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Evaluating multicore algorithms on the
unified memory model

John E. Savage a,∗ and Mohammad Zubair b

a Brown University, Providence, RI 02912, USA
b Old Dominion University, Norfolk, VA 23529, USA

Abstract. One of the challenges to achieving good performance on multicore architectures is the effective utilization of the
underlying memory hierarchy. While this is an issue for single-core architectures, it is a critical problem for multicore chips. In
this paper, we formulate the unified multicore model (UMM) to help understand the fundamental limits on cache performance
on these architectures. The UMM seamlessly handles different types of multiple-core processors with varying degrees of cache
sharing at different levels. We demonstrate that our model can be used to study a variety of multicore architectures on a variety
of applications. In particular, we use it to analyze an option pricing problem using the trinomial model and develop an algorithm
for it that has near-optimal memory traffic between cache levels. We have implemented the algorithm on a two Quad-Core Intel
Xeon 5310 1.6 GHz processors (8 cores). It achieves a peak performance of 19.5 GFLOPs, which is 38% of the theoretical peak
of the multicore system. We demonstrate that our algorithm outperforms compiler-optimized and auto-parallelized code by a
factor of up to 7.5.

Keywords: Option pricing, memory hierarchy, multicore chips

1. Introduction

Processors with multiple cores are being manufac-
tured by a number of vendors including IBM, Sun, In-
tel, AMD and Tilera. At present most contain between
2 and 16 cores. However, a few contain as many as 64–
80 cores. Plans exist to scale up chips to several hun-
dred cores. Multicore processors are organized to share
information across cores using fast buses or a switch-
ing network that limit the number of cores that can be
accommodated. To scale processors to many cores, the
trend is to organize the cores in a two-dimensional grid
with a router embedded with each core.

Unfortunately, the software (including the compil-
ers) to exploit these cores lags behind hardware de-
velopment. To achieve high performance, applications
need to be explicitly coded. One of the challenges to
obtaining good performance is the effective utilization
of the underlying memory hierarchy. To achieve good
performance it is essential that algorithms be designed
to maximize data locality so as to best exploit the hi-
erarchical cache structure. While the efficient use of
memory hierarchies is important in serial processors,

*Corresponding author. Tel.: +1 401 863 76 42; Fax: +1 401 863
76 57; E-mail: jes@cs.brown.edu.

it is doubly important in multicore architectures. Mul-
ticore processors have several levels of memory hier-
archy. To obtain good performance it is necessary to
design algorithms that minimize I/O traffic to slower
memories in the hierarchy [24].

Recently, cache-oblivious algorithms have been pro-
posed that are independent of cache parameters and are
thus more portable across different architectures [9,17,
37,43]. However, portability comes at a price. Yotov et.
al. have experimentally demonstrated that even highly
optimized cache-oblivious programs perform signif-
icantly worse than corresponding cache aware pro-
grams for dense linear algebra applications [47]. They
point to two major reasons for this performance gap,
ineffective utilization of the pipeline by cache obliv-
ious algorithms and the inability to effectively hide
memory latency by cache oblivious algorithms.

In the past serial memory hierarchies and parallel
computing have been extensively explored, mostly in-
dependently but also in a limited way together, for
shared memory processors [6,14,15,19,22,23,29]. Re-
searchers have developed models for parallel comput-
ing starting with the PRAM [16]. The weakness of the
PRAM model is that it ignores communication cost for
moving data between processors. This is addressed by
later models, for example, the LPRAM [5], BSP [42],

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved
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LogP [13] and Postal models [8]. These models ignore
the memory hierarchy, which is addressed by the Mem-
ory Hierarchy Game [32] and several parallel hierar-
chical models such as LogP-HMM [31], LogP-UMH
[3,31], the Parallel Memory Hierarchy (PMH) model
[2], and parallel versions [28,44–46] of the serial mem-
ory hierarchy models of Aggarwal et al [1,4]. Recently,
there has been some effort to develop models for an-
alyzing performance on more advanced architectures
[10,11,20].

One major limitation of all earlier models is their in-
ability to model multicore processors with varying de-
grees of sharing of caches at different levels. In these
models sharing happens for all processors at the level
of main memory or through a network via the proces-
sors. By contrast, a multicore architecture can have an
L2 cache shared by a subset of cores, and an L3 cache
by a larger subset of cores, and so on. (The Intel Dun-
nington processor has an L2 cache that is shared by
two cores, and an L3 cache that is shared by all six
cores.) In a multicore architecture the degree of cache
sharing not only varies across cache levels, it varies
from one architecture to another. For example, the Sun
UltraSPARC T2 has an L2 cache that is shared by all
eight cores as opposed to the Intel Dunnington proces-
sor that has an L2 cache that is shared by only two
cores.

In addition, all earlier models lack a general strategy
for deriving lower bounds to the communication traffic
within and across cores. We need strong lower bounds
not only to measure the effectiveness of proposed algo-
rithms, but for insight in developing cache-efficient al-
gorithms. Most of the efforts in deriving lower bounds
are restricted to using strategies specific to applications
and work for a limited set of architectures. See, for ex-
ample, [5,27,45,46].

In this paper, we introduce the unified multicore
model (UMM) that addresses all these limitations. It
is an extension of the memory hierarchy game (MHG)
developed for a single processor attached to a hierar-
chy of memories [32]. The model assumes that sets of
cores share first-level caches, these share second-level
caches, etc. and that the cache capacity is the same for
all caches at a given level. The UMM seamlessly han-
dles different types of multi-core processors with vary-
ing degrees of sharing of caches at different levels.

The proposed model works for computations that
can be represented as directed acyclic graphs (DAGs).
This includes matrix multiplication, FFT computation,
and trinomial option pricing, which is discussed later.
To derive lower bounds for a given DAG, we com-

pute its S-span [32]. The S-span intuitively represents
the maximum amount of computation that can be done
after loading data in a cache at some level without
accessing higher levels (those further away from the
CPU) memories. A more precise definition of S-span
is given later.

We demonstrate that the S-span of a DAG captures
the computational dependencies inherent in the DAG
and use it to develop lower bounds on communication
traffic for a single core and multiple core architectures.
The use of lower bounds in designing efficient mul-
ticore algorithms is an iterative process. We design a
multicore algorithm and then analyze it on the model
to determine the memory traffic at different levels of a
memory hierarchy. We compare this performance with
the derived lower bounds, and if the proposed algo-
rithm is far away from the optimal we try to improve
the algorithm and repeat this process. In absence of
lower bounds, the algorithm designer does not have
confidence in the efficiency of his/her code in terms of
the number of memory references. This is particularly
true of problems where efficient implementations are
not known. The option pricing problem falls into this
category.

Using our model, we derive lower bounds on mem-
ory traffic between different levels of hierarchy for fi-
nancial and scientific computations. We also design
and implement a multicore algorithm for option pric-
ing using the trinomial model on a on a multicore sys-
tem with two Quad-Core Intel Xeon 5310 1.6 GHz
processors with a total of 8 cores. We analyze the pro-
posed algorithm on our model and demonstrate that
it exhibits a constant-factor optimal amount of mem-
ory traffic between different levels. When the algo-
rithm was implemented, it outperformed the compiler-
optimized and auto-parallelized code by a factor of up
to 7.5.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the unified multicore model
and states the main theorem, which is then used in de-
riving lower bounds on memory traffic between differ-
ent levels of a memory hierarchy. In Section 3 we de-
scribe the computational requirements for option pric-
ing using the trinomial model. In Section 4 we discuss
the optimal algorithm for valuing options using the tri-
nomial model and its implementation including exper-
imental results. In Section 5 we derive lower bounds
on the amount of memory traffic between cache lev-
els for three common scientific and financial problems.
Finally, in Section 6 we draw conclusions.
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2. Bounding memory traffic

In this section, we introduce the unified multicore
model [34] and the multilevel memory hierarchy game
and derive lower bounds on memory traffic between
different levels of a memory hierarchy.

2.1. Unified multicore model

The unified multicore model (UMM), sketched in
Fig. 1(a), captures the essential features of multicore
cache hierarchies. It assumes that each core sees L lev-
els of memory including Level-0, which refers to reg-
isters that are part of the core. It also assumes that all
caches at a given level have the same size and that they
are shared by the same number of cores. For our model,
we define the following parameters for 1 � l � L − 1:

pl: Number of cores sharing a cache at level-l.
αl: Number of caches at the lth level.
σl: Size of a cache at level-l.

Observe that pL−1 = p, the total number of cores. Be-
cause the number of cores sharing a cache at a given
level is the same for all caches at that level, it follows
that αl = p/pl. The highest level cache, main memory,
is assumed to have unlimited capacity.

The model parameters for some sample multicore
architectures [21,26,39–41] are given in Fig. 1(b).

2.2. The multicore memory hierarchy game

The multicore memory hierarchy game (MMHG) is
a pebbling game played on a DAG that models compu-
tations done on the UMM. It extends the memory hi-
erarchy game (MHG) introduced in [32] and general-

ized in [33], p. 537. In Section 2.3 we improve upon
previous lower bounds on the memory traffic required
by the serial MHG. This is extended to the UMM in
Section 2.4.

The rules of the MMHG are given below. The pur-
pose of the game is to pebble the output vertices of a
graph G = (V , E). The value associated with a vertex
is computed in a core register. This is modeled by plac-
ing a zero-level pebble on the vertex. A core cannot
compute the value of an operator unless all its operands
are present in core registers. This requirement is cap-
tured by requiring that to pebble a vertex with a zero-
level pebble, all predecessors of that vertex also carry
zero-level pebbles associated with the core. The num-
ber of zero-level pebbles available to a core is equal to
its number of registers.

First-level pebbles correspond to locations in a first-
level cache. There are as many pebbles as there are lo-
cations. When a register containing a value that must
be retained spills over to a first-level cache, this is mod-
eled by placing a first-level pebble on the vertex that
corresponds to the value in the cache. Although in prin-
ciple a value could be in both a register and a cache lo-
cation, we generally assume that movement to a first-
level cache corresponds to swapping zero- and first-
level pebbles. Data in a first-level cache is available to
all the processors sharing the cache, if any. Movement
of data from a register to a first-level cache is one way
that cores share information.

Caches at higher levels in a multicore hierarchy op-
erate in the same way as a first-level cache. Data from
a lower level cache spills over to the higher level cache
and data in a higher level cache is available to all lower
level caches and processors that share it. Sharing is the
mechanism used to move data between cores. A level-l

Fig. 1. (a) The unified multicore model and (b) model parameters of some sample multicore architectures.
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pebble corresponds to a location in a level-l cache.
Data moves up and down the hierarchy by swapping
it between adjacent levels. Pebbles are associated with
individual caches and model locations in those caches.

Note that the MMHG is a parallel pebbling game;
pebbles associated with different caches can be placed
and removed simultaneously, although this assumption
is not strictly necessary.

We are interested in the communication traffic be-
tween adjacent levels in the hierarchy. This is modeled
by the number of times that a level-l pebble is placed
on a vertex containing a level-(l − 1) pebble or vice
versa.

2.2.1. Rules of the MMHG
R1 (Computation step). A zero-level pebble associ-

ated with a core can be placed on any vertex all
of whose immediate predecessors carry zero-level
pebbles associated with that core.

R2 (Pebble deletion). Except for level-L pebbles on
output vertices, a pebble at any level can be
deleted from any vertex.

R3 (Initialization). A level-L pebble can be placed on
an input vertex at any time.

R4 (Input from level-l). For 1 � l � L, a level-
(l − 1) pebble ξ associated with cache ci,l−1 can
be placed on any vertex carrying a level-l pebble
associated with the parent cache of ci,l−1.

R5 (Output to level-l). For 1 � l � L, a level-l pebble
ξ associated with a cache ci,l can be placed on any
vertex carrying a level-(l − 1) pebble associated
with any cache cj,l−1 that is a child of ci,l.

R6 Each output vertex must be pebbled with a level-L
pebble.

Let σ(0)
i be the number of registers in the ith core,

1 � i � p. This is also the number of zero-level peb-
bles or size of the ith zero-level cache associated with
the ith core. Let σ(l)

i be the number of level-l pebbles

associated with the ith cache at level l, namely, c(l)
i ,

1 � i � αl, where αl is the number of caches at level l.
In the UMM, σ(l)

i = σl, a constant for all i. The num-

ber of cores sharing c(l)
i is τ (l)

i where τ (l)
i = pl in the

UMM. Finally, αlpl = p in the UMM where p is the
total number of cores.

Although the MMHG is a parallel pebbling game,
it can be serialized. That is, we can pebble one vertex
at a time. This restriction does not alter the vertices at
which I/O operations are performed, just the total time
for the operations.

In memory hierarchies either the multilevel inclu-
sion or exclusion policy is enforced. In the former, a

copy of the value in each location in a level-l cache
is maintained in all higher level caches. These copies
may be dirty, that is, not currently consistent with the
value in the lowest level cache containing the origi-
nal, and are updated as needed. The exclusion policy,
which applies to the above rules, does not reserve space
for values held in lower level caches. The results are
derived for this case. However, they also hold for the
inclusion policy when the memory associated with a
cache in the lower bounds is the difference between the
capacity of a cache and that of all its subcaches.

The MHG is the variant of the MMHG in which
there is only one processor and one cache at each
of L − 1 levels [32]. The level-L cache has unlim-
ited size. We denote with T (L)

l (Σ, G) the number of
I/O operations at level l on the DAG G where Σ =
(σ1, . . . , σL−1) denotes the sizes of the caches.

2.3. Uni-processor lower bounds

To set the stage for deriving lower bounds on com-
munication traffic with the MMHG, we begin by de-
scribing the methods used to obtain lower bounds for
the MHG. The lower bounds rely on the S-span mea-
sure of a graph G.

Definition. The S-span of a DAG G, ρ(S, G), is the
maximum number of vertices of G that can be pebbled
in a zero-level pebble game starting with any initial
placement of S zero-level pebbles.

ρ(S, G) is most useful for graphs that have a regular
structure. It provides good lower bounds on communi-
cation traffic for matrix multiplication, the fast Fourier
transform, the pyramid graph and other graphs on the
serial MHG.

The following gives a lower bound to T (L)
l (Σ, G),

the number of I/O operations at level l in the MHG.
The first version of this result appeared in [32]. This re-
sult improves upon the version in [33], p. 535, by tight-
ening the lower bound when the number of memory
locations below level-l is large.

Theorem 2.1. Consider a pebbling of the DAG G with
n input and m output vertices in an L-level memory
hierarchy game. Let ρ(S, G) be the S-span of G and
|V ∗ | be the number of vertices in G other than the in-
puts. Assume that ρ(S, G)/S is a non-decreasing func-
tion of S.

Then, for 0 � l � L − 1 the communication traffic
between the lth and (l−1)st levels, T (L)

l (Σ, G), satisfies
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the following lower bound where Σ(l−1) =
∑l−1

r=1 σr is
the number of pebbles at all levels up to and including
level-(l − 1).

T (L)
l (Σ, G) � Σ(l−1) |V ∗ |

ρ(2Σ(l−1), G)
.

It is also trivially true that T (L)
l (Σ, G) � (n + m).

Proof. The following is shown in [33], p. 535, where
T (2)

2 (S, G) is the number of I/O operations in the two-
level MHG played with S zero-level pebbles.

T (L)
l (Σ, G) � T (2)

2 (Σ(l−1), G).

This is derived by observing that placement of pebbles
below (at or above) level l can be simulated with zero-
level (first-level) pebbles. T (2)

2 (Σ(l−1), G) is a lower
bound because it provides the player with more free-
dom to place pebbles than the multi-level game.

The following inequality extends and simplifies the
Hong–Kung lower bound on the number of I/O op-
erations to pebble a graph [25]. It improves upon the
bound of [33], p. 535. |V ∗ | is the number of non-input
vertices in G.

T (2)
2 (S, G) � S|V ∗ |

ρ(2S, G)
.

To prove the above, partition a two-level pebbling
strategy into h intervals, h = �T (2)

2 (S, G)/S�, such
that each, except possibly the last, has S I/O opera-
tions, which has S1 � S I/O operations. (h = 1 when
S � T (2)

2 (S, G).) Thus,

T (2)
2 (S, G) = (h − 1)S + S1. (1)

We now derive an upper bound on the number of ver-
tices of G that are pebbled with computation steps
within each interval and use this number to obtain a
lower bound on h.

Consider one of the first h − 1 intervals. Some
vertices are pebbled with zero-level pebbles that do
not have pebbles on them (computations are done on
them). Others that carry zero-level pebbles are pebbled
with first-level pebbles. (These are output operations.)
Finally, some vertices that carry first-level pebbles are
pebbled with zero-level pebbles. (These are input op-
erations.)

The times at which computations, inputs, and out-
puts occur are generally intermixed making it difficult

to overbound the number of computation steps. To sim-
plify the analysis we provide an additional S zero-level
pebbles so that if there are O output operations, we
use O zero-level pebbles to allow such pebbles to stay
on vertices until near the end of the interval. Similarly,
if there are I = S − O input operations, we use I
zero-level pebbles to allow the input operations to oc-
cur near the beginning of the interval. Then, inputs oc-
cur at the beginning of the interval, outputs occur at the
end, and computation steps occur in between. By the
definition of S-span, the number of computation steps
is at most ρ(2S, G) because 2S zero-level pebbles are
used.

The number of computation steps required is |V ∗ |,
the number of non-input vertices. (At least one input
operation must be performed on each input vertex.)
The number of computation steps over the first h − 1
intervals is at most (h − 1)ρ(2S, G). At most ρ(2S1, G)
computation steps are performed in the last interval
from which the following inequality holds.

ρ(2S1, G) + (h − 1)ρ(2S, G) � |V ∗ |. (2)

Solving (2) for (h − 1) and substituting into (1), we
have the following.

T (2)
2 (S, G) � S|V ∗ |

ρ(2S, G)

+ S1

(
1 − ρ(2S1, G)/2S1

ρ(2S, G)/2S

)
.

Because S1 � S and ρ(S, G)/S is an increasing func-
tion of S,

T (2)
2 (S, G) � S|V ∗ |

ρ(2S, G)
.

The lower bound T (L)
l (Σ, G) � (n + m) follows by

observing that in a two-level MHG at least one input
operation is required on each input vertex and at least
one output operation on each output vertex. �

2.4. Multicore lower bounds

To extend the above results to the unified multicore
model (UMM) we assume that the task of pebbling the
vertices of a graph G with zero-level pebbles is shared
among the cores and that no two cores perform the
same computation. Pebbling is done according to the
rules stated in Section 2.2.1. Each vertex of a graph G
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is pebbled once with a zero-level pebble by some core.
Associated with each core and each cache is a set of
pebbles that are not interchangeable.

The number of I/O operations performed on a cache
depends on the vertices of a graph G that are peb-
bled with zero-level pebbles by the cores sharing the
cache. If these cores pebble very few (many) vertices,
the number of I/O operations should be small (large).

Let Ti,l(Σ, G) be the number of I/O operations for
the ith cache at level-l in the hierarchy where Σ =
(σ0, σ1, . . . , σL−1) is the list of storage capacities of
the caches in the UMM. Let Ti,l(Σ, G) be the num-
ber of I/O operations performed by the ith cache at
level-l. We derive lower bounds to Ti,l(Σ, G), one for
the worst case in which do not know how the compu-
tational work (pebbling with zero-level pebbles) is dis-
tributed and a second when the work is uniformly dis-
tributed across all cores.

We generalize Theorem 2.1 to the UMM by reduc-
ing the problem of computing memory traffic between
a cache and its subcaches or between a first-level cache
and a core to the problem of computing the traffic be-
tween two levels in the serial MHG. We make three
observations: (a) The kth core is responsible for peb-
bling with zero-level pebbles (computing) a subgraph
Gk = (Vk, Ek) of the graph G = (V , E), (b) the
MMHG can be serialized without changing the I/O to
and from a cache, and (c) the traffic between a cache
c(l)
i and its subcaches is the sum of the traffic to each

subcache.
Let Γi,l be the set of cores that have cache c(l)

i as
their parent at level-l. Let Vi,l be the vertices in the sub-
graphs Gk for k ∈ Γi,l. That is, these are the vertices

that are pebbled by the cores that have cache c(l)
i as its

level-l cache. Let V ∗
i,l be the non-input vertices in this

set.
The following theorem derives lower bounds to the

memory traffic under two conditions, (a) the worst case
when it is not known that the workload is balanced be-
tween cores and (b) the case when the workload is uni-
formly distributed across all cores.

Theorem 2.2. Consider a pebbling of the graph G
in an L-level unified memory hierarchy game with p
processors. Let ρ(S, G) be the S-span of G and |V ∗ |
be the number of vertices in G other than the inputs.
Assume that ρ(S, G)/S is a non-decreasing function
of S. Let βl−1 be the number of pebbles at level-(l − 1)
and below in those caches having a cache at level-l as
parent. Let αl be the number of caches at level-l.

For any allocation of workload to cores, for each
l there is a level-l cache such that the communica-
tion traffic, T (L)

l,M (Σ, G), satisfies the following minimal
lower bound.

T (L)
l,M (Σ, G) � βl−1(|V ∗ |/αl)

ρ(2βl−1, G)
.

When the workload is uniformly distributed over all
cores, the communication traffic at a level-l cache,
T (L)

l,U (Σ, G), satisfies the following bound. It is at least
as strong as the above bound because ρ(S, G)/S is a
non-decreasing function of S and αl/αl−1 � 1.

T (L)
l,U (Σ, G) � βl−1(αl/αl−1)(|V ∗ |/αl)

ρ(2βl−1(αl/αl−1), G)
.

Proof. Consider first the worst-case result. Per the
above discussion, a lower bound on the traffic between
c(l)
i and its subcaches can be derived by observing that

for some i, |V ∗
i,l| � |V ∗ |/αl. This follows because

there are αl level-l caches and for at least one of them,
its cores process a subgraph containing |V ∗ |/αl non-
input vertices. Second, the locations in all caches that
have c(l)

i as parent is βl−1 =
∑l−1

j=1(αj/αl)σj . Be-

cause the traffic between c(l)
i and its subcaches is the

same if the MMHG is serialized, the first lower bound
given in Theorem 2.1 applies from which the bound on
T (L)

l,M (Σ, G) follows. This takes care of the worst-case
result.

Consider next the case when the work is distrib-
uted uniformly, that is, when |V ∗

k | = |V ∗ |/p. We can

then bound the traffic between cache c(l)
i and one of

its subcaches and multiply the result by the number of
subcaches, namely, αl−1/αl. But the number of non-
input vertices pebbled by the cores that have a cache
at level-(l − 1) as parent is pl−1 |V ∗ |/p = |V ∗ |/αl−1.
Also, the number of memory locations at levels � l − 1
used for this computation is βl−1/(αl−1/αl). Using
Theorem 2.1 the traffic between one subcache and its
parent cache at level-l is at least

βl−1(αl/αl−1)(|V ∗ |/αl−1)
ρ(2βl−1(αl/αl−1), G)

.

Multiplying the result by αl−1/αl we obtain the de-

sired lower bound to T (L)
l,U (Σ, G). �

We now illustrate these results on a representative
set of problems.
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3. Option pricing using trinomial model

An option contract is a financial instrument that
gives the right to its holder to buy or sell a financial as-
set at a specified price, referred to as the strike price, on
or before the expiration date. The current asset price,
volatility of the asset, strike price, expiration time, and
prevailing risk-free interest rate determine the value of
an option. Trinomial option valuation is one of the pop-
ular approaches that values an option using a discrete
time model [12,30]. The trinomial option pricing com-
putation is represented using the directed acyclic graph
with in-degree 3 denoted G(n)

triop of depth n on 2n + 1
leaves shown in Fig. 2. We divide the time to expira-
tion into n intervals and let the root be at the present
time and the leaves at expiration times. We use G(n)

triop
to determine the price of an option at the root node it-
eratively, starting from the leaf nodes. The trinomial
model assumes that the price of an asset can go three
ways: up, down, and remain unchanged.

We now describe the computational requirements
for option pricing using the trinomial model. In par-
ticular, we describe the computation for pricing a put
option contract that gives the right to its holder to sell
an asset whose current price is Q at a strike price K
with the expiration time T . We assume that the prevail-
ing risk-free interest rate is r, and the volatility of the
asset is ν. To illustrate the computation, we divide the
expiration time into n intervals with each time interval
dt = T/n. For more details on these models, please
refer to [12,30].

We index ith node at level j in Fig. 2 by (j, i) where
1 � j � n+1 and 1 � i � 2n+1−2(j −1). Let c j

i and

q
j
i be the option price and asset price, respectively, at

(j, i). The computation is initialized by defining q1
i =

Qdnui−1, where u = eλν
√

dt, d = e−λν
√

dt and λ is
a free parameter, and c1

i = MAX(K − q1
i , 0). Option

and asset prices c
j
i and q

j
i are iteratively computed at

Fig. 2. G(n)
triop with depth n = 4 and 2n + 1 = 9 leaves.

higher levels using the following equations. Here, pu,
pd and pm, are pseudo-probabilities that prices go up,
down and remain the same.

c
j+1
i = (puc

j
i+2 + pmc

j
i+1 + pdc

j
i )e−r dt,

q
j+1
i = q

j
i ∗ u,

c
j+1
i = MAX(K − q

j+1
i , c j+1

i ),

pu =
1

2λ2 +
(r − ν2/2)

√
dt

2λν
,

pm = 1 − 1
λ2 , pd =

1
2λ2 − (r − ν2/2)

√
dt

2λν
.

There are two types of options: European options,
and American options. European options can only be
exercised at the time of expiration, while American
options can be exercised at any time prior to expira-
tion. Note that computations of q

j+1
i = q

j
i ∗ u and

c
j+1
i = MAX(K − q

j+1
i , c j+1

i ) are only required
for American options. From the communication traf-
fic perspective the difference between American and
European options is that the American option requires
access to an additional array that stores asset prices.
The computation of a call option is similar except
that the expression for the payoff c j+1

i is replaced by

c
j+1
i = MAX(qj+1

i − K, c j+1
i ).

4. Multicore algorithm and implementation

In this section, we discuss the implementation on a
multicore architecture of a representative application,
option pricing. We propose and implement a multicore
algorithm for a trinomial option pricing model. We im-
plemented the proposed algorithms on a multicore sys-
tem with two Quad-Cores Intel Xeon 5310 1.6 GHz
processors for a total of 8 cores described in Fig. 3. A
core has a 32 kB L1 data cache. The 4 mB L2 cache
is shared by two cores. A single core of the Intel Xeon
5310 processor executes four floating-point instruc-
tions in one cycle, so the peak performance of a core is
6.4 GFLOPs with an overall peak of 51.2 GFLOPs for
the complete system. In the UMM, α1 = 8, α2 = 4,
α3 = 1. The sizes of caches in terms of the number of
double-precision words holding values of ci and qi are
σ1 = 2048, and σ2 = 256 kB.

To evaluate the performance of an algorithm, we
use wall clock execution time. To evaluate how well
a given algorithm matches the underlying architecture,
we also compute algorithm performance as the per-



302 J.E. Savage and M. Zubair / Evaluating multicore algorithms

Fig. 3. A Dell PowerEdge 2990 system with two sockets and on each socket we have a Quad-Core Intel Xeon 5310 1.6 GHz processor.

centage of the theoretical peak performance for the tar-
get machine. For example, when we get 25.6 GFLOPs
on 8 cores of our test system, our code is running at
50% of the peak. All our algorithms were compiled
using Intel Visual Fortran Compiler 10.1 on Windows
XP Professional Operating System. We compiled all
our code with “-fast” option, which combines various
complementary optimizations for the target processor.

4.1. Vanilla algorithm

Let us first look at issues in implementing a vanilla
algorithm, which refers to a straightforward implemen-
tation of trinomial option pricing without any explicit
partitioning for parallelism. A high-level description
of the code is given in Algorithm 1. Note that the
main computation is done inside the two nested loops
(lines 17–19). The compiler faces two challenges to
obtain good performance for the vanilla code: (a) ef-
fective utilization of the memory hierarchy; and (b)
distributing the computation among different cores for
concurrent execution.

It is easier to see the memory hierarchy issue when
the code is being executed on a single core. The main
data arrays, ci and qi, are accessed with a single stride
in the innermost loop. Assume the L1 cache of the
processor running a Vanilla algorithm can hold up to
m elements of both the arrays ci and qi.

This implies that once we have accessed the first m
elements of the arrays from the main memory, the L1
cache is full and cannot accommodate new data with-
out replacing existing data. In other words, when we

access the second set of elements of the array from
main memory, it replaces the first set from the cache.

By the time we finish the first iteration of the outer
loop, we have the last m elements of the array in cache.
However, at the start of the second iteration of the outer
loop, we again need to access the first m elements of
the array, which unfortunately have been replaced from
the cache. As a result, the processor has to go back
to the main memory and get these elements. Thus, we
are not reusing data in the cache, which results in a
poor overall performance. The same issue exists in a
multicore environment.

The second challenge for the compiler is to distrib-
ute computation among different cores along with ef-
ficient utilization of the memory hierarchy. Although
compiler technology has made a lot of progress, it still
cannot address some of these issues. The burden falls
on the application programmer to partition a computa-
tion for effective utilization of the memory hierarchy
and multiple cores.

For a multicore architecture, we need to partition the
computation into blocks such that multiple cores can
work concurrently on different blocks and at the same
time effectively utilize the memory hierarchy. We pro-
pose one such partitioning that is illustrated in Fig. 4.
For this partitioning, all blocks in a single row, for ex-
ample blocks in jth row with labels bj,∗ can be ex-
ecuted concurrently. Observe that in our partitioning
we have two types of square blocks. Alternate rows
of blocks have the same type of blocks. For example,
the second row and fourth row have the same type of
blocks. We select a block size for this partitioning such
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Algorithm 1 (VanillaTrinomial(Q, K, dt, n, r, λ, ν))

1: u ← eλν
√

dt

2: d ← e−λν
√

dt

3: pu ← 1
2λ2 + (r−ν2/2)

√
dt

2λν

4: pm ← 1 − 1
λ2

5: pd ← 1
2λ2 − (r−ν2/2)

√
dt

2λν

6: ṕu ← pue−r dt

7: ṕm ← pue−r dt

8: ṕd ← pde−r dt

9: {initialization loop}
10: for i = 1 to 2n + 1 do
11: qi ← Qdnu(i−1) {qi is a 1-d array}
12: ci ← MAX(K − q1

i , 0) {ci is a 1-d array}
13: end for
14: {main computation loop}
15: for j = 1 to n do
16: for i = 1 to 2(n + 1 − j) − 1 do
17: ci ← ṕuci+2 + ṕmci+1 + ṕdci

18: qi ← qi ∗ u
19: ci ← MAX(K − qi, ci)
20: end for
21: end for
22: return c1

Fig. 4. Partitioning for a multicore architecture for depth n = 7,
2n + 1 = 15 inputs, and block size m = 3.

that the required data for a block fits in the L1 cache of
a core. Note that as we consider problem sizes up to a
maximum of 64K leaf nodes, we can accommodate all
the required data in the level-2 cache. Thus for our ex-
perimentation, we ignored partitioning for level-2. For
the next level of memory, L0, which is the number of
registers in the core, we rely on the compiler unrolling
of the loop.

As shown in Fig. 5, processing of a block, bj,i, re-
quires:

• m north-east boundary output of block bj−1,i,
• m north-west boundary output of block bj−1,i+1,

Fig. 5. Communication requirement for processing a block bj,i.

• one north boundary output (top-most node) of block
bj−2,i+1.

Observe that blocks bj−1,i and bj−1,i+1 are process-
ed as part of a previous iteration; and block bj−2,i+1
is processed two iterations in the past. A high-level de-
scription of the algorithm is given in Algorithm 2. Here
we use neb(bj,i) to indicate the m north-east boundary
elements of bj,i as shown in Fig. 6. Similarly, we de-
fine nwb(bj,i) to indicate the m north-west boundary
elements of bj,i. top(bj,i)) is the single data value of
the block bj,i corresponding to the top-most node (see
Fig. 6).

In trinomial partitioning, the processing of squares
alternates between the two types as indicated in the al-
gorithm. To keep our presentation simple, we ignore
processing of the first row of blocks, which is similar to
other rows except that a block is an incomplete square
and it does not require input from an earlier processed
block. We also assume that m evenly divides 2n + 1;
and nb = (2n + 1)/m is an odd integer. If these as-
sumptions are not correct, the run times are changed
by small constant factors.

The output of neighbor bj−1,i, north-east boundary,
that is required for processing bj,i is stored as part of
the shared array that holds the option prices. We do in-
place computation in the shared array as we move from
one level to next, similar to the vanilla algorithm. The
output of the neighbor bj−1,i+1, north-west boundary
that is required for processing of bj,i is stored sepa-
rately from the shared array. The same is true for the
top(bj−2,i+1). To minimize the storage requirement,
we reuse the array that stores north-west boundary of
bj−1,i+1 to store north-east boundary of bj,i.
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Fig. 6. Execution time as a function of block size.

Algorithm 2 (G(n)
triop)

1: for j = 1 to nb − 1 do
2: {Process the following loop only for odd js}
3: {OpenMP directive is placed at this point of the

code}
4: for i = 1 to nb − j do
5: processSquareI(bj,i, neb(bj−1,i),
6: nwb(bj−1,i+1), top(bj−2,i+1))
7: end for
8: {Process the following loop only for even js}
9: {OpenMP directive is placed at this point of the

code}
10: for i = 1 to nb − j do
11: processSquareII(bj,i, neb(bj−1,i),
12: nwb(bj−1,i+1), top(bj−2,i+1))
13: end for
14: end for

Observe that a large block size for L1 results in an
unbalanced load distribution among cores. For a given
problem size, there is an optimal block size for L1
as seen from the plots of Fig. 6. We use OpenMP di-
rectives to parallelize the computation across different
cores. We use the work-sharing directive of OpenMP
to distribute the iterations of the inner loop of Algo-
rithm 2 among different cores using eight threads, one
for each core.

The OpenMP directives are placed just before the
second loop (line 3/line 9). Observe that processing
of a block bj,i requires input from blocks that were
processed in previous iterations j − 1 and j − 2. Hence
the blocks in the current iteration can be concurrently
executed. The workload for each thread (core) is de-
cided by the schedule directive of OpenMP. We experi-
mented with different schedules and found that the sta-
tic schedule with chunk size of one gave optimal per-
formance.

In [36] we have obtained the following upper bound
on the S-span of G(n)

triop.

Theorem 4.1. The S-span of G(n)
triop satisfies ρ(S,

G(n)
triop) � (S − 1)2/4.

Analysis
We first estimate the memory traffic between an L2

cache and one of its child L1 caches and then multi-
ply it by two to get the estimate for T (4)

2 . Observe that
our partitioning results in nb(nb + 1)/2 blocks, where
nb = (2n + 1)/m. When n is large compared to the
block sizes and the number of cores, the number of
blocks is large and they are almost uniformly distrib-
uted among the various cores. The size of a block is
approximately 2m2. Because there are eight cores, the
number of blocks allocated to a core is approximately
n2/8m2. Observe that processing of a typical block re-
quires 2m+1 data values. In the worst case we assume
these values are not available in L1 cache. The estimate
for memory traffic between one L2 cache and one of
its child L1 caches is given by

T (4)
2 /2 ≈ 2m

(
n2

8m2

)
,

T (4)
2 ≈ n2

4m
.

Using the balanced workload case of Theorems 2.2
and 4.1, the lower bound for T (4)

2 is given approxi-
mately by

T (4)
2 � α1n

2

2α2
2β1

.

For our system α1 = 8, α2 = 4 and for β1 = 2m we
have the following

T (4)
2 � n2

8m
.

Thus the proposed algorithm performance is bound-
ed by a constant factor of 4 away from the lower bound.
Observe that we assume the L1 cache holds m words
or that σ1 = β1/2 = m. For our system, σ1 = 2048
data values. Considering load balancing issues as dis-
cussed earlier, when m = 2048 and the problem size
is small, the performance of the algorithm can be far
from optimal. This is due to an artifact of our lower
bounds, which ignore load balancing issues. It may be



J.E. Savage and M. Zubair / Evaluating multicore algorithms 305

possible to strengthen our bounds by considering load
balancing issues. Observe that for our system when we
have a large L2 cache, we do not have a strong bound
for T (4)

3 , which is trivially bounded by the number of

inputs. Hence we ignore T (4)
3 from our analysis.

Performance
We summarize our results in Tables 1–4. Our al-

gorithm performs better for large problem sizes. We
achieve 38% of the peak performance for a 66K prob-
lem size versus 27% of the peak performance for 8K
problem size on 8 cores. For a 66K size problem, we
obtained 19.4 GFLOPs. Similarly we observed a bet-
ter scalability for large problem sizes. For example, we
obtained a speedup of 7.4 for an 66K size problem on
8 cores versus a speedup of 5.7 for an 8K size problem
on 8 cores.

For comparison, we also implemented a vanilla al-
gorithm, which refers to a straightforward implemen-
tation of trinomial option pricing without any ex-
plicit partitioning for parallelism. We compiled the
vanilla code with the “-fast” option along with the
“-Qparallel” option that enables the auto-parallelizer

Table 1

Execution time for the trinomial algorithm using OpenMP

Execution time (s)

2n + 1 1 core 2 cores 4 cores 8 cores

8481 0.0588 0.0309 0.0171 0.0103

16705 0.2259 0.1160 0.0613 0.0342

33345 0.8500 0.4339 0.2266 0.1232

66177 3.3399 1.6870 0.8633 0.4519

Table 2

Performance of the trinomial algorithm as percentage of theoretical
peak

Peak (%)

2n + 1 1 core 2 cores 4 cores 8 cores

8481 38.2 36.4 32.8 27.2

16705 38.6 37.6 35.5 31.9

33345 40.9 40.0 38.3 35.3

66177 41.0 40.6 39.6 37.9

Table 3

Performance of the trinomial algorithm in GFLOPs

GFLOPS

2n + 1 1 core 2 cores 4 cores 8 cores

8481 2.4 4.7 8.4 13.9

16705 2.5 4.8 9.1 16.3

33345 2.6 5.1 9.8 18.1

66177 2.6 5.2 10.1 19.4

Table 4

Scalability performance of the trinomial algorithm

Speed up

2n + 1 1 core 2 cores 4 cores 8 cores

8192 1.0 1.9 3.4 5.7

16384 1.0 1.9 3.7 6.6

32768 1.0 2.0 3.8 6.9

65536 1.0 2.0 3.9 7.4

Table 5

Performance of the vanilla trinomial algorithm when using “-fast”
and “-Qparallel” compiler options for optimization and auto-
parallelization

2n + 1 Execution time (s) GFLOPS Peak (%)

8481 0.05 3.07 6.0

16705 0.22 2.55 5.0

33345 0.86 2.59 5.1

66177 3.41 2.57 5.0

to generate multithreaded code for loops that can be
safely executed in parallel. Our results for the vanilla
algorithm are summarized in Table 5. The best perfor-
mance for the vanilla algorithm is 6% of the peak as
compared to 38% of the peak for our algorithm.

We note that previously proposed parallel imple-
mentations for pricing options suffer from low perfor-
mance [18,38] as they do not address memory hierar-
chy issues. For example, Gerbessiotis’ algorithm [18]
only gets 1.5% of the peak performance on a single
node of a Pentium cluster for n = 32K; and degrades
to 0.8% on a 16-node cluster due to the communication
overheads.

5. Applications of the methodology

The bounds on I/O traffic for multicore chips de-
rived here can be applied to problems characterized
by DAGs. All that is needed are the parameters of the
UMM for the chip being analyzed and the S-span of
the graphs in question. We illustrate this for matrix
multiplication, the fast Fourier transform (FFT), and
other financial computations such as the binomial pric-
ing model (BPM) that is characterized by the graph
shown in Fig. 7.

Matrix multiplication
We consider any straight-line program for the multi-

plication of two n × n matrices A and B that perform
the same set of additions and multiplications as the
standard algorithm but in an arbitrary order. Each com-
putation is described by a DAG GMM. Let C = AB be
the result matrix.
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Fig. 7. The graph G(n)
biop with depth n and n + 1 = 8 leaves.

Theorem 5.1 [33]. The S-span of any n × n ma-
trix multiplication DAG GMM satisfies ρ(S, GMM) �
2S3/2.

Applying Theorem 2.2 to GMM we have the follow-
ing result.

Theorem 5.2. When the workload in computing the
n × n matrix multiplication graph is uniformly distrib-
uted across all cores, each level-l cache in the UMM
requires a number of I/O operations satisfying the fol-
lowing bound where αl is the number of caches at level
l and βl is the number of storage locations of caches
that have a level-l cache as parent.

T (L)
l,U (Σ, GMM) �

√
αl−1n

2(2n − 1)

2
√

2α
3/2
l

√
βl−1

.

Also, T (L)
l,U (Σ, GMM) � α

1/3
l−1((n − 1)n2)2/3/(25/3αl).

Proof. The first result follows from the fact that
|V ∗ | = n2(2n − 1) for GMM and the bound ρ(S,
GMM) � 2S3/2. The second lower bound follows from
the fact that S0 satisfies ρ(2S0, G) � |V ∗ |/αl−1. �

The fast Fourier transform algorithm (FFT)
The FFT graph is well known. A bound on its S-

span is given below.

Theorem 5.3 [7]. The S-span of the n-input FFT
graph satisfies ρ(S, GFFT) � 2S log2 S.

Applying Theorem 2.2 to GFFT we have the follow-
ing result.

Theorem 5.4. When the workload in computing the n-
input fast Fourier transform graph is uniformly distrib-
uted across all cores, each level-l cache in the UMM
requires a number of I/O operations satisfying the fol-
lowing bound where αl is the number of caches at
level-l and σl is the number of storage locations in a
level-l cache. and βl is the number of storage locations
of caches that have a level-l cache as parent.

T (L)
l,U (Σ, GFFT) � n log2 n

4αl log2(2βl−1(αl/αl−1))
.

Also, T (L)
l,U (Σ, GFFT) � (n log2 n)/((4αl−1) ×

(log2(n log2 n) − log2(2αl−1))).

Proof. To obtain the first bound note that |V ∗ | =
n log2 n and ρ(S, GFFT) � 2S log2 S. The second
bound requires the smallest value of S0 satisfying
ρ(2S0, G) � |V ∗ |/αl−1. A relaxed condition is that
(2S0) log2(2S0) � a = (n log2 n)/(2αl−1). Substitu-
tion shows that if a � 2, then 2S0 � a/ log2 a. In
this case, S0 � (n log2 n)/((4αl−1)(log2(n log2 n) −
log2(2αl−1))). Multiplying by αl−1/αl, we have the
desired result. �

The binomial pricing model
The binomial pricing model for options is similar to

that for the trinomial pricing model. The difference is
that it does not assume that prices may remain constant
on a time step. It is described by the graph G(n)

biop shown
in Fig. 7.

Theorem 5.5 [36]. The S-span of G(n)
biop satisfies ρ(S,

G(n)
biop) � S(S − 1)/2.

Applying Theorem 2.2 to G(n)
biop we have the follow-

ing result.

Theorem 5.6 [35]. When the workload in computing
the binomial graph G(n)

biop on n + 1 inputs is uniformly
distributed across all cores, each level-l cache in the
UMM requires a number of I/O operations satisfying
the following bound where αl is the number of caches
at level-l and βl−1 is the number of storage locations
in all caches that have a given level-l cache as parent.

T (L)
l,U (Σ, G(n)

biop) � αl−1n(n + 1)

4α2
l βl−1

.

Also, T (L)
l,U (Σ, G(n)

biop) � √
αl−1n/2αl.
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6. Conclusions

In this paper we introduce a new model for the
cache hierarchy of multicore chips. We also study
cache-efficient algorithms for these chips. Our results
are illustrated by applying them to option pricing, a
compute-intensive problem. Cache-efficiency is exam-
ined by developing lower bounds on the memory traf-
fic between levels of a cache hierarchy and apply-
ing them to a variety of problems including the trino-
mial model for option pricing. For the latter we not
only exhibit an algorithm that is theoretically efficient,
we show it gives excellent performance on a 8-core
chip, a platform with two Quad-Core Intel Xeon 5310
1.6 GHz processors. Our algorithm achieves a peak
performance of 19.5 GFLOPs, which is 38% of the the-
oretical peak of the multicore system. It outperforms
the compiler optimized and auto-parallelized code by
a factor of up to 7.4 on a problem with 66K vertices.
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