to integrated memory controller and QuickPath Interconnect respectively.

Shared memory machines are often classified into uniform memory access and
non-uniform memory access(NUMA), based on the memory access times. In uniform
access, all the processes take equal time to access the memory. These are often called
as symmetric multiprocessors(SMP). In NUMA architecture, the memory access time
depends on the memory location relative to the processor. These are often made
by linking multiple SMPs like the X7560 architecture shown in Figure 1. Each
core has access to memory in all the sockets but the access to non-local memory is

7

(a) Single Socket

M H M u I l H H R B
■MM1k J
— — iMI m i
H H y UH M I

(b) Four sockets connected using Quick Path Interconnect

Figure 1: Architectural overview of Intel Xeon X7560 processor

slower. OpenMP and Pthreads are the most common programming interfaces used
for developing programs for shared memory architecture.

1.3.2 DISTRIBUTED MEMORY ARCHITECTURE

Distributed memory architecture constitutes multiple processors connected by a
communication network. Each processor has its own local memory. Memory ad­
dresses of one processor do not map with another processor. Interprocess communi­
cation is achieved using message passing. The individual processors in a distributed
architecture are usually made of commodity hardware.

MPI is the most commonly used interface for distributed computing. In dis­
tributed memory machines, the users are responsible to distribute the data among
the processors and assigning tasks to the processors. When a processor needs to ac­
cess the data in another processor, it is usually the task of the programmer to define
how the data will be communicated. As the processors are connected by a network,
the remote access time can take much longer time than the local access time, based on
the network. The communication time is an important aspect to be considered when
developing applications for distributed systems. The major advantage of distributed
systems is its scalability. The computing and memory capacity of a distributed sys­
tem can easily be extended by adding more processors. However, as the number of
processors in a distributed system increases, so does the chance of hardware, software
or network failures. Since programming on distributed systems can be an arduous
task, there are many frameworks developed to make the task of programming easier.
These frameworks provide features like fault tolerance, load balancing, scalability
and reliability. The most popular frameworks include MapReduce [13], Spark [14],
Pregel [15] and Graphlab [16]. Among these Pregel and Graphlab are developed for
graph processing.

1.4 OVERVIEW OF DISSERTATION AND CONTRIBUTIONS

The performance of many graph processing applications is dominated by memory
access time. Therefore, it is critical to exploit the data locality to improve the per­
formance. Graph processing application have highly random memory access pattern.
When the graph size is large, random access to large data results in frequent cache
misses, resulting in degraded performance. Optimizing the data locality is well stud­
ied for regular applications like linear algebra. Blocking is a well known optimization

9

technique that improves the effective cache utilization [17]. The idea of blocking is
to organize the memory accesses such that a small subset of data is loaded into the
cache and is used/reused. It ensures that the data remains in cache across multiple

accesses. The technique has been proven to be very effective for regular applications.
In this dissertation, we propose two techniques to improve the locality in graph

algorithms: access transformation and task-set reduction. Access transformation
technique changes the random memory access pattern in an application to more
of a sequential access pattern. In many graph algorithms, the vertices/edges are
systematically processed based on some property. In each iteration, a subset of
vertices are processed. Most often the vertices are processed in a random order and
the order is determined by some data structure. The key idea of access transformation
technique is to use scan-and-extract operation in each iteration which sequentially
scans all the vertices and extracts the vertices that are to be processed in a given
iteration. The order of vertices obtained by the scan-and-extract operation is more
likely to result in sequential access improving the spacial locality of the algorithm.
We show the applicability of the technique using the k-core decomposition algorithm
and triangle listing algorithm.

The task-set reduction technique focuses on improving the temporal locality. We
define task-set as the collection of data that is repeatedly accessed to process a
task. If the size of task-set is very large, then repeated random accesses to the
data in task-set can result in large number of cache misses, severely impacting the
performance. It is, therefore, very crucial to keep the task-set to a minimal size.
Task-set reduction can be achieved in different ways like compression, blocking and
elimination. Compression refers to storing the data using minimal amount of memory.
By carefully examining the nature of the data and possible values of the data, it is
often possible to reduce the size of the data structure that stores the data. For
example, representing data in bit format can result in significant reduction in task-
set size. The blocking technique [17] used for regular applications can also be used
for task-set reduction. The idea is to partition the tasks such that each task works
on a smaller task-set. However, unlike in regular applications, it may not be easily
applicable. It might require significant changes to the algorithm to utilize blocking
technique. Elimination refers to disposing of data structures which store data that
can be extracted using other sources/data structures.

In this dissertation, we propose algorithms using these techniques for three graph

in

problems: k-core decomposition, maximal clique enumeration and triangle listing.
The k-core of a graph is the largest induced subgraph with minimum degree k. The
largest value of k that a vertex belongs to a k-core is called core number of the vertex.
The k-core decomposition problem is to find the core number of all the vertices in a
graph. It has applications in many areas including network analysis, computational
biology and graph visualization. The primary reason for it being widely used is the
availability of an 0 (n + m) algorithm. The algorithm was proposed by Batagelj and
Zaversnik [18] and is considered the state-of-the-art algorithm for k-core decomposi­
tion. However, the algorithm is less suitable for parallelization and to the best of our
knowledge there is no algorithm proposed for fc-core decomposition on multicore pro­
cessors. Also, the algorithm has not been experimentally analyzed for large graphs.
In Chapter 2, we present an experimental analysis of the algorithm of Batagelj and
Zaversnik and propose a new algorithm, ParK, that uses the access transformation
technique to improve the memory locality. We provide an experimental analysis of
the algorithm using graphs with up to 65 million vertices and 1.8 billion edges. We
compare the ParK algorithm with state-of-the-art algorithm and show that it is
up to 6 times faster than the state-of-the-art algorithm. We also provide a parallel
methodology and show that the algorithm is amenable to parallelization on multicore
architecture. We present experimental results obtained using a 4 socket Nehalem-EX
processor which has 8 cores per socket which show that the algorithm scales up to
21 times using 32 cores.

A clique in a graph is a subgraph in which every pair of vertices is connected by an
edge. A maximal clique is a clique which is not contained in any other clique. Maxi­
mal clique enumeration(MCE) problem is to find all the maximal cliques in a graph.
MCE is a fundamental problem in graph theory. It plays a vital role in many network
analysis applications and in computational biology. MCE is an extensively studied
problem [60] [61] [32] [65] [69]. Recently, Eppstein et al. [32] proposed a state-of-the-
art sequential algorithm that uses degeneracy based ordering of vertices to improve
the efficiency. In Chapter 3, we present an analysis of task-set size of Eppstein et
al.’s algorithm. We propose a new algorithm using the task-set reduction technique.
The new algorithm uses a new bit-based data structure. The new data structure
not only reduces the task-set size significantly but also improves the performance of
the algorithm by enabling the use of bit-parallelism. We illustrate the significance
of degeneracy ordering in load balancing and experimentally evaluate the impact of

11

scheduling on the performance of the algorithm. We present experimental results
on several types of synthetic and real-world graphs with up to 50 million vertices
and 100 million edges. We show that our approach outperforms Eppstein et al.’s
approach by up to 4 times and also scales up to 29 times when run on a multicore
machine with 32 cores. We have also implemented the new algorithm on distributed
architecture and the experimental results show that the algorithm scales well, upto
106 times using 128 processes.

A triangle in a graph refers to a clique of size 3. Triangle listing problem is to find
all the triangles in a graph. The triangle counting/listing problems are of high interest
in network analysis applications. They are primarily used in finding a key statistical
property of a graph called clustering coefficient. Many algorithms for the triangle
listing problem exist in the literature [92] [93] [94]. Out of those, the edge-iterator
algorithm [93] is the most widely used algorithm. The algorithm repeatedly accesses
the adjacency lists of the vertices and in random order resulting in poor memory
locality. In Chapter 4, we propose a new algorithm, called window-iterator that uses
the access transformation and task-set reduction techniques to improve the locality.
Unlike, the edge-iterator algorithm, the window-iterator algorithm has limited num­
ber of iterations, each iteration working on a smaller task-set. The window-iterator
outperforms the edge-iterator algorithm for large graphs(upto 1.4 times) and the gap
increases as the graph size increases. We have implemented the approach for multi­
core architecture. Our experimental results show that the new algorithm scales well,
more than 29 times using 32 cores.

12

CHAPTER 2

ACCESS TRANSFORMATION

Graphs are ubiquitous. There are many interesting and complex graph problems
that have applications in different domains. Graph problems have been well stud­
ied and there exist efficient algorithms for most of the problems. The main focus
of the traditional algorithms was to reduce the computational complexity. Though
many algorithms are NP-hard, since the graphs were small in size, the problems were
solvable in practical amount of time. However, since the graph problems are being
applied in a variety of domains and as the graph sizes are rapidly growing, it is be­
coming increasingly important to redesign traditional algorithms considering various
other factors like memory access pattern, data structures and memory bandwidth.

One of the major factors governing performance of graph algorithms is poor
locality of reference. The memory access pattern in most graph algorithms is highly
random. The random access pattern coupled with the large size of the graphs results
in poor utilization of the cache memory. Most of the data accesses result in cache
misses and the data has to be accessed from the main memory which has greater
latency, degrading the performance of the application.

In this chapter, we present a technique called access transformation which im­
proves the locality of reference by changing the memory access pattern. Many graph
algorithms are based on systematic exploration of the graphs. They traverse the
nodes in some order that is specific to the problem. For example, in BFS, the nodes
are traversed based on their distance from the source node, in k-core decomposition
algorithm, the nodes are traversed based on their degree. The algorithms explore the
graphs in multiple iterations, processing a subset of nodes in each iteration. However,
the order of vertices processed in an iteration is mostly random which can severely
impact the performance.

To show the impact of random access, we ran an experiment which performs read
and writes on all the elements in an integer array in random order. The graph in
Figure 2 clearly shows that the memory latency increases as the data size increases.
The array size is shown in millions(m) and billions(b).

13

T3cood)W

Viffl

o
Vico

90

80

70

60

50

40

30

20

10
2m 4m 8m 16m 32m 64m 128m 256m 512m 1b

array size

Figure 2: Plot showing the memory latency for random writes

The access transformation technique refers to changing the random access pat­
tern to sequential access. In some algorithms it may be straight forward to achieve
it while in some cases it may be required to redesign the algorithm. Often, some
data structure is used to store problem specific data such as the vertices to be pro­
cessed in the next iteration, the order of vertices, or the distance of a vertex from a
source vertex. This data structure, in general, governs the access pattern of the next
iteration. The main idea behind access transformation technique is to use scan-and-
extract operation to extract the data when required instead of storing it in a data
structure. By eliminating the random access causing data structure, the operation
results in a relatively more sequential access pattern thus improving the performance
of the application.

The scan-and-extract operation reduces the random nature of the access pattern.
However, it comes at the expense of increased number of operations which are re­
quired for the scan operation. As, the scan operation is performed in each iteration,
if the number of iterations is too high, the overall time taken for the scan operation
can be significant and might result in degraded performance. Therefore, the number

14

of iterations and the cost of scan-and-extract operation must be considered when
applying the access transformation technique.

The technique is inspired from the paper [19] which proposes a new read-based
algorithm for BFS. The traditional BFS algorithms are queue-based in which a queue
is used to store the vertices to be processed. Processing a vertex involves accessing its
adjacency list (array) and adding its neighbors to the queue if they have not already
been processed. The vertices are added in random order to the queue resulting in
a highly random access pattern. The new algorithm eliminates the use of queue
by scanning all the vertices to extract the vertices that are to be processed in the
current iteration. Since the vertices extracted are not in random order, the algorithm
improves the opportunity of sequential access pattern and is shown to outperform
the traditional BFS algorithms.

The access transformation technique is applicable to algorithms with limited num­
ber of iterations that process a subset of vertices in each iteration. The applicability
of the technique is, nevertheless, not limited to those algorithms. It is a more general
approach and can also be applied in other scenarios. However, the algorithms might
need to be redesigned to limit the number of iterations. For example, the triangle
listing problem has highly random access pattern but the algorithm has large number
of iterations. In Chapter 4, we show how the algorithm can be redesigned to limit
the number of iterations facilitating the use of access transformation technique and
also the task-set reduction technique discussed in the next chapter.

There is also an added advantage to the access transformation technique. The
technique, in general, results in an approach that is amicable to parallelization. Since
the random access pattern limits the benefits of parallelism, by transforming the ac­
cess pattern to sequential the technique results in a better scalable approach. We
have seen that the access transformation technique can be used at the expense of
increased cost of scan-and-extract operation. However, the scan-and-extract opera­
tion is embarrassingly parallel and the computational time for the operation can be
greatly reduced by using parallelism.

In the rest of the chapter, we show how the access transformation technique can
be applied to the k-core decomposition algorithm. We first present, in Section 2.1,
some definitions and notations and then in Section 2.2 explain in detail the state-of-
the-art algorithm for k-core decomposition focusing on its memory access pattern.
In Section 2.3, we discuss how the access transformation technique can be used for

15

Figure 3: An example graph showing different cores

this problem and present a new algorithm, called ParK, that adopts the technique.
The parallel methodology of ParK algorithm is discussed in Section 2.4. In Section
2.5, we present the experimental results using various graphs from different datasets
and show that the new algorithm outperforms the start-of-the-art algorithm by upto
6 times and the performance gap becomes larger as the graph size grows. Also the
new algorithm is scalable resulting in speed-up of upto 21 time using 32 cores.

2.1 A-CORE DECOMPOSITION

The k-core of a graph is the largest induced subgraph with minimum degree k.
The notion of a core was first introduced in 1983 by Seidman et al. [20], Since then, it
has been extensively studied and used in applications in many areas including network
analysis, computation biology and visualization, k-core has been primarily applied in
identifying the cohesive subgroups in a network. Many notions can be considered for
identifying such groups including cliques, A;-plexes, n-cliques [21]. While most other
approaches are computationally expensive, A;-core decomposition can be computed
in linear time.

2.1.1 DEFINITION AND NOTATIONS

Let G = (V,E) be a graph where V is the set of vertices and E is the set of
edges and let n — |F | and m = |E|. The k-core of the graph G, is the largest

16

induced subgraph in which every vertex has degree at least k. The core number or
coreness of a vertex v, is the largest value of k for which v belongs to the k-core
i.e. core(v) = max{k\v € fc-core}. Note that (k + l)-core is a subset of k core. A
fc-shell of a graph G is the subgraph induced by the set of vertices in G whose core
number is k, i.e. the vertices that belong to k-core but not (k + l)-core. In Figure
3, all the vertices inside the blue, green and red boundaries belong to 1-core, 2-core
and 3-core respectively. The vertices colored in blue, green and red belong to 1-shell,
2-shell and 3-shell respectively and have core numbers 1, 2 and 3 respectively. The
problem of k-core decomposition of the graph is to find all the k-cores of the graph

or in other words, find the core numbers of all the vertices in the graph. In the rest
of the chapter, we use N(y) to denote the neighborhood of v (note that v £ jV (v))

and core(v) to denote the core number of v. The degree of vertex v is denoted by
deg(v). n and m denote the number of vertices and edges in the graph, respectively.

2.1.2 APPLICATIONS

k-core decomposition has been used in analyzing and understanding the internet
topology [22] [23]. It has been used in the study of influential spreaders in complex
networks [24]. It was shown that the most efficient spreaders are those located
within the core of the network. It was used in detecting dense communities in
large, social networks [25] [26]. k-core decomposition is considered as an important
tool in visualization [27] [28j[29j. In computational biology it was used in analyzing
and detecting protein interactions [30] and analyzing gene networks [31]. fc-core
decomposition is used as a pre-processing step in other graph problems like finding
maximal and maximum cliques [32] [33]. It is considered an important tool in network
analysis and is included in network analysis packages [34] [35] [16].

2.2 RELATED WORK

The algorithm for computing the core numbers of all the vertices in the graph
is shown in Figure 4. It involves repeatedly removing the minimum degree vertices
from the graph. The degree of the vertex when it is being removed is the core number
of the vertex. The function getSmallestDegreeVertex in Figure 4 returns the smallest
degree vertex in the remaining graph. The main challenge in k-core decomposition
is to find, in each iteration, the minimum degree vertex in the remaining graph. A
simple way is to scan the degrees of all the vertices in the graph. Clearly, this method

17

1: while G is not empty do
2: v = getSmallestDegreeVertex(G)
3: core(v) = deg(v)
4: for each vertex u e 7V(u) do
5: decrement deg(u) by 1
6: end for
7: delete v from G
8: end while

Figure 4: The fc-core decomposition algorithm outline

is highly inefficient. Another method is to maintain a sorted list of vertices. This is
the idea behind the BZ algorithm explained in the next section.

2.2.1 THE BZ ALGORITHM

The algorithm for k-core decomposition that is considered state-of-the-art is pro­
posed by Batagelj and Zaversnik (we refer to it as BZ algorithm in the rest of the
chapter). It is a linear time algorithm. It solves the problem of finding the minimum
degree vertex in the graph by maintaining a list of vertices sorted in increasing order
of degree. In each iteration, when a vertex is processed and the degree of its neigh­
bors is reduced, the neighbors are moved to the appropriate position in the sorted
list. The algorithm uses count sort to compute the initial sorted list.

Figure 5 shows the BZ algorithms. The algorithm takes the graph G as input.
It uses four arrays: deg, vert, pos and bin, to keep tract of their degree and the
order of the vertices to be processed. The arrays deg, vert, pos are of size n, where
n is the number of vertices in the graph. The array bin is of size M + 1 where M
is the maximum degree of the graph. The function getSortedArray takes the graph
as input, It initializes the four arrays and returns them as output. The array deg is
initialized to contain the degree of the vertices in the graph. Note that the vertices
are numbered from 0 to n — 1. deg[i\ represents the degree of vertex i. The vert
array contains all the vertices in the graph in increasing order of degree. The pos
array stores the positions/indexes of vertices in vert array. For example, if vertex u
is at index i in vert array i.e vert[i] = u, then pos[u) = i. The sorted array vert can
be viewed as an array of bins, each bin containing a set of vertices of same degree.
So, the array vert is nothing but bin of degree 0 vertices followed by bin of degree 1

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

18

procedure kcoreBZ(G)
(deg, vert, pos, bin) = getSortedArray(G)
for i = 0 to n — 1 do

v = vert[i]
for each vertex u E N(v) do

if deg[u] > deg[v] then
pu — pos{u\
pw — bin[deg[u]] t> get the position of first vertex in bin
w = vert\pw\ > get the first vertex in bin
if u ^ w then

vert\pu] = w vert\pw\ = u t> swap u and w in vert
pos[w} = pu pos[u] = pw > update their positions in pos

end if
increment bin[deg[u}} by 1
decrement deg[u] by 1

end if
end for

end for
end procedure
function getSortedArray(G)

maxDeg — 0
for i — 0 to n — 1 do

deg[i] = getDegree(i, G)
if deg[i] > maxDeg then maxDeg = deg[i] end if

end for
for i = 0 to maxDeg do bin[i\ = 0 end for
for i = 0 to n — 1 do increment bin[deg[i]\ by 1 end for
start = 0
for i — 0 to maxDeg do

num = bin[i]
bin[i] = start
increment start by num

end for
for i = 0 to n — 1 do

pos[i] = bin[deg[i]]
vert\pos[i\\ = i
increment bin[deg[i]] by 1

end for
for i = maxDeg down to 1 do bin[i] — bin[i — 1] end for
return (deg, vert,pos, bin)

end function

Figure 5: The algorithm of Batagelj et al.

19

0 u n-1
deg

bin

vert

pos

Figure 6: A figure showing the memory accesses required for an iteration in BZ
algorithm

vertices and so on. The array bin contains the index of the first vertex in each bin
i.e. bin[i] contains the index of the first vertex with degree i in the vert array.

The function getSortedArray uses count sort to compute the sorted array vert
which can be computed in 0 (n) time. The function getDegree in line 23 returns the
degree of a vertex. Once the initial four arrays are returned by the getSortedArray
function, the vertices are processed one at a time in the order given in vert array.
Processing a vertex v involves reducing the degree of all its neighbors by 1 and
updating the vert, pos and bin arrays accordingly. Whenever, the degree of a vertex
is decremented (by 1) it needs to be moved to appropriate bin (to the preceding
bin). To achieve that, the vertex is swapped with the first vertex in the current
bin by updating appropriate values in vert and pos arrays. And then, bin array is
updated such that the vertex belongs to the preceding bin. The time complexity of
the algorithm is shown to be 0 (n + m).

Memory access pattern in BZ algorithm

We have seen that BZ algorithm provides a linear time solution for k-cove de­
composition and is considered the state-of-the-art algorithm. However, we observe
that the memory access pattern of the algorithm is more random in nature. As can
be seen in Figure 5, the algorithm uses four arrays deg, vert, pos and bin. It can
be observed that the memory access pattern of these arrays is highly random. Each
iteration requires random read and write access to these arrays. Figure 6 shows the

\w u 1
1

0 u
1 1

w n-1
pu pw

du

0________ du M
pw

20

memory accesses required when a vertex v is processed and its neighbor it’s degree
is reduced, du in the figure denotes deg[u). The operation requires read and write
access to deg[u], vert\pu\, vert\pw], pos[u], pos[w] and bin[du]. Notice that all these
data elements are in random positions in the four arrays. While the size of bin array
may be small, the sizes of the other three arrays can be very large. So there is a high
chance that the access to each of these data elements incurs a cache miss and requires
access to main memory. The access pattern of the adjacency lists also impacts the
performance. It can be seen from Figure 5 that the adjacency list of a vertex is
accessed exactly once in the algorithm. The order in which the adjacency lists are
accessed is governed by the vert array. Though, the accesses are more sequential in
the initial iterations, as the vertices are processed and as the vert array is updated,
the access pattern of adjacency lists becomes more random in nature.

Parallelizing the BZ algorithm

We have seen in Section 2.2.1 that the vert array can be viewed as an array of
bins. Each bin consists of vertices of same degree. Parallelizing the BZ algorithm
for multicore architecture can be done by distributing all the vertices in a bin to the
available processing units. Each processing unit processes the vertices assigned to
it. Recall that processing a vertex involves reducing the degree of its neighbors and
accessing multiple locations in the four arrays (for example, in Figure 6 the locations
deg [it], vert\pu], vert\pw], pos [it], pos[w] and bin[du] are accessed). However, since
multiple processing units are sharing the four arrays and reading and writing into
the arrays, it might result in race conditions and inconsistent results. To avoid that,
synchronization constructs like locks need to be used. For example, in Figure 6, all
the data elements deg [it], vert\pu], vert\pw\, pos [it], pos{w\ and bin[du] should be
locked before reading from and writing into them. Due to the high cost of synchro­
nization constructs which are very expensive, the BZ algorithm is not amicable to
parallelization.

2.2.2 DISTRIBUTED ALGORITHM

There is a distributed algorithm proposed for k-core decomposition [36]. Each
process is assigned a set of vertices and is responsible for calculating the core numbers
of the vertices assigned to it. If there are p processes, numbered 0 to p — 1, then a
vertex i is assigned to the process numbered i mod p. For each vertex assigned to

21

a process, it stores an array consisting of core numbers of its neighbors. The core
number of each vertex is initialized to the degree of the vertex and is updated during
the decomposition process. The algorithm is based on the idea that the core number
of a vertex can be calculated based on the core number of its neighbors according to
the following theorem:

Theorem: For each vertex u £ V, core(u) = k if and only if

1. there is a subset 14 Q N(u) such that |14| = k and W £ 14 : core(v) > k

2. there is no subset 14+i C N(u) such that |V*+i| = k + 1 and Vu £ 14+i :
core(v) > k + 1

The core number of the vertices is calculated using the core number of their neigh­
bors. Once the core number of a vertex is updated it is communicated to the other
processes to which its neighbors are assigned. This is repeated until core number of
none of the vertices is updated. Unlike the BZ algorithm, in which the adjacency list
of a vertex is accessed only once, the adjacency list of a vertex is accessed multiple
times i.e. whenever the core number of any of its neighbors is updated. This approach
results in significant increase in number of operations. Therefore, it is more suitable
to a distributed environment where there are large number of computing nodes and
each computing node is assigned only a few vertices. However, this approach is less
suitable for multicore architecture with only a limited number of threads and each
thread is assigned large number of vertices. Since each thread has to repeatedly ac­
cess the adjacency lists of the vertices assigned to it, the working set for the thread
consists of all its vertices and their neighbors which can be too large to fit in cache
memory thus resulting in poor locality of reference.

There are approaches proposed for for k-core decomposition of dynamic networks
[37] [38] [39], These approaches primarily focus on efficiently maintaining the core
numbers of the vertices as the graph changes over time.

2.3 P A R K ALGORITHM

The k-core decomposition problem is a good candidate for applying the access
transformation technique. It uses different arrays (vert, pos, bin) that result in
random memory access pattern. Though the original approach, i.e. BZ, requires n
iterations, it can easily be modified to limit the number of iterations to maximum de­
gree, M. We propose a new algorithm for k-core decomposition called ParK (parallel

1
2
3
4
5
6
7
8
9

10
11
J2
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

22

procedure kcoreParK(G)
todo = n
level = 0
for i = 0 to n - 1 do deg[i\ = getDegree{i, G) end for
while todo > 0 do

curr = scan-and-extract {deg, level)
while | curr | > 0 do

decrement todo by |curr|
next = processSublevel(curr, deg, level)
curr = next

end while
increment level by 1

end while
end procedure
function scan-and-extract(deg, level)

curr = 0
for i = 0 to n — 1 do

if deg[i] — level then
add i to curr

end if
end for
return curr

end function
function processSublevel(curr, deg, level)

next = 0
for each vertex v in curr do

for each vertex u adjacent to v do
if deg[u] > level then

decrement deg [u] by 1
if deg[u] = level then

add u to next
end if

end if
end for

end for
return next

end function

Figure 7: ParK algorithm

23

fc-core) which adapts the access transformation technique. The algorithm eliminates
the use of the three arrays (vert, pos and bin) and uses scan-and-extract operation
to get the list of vertices to be processed in an iteration.

2.3.1 DESCRIPTION

The ParK algorithm processes the vertices in levels. Processing a vertex refers
to accessing its adjacency list and reducing the degree of its neighbors that have not
already been processed. In level i, all the vertices in shell i are processed (recall that
fc-shell contains all the vertices that belong to fc-core but not k -F 1-core). The ParK
algorithm is based on the idea that instead of maintaining a sorted array of vertices,
we can generate the array at each level. The outline of the ParK algorithm is given
in Figure 7. The algorithm uses three arrays deg, curr and next. The deg array is
initialized to contain the degree of the vertices similar to the BZ algorithm. Note
that the vertices in the graph are numbered from 0 to n — 1. deg[v] contains the
degree of vertex v. As the vertices are processed and degree of their neighbors are
reduced, the deg array is updated. The deg array at the end of kcoreParK procedure
contains the core numbers of all the vertices in the graph.

Processing a level I is done in two phases: scan phase and loop phase. In scan
phase (which is same as scan-and-extract operation in access transformation tech­
nique), the deg array is scanned and the vertices that are to be processed in the
current level are extracted into curr array. Note that the vertices in curr are in
sequential order i.e. if u = curr[i} and v = curr\j] where i < j then u < v. The scan
phase is performed using scan-and-extract function given in Figure 7. The loop phase
consists of one or more sub-levels (or iterations). In each sub-level, all the vertices
in curr array are processed. When processing a vertex v in curr, if any neighbor
vertex, u, is moved to the current level i.e. deg[u] is reduced to I, then u is added
to next array. At the end of each sub-level, the contents of next are transferred to
curr so that they can be processed in the next sub-level. The lines 7 through 11
in Figure 7 correspond to the loop phase. The processSublevel function in Figure 7
processes the vertices in current sub-level and returns the array of vertices that are
to be processed in the next sub-level.

dataset

Figure 8: A plot showing the percentage of vertices processed in first sub-level of all
the levels

2.3.2 MEMORY ACCESS PATTERN OF THE P A R K ALGORITHM

As can be seen in Figure 7, the ParK algorithm uses three arrays deg, curr and
next arrays. The read and write accesses to curr and next arrays is sequential. Also,
the access to deg array in scan-and-extract function is sequential. However, the loop
phase requires random access to the deg array (line 28 in Figure 7). Note that, BZ
algorithm also performs the same random accesses to the deg array.

The access pattern of the adjacency lists in ParK algorithm is governed by the
order in which vertices are added to the curr and next arrays. In the scan-and-
extract function, the order of vertices added to the curr array is guaranteed to be
sequential. Therefore, the first sub-level in each level of the algorithm results in
sequential access of the adjacency lists. However, in subsequent sub-levels there is
no such guarantee and the adjacency lists are accessed in random order. From our
experiments, we observe that, for most graphs, the majority of vertices are processed
in first sub-level. The plot in the Figure 8 shows the percentage of vertices processed
in first sub-level in all the levels.

25

2.3.3 ANALYSIS OF TH E A LG O RITH M

In this section, we analyse the time complexity of the ParK algorithm.
Lem m a 1. The maximum number of levels in ParK algorithm is kmax, where

kmax is the largest value of k for which k-core is present in the graph.
Proof: The algorithm uses a variable todo to keep track of the number of vertices

to be processed. It can be seen from the procedure kcoreParK in Figure 7 that todo
is decremented in each sub-level by the number of vertices processed in the sub-level.
Therefore, todo always contains the count of number of vertices to be processed.
Since at the end of level kmax all the vertices have been processed and the value of
todo is zero, the maximum number of levels is kmax.

Lem m a 2. The combined time taken for scan phase in all the levels is 0 (k maxn)
Proof: The scan phase in each level takes 0(n) and since there are kmax levels,

the combined scan time for all the levels is 0 (kmaxn)
Lem m a 3. The combined time taken for loop phase in all the levels is 0 (m)
Proof: In a single call to processSublevel a subset of vertices is processed. Com-

binedly in all the calls to processSublevel, all the n vertices are processed. Note
that, each vertex is processed exactly once i.e. when its degree becomes equal to the
current level. We have seen that processing a vertex v includes reducing the degree
for each of its neighbor if it has not already been processed which takes 0(dv) time
where dv is the degree of vertex v. Therefore, to process all the n vertices it takes

0 (m) time.
Combining lemmas 2 and 3 (and 0(m) time for line 4), the computational com­

plexity of ParK algorithm is 0(fcmairi 4- m). Though the computational complexity
of BZ algorithm, which is 0 (n + m), is less compared to the ParK algorithm, our ex­
perimental results show that ParK algorithm outperforms BZ algorithm. The reason
is that by using the scan phase, ParK significantly reduces the number of random
memory access resulting in better locality of reference. The BZ algorithm requires
random read and write accesses to three different arrays of size n while in ParK
algorithm requires random access to only one array. Though the theoretical time
taken for the scan phase seems significant, in practice the time taken for scan phase
is less compared to the time saved due to the scan phase. Another major advantage
of scan phase is that it is embarrassingly parallel. It can easily and efficiently be
distributed among different processors and can scale linearly.

26

2.4 PARALLEL METHODOLOGY OF PA R K ALGORITHM

In this section, we describe a level-synchronous approach to parallelizing the
ParK algorithm. We have seen that the ParK algorithm processes the vertices
in levels. Since the number of levels is limited, there is generally sufficient degree
of parallelism available in each level. Parallelizing the ParK algorithm involves
individually parallelizing the two phases in the algorithm: scan phase and loop phase.
Parallelizing the scan phase is simple and trivial. The n vertices are equally divided
among the t threads and each thread scans n /t vertices. Note that distributing the
n vertices among t threads can be done in several ways. To minimize cache misses,
contiguous chunks of vertices are assigned to the threads. To process each vertex,
a thread reads its degree and if it is equal to the current level it adds the vertex to
curr array. Since there are only a few operations performed for each vertex, the load
is well balanced resulting in linear speed-up.

Though, it is simple to parallelize the scan phase, there is one issue to be ad­
dressed. It is to be noted that, the array curr is shared between all the threads and
multiple threads writing to it may result in race conditions. The parallel version of
scan — and — extract function that addresses the issue of race conditions is shown
in Figure 9. The function atomicIncrement{idx, 1) increments the value of idx by 1

and returns its old value atomically (implemented using atomic capture construct in
OpenMP). Using atomic operations the race conditions are eliminated. However, the
atomic operations are expensive and too many atomic operations can significantly
downgrade the performance. To reduce the number of atomic operations, the ver­
tices are added in batches instead of a single vertex. We use a local buffer of size
b. Instead of adding each vertex to curr, they are first added to the local buffer.
When the buffer is full, idx is atomically incremented by b and all the vertices are
transferred from local buffer to curr. This reduces the number of atomic operations
by a factor of b. Note that, to avoid cache invalidation we choose the size of local
buffer to be a multiple of cache line size.

The major component in loop phase is the function processSublevel. We have seen
that in processSublevel all the vertices in curr are processed i.e. the degree of all their
neighbors are reduced and if any of the neighbors belong to the current level, it is
added to next. Parallelizing the function is done by equally distributing the vertices
in curr to all the threads. However, it might result in race conditions as multiple
threads access the deg and next arrays. To avoid race conditions, all updates to

27

these arrays are performed atomically. However, it is possible that the degree of a
neighbor u, i.e. deg[u\ is reduced to a value less than the current level value. For
example, let deg[u] = level 4-1 and two or more threads execute the line 17 at the
same time, test positive for the condition and execute line 18. The resultant value of
deg[u] will be less than level which the correct value of deg[u\ is level. This issue is
fixed using the lines 19 through 21. Vertices are added to the next array in batches
similar to the way vertices are added to curr in the scan phase i.e. using atomic
increments and local buffers.

The individual phases are executed by the threads in parallel without much in­
terference (except for the atomic operations). However, after each phase, the threads
need to synchronize before beginning the next phase operations. Note that the
loop phase consists of multiple sub-levels(iterations) with a call to the processSub­
level function in each sub-level. Therefore loop-phase is also level-synchronous as the
threads synchronize after each sub-level. To synchronize the threads we use OpenMP
barrier construct. Synchronizing all the threads is an expensive operation. It blocks
all the threads until the last thread completes the work assigned. High usage of syn­
chronization constructs can degrade the performance significantly. However, we have
found that for most graphs, the number of levels and sub-levels is limited. There­
fore the approach in general results in good speed-up. We observe that there is an
alternative approach to parallelizing the loop phase which eliminates the need to syn­
chronize after each sub-level. The idea of the approach is that in the first sub-level
when a thread encounters a vertex that needs to be added to the next array, instead
of adding it to the array it stores in a temporary local array and then process the ver­
tex by itself at a later point of time. Consequently, all the vertices that correspond to
a level are processed in the first sub-level. We have experimented using both the ap­
proaches and noticed that, though the second approach reduces the synchronization
cost, it results in severe load imbalance. Therefore, the level-synchronous approach
performs better in general compared to the second approach.

2.5 EXPERIMENTAL RESULTS

All the results presented in this section are obtained using a four socket 2.27GHz
Xeon X7560(Nehalem-EX) with 256 GB shared memory and running 64-bit Ubuntu
12.04. Each socket consists of 8 cores. Each core has a private 32 KB LI cache
and 256 KB L2 cache. A 24 MB L3 cache is shared by all the cores in a socket.

28

Table 1: Details of graphs and time(in seconds) taken by BZ and ParK Algorithms.
n, m and kmax denote the number of vertices and edges (both in millions) and the
maximum core value of the graphs___

graph n m kmax B Z

ParK

total scan

amazon0601 0.4 2.4 10 0.16 0.09 0.005

web-BerkStan 0.6 6.6 201 0.23 0.22 0.11

web-Google 0.9 4.3 44 0.31 0.19 0.03

wiki-Talk 2.4 4.6 131 0.35 0.45 0.25

as-Skitter 1.7 11.1 111 0.84 0.49 0.16

soc-Pokec 1.6 30.6 47 2.29 0.83 0.07

cit-Patents 3.8 16.5 64 3.42 1.44 0.22

rand-er-lm 1.0 95.0 160 4.36 1.85 0.12

com-Orkut 3.1 117.2 253 18.02 5.48 0.64

soc-LiveJoumall 4.8 69.0 362 5.47 3.04 1.42

rmat-32-256 32.0 256.0 29 147.67 24.16 1.86

rmat-32-512 32.0 512.0 59 288.1 41.17 3.65

rand-32-512 32.0 512.0 23 231.38 51.5 1.47

com-Priendster 65.6 1806.0 289 981.58 158.68 36.07

All the implementation is done using C programming language and compiled using
gcc compiler with -03 optimization flag. The parallel implementation is done using
OpenMP.

For our experiments we have used several graphs from the Stanford Large Network
Collection [40] and also synthetic graphs. The synthetic graphs are generates using
GTGraph [41], a graph generator tool. The details of the graphs in the dataset are
as follows:

• amazon0601: Amazon product co-purchasing network. If a product i is fre­
quently co-purchased with product j , the graph contains and edge from i to

i-

• web-BerkStan: Berkeley Stanford web graph. Vertices represent pages from
berkeley.edu and stanford.edu and edges represent hyperlinks between them.

• web-Google: Google web graph. Vertices represent web pages and edges repre­
sent hyperlinks between the pages.

• wiki-Talk: Wikipedia talk network. Vertices represent users and an edge from
vertex i to vertex j indicates that user i edited the page of user j atleast once.

• as-Skitter: Internet topology graph i.e graph representing the network topology
of the internet.

• soc-Pokec, com-Orkut, soc-LiveJoumall, com-Friendster: Social networks. Ver­
tices represent users and the edge represents friendship between users.

• cit-Patents: Patent citation network. Vertices represent patents and the edges
represent citations.

• rand-er-lm: Synthetic graph generated using GTGraph. It is generated using
Erdos-Renyi graph model with probability 10~3

• rmat-32-256, rmat-32-512: Synthetic graphs generated using GTGraph. They
are generated using the R-MAT model with default parameter values i.e. (a, b, c, d)
(0.45,0.15,0.15,0.25)

• rand-32-512: Synthetic graph generated using GTGraph. It graph generated
by adding each edge to a randomly chosen pair of vertices.

30

Additional properties of the graph, i.e number of vertices, edges and maximum
core value, kmax, are given in Table 3. Also given in table are the timing results of
the BZ algorithm and the sequential ParK algorithm. Note that we have included
a column that shows the time taken for the scan phase of the ParK algorithm.
All the timing results shown in table are in seconds. All the graphs are treated as
undirected graphs and the timing results include the time taken for initialization.lt
can be clearly seen from the table that the ParK algorithm outperforms the state-
of-the-art BZ algorithm for all the graphs (except wihi-Talk)) and the performance
gap widens as the graph size increases. We observe that there are two reasons for
ParK algorithm not performing better than BZ algorithm for the wiki-Talk graph.
The first reason is that more than 70 percent of the vertices have degree 1. This is
beneficial for the BZ algorithm as the adjacency lists of these vertices are accessed
in sequential order. The second reason is that the time taken for scan phase is
a significant (more than half) portion of the total time taken. However, since the
scan phase is embarrassingly parallel, the time taken for scan phase can be made
negligible with the use of parallelism and the ParK algorithm performs better as it
is better scalable than the BZ algorithm. To verify the cache performance we used
a tool called [42]. For soc-LiveJoumall graph, the BZ algorithm resulted in 227
million(148m read + 79m write) LI data cache misses and 46m(31m read + 15m
write) L3 cache misses while the sequential ParK resulted in 202m(192m read 4-
10m write) LI cache misses and 32m(22m read 4- 10m write).

We measure the performance of the ParK algorithm in terms of millions of edges
per second which is computed using ma/tim e where m a is the number of edges
accessed and time is the running time of the algorithm in seconds. Since the ParK
algorithm processes all the vertices exactly once by accessing all of their neighbors,
each edge in the graph is accessed exactly twice and so ma = 2m. For the results to
correctly reflect the performance, we exclude the initialization time from the running
time. To avoid unexpected behaviour, for all our experiments we pin the threads to
specific cores such that threads 0 to 7, 8 to 15, 16 to 23, 24 to 31 run on 1st, 2nd,
3rd and 4th socket respectively.

Figures 10a and 10b plot the speedup and processing rates respectively for three
graphs: rmat-32-512, rand-32-512 and com-Friendster. We can see that the approach
scales well for both rmat-32-512 and rand-32-512 graphs. Also, the processing rate

31

increases gradually with the increase in number of threads. However, for the com-
Friendster graph, the approach does not scale considerably and shows only limited
growth in processing rate. We closely analyze the graphs to understand the behavior
of the approach. We consider the following factors to analyze a graph: number
of levels, number of sub-levels and percentage of vertices processed in each level.
We have seen that the task of processing the vertices in sub-level is distributed
among multiple threads and the threads are synchronized after each sub-level. If
number of vertices processed in a level is large, the threads spend most of the time
in processing the vertices and the synchronization overhead incurred after every sub-
level is minimum. However, if there are only a few vertices in a level and the number
of sub-levels is large, the threads spend most of their time at the synchronization
barrier resulting in huge synchronization overhead.

Figures 2.5, 2.5 and 2.5 plot the number of sub-levels and percentage of vertices
processed in each level for the graphs rand-32-512, rmat-32-512 and com-Friendster
respectively. Note that the missing percentage of vertices in the plots belong to level
0. In rand-32-512 graph, most of the levels have low percentage of vertices. However,
since these levels have only few sub-levels, the synchronization overhead is minimum
and so the approach is able to scale well. In case of rmat-32-512 graph, all the levels
process approximately the same number of vertices (around 1 to 2 percent which is
320,000 to 640,000) which is large enough to keep the threads busy for longer time
than the synchronization time. And, there are only few levels with large number
of sub-levels. Therefore, the approach achieves good speed-up for the graph. In
com-Friendster graph, however, the majority of the vertices are processed in the
lower levels (level less than 50). Interestingly, the number of sub-levels is also low
for these levels. All the remaining levels (beyond 50), process very few vertices and
large number of sub-levels. This incurs in huge synchronization overhead justifying
the speedup and processing rate shown in Figure 10.

2.6 SUMMARY

In this chapter, we have discussed the access transformation technique to improve
locality of reference. The technique helps in reducing the random memory access
nature of an algorithm. The technique is mainly applicable to an iterative approach
with limited number of iterations. The main idea of the technique is to use scan-
and-extract operation to extract the required data the directs the order in which

32

the vertices/edges are processed. We demonstrate the effectiveness of the technique
using fc-core decomposition problem.

We have defined the k-core decomposition problem and discussed the state-of-
the-art algorithm for k-core decomposition. We have analysed the access pattern of
the algorithm and pointed out the random nature of the algorithm and also showed
that the algorithm is not amicable to parallelization due to synchronization issues.
We then proposed a new new algorithm, called ParK, that adapts the access trans­
formation technique. The algorithm eliminates the use of some data structures that
result in random access and improves the opportunity for sequential access.

We then discussed the parallelization of the ParK algorithm. The scan phase of
the algorithm is embarrassingly parallel while the loop phase requires synchronizing
the threads after each sub-level. The parallelization methodology discussed in this
chapter can be improved further by reducing the synchronization overhead caused due
to large number of sub-levels. Since ParK algorithm is a level-synchronous approach
similar to the BFS algorithm of Agarwal et al., the parallelization techniques used
in [43] can be applied to ParK. For example, as the inter-socket atomic operations
cannot scale efficiently across sockets, they are avoided using a channel mechanism.
The vertices can be divided among the sockets and the threads process only the
vertices that are assigned to the socket in which the thread is running. Any vertex
that is to be processed and is assigned to other socket is placed in a socket queue of
the corresponding socket. This confines the atomic operations to the sockets. There
are also other techniques [44] proposed to improve the level-synchronous approaches
which can be applied to the ParK algorithm to reduce the synchronization cost.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

33

function scan-and~extract(deg, level)
curr = 0
idx = 0
for i = 0 to n - 1 do in parallel

if deg[i] = level then
a = atomicIncrement(idx, 1)
curr [a] = i

end if
end for
return curr

end function
function processSublevel(curr, deg, level)

idx = 0
next = 0
for each vertex v in curr do in parallel

for each vertex u adjacent to v do
if deg[u] > level then

a = atomicDecrement(deg[u], 1)
if a < level then

atomicIncrement(deg[u}, 1)
end if
if a — 1 = level then

b = atomicInarement{idx, 1)
next [6] = u

end if
end if

end for
end for
return next

end function

Figure 9: Parallel version of ParK algorithm

34

a01
TOa>a>
Q.
CO

32
rmat-32-512
rand-32-512

com-Friendster16

8

4

2

1
2 4 8 16 32

number of threads
(a) speed-up

T5c
oo
<D
CO
k_
<DQ.
COa)O)

T3a)
co

1

rmat-32-512 — h
rand-32-512 —*

com-Friendster —*

16 322 4 8
number of threads

(b) processing rates

Figure 10: Scalability and Performance results for different graphs

35

w
©>
©

JO
3(/)

©
JQ
E
3
C

10030
#sublevels

% of vertices
25

20

15

10

5

0
5 10 15 20 250

W
©o
tr
©>

©
©
C
©
E
©Q.

level

Figure 11: Plots showing the number of sub-levels in a level and the percentage of
vertices processed in a level for rand-32-512 graph

100 ■"I................................... II

#sublevels
% of vertices

V)
©>
©
_Q
3
OT
O
©
XI
E
3
C

0 10 20 30 40 50 60

10

8

6

4

2

0

co
©o

' €
©>

©
nf
c
©oV-
©Q.

level

Figure 12: Plots showing the number of sub-levels in a level and the percentage of
vertices processed in a level for rmat-32-512 graph

36

w
(D>Q)
_Q
3
(0

(DX)
E
3C

250

200 ■

150 ^

100 i

50

0

#sublevels
% of vertices

25

20

15

- 10

0
0 50 100 150 200 250 300

level

Figure 13: Plots showing the number of sub-levels in a level and the percentage of
vertices processed in a level for com-Friendster graph

pe
rc

en
ta

ge

of
ve

rt
ic

es

37

CHAPTER 3

TASK-SET REDUCTION

In the previous chapter, we have seen the impact of memory access pattern on
memory locality. We have discussed a technique called access transformation which
reduces the random nature of the memory access pattern to improve locality. In
this chapter, we propose another technique, called task-set reduction, to improve
locality. While the access transformation technique improves the spatial locality by
focusing on the memory access pattern, the task-set reduction technique improves
the temporal locality by focusing on the size of the data.

We define task-set as the collection of data that is repeatedly accessed to process
a task. We argue that the size of task-set plays a critical role in memory locality and
hence in the overall performance of an algorithm. We have seen that the memory
access pattern in graph algorithms is generally very random in nature. Therefore, for
most graph algorithms the task-set is repeatedly accessed and in random order. If
the size of task-set is larger compared to the size of last level cache, then the number

of cache misses can be large and can significantly degrade the performance. We ran a
simple benchmark to verify the impact of task-set size on the memory performance.
The results are reported in Figure 14. As it can be seen, as the size of the task-set
increases, the memory latency increases. Therefore it is important to keep the size
of task-set as minimal as possible.

Reducing the task-set size can be achieved in different ways. For example, for the
k-core decomposition problem explained in the previous chapter, the task-set size of
the BZ algorithm is 3n where n, is number of vertices(ignoring the size of bin array).
For a graph with 1 million vertices, the task-set size is around 12MB (3million *
4 bytes for integer). If the cache size is not large enough to hold the task-set, it
can severely hurt the performance. We have proposed a new algorithm for k-core
decomposition. Though the new algorithm improves performance by reducing the
random nature of the memory access pattern, it is to be noted that the algorithm
also reduces the task-set size from 3n to n(as only deg array is used). Therefore, the
scan-and-extract operation used in the algorithm also resulted in reduced task-set
size.

38

■oc
8
©w
©Q.
W©
V)
V)

«»*—o
U)co

80

70

60

50

40

30

20

10

0

Task-set size

Figure 14: Plot showing the memory latency relative to the task-set size

Another method that can be used for reducing the size of task-set is compression.
Compression refers to storing the data using minimal amount of memory. Graphs
algorithms use different task related data, like the degree of vertices, distance of
vertices from a source vertex. The data is stored by the program in some data
structure like array. By carefully examining the nature of the data and possible
values of the data, it is often possible to reduce the size of the data structure that
stores the data. For example, many graph applications repeatedly access the degree
of vertices which is generally stored in an integer array. An integer uses 4 bytes of
memory and store any value from 0 to 232 (unsigned integers). However, for most
graphs the maximum degree is very less and do not require 4 bytes to store the
degree. Therefore, the degree array can be compressed, 2 to 4 times for most graphs,
based on the number of bits required to store the maximum degree.

Another method that is commonly used for regular applications is called blocking
[17]. In this technique, the memory accesses are organized in such a way that a small
subset of data is loaded into the cache and is used/reused. For graph algorithms,
the blocking technique can be applied by diving a task into smaller sub-tasks such
that each sub-task works on a smaller task-set. We apply this method of task-set

39

reduction to the triangle listing problem explained in Chapter 4.
While in some cases reduction of task-set is easy to achieve, it generally requires

careful examination of the algorithm and the data required to process a task. In this
chapter, we present a new algorithm for maximal clique enumeration problem which
uses the task-set reduction technique to improve the memory locality. We first define
the problem and present some popular algorithms for maximal clique enumeration.
We then analyze the state-of-the-art algorithm (Eppstein et al.’s algorithm) [32] [45]
in terms of the size of the task-set. We propose a new algorithm for maximal clique
enumeration, called pbitMCE, that significantly reduces the task-set size by using
bit representation of data. The experimental results comparing the new algorithm
with the state-of-the-art algorithm are presented. We show that the new algorithm
outperforms the other algorithms for most graphs. We also present results that show
that the algorithm scales well, up to 29 times using 32 cores on multicore and up to
106 times using 128 processes on distributed memory architecture.

3.1 MAXIMAL CLIQUE ENUMERATION

Clique is a fundamental concept in graph theory. In a graph G(V, E), a clique is
a complete subgraph, i.e., a subgraph in which every pair of vertices is connected by
an edge. A maximal clique is a clique that is not contained in any other clique. A
maximum clique on the other hand is the largest clique in the graph. In Figure 15 ,
{1,2,3}, {1,3,4} and {3,4,5,6} are maximal cliques and {3,4,5, 6} is a maximum
clique. {4,5,6} is a clique but not maximal clique as it is contained in {3,4, 5,6}.

Clique finding plays a vital role in many applications. It plays a major role in
analyzing social networks. Cliques in social networks represent a group of people
who are closely tied together that share common interests. Community detection is
a common task in social network analysis and clique finding plays a major role in
community detection [46] [47]. Clique finding is also used in other analysis application
like social hierarchy detection using email communications [48], in the recovery of
depth from stereoscopic image data [49], in data mining for discovery of association
rules [50].

Another area that cliques are widely used is bioinformatics. It is common to
represent the biological data like protein structure in the form of a graph. Finding
cliques is a major part in detecting protein-protein interaction complex [51], motif
discovery [52], detect structural motifs from protein similarities [53] and aligning 3D

40

Figure 15: A simple graph

Figure 16: A Moon-Moser graph

structures [54] and many other applications [55] [56] [57].
The problem of finding all the maximal cliques in a graph is referred to as maximal

clique enumeration(MCE). MCE is equivalent to finding all maximal independent sets
in a complimentary graph. An algorithm which finds all the maximal cliques in a
graph takes exponential time in worst-case as there can be exponential number of
cliques in a graph. It has been shown that there can be 3"/3 maximal cliques in the
worst case [58], where n is the number of vertices. Figure 16 shows such a graph.
These kind of graphs are referred to as Moon-Moser graphs. However, in reality,
these kind of graphs are highly unlikely to occur.

41

3.2 RELATED WORK

Clique finding is an extensively studied problem. There are a large number of
approaches available in the literature. The first attempt to finding cliques was made
in 1957 [59]. It was applied for analysis of sociometric data. In this section, a brief
overview of some of the approaches for maximal clique enumeration is presented.
First we briefly describe some of the sequential approaches. There are relatively very
few parallel algorithms available in literature. We describe the parallel algorithms
later in the section. Then we describe in detail three popular sequential algorithms
for MCE: the BK algorithm [60], the Tomita et al.’s algorithm [61] and the Eppstein
et al.’s algorithm [32].

3.2.1 SEQUENTIAL ALGORITHMS

The initial algorithms proposed for MCE were referred to as point removal meth­
ods. The cliques of a graph G are generated from the cliques in the graph G \ {v}
which is obtained by removing v from G. Approaches that are based on point re­
moval method are given in [62] [63] [64]. These approaches initially generate a set of
cliques, C, that may contain duplicate or non-maximal cliques. The non-maximal
and duplicate cliques are then filtered out in some way to extract the final set of
maximal cliques. For the purpose of filtering, the set C must be stored in memory
and in general, the size of C is much greater in size that these approaches quickly fall
into memory problems. These approaches therefore could not be applied to larger
graphs.

The real breakthrough in MCE algorithms came in 1973 when two different ap­
proaches were proposed, one by Bron and Kerbosch [60] and the other by Akkoyunlu
[65]. Unlike the previous approaches, these approaches do not generate non-maximal
and duplicate cliques. They use different techniques to avoid generating those cliques.
For example, the BK algorithm by Bron and Kerbosch uses a special data structure
that stores the already explored paths so that the paths which might result in dupli­
cate or non-maximal cliques are not revisited.

The algorithm by Akkoyunlu is a depth first search algorithm. It recursively
partitions the graph such that each maximal clique can be generated by one of the
partitions. Similar to Akkoyunlu’s algorithm, BK algorithm is also a depth first
search algorithm. The BK algorithm maintains three lists throughout the procedure:

42

the compsub list, the not list and the cand list. At each step, the compsub list
consists of the vertices that form a clique and possibly a maximal clique. The cand
list contains the vertices that are connected to all the vertices in compsub list and
are candidates to be added to the current clique. The not list also contains the
vertices that are connected to all the vertices in the compsub list but adding these
vertices to the current clique results in duplicate cliques. The BK algorithm proceeds
by selecting a vertex from the cand list and updating the three lists based on the
currently selected vertex. If the cand and not lists are both empty, then the vertices
in the compsub list constitute a maximal clique. The BK algorithm is described in
much detail later in the Section 3.2.3.

There were two variations of the BK algorithm proposed in [60] : the basic version
and the pivoting version. In the pivoting version, at each level, a vertex called pivot
is selected from the candidate list that meets some criteria. The number of recursive
calls depend on the pivot vertex selected. The details of the pivoting version of the
BK algorithm are presented later in section. Though both Akkoyunlu’s algorithm
and BK algorithm perform equally well, the BK algorithm has been more widely
used due to its simplicity. Many variations and extension to the BK algorithm have
been proposed. These approaches vary based on their pivot selection rule. Johnston
et al. [66] proposed a number of variations of the BK algorithm. It was shown that
the original BK algorithm performed well against the other variations. Another set
of variations was presented by Koch et al. [67] and Tomita et al. [61]. Tomita et
al. also provided the theoretical time complexity for their approach and showed that
their approach is worst case optimal. The time complexity is shown to be 0(3n 3̂).
Later Karande et al. [68] investigated the three approaches: the BK algorithm, the
Koch et al.’s variation and Tomita et al.’s variation. They tried to bridge the gap
between the three approaches and showed that Tomita et al.’s approach is a variation
of the BK algorithm based on an unexplored observation made by Koch et al. We
present the details of the Tomita et al.’s algorithm later in the Section 3.2.4.

Another set of algorithms have been proposed and are referred to in the litera­
ture as reverse search algorithms. The first reverse search algorithm was proposed by
Tsukiyama et al. [69]. The time complexity for this algorithm is O(nmp) where n
is the number of vertices, m is the number of edges and p. is the number of maximal
cliques. The results of Tsukiyama et al. are further generalized by Lawler et al.
[70] and an improvement for the algorithm is presented by Chiba et al. [71] with

43

computational complexity 0(a(G)m[i) where a(G) is the arboricity of the graph.
Later, Makino and Uno [72] proposed new algorithms based on Tsukiyama et al’s
algorithm. One of their variations has a computational complexity 0 (A 4̂ i) where A
is the maximal degree of G. They presented a number of experimental results and
showed that their algorithm is considerably faster than the Tsukiyama et al’s algo­
rithm. However, the experimental results presented in Tomita et al. that compare
Tomita et al.’s approach with that of Chiba et al’s and Makino and Uno’s algorithm
show that in practice, Tomita et al.’s algorithm performs well compared to the other

approaches.
The main disadvantage of the Tomita et al’s approach is that both the theo­

retical computational complexity and the experimental running time were based on
adjacency matrix representation of the input graph. Adjacency matrix has an advan­
tage of taking a constant time for checking the adjacency of two vertices. However,
for large sparse graphs, which most real world graphs are, adjacency matrix is not
practical due to memory limitations.

Recently, another notable contribution to the MCE problem was made by Epp-
stein et al. [32][45]. Eppstein et al.’s approach was based on the BK algorithm and
Tomita et al.’s pivot selection rule. Eppstein et al. showed that the ordering of the
vertices plays a vital role in the overall performance of an algorithm. They use an
ordering based on the degeneracy of the graph. Degeneracy is the smallest number
d such that every subgraph of the graph has atleast one vertex with degree less than
or equal to d. The degeneracy ordering of vertices is the ordering in which every
vertex has at most d neighbors that have order greater than itself. Eppstein et al.’s
approach is based on Tomita et al.’s approach but uses adjacency list representation
of the input graph, thus making it applicable to larger graphs. By using the degen­
eracy ordering and a special data structure to store only the current working set,
Eppstein et al.’s approach achieves a computation complexity of 0(dn3d/3) where d
is the degeneracy and n is the number of vertices of the input graph. Eppstein et
al. also presented considerable amount of experimental results and showed that their
approach is faster than the Tomita et al.’s algorithm for most graphs, sometimes
faster by a large factor. Eppstein et al.’s approach is described in detail in Section
3.2.5.

3.2.2 PARALLEL ALGORITHMS

44

While there have been many sequential approaches present in the literature, there
are only a handful of parallel approaches available for MCE. In addition to solving
the problem of MCE, the parallel algorithms should also consider various factors like
load balancing and scalability. The parallel algorithms should be able to effectively
use the underlying hardware to efficiently enumerate the maximal cliques. In this
section, we present different parallel algorithms and how they address the challenges
involved in parallelizing.

The first parallel approach was proposed in [73]. It is referred to as pCliques.
pCliques is based on an the approach of Kose et al. [74]. It generates the cliques in
increasing order of clique size. The cliques of size k+ 1 are computed using the cliques
of size k. So the cliques of size k must be present in memory and scanned multiple
times to generate larger size cliques. This makes the approach memory intensive and
impractical for large scale graphs. In [73] the authors also presented experimental
results for pCliques. pCliques was only able to achieve a speedup of 91 using 256
processors.

Peamc [75] is another parallel algorithm proposed for MCE. It uses triangle struc­
ture as the basis. At each level it generates a set of vertices that form triangles with
the current vertex and its neighbors. It proceeds recursively by selecting a vertex from
the set of vertices generated from the previous level. By selecting the vertices in the
increasing order peamc avoids the chance of generating duplicate cliques. However,
it might generate non-maximal cliques. It uses an additional filtering step to check
if the clique is maximal, peamc uses a simple strategy for parallelizing. The vertices
are distributed to the available computing nodes and the nodes independently work
on the vertices assigned. Most real world graphs follow power-law degree distribu­
tion. peamc does not work well for these graphs as the load is not balanced. Some
computing nodes terminate earlier while other nodes are still processing. The exper­
imental results presented in [75] show that peamc is able to achieve a speedup of 23
with 30 processes.

[76] presents a state-of-the- art parallel MCE algorithm. We refer to the algorithm
as PSMCE. PSMCE parallelizes the original BK algorithm. It uses different strategies
to efficiently parallelize the BK algorithm. PSMCE uses a special data structure
called candidate path structure which is a basic unit of work that can be shared
between processes. We have seen that the BK algorithm uses three lists: the cand
list, the not list and the compsub list. The candidate path structure essentially

45

1: p ro ce d u re BK(P, X , R)
2: i f P is empty th e n
3: i f X is empty th e n
4: R is a maximal clique
5: en d i f
6: e lse
7: for each vertex v in P d o
8: ctd\BK{PnN(v) , X n N { v) , R u { v })
9: P = P \ v

10: X = X U v
11: en d for
12: en d if
13: en d p ro ced u re

Figure 17: The BK algorithm

consists of cand list, not list, the current vertex and the level of the search tree node.
PSMCE uses a simple strategy for parallelization. Like peamc, it equally dis­

tributes all the vertices to the available processing units. However, the major con­
tribution of PSMCE is its more refined level of load balancing. It achieves such
fine level of load balancing by using the candidate path data structure and a stack
structure. At each level, a candidate path(cp) structure is removed from the stack
structure and using the cp it generates the candidate path structures for the next
level and pushes into the stack structure. If a processing unit completes the work
assigned to it, instead of terminating, it requests work from a randomly selected pro­
cess or task. The process that receives request can share its work by removing some
of the candidate path structures from its stack structure and sending them to the
requesting process. In [76] PSMCE, the authors presented the experimental results
of PSMCE and showed that PSMCE scales linearly up to 2048 processes.

dMaximalCliques [77] is a distributed algorithm for maximal clique enumeration.
It is based on Tsukiyama’s algorithm. Similar to peamc, this algorithm does not
include any strategies for dynamic load balancing and hence was not able to scale
well.

3.2.3 THE BK ALGORITHM

The BK algorithm (short for Bron-Kerbosch algorithm) is the most commonly

46

used algorithm for clique finding. It is a recursive backtracking algorithm. It uses
three lists throughout the enumeration process: cand list, not list and compsub list,
commonly denoted as P, X and R respectively (their sizes are denoted by p, x and
r respectively). The set of vertices in R form a clique, but it might not be maximal.
The idea is to extend R until it forms a maximal clique. P contains the set of vertices
that are adjacent to all the vertices in R and are potential candidates to be added
to the maximal clique. X list also contains the vertices that are adjacent to all the
vertices in R list but adding these vertices to the clique results in duplicate or non-
maximal cliques. The BK algorithm is presented in Figure 17. N(v) in the algorithm
represents the adjacency list of a vertex v (note that v ^ N(v)). In each call to BK
procedure, it iterates p times once for each vertex in P. In each iteration, a vertex
from P is added to R, new sets of vertices of P and X are computed and input to
a subsequent recursive call. The BK algorithm can be viewed as exploring a search
tree. Figure 18b shows the search tree corresponding to the graph in Figure 18a.
Each node in the tree represents a call to BK procedure. The algorithm proceeds
by exploring the search tree in a depth first style, backtracking when P becomes
empty. Each node in the search tree has three rows showing the compsub list(P),
cand list(P) and not list(X) that are input to the recursive call. The leaf nodes with
empty cand and not list correspond to maximal cliques.

3.2.4 THE TOMITA ET AL.’S ALGORITHM

The algorithm described in previous section is the basic version of the BK algo­
rithm. Another variation of the BK algorithm exists that involves a technique called
pivoting. We have seen in the previous section that the BK algorithm makes P re­
cursive calls. Pivoting improves the basic BK algorithm by reducing the number of
recursive calls. This is done by selecting a vertex u called pivot , and all the subse­
quent maximal cliques must contain a non-neighbor of u. This reduces the number
of recursive calls by |P f lN(u)\. A number of variations for selecting the pivot vertex
were proposed [61] [67]. The variation by Tomita et al. [61] is shown to be best in
theory and practice. Tomita et al.’s pivot selection method is to select a vertex u
from PU X that maximizes |P f l A(u)|. Obviously, this results in minimum number
of recursive calls among all possible pivots. We denote Tomita et al.’s algorithm by
TTT in the rest of the chapter. The TTT algorithm is shown in Figure 19 and the
TTT search tree for the example graph in Figure 18a is shown in 20. By comparing

4562345

345134

345 346 356 456134 135 145 567

34561345

(b)

Figure 18: An example graph and its BK search tree

48

1: procedure TTT{P, X , R)
2: if P is empty then
3: if X is empty then
4: E is a maximal clique
5: end if
6: else
7: choose a pivot vertex u in P U X that maximizes |P fl N(u)\
8: for each vertex v in P \ N(u) do
9: call TTT(P fl N(v), X fl N(v), R U N(v))

10: P = P \ v
11: X = X U v
12: end for
13: end if
14: end procedure

Figure 19: The Tomita et al.’s algorithm

Figures 18b and 20 it can be clearly seen that the TTT algorithm results in reduced
number of child nodes compared to the BK algorithm, i.e. TTT algorithm reduces
the number of recursive calls.

The analysis and the implementation of the TTT algorithm presented in [61]

is based on adjacency matrix representation of the input graph. The two major
components of the algorithm are pivot selection and set intersections(lines 7 and 9
respectively in Figure 19). To select the pivot vertex, we need to perform P fl N(u)
for each u E P U X . By using adjacency matrix representation, the pivot selection
can be done in 0{p{p+x)) wherep = |P | and x = \X\. Similarly, the set intersections
in line 9 can be performed in 0(p + x). The worst case time complexity for TTT is
shown to be 0(3"/3). However, most real world graphs are large sparse graphs and
the adjacency matrix representation is impractical for such graphs.

3.2.5 THE EPPSTEIN ET AL.’S ALGORITHM

To overcome the drawback of the TTT algorithm, Eppstein et al. proposed a
new algorithm. In the rest of the chapter, we refer to the new algorithm as ELS
algorithm. The ELS algorithm is based on TTT algorithm but uses adjacency list
representation of the graph. The ELS algorithm is given in Figure 21. Unlike the
BK and TTT algorithms, ELS algorithm explores multiple search trees, one search
tree corresponding to each vertex in the graph. This makes it a more suitable choice

PMX=5/ P™*=1
32134S 756

156

34563451

12456

Figure 20: TTT search tree for the graph in Figure 18a

for being used in a parallel approach. Once the root node for the search tree is
obtained, the rest of the search tree exploration is similar to the TTT algorithm.
ELS uses an initial ordering of vertices based on degeneracy. Degeneracy of a graph
G is the smallest number d such that every subgraph of G has atleast one vertex
with degree at most d. Degeneracy ordering is the ordering of vertices such that
every vertex has at most d neighbors that come later in the ordering. Degeneracy
ordering of vertices in a graph can be computed in linear time by using the k-core
decomposition algorithm explained in Chapter 2. The order in which the vertices
are deleted from the graph in the k-core decomposition algorithm is the degeneracy
ordering. The degeneracy ordering for the graph in Figure 18a is {2,7,1,3,4,5,6}.

For each vertex v in the graph, an initial list of vertices in P, X and R are com­
puted based on the degeneracy ordering of vertices and input to the TTT procedure.
The set P is computed by adding all the neighbors of v that come later in the or­
dering. Similarly, the set X is computed by adding all the neighbors of v that come

50

1: p ro ce d u re ELS{V, E)
2: for each vertex Vi in the degeneracy ordering V o , V \ , vn-i d o
3: P = N (v i) n { v i+i , . . . , vn-x}
4: X = N{Vi)f){v0,...,Vi-i}
5: call TTT(P, X, {Vi})
6: en d for
7: en d p ro ced u re

Figure 21: The Eppstein et al.’s algorithm

before v in the ordering. Degeneracy ordering makes sure that there are no more
than d neighbors that come later in the ordering. Therefore, the size of P is limited
to d in the outermost call to TTT (line 5 in Figure 21). This reduces the number of
recursive calls within the outermost TTT call. The ELS search trees for the graph
in Figure 18a can be seen in Figure 22. The figure shows 7 search trees, each tree
corresponding to a vertex.

The ELS algorithm uses adjacency list representation for the input graph. After
computing the initial R, P and X lists, the ELS algorithm makes a call to TTT
procedure from which point the enumeration is done using TTT algorithm. We have
seen that TTT procedure consists of two major components: pivot selection and set
intersections. Since TTT algorithm uses adjacency matrix representation, the two
components take 0(p(p + x)) time. This time complexity is no more valid when
adjacency list representation is used. In case of adjacency matrix representation the
operation P n N(u) for some vertex u can be done in O(p) time since it only takes
constant time to check if a vertex belongs to N(u). In the case of adjacency list
representation the same operation takes 0(p • |iV(u)|) time, if both P and N(u) are
unsorted, takes 0(p-log(\N(u)\)) time, if N(u) is sorted, takes 0(p+ |iV(u)|) time, if
both P and N (u) are sorted. For pivot selection, p + x such intersection operations
need to be performed.

To make pivot selection fast, the ELS approach employs a subgraph representa­
tion, Hptx (we refer to it as hypergraph in this chapter. Note that, this hypergraph
is not the same as standard hypergraph defined in the literature). The hypergraph
contains all the vertices in P U X at the current level, and edges connecting a vertex
in P to a vertex in P U X . Using the hypergraph representation, ELS computes
the pivot vertex in 0 (|P |(|P | + |X |) and the set intersections in 0 (|P |2(|P | + |X|).

R
P

X

1 2 3 4
345 13 456 56
2 1 12 13

3 1 4 5
13 21 34 45
45 3 56 6
2 / 1 13

4 3 5 6
134 213 345 456
5 / 6 /
/ / 1 3

5 6
1345 3456

/ /
/ /

1347

56

347

/
3457

56
/

if"
75
6
/

i f
756

/

Figure 22: ELS search trees for the graph in Figure 18a. The degeneracy ordering
for the graph is {2,7,1,3,4,5,6}. Each search tree in the figure corresponds to a
vertex in the graph.

The running time of ELS is shown to be 0(dn3d/’3), where d is the degeneracy of
the graph, which is worst case optimal for large sparse graphs. More details of the
hypergraph are given in the next section.

A similar approach that explores multiple search trees is used in PSMCE [76]
with a difference in the ordering and the underlying algorithm used. PSMCE uses
the initial ordering of the vertices as is, that is the ordering based on the vertex
numbers while ELS uses degeneracy ordering. While ELS uses the Tomita et al.’s
pivoting rule, i.e selects a pivot vertex u from P U X that maximizes P fl N(u),
PSMCE selects a pivot vertex u from P that maximizes P D N(u).

Task-set size of ELS algorithm

We have seen that the ELS algorithm has separate tasks defined for each vertex.
Compared to most other graph algorithms, which generally have very large task-sets,

52

the ELS algorithm has relatively smaller task-set. The initial task-set of the ELS
algorithm consists of the hypergraph. As the enumeration proceeds, intermediate
data is added to the task-set. Notice that, for each recursive call a new cand and
not list is to be generated. The maximum size of a hypergraph is Md where M
is the maximum degree and d is the degeneracy. However, in reality, it is much
smaller than that. The size of intermediate data depends on the granularity of the
task. If the search tree corresponding to a vertex is large with high depth and large
number of branches then the intermediate data can be significant. In general, from
our experiments we have noticed that in most cases the task-set is not small enough
to fit in the faster caches(Ll and L2). The task-set may fit in the slower cache(L3)
but since L3 is a shared cache, large task-sets can result in cache contention and can
have significant impact on performance.

3.3 PBITM CE APPROACH

We propose an algorithm, called pbitMCE, which reduces the size of task-set by
using bit representation. pbitMCE employs a novel data structure called partial bit
adjacency matrix(pfcam) which stores the initial hypergraph in a compressed form.
Also, most of the intermediate data is stored in bit format, reducing the overall size
of the task-set. pbitMCE approach not only reduces the memory requirement but
also facilitates the use of bit-parallelism. Due to the intrinsic parallelism of the bit
operations, the number of operations can be greatly reduced, by a factor of up to u ,
the computer word size.

3.3.1 DEGENERACY ORDERING

Like in ELS algorithm, before the enumeration process, the vertices are reordered
by degeneracy. As we have seen, degeneracy of a graph G is the smallest number
d such that every subgraph of G has atleast one vertex with degree at most d. De­
generacy ordering is the ordering of vertices such that every vertex has at most d
neighbors that come later in the ordering. Degeneracy ordering of vertices in a graph
can be computed using the k-core decomposition algorithm given in Chapter 2. In
pbitMCE, the advantage of using degeneracy ordering is two fold. The first is that,
like in ELS, it reduces the number of recursive calls improving the overall perfor­
mance. The second advantage comes in the context of parallelization. Although not
explicitly, degeneracy ordering significantly contributes to load balancing. The role

53

of degeneracy ordering on load balancing is explained in Section 3.5.1.

3.3.2 PRE-PROCESSING

As we have seen in the previous section, the degeneracy ordering places the ver­
tices such that each vertex has no more than d neighbors that come later in the
ordering. In the rest of the section, we refer to the neighbors of a vertex v that come
before v in the degeneracy ordering as pre-neighbors of v and the neighbors of v that
come after v as post-neighbors of v. During enumeration, most of the time only the
post-neighbors of vertices are used. The pre-neighbors of a vertex v are accessed
only once during the enumeration process, i.e. to compute the root node of search
tree of v. So to avoid unnecessary processing of the pre-neighbors, we partition the
adjacency list into two separate lists: pre-adjacency list and post-adjacency list. We
denote these lists as preN and postN respectively. By the property of degeneracy,
the maximum size of post-adjacency list of any vertex in the graph is d, the degen­
eracy of the graph. The initial adjacency list can be discarded at this point as it is
no longer required.

3.3.3 PARTIAL BIT ADJACENCY MATRIX

As in ELS, pbitMCE also uses Tomita et al.’s TTT algorithm as the basis. We
have seen that the TTT uses adjacency matrix representation of the graph. The
best asset of adjacency matrix is its constant lookup time. However, for large sparse
graphs, which most real world graphs are, the adjacency matrix representation is not
feasible because of the memory limitations. We propose a method by which we can
take advantage of the constant lookup time of adjacency matrix representation and
yet meeting the memory constraints.

Notice that to process the TTT call in line 5 of procedure ELS(Figure 21), the
only data that is required is the list of vertices in P and X and their adjacency
lists i.e a subgraph, denoted by S(Vs,E s), with Va = P U X and Es = {(u,v)|u €
P, v G {P U A } } . Note that we did not include the edges connecting a vertex in
X with another vertex in X since such edges are never used in the TTT algorithm.
This subgraph is represented using a partial bit adjacency matrix (pbarn). pbam
is essentially a set of bit vectors of size P, each corresponding to a vertex in the
subgraph. Each bit in a bit vector corresponds to a vertex in P. If a vertex u in
P U X is connected to a vertex v in P, then the bit corresponding to v is set to 1 in the

54

bit vector corresponding to u. Before each initial call to TTT in line 5 in procedure
ELS, we construct a pbam and pass it to the TTT procedure. The construction of
pbam is described in the following section.

Construction of Partial Bit Adjacency Matrix

To construct pbam we use a technique called renumbering. Renumbering maps

the vertices in P U X which are originally numbered in the range [0 . . . | Vj — 1] to a

new number in the range [0. . . p + x — 1] where p = |P | and x — |X |. Each vertex in

P is assigned a unique number in the range [0 . . . p — 1] and each vertex in the set X
is assigned a unique number in the range \p.. .p + x — 1]. Let r)(v) denote the new

number assigned to a vertex v. The key value pairs (v,r)(v)) are stored in a hash

table. We denote a bit vector corresponding to a vertex v by Bv(vy If a vertex u in

P U X is connected to a vertex v in P then a bit is set at index t](v) in bit vector

Bv(u). The bits are set in pbam by iterating through the post-adjacency lists of the

vertices in P U X . The structure is called partial bit adjacency matrix because like

adjacency matrix it only takes a constant lookup time but it only has a portion of

the adjacency matrix.

The procedure for constructing pbam(Constructpbam) is given in Figure 23. The
function takes P and X as input and outputs pbam which is a set of bit vectors.
The operations in lines 25 and 27 requires querying the hash table. If a vertex is
not present in the hash table then the query returns —1. Assuming constant time
to retrieve a value from hash table, pbam can be constructed in 0((p + x)d) time
where d is the degeneracy of the graph. Note that d is the maximum possible size of
post-adjacency list of any vertex in the graph. The maximum size of pbam is Md/ui
where M is the maximum degree of the graph and lj is the computer word size.

Figure 24a shows an example graph with vertices arranged in degeneracy order.
The initial subgraph of 2 is highlighted in the figure. The post-neighbors and pre­
neighbors of 2 are shown in yellow and green respectively and the edges are shown in
red. Figure 24c shows the vertices and the new numbers assigned to the vertices i.e.
(v, r)(v)) for all vertices in the subgraph. Figure 24d shows the pbam representation
of the subgraph. Also shown in graph is the hypergraph representation used in ELS
algorithm(Figure 24b). To give an idea of the memory requirement, consider the
cit-Patents graph from the Stanford large network collection(details in Section 2.5).
It has 3.7 million vertices and 16.5 million vertices. It has degeneracy 64, so the

cc;w

maximum size of a bit vector is 8 bytes. The maximum degree for the graph is 793.
Therefore, the maximum size required for pbam is 793 * 8 = 6344 bytes which is small
enough to fit in Ll cache(which is 8KB for the machine used in out experiments).

3.3.4 ENUMERATION

Figure 23 shows the pbitMCE algorithm. For each vertex vt in the graph, PVi
and X Vi in lines 3 and 9 represent the post-adjacency list and pre-adjacency list of
Vi respectively. During the construction of pbam all the vertices in PVi and X Vi are
assigned new numbers and these new numbers are used in the rest of the enumeration
process instead of the original vertex numbers. Once the pbam is constructed all
the processing is done using the bit vectors. The cand list P in each iteration is
represented using a bit vector(by setting appropriate bits to 1). Notice the input
parameters passed to the TTT procedure in line 9. In addition to the P, X and R
lists, we also pass pbam and bit vector representation of P. The function getBitVector
returns the bit vector representation of the input. In the following sections, we explain
how pbam can be used for efficiently performing the two major components in TTT
algorithm: pivot selection and set intersections.

Pivot selection using pbam

Pivot selection is a crucial part of the algorithm and takes a significant portion of
the total enumeration time. We have seen that in TTT algorithm a vertex u € P J X
that maximizes |Pn./V(u)| is selected as pivot vertex. This operation requires a total
of |P | + |A| intersection operations. Therefore efficiently performing an intersec­
tion operation is crucial to the overall performance of the approach. In pbitMCE
approach, we pass the bit vector representation of P, Bp, as input parameter to
the T T T procedure along with pbam. The intersection operation P fl N(u) can be
easily performed by doing logical AND of bit vectors Bp and Bu. \P D N(u)\ can
be obtained by counting the number of set bits in the resultant bit vector. Since we
need to perform |P | + |X | such intersection operations, the pivot selection can be
performed in 0 ((|P | + |A|)p„) time where pv is the size of a bit vector(which is equal
to the size of post-adjacency list of vertex v, the vertex whose search tree is being
explored.

56

1: p ro ce d u re pbitMCE(V, E)
2: for each vertex Vi in the degeneracy ordering v0, v i , d o
3: PVi = N(vi) n {ui+1, v „ _ i }
4: X Vi = Ar(uj)n{r;o,-,Vi-i}
5: pbamVi = Constructpbam(PVi,X Vi)
6: Tf(PVi) = { 0 ,1 ,. . . , |PV(| — 1}
7: V(Nv,) = {\PVi\ , . . . , \P Vi\ + \XVi\ - l \ }
8: Bp = getBitVector(r](PVi))
9: call TTT(r?(P„J, p(XVi), {v*}, pbamVi, BP)

10: en d for
11: en d p ro ced u re
12: fu n c tio n Constructpbam(P, X)
13: counter=0
14: for each vertex v in P d o
15: T]{v) = counter
16: increment counter by 1
17; add (v,r](v)) to hash table
18: en d for
19: for each vertex v in X d o
20: r](v) = counter
21: increment counter by 1
22: add (v,T)(v)) to hash table
23: en d for
24: for each vertex v in P U X d o
25: x = T)(v) t> obtained using hash table
26: for each vertex u in postN(v) d o
27: y = rj(u) > obtained using hash table
28: if y >= 0 and y < |P| then
29: set bit at index y in Bx
30: if x > = 0 and x < |P| then
31: set bit at index x in By
32: en d i f
33: en d if
34: en d for
35: en d for
36: return B = {B0, B u - - , P |p u x |-i}
37: en d fu n ctio n

Figure 23: The pbitMCE algorithm

(a) An example graph

(b) h-graph

3 6 7

3 3
7 7

■J

6
(c) mapping

So

Sj
B2

b3

ai*

O i l

1 0 1

O i l

0 0 0
0 1 0

(d) pbam

Figure 24: An example h — graph and pbam

Set intersection using pbam

The set intersections in line 9 of TTT procedure in Figure 19 are also major
components of the TTT algorithm. The operation P U N(v) is straight forward to
perform using pbam. Each vertex u € P can be checked if it is present in N(v) in
constant time. If nth bit in bit vector of v i.e. Bv is set to 1 then it is present in
N(v). However, the operation X UN(v) is a little tricky. We cannot check if a vertex
u E X is present in N(v) using bit vector of v since Bv only stores the post-neighbors
of v but u is a pre-neighbor of u(if it is a neighbor). However, we can check if u is
adjacency to v using the the bit vector of u. If u and v are neighbors, then oth bit
will be set in Bu. The set intersections can therefore be performed in (|P | -I- |X|)
time. Let newP — (P fl N(v)). Notice that we also need to input the bit vector
representation of newP to the T T T procedure(see line 9 in procedure pbitMCE in
Figure 23). This can be obtained by performing logical AND on the bit vectors Bp
and Bv.

58

Table 2: Comparing pbam and hyper graph

Operation hypergraph pbam

construction 0(i(\P\ + |X|) 0(d(\p\ + \X\)

updating 0 (|P |2(|P| + |X|)) -

pivot selection 0 (|P |(|P | + |X|)) 0(d(\P\ + |X|))

set intersection 0 (|p | (|p |+ m)) 0 (|P | + |X|)

3.3.5 H Y PE R G R A PH VS P B A M

We have seen in Section 3.2.5 that ELS algorithm uses a hypergraph structure
to improve the performance of the approach. When processing the search tree of a
vertex v, the hypergraph structure initially stores for each neighbor u of v an array
consisting of neighbors of u in postN(v). Like, pbam, construction of hypergraph
takes 0 (d(|P | + |X |)) time where d is degeneracy. However, pbam doesn’t need to
be modified once it is constructed while hypergraph needs to be updated for every
iteration in each recursive call. Figure 24 shows an example graph and the hypergraph
and pbam representations. In each recursive call to TTT procedure, updating the
hypergraph incurs an additional cost of 0 (|P |2(|P | + \X\)) time. Computing the
pivot vertex using hypergraph takes 0 (|P |(|P | + |A|) time (recall that pbam takes
0(P„(|P | + |A |)) time). Set intersections using hypergraph take 0 (|P |(|P | + |A|))
time(while with pbam it takes 0{\P\ + |X |). Table 2 summarizes the computational
complexities for each of the steps using pbam and hypergraph.

3.3.6 CO M PUTATIONAL C O M PLEX ITY

The time complexity of pbitMCE approach can be computed similar to the ELS
approach in [32]. Let D (p,x) be the running time of TTT procedure using pbam.
By the description of TTT procedure and the complexities of individual operations

59

described in the previous section, D satisfies the following recurrence relation:

maxk{kD(p — k, x)} + dip + x) i f p > 0
D(p, x) <

c if p = 0«.

where c is a constant greater than 0. Eventhough in [32], the second term i.e.
dip + x is replaced by cxp2{p + x) in the above relation, solving both the recurrence
relations result in same complexity 0({d + x)3p/<3). The time complexity for the
pbitMCE approach is therefore:

Y .O {{d+ |X„|)3|P“I/3) = OHdn + m)3d/3) = 0(dn3d/3)
V

3.3.7 OPTIMIZATION

We have seen that pivot selection process involves performing logical AND op­
eration between two bit vectors. The maximum size of a bit vector is d bits. To
intersect two bit vectors d /u logical AND operations are required where u is the
computer word size. This is efficient for higher levels of the search tree where most
of the bits are set in bit vector of P. However as we reach the lower levels, the size
of P reduces and the bit vector of P is mostly sparse. Even then, the intersection
of two bit vectors require d /u logical AND operation. This is highly inefficient. To
overcome this drawback we introduce hierarchical renumbering.

Hierarchical renumbering

After the candidate list size reduces to a certain value r , we construct a new partial
bit adjacency matrix by using the renumbering logic explained in Section 3.3.3. The
new pbam constructed is much smaller in size compared to the previous one. This
new smaller matrix is used in further processing instead of the old larger pbam.
This addresses the problem of requiring d /u logical operations. It now only requires
t / u operations instead. This process can be repeated when the candidate list size is
further reduced. However, if this process is repeated more often, there is a possibility
that the time taken for renumbering and constructing the partial adjacency matrices
dominates the overall time taken for enumeration. Based on empirical observations,
for all our experiments we have used two levels of renumbering one at r = 128 and
the other at r = 32 i.e. whenever the candidate list size reduces to 128 or 32 we do
renumbering and construct new partial adjacency matrices.

60

3.4 SEQUENTIAL PERFORMANCE RESULTS

All the results we present in this section are obtained on a four socket 2.27GHz
Xeon X7560(Nehalem-EX) with 256 GB shared memory and running 64-bit Ubuntu
12.04. Each socket consists of 8 cores. Each core has a private 32 KB LI cache
and 256 KB L2 cache. A 24 MB L3 cache is shared by all the cores in a socket.
All the implementation is done using C programming language and compiled using
gcc compiler with -03 optimization flag. The parallel implementation is done using
OpenMP. We have used compressed sparse row(CSR) format to store the graph.

We experimented with several networks obtained from different collections. Table
3 describes the properties of the graphs used in our experiments. All the graphs
are treated as undirected graphs. |C|, d, M in the table represent the number of
cliques in the graph, degeneracy and maximum degree of the graph respectively.
The description of the datasets used for experiments is given below:

Dataset 1: Stanford large network collection [40]

• roadNet-CA, roadNet-TX: Road networks. Intersections and endpoints are rep­
resented by vertices and roads connecting them axe represented by undirected
edges.

• soc-Pokec, wiki-Talk, cit-Patents, web-BerkStan, web-Google, amazon0601 and
as-Skitter are described in Section 2.5.

Dataset 2: Florida sparse matrix collection [78]. All the four graphs are from
the 10th Dimaes challenge group [79]

• coPapersDBLP, coPapersCiteseer: Citation networks

• channel-b050: Graph from numerical simulations

• europe-osm: Street network

Dataset 3: Synthetic graphs generated using GTGraph, a graph generator [41].

• rmat-lOm-lOOm: Generated using R-MAT model with default parameter values
in GTgraph i.e. (a, b, c, d) = (0.45,0.15,0.15,0.25)

• er-lm: Generated using Erdos-Renyi graph model with probability 10~3.

61

D ataset 4: Graphs used in [45] to evaluate Eppstein et al.’s algorithm. We
have selected the graphs that either take considerable amount of time or for which
Eppstein et al.’s approach is slower than other approaches.

• biogrid-yeast: A protein-protein interaction network

• random-100-0.9, random-300-0.6, random-500-0.5, random-1000-0.3: Random
graph with edge densities 0.9, 0.6, 0.5, 0.3 respectively.

• p.hat300-2: A DIMACS challenge graph [80] that has been algorithmically
generated and is intended as difficult example for clique finding algorithms.

• m-m-51: A Moon-Moser graph [58].

We compare our approach with Eppstein et al.’s approach which is considered
the state-of-the-art approach for maximal clique enumeration. We also compare
with the Tomita et al.’s approach. We have seen that the Tomita et al.’s approach
uses adjacency matrix representation. However, for some of the graphs used in our
experiments, the adjacency matrix representation is not feasible. Therefore, for large
graphs (datasets 1,2,3) we have used an adjacency list implementation of Tomita
et al.’s algorithm and for smaller graphs(dataset 4) we use the original Tomita et
al’s approach, i.e. with adjacency matrix representation. The code for both the
approaches is obtained from [81]. A comparison of time taken by different approaches
is presented in Table 3. All these results are obtained by running the experiments on
the multicore machine using a single thread. pbitMCE-b and pbitMCE in the table
refer to the versions of pbitMCE without and with optimization discussed in Section
3.3.7 respectively. Unless otherwise stated, pbitMCE refers to the optimized version.
All the results shown refer to the time taken in seconds.

It can be clearly seen from the Table 3 that pbitMCE is faster than the ELS
algorithm for all the graphs and by upto 4.2 times. pbitMCE is faster than TTT al­
gorithm for most graphs, sometimes by a larger factor. The adjacency list variation of
TTT algorithm, in general performs better for extremely sparse graphs(roadnet-TX,
roadnet-CA, europe-osm). For these graphs, both ELS and pbitMCE are 3 to 4 times
slower than TTT algorithm. However, for other graphs, TTT algorithm is slower
than ELS and pbitMCE by a large factor(> 300). For smaller dense graphs, the TTT
algorithm with adjacency matrix is expected to perform well compared to ELS and
pbitMCE. The graphs in dataset 4 are examples of such graphs. The ELS algorithm is

62

8
5SO

a .

8

-O

Co

c6

SH
cs
<un

&d

a
o

O

a
D

(-sa;
OJ
£T

W

CO
0)

I

cq

i n N a j G J N i o o o c o o oO O N - t O O ^ O H O O l
o o o i h 6 t o c d cn cn
CO 1-1 CO (M

T f T f l i O h O O O J r f C N H^CNl^CO^OO^rHt-H
cn ^ a i to cn cd
tV CO CO

(N CO 00 ^ 00
H N 00 03 H
CO 00 CN CO to
^t4 tO O O

H IV
cd

CN 00
CO T-H

i-h 05 ^ to

T f i o o o c n ^ o o t N o
CO Tf LO cs
CN 05 CN

tV
CN

O CO o 05 o

o c o o o w ^ o t) ' ^ ^ (NOHi OOCO^ fNCN
O N lO ^ iO ^ CO
oo o lO lO 00 (N

in CO CO i-H

CO V CO w
CO 00 £•- CN
CO CO CO
CO 05 N-”
00 rH rH CO

lo n oo
CO r j i CO O)
tO 05 05 CN
05 00 Hm h o <x> to co
t o to " CN

f-H CN

to 00 CO to
00 CO O 1-H
CO IV «to to to to
05 N CO 05
CO CO CO
(N CO H H

o rH CO co CO Tf
r—1 o CO s*

CN CO 00

CN CO o 00 CO o co
IV i-H 00 rH 05 o
to oo to CÔ 05 CÔ CO,
to to to to to to co
CN o i-H 3 CO CO 00
O b- to rH
i-H to rH rH to

00 o rH o r - 3 oo IV to CO o CN CM
Tt4 CD 5£L 3 t'-

to to to rH to to CO
r f r r CN CN co Tf co

CO CO ° l CN o
to to to rH to to CO

i-H i-H

h* rH co IV CO «o CN
3 COrH rH O 00 o
CO CN t - 05 CN S ' rH
to to to to to © to
o 00 h~ N- co s* CO

3 00 CO lO TJ4
rH rH

TT t - 3 CO 00
0 5 t o CO IV CN
CN c d 0 5 0 0 rH

CN 3 3
i-H

CO
CN

CN t o 3 CO
CO 0 5 3 0 0 rH
o o CN 0 5 o
CO CO

rH
t v
CN

H h CO
00 CO CO

LO CN tO O
CO CO ^

rH rH rH 00
rH 0 5 O CO
Tf V Hxt N

05 00 OO CO
05 00 1-H r-S
CN̂ r—̂
to i—r

0 0 CN 1—H 0 5 0 5
o CO t o 0 5 o 0 5 CN
CN
to

CN to ^
to

CN CN CO CN

05 05
CO O

° l to
co to

Tf o
05 CO 00 CO
to to
CO to o o
to to
CO to

CO 1-HIV o
to CN
V- 1-Ht-- 05̂
to o'

to

to to
CO 05
1-h td
CN 1-H
to CO

t"- xp 05 CO
to oo
CO to
CO Tf

CN O
CN CO

oo -O4
CO CN CO CN̂
to CN
00 CO CO CO
to toO 05

o CO
o o
O CO
to to o b-
O 05

o o o o o o
o' o o o o o

CO i-H 1-H

CO

O CN

rH rH CO t o 0 5
TJ4 CD CD CD
t o 0 5 c d to d

b - rH CN rH

CN t o t o 3 rH
t o o o t J4 t o
d d o d d
0 0

i—H
CN rH

to
00 N CO CO H
r - 0 5 co co to

CN O Tt1 00 Tt CO
CD 0 h ̂ O
CN 1-H CN 1-H

Tt4 CO 05 CO CO 00 CN
H N Tjl lO 00 N- H

too CO CN 05 1-H
h H CO CN

^ i-H CN tO CO 00 00
CO 00 CD CN CO 05 Tt4

rH CN CN

CO ^ H r r
i-H tO 05 Is-
CO CO Is—
00 00 ^ co
CO 05 to 00

0 5 OO CO00 o co
05̂ ^ ^ 1-H

" t o oN H rH
tv 05 co CO 05̂ *-H

to to co to to to
^ N O H N CN
CN 1-H i-H

ID CO CO H 00 00 Tf
T f N H h 05 (N N
05_ o to 05̂ 05̂ CN
to to to to to to to
t o CN CO ^J4 CN

OO O O O O O 1-H
O O O O O O to
o 1-H CO to o CO
CO 1-H

a>

c6

-2 o

? ^ s
1 1 2
ej , -O
£ -® S>
5 53 9 e 9

0
a .1
CJ
o
»5

SoI
«5

SO Hsi
5̂

■€
o
8

0 ,
o
cq
Q
8
<u

§•
O Cu

£
D
<u d
«i ins

•o

£s
Cl

Ol

s §

■C 6
Ol o

•2 "o

- !

io in
c i c ii i
C l c i
C l Cl cn in

«*>
; <=j

cnI
Cl
Cl
cn

ISo
e

.£
R.

>n

63

slower than the TTT algorithm for all the graphs in the dataset. However, pbitMCE
is faster than TTT algorithm for most graphs including the Moon-Moser graph, m-
m-51, which is a highly dense graph with largest number of maximal cliques possible
among all graphs with 51 vertices. pbitMCE is slower for two gr&ph.s(random-500-
0.5, random-1000-0.3) but by a very small factor(< 1.1). Also, it can be seen from
the table that the optimization improves the performance for all the graphs tested
and the improvement is significant for some of the gT&phs(wiki-Talk, for example)
depending on the structure of the search trees explored. Note that the timing results
shown for all the approaches do not include the time taken to read the input file and
constructing the adjacency list or matrix. Also, the timing results do not include the
time taken to write the output to a file.

3.5 PARALLEL METHODOLOGY AND EXPERIMENTAL
RESULTS

The pbitMCE algorithm cleaxly defines multiple tasks, each corresponding to a
vertex. Thus, the task of parallelizing the code is as simple as distributing the vertices
between different processing units. However as the workload corresponding to the
vertices can widely vary, balancing the workload is a challenging issue that needs to
be addressed.

3.5.1 LOAD BALANCING

Most of the real world graphs are power-law degree distributed i.e few vertices
have relatively very high degree compared to the majority of vertices. For many
graph problems, it is highly challenging to achieve a balanced workload for these
graphs. pbitMCE relies on degeneracy ordering and scheduling for balancing the
workload between the processing units. Note that, in our parallelization results, we
didn’t include the degeneracy ordering. We only focus on the enumeration process as
degeneracy ordering is a pre-processing step and parallel computation of degeneracy
ordering is discussed in Chapter 2.

Degeneracy

As we have seen, the ELS and pbitMCE approaches use degeneracy ordering
of vertices before starting the enumeration process. In the parallel context, the
degeneracy ordering has an added advantage. It facilitates a balanced distribution

64

$ c ̂ o
$ y

I D)
Q)T3

g ° "

r Ga03
i- ibO
-♦otoew
"O
'C
§>

• «s> -O
• fH
a>oGcS

13X!
T3cSO
ao
>>
t-.a>G<l>bOCD

T3

saoipQA jo jsqainu

03
-t-5

hOa

1rG
CO

O

CM
03l-HGbp

- 5

CO CM t- O

spuooes ui ue>|H) eujij

Fi
gu

re

26
:

Pl
ot

sh

ow
in

g
th

e
im

pa
ct

of

di
ff

er
en

t
sc

he
du

lin
g

ty
pe

s
on

th
e

loa
d

ba
la

nc
e

an
d

ov
er

al
l

tim
e

ta
ke

n

65

of workload. Observe from the TTT and ELS algorithms that a maximal clique
C is generated by exploring the tree corresponding to the least numbered vertex
in C. If a vertex with high degree is placed early in the ordering, its candidate
list p would be large and so exploring its search tree takes more time compared to
the other vertices. This problem is alleviated by using degeneracy ordering. The
degeneracy ordering places the vertices in such a way that no vertex has more than
d neighbors that come later in the ordering. This reduces the candidate list size and
so the workload corresponding to large degree vertices and increases the workload
corresponding to their neighbors with smaller degree. The impact of degeneracy on
load balancing can be clearly seen from Figure 25. The plots show the distribution
of time taken by the vertices of biogrid-yeast graph. Notice the difference in time
taken by different vertices. When degeneracy ordering is not used, there are few
vertices that take considerably more amount of time compared to the vast majority
of vertices. Whereas, when degeneracy ordering is used the difference between time
taken by different vertices is greatly diminished.

Scheduling

The degeneracy ordering alleviates the problem of workload imbalance between
all the vertices. However, the problem is not completely eliminated. The type of
scheduling used for distributing the vertices between the computing nodes also im­
pacts the workload imbalance. OpenMP provides different types of scheduling op­
tions including dynamic, static and guided. Since the vertices have varying amount
of workload, the dynamic scheduling is the most appropriate in this case. However,
dynamic scheduling results in huge synchronization overhead. Static scheduling, on
the other hand, has no synchronization overhead, but might result in load imbal­
ance. We have experimented with different scheduling options with varying chunk
sizes. Guided scheduling is similar to dynamic scheduling except that the chunk
sizes decrease as the number of vertices to be assigned decreases. The plot in Figure
26 shows the time taken by each thread using dynamic scheduling with chunk sizes
1, 10 and 50, static and guided scheduling. The timing results are obtained using
the wiki-Talk graph. It can be seen that, the dynamic scheduling with chunk size 1
resulted in a much balanced load but took longer time than other scheduling options.
Dynamic scheduling with chunk size 50 resulted in a wide variation in time taken by
the threads. The static and guided scheduling resulted in similar performance with

66

32
wiki-Talk — f-

cit-Patents —*
soc-Pokec —*
as-Skitter —b

web-BerkStan —*
16

8

4

2

1
1 2 4 8 16 32

number of threads

Figure 27: Scalability plot for dataset 1

only a slight variation in time taken by the threads.
We have experimented with other load balancing methods like work stealing.

Any attempt for further load balancing involves communication between the pro­
cessing units through data sharing. This resulted in synchronization overhead and
significantly degraded the performance.

3.5.2 SCALABILITY

Figures 27 28, 29 and 30 plot the speed-up obtained for the graphs in the four
datasets. The speed-up is defined as the ratio of processing time taken by t threads
over 1 thread. For each graph, we have chosen the scheduling mechanism that re­
sulted in maximum speed-up. Our algorithm scales well to all the 32 threads available
giving a speed-up of upto 29. The only exception is the m-m-51 graph which is a
Moon-Moser graph [58]. The graph has 51 vertices with degeneracy of 48. The
minimum time that pbitMCE takes to finish the enumeration using sufficiently large
number of processing units is max(Tv), for v € V, where Tv is the time taken to
perform computation corresponding to a vertex v. For m-m-51 this minimum time
is achieved with 8 threads and so pbitMCE cannot scale-up beyond 8. However,
m-m-51 is a highly dense graph and these kind of graphs are uncommon in practice.

67

Q.3I
XJ00Q.0

32
coPapersDBLP

coPapersCiteseer
channel-b050

europe-osm16

8

4

2

1
1 2 4 8 16 32

number of threads

Figure 28: Scalability plot for dataset 2

32
rmat-10m-100m

er-1m
16

8

4

2

1
1 2 4

number of threads

Figure 29: Scalability plot for dataset 3

68

Q.3IT><D<1)Q.tn

32
random-100-0.9
random-300-0.6
random-500-0.5

random-1000-0.3
phat-300-2

m-m-51

16

8

4

2

1
1 2 4 8 16 32

number of threads

Figure 30: Scalability plot for dataset 4

128
wiki-Talk

coPapersDBLP
random-500-0.5

phat-300-2
m-m-51

Q.
3i
-O
<D
a>a.
w

1 2 4 8 16 32 64 128
number of nodes

Figure 31: Scalability on distributed memory architecture

69

3.5.3 RESULTS ON DISTRIBUTED ARCHITECTURE

We have also performed some experiments on a distributed system to show that
the pbitMCE algorithm can also be used in a distributed environment. The ex­
periments were performed on a cluster with 32 nodes, each with Intel Xeon E5504
processor with 4 cores. MPI is used for inter-process communication and the code
is compiled using mpicc. The pre-processing is done by all the processes and the
data i.e. pre- and post-adjacency lists are stored locally at all the nodes. The task
of enumeration is distributed among the processes and workload is dynamically bal­
ances. The initial distribution of workload is done by equally assigning the vertices to
them. The processes independently work by exploring the search trees corresponding
to the vertices assigned to them. When a process completes the work assigned to it,
it selects a computing node at random and requests for work. If it doesn’t receive
work, it requests another process. The process which receives the request shares its
work by assigning some of its vertices to the requesting node. A process terminates
when it completes all its assigned work and doesn’t receive work from any of the
other processes. Figure 31 shows the scalability results for some of the graphs from
the four datasets. It can be seen that pbitMCE scales upto 106 times using 128
processes. The speed-up is poor for m-m-51 graph for the same reason as in the case
of multicore architecture.

3.6 PBITM CE ON HADOOP FRAMEWORK

In the previous section, we have discussed how to implement pbitMCE algorithm
for distributed environment using MPI. The implementation assumes that the each
node in the cluster has a copy of the entire graph. For very large graphs, the as­
sumption may not be practical. In this section, we discuss the implementation of
pbitMCE algorithm for a distributed environment where the graphs is partitioned
and distributed among the nodes.

We have seen in Section 3.3 that in the pbitMCE algorithm, before the enumera­
tion process, the vertices are ordered based on degeneracy. Degeneracy ordering can
be computed in linear time. However, when the graph is distributed, it is challenging
to compute the ordering as it requires extensive communication between the nodes.
In some cases, computing the degeneracy ordering can take significant time than the
time saved in enumeration by using the ordering. In such cases, a different ordering,

7 n

like degree ordering, which can be quickly computed may be a better choice. In this
section, we experimentally study the impact of various orderings on the performance
of pbitMCE algorithm in the context of MapReduce framework. Our experiments
show that the degree ordering performs comparable to the degeneracy ordering for
most graphs.

As we have seen, MCE is an extensively studied problem. There are many al­
gorithms both sequential and parallel algorithms proposed for MCE. Wu et al. [82]
proposed an approach for MCE using MapReduce framework. The approach is based
on a variation of BK algorithm. The approach partitions the enumeration process
into tasks, each task corresponding to a vertex. All the data that is required for a
task is first collected at a node. This is achieved by emitting the adjacency list of a
vertex to all its neighbors. This can result in enormous amount intermediate data
transfer between nodes. Also, the approach does not address the issue of unbalanced
load which is crucial, especially for power-law degree distributed graphs.

To aid with processing of large scale data on clusters, many frameworks have
been developed including MapReduce [13], Pregel [15] and Graphlab [16]. These
frameworks have built-in capabilities including fault tolerance, storage and retrieval
of large files, communication and synchronization between processes. These frame­
works also simplify the task of parallel programming which otherwise is very hard.
However, it is not always easy to modify the approaches to use a framework.

MapReduce is a widely used programming model for processing large data sets
in parallel on a cluster. A MapReduce program consists of two key functions: map
and reduce. In the map function, the input values are converted into key value pairs.
These key value pairs are then shuffled and sorted and a key with all its values are
input to a reduce function. The reduce function then produces the desired output.
Hadoop is a software framework that uses MapReduce programming model for large
scale data processing. Hadoop uses its own file system called Hadoop distributed file
system (HDFS) to effectively store and retrieve the files.

One of the major challenges in implementing pbitMCE on Hadoop framework is
to compute the degeneracy ordering of the vertices. As discussed in Section 3.3.1,
the degeneracy ordering can be obtained in linear time by repeatedly removing the
smallest degree vertex and its edges from the graph. Though it only takes linear
time, the time taken can be significant for larger graphs. Also generating degeneracy
ordering in a distributed environment where the graph is partitioned across multiple

71

computing nodes is challenging. Alberto et al. [36] have proposed a distributed
algorithm for k-core decomposition, which is equivalent to degeneracy ordering. The
proposed approach has been used in an evaluation study of different frameworks
including Hadoop. The results presented in [83] show that the Hadoop framework
takes longer time when compared to other frameworks. The results show that for the
web-BerkStan graph(Table 3) the degeneracy ordering takes more than 2000 seconds
on a cluster with 32 nodes while the time for clique enumeration takes less than 70
seconds on a much smaller cluster. Clearly, using degeneracy ordering in this case is
not advisable. However, pbitMCE can be easily modified to use any vertex ordering.
Some of the choices for vertex ordering include degree ordering, random ordering,
original ordering and partial degeneracy ordering.

pbitMCE produces all and only the maximal cliques without any duplication ir­
respective of the vertex ordering used. In [32], Eppstein et al. proved the correctness
of the ELS algorithm with respect to the degeneracy ordering. The same proof can
be applied to any given ordering of vertices. A clique C will be generated by the
minimum ordered vertex v in C. For any other vertex in C, v will be in the not list
,X , and so the clique C will not be repeated. Compared to the degeneracy ordering,
the other orderings i.e. degree, random, original and partial degeneracy orderings can
be generated in significantly less time. We present the implementation of pbitMCE
using Hadoop framework and empirically compare the performance of different or­
derings. Note that we only focus on comparing the performance of pbitMCE using
different orderings to see if the degeneracy ordering can be replaced by other order­
ing. We don’t compute the ordering using the Hadoop framework, instead we use a
precomputed ordering stored in a map file.

3.6.1 IMPLEMENTATION

We have seen that pbitMCE works by exploring multiple search trees, each cor­
responding to a vertex in the graph. We have also seen that pbitMCE uses pbam to
perform the enumeration. To construct pbam corresponding to a vertex v the list of
neighbors of v i.e N(v) and the post adjacency list of each u in N(v) i.e. postN(u)
for each u €E N(v) are required. To extract the required data from the input, we use
three different MapReduce jobs. Two files, one containing the graph with each edge
in a line, and the other containing a map file with a vertex of the graph and its new
order in each line are given as input.

72

1: function MapperIi
Input: key = u, value = v

2: emit(u, v)
3: emit(u, u)
4: end function

5: function Mapper^
Input: key = u, value = 0 U

6: emit(u, 0 U)
7: end function

8: function ReducerI
Input: key = u, values — (0 U, V\, V2 ■ • -)

9: Nu = 0
10: remove Ou from values
11: for each vertex v in values do
12: add v to Nu
13: end for
14: emit((u,Ou), Nu)
15; end function

Figure 32: First job

The first job given in Algorithm 4 is a simple and commonly used job in graph
algorithms. The input files containing edge information and mapping information
are processed and converted to adjacency lists. The job consists of two mappers and
a reducer. The first mapper receives as input a set of lines from the file containing
the graph while the second mapper is input a set of lines from the map file containing
the new order of each vertex. The map methods simply forward the input keys and
values that they receive. The reducer receives as input a vertex, its set of neighbors
and also its new order. The reducer converts the set of values into adjacency list and
emits the vertex and its new order along with its adjacency lists.

After the first job, each record contains, a vertex, its new order and its adjacency
list. The second job is used to obtain the new order of each vertex in the adjacency
list. This data is required to partition the adjacency list into pre and post adjacency
lists. As we have seen in the Section 3.3.2, partitioning is done to avoid processing of
unnecessary data as we only need the post adjacency lists to construct pbam. Note
that we can skip using the second job and instead perform partitioning in the third

73

1: function Mapper2
Input: key = (u , Ou), value = Nu

2: for each vertex v in Nu do
3: emit(v, (u,Ou))
4: end for
5: emit(u, (u ,0 u))
6: end function

7: function Reducer2
Input: key — u, values=((u,Ou), (v i,0 Vl), {V2 ,0 V2) ...)

preNu = 0
postNu = 0
remove (u , Ou) from values
for each (v, Ov) in values do

if Ov > Ou then
add v to postNu

else
add v to preNu

end if
end for
emit((u,Ou), (preNu,postNu))

end function

Figure 33: Second job

job explained later in the section. However, this results in enormous of data that
needs to be communicated. For example, in the wiki-Talk graph(Table 3), one of
the vertices has a degree of more than 100,000 and its adjacency list requires 400K
bytes. If the adjacency list is not partitioned, the whole adjacency list needs to be
emitted(in the third job) for each vertex in the adjacency list, i.e the data of size
100,000 * 400K bytes = 40G bytes are to be emitted. If partitioning is used based
on degeneracy ordering, since the degeneracy of the graph is 131, the maximum size
of post adjacency list would be 524 bytes and only 100,000 * 524 bytes = 52M bytes
are to be emitted. Hence, partitioning plays a significant role in minimizing the data
required for communication.

To generate the required information the second job uses a mapper and a re-
ducer(Figure 33). For each input that the mapper receives which consists of a vertex
u, its new order Ou, and its adjacency list Nu, the mapper emits the value (u,O u)
with each vertex in Nu as the key. Each record that is input to the reducer contains

9
10
11
12
13
14
15
16
17
18

74

1: function Mapper3
Input: key = (u, Ou), value = (preNu,postNu)

2: for each vertex v in preNu U postN(u) do
3: emit(u, (u,Ou,postNu))
4: end for
5: emit(u, (u ,0 u, postNu)))
6: end function

7: function Reducer3
8: Input: key = u, values=((u,Ou,postNu), (v \ ,0 Vl,postNVl),

(VilOv^POStNy,)...)
9: P = 0

10: X = 0
11: remove (u,Ou,postNu) from values
12: for each (v,O v,postNv) in values do
13: if 0„ > 0 U then
14: add v to P
15: else
16: add v to X
17: end if
18: end for
19: B = constructpbam(P, X)
20: T T T (P ,X ,{u } ,B)
21: end function

Figure 34: Third job

a vertex u, its new order Ou, and the list of vertices in its adjacency list along with
their new orders. Using this data the reducer partitions the vertices in its neighbor
list into pre and post adjacency lists denoted as preNu and postNu respectively. All
the vertices that have new order greater then Ou are added to the post adjacency
list and all the other vertices are added to the pre adjacency list. The generated pre
and post adjacency lists are forwarded to the next job.

The third job is the final job and it includes all the processing of data and enu­
meration of cliques. The job includes a mapper and a reducer(Figure 34). While the
mapper is simple, the reducer performs the actual work of enumeration. Each input
to the mapper consists of a vertex u, its new order Ou and its pre adjacency list preNu
and post adjacency list postNu . The mappers forwards the value (u,Ou,postNu) to
all the vertices in the pre and post adjacency lists. Each input to the reducer then

75

Table 4: Degeneracy vs k-degree

dataset degeneracy k-degree

cit-Patents 64 77
wiki- Talk 131 340
copapers 336 336

web-Berkstan 201 201
soc-LiveJoumall 372 686

contains all the information required to construct pbam corresponding to a vertex u
and perform enumeration. For each (v,Ov,postNv) in the value list, the vertex v is
added to the candidate list P if Ov > Ou, otherwise it is added to the not list X .
pbam is then constructed and used in the enumeration process. The maximal cliques
generated can be output to a file.

3.6.2 ANALYSIS

We experiment using different vertex orderings in the pbitMCE algorithm. How­
ever, our main focus is the degree ordering. To aid with the analysis of pbitMCE
using degree ordering, we introduce a parameter called k-degree. k-degree of a graph
is defined as the smallest value k such that every vertex v of the graph has at most
k neighbors that have degree greater than or equal to its degree. We denote k-degree
by k. In degree ordering, since the vertices are ordered by non decreasing order of
their degrees, for any vertex v in the graph, there can be no more than k neighbors
that come later in the ordering. Therefore, in degree ordering the size of P is limited
by fc as in the degeneracy ordering the size of P is limited by d. Therefore d can
be replaced by k in the analysis of the pbitMCE algorithm given in Section 3.3.6.
This results in a time complexity of 0(kn3k/3). However, it is not clear how the two
values, d and k, can be compared. So, we have done an empirical comparison of
both the values. Table 4 shows the values of degeneracy and k-degree for the graphs
described in Section 3.4. It can be seen that the k — degree value is greater than or
equal to the degeneracy for all the graphs.

3.6.3 EXPERIMENTAL RESULTS

We have performed our experiments using three different clusters. For the initial

76

Table 5: Time taken(in seconds) for enumeration using various orderings
dataset degeneracy degree partial degeneracy random original

cit-Patents 129 126 125 211 153
wiki-Talk 133 130 117 - -
copapers 351 330 383 515 500

web-Berkstan 55 48 481 16690 >17000

experiments to compare various orderings we have used a Hadoop cluster consisting
of 8 heterogeneous computing nodes. All but one node have 4 cores and 4GB of
RAM and the other node has 2 cores and 2 GB RAM. The total storage capacity
of the cluster is 1TB. To compare the scalability of degree and degeneracy ordering
we have used Amazon web services. We ran our experiments on a cluster with
64 standard EC2 compute units for slaves and 2 EC2 compute units for master.
To experiment with very large graphs(soc-LiveJournall) we have used an Amazon
cluster with 512 EC2 compute units for slaves and 4 compute units for master. We ran
our experiments using graphs from two different collections: Stanford large network
data collection [40] and University of Florida sparse matrix collection [78]. The
graphs mki-Talk, web-BerkStan, cit-Patents, soc-Live Journal are from the Stanford
collection and the graph coPapersDBLPis from the University of Florida collection.
The description of these graphs can be found in Section 3.4.

We have precomputed all the orderings i.e degeneracy, degree, partial degeneracy,
random and original orderings and stored in map files. The degeneracy ordering
is computed using the BZ algorithm explained in Chapter 2. Degree ordering is
computed by sorting the vertices in non decreasing order of their degree. Partial
degeneracy order is obtained by using the distributed k-core decomposition algorithm
[36] and limiting the number of iterations to 10. We have used the shuffling algorithm
in [84] to generate random ordering. The original ordering is the given ordering of
the vertices.

Two files are given as input: the graph file containing one edge of the graph in
each line, and a map file containing in each line a mapping of a vertex of the graph
from the original order given to a new order. Given the input files, the approach uses
three MapReduce jobs to generate the required output, i.e. maximal cliques. The
first job and the second job are used to collect the adjacency list of each vertex and

77

the new order of the vertices in the adjacency list. These two jobs do not depend on
the ordering used. These jobs take the same time irrespective of the order chosen.
Since they do not contribute to the comparison of different orders, we ignore the
timing results of the two jobs.

We have performed our initial experiments using a small cluster with 8 nodes.
Table 5 shows the results of different ordering on some of the graphs. The results were
obtained by using 8 reducers. The values in the table represent the wall clock time
taken in seconds by the third job including the time for map, shuffle, sort and reduce.
It can be seen from the table that the degree ordering performs comparable to the
degeneracy ordering while random and original orderings perform significantly poorer
compared to the other orderings. For the wiki-Talk graph, the original and random
ordering ran out of disk space due to the enormous size of data that needs to be
communicated. Partial degeneracy order performance is comparable to degeneracy
ordering for some graphs but for other graphs it is slower by a large factor. For
further experiments we have focused only on degree and degeneracy ordering. To
compare the scalability of both the orderings we have performed our experiments on
Amazon cluster with 64 EC2 compute units. To better compare the two ordering we
measured the cumulative time taken by a reducer to execute the reduce function. Let
U be the cumulative time spent by a reducer i in the reduce function and maxTime =
max{U |1 < i < n } where n is the number of reducers. Figures 35 through 38 shows
the results obtained on different graphs using the degeneracy and degree ordering.
The time in seconds along y-axis represents the maxTime. Note that, this does
not include the time taken for map, shuffle and sort phases. It can be seen from
the plots that both degeneracy and degree orderings perform comparably for all
the graphs except the wiki-Talk graph for which the degeneracy ordering performs
slightly better.

To further evaluate the two orderings, we have experimented using the graph
soc-LiveJournall which has 4.8 million nodes and 42.8 million edges. While experi­
menting we found that the graph has immensely dense subgraphs and these subgraphs
contain enormous number of maximal cliques. We found that each such subgraph
has more than a trillion maximal cliques. Exploring all the maximal cliques for such
a graph requires very large amount of computing resources and takes a huge amount
of time. Since our focus is to compare the two orderings, we have applied a rule to
shorten the time taken for enumeration. During enumeration, if the clique size goes

78

(0
TJc
oo
a>
</)
c
Q)
E

2.2
2 51 degeneracy

A degree

0.8
0.6
0.4
0.2

1 2 4 8 16 32 64

number of reducers

Figure 35: Comparison of time taken by pbitMCE using different orderings for cit-
Patents graph

</)
T3
C
oo
0
</)

0
E

120T............. f.....
degeneracy

degree100

80

60

40

20

0
4 8 16 32 641 2

number of reducers

Figure 36: Comparison of time taken by pbitMCE using different orderings for wiki-
Talk graph

79

degeneracy
degree40

CO O O ■
"D
§ 30
® 25 -
CO

c 20
| 15

1 2 4 8 16 32 64
number of reducers

Figure 37: Comparison of time taken by pbitMCE using different orderings for web-
BerkStan graph

co
T3c
o
o
0
CO
C
0
E

250
degeneracy

degree
200

150

100

50

0
1 2 4 8 16 32 64

number of reducers

Figure 38: Comparison of time taken by pbitMCE using different orderings for co-
PapersDBLP graph

beyond 100 i.e when R > 100 and if the remaining candidate vertices are less than
100 i.e P < 100, instead of further enumerating, we increment the clique count and
backtrack. Note that this will not generate maximal cliques, but only a portion of
each maximal clique. However, it will generate all the maximal cliques of size less
than 100. Also, the degree and degeneracy orderings might produce different num­
ber of cliques. We ran the experiment using an Amazon cluster with 512 standard
EC2 compute units with 512 reducers. The degeneracy ordering yielded 583.8 billion
cliques and took 4.5 hours while the degree ordering generated 513.7 billion cliques
and took 6.2 hours.

The experimental results obtained reflect the analysis in Section 3.6.2. For graphs
with comparable degeneracy and k — degree values, both the degree and degeneracy
ordering result in similar performance, while for the graphs for which k — degree is
greater than degeneracy by a large factor, soc-Live Journal for example, the degree
ordering results in poorer performance compared to the degeneracy ordering.

3.7 SUMMARY

In this chapter, we define a task-set and discuss how the size of task-set can
influence locality. We present a technique called task-set reduction which helps in
improving the temporal locality of an algorithm by reducing the size of task-set. We
demonstrate the effectiveness of the technique by using it to develop an algorithm
for maximal clique enumeration.

Finding maximal cliques is a fundamental problem arising in many areas. In this
chapter, we define the maximal clique enumeration problem and present some ap­
plications. We briefly discuss some MCE algorithms existing in the literature. The
state-of-the-art algorithm for MCE referred to as ELS algorithm is described and its
memory locality with respect to the task-set size is analysed. We propose a new algo­
rithm, called pbitMCE, which uses a bit-based data structure to significantly reduce
the task-set size. We have implemented the algorithm and we compare the results
with the ELS algorithm and TTT algorithm. We have shown that our approach is
faster than both the approaches for most graphs and slower only by a small factor
for few graphs. We have implemented a parallel approach on a multicore machine
and showed that it is scalable giving a speed-up of upto 29 times using 32 cores.
We have also implemented the algorithm on distributed memory architecture and
showed that pbitMCE scales upto 106 times using 128 processes.

81

CHAPTER 4

TRIANGLE LISTING

Memory Locality is a key aspect in the performance of an application. In the
previous chapters, we have discussed two techniques for improving the memory lo­
cality in graph algorithms: access transformation and task-set reduction. We have
also seen how the techniques are applied to the k-core decomposition and maximal
clique enumeration problems. In this chapter, we show another example application,
triangle listing, which uses both the techniques. Triangle listing algorithms have
highly random memory access pattern and also large task-set sizes. Therefore, im­
proving the memory locality can result in significant performance benefits. Many
algorithms for the triangle listing problem exist in the literature. Out of those, the
edge-iterator algorithm is the most widely used algorithm. The algorithm repeatedly
accesses the adjacency lists of the vertices in random order resulting in poor memory
locality. To apply the access transformation technique, the algorithm should have
limited number of iterations. But the edge-iterator algorithm does not satisfy the
property. The task-set of the edge-iterator algorithm is very large and also cannot
be compressed using bit representation or other techniques. Therefore, the task-set
reduction technique is not easily applicable to the edge-iterator algorithm.

We propose a new algorithm, called windoui-iterator, which is a modification
of the edge-iterator algorithm. The window-iterator algorithms uses both the access
transformation and task-set reduction techniques to improve locality. Unlike the edge-
iterator algorithm, the window-iterator algorithm has limited number of iterations,
each iteration working on a smaller task-set.

4.1 DEFINITION AND NOTATIONS

Given an undirected simple graph G{V} E), the triangle listing problem is to find
a set T = {(u ,v,w)\u ,v,w 6 Vand(u,v),(v,w),(w ,u) 6 E}. Note that the set T is
a set of cliques of size 3. Triangle counting problem, a variation of triangle listing
problem, is to find the number of triangles in the graph. The neighborhood of a
vertex v is denoted by N(v) and the degree of v is denoted by deg(v). The number
of triangles in a graph is denoted by A.

82

4.2 A PPLICA TIO N S

The triangle counting/listing problems are of high interest in network analy­
sis applications. They are used in finding a key statistical property of a graph
called clustering coefficient [85], Also they are used in finding transitivity coeffi­
cient [86] [87] [88], another key property of a graph. The triangle problems play an
important role in bioinformatics in the study of motifs and protein-protein interac­
tion networks [89] [90]. Triangle listing is regarded as one of the fundamental graph
mining problem. It is used for detecting sybil accounts and measuring content quality
[91], detection of spamming activities, uncovering of hidden thematic relationships
in web [91].

4.3 RELATED W O RK

Triangle listing problem has been extensively studied and many algorithms exist
in the literature [71] [92] [93] [94] [95] [96] [97] [98]. In a recent study of listing algorithms
by Mark et al. [92], it was shown that most listing algorithms have a common
abstraction. They showed that the running time of nearly every triangle listing
variant is in 0(a(G)m), where a{G) is the arboricity of the graph and m is number
of edges. It was shown that most triangle listing algorithms fall into one of the two
categories: neighborhood intersection and adjacency testing.

Neighborhood intersection: The algorithms in this category iterate over all
the edges. For each edge (u , v), the neighborhoods of u and v are intersected to get all
the triangles that include the edge (u ,v). The algorithms edge-iterator [93], forward
[93] and compact-forward [94] belong to this category. To make the intersection
efficient, the adjacency lists are first sorted. To further improve the efficiency of
intersection, two other variants, edge-iterator-hashed [93] and forward-hashed [93]
use hashing technique which required 0{m) extra space. Another variant, new-
vertex-listing [94], performs the intersection using an extra 0{n) space. It uses a bit
array to mark all the neighbors of a vertex u. The bit array is used in neighborhood
intersections corresponding to all edges connected to u.

A djacency testing: The algorithms in this category iterate over all the vertices.
For each vertex u, every pair of vertices in its neighborhood are tested for adjacency.
The algorithms node-iterator [93] and node-iterator-core [93] belong to this category.
Both these algorithms use hashing to perform the adjacency testing in constant time

83

1: procedure edge-iterator(G(V,E))
2: for each edge (u , w) in E d o
3: for each v in N(u) n N(w) d o
4: output (u ,v ,w)
5: en d for
6: en d for
7: en d p ro ce d u re

Figure 39: The edge-iterator algorithm

and so require 0(m) additional space.
O rdering: The vertex ordering plays a key role in the performance of a triangle

listing algorithm. Generally, the neighborhood of a vertex v, is divided into two
parts: one containing the neighbors that come later than v in the ordering and the
other containing the neighbors that come before v. The sizes of these neighborhoods
depend on the vertex ordering. The most common orderings used by different algo­
rithms include the degree ordering and degeneracy ordering. While some algorithms
order the vertices by non-increasing order of degree, some algorithms use the reverse
order. Mark et al. [92] presented a unified framework based on the ordering of
vertices, the base algorithm(edge based or vertex based) and the amount of extra
memory required. They have performed experiments using various graphs and the
experiments revealed that their variant of neighborhood intersection algorithm that
uses non-decreasing degree ordering along with an intersection strategy that requires
O(n) additional space outperformed all other algorithms.

As triangle listing algorithms are computationally expensive, many parallel algo­
rithms have been proposed to tackle the massive volume of current graphs [99] [100] [101]
[102] [103] [104] most of which use Hadoop framework.

4.3.1 E D G E -IT E R A T O R A LG O RITH M

We have seen that many algorithms exist for triangle listing. The edge-iterator
algorithm [93] has been widely used and the the studies [92] show that the edge-
iterator and its variants outperform the other algorithms. Figure 39 shows the basic
edge-iterator algorithm. It iterates over all edges and intersects the neighborhood
of vertices connected by an edge. Different variants of the edge-iterator algorithm
use different vertex ordering and different strategy for intersection. The variant we

84

1: procedure edge-iterator-deg(G(V, E))
2: G'(V', E') = pre-process(G(V, E))
3: for each vertex u in V' do
4: > Let { f o , f i , ... ,f j t - i} = postN(u) where k = |postiV(u)|
5: for each vertex v2 in postN(u) do > 0 < jr < A: — 1
6: for each w in {vj+i,Vj+2 , ...,ffc_i} f l postN(vj) do
7: Output (U,Vj,W)
8: end for
9: end for

10: end for
11: end procedure

Figure 40: The edge-iterator with degree ordering algorithm

use in this chapter, uses non-decreasing degree ordering i.e if deg(u) < deg(v) then
u comes before v in the ordering. We use a simple sort-merge approach which does
not require any extra space for neighborhood intersection. We refer to this variant as
edge-iterator-deg. This variant is equivalent to S l+ l variant discussed in [92]. The
algorithm for edge-iterator-deg is presented in Figure 40.

Pre-processing

The original graph is preprocessed before starting the edge iteration. The degree
ordering of the vertices is first computed. This can be done using count sort which can
be performed in 0 (n) time. Based on the ordering, the adjacency list (neighborhood)
of each vertex v is partitioned into pre- and post-adjacency lists containing the neigh­
bors that come before v in the ordering and that come after v respectively. We denote
the adjacency list, pre- and post-adjacency lists of v by N(v), preN(v) and postN(v)
respectively. Let 77(11) denote the position of v in the degree ordering. A new graph
G'(V’,E ') is generated from the input graph G(V,E), where V' C V and E' C E,
by replacing each vertex v by 77(f) . Also, while generating the new graph we remove
all the vertices(and their edges) with 0 and 1 degree as they do not belong to any
triangle. We only use the post-adjacency fists during the edge iteration. Therefore
we don’t store the pre-adjacency fists. To make the intersection faster, the post­
adjacency fists are sorted. We use Compressed Sparse Eow(CSR) format to store
the graph.

Figure 41: Memory access pattern of the edge-iterator-deg algorithm

Edge iteration

After pre-processing, the newly generated graph G'(V', E') is used in edge itera­
tion. We only use the post-adjacency lists during the edge iteration. The rationale
behind using the non-decreasing degree order is to reduce the sizes of post-adjacency
lists. In the non-decreasing degree vertex ordering, the large degree vertices are
placed at the end and so their post-adjacency lists have smaller sizes. Note that
this also facilitates in balancing the workload when using multiple processing units.
For each vertex u € V7, for each vertex in its post-adjacency list, an intersection

operation is performed between postN(u) and postN(vj). Note that only the vertices
that come after Vj in postN(u) are included in the intersection operation.

4.3.2 ANALYSIS OF MEMORY LOCALITY

In this section, we analyze the memory locality of edge-iterator-deg algorithm
focusing on access pattern and the size of task-set. In the rest of the chapter, we call
the minimum numbered vertex in an edge as s-vertex and the other vertex in the
edge as e-vertex. From the Figure 40, it can be seen that the algorithm processes
all the edges corresponding to a s-vertex before moving to the next s-vertex. The
memory access pattern for the edge-iterator-deg algorithm is depicted in Figure 41.
In the example given in figure, the order in which the adjacency lists are accessed is as
follows: {0,1264,0,7296,1,3854,1,5369,2,1050,2,4263,2,5432}. As it can be seen,
the access pattern of the s-vertices is sequential. However, the access pattern of the
e-vertices is highly random. The task of edge iteration requires the adjacency lists of
all the vertices and the lists are repeatedly accesses during the processing. Therefore,

86

the task-set for the edge-iterator-deg algorithm constitutes the entire graph. When
the graph size is very large i.e significantly larger than the cache memory, the edge-
iterator algorithm suffers from poor memory locality issues severely impacting the
performance.

4.4 WINDOW-ITERATOR ALGORITHM

We have seen that the edge-iterator-deg algorithm have highly random access
pattern and also large task-set. We propose a new algorithm, called window-iterator,
which uses the access-transformation and task-reduction techniques to improve the
memory locality. In the edge-iterator-deg algorithm, the e-vertices are accessed in a
random order resulting in a large task-set. To reduce the task-set, in window-iterator
algorithm, we limit the range of the e-vertices that a task accesses. We use multiple
tasks, with a subset of consecutive e-vertices assigned to each task. We refer to this
subset as a window. Also, the number of iterations is now limited to the number of
windows, facilitating the use of access transformation technique. Note that, in the
case of edge-iterator-deg algorithm, the number of iterations is |V| which is too large
for the access transformation technique.

Figure 42 shows the window-iterator algorithm. A window consists of vertices in
the range [wsv...wev] where wsv and wev stand for window start vertex and window
end vertex. In each iteration, i.e for each window, all the vertices from 0 to wev are
scanned and intersection is only performed when an e-vertex belongs to the current
window. After processing all the edges with e-vertices in the current window, the
window is moved to the next set of vertices.

The function getWindowEndVertex in Figure 42 returns the last vertex in the
window. We measure the physical window size in terms of the number of bytes taken
to store the adjacency lists of vertices in the window. The end vertex of the window
is calculated such that the physical window size does not exceed a fixed value r. The
criteria for selecting the value of r is discussed in Section 4.4.1.

4.4.1 MEMORY LOCALITY ANALYSIS

The memory locality of the window-iterator algorithm and the overall perfor­
mance of the algorithm is governed by the physical size of the window chosen. When
the value of r is very large, i.e larger enough to fit the adjacency lists of all the
vertices, then the window-iterator algorithm is equivalent to the edge-iterator-deg

1
2
3
4
5
6
7
8
9

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

87

procedure window-iterator{G(V, E))
G’{V\ E') = p r e - process(G(V, E))
wsv = 0
wev = getWindowEndV ertex{G' ,wsv)
while wev < |V"| do

for each vertex u in [CLwev] do
o Let {vo, Vi, = postN(u) where k = \postN(u)
for each vertex Vj in postN(u) and wsv < V j < wev do

> 0 < j < fc — 1
for each w in {v]+i,v]+2 , Vfc-i} DpostN(vj) do

Output (U,Vj,W)
end for

end for
end for
wsv = wev + 1
wev = getWindowEndVertex(G,wsv)

end while
end procedure
function getWindowEndVertex(Gr,wsv)

if wsv > |V'| then
return wsv

end if
wev = wsv + 1
size — \postN(wsv)\
while wev < \V'\ and size + \postN(wev)\ < r do

increment size by \postN(wev)\
increment wev by 1

end while
return wev — 1

end function

Figure 42: The window-iterator algorithm

88

window I window i +1 window*

I vswi - », .>

Figure 43: Memory access pattern of the window-iterator algorithm

algorithm. We have seen that the edge-iterator algorithm has poor memory locality
for large graphs. On the other hand, if the value of r is too small, then the number
iterations will be large. Since in each iteration, all the vertices (that are < wev) need
to be scanned, the time for scan operation can be dominating. The value of r must
be carefully chosen considering the cache memory size and the number of vertices
in the graph. Based on experiments, we have chosen the maximum physical window
size to be less than 16MB which is around 2/3 of the L3 cache memory size of the
machine used for experiments.

Figure 43 shows the memory access pattern of the window-iterator algorithm.
In the example given in figure, the memory access pattern is as follows: {postN(0),
window i, postN(1), window i, postN(2), window i, postN(0), window i+1, postN(1),
window i + 1, postN(2), window i + 1, postN(2), window i + 1}. As in edge-iterator-
deg algorithm, the s-vertices are accessed sequentially. Since all the e-vertices pro­
cessed in an iteration belong to the same window and the window size is chosen to
be small enough to fit in cache, the order in which the e-vertices are accessed does
not impact the performance.

4.4.2 IMPLEMENTATION

Efficient implementation is crucial for the performance of any algorithm. The
data structures should be carefully chosen so that the memory latency is minimized.
In the window-iterator algorithm, the scan operation can take considerable amount
of time as it needs to access the adjacency list of each vertex involved in an itera­
tion. We have used a special data structure to optimize the scan operation which
resulted in significant performance benefits. In this section, we give the details of the
implementation and the data structure.

89

In our implementation, we use compressed sparse row(CSR) format to store the
graph. In this format, the adjacency lists of all the vertices are stored consecutively
in one single array, i.e. all the neighbors of vertex 0 , followed by all the neighbors
of vertex 1 and so on. We refer to this array as edge Array. Another array, referred
by vertexArray, stores the starting indices of corresponding adjacency lists. For
example, if the starting index of adjacency list of vertex v in edgeArray is i then
vertexArray[v] = i. Note that, to access adjacency list of a vertex v, atleast two
memory accesses are required, one to access vertexArray[v] to get the starting index
of the adjacency list and the other to access the adjacency lists in edgeArray. The
access to edgeArray has high possibility of a cache miss as the edgeArray for large
graphs is much larger than the cache.

In the window-iterator algorithm, the outer for-loop(line 6) corresponds to s-
vertices and inner for-loop(line 8) corresponds to e-vertices. For each s-vertex the
outer for-loop needs to be executed at-least once to verify if there is an e-vertex in
the window. This requires access to the edgeArray. In most cases, only a small
percentage of s-vertices have e-vertices in the window. This is especially true for
the iterations at the end. To avoid the access to edgeArray, we use a structure
< m inV ertex, m inVertex I dx > for each vertex in the graph. For a vertex v, the
minVertex stores the minimum vertex in its adjacency list that has not yet been
processed(note that the adjacency lists are sorted). minVertex Idx stores the index
of the minVertex in the edgeArray. Before executing the inner for-loop, we first
check if minVertex belongs to the window. If it does not belong, then the access
to edgeArray is not required. If it belongs then the edgeArray is accessed using the
minVertexIdx and after the inner loop is executed, < m inV ertex, m inVertex I dx >
is updated. Note that the structure is stored in an array and accessed sequentially.
The use of the structure eliminates the unnecessary accesses to edgeArray.

There is also one minor optimization that needs to be mentioned as it is gen­
erally applicable to other graph problems which require performing intersection of
adjacency lists. To perform intersection operation on adjacency lists of two vertices
u and v, it is a general practice to use the degree information of the vertices which
is most often stored in a separate structure. Procedure intersectNeighborsl in Fig­
ure 44 shows an example code that uses degree information. Accessing the degree
information results in increased task-set size and also in most cases requires random
access to the degree array. We propose an optimization which is shown in procedure

90

1: p ro ce d u re intersectNeighborsl (u,v)
2: * = 0 j = 0
3: w h ile i < degree[u] and j < degree[v\ d o
4: o uList and vList are adjacency lists of u and v respectively
5: i f uList[i] = vList\j] th e n
6: > some code
7: en d i f
8: > some code
9: en d w h ile

10: en d p ro ced u re
11: p ro ce d u re intersectNeighbors2(u,v)
12: i = 0 j = 0
13: > uList and vList are adjacency lists of u and v respectively
14: w h ile uList[i\ ^ A and vList[j] ^ A d o
15: i f uList[i] = vList\j] th e n
16: > some code
17: en d i f
18: > some code
19: en d w h ile
20: en d p ro ced u re

Figure 44: A simple optimization

intersectNeighborsZ. We mark the end of an adjacency list using a special value A.
This eliminates the need to access degree information.

4.5 EXPERIMENTAL RESULTS

All the results presented in this section are obtained using a four socket 2.27GHz
Xeon X7560(Nehalem-EX) with 256 GB shared memory and running 64-bit Ubuntu
12.04. Each socket consists of 8 cores(can run 16 threads with hyper-threading).
Each core has a private 32 KB LI cache and 256 KB L2 cache. A 24 MB L3 cache
is shared by all the cores in a socket. All the implementation is done using C++
programming language and compiled using g++ compiler with -03 optimization flag.

We have used graphs from the Stanford large network collection [40] and a syn­
thetic graph generated using GTGraph tool [41]. The description of all the graphs
is given in Section 2.5 of Chapter 2. The timing results comparing the edge-iterator-
deg algorithm and window-iterator algorithm are given in Table 6 . Note that the
time for pre-processing is not included in the timing results for both the algorithm.

91

Table 6: Comparison of edge-iterator-deg and window-iterator algorithms, n, m and
T refer to number o vertices, edges and triangles(all in millions) and time(in seconds)

graph n m T edge - iterator

(in seconds)

window - iterator

(in seconds)

cit-Patents 3.8 16.5 7.5 1.87 1.73

soc-Pokec 1.6 30.6 32.5 6.33 5.13

soc-LiveJoumall 4.8 69.0 285.7 13.27 10.77

com-Orkut 3.1 117.2 627.6 89.30 68.9

rmat-32-512 32.0 512.0 2.6 326.27 247.33

com-Friendster 65.6 1806.0 4173.7 2645.20 1851.50

64
soc-Pokec

soc-LiveJoumaM
com-Orkut

rmat-32-512
com-Friendster

32

16

8

4

2

1
2 41

number of threads

Figure 45: Scalability of window-iterator algorithm

92

Also, for experimental purpose we only output the number of triangles, we don’t
output all the triangles. It can be clearly seen that the window-iterator outperforms
edge-iterator-deg for all the graph and the gap widens as the graph size increases.
We have also experimented using smaller graphs. In case of smaller graphs both the
algorithms resulted in similar performance.

The parallel implementation is done using OpenMP. window-iterator is amicable
to parallelization and it is straightforward to parallelize the algorithm. The workload
of each iteration is distributed to all the available threads. After each iteration, before
entering the next iteration all the threads are synchronized using a barrier. One major
advantage of window-iterator algorithm is that, all the threads share the same task-
set, i.e. the chunk of edgeArray corresponding to the window. There are only read
accesses to the task-set eliminating the overhead of the cache coherency protocol.
Also, the shared cache memory is efficiently used as all the threads in the core access
the same window. The scalability results of the window-iterator algorithm can be
seen in the Figure 4.4.2. The algorithm scales more than 29 times using 32 threads
and more than 44 times using 64 threads(note that there are only 32 physical cores
in the machine).

4.6 SUMMARY

In this chapter, we define the triangle listing problem and present some applica­
tions. Different existing triangle listing algorithms are briefly described. A variant of
edge-iterator algorithm that uses degree ordering of vertices is discussed in detail and
its memory locality is analysed. We propose a new algorithm, called window-iterator,
that combines the access transformation and task-set reduction techniques discussed
in previous chapters to improve the memory locality. To reduce the task-set size, it
uses an idea similar to the blocking technique [17] used for regular applications. The
task-set is limited to a window which consists of adjacency lists of a smaller set of
vertices. The size of the window is chosen such that the window fits in one of the
caches(L3 cache in our experiments). By limiting the task-set size, the impact of
random memory access pattern is greatly reduced. The window-iterator algorithm
is compared with a variant of edge-iterator algorithm and is shown to outperform
for large graphs, window-iterator algorithm is amicable to parallelization. we have
implemented the algorithm for multicore architecture. We present the scalability
results showing that the algorithm scales well, more than 29 times using 32 threads.

93

CHAPTER 5

CONCLUSION

One of the major differences between the regular applications like linear algebra
applications and graphs applications is the memory access pattern. The current
commodity processors are dominated by multicore systems. Multicore processors
have multiple processing units called cores. Each core has a private LI cache(and
possible more cache levels). Each core also has access to a shared cache and also main
memory. Caches are typically orders or magnitude faster and smaller than the main
memory. When the access pattern is sequential the cache memory is better utilized
reducing the need to access the main memory. The hardware prefetcher can analyze
the access pattern and make better predictions to bring the data into the cache before
it is accessed. In the case of graph algorithms, the memory access pattern is highly
random. It is generally not possible for the hardware prefetcher to predict what data
is going to be accessed. When the graph size is small such that most data can fit in

the cache, the access pattern does not pose a major problem. However, for the current
large sizes of the graphs, the impact of the access pattern can be substantial. Since
most data accesses result in cache misses requiring access to the main memory which
has high latency, the performance of graphs algorithms is dominated by the memory
access time. Locality also impacts the degree of parallelism due to the effect of cache
coherency protocols. Therefore improving the locality in graph applications is crucial
to the performance. The main motivation of the thesis is to show the importance
of locality in graph algorithms and present techniques to improve locality that can
result in significant performance benefits.

Improving locality in graph algorithms is highly challenging. Achieving good lo­
cality requires careful analysis of the data structures and the access pattern. An
algorithm can be implemented in different ways using different data structures. The
data structures chosen play a crucial role in the performance. For example, a graph
can be represented using an adjacency matrix, adjacency list, adjacency array or in
compressed row format (CSR) and the choice of representation influences the perfor­
mance.

94

In this thesis, we present two techniques to improve locality. The first technique,
access transformation focuses on the access pattern while the second technique fo­
cuses on the size of the data. The access transformation technique is applicable to
iterative approaches in which a subset of vertices/edges are processed in each iter­
ation. The idea of this technique is to scan all the vertices to extract the order in
which they are processed. This technique adds 0 (kn) to the complexity of the algo­
rithm where k is the number of iterations and n is the number of vertices. However,
since the access pattern of scan operation in sequential, it is not much overhead when

the number of iterations is limited. Moreover, the scan operation is embarrassingly
parallel. We apply the technique to the k-core decomposition and triangle listing
problems.

The task-set reduction technique is a more general technique. It refers to reducing
the size of the data that a task repeatedly accesses. The reduction can be achieved
using different methods. Once method, that we used in the maximal clique enumera­
tion problem, is called compression. In compression, the task-set is not modified but
the memory required to store the task-set is reduced by using a different format like
bit representation. Another method, that is used in the triangle listing problem, is
based on the blocking technique. In this method, the task is divided into sub-tasks

each sub-task working on a smaller task-set. Another method, used in k-core decom­
position problem, is called elimination. This requires eliminating the use of some
data structures by modifying the tasks such that the data in those data structures
is generated from other sources when required.

The two techniques, access transformation and task-set reduction have been ap­
plied to three graphs problems, fc-core decomposition, maximal clique enumeration
and triangle listing. The applicability of these techniques requires a thorough under­
standing of the algorithms, the data structures used for implementing and analysis of
the access pattern. Intuitively, the algorithms that have scope for temporal locality
like the enumeration of vertex covers, enumeration of spanning trees and enumer­
ation of matchings are candidates for task-set reduction technique. And the graph
problems which access the vertices/edges only once(or constant number of times)
but in random order like the minimum spanning trees, approximate vertex cover,
single source shortest path are candidates for access transformation technique. The
memory locality of other graph algorithms needs to be analyzed and improved using
the proposed techniques.

95

REFERENCES

[1] A Comprehensive List of Big Data Statistics [Online]. Available: h t t p : / /
w ik ib o n .o rg /b lo g /b ig -d a ta -s ta tis tic s /

[2] How Much Data is Created Every Minute? [Online]. Available: http://www.
domo. com /blog/2012/06/how-m uch-data-is-created-every-m inute/

[3] Big Data: What is it and why it matters [Online]. Available: h ttp ://w w w .sas.
com /big-data/

[4] M. J. Keeling and K. T. D. Eames. Networks and epidemic models. J. R. Soc.
Interface, 2:295-307, 2005.

[5] 0 . Mason and M. H. A. Verwoerd. Graph theory and networks in Biology.
Systems Biology, IET, 1(2):89-119, 2007.

[6] E. Mohyedinbonab, M. Jamshidi, and Y. F. Jin. A review on applications of
graph theory in network analysis of biological processes. International Journal
of Intelligent Computing in Medical Sciences & Image Processing, 6(l):27-43,
2014.

[7] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the Ninth ACM SIGKDD Interna­
tional Conference on Knowledge Discovery and Data Mining, KDD ’03, pages
137-146, 2003.

[8] M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of
information propagation in the flickr social network. In Proceedings of the 18th
International Conference on World Wide Web, WWW ’09, pages 721-730, 2009.

[9] W.-S. Yang, J.-B. Dia, H.-C. Cheng, and H.-T. Lin. Mining social networks for
targeted advertising. In HICSS. IEEE Computer Society, 2006.

[10] J. He. A Social Network-based Recommender System. PhD thesis, 2010.

[11] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75 -
174, 2010.

http://www
http://www.sas

96

[12] V. Krebs. Uncloaking Terrorist Networks. First Monday, 7(4), Apr. 2002.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107—113, Jan. 2008.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX Con­
ference on Hot Topics in Cloud Computing, HotCloud’10, pages 10-10, 2010.

[15] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD TO, pages 135-146, 2010.

[16] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Graphlab: A new parallel framework for machine learning. In Conference on
Uncertainty in Artificial Intelligence (UAI'), July 2010.

[17] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation, PLDI ’91, pages 30-44, 1991.

[18] V. Batagelj and M. Zaversnik. An O(m) Algorithm for Cores Decomposition of
Networks. CoRR, arXiv.org/cs.DS/0310049, 2003.

[19] S. Hong, T. Oguntebi, and K. Olukotun. Efficient parallel graph exploration on
multi-core cpu and gpu. In Proceedings of the 2011 International Conference
on Parallel Architectures and Compilation Techniques, PACT ’11, pages 78-88,
2011 .

[20] S. B. Seidman. Network structure and minimum degree. Social Networks,
5(3):269 - 287, 1983.

[21] S. Wasserman and K. Faust. Social network analysis: Methods and applications,
volume 8. Cambridge university press, 1994.

[22] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. K-core de­
composition of internet graphs: hierarchies, self-similarity and measurement
biases. NHM, 3(2):371-393, 2008.

97

[23] S. Carmi, S. Havlin, S. Kirkpatrick, and E. Shir. Medusa - new model of internet
topology using k-shell decomposition. PNAS, pages 11-150, 2007.

[24] L. Gallos, S. Havlin, M. Kitsak, F. Liljeros, H. Makse, L. Muchnik, and H. Stan­
ley. Identification of influential spreaders in complex networks. Nature Physics,
6(11):888—893, Aug. 2010.

[25] M. Pellegrini, F. Geraci, and M. Baglioni. Detecting dense communities in
large social and information networks with the core & peel algorithm. CoRR,
abs/1210.3266, 2012.

[26] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos. Community
detection in social media. Data Mining and Knowledge Discovery, 24(3):515—
554, 2012.

[27] V. Batagelj, A. Mrvar, and M. Zaversnik. Partitioning approach to visualization
of large graphs. In GD ’99: Proceedings of the 7th International Symposium on
Graph Drawing, pages 90-97. Springer-Verlag, 1999.

[28] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. k-core
decomposition: a tool for the visualization of large scale networks. CoRR,
abs/cs/0504107, 2005.

[29] J. I. Alvarez-hamelin, A. Barrat, and A. Vespignani. Large scale networks fin­
gerprinting and visualization using the k-core decomposition. In Advances in
Neural Information Processing Systems 18, pages 41-50. MIT Press, 2006.

[30] G. D. Bader and C. W. Hogue. Analyzing yeast protein-protein interaction data
obtained from different sources. Nature biotechnology, 20(10):991-997, 2002.

[31] Y. Cheng, C. Lu, and N. Wang. Local k-core clustering for gene networks. In
IEEE International Conference on Bioinformatics and Biomedicine, pages 9-15,
2013.

[32] D. Eppstein, M. Loffler, and D. Strash. Listing all maximal cliques in sparse
graphs in near-optimal time. In ISAAC, volume 6506 of Lecture Notes in Com­
puter Science, pages 403-414. 2010.

98

[33] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and M. M. A. Patwary. A fast
parallel maximum clique algorithm for large sparse graphs and temporal strong
components. CoRR, abs/1302.6256, 2013.

[34] G. Csardi and T. Nepusz. The igraph software package for complex network
research. Inter Journal, Complex Systems: 1695, 2006.

[35] C. Staudt, A. Sazonovs, and H. Meyerhenke. Networkit: An interactive tool
suite for high-performance network analysis. CoRR, abs/1403.3005, 2014.

[36] A. Montresor, F. D. Pellegrini, and D. Miorandi. Distributed k-core decompo­
sition. IEEE Transactions on Parallel and Distributed Systems, 24(2):288-300,
2013.

[37] A. E. Sarfyiice, B. Gedik, G. Jacques-Silva, K.-L. Wu, and U. V. Qatalyiirek.
Streaming algorithms for k-core decomposition. Proc. VLDB Endow., 6(6):433-
444, Apr. 2013.

[38] R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large dynamic graphs.
IEEE Trans. Knowl. Data Eng., 26(10):2453-2465, 2014.

[39] D. Miorandi and F. D. Pellegrini. K-shell decomposition for dynamic complex
networks. In WiOpt, pages 488-496, 2010.

[40] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. [Online], Available: h ttp ://sn a p .s ta n fo rd .e d u /d a ta /

[41] D. A. Bader and K. Madduri. Gtgraph: A synthetic graph generator suite, 2006.

[42] J. Seward, N. Nethercote, and J. Weidendorfer. Valgrind 3.3 - Advanced Debug­
ging and Profiling for GNU/Linux Applications. Network Theory Ltd., 2008.

[43] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable graph exploration
on multicore processors. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analy­
sis, SC ’10, pages 1-11, 2010

[44] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger. Kla: A new algo­
rithmic paradigm for parallel graph computations. In Proceedings of the 23rd

http://snap.stanford.edu/data/

99

International Conference on Parallel Architectures and Compilation, PACT ’14,
pages 27-38, 2014.

[45] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world
graphs. In Proceedings of the 10th international conference on Experimental
algorithms, SEA’l l , pages 364-375, 2011.

[46] N. Du, B. Wu, X. Pei, B. Wang, and L. Xu. Community detection in large-scale
social networks. In WebKDD/SNA-KDD ’07: Proceedings of the 9th WebKDD
and 1st SNA-KDD 2007 workshop on Web mining and social network analysis,
pages 16-25, 2007.

[47] Z. Chen, K. A. Wilson, Y. Jin, W. Hendrix, and N. F. Samatova. Detecting and
tracking community dynamics in evolutionary networks. In Proceedings of the
2010 IEEE International Conference on Data Mining Workshops, ICDMW TO,
pages 318-327, 2010.

[48] R. Rowe, G. Creamer, S. Hershkop, and S. J. Stolfo. Automated social hierarchy
detection through email network analysis. In Proceedings of the 9th WebKDD
and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis,
WebKDD/SNA-KDD ’07, pages 109-117, 2007.

[49] R. Horaud and T. Skordas. Stereo correspondence through feature grouping and
maximal cliques. IEEE Trans. Pattern Anal. Mach. Intell., 11 (11): 1168—1180,
Nov. 1989.

[50] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In 3rd Intl. Conf. on Knowledge Discovery and
Data Mining, pages 283-286, 1997.

[51] B. Zhang, B.-H. Park, T. V. Karpinets, and N. F. Samatova. From pull-down
data to protein interaction networks and complexes with biological relevance.
Bioinformatics, 24(7):979-986, 2008.

[52] K. L. Jensen, M. P. Styczynski, I. Rigoutsos, and G. Stephanopoulos. A generic
motif discovery algorithm for sequential data. Bioinformatics, 22(l):21-28, 2006.

100

[53] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett. Identification of
tertiary structure resemblance in proteins using a maximal common subgraph
isomorphism algorithm. J Mol Biol, 229(3):707-721, Feb. 1993.

[54] Y. Chen and G. M. Crippen. A novel approach to structural alignment using re­
alistic structural and environmental information. Protein Science, 14(12):2935-
2946, 2005.

[55] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding maximal common
subtopologies in a set of protein structures. Journal of Computational Biology,
3(2):289-306, 1996.

[56] R. Samudrala, J. Moult, and C. Biology. A graph-theoretic algorithm for com­
parative modeling of protein structure. J Mol Biol, 279(l):287-302, 1998.

[57] E. J. Gardiner, P. Willett, and P. J. Artymiuk. Graph-theoretic techniques
for macromolecular docking. Journal of Chemical Information and Computer
Sciences, 40(2):273-279, 2000.

[58] J. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathematics,
3(l):23-28, 1965.

[59] F. Harary and I. C. Ross. A procedure for clique detection using the group
matrix. Sociometry, 20:205-215, 1957.

[60] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Commun. ACM, 16(9):575-577, Sept. 1973.

[61] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for
generating all maximal cliques and computational experiments. Theor. Comput.
Sci, 363(l):28-42, Oct. 2006.

[62] P. M. Pardalos and J. Xue. The maximum clique problem. Journal of Global
Optimization, 4(3):301-328, April 1994.

[63] R. E. Bonner. On some clustering techniques. IBM J. Res. Dev., 8(l):22-32,
Jan 1964.

[64] J. G. Augustson and J. Minker. An analysis of some graph theoretical cluster
techniques. J. ACM, 17(4):571-588, Oct. 1970.

101

[65] E. A. Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM
J. Comput., 2(l) : l-6, 1973.

[66] H. C. Johnston. Cliques of a graph-variations on the Bron-Kerbosch algorithm.
International Journal of Parallel Programming, 5(3):209—238, Sept. 1976.

[67] I. Koch. Enumerating all connected maximal common subgraphs in two graphs.
Theor. Comput. Sci., 250(1-2):1—30, Jan. 2001.

[68] F. Cazals and C. Karande. Note: A note on the problem of reporting maximal
cliques. Theor. Comput. Sci., 407(l-3):564-568, Nov. 2008.

[69] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for
generating all the maximal independent sets. SIAM J. Comput., 6(3):505-517,
1977.

[70] E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Generating all maximal inde­
pendent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput.,
9(3):558-565, 1980.

[71] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM

J. Comput., 14(l):210-223, Feb. 1985.

[72] K. Makino and T. Uno. New algorithms for enumerating all maximal cliques.
In SWAT, pages 260-272, 2004.

[73] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A. Langston, and
N. F. Samatova. Genome-scale computational approaches to memory-intensive
applications in systems biology. In SC, page 12, 2005.

[74] F. Kose, W. a. Weckwerth, T. Linke, and O. Fiehn. Visualizing plant
metabolomic correlation networks using clique-metabolite matrices. Bioinfor­
matics, 17(12):1198-1208, 2001.

[75] N. Du, B. Wu, L. Xu, B. Wang, and P. Xin. Parallel algorithm for enumerating
maximal cliques in complex network. In Mining Complex Data, pages 207-221.
2009.

102

[76] M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park. A scalable, parallel
algorithm for maximal clique enumeration. Journal of Parallel and Distributed
Computing, 69(4):417 - 428, 2009.

[77] L. Lu, Y. Gu, and R. L. Grossman, dmaximalcliques: A distributed algorithm
for enumerating all maximal cliques and maximal clique distribution. In ICDM
Workshops, pages 1320-1327, 2010.

[78] T. A. Davis and Y. Hu. The university of Florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1—1:25, Dec. 2011.

[79] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Graph Parti­
tioning and Graph Clustering - 10th DIM ACS Implementation Challenge Work­
shop, Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012.
Proceedings, volume 588 of Contemporary Mathematics. American Mathematical
Society, 2013.

[80] D. J. Johnson and M. A. Trick, editors. Cliques, Coloring, and Satisfiability:
Second DIM ACS Implementation Challenge, Workshop, October 11-13, 1993.
American Mathematical Society, Boston, MA, USA, 1996.

[81] D. Strash. Quick cliques: A package to efficiently compute all maximal cliques in
sparse graphs. [Online]. Available: h ttp ://w w w .dcs.g la .ac .uk /~pat/jchoco /
clique/enum eration/quick-cliques/doc/index.htm l

[82] B. Wu, S. Yang, H. Zhao, and B. Wang. A distributed algorithm to enumerate all
maximal cliques in mapreduce. In Proceedings of the 2009 Fourth International
Conference on Frontier of Computer Science and Technology, FCST ’09, pages
45-51, 2009.

[83] B. Elser and A. Montresor. An evaluation study of bigdata frameworks for graph
processing. In Big Data, 2013 IEEE International Conference on, pages 60-67,
Oct 2013.

[84] R. Durstenfeld. Algorithm 235: Random permutation. Commun. ACM,
7(7):420, July 1964.

[85] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):409-10, 1998.

http://www.dcs.gla.ac.uk/~pat/jchoco/

103

[86] Harary, Frank and Paper, Herbert H. Toward a general calculus of phonemic
distribution. Language, 33(2):143-169, Apr. 1957.

[87] F. Harary and H. J. Kommel. Matrix measures for transitivity and balance. The
Journal of Mathematical Sociology, 6(2):199-210, 1979.

[88] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algo­
rithms, with an application to counting triangles in graphs. In SODA, pages
623-632, 2002.

[89] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: simple building blocks of complex networks. Science,
298(5594):824-827, October 2002.

[90] E. Yeger-Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R. Y. Pinter,
U. Alon, and H. Margalit. Network motifs in integrated cellular networks of
transcription-regulation and protein-protein interaction. Proceedings of the Na­
tional academy of Sciences of the United States of America, 101(16):5934-5939,
2004.

[91] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai. Uncovering
social network sybils in the wild. In Internet Measurement Conference, pages
259-268, 2011.

[92] M. Ortmann and U. Brandes. Triangle listing algorithms: Back from the diver­
sion. In 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering
and Experiments, ALENEX, pages 1-8, 2014.

[93] T. Schank and D. Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Proceedings of the 4th International Confer­
ence on Experimental and Efficient Algorithms, WEA’05, pages 606-609, 2005.

[94] M. Latapy. Main-memory triangle computations for very large (sparse (power-
law)) graphs. Theoretical Computer Science, 407(13):458 - 473, 2008.

[95] S. Chu and J. Cheng. Triangle listing in massive networks and its applications. In
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’11, pages 672-680, 2011.

104

[96] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, STOC ’77, pages
1-10, 1977.

[97] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal
on Computing, 7(4):413-423, 1978.

[98] V. Batagelj and A. Mrvar. A subquadratic triad census algorithm for large
sparse networks with small maximum degree. Social Networks, 23(3):237 - 243,

2001 .

[99] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh. Mapreduce triangle enumeration
with guarantees. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, CIKM ’14, pages
1739-1748, 2014.

[100] H.-M. Park and C.-W. Chung. An efficient mapreduce algorithm for counting
triangles in a very large graph. In Proceedings of the 22nd ACM International
Conference on Conference on Information and Knowledge Management, CIKM
’13, pages 539-548, 2013.

[101] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and lower
bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377, 2012.

[102] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer.
In Proceedings of the 20th International Conference on World Wide Web, WWW
’11, pages 607-614, 2011.

[103] M. Sevenich, S. Hong, A. Welc, and H. Chafi. Fast in-memory triangle listing for
large real-world graphs. In Proceedings of the 8th Workshop on Social Network
Mining and Analysis, SNAKDD’14, pages 2:1—2:9, 2014.

[104] J. Shun and K. Tangwongsan. Multicore triangle computations without tuning.
In Proceedings of the IEEE International Conference on Data Engineering, pages
149-160, 2015.

105

VITA

Naga Shailaja Dasari
Department of Computer Science
Old Dominion University
Norfolk, VA 23529

Shailaja received her undergraduate degree in 2003 from Kakatiya University,
India and Masters degree in 2006 from Indian Institute of Technology Kanpur, India.
During the masters program she worked as a teaching assistant and did her thesis in
Biometrics as part of the program.

After obtaining M.Tech degree she joined the Virtualization team at Microsoft
India Development Center in 2006 as a software design engineer. While working at
Microsoft she contributed to the products Virtual PC 2007, Virtual Server 2005 R2
SP1, Hyper-v and Windows Virtual PC.

Shailaja joined the PhD program at Old Dominion University in Fall 2009.
Her research interests include Bioinformatics, algorithms, data structures and high
performance computing. In 2011, she received the Outstanding Computer Science
Research Assistant Award given by the Department of Computer Science.

Typeset using

	High Performance Large Graph Analytics by Enhancing Locality
	Recommended Citation

	00001.tif

