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ABSTRACT  

PREDICTIONS OF KNEE JOINT CONTACT FORCES USING ONLY KINEMATIC INPUTS 

WITH A RECURRENT NEURAL NETWORK 

Kaileigh Elisabeth Estler 

Old Dominion University, 2021 

Director: Dr. Hunter J. Bennett 

 

 BACKGROUND: Knee joint contact (bone on bone) forces are commonly estimated 

using surrogate measures such as external knee adduction moments (with limited success) or 

musculoskeletal modeling (more successful). Despite its capabilities, modeling is not optimal for 

clinicians or persons with limited experience and knowledge. Therefore, the purpose of this 

study was to design a novel prediction method for knee joint contact forces that is equal or more 

accurate than modeling, yet simplistic in terms of required inputs. METHODS: This study 

included all six subjects’ (71.3±6.5kg, 1.7±0.1m) data from the opensource “Grand Challenge” 

datasets (simtk.org) and two subjects from the "CAMS" datasets, consisting of motion capture 

and in-vivo instrumented knee prosthesis data (e.g. true knee joint contact forces). Inverse 

kinematics were used to derive three-dimensional hip, two-dimensional knee (sagittal & frontal), 

and one-dimensional ankle (sagittal) kinematics during the stance phase of normal walking for 

all subjects. Medial and lateral knee joint contact forces (normalized to body weight) and inverse 

kinematics were imported into MATLAB and normalized to 101 data points. A long-short term 

memory network (LSTM) was created to predict knee forces using combinations of the 

kinematics inputs. The Grand Challenge data were used for training, while the CAMS data were 

used for testing. Waveform accuracy was explained by the proportion of variance and root mean 

square error between network predictions and in-vivo knee joint contact forces data. 

RESULTS: The top five networks demonstrated excellent fit with the training data, achieving 

RMSE < 0.26BW for medial and lateral forces, R2 > 0.69 for medial forces, but only R2 > 0.15 



 
 

for lateral forces. The overall best-selected network contained frontal hip and knee, and sagittal 

hip and ankle input variables and presented the finest visual waveform agreement with the in-

vivo data (R2=0.77, RMSE=0.27). CONCLUSIONS: The LSTM network designed in this study 

revealed knee joint forces could accurately be predicted by using only kinematic input variables. 

The network’s results outperformed most reports of root mean squared errors and correlation 

coefficients attained by musculoskeletal modeling and surrogate measures of KAMs. 
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CHAPTER I  

INTRODUCTION 

The purpose of this study is to examine the non-linear relationship between the 

biomechanical (kinetic and kinematic) factors that attribute to in-vivo knee joint data. Currently, 

in-vivo knee joint contact forces (KJCF) are measured by instrumented implant technology in 

persons with total knee replacements (TKR). Although this method is not necessarily indicative 

of all populations, research using in-vivo data, albeit limited in sample size, has illuminated the 

intricate relationship between experimentally measured dynamics and bone-on-bone forces. 

Recent advancements in musculoskeletal modeling have allowed for quite accurate estimates of 

KJCF without the limitation/requirement of TKR instrumentation, thus making results more 

generalizable to the population at large. However, the required comprehensive skills for 

modeling is quite complex and lacks practicality for many researchers and clinicians. For this 

reason, an efficient surrogate method of KJCF is by the external knee adduction moment (KAM). 

Computation of the KAM requires input from both kinematic measures (i.e. joint angles) and 

ground reaction forces (GRFs), typically obtained using three-dimensional motion capture 

systems. However, as the following literature review will demonstrate, alterations of the KAM, 

which is a typical goal of gait training studies that regard knee health, occurs primarily through 

modifications of the joint kinematics and not GRFs. Thus, kinematic measures could be an 

efficient alternative predictor for KJCF that are more easily attained, require less computations, 

and are relevant to both researchers and clinicians alike. 

The following literature review (Chapter II) will 1) review the common methods for 

measuring and predicting in-vivo KJCF, 2) explain the non-linear relationship between surrogate 
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kinematic measures and kinetics to predict KJCF, and 3) introduce an artificial recurrent neural 

network as a means of predicting KJCF with derived KJ data.   

STATEMENT OF PROBLEM 

True in-vivo KJCF data are currently measured by instrumented implantation technology 

in populations with TKR. However, instrumented implant data are scarce. Thus, focus has 

shifted towards musculoskeletal model simulations and surrogate measures, such as KAM, as 

alternative methodologies to estimate KJCF. However, despite the fact that previously literature 

demonstrates kinematics (i.e. movement patterns) play an integral role in KJCF, no studies have 

investigated the possibility of utilizing kinematic data to predict in-vivo joint forces.  

PURPOSE 

 Knee joint contact forces (bone on bone forces) are commonly sought in biomechanics 

via complex musculoskeletal modeling or estimated using surrogate measures such as external 

KAMs. However, musculoskeletal modeling is not optimal for clinicians or persons with limited 

experience pertaining to modeling and KAMs have been found ineffective at predicting KJCF 

during altered gait patterns (i.e. non-normal). As such, it is pertinent to devise a new prediction 

methodology that arises from as few experimental technologies as possible and is not bound to 

the complexity of modeling. Therefore, the purpose of this study is to design a recurrent neural 

network to predict knee joint contact forces using input variables of only kinematic measures.  

SIGNIFICANCE OF STUDY  

 This study will provide new insight for predicting in-vivo KJ data from a more widely 

applicable approach. Current methodologies are limited by the accessibility of implanted 

instrumented in-vivo data and the high level of knowledge necessary for musculoskeletal 

modeling. Not only is the aim of this work to develop a better method for predicting in-vivo data, 

but to also demonstrate the relationship between kinematic parameters and KJCF.  
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HYPOTHESIS  

 Hypothesis 1 – A recurrent neural network consisting of only kinematic inputs can 

predict KJCF with higher accuracy levels matching those reported using musculoskeletal 

modeling. 

 Hypothesis 2 – More than one combination of kinematic variables can match the level of 

accuracy reported using musculoskeletal modeling.  

LIMITATIONS 

• This study, and thus the neural network, will include only data from opensource 

databases of persons who have had an instrumented TKR, which is a very limited subject 

pool. To date, there are only two widely available data: Grand Challenge Competition 

(simtk.org; 6 datasets, two repeated subjects, JW & DM) and CAMS-Knee (single trial 

from two subjects K5R & K8L, https://CAMS-Knee.orthoload.com, Taylor et al. 2017).  

• Not all subjects had the same knee replacement instrumentation or force transducers. 

However, calculations for the medial and lateral KJCF were validated for each force 

transducer via mechanical testing. The variation in instrumentation among subjects 

should allow the neural network to perform more generalizable predictions.    

• This study will not include data from otherwise healthy individuals, thus limiting the 

generalizability of the results. However, unlike musculoskeletal models, this study will 

only include kinematic variables, which should be more generalizable than vast 

computational models including predicted muscle activation and contraction dynamics. 

 

https://cams-knee.orthoload.com/
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DELIMITATIONS 

• Kinematic variables included in the neural network will be limited to those of the lower 

extremity (3-hip, 2-knee, and 1-ankle) and trunk sway.  

• Artificial neural networks can be trained with seemingly an infinite number of neurons. 

However, the range of neurons that will be included in the network here will be limited 

from 5-20 neurons.  

• This study will focus on predicting medial and lateral knee joint compartment forces. 

Although it is possible to train a network to predict all 6-components of in-vivo KJCF, 

the computational requirements would be likely to require more subject data than 

available. 

OPERATIONAL DEFINITIONS 

Knee joint contact forces (KJCF): the true bone on bone forces between the distal femur and 

proximal tibia 

Knee osteoarthritis (KOA): the degradation of meniscus cartilage at the knee joint, often leading 

to extreme pain and discomfort  

Instrumented implanted in-vivo data: biomechanical data collected from a technological device 

post knee arthroplasty/replacement 

Total knee replacement (TKR): surgical procedure to remove degenerated cartilage and bone at 

the KJ  

 

 



 

CHAPTER II 

LITERATURE REVIEW 
 

 Mobilization and stability are the primary roles of the knee joint, aided by its surrounding 

soft tissues that absorb and convey the stress demands placed on the body throughout all planes 

of movement (Neumann, 2002). Consequently, the subjective continuous breakdown of cartilage 

is one of the leading causes of joint disease and disorder, known as osteoarthritis (OA) (Kremers 

et al., 2015). Factors such as age and repetitive use of the KJ contribute to the prevalence of OA. 

Physical burdens associated with OA are categorized by unbearable pain, increased stiffness or 

decrease in range of motion (ROM), and swelling at the KJ (Bade et al., 2010). Though there is 

no direct cure for OA, patients can undergo procedural total knee replacement (TKR) to manage 

the excruciating signs and symptoms.  The objective of TKR operations is to improve functional 

daily living and alleviate the pain associated with OA (Ko et al., 2011). Although the exact 

number of KJ procedures among the United States population is unknown, in 2010 it was 

estimated that 4.7 million individuals have undergone TKR surgeries (Kremers et al., 2015). 

That is, about 4% of adults over 50 years live with TKR (Weinstein et al., 2013; Kremers et al., 

2015). Expected growth in TKR demand is rising amongst the younger population (Hootman & 

Helmick, 2006), and so it is pertinent to investigate the effectiveness of current TKR procedures 

in correlation with previous biomechanics research. The primary goal of knee replacement is to 

restore mechanical function and efficiency at the KJ. Investigating the habitual kinematic and 

dynamic patterns (joint loads and knee angles) of the KJ can provide insight into individuals’ 

mechanical in-vivo gait patterns. 

 Subjective questionnaires are often utilized to survey patient satisfaction post TKR. 

Overall, about 81% of TKR patients have reported complete procedural satisfaction, thus 
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indicating a significant portion of patients that fall on the opposite end of satisfaction (Bourne et 

al., 2010). The majority of dissatisfied patients were of the older age margin, 61-74 years (Noble 

et al., 2006). Bourne et al., (2010) assessed KJ stiffness post-operation and reported the activities 

experienced at the lowest satisfactory level were walking up and down the stairs and getting out 

of automobiles. For this reason, comparisons of KJ patterns (i.e. kinematics and kinetics) in 

clinical populations (KOA) versus healthy persons are an important step in ascertaining the 

mechanisms driving satisfaction/success with TKR.  

In both laboratory and clinical settings, procedural 3-dimensional motion capture analysis 

can be implemented to measure kinematic and kinetic variables.  Inverse dynamic analyses allow 

researchers to calculate the net (minimum necessary) force and moments during activities such 

as walking. In OA patients there is an increased dynamic load (i.e. forces and moments) at the KJ 

as the degenerative disease progresses. During dynamic assessments such as gait, the knee 

adduction moment (KAM) exhibits the greatest moment arm magnitude, respective to the knee 

(Felson, 2003). The KAM is also believed to be the optimal predictor of knee OA (KOA) 

progression due to the repetitive overload at the medial compartment of the knee (Walter et al., 

2010; Zhao et al., 2006).  

Other equally important factors that influence KJCF patterns during gait are alignment 

and kinematic gait patterns both before and after TKR operations (Noble et al., 2006; Vissers et 

al., 2010). Tibiofemoral malalignments expressed as varus (mechanical axis <0°) and valgus 

(mechanical axis>0°) are often indicative of insufficient load distribution in the medial and 

lateral distributions. Most commonly, varus alignment is often associated with greater medial 

compartmental loading at the KJ in KOA populations compared to neutral and valgus alignments 

and is expressed by peaks of KAM (Nie et al., 2019; Turcot et al., 2013; Simic et al., 2013; 
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Messier et al., 2014). To compensate for altered gait kinetics and kinematics in the knee driven 

by tibiofemoral malalignment, corrective osteotomies are considered. In an attempt to correct 

valgus alignment and the high lateral load demand, slight varus/neutral osteotomies were 

evaluated in patients with lateral KOA (Egmond et al., 2017). As expected, peaks of KAM 

significantly increased, thus reducing the pre-operative lateral compartment load and KOA 

progression (Egmond et al., 2017). Although the KOA group still had less sagittal ROM post-op 

primarily at toe-strike and heel-off, the corrective alignment successfully resembled the controls’ 

gait patterns (Egmond et al., 2017).  

Inverse dynamics research has shed light on the altered/abnormal gait mechanics of 

persons with KOA and/or a TKR. However, inverse dynamics is only a surrogate measure of the 

true target, KJCF. Therefore, it is important to discuss the methods in-vivo KJCF have been 

previously recorded via advanced technology. 

MEASURING IN-VIVO KJ FORCES VIA INSTUMENTED IMPLANT TECHNOLOGY 

 

With recent advancements in technology, knee joint contact forces (the true bone on bone 

forces between the distal femur and proximal tibia) can be recorded in-vivo during a variety of 

activities (Geffre et al., 2007; Szivek et al., 2006). The methodology “instrumentation” is 

designed to replicate the function of knee cartilage using a scaffold of engineered tissue in 

patients with OA and simultaneously measure in-vivo joint loads via implanted force-plate data 

(Geffre et al., 2007; Szivek et al., 2006).  Further research has advanced in creating multi-

dimensional devices to measure the six force components (Fx, Fy, Fz, Tx, Ty, Tz) that act on the 

tibiofemoral contact points during dynamic tests (Kirking et al., 2006). This instrumented design 

has been shown to objectively measure static and dynamic force components via sensor plate 
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information (Geffre et al., 2007).  A total of seven out of nine sensor plate implants among three 

canines revealed this method to be a successful means of measuring KJ force data relative to 

TKR progress (Geffre et al., 2007).  

Throughout activities of daily living (ADL) the knee undergoes repeated bouts of stress 

under all components. The typical load range acting at the KJ during the majority of ADL yields 

220-350% BW  (Kutzner et al., 2010). To evaluate the functional success of an 81-year-old male 

post knee implantation surgery, in-vivo data was collected during several ADLs (Mündermann et 

al., 2008). Peak KJ compressive loads during the ascending and descending phase of stair 

walking yielded a magnitude load of 2.5x the participants’ body weight (64.5kg) (Mündermann 

et al., 2008).  In a similar study, one 80-year-old participant presented a peak tibial force during 

walking when the load was 2.2 times greater than their body weight (D’Lima et al., 2006). In-

vivo data of medial versus lateral knee compartmental load distribution ratios exhibited greater 

load magnitudes at the medial compartment during several ADL (Mündermann et al., 2008; 

Zhao et al., 2006). The medial compartment endured greater force loads during squats and chair-

sit to stand, 2.7 and 2.2 times greater than body weight (BW), respectively (Mündermann et al., 

2008). Similar results were obtained by in-vivo data during level gait walking and step-up/step-

down exercises (Zhao et al., 2006). During level walking the peak medial load over total load 

was 53% and 56% during step-up/step-down, thus resembling the expected TKR gait patterns 

with a greater medial KJ compartment load distribution (Zhao et al., 2006). A note of caution is 

due here, as the majority of studies measuring in-vivo KJ forces via instrumented implantations 

are limited by single subject participants. However, Kutzner et al. (2010) analyzed in-vivo KJ 

data among 5 participants, each with a 6-load tibial plate implantation. Consistent with previous 
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findings, the average peak resultant force was greatest during stair ascent (316%BW) and 

descend (346%BW)  (Kutzner et al., 2010; Mündermann et al., 2008; Heinlein et al., 2009).  

In-vivo KJ moments displayed the greatest magnitudes about the frontal plane during all 

activities (Kutzner et al., 2010; Heinlein et al., 2009). Among two individuals with instrumented 

knee implants, both recorded maximum frontal plane moments during stair descending (-3.3 and 

-4.6%BW*m), thus indicating a greater load by the knee adduction moment (KAM) (Heinlein et 

al., 2009). Similarly, observed increases in frontal moments at the KJ were consistent during 

high knee flexion activities (Kutzner et al., 2010). The reported findings could be attributed to 

the higher demand on the medial knee compartment (Kutzner et al., 2010).  

Overall, the findings present relative success in terms of measuring in-vivo joint forces 

by implantation; however, there are limitations with the small sample sizes. Despite the limited 

literature on this particular topic, the studies presented thus far highlight the need to understand 

load magnitudes during several ADL for improving implantation design (Mündermann et al., 

2008; Kutzner et al., 2010). Although this is illustrated as the gold technique to measure true in-

vivo joint data of all force components, the limited availability of instrumented implant 

technology diminishes the application to all population ranges. It is also indicated that this 

method is not only limited by accessibility but time and cost. Therefore, it is important to 

consider additional factors that contribute to KJ load distributions and joint contact forces with 

the ability to do so on a more subject-specific basis. Further studies, which take these variables 

(i.e. joint alignment, muscle group strength) into account as surrogate measures of predicting 

KJCF to improve knee implant instrumentation often utilize model simulation skills and 

procedures. As a consequence of the limited persons with instrumented knee implants, 
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musculoskeletal modeling/simulation is currently one of the most accurate methods for 

predicting in-vivo KJ force data.  

MODELING & SIMULATIONS TO PREDICT KJ FORCES 

 

The utilization of model simulation techniques is thought to be “the next best thing” in 

terms of predicting in-vivo contact forces (Knarr & Higginson, 2015). In fact, many research 

groups have found a high level of success predicting in-vivo measures from instrumented TKRs, 

with root mean squared errors less than 0.3 bodyweights and correlation coefficients above 0.8 

(Jung et al., 2016; Chen et al., 2014; Lerner et al., 2015). In addition, the “Grand Challenge 

Competition in Knee to Predict In Vivo Knee Loads” was specifically created to 1) garner 

attention and focus from the modeling/simulation community and 2) provide opensource datasets 

for validating user-created models.  

Comparisons of predicted and in-vivo data for an 83-year-old male subject with a TKR 

revealed that the predicted simulated joint forces exhibited greater peak force values than the in-

vivo measures during gait walking trials (Ding et al., 2016). However, modeling complexity can 

partially explain variability in the accuracy of predicting joint contact forces (Hast & Piazza, 

2013; Kia et al., 2014). In subject-specific models, confounding factors of accurate measures of 

medial and lateral KJ load distribution were attributed by the generic parameters necessary for 

gait-models (muscle lengths, tendon compliance, activation dynamics, muscle force-velocity, 

and force-length) (Kia et al., 2014). Whereas subject-specific models can be customized by 

altered parameters such as frontal plane knee alignment, knee joint contact point location, 

anthropometrics, muscle activation and strength, and ligaments. Comparisons of blinded and 

unblinded models during walking gait trials were analyzed with instrumented in-vivo data in an 
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83-year male TKR patient (Smith et al., 2010).  The unblinded model was designed with skeletal 

geometries specific to the subject, and after inverse dynamics and static optimization, the 

models’ predicted medial, lateral, and total forces were agreeable with the instrumented TKR 

data (RMS = 0.23, 0.22, 0.33) (Smith et al., 2016).  

In a similar study, a general model with 19 segments and 18 tri-axis hinge joints was a 

scaled and customized model to be compared with instrumented in-vivo experimental data 

during walking gait trials (Kia et al., 2014). Although comparison of the model and experimental 

data were presented as accurate and agreeable for kinematic loads, there were some 

discrepancies specific to the model-based gait cycle patterns (Kia et al., 2014). The 

underestimated anterior-posterior force during the gait cycle may be limited by the models’ 

inability to predict muscle co-contractions respective to toe-off and push-off of the contralateral 

limb (Kia et al., 2014). This indicates that utilizing a subject-specific model kinematics can 

better predict in-vivo joint contact forces.  

However, Hast and Piazza (2013) argue that measured contact force errors observed in 

model simulation techniques will decrease as more subject-specific models are developed and 

implemented. Although that may be the case, the demanding challenge in creating a wide range 

of applicable subject-specific models efficiently does not outweigh the benefits presented by this 

technique. In fact, Kia et al., (2014) argue that in order to attain subject-specific parameters 

prescribed MRIs would be highly recommended to predict muscle attachment sites. 

Overall, the objective of utilizing model simulation techniques to predict in-vivo contact 

forces is a practical skill among biomechanists; however, the complexity presented in this 

approach is restrictive to those with that specific training experience. This method of analysis has 

several limitations, with specific regard to the essential knowledge required for repeatedly 
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building subject-specific models. Therefore, it is justified to investigate supplementary methods 

of predicting joint contact forces that could be utilized in clinical settings 

EXPERIMENTAL DATA COMPARING POPULATIONS AS MEASUREMENTS OF KJ 

DATA  

Although model simulation techniques is thought to be the best methodology for 

predicting KJCF, the previous section presents major weaknesses. Considering that, it is sensible 

to find the relationship between in-vivo data with kinematics and kinetics factors to be able to 

predict KJCF. The comparison of clinical and healthy KJ data is an appropriate method to 

present the connection between kinematic and kinetic data as a means of predicting KJCF. There 

has been a focus on the prominent kinetic and kinematic variables on joint loads among KOA 

and control groups (Messeir et al., 2014; Astephen et al., 2007). Experimental data from both 

healthy and clinical populations is often analyzed with comparisons to instrumented in-vivo data 

and model simulation data. Measured joint angles and moment magnitudes are utilized as 

surrogate measures to predict KJCF.  

Persons with KOA have demonstrated slower walking times compared to the healthy 

control group (Kumar et al., 2013). Overall, the OA group walked at slower walking speeds and 

recorded greater varus alignment (M=6.4˚) with respect to controls’ alignment (M=1.2˚), 

measured by radiographic assessment (Kumar et al., 2013). Specifically, in persons with KOA, 

frontal loading magnitudes are surrogate measures to predict forces at the KJ (Favre et al., 2012; 

Hunt et al., 2011; Richards et al., 2018). During normal modeled gait, the peak medial KJ contact 

forces were associated with the 1st peak of KAM and KFM (R2=0.73) (Richards et al., 2018). 

The relationship between KAM 1st peak and medial KJ contact force also had a strong 

association (R2=0.83) (Richards et al., 2018).  
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 Persons classified with more severe KOA demonstrate greater extended knee position at 

initial contact during walking at self-selected speeds (Mündermann et al., 2005). During the gait 

cycle, the stance phase contributes to about 60% of stride in the normal and healthy individual; 

however, KOA patients spend more time in the stance phase, specifically at double limb support 

(Hálfdanardóttir et al., 2018). This is indicative of a prolonged gait cycle and a decreased 

walking cadence at 120-130 steps/min respective to healthy adults at 100-110 steps/min (Sparkes 

et al., 2019). As KOA progresses, greater magnitudes of stress are placed on the KJ and 

consequently impact gait timing and patterns.   

In comparison to healthy normal individuals, those with KOA exhibit larger magnitudes 

of 1st peak KAM at the early stance phase of walking, indicating a greater magnitude of medial 

compartment loading stress and progresses the degradation of knee cartilage (Hunt et al., 2006; 

Hurwitz et al., 2002). Peaks of KAM generally increase with KOA severity and so characterize 

the progression of the degenerative disease at the KJ (Sparkes et al., 2019; Bennell et al., 2011; 

Nie et al., 2019). For instance, MRI images of medial KOA were obtained and analyzed with 

baseline measurements of the 1st KAM peak magnitudes and KAM impulse that were recorded 

via 3-D gait analysis (Bennell et al., 2011). The final results showed a greater relationship 

between increased loss of cartilage over 12 months and a higher KAM impulse magnitude at 

baseline, rather than KAM peak (Bennell et al., 2011). This observation illustrates the negative 

consequence of a greater instant load at the KJ and its influence on cartilage degradation. 

Comparable results found both the peak of KAM and KAM impulse to be positively associated 

with medial tibiofemoral cartilage defects apparent in KOA, thus indicating individuals’ 

predisposing factors do contribute to the magnitudes of KJ contact forces and loads (Creaby et 

al., 2010).   
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Two groups with KOA exhibited a greater KAM peak at midstance and a reduced KFM 

at stance compared to those reported as KOA asymptomatic; however, just one group reported a 

higher KFM peak at the late stance phase of walking (Astephen et al., 2007). Interestingly, KOA 

patients both with and without TKR exhibited greater peaks of KAM at mid-stance during 

walking and with concurrently reduced peak knee flexion compared to asymptomatic patients 

(Astephen et al., 2007). Throughout the literature, greater magnitudes of KAM peaks are 

consistently observed among those with KOA. However, there are disparities when reporting 

knee flexion moments (KFM) (Kumar et al., 2013; Mündermann et al., 2005; Sparkes et al., 

2019). In persons with medial KOA, there was a statistically weak association of KFM as a 

predictor of medial KJCF, whereas KAM showed a greater statistical association (Richards et al., 

2018). However, KFM magnitudes factored a greater influence on KJCF at initial degradation of 

KOA, whereas KAM is then presented to be the stronger contributor as structural degradation 

progresses at the KJ (Meireles et al., 2016). Overall, the inconsistent findings that pertain to 

KFM may also be in part due to the insufficient literature that focuses on the influence of KFM 

in populations with KOA.  

Although KAM is generally a successful surrogate measure for KJCF, in contrast to 

previous research, Messier et al. (2005) did not find a significant correlation between knee joint 

forces and moments among standardized OA and healthy matching participants nor were 

reductions in KAMs coincident with reductions in-vivo medial KJCFs during gait modifications 

(Walter et al. 2010). As such, it is important to consider alternative measures, specifically 

focusing on those that are influential to the KAM and KFM (e.g. kinematics and ground reaction 

forces).  

ALTERNATIVE MEASUREMENTS  



15 
 

Although KAM is noted to be an appropriate surrogate measure of KJCF, it is also 

necessary to understand the influential factor of lower extremity kinematics and GRFs. The 

characteristics related to peaks of KAM are strongly related to the orientation of the knee joint 

and the GRF magnitudes in the frontal plane (Hunt et al., 2006; Shull et al., 2013).  

In an attempt to decrease the extensive medial compartmental load, particular gait 

modifications such as altered foot progression angles (FPA) have been widely considered by 

recognizing the corresponding shift in GRF towards the center of the KJ (Guo et al., 2007; Simic 

et al., 2013; Khan et al., 2017). Several studies have found gait modifications of toe-in walking 

reduced KAM peaks, specifically at early stance (Simic et al., 2013; Shull et al., 2013; Paquette 

et al., 2015). A significant reduction in the 1st peak of KAM was observed in those with medial 

compartment knee OA compared to healthy individuals during toe-in altered gait (Shull et al., 

2013). The altered moment arms successfully reduced peak KAM exclusive of no change in peak 

GRF magnitude (Shull et al., 2013). Toe-in FPA has been reported successful in reducing 1st 

peaks of KAM during walking; however, its impact on 2nd KAM peaks is still uncertain (Simic et 

al., 2013). Both 2nd peak KAM and KAM impulse have been exhibited insignificant changes 

with toe-in gait modifications (22.3% and 5.7%) (Simic et al., 2013). On the other hand, 

coupling toe-in gait with wide step corrections has shown success in reducing both peaks of 

KAM during stair ascent (Bennett et al., 2016). Similarly, modified toe-out gait significantly 

reduced the 2nd peak of KAM during walking (1.3%BWxHT) and stair ascent (2.31%BWxHT) 

in patients with medial compartment KOA (Guo et al., 2007). Overall, adopting tailored gait 

patterns to correct inadequate KJ load distributions exhibited by individuals with OA can be a 

practical and effective method. What is important to point out here, is the conspicuous 

relationship between observed kinematic patterns and KJCF. For this reason, further research is 
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warranted to demonstrate the advantages of utilizing just kinematic variables to predict in-vivo 

KJ data. 

Modifications in toe angle during gait should not only improve joint load but also reduce 

the magnitude of experienced pain in those with knee OA (Simic et al., 2013). Expected 

outcomes may be advanced by implementing biomechanic analyses specific to individual 

kinematic data, prior to TKR procedures. For example, tibiofemoral and patella alignment have 

been found to influence frontal plane joint loading, as measured by KAM peak magnitudes 

(Messier et al., 2014). In clinically obese KOA individuals, BMI and patellofemoral (PF) 

alignment were revealed independently of one another during walking gait trials (Messier et al., 

2014). Frontal plane loading expressed the imbalance of shear forces in which varus alignment 

displayed greater KAM peaks respective to a valgus and neutral alignment, whereas total 

compressive PF force was significantly influenced by BMI (Messier et al., 2014). The influence 

of mechanical axis alignment has been investigated with regards to load distribution in both 

sagittal and frontal planes at the KJ.  The observed relationship between varus alignment in KOA 

patients has been shown to have greater medial load distributions, as demonstrated by peaks of 

KAM. Considering this, previous literature has evaluated the influence of patellofemoral 

alignment characterized by gait mechanics in both clinical and healthy populations. 

Similarly, trunk sway has been implemented in an attempt to reduce the load at the 

medial knee compartment using the KAM surrougate measure (Mündermann et al., 2008; 

Kinney et al., 2012; Hálfdanardóttir et al., 2020; Walter et al., 2010; Van Den Noort et al., 2013). 

With this respect, it is important to note that KAM is a product of its mechanical axis and GRF 

(Hunt et al., 2005). Increasing mediolateral trunk sway during walking decreases frontal hip and 

knee moments by shifting the center of mass, and thus the resulting GRF, away from the affected 
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knee. However, with that positive alteration, sagittal knee angle, a negative result, increased at 

heel-strike (Mündermann et al., 2008). This finding demonstrates the complex multi-planar 

relationship of kinematics with kinetics. The relationship displayed by altered dynamic 

alignment and a change in magnitudes of KAM peaks thus demonstrate the important role of 

both attributing factors to measuring and predicting in-vivo KJ data. As the prevalence of TKR 

procedures continues to rise, there is an increased demand for pre-procedural evaluations and 

accessibility. For these reasons, further research should investigate the implications of utilizing 

kinematics to predict in-vivo joint data as a means to bypass the current limitations and 

complications previously discussed. 

SUPPORT FOR KINEMATIC & GRF PREDICTOR VARIABLES FOR KJ FORCE 

Overall, each method discussed in contribution to predicting in-vivo KJ forces has 

manifested kinematics as a primary aspect; ergo, implementing kinematic analyses to predict 

KJCF would be highly beneficial from both research and clinical aspects. Kinematic gait 

analyses indicated deficits in knee flexion angles and hip moments when walking, thus limiting 

KJ function post-surgery (Mizner & Snyder-Mackler, 2005). From the results of altered plane 

kinematics, it is clear that kinematic data may provide the most practical, advantageous 

contribution in predicting in-vivo forces. Additionally, utilizing individual kinematic data may 

improve predictions of patient satisfaction in those with progressive knee OA.   

MEASURES TO PREDICT IN-VIVO KJCF 

 The task to predict in-vivo KJCF with just kinematic parameters could be undertaken by 

using machine learning (ML). However, the linear algorithm processed in basic ML is limiting 

for complex data sets. To compensate for this boundary, a specific division of ML known as 

deep learning (DL), utilizes techniques for efficient data feature extraction and selection with 
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simultaneous classification. Types of DL neural networks include artificial (ANN), convolutional 

(CNN), and recurrent (RNN). Each neural network is made up of three components: the input 

layer, the hidden layer(s), and the output layer. Both ANN and CNN models are suitable for data 

sets of imaging by way of a feed-forward mechanism. Current biomechanics research has 

utilized neural networks for image indexing purposes (Du et al., 2017; Nelson et al., 2019; 

Fragkiadaki et al., 2015). Specifically, in KOA populations, experimental MRI data were used as 

input to predict disease progression (Du et al., 2018). The best performance was achieved by an 

ANN model with an area under the curve ranging from 0.695-0.785, and an F-measure of 0.743-

0.796 (Du et al., 2018).   

Neural network applications have also been used to predict KJ forces based on measured 

kinematics (Favre et al., 2012; Liu et al., 2009; Arjmand et al., 2013). A strong correlation is 

presented between predicted KAM curves and inverse kinematics in KOA gait trials (r=0.966) 

(Favre et al., 2012). Strong trends continue to be presented by the hip, knee, and ankle moments 

predicted by ANN, all associations greater than 0.95 during walking gait trials (Liu et al., 2009). 

Similarly, the root mean square error of an ANN was statistically successful in predicting KJ 

angles and moments in the sagittal plane during gait (Mundt et al., 2019).  For data sets of 

sequence, RNN models are the most appropriate networks due to its feedback looping 

mechanism and parameter sharing. By way of parameter sharing, the RNN model can efficiently 

predict outputs by reducing the total number of individual variables that must be learned 

(Graves, 2012; Goodfellow et al., 2016). This technique has been used in several studies to 

assess gait patterns in clinical populations (Mezghani et al., 2008; Filtjens et al., 2020) as well as 

to predict and classify individual pathological diagnosis (Holzreiter & Kohle, 1993; 

Kaczmarczyk et al., 2009; Zeng et al., 2016). Clinical gait analysis of specific events at detected 
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times was automated by an RNN model and presented excellent outcomes of timing agreements 

just 10ms within manually computed outcomes (Filtjens et al., 2020).  

 However, one of the drawbacks of RNN models is an issue with learning over long 

sequences. In brief, the parameter sharing can result in an illogical explosion or vanishing of the 

learning gradient (i.e. sensitivity to input). Long Short Term Memory (LSTM) networks, a 

specific type of RNNs, were specifically designed to handle issues with gradients. Unique to 

LSTM, training occurs at the hidden layer via a framework of an input gate, forget gate, and 

output gate. During training, the LTSM cells communicate the information and distinguish the 

input signals into two classes (keep or forget) based on the information received and its 

importance. LSTMs thus provides a unique way of storing and accessing memory across 

cells/neurons for an extended period. As such, LSTMs have been quite successful at tasks 

requiring long-range memory (Chen & Chaudhari, 2004; Schmidhuber & Hochreiter, 1997; Gers 

& Schmidhuber, 2001). LSTM was also successfully presented by Holzreiter and Kohle (1993) 

when a neural network was designed to distinguish a healthy versus pathological gait pattern 

with GRF input data. Output values are derived by sigmoid and tangential functions and are 

represented as 0 (remove) and 1 (keep). Gait patterns were classified as healthy (0) and 

pathological (1) and so, an output value of 0.9 was predictive of a pathological gait pattern 

(Holzreiter & Kohle, 1993). However, it is important to note that neural network training occurs 

over several time sequences in a randomized fashion and is influenced by the interconnecting 

weights, thus not every output set will be equally successful (Luu et al., 2014). Therefore, it is 

pertinent to perform training in multiple iterations with different starting weights to generalize 

results. 
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Overall, neural networks are utilized to process compound data sets and problems in a 

way that imitates the human brains’ mechanisms for information processing. Throughout this 

review, the non-linear relationship between kinematics and KJCF has been revealed, as well as 

the current complex methodologies to predict in-vivo KJ data. As such, I pose that it is possible 

to design a neural network, such as the very successful LSTM, to learn the relationship betweeen 

kinematics and KJCF using opensource in-vivo datasets, thus replacing the need for complex 

musculoskeletal modeling. 

CLOSING STATEMENT  

 This review has presented the current literature on predicting in-vivo KJ data by the 

methods of instrumented implantations, model simulations, and kinematic and kinetic variables.  

However, the scarce data from instrumented implantations is consequently affected by not only 

the high cost of accessibility but also the infrequency of instrumented TKR procedures. 

Similarly, the knowledge and experience required to analyze model simulations is both complex 

and inefficient for those in a clinical setting. The methods presented all had the commonality of 

kinematics being the actual variable being measured. Therefore, it is expected that utilizing just 

kinematics to predict in-vivo KJCF will be the most appropriate procedure and will successfully 

surpass the current methods being used.   

 

 



 

CHAPTER III 

METHODS 

 

PARTICIPANTS  

 This study involved secondary analyses of publicly available data. Thus, this study was 

exempt from institutional review board approval (IRB #: 1481294-1). The “Grand Challenge” 

competition to predict in-vivo knee loads and Orthoload/CAMS-Knee (K5R & K8L, retrieved 

from https://CAMS-Knee.orthoload.com, Taylor et al. 2017) datasets were used. Experimental 

data included motion capture (marker trajectory and ground reaction forces) and in-vivo 

instrumented knee prosthesis data (e.g., knee joint contact forces) from all datasets. Although 

there are six datasets in the Grand Challenge, two datasets are repeats of the same participants 

(JW: GC 1 and GC 4; DM: GC 2 and GC 6; Table 1). The available data was split into two 

groupings: training and testing. The training group included the “normal” walking conditions of 

all six datasets from the Grand Challenge (n=34; Table 1). The testing (to prove accuracy for 

similar gait conditions) group included two participants from CAMS-Knee (number of trials=5; 

Table 2).  

Table 1. Participant demographics used for training the neural network. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Initials Sex Leg Mass Height Trials 

GC 1 JW M R 64.6 166 5 

GC 2 DM M R 67 172 5 

GC 3 SC F L 78.4 167 5 

GC 4 JW M R 66.7 168 5 

GC 5 PS M L 75 180 6 

GC 6 DM M R 70 172 8 

https://cams-knee.orthoload.com/
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Note: Participant data were obtained from the Grand Challenge (GC). Mass and height are reported in 

kilograms and centimeters, respectively. Only normal overground walking conditions were included.  

 

Table 2. Description of participants/conditions used for validating the neural network. 

 

 

 

 

Note: Participant data were obtained from CAMS-Knee (CAMS) and Grand Challenge (GC). Mass and 

height are reported in kilograms and centimeters, respectively.  

 

KINEMATIC & KJCF DATA PROCESSING 

 Raw motion capture and GRF data from both the Grand Challenge and CAMS-Knee 

datasets were low pass filtered using a second order, zero-lag butterworth filter with a cutoff 

frequency of 6 Hz. Musculoskeletal modeling was performed using OpenSim (v3.3, SimTK, 

Stanford, CA) and the Lai 2017 model. The standard torso and lower extremity model (3 dof for 

torso, 6 dof for the pelvis, 3 dof from the hip, 1 dof for the knee (flexion/extension), and 1 dof 

for the ankle) was modified to include frontal plane motion of the knee joint (Bennett et al., 

2020). This modified model has been previously validated using data from the sixth Grand 

Challenge (Bennett et al., 2020). The standard model was then scaled to each participant’s 

height, mass, and segment lengths. Next, inverse kinematics-based joint angles and pelvis 

positions were solved for at each frame using a least-squares approach while accounting for 

constraint weights (Spoor & Veldpaus, 1980). Kinematic and KJCF data were filtered at 6Hz. 

The KJCF data (provided in the Grand Challenge and CAMS-Knee datasets) were then used to 

calculate medial and lateral compartment joint contact forces using previously defined equations 

and normalized to body weight (Zhao et al., 2007). Kinematic and KJCF data were time-

normalized to the stance phase, defined using 10N thresholds of the vertical GRF, and then 

imported into MATLAB (R2016B, The Mathworks, Inc., Natick, MA). Ensemble kinematic data 

 Initials Sex Leg Mass  Height  Conditions (Trials) 

CAMS 1 K5R M R 96.0 175 NORM (2) 

CAMS 2 K8L M L 78.8 175 NORM (3) 



23 
 

for the CAMS datasets against the training dataset are provided in Figure 1. Ensemble medial 

and lateral knee joint contact forces for the training and testing datasets are provided in Figure 2.



 

Figure 1. Ensemble kinematic data for the CAMS datasets with the training data. 

Figure 1 Caption: Sagittal plane (first column), frontal plane (second column), and transverse plane (last column) kinematic data are 

provided for the hip (first row all columns), knee (second row all columns), ankle (third row first column), trunk (third row second 

column). The solid black line and shading are the mean and one standard deviation of the training dataset. CAMS 1 and CAMS 2  

kinematics are the dashed and dash-dot lines, respectively. 



 

Figure 1. Ensemble kinematic data for the CAMS normal gait against the GC normal gait (training dataset).

 



 

Figure 2. Ensemble medial and lateral knee joint contact forces for the training and testing datasets. 

Figure 2 Caption. Mean (solid lines) and one standard deviation (shaded region) medial and lateral knee joint contact forces are 

presented for the training dataset. Mean forces for CAMS 1 and CAMS 2 are the dashed and dot-dash lines, respectively. Forces are 

normalized to body weight (BW). 



 

MODEL DESIGN OF NEURAL NETWORK  

 Using MATLAB neural network tools, a 3-layer (input layer, hidden layer, and output 

layer) recurrent neural network, specifically the long-short term model, was designed to predict 

KJCF from selected kinematic elements. The kinematic inputs were as follows: hip (frontal, 

sagittal, transverse), knee (sagittal and frontal), ankle (sagittal), and trunk (frontal), determined 

as significant factors related to KAM and KJCF by previous literature (Mündermann et al., 2008; 

Sasaki et al., 2010; Teng et al., 2014; Richards et al., 2018). We assumed knee kinematics must 

be included for the network to be anatomically relevant. Therefore, only combinations of the 7 

kinematic elements that include at least one knee kinematic element were used, resulting in 96 

different input models.  

 There are several factors of an RNN that should be considered when designing a network: 

initial weights and biases, hidden layer size, mini batch size, and training optimization algorithm,  

along with regularization to combat overfitting. The weights and biases (4 each: input, forget, 

and output gates and cell candidate) of the input and recurrent layers are “updated” each training 

iteration (epoch) to improve model fit on the training data. Initial settings for layer weights 

(initial and recurrent) can be produced via random number generators: Glorot, He, and Narrow-

Normal (sampling from a narrowed normal distribution) (Glorot & Bengio, 2010; He et al., 

2015). A subset of the full training dataset (normal for training data) was used to compare the 

weight initializers by comparing convergence of validation (i.e. plotting accuracy over epochs). 

The initializer that converges fastest with the best validation will be chosen for implementation 

in the training of the full dataset. In addition to the initializer, the random nature of the initial 

weights should be considered. Therefore, each of the 1,824 input models was also be trained 5 

times using different random numbers (total 9,120 models).  
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 The number of hidden units of the hidden layer (singular layer in an LSTM) represents 

the number of neurons involved (or the amount of information remembered between time steps). 

Currently, there is no “best set” for the appropriate size/number of neurons in an LSTM. As 

such, the appropriate size was determined by creating each of the 96 input models with 2-20 

neurons (total 1,824 models). Mini-batch size represents the amount of data, trials in the current 

case, that are fed from the input to the hidden layer at each epoch. Sizes can range from 1 to the 

full dataset. Although fitting each individual trial would be optimal for training, this can hinder 

generalizability. Minibatches (size=3, n=11) were also be randomized per epoch to enhance 

generalizability. 

 Network training in MATLAB can be performed by a few variants of stochastic gradient 

descent: Stochastic Gradient Descent with Momentum (sgdm), Root Mean Square Propagation 

(RMSProp), and Adaptive Moment Estimation (Adam). As current literature is not in agreement 

on the best optimizer, comparisons of each optimizer were performed in a similar methodology 

to the layer weight initializers (Wilson et al., 2017). Weight regularization involves imposing 

constraints on the input and/or recurrent weights of the LSTM, with the goal of reducing 

overfitting and improving performance (Bishop, 2006; Murphy, 2012). The standard 

regularization method in MATLAB is L2Regularization with a default weight decay of 0.0001. 

NETWORK SELECTION 

 Multiple methods, both quantitative and qualitative, exist to determine the relationship 

between two waveforms. Here, we examined strength of relationship between networks and in-

vivo data through continuous (waveform agreement) and discrete (agreement of 1st and 2nd 

peaks) aspects based on the current literature.  
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 First, the proportion of the variance explained (correlation coefficient squared (R2))  and 

the root mean square error (RMSE) between in-vivo test data and network predictions (mean of 

all 5 iterations per network for generalizability) represent determine network waveform 

accuracy. Assumedly, many networks could achieve similar levels of accuracy, even from the 

same kinematic combinations (e.g., knee flexion-20 neurons and knee flexion 10 neurons). 

Therefore, to reduce the number of networks to compare, we implemented minimum thresholds 

(RMSE0.50 and R20.49) determined by results reported in the literature (Zhao et al., 2007; 

Jung et al., 2017; Chen et al., 2014; Lerner et al., 2015; Mundt et al., 2020; Oh et al., 2013). The 

minimum thresholds yielded over 800 networks, suggesting more stringent criteria were 

necessary. Therefore, the thresholds were incrementally increased (RMSE = 0.50:0.05:0.00 and 

r=0.70:0.05:1.00) until only networks representing 5 different kinematic combinations or fewer 

fulfilled the criteria (Table 3). Fifteen networks (3 different kinematic combinations) achieved 

R20.64 and RMSE0.30. Twenty-three networks (repeat of 1 kinematic combination from 

R20.64 and RMSE0.30; 2 new kinematic combinations) successfully met RMSE0.40 and 

R20.7225 (i.e., r0.85). These five networks were compared further, as their performance was 

exceptional (Table 3).  



 

Table 3.   Number of networks that met set thresholds 

r, R2 RMSE n models Kinematic combinations 

0.70, 0.49 0.30 15 3 
 0.35 187 41 
 0.40 732 63 
 0.45 874 67 
 0.50 877 67 
    
0.75, 0.56 0.30 15 3 
 0.35 173 41 
 0.40 456 58 
 0.45 476 58 
 0.50 476 58 
    
0.80, 0.64 0.30 15 3 
 0.35 78 24 
 0.40 123 27 
 0.45 123 27 
 0.50 123 27 
    
0.85, 0.72 0.30 12 1 
 0.35 21 2 
 0.40 23 3 
 0.45 23 3 
 0.50 23 3 
    
0.90, 0.81 0.30 11 1 
 0.35 11 1 
 0.40 11 1 
 0.45 11 1 
 0.50 11 1 

 

 

Although a network can achieve strong predictor values of a high correlation with a low 

RMSE, it is important to note that this does not necessarily assure that the predicted waveform 

corresponds with the “m-shaped” waveform assumed by in-vivo data during normal gait. 

Correlations coefficients can be greatly influenced by the longer loading and pushoff phases of 

the gait cycle, allowing the midstance “valley” to be less represented. Therefore, an additional 

parameter to determine the best LSTM network was to visually examine (i.e., the qualitative 
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waveform assessment) the predicted output by each of the five iterations for the best performing 

network groups for the expected “m-shape”. The representative network for each of the five 

kinematic combinations was chosen as the trial that presented with the waveform fit to the in-

vivo data.  

In addition to waveform assessments, analyzing discretized data is an important factor for 

KJCF. The 1st (i.e., loading response peak, 0-50% stance) and 2nd (i.e., pushoff peak, 50-100% 

stance) peak forces and their respective timings for each of the five representative networks was 

calculated. The forces (BW) and their timings were compared to the 1st and 2nd peak forces and 

timings obtained from the testing dataset. 

The performance of the best network for each of the kinematic combinations are provided 

and compared in the Results section. Finally, the contributions of each kinematic element to the 

accuracy of the overall best network (see Results section) was analyzed by systematically 

removing each variable from the network (akin to Type III Sum of Squares). Performance is then 

reported for each new network via RMSE and R2. 
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CHAPTER IV 

RESULTS 
 

THE BEST REPRESENTATIVE NETWORKS 

 Table 4 describes the five best networks and their performance in predicting the testing 

(CAMS) dataset. Figure 3 presents the mean network predictions compared to in-vivo data for 

each of the CAMS subjects. Figure 4 presents the differences in peak forces and the timing of 

peak forces between each network and the in-vivo data. Network predictions for each trial per 

CAMS subject can be found in the Appendix.  

Table 4. Fit of the five best networks on the CAMS datasets. 

 Notes. Kn and Ank: knee and ankle, respectively. Flx/Ext: Flexion and extension, Ad/Abd: 

adduction and abduction, Int/Ext: internal and external rotation, Dr/Pl: dorsiflexion and 

plantarflexion motions, respectively. 

 

 

All five networks demonstrated excellent fit with the training data, achieving RMSE < 

0.26BW for medial and lateral forces, R2 > 0.69 for medial forces, but only R2 > 0.15 for lateral 

forces. For the test dataset, the network with only sagittal knee kinematics (Network 1) provided 

the greatest R2 (0.84) and tied for the lowest RMSE (0.24). Similarly, Network 5, consisting of 

four kinematic elements, produced strong accuracy with the CAMs dataset. However, as can be 

found in Figure 3, both Network 1 and Network 5 produced poor “m-shape” waveforms for 

CAMS 1. Network 1’s peak force and timings were among the worst of the networks (Figure 4). 

The most consistent (across all CAMS datasets) predictions of the “m-shape” are Network 2 and 

Network 4, which also had the highest RMSE. Fit for the lateral forces was poor across all 

   Medial Lateral 

Network Neurons Kinematic Inputs RMSE R2 RMSE R2 

1 15 Kn Flx/Ext 0.24 0.84 0.26 0.06 

2 20 Kn Flx/Ext, Hip Flx/Ext, Ank Dr/Pl 0.33 0.77 0.32 0.02 

3 8 Kn Ad/Abd, Hip Flx/Ext, Hip Ad/Abd, Ank Dr/Pl 0.27 0.77 0.18 0.08 

4 20 Kn Flx/Ext, Hip Flx/Ext, Hip Int/Ext, Ank Dr/Pl 0.31 0.77 0.38 0.05 

5 18 Kn Flx/Ext, Kn Ad/Abd, Hip Int/Ext, Ank Dr/Pl 0.24 0.80 0.24 0.07 
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networks (Table 4). Networks 3 and 5 produced the most accurate medial and lateral peak forces 

and timings of peak forces. 

 For subject CAMS1, network 3 starkly yielded the best output predictions for all trials in 

comparison to network 5. On the other hand, the differences in CAMS2 output predictions per 

trial by networks 3 and 5 were not as conspicuous. Consequently, through the process of 

elimination concerning predictions for each of CAMS2 corresponding trials, network 3 generated 

slightly more consistent waveform patterns that resemble the desired “m-shape” than network 5. 

In line with this and the starkly stronger performance for CAMS1, network 3 was confirmed to 

be the overall best LSTM model for medial KJCF predictions.  

 The effects of each kinematic element to the success of Network 3 are provided in Table 

5. Sagittal ankle and frontal hip kinematics appear to have the greatest effects, as removal of 

these dramatically increased error (RMSE) and decreased waveform agreement (R2). Frontal 

knee kinematics had the least effect on waveform agreement (R2); however, removal of any 

variable resulted in at least a 30% increase in RMSE. 
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Table 5. Accuracy statistics of each reduced network.  

  KINEMATIC 

COMBINATION 

MEDIAL KJCF LATERAL KJCF 

  RMSE  R2  RMSE  R2  

R
ed

u
ce

d
 

N
et

w
o

rk
 

A-DP Removed  0.45  0.40  0.15  0.50  

H-Ad Removed  0.37  0.52  0.20  0.11  

H-FE Removed  0.36  0.63  0.19  0.07  

K-Ad Removed  0.35  0.72  0.20  0.26  

Full  K-AD, H-FE, H-AD, A-DP  0.27  0.77  0.18  0.08  

Notes. Ad: adduction/abduction motion; FE: flexion/extension motion; DP: dorsiflexion/plantarflexion 

motion; A, K, H: ankle, knee, and hip, respectively. RMSE: root mean square error in body 

weight. R2: correlation coefficient squared. 



 

Figure 3. Ensemble network predictions of CAMS datasets. 

Figure 3 Caption. In-vivo data (mean: solid black lines, standard deviation: shaded regions) for CAMS 1 (A) and CAMS 2 (B) are 

provided. Mean predicted forces by networks 1-5 are the dashed black, dash-dot black, solid gray, dashed gray, and dotted grey lines, 

respectively.  

Figure 3A. Ensemble network predictions of CAMS 1. 

 



 

Figure 3B. Ensemble network predictions of CAMS 2. 

 



 

Figure 4. Differences between network predictions and in-vivo waveform peak forces and timing of peak forces. 

Figure 4 Caption. Average (CAMS 1 & 2) differences in peak forces (A) and timing of peak forces (B) are provide for networks 1-5: 

solid black, dark gray, light gray, dotted, and diagonal stripes, respectively. Errors for medial (MED) and lateral (LAT) first (1; within 

first half of stance) and second (2; within second half of stance) peaks are presented. 

Figure 4A. Differences in peak forces between networks and in-vivo data.
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Figure 4B. Differences in timing of peak forces between networks and in-vivo data. 

 

 

 

 



 

CHAPTER V 

DISCUSSION 

 The aim of this study was to develop a methodology for predicting bone on bone forces at 

the knee that is comparable to the traditional methods of musculoksletal modeling and surrogate 

measures via external KAMs, but requiring less expertise and equipment. We proposed that an 

LSTM network composed of only kinematic inputs would predict KJCF with greater levels of 

accuracy than those reported using musculoskeletal modeling. Further, we also hypothesized that 

more than one combination of kinematic variables would match the level of accuracy reported by 

musculoskeletal modeling techniques.  

NETWORK PREDICTIONS VS MUSCULOSKELETAL MODELING AND KAMS 

 When discussing our results with those from previous studies, it is important to note that 

the medial compartment is typically the focal point throughout the current literature, as 

predictions of lateral compartment forces are generally much worse and of lesser interest. 

Though we are not aware of analyses associating joint kinematics specifically with lateral knee 

joint loading, predictions of lateral compartment forces by musculoskeletal modeling are very 

variable (Smith et al., 2016; Jung et al., 2016; Marra et al., 2015; Knarr & Higginson 2015; Ding 

et al., 2016; Lundberg et al., 2013). Possible attributes of this limitation can be due to individual 

static and dynamic profiles of joint alignment (Hurwitz et al., 2002; Noble et al., 2006; 

Mündermann et al., 2008; Kia et al., 2014). Additionally, subject-specific kinematic and kinetic 

responses can occur with TKRs (Bade et al., 2010; Komnik et al., 2016; Mundt et al., 2020). 

Considering this, it is interesting to note that although our reported waveform agreement (R2) for 

lateral compartment forces were poor, our waveform error (RMSE) and peak data (magnitude 

and timing of peaks) revealed good agreement with the in-vivo data. From this standpoint, it can 
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be further presumed that joint kinematics demonstrate a prominent role in both compartments of 

the knee joint.  It is entirely possible networks optimized to medial and lateral compartment 

loading separately would contain different kinematic combinations. Future research should 

examine the mechanisms behind lateral compartment loading 

 Overall, the five representative LSTM networks achieved an accuracy level greater than 

those reported by musculoskeletal modeling during normal gait (Smith et al., 2016; Marra et al., 

2015; Ding et al., 2016). It is apparent that all five LSTM networks outperform most 

musculoskeletal models with reported correlations of 0.55-0.81 (RMSE=0.22-0.56BW) (Jung et 

al., 2016; Jung et al; 2017; Smith et al., 2016; Ding et al., 2016) with the exception of a few 

single-subject studies that have slightly higher correlations (0.79-0.96) (Marra et al., 2015; 

Manal and Buchanan 2013; Chen et al., 2014). The greater prediction accuracies in those studies 

were attained by incorporating additional subject-specific parameters of electromyography 

(Manal and Buchanan 2013) and knee alignment (Marra et al., 2015). Inclusion of individualized 

parameters for subject-specific model design can improve KJCF predictions (Kia et al., 2014; 

Ding et al., 2016; Manal & Buchanan 2013); however, this approach limits generalizability 

(Knarr and Higginson 2015; Lerner et al., 2015; Kia et al., 2014) and requires additional 

testing/equipment and training. Additionally, the requirement of inverse dynamic, muscle 

excitation, and joint contact force computations for musculoskeletal model design must be 

recognized as a limitation in that it is not only time-consuming for repeated subjects but also 

requires extensive background knowledge. Thus, our LSTM network should be considered a 

highly accurate alternative method to musculoskeletal modeling for predicting KJCF. In 

addition, we believe our LSTM network provides an improved generalizable approach for 
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ascertaining in-vivo data for researchers and clinicians alike – not just those without the requisite 

knowledge and capability to implement subject-specific musculoskeletal modeling.   

LSTM VS KAMS 

 Equally important is to note our networks’ prediction results with KAMs, a surrogate 

measure of KJCF (Kutzner et al., 2010; Zhao et al., 2006; Walter et al., 2010; Mundermann et 

al., 2018). Research typically implements KAM in the form of discrete data with the assumption 

that greater peak KAMs indicate greater peak medial compartment contact forces during gait 

(Sparkes et al., 2019; Bennell et al., 2011; Nie et al., 2019; Messier et al., 2005; Meireles et al., 

2016). During normal gait trials, average correlation coefficients squared (R2) between 1st and 2nd 

peak KAMs and medial compartment forces range from 0.29-0.69 and 0.20-0.60, respectively 

(Walter et al., 2010; Kutzner et al., 2010; Meireles et al., 2016). Though, it must be mentioned a 

similar average correlation of medial KJCF with KAM for one subject throughout stance was 

reported by Zhao et al. and is in agreement with our networks 2-4 (R2=0.77) (2006). In contrast 

to KAMs, the LSTM network presented here allows for the direct prediction of medial contact 

forces for the entirety of a full gait cycle and discrete 1st and 2nd peaks that are common of 

research interest (Zhao et al., 2007; Walter et al., 2010; Kutzner et al., 2010; Meireles et al., 

2016), yet requires less information than KAMs. Furthermore, despite the utility of KAMs as a 

surrogate measure of medial compartment forces, the strong relationship between KAMs and 

medial contact forces may not be robust to gaits other than “normal” (Walter et al., 2010).  

 Support for the success of the LSTM networks built only from kinematic data can be 

gleaned from the derivation of KAMs (Kutzner et al., 2013; Meireles et al., 2016; Richards et al., 

2018). The KAM is essentially a product of ground reaction force (GRF) and its lever arm 

(assuming foot mass is negligible). As such, previous research has found magnitudes of KAM 
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are more associated (R2=0.77) with the change in frontal plane tibiofemoral alignment (i.e., knee 

kinematics) than GRF (Hunt et al., 2006). This finding is greatly supported by our results 

demonstrating the crucial impact that kinematics have on compartmental forces at the knee joint. 

Even further, our results exemplify the proposed method is an accurate approach for predicting 

KJCF by utilizing only kinematic parameters rather than obtaining GRF data and solving for 

three-dimensional knee joint moments to present as surrogate measures. Additional advantages 

include the practicality and generalizability for predicting accurate medial KJCF in almost all 

general populations and the opportunity to also measure knee joint impulse (which requires data 

for the KJCF waveform).  

NETWORK KINEMATIC VARIABLES AND COMBINATIONS  

 During gait, it is evident that joint kinetics and kinematics constitute a complex 

relationship. Changes in kinematics at one joint affect the kinematics at the subsequent joints and 

consequently impacts the force/moment output. Considering this, the innate individual 

characteristics of lower-extremity joint alignment during gait can be attributing factors to help us 

understand discrepancies in the networks’ waveform predictions. 

 As discussed, previous literature has not evaluated the complex relationship between 

kinematics and joint contact forces, let alone predicted KJCF using only kinematic parameters. 

Our proposed recurrent neural network with an LSTM design not only confirmed that is possible 

but also revealed that there is a strong (high accuracy) and physiologically relevant association 

between lower extremity kinematics and knee joint contact forces. Given this study included a 

majority of the available degrees of freedom within the lower extremity, it can be assumed that 

nearly all of the possible kinematic combinations (which were required to include at least one 

knee kinematic element) could be trained to be moderately/strongly accurate prediction 



43 
 

networks. However, the higher-level performance on the test dataset should be exemplified by 

kinematic elements that are reliably related to KJCF (as training was performed using four 

different participants kinematics/KJCF) and are founded on biomechanical principles. In this 

vein, kinetics (i.e. KJCF) during the loading and propulsion phases of gait are influenced by 

several kinematic parameters (Van Den Noort et al., 2013; Shull et al., 2013; Richards et al., 

2018; Bennett et al., 2020; Simic et al., 2013, Shull et al., 2013; Hunt et al., 2006). In agreement 

with the previous literature, the representative networks contain relevant kinematic combinations 

that reportedly influence KJCF (Shull et al., 2013; Richards et al., 2018; Bennett et al., 2020). 

The emergence of each representative network, in comparison to their lower-performing 

counterparts, is a function of the apparent differences in kinematics between the testing and 

training datasets (see Figure 1). For instance, sagittal plane ankle, hip internal/external rotation, 

and knee adduction/abduction kinematics for the CAMs subjects vary beyond the expected 

waveforms of the GC subjects, even though this is only normal gait.   

 The highest R2 attained was by Network 1, which included only sagittal knee kinematics 

as the input variable. In fact, eleven networks (different # neurons) including only sagittal plane 

knee kinematics achieved R2 >0.81 and RMSE <0.30 BW, clearly establishing it as the strongest 

predictor of KJCF. In contrast, the best-selected LSTM model was network 3 and did not include 

the sagittal knee variable. We observed a more accurate waveform representation of KJCF 

predictions, driven by the network’s design that included two frontal plane variables (hip/knee) 

and two sagittal plane variables (hip/ankle).  Each of these variables has been previously 

identified as physiologically relevant to the knee joint loading during walking. For instance, 

static and dynamic frontal plane tibiofemoral alignment are strongly related to medial KJCF 

during gait (Simic et al., 2013, Shull et al., 2013; Bennett et al., 2017; Bennett et al., 2020; Van 
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Den Noort et al., 2013). In addition, the location of the center of mass/pelvis in the frontal plane 

can draw the GRF further/closer to the mechanical axis of the knee joint and affecting the knee 

joint load (Hunt et al., 2006; Walter et al., 2010; Mundermann et al., 2018; Bennett et al., 2017; 

Shull et al., 2013; Guo et al., 2007).  

 Of particular interest is the crucial influence of sagittal ankle kinematics (see Figure 1 

containing kinematic data for testing data compared to the training dataset). Focusing on our 

chosen best network (Network 3), it can be seen that the sagittal ankle parameter presents the 

greatest impact on the network’s total output prediction (Table 5). During gait, adequate 

dorsiflexion assists with lower limb midstance, whereas successive propulsion is greatly aided by 

plantarflexion. If there are insufficiencies in ankle dorsiflexion range of motion, the knee joint 

consequently suffers (i.e. buckling of the knee). Demonstrated in clinical gait retraining studies, 

plantarflexor strength training has been proposed to help improve sagittal knee range of motion; 

therefore, assisting in re-normalization of gait (Knarr et al., 2013; Frisk et al., 2019). This 

implication exhibits the influential effects of each joint functioning about the lower extremity 

kinetic chain during gait. Considering the biomechanical function of the proximal and distal 

joints/segments about the knee, it can be implied that implementation of the sagittal hip and 

ankle successfully compensates for the exclusion of the sagittal knee parameter in network 3’s 

kinematic combination, illustrating the effects of the kinetic chain.   

 Likewise, others have shown gait modifications at the foot about the transverse plane 

have meaningful consequents at the hip, ankle, and knee joints within the frontal plane, along 

with the innate simultaneous joint alterations by any individual gait modification (Simic et al., 

2013, Shull et al., 2013; Bennett et al., 2017; Bennett et al., 2020; Van Den Noort et al., 2013).  

For example, walking with modified toe-in or toe-out angles naturally corresponds with 
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internal/external rotation of the hip (Simic et al., 2013; Bennett et al., 2017). Therefore, we felt it 

is justified to include just the hip as the transverse variable, instead of including knee (truly 

dependent) and/or ankle transverse kinematics. In agreement with the previous literature, hip 

internal/external rotation emerged as an important factor of three of the representative networks.    

 Lastly, though trunk sway did not appear in any of the kinematic combinations for the top 

five LSTM networks, several studies have analyzed the association between frontal plane trunk 

sway and medial KJCF loading (Van Den Noort et al., 2013; Mündermann et al., 2008; Shull et 

al., 2013). The major target of increased trunk sway is to shift the frontal plane GRF to reduce 

medial compartment loading. Therefore, trunk sway was considered an important variable to 

include as an input (Mundermann et al., 2018; Kinney et al., 2012; Hálfdanardóttir et al., 2020; 

Walter et al., 2010; Van Den Noort et al., 2013). As this study included normal gait, this null 

finding is not an alarming result. It is certainly possible that inclusion of trials with gait 

modifications like purposeful trunk sway or medial thrust patterns could result in trunk sway 

emerging as an important variable in the network.   

FUTURE DIRECTIONS 

 Given the success of the LSTM network output predictions, future studies should aim to 

replicate the results with larger samples of in-vivo data. Implementation of a larger dataset can 

be easily built into the LSTM and will help further establish the robustness of the network’s 

generalizability and possibly improve the network’s prediction accuracy. Furthermore, additional 

designs of machine learning networks for sequential data predictions may be considered. This 

study presented predictions of concurrent compartmental medial and lateral KJCF. However, 

further investigation is warranted for improving medial and lateral KJCF predictions by the 

design of an LSTM network with independent outputs. More information on this may help to 
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establish a greater understanding of what the most influential lower-extremity kinematic 

parameters are during normal gait.  

 

CONCLUSION  

 In summary, this study has shown our LSTM network can successfully predict KJCF 

using only input parameters of kinematic variables. Overall, our results outperformed predictions 

of medial KJCF by those of complex musculoskeletal modeling. In contrast, the networks’ lateral 

predictions were not good; however, comparatively, this is of similarity in that musculoskeletal 

modeling predictions of the lateral knee compartment are inferior to those for the medial knee 

compartment  (Zhao et al., 2007; Marra et al., 2015; Ding et al., 2016). Given that data of the 

medial knee compartment is of greater biomechanics interest and more relevant to clinical 

populations, our LSTM network can still be concluded to be the more practical method for its 

generalizability and exclusion of the complex skills that are requisite for musculoskeletal 

modeling. It can also be concluded that our network presents itself to be a superior method to 

predict medial KJCF compared to surrogate measures of KAMs (Zhao et al., 2007; Walter et al., 

2010; Kutzner et al., 2010; Meireles et al., 2016).  

 The design of our network with an LSTM allows for generalizability and real-life 

applications of complex time series data and illustrates the non-linear relationship of kinematics 

and KJCF. Thus, it is seemingly kinematics that drives joint kinetics. These results provide a 

prospective mechanism for predicting bone on bone forces requiring less equipment, time, and 

expertise. Thus, this methodology is advantageous for future work by researchers and clinicians 

alike.   
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APPENDICES 
 

Figure 4. Flowchart of the process behind narrowing the total networks analyzed  

 

 



 

Appendix Figure 5. Network 1 predictions per trial for each CAMS subject. 

Appendix Figure 5 Caption. In-vivo and Network 1 predictions of knee joint contact forces are the solid and dashed lines, 

respectively. 
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Appendix Figure 6. Network 2 predictions per trial for each CAMS subject. 

Appendix Figure 6 Caption. In-vivo and Network 2 predictions of knee joint contact forces are the solid and dashed lines, 

respectively. 
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Appendix Figure 7. Network 3 predictions per trial for each CAMS subject. 

Appendix Figure 7 Caption. In-vivo and Network 3 predictions of knee joint contact forces are the solid and dashed lines, 

respectively. 
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Appendix Figure 8. Network 4 predictions per trial for each CAMS subject. 

Appendix Figure 8 Caption. In-vivo and Network 4 predictions of knee joint contact forces are the solid and dashed lines, 

respectively. 
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Appendix Figure 9. Network 5 predictions per trial for each CAMS subject. 

Appendix Figure 9 Caption. In-vivo and Network 5 predictions of knee joint contact forces are the solid and dashed lines, 

respectively. 
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