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Conserved Intramolecular Interactions Maintain Myosin 
Interacting-Heads Motifs Explaining Tarantula Muscle Super-
Relaxed State Structural Basis

Lorenzo Alamo1, Dan Qi2, Willy Wriggers3, Antonio Pinto1, Jingui Zhu2, Aivett Bilbao1,a, 
Richard E. Gillilan4, Songnian Hu2, and Raúl Padrón1,*

1Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apdo. 
20632, Caracas 1020A, Venezuela

2Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, China

3Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, 
Virginia 23529, U.S.A

4Macromolecular Diffraction Facility, Cornell High Energy Synchrotron Source, Ithaca, New York, 
U.S.A

Abstract

Tarantula striated muscle is an outstanding system for understanding the molecular organization of 

myosin filaments. 3D reconstruction based on cryo-EM images and single-particle image 

processing revealed that in a relaxed state, myosin molecules undergo intramolecular head–head 

interactions, explaining why head activity switches off. The filament model obtained by rigidly 

docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly 

fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm 

3D map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences 

from tarantula myosin to build a single-species homology model of two heavy meromyosin 

interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and 

shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off 

structure, forming four helical tracks of IHMs around the backbone. The residues involved in these 

interactions are oppositely charged, and their sequence conservation suggests that IHM is present 
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across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP 

turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked 

unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to 

phosphorylated undocked heads. The conservation of intramolecular interactions across animal 

species and presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, 

as it plays a role in saving ATP in skeletal, cardiac, and smooth muscle.

Graphical abstract

Keywords

Myosin thick filament; myosin interacting-heads motif; cryo-electron microscopy; striated muscle; 
super-relaxation

Introduction

Muscle contraction involves the interaction of two sets of filaments: actin-containing thin 

filaments and myosin-containing thick filaments. Muscle relaxation is an important step of 

contraction, and thick filaments are essential for relaxation.1 The two myosin II coiled-coil 

heavy chains (MHCs) form a tail with two heads, with attached regulatory light chains 

(RLCs) and essential light chains (ELCs) on each. The tails pack together, comprising the 

thick filament backbone with protruding heads that form helical tracks. 3D reconstructions 

have shown that the number of helical tracks in striated muscle varies between three in 

cardiac vertebrates (mouse,2 human,3 zebrafish4), four in arthropods (tarantula,5 Limulus,6 

scorpion7), and seven in mollusks (scallop).8 The number of smooth muscle helical tracks is 

four in Platyhelminthes (Schistosome);9 in vertebrates, smooth muscle filaments are non-

helical and side-polar.10

Electron microscopy studies of smooth muscle myosin molecules suggest that an off state is 

achieved by asymmetric, intramolecular interaction between the actin–binding region of one 

myosin head and the converter region of the other, which switches off both heads.11 This 

mechanism of relaxation, the so-called myosin interacting-heads motif (IHM),5 was shown 

to underlie the relaxed state of thick filaments from striated muscle.5 The IHM is present in 

species separated by at least 600 million years of independent evolution. It has been 
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observed by electron microscopy in thick filaments from the striated muscle of 

arthropods,5–7 mollusks8, the cardiac muscle of vertebrates,2–4 and the smooth muscle of 

Platyhelminthes.12 Electron microscopy has also shown that the motif is present in isolated 

myosin molecules of intrinsically regulated molecules (like tarantula and Limulus striated 

muscle and non-muscle myosin IIA) and in unregulated myosins (like skeletal and cardiac 

muscle).13 Recently, the motif has been detected on isolated myosin molecules from the 

smooth muscle of the Cnidarians’ giant sea anemone (Condylactis gigantea),14 but not in 

isolated myosins from the amoeba Acanthamoeba castellani.14 Finally, the presence of the 

IHM in squid (Loligo peali) has been inferred by comparing the small angle X-ray solution 

scattering (SAXS) profile of its striated muscle with the predicted scattering profile for 

tarantula Protein Data Bank (PDB) 3DTP structure.15

The uniqueness, wide presence, and high conservation of the IHM lead to its fundamental 

functional importance in nature as the simplest conserved structural mechanism that explains 

the relaxed (off) state in muscle. The IHM is established only in relaxing conditions. In the 

presence of Mg.ATP, heads are bent at the “pliant region,”16 as the switch 2 element is 

closed, inhibiting the phosphate release. The bending of free heads and blocked heads 

produce the required conformations for establishing several head–head and head–tail 

intramolecular interactions as well as several head–head and head–backbone intermolecular 

interactions, which allow the formation of thick filaments in regulated muscles. It has been 

suggested that intramolecular interactions are a general mechanism for inducing muscle 

relaxation and switching off myosin II-based motile activity in both muscle and non-muscle 

cells.17 The so called super-relaxed (SRX) state of myosin II has been reported in striated 

muscle and is characterized by a sub-population of myosin heads with a highly inhibited rate 

of ATP turnover, lower than the turnover observed for single molecules.18 Myosin IHM has 

been found to be involved in the slow ATP turnover rate observed in vertebrate skeletal and 

cardiac muscle fibers.19–21 In particular, relaxed tarantula striated muscle fibers exhibit a 

very slow rate.22

The tarantula striated muscle IHM model (PDB 3DTP) has improved our understanding of 

the activation mechanism in arthropods that involves two phosphorylatable serines (Ser35 

and Ser45).23 Based on this structure, a cooperative phosphorylation activation (CPA) 

mechanism (Fig. 8C–F) as well as a model for activation, potentiation, and post-tetanic 

potentiation involving swaying heads in a relaxed state were proposed for tarantula striated 

muscle.24, 25 A disorder-to-order molecular mechanism occurring in the myosin RLC N-

terminal extension (NTE) is proposed to control this arthropod phosphorylation-based 

activation.26, 27 The IHM model has also improved knowledge of the activation mechanism 

in vertebrate skeletal28, 29 and cardiac muscle.30, 31 On the other hand, the smooth muscle 

IHM (PDB 1I84) structure has improved knowledge of its activation mechanism,32 including 

a possible role of myosin ELC.33

An enhanced model of the IHM is very important for increasing our understanding of the 

thick filament relaxation and activation mechanisms. The only structural information for the 

IHM comes from cryo-EM of chicken smooth muscle myosin II 2D crystals11, 34, 35 and 

from tarantula striated muscle frozen-hydrated relaxed thick filaments.5, 23 The quasi-atomic 

model smooth muscle IHM (PDB 1I84) includes the chicken smooth muscle subfragment 1 
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atomic structure (PDB 1BR1), but as it did not come from a filament, it does not properly 

include a subfragment 2 (S2) crystal structure.11 Two reconstructions were calculated from 

low-dose electron micrographs of frozenhydrated tarantula thick filaments. The first 

reconstruction reached a resolution of 2.5 nm5 and was used to build an initial quasi-atomic 

model of the filament by manually fitting the chicken smooth muscle myosin quasi-atomic 

structure PDB 1I8411 without the S2. The second reconstruction, which was deposited in the 

Electron Microscopy Data Bank (EMDB)36 as EMDB-1950,23 reached a slightly higher 

resolution (2.0 nm) by using a higher number of image segments and by including the tilt 

angle made by the filaments with the grid in the reconstruction. This second reconstruction 

was more detailed, clearly showing two new interactions in addition to the five shown in the 

first reconstruction.5 This enhanced reconstruction led to a second improved tarantula IHM 

model (PDB 3DTP),23 which was achieved by flexible fitting of an atomic model built from 

different species: a human cardiac myosin S2 crystal structure (PDB 2FXM),37 the predicted 

secondary structure homologous quasi-atomic model for the tarantula (Avicularia) myosin 

RLC sequence,23 and the ELC and myosin heads’ motor domain from the chicken smooth 

muscle quasi-atomic model (PDB 1I84).35 Since three loops (loop 1, loop 2, and loop 

NATP-V, which is defined here as the loop near the nucleotide ATP binding D458 shown in 

Fig. 6b) are missing in chicken myosin II heavy chain (MHC) (PDB 1BR1), their sequences 

are not present in two earlier IHM PDB models (PDB 1I84, PDB 3DTP).

Analysis of transcriptional isoforms of tarantula skeletal muscle protein sequences has 

determined its myosin ELC and RLC sequences.38 The aims of the present work are: (1) to 

build a homologous IHM quasi-atomic model (PDB 3JBH) based on PDB 3DTP using the 

tarantula myosin II ELC,38 RLC,38 and MHC sequences reported here to flexibly fit this 

model to the tarantula thick filament 3D reconstruction (EMD-1950); (2) to analyze whether 

the residues involved in maintaining the critical intramolecular interactions of the IHM could 

establish ionic interactions and whether they are conserved across different species; and (3) 

to investigate whether this new homologous tarantula IHM model and its interactions 

provide clues about the structural basis of the SRX state in tarantula striated muscle.

Results

Tarantula myosin MHC, ELC and RLC residue sequences

The tarantula Aphonopelma sp. MHC sequence (GenBank39 KT619079) was determined as 

described in Materials and Methods, which is included in the supplementary data (see 

Accession numbers) along with the myosin ELC38 (GenBank KT390185) and RLC38 

(GenBank KT390186). The tarantula Avicularia avicularia myosin RLC sequence 

(UNIPROT40 B4XT43)23 that was included in PDB 3DTP is very similar to that of 

Aphonopelma sp., as both have 196 amino acids and differ only on 9.

Tarantula IHM quasi-atomic model

We built a homologous single-species model using the MHC, RLC, and ELC of tarantula 

Aphonopelma sp. based on PDB 3DTP23 (see Materials and Methods). The model was 

flexibly fit into the 2-nm resolution 3D map (Fig. 1, EMD-1950) calculated from electron 

micrographs of rapidly frozen tarantula Aphonopelma sp. relaxed thick filaments preserved 
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in vivo in a relaxed state.23 The model includes three modeled loops (loop 1, loop 2, loop 

NATP-V; Suppl. Table 1) that are missing in the chicken MHC crystal structure (PDB 1BR1) 

and the PDB 1I84 and PDB 3DTP models. Due to the IHM structural asymmetry of free and 

blocked heads, the loops are located in very different environments (Fig. 2a). Loop 1 faces 

the solvent in both the free and blocked head (Fig. 2a) and is not involved in any intra- or 

intermolecular interactions. Loop 2 was included after being remodeled de novo (Fig. 2a, see 

Materials and Methods) and is fitted to density “a” (Fig. 2b). The loop 2 sequence in myosin 

II significantly affects actin-activated ATPase activity, mechanochemical coupling, and actin 

binding. Regulation by RLC phosphorylation depends on the presence of a loop 2 with 

greater length and a less positive charge density than the skeletal isoform.41–43 The tarantula 

loop 2 sequence appears to be different from other species but preserves the positively 

charged region, a so-called lysine pocket (Suppl. Figs. 1, 2).42 The CM loop, previously 

fitted to density “a,”23, 37 was found after remodeling the missing loops to better match the 

densities in the interface with the next IHM (Fig. 2a, Suppl. Movies 2–4) and loop 2 to better 

match interaction “a.” The flexible fitting of the free head cluster of loops (Fig. 2a, top right) 

to the 3D map required some rearrangement of the myosin subfragment 1 50K domain, 

including some cleft closure between the upper and lower parts of the 50K domain. It was 

previously proposed that the apparent cleft closure and specific CM loop orientation were 

required to guide the free head, which was detached after the power stroke, to establish the 

precise electrostatic docking interaction “a” onto ring 2 of S2, a requisite for reforming the 

helical tracks of IHMs.23 This remodeling suggests that it is loop 2, not the CM loop, that is 

responsible for this electrostatic docking interaction.

This quasi-atomic model was deposited as 3JBH in the Protein Data Bank (PDB).44 PDB 

3JBH and the earlier PDB 3DTP are very similar (Suppl. Movie 1). In fact, several PDB 

3JBH and 3DTP molecule regions are very similar to the crystal structure PDB 1BR1 

(Suppl. Movie 1). As these missing loops are located in the region of interaction of one IHM 

with a neighboring IHM, the flexible fitting process included the densities of this IHM–IHM 

connecting region (Fig. 2a) located along the IHM helical track (Fig. 1). This fitting 

approach allows for the inclusion of densities along helical tracks and backbone-anchoring 

intermolecular interactions, which was not possible with crystals of isolated heavy 

meromyosin (HMM).

Tarantula model improves upon earlier IHM models

The new model, PDB 3JBH, is improved from the PDB 3DTP model since it is built from 

complete sequences of a single species (tarantula Aphonopelma sp.) rather than a mixture of 

sequences from three species (human, chicken, and tarantula). In addition to the three new 

loops, the new model has six surface loops (2, 3, H, 4 or C, CM, and I; Suppl. Table 1) as 

well as the S2, SH3, catalytic, relay, and converter domains (Fig. 2a, Suppl. Table 1), which 

are involved in intra- and intermolecular interactions (Fig. 2b). The model includes five 

intramolecular interactions involving the S2 and all six surface loops as well as five 

intermolecular interactions, two of which are in a cluster of surface loops (C, CM, I, H, and 

3), the free and neighboring blocked head regulatory domain, and neighboring myosin tails, 

and three of which are involved in anchoring with two adjacent myosin tails. The main 

difference between PDB 3JBH and PDB 3DTP lies mostly in the free head motor domain, 
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where the new, remodeled loops are located near the adjacent blocked head RLC of the next 

IHM along the helical track (Fig. 1). In addition, PDB 3JBH can be used as a starting model 

to be flexibly fitted to a higher-resolution 3D reconstruction.45

Free and blocked heads of tarantula model have different conformations

For myosin heads to form helical tracks in tarantula thick filament, their nucleotide pocket 

switch 2 elements should be in the “closed” conformation, preventing phosphate 

release.46, 47 Also, in the presence of Mg.ATP, the heads should be bent at the “pliant 

region,”16 as the switch 2 element is closed, inhibiting the phosphate release (Fig. 4). The 

tarantula IHM model PDB 3JBH offers further insights into the specific conformation of 

blocked and free head in relaxed filament with a blocked head in a closed pre-power stroke 

conformation (similar to the MgADP-AlF4, PDB 1BR1)23, 35 while the free head, which is 

also in a pre-power stroke closed conformation (with a shape similar to blocked head at the 

limited resolution of the 3D map) shows a less angled lever arm than the blocked head (Fig. 

4). The angle of the free head lever arm is midway between the lever arms of the blocked 

head and pre-power stroke transition 1DFL16 (Fig. 4).

Predicted SAXS profile of tarantula model agrees with measured profile of squid HMM

X-ray solution scattering of squid HMM in Ca2+-free (EGTA) conditions shows agreement 

with PDB 3DTP, strengthening the evidence of an ancient IHM compact off state.15 In this 

comparison, the 50 residues of the RLC NTE (which are unique to the tarantula myosin 

RLC) were deleted. However, the agreement was maintained when they were included (Drs. 

Jerry H. Brown and Richard Gillilan, personal communication). The computed scattering 

profile for the tarantula model (3JBH) closely agrees with the scattering profile computed 

from PDB 3DTP at angles below q = 0.11 Å−1 (Fig. 5a). While the two computed profiles 

separate slightly at wider angles, the degree of separation is below the noise level of the 

current experimentally measured squid HMM profile.15 The goodness-of-fit statistic (chi) to 

the data reported by the software is slightly better for the squid model (chi = 1.74) than for 

the tarantula model (chi = 2.01), but given the noise levels in the data and the possible 

systematic deviations of both models from the data at the widest angle, it is not possible to 

distinguish between the two. Computations extending to a wide angle (q = 1.0 Å−1 in Fig. 

5b) show that the two models continue to closely agree above q = 0.2 Å−1 and are not likely 

to be distinguished by future SAXS and wide angle X-ray solution scattering experiments in 

that regime.

Tarantula model includes new intra- and intermolecular interactions

In the tarantula thick filament, there were intramolecular interactions (between the domains 

inside each IHM)5 and intermolecular interactions (head–head; between the domains of one 

IHM and the adjacent IHM along the helical tracks of myosin heads on the surface of the 

thick filament backbone; Fig. 1, 2).5, 23 When these interactions are broken, IHMs become 

less compact as myosin heads are released,24, 25 first with the separation and eventual 

release of free head from its partner blocked head and secondly after the release of blocked 

head from the thick filament backbone.24 We use the same notation scheme for the five 

intramolecular interactions (“a,” “d,” “e,” “f,” and “g”; Fig. 2b) as suggested previously.23 In 

addition to the three previously described intermolecular interactions5, 23 (“b,” “c,” and “h”; 
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Fig. 2), we show two new intermolecular interactions (head–tail) between the ELC of the 

blocked head (“i”; Fig. 3b) and the relay/converter (¨j”, Fig. 3b) with the neighboring S2. 

Interactions “h,” “i,” and “j” cannot be discussed in detail because our myosin tail model 

does not include this interacting part of the S2 (Fig. 3) and we lack a quasi-atomic model of 

the subfilament.

Analysis of interactions

A rigorous analysis of the residues involved in the intramolecular interactions that keep the 

tarantula IHM structure compact necessarily requires solving its crystal structure, and a 

proper analysis of intermolecular interactions requires a resolution of higher than 2 nm for 

the 3D map. In the first case, since the tarantula IHM crystal structure had not been 

determined, the interaction analysis had to be performed using other myosin head crystal 

structures.48 The crystallization of tarantula IHM has been hampered by difficulties with 

purifying a single homogeneous unphosphorylated tarantula IHM, as Ser35 

monophosphorylation is constitutively present in relaxed tarantula muscle.24, 25 The recent 

purification, crystallization, and preliminary X-ray crystallographic analysis of squid heavy 

meromyosin49 suggest that mollusks’ IHM crystallographic structure will be available in the 

near future. In the second case, the closest available information for the analysis of 

intermolecular interactions only comes from 2.5- and 2.0-nm-resolution 3D maps with the 

densities of intact rapidly frozen relaxed tarantula thick filaments.5, 23 A higher-resolution 

3D reconstruction should be available in the future.45, 50 In the meantime, we built the new 

tarantula model (Fig. 1), which should allow us to perform a first analysis of intra- and 

intermolecular interactions and their conservation. This attempt is limited by the low 

resolution of the 3D map, which does not allow a proper atomic level analysis, even after 

flexible fitting, but only allows a rough analysis of the possible residues in the general region 

of each interaction, as it is not possible to trace the densities of the main or side chains. 

Therefore, the analysis of the interactions in the model below should be considered an 

informed guess of the interactions that could be formed rather than a direct observation of 

the actual atomic contacts in a solved structure.

Intramolecular interactions

We analyzed the intra- (Fig. 6, Suppl. Figs. 1–7) and intermolecular (Fig. 7, Suppl. Figs. 8–

12) interactions using PDB 3JBH (Figs. 1–3) and by observing the peptides and charged 

residues involved in the interactions:

1. - Interactions “a” and “f”: Interaction “a”: This interaction involves residues 

located on S2 Ring 2, which interact with free head loop 2 (Fig. 6a, Suppl. Fig. 1, 

Suppl. Tables 1 and 2). Interaction “f”: This interaction involves two sub-

interactions: (i) Interaction “f.1” (Fig. 6a, Suppl. Fig. 2, Suppl. Tables 1 and 2) 

involves S2 Ring 1 and blocked head loop 2. In interaction “a,” free head loop 2 

interacts with Ring 2, which is negatively charged. Blocked head loop 2 was 

remodeled de novo and adopted a different conformation that increases the 

possibility that more residues will interact. The positioning of blocked head loop 2 

just in front of S2 Ring 1 suggests an electrostatic interaction.37 (ii) Interaction “f.
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2” (Suppl. Fig 6a, Suppl. Fig. 3, Suppl. Tables 1 and 2) involves S2 Ring 1, with 

blocked head H loop and α-helix near blocked head loop 2 (Y653-H665).

2. - Interactions “e” and “g”: Interaction “e”: This interaction involves blocked head 

near loop 2 (K608-H622) and two blocked head regions near (before and after) the 

C loop with two free head ELC loops (Fig. 6b, Suppl. Fig. 4, Suppl. Tables 1 and 

2). We restricted our analysis to ELC tarantula-like sequences with short NTEs 

(invertebrates).51, 52 In our model, we cannot assess which residues are involved in 

making these contacts. Nevertheless, the interacting loops that are involved agree 

with the previously proposed loops for vertebrate smooth muscle35 (Suppl. Table 

2). Interaction “g”: This interaction involves the S2 at the end of the N-terminal 

“asymmetry zone” marked by the so-called “kink”37 at residue N878 (M877 in 

cardiac chicken muscle) with the blocked head catalytic domain and the blocked 

head ELC (Fig. 6b, Suppl. Fig. 5, Suppl. Tables 1 and 2) through three sub-

interactions: (i) free head S2 with blocked head loop NATP-V, (ii) free head S2 

with blocked head ELC, and (iii) blocked head S2 with blocked head ELC C-

terminal extension.

3. - Interaction “d”: Interaction “d” involves two dual sub-interactions: (i) Interaction 

“d.1” involves the blocked head CM loop with loop NATP-II (defined here as the 

loop near the nucleotide ATP binding residue G173 shown in Fig. 6c, Suppl. Fig. 6, 

and Suppl. Tables 1 and 2). It must be noted that residues K400 (CM loop) and 

E165 (catalytic domain) were also proposed to interact in a previous loop 

remodel17 (Suppl. Table 2). The blocked head CM loop also interacts with the free 

head loop NATP-V and the free head near loop 2 (Y653-H665). (ii) Interaction “d.

2” involves blocked head near interacting loop (I loop)23 with the free head 

converter domain as well as blocked head ELC C loop with the converter and relay 

domains (Fig. 6c, Suppl. Fig. 7, Suppl. Tables 1 and 2).

4. - Interaction at the RLC–RLC interface: The RLCs of the blocked and free heads 

interact with themselves across blocked head RLC domain 1, such that the 

positively charged L helices are packed due to complementary charges against the 

blocked head domain 1,23 as analyzed by Brito et al.24

Intermolecular interactions

Intermolecular interactions maintain IHMs suspended above the backbone 
surface, contacting it only in one site—Tarantula thick filament in a relaxed state 

shows that the IHMs are located above the backbone surface (Fig. 1), with their S2s slightly 

angled (~6°) and separated ~2 nm from the surface in the “swivel” region (Fig. 3b). The 

model shows that the blocked head is the only part of the IHM that contacts the backbone 

through three backbone-anchoring intermolecular interactions—“h,” “i,” and “j”—with the 

two neighboring extended S2s (Fig. 3b). In other words, the IHMs are above the backbone 

and covalently anchored to it only through their own S2s, while the other eight interactions 

(“a,” “h,” “i,” “j,” and two pairs of “b” and “c”) are electrostatic (Fig. 3). These suspended 

IHMs are interconnected, forming four coaxial helical tracks that are separated from the 
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backbone surface and surrounded only with sarcoplasm solution molecules, which shield the 

IHMs electrostatically.

There are five intermolecular interactions (Figs. 2–3). Two are between adjacent IHMs (“b” 

and “c”; Figs. 2b and 7a), establishing the helical tracks of IHMs, and three are anchoring 

interactions of each IHM onto two neighbor S2s (“h,” “i,” and “j”; Figs. 3, 7b, c). Loops 

involved in the “c”5 and “b”23 IHM-interconnecting interactions are shown in Suppl. Figs. 

8–9, and the loops involved in the “h,” “i,” and “j” backbone-anchoring interactions are 

shown in Suppl. Figs. 10–12 (see also Suppl. Tables 1 and 2). In the tarantula model, the 

IHM-interconnecting interactions could only be used to analyze the intermolecular 

interactions of species exhibiting four helical tracks, like arthropods5–7, 53 and 

Platyhelminthes,12 as these interactions seem to be different in filaments with three2, 3 or 

seven8 helical tracks.

1. - Interaction “b”: The free head I loop and C loop are close to the blocked head 

RLC NTE (Fig. 7a, Suppl. Fig. 8, Suppl. Table 2).

2. - Interaction “c”: The free head CM loop is near blocked head NTE-ELC and free 

head loop 3 is near blocked head ELC residues K60–F67 (Fig. 7a, Suppl. Fig. 9, 

Suppl. Table 2).

3. - Interaction “h”: The blocked head SH3 domain is involved in an intermolecular 

interaction with an adjacent myosin tail5 (Fig. 3, Fig. 7b, Suppl. Fig. 10). The 

interaction “h” “holds” the blocked head SH3 domain, anchoring it on top of a 

neighbor myosin tail every 14.5 nm along each of the four helical tracks of 

IHMs.5, 23

4. - Interaction “i”: This interaction occurs between the blocked head ELC and S2 of 

a neighbor IHM (Figs. 3b and 7b, c, Suppl. Fig. 11). Together with interaction “h,” 

intermolecular interaction “i” can help “park” the blocked head IHM by anchoring 

it back onto the filament backbone.

5. - Interaction “j”: This interaction occurs between the converter and relay regions 

of the blocked head with the S2 of a neighboring IHM. Both domains can also 

interact with the neighboring subfilament (Figs. 3b and 7b, c, Suppl. Fig. 12). 

Together with interactions “h” and “i,” intermolecular interaction “j” can also help 

“park” the blocked head IHM by anchoring it back onto the filament backbone.

Analysis of conservation of interactions

We evaluated the conservation of specific residues involved in intra- and intermolecular 

interactions by performing alignments of MHC sequences (Suppl. Figs. 1–12) for 68 species 

(Suppl. Tables 3–5) and ordering by their MHC, ELC and RLC trees (Suppl. Figs. 13–15). 

According to the MHC sequence alignment tree (Suppl. Fig. 13), the MHCs of these species 

can be classified in two general groups: (1) striated-like and (2) smooth- and non-muscle-

like.12 To analyze the conservation of intramolecular interactions (Table 1), we included 

species in which IHMs were detected or are currently studied by electron microscopy. The 

RLC–RLC interactions23 and interactions “g,” “f,” “e,” and “d” are very important for the 

formation and stability of IHM. Interaction “f.2” is a key part of the formation of IHM (Figs. 
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2, 6), as it docks the blocked head on top of the S2, forming the precursor S2-BH (Fig. 8B). 

Interactions “d.1” and “d.2” are essential for binding the free head on this precursor S2-BH 

(Fig. 8B), which is important for IHM stability. The relative strength of these five 

interactions should control the stability of the assembly of the two myosin heads once the 

compact IHM is formed. For the analysis, we did not include interactions “a” and “f.1” 

(Suppl. Figs. 1, 2) because loop 2 exhibits variable length across species, and interactions 

“e” and “g” (Suppl. Figs. 4, 5) were too complex to be analyzed using our approach. To 

analyze the conservation of intramolecular interactions “d.1,” “d.2,” and “f.2,” we defined a 

conservation score (Cs; see Materials and Methods) that includes the conservation of the 

residues involved in each interaction, allowing ±3 residues to take into account the limited 

resolution of the 3D map. Scores Cs–d and Cs–f were defined to assess the conservation of 

interactions “d.1,” “d.2,” and “f.2” in terms of IHM formation and stability. In Table 1, for 

each of the selected species (Suppl. Tables 3–5) we analyzed the relationship between the 

conservation of residues involved in critical IHM “d.1,” “d.2,” and “f.1” intramolecular 

interactions and their Cs, Cs–d and Cs–f scores in comparison with their muscle type (striated, 

cardiac, smooth), MHC type (striated-, smooth- or non-muscle-like), thick filament type, and 

IHM. In the alignments, we included isoforms a–c of myosin V, in which regulation does not 

involve head–head interaction,54 so the conserved residues involved in potential ionic 

interactions specific to myosin II could be identified, as was done previously17 (Suppl. Figs. 

1–12).

Conservation of intramolecular interactions—The most conserved interactions seem 

to be free head S2 Ring 1- loop H (“f.2”) and the CM loop with the catalytic domain near 

loop 2 (“d.1”, Y653-H665). The converter and C loop, which are also involved in the 

contraction process, may be less conserved depending on the muscle type, as can be seen for 

interaction “d.2.” The sequences of the conserved myosin ATP binding site, relay, and 

converter are fundamentally involved in the myosin ATPase function and the production of 

power stroke force. The sequences of loops 2, 3, C (also called loop 4), CM, and H 

(Supplementary Tables 1 and 2) are involved in the myosin motor function as well as in the 

formation and stability of IHM and the conserved actin binding interface.55, 56 Table 1 

shows that the residues involved in interactions “d.1,” “d.2,” and “f.2” (Suppl. Figs. 3, 6–7) 

(cf.17) are conserved in all MHC striated-like sequences in invertebrates (Cs ~72–85%, 

including sponge striated MHC) and vertebrates (Cs ~82–85%), smooth-like sequences in 

vertebrates (Cs ~88%), non-muscle-like sequences in vertebrates (Cs ~ 88%), and sponge 

non-muscle MHC (Cs ~63%). The Cs values for primitive nonanimal Amoebozoans (Cs 

~29–32%) are close to myosin V (Cs ~30–44), suggesting that their interactions are less 

conserved than in animals. The analysis of separate Cs–f and Cs–d contributions suggest that 

the residues involved in interaction “f.2,” which are associated with the formation of IHM, 

are more conserved (Cs–f ~81–94%) than in interactions “d.1” and “d.2,” which are 

associated with the stability of IHM (Cs–d ~53–85%).

Conservation of intermolecular interactions

Conservation of the IHM-interconnecting interactions “b” and “c”: We restricted the 

alignment and conservation analysis of residues involved in IHM-interconnecting 

interactions “b” and “c” to species with long RLC NTE (Suppl. Table 5) and short ELC NTE 
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(Suppl. Table 4) sequences. This was done because in the tarantula CPA mechanism, the 

activation actuator control is located in a long RLC NTE where phosphorylatable serines are 

located.26, 27 Light chain NTEs are short or long depending on the species: RLC NTEs are 

long in 25 invertebrate species (and may exist at the protein or transcript level in the 

National Center for Biotechnology [NCBI] database) but short for the rest, while the 

converse is true for ELC NTEs.23, 51, 52 In particular, the long RLC NTE present in 

arthropods and Platyhelminthes has been found to be functionally involved in the 

destabilization of helical tracks of IHMs as a result of the CPA mechanism in tarantula thick 

filament.23–25 We did not attempt to analyze these intermolecular interactions in vertebrate 

or mollusk IHMs as their 3D map interaction “b” region is different from the arthropod we 

are studying. The actual mass density of interaction “b” is clearly seen in the 3D maps of 

thick filaments from arthropods5–7, 23 and Platyhelminthes,12 suggesting that it plays a key 

role in establishing the very stable helical tracks of IHMs in thick filaments. In contrast, in 

vertebrate and human cardiac muscle, interactions “b” and “c” are only established in one of 

every three crowns, with only interaction “b” present in the other two crowns. Interactions 

“b” and “c” both have a neutral net charge and complementary charges of the free head 

motor domain and adjacent free head RLC NTE in interaction “b” and the free head and 

adjacent blocked head ELC NTE in interaction “c” (Suppl. Table 4, Suppl. Fig. 8). 

Therefore, we conclude that intermolecular interactions “b” and “c” are critically involved in 

maintaining the helical tracks of IHMs in species with long RLC NTEs and short ELC 

NTEs, like arthropods23–25 and Platyhelminthes.9, 23 In both interactions, the MHC side 

conserves specific negative and positive residues on I and C loops (interaction “b”) or CM 

loop and loop 3 (interaction “c”) as well as on the long RLC NTE (interaction “b”) or short 

ELC NTE (interaction “c”) sides (Suppl. Figs. 8–9).

Conservation of the backbone-anchoring interactions “h,” “i,” and “j”: A quasi-atomic 

model of the tarantula myosin subfilaments that comprise the outer myosin layer of the thick 

filament backbone is not available yet, so an analysis of the backbone-anchoring 

intermolecular interactions “h,” “i,” and “j” (Fig. 7b, c) cannot be properly performed at this 

time. We analyzed only the tail side of these three interactions, which seem to involve 

several conserved negative and positive residues (Suppl. Figs. 10–12). Since in interaction 

“h” the SH3 domain of each IHM is located every 14.5 nm along each of the helical tracks, 

it seems plausible that alternating positive and negative charges—which are not present in 

myosin V, in which regulation does not involve head–head interactions—on the subfilament 

surface should help guide the six SH3 conserved charged residues (K29/K30, E37/K38, 

K67, D69) for docking the blocked head back on the backbone of the thick filament (Suppl. 

Fig. 10). The presence of significantly longer NTEs in all the SH3 of myosin II—which is 

not present in myosin V—suggesting that it is involved in blocked head docking and 

establishing the helical tracks of IHMs. Our analysis of interaction “i,” which is restricted 

only to species with short ELC NTEs (Suppl. Fig. 11), shows that six negative (E79, E84, 

D85, E88, D94, E140) and four positive (K78, K91, K95, K144) residues are highly 

conserved and may make contact with subfilaments. The analysis of interaction “j” (Suppl. 

Fig. 12) shows that in contrast to myosin Vs, most myosin IIs have two negative (E744, 

D504) and four positive (K721, R758, H488, K499) residues that are very conserved in the 

converter and relay. We conclude that some specific residues involved in the intermolecular 
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interactions “h,” “i,” and “j” are crucially involved in the axial and lateral docking of the 

IHMs on the thick filament backbone, and are conserved in most myosin II sequences for 

interactions “h” and “j” and in short ELC NTE sequences for interaction “i.”

In summary, the oppositely charged and conserved residues involved in the five 

intramolecular interactions maintain the IHM in a compact off structure, explaining the 

conservation of the motif across animal species. The oppositely charged residues involved in 

the five intermolecular interactions retain the IHMs, making helical tracks of myosin heads 

on the surface of the backbone, and are conserved in arthropods and Platyhelminthes.

Discussion

The structure of tarantula thick filaments has been extensively studied.5, 53, 57, 58 These 

filaments exhibit four helical tracks of myosin heads53 (compacted as IHMs)5, 23 above the 

backbone surface. Since the tarantula IHM crystal structure had not been determined, the 

quasi-atomic model PDB 3JBH (see Results) allows for provisional analysis of its intra- and 

intermolecular interactions, as well as building a quasi-atomic model of the complete 

tarantula myosin molecule (including its tail), a subfilament model, and the backbone 

formed by a ring of twelve subfilaments around the paramyosin core (Alamo et al. in 

progress). The tarantula myosin RLC NTE, with two phosphorylation sites at Ser35 and 

Ser45, has been shown to be crucial for the relaxation and activation of tarantula thick 

filaments,23 for which we have proposed a tarantula CPA mechanism24–27 (Fig. 8C–F). This 

dual phosphorylation mechanism could be extended to other chelicerate striated muscles, 

like that of Limulus6 and scorpion,7 and possibly other arthropods with thick filaments that 

exhibit 4-stranded helical tracks of IHMs together with myosin RLCs with a long NTE and 

two phosphorylatable serines. In contrast, a different activation mechanism is present in 

vertebrate skeletal28, 29 and cardiac muscle,30, 31 which have thick filaments that exhibit a 

perturbed 3-fold helical array of IHMs, as well as in vertebrate smooth muscle,32 which also 

has IHMs but with a proposed ELC activation role,33 and mollusks, which have 7-fold 

helical tracks of IHMs with ELC direct Ca2+-binding activation control. Below we discuss 

how the intra- and intermolecular interactions associated with the tarantula model (Figs. 2b, 

6, 7) are sequentially established, forming the IHMs, and how the helical tracks of IHMs in a 

relaxed state are sequentially disrupted upon activation and sequentially reformed upon 

relaxation (Fig. 8, “interaction table”). This discussion is based on the tarantula CPA 

mechanism and aims to explain the structural basis of the ATP turnover rates detected in 

tarantula SRX.22

Interactions form IHMs and their helical tracks in a relaxed state

How are tarantula thick filaments formed in a relaxed state?—The intramolecular 

interactions are present in isolated switched-off myosin II molecules, which form IHMs in a 

solution.17 Myosin subfilaments are formed by the coiling-coil tails of three myosin 

molecules with one pair of heads protruding every 43.5 nm. Twelve myosin subfilaments are 

packed around a paramyosin core, forming the filament backbone (Fig. 1). Initially, the 

myosin S2s emerge helically over the backbone (Fig. 2b) and the pairs of heads are 

disordered and protruding, not yet forming IHMs (precursor IHMs; Fig. 8A). These heads 
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are in the relaxed closed conformation (Fig. 4) with RLC NTEs that are not phosphorylated. 

The interactions table in Fig. 8A–C shows the four stages in which the intra- and 

intermolecular interactions could be sequentially involved, establishing the fully functional 

IHMs (Fig. 8C) and forming the helical relaxed structure of the thick filament: (1) Only one 

head in each pair can establish the “h,” “j,” and “i” intermolecular interactions (Figs. 3, 7) 

with the neighbor myosin tail, docking itself as a blocked head closed conformation (Fig. 4) 

by establishing the intramolecular interactions “g” and “f” with the S2 (Fig. 8B). (2) Once 

this blocked head is docked, the partner free head, which is also in a closed conformation 

(Fig. 4), can dock (Fig. 8B). (3) A temporarily activated protein kinase C can then 

permanently (i.e. constitutively) phosphorylate24, 25 RLC NTE at its target Ser35 (i.e. the 

exposed Ser35 of free heads, since the Ser35 of blocked heads are not sterically 

accessible23–25 (Fig. 8C). (4) Ser35 monophosphorylation of the free heads allow them to 

sway away and back according to Brownian motion due to the breaking and reforming of the 

RLC–RLC intramolecular interactions “e,” “d,” and “a,” which are required for assembling 

an IHM (Figs. 4, 8C). Free head swaying is supported by several lines of evidence from our 

lab.23–27 Negatively stained isolated smooth muscle myosin IHMs appear to show free heads 

as more mobile, detaching from their partner blocked heads, and with their motor domains 

adopting different orientations.59 In addition, X-ray diffraction studies show that a fraction 

of constitutively on motors allow the muscle to immediately respond to calcium activation60 

(cf.).24

Intramolecular interactions are involved in forming IHMs

Intramolecular interaction “f.2,” which is involved in the formation of the IHM, 
is more conserved in all the studied animal species than in non-animal 
species—The IHM is ubiquitous. Table 1 shows that the IHM is present in all animal 

species with muscles, irrespective of the muscle type (striated skeletal, cardiac, or smooth), 

filament type (bipolar, side-polar) or MHC type (striated-, smooth-, or non-muscle-like). The 

wide presence of IHM correlates with the conservation of residue charge in the “d.1,” “d.2,” 

and “f.2” interactions in all animal species shown in Table 1 (Cs > ~63%). The ranges of 

conservation—Cs–f ~40–94% and Cs-d ~24–85%—for these critical interactions on MHC II 

suggest matched variations in the formation and stability of the IHM as these species 

evolved. On one hand, the absence of IHM in the Amoebozoan Acanthamoeba castellani 
correlates with a smaller conservation percentage (Cs ~32%), suggesting the importance of 

these critical interactions in the formation and stability of the IHM. On the other hand, the 

chicken vertebrate smooth muscle head–tail interaction is likely the most stable interaction 

as it establishes the motif structure35 with the smallest rate of product release61 and results 

in a higher conservation percentage of the residues involved in the formation and stability of 

the IHM (Cs–f and Cs–d ~94%). Also, studies with isolated 10S myosin II HMM from 

smooth and non-muscle-like MHC sequences suggest that the interaction between the 

blocked head and S2 is required for the formation of a stable IHM.17, 61 This agrees with the 

similar residue conservation values in vertebrate smooth (Cs–f ~94%) and non-muscle-like 

MHC sequences (Cs–f ~94%). Finally, it has been suggested that the strength of the 

intermolecular interactions is weaker in unregulated myosin, showing that IHMs are less 

common in solution than regulated myosin.17 This is in accordance with the smaller 

conservation values (Cs–d ~78–82%) in vertebrate cardiac muscles from mice, humans, and 
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zebra fish. The consistency of the results among species that was achieved with this 

interaction scoring approach reassured our confidence in our interaction analysis, in spite of 

the clear resolution limitations of the 3D map and the lack of definition of the precise 

residue contacts that are involved in the intramolecular interactions. We conclude that “d.1,” 

“d.2,” and “f.2” intramolecular interactions are critically involved in the formation and 

stability of the IHM. The conservation of residues involved in these interactions support the 

conservation of the IHM across all animal species, irrespective of the presence of muscles 

(like in sponges which lack muscle), muscle type, filament type, or MHC II type. The 

conservation analysis of these interactions suggests they are more conserved in animals than 

in primitive non-animals, supporting our conclusion—which is based on the fact that the 

IHM was detected by electron microscopy14—that IHMs evolved after Amoebozoa and 

animals diverged.

Intermolecular interactions are involved in the formation of the helical tracks of IHMs along 
the filaments

For arthropods like tarantulas, in which activation is dependent upon phosphorylation, the 

two intermolecular interactions “b” and “c” and the remaining anchoring interactions “h,” 

“i,” and “j” (Figs. 3, 6, 7) maintain the stability of the helical tracks of IHMs more than in 

vertebrates or mollusks.

IHM interconnecting interactions—The “b” and “c” intermolecular interactions are 

critically involved in the maintenance of the helical tracks of IHMs in species with long 

RLC NTEs and short ELC NTEs, such as arthropods23–25 and Platyhelminthes.9, 23 In both 

interactions, the MHC side conserves specific negative and positive residues on I and C 

loops (interaction “b”) or CM loop and loop 3 (interaction “c”) as well as on the long RLC 

NTE (interaction “b”) or short ELC NTE (interaction “c”) sides (Suppl. Figs. 8–9). This 

analysis could be extended to the similar thick filaments of the Platyhelminth Schistosome.

Backbone anchoring interactions—Some specific residues involved in these 

intermolecular interactions are crucially involved in the axial and lateral docking of IHMs on 

the filament backbone, which are conserved in most myosin II sequences (interactions “h” 

and “j”) and short ELC NTE sequences (“i”).

MHC type controls filament type formation—According to the average distance tree 

for MHC II sequence alignment (Suppl. Fig. 13), MHCs can be classified into three types: 

striated-, smooth-, and non-muscle-like. Table 1 shows that the MHC type controls filament 

type formation: striated-like MHC form helical bipolar thick filaments with various numbers 

of helical tracks (3–7), while smooth-like MHC form side-polar thick filaments and non-

muscle-like MHC form bipolar mini-filaments.

Implications of myosin interactions in the evolutionary origin of the switched 
off state—This state may have arisen early in species’ evolution as a means of switching 

off non-muscle myosin. Non-muscle myosin II is monomeric in an off state, so only 

intramolecular interactions between heads would have been possible. As muscles evolved, 

they may have retained these interactions. In filaments, additional (intermolecular) 
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interactions became possible and advantageous in an evolutionary sense. Thick filaments 

could be formed first on paramyosin cores, allowing various numbers of helical tracks of 

IHMs: seven in mollusk striated muscle; four in arthropod and Platyhelminth striated 

muscle; and three in vertebrate skeletal or cardiac muscle when the paramyosin core was 

lost. Additionally, IHM regulation could also have evolved from being controlled by direct 

ELC Ca2+ binding (mollusks), RLC phosphorylation (in arthropods and possibly in 

Platyhelminthes) or being unregulated in vertebrates.

On activation interactions are disrupted, disassembling IHMs and their helical tracks

The “interactions table” in Fig. 8C–F shows which intra- and intermolecular interactions are 

established in a relaxed state (Fig. 8C) and which interactions are progressively removed 

after a relaxed tarantula thick filament is activated (Fig. 8D–F), such that helical tracks of 

IHMs are disassembled, with the disordered free and blocked heads protruding away from 

the backbone (Fig. 8D–F), as observed by negative staining62 and equatorial X-ray 

diffraction.63 We have shown that the structural differences and location within the IHM 

could preset the order in which the free and blocked head are released upon phosphorylation, 

having the free head the right conformation (Fig. 4) to be released first to interact with actin, 

followed by the blocked head (if required)24, 25.

Interactions sequentially reform, comprising IHMs and their helical tracks upon relaxation

We propose that the disordering of myosin heads produced by activation (Fig. 8C–F) is 

restored after relaxation in three independent steps, depending on which step the motif (Fig. 

8F–C) is:

Formation of precursor blocked head-S2 motif—Once the monophosphorylated 

Ser45 of a blocked head is dephosphorylated (Fig. 8E–D, top IHM), the disordered blocked 

head can eventually reestablish intramolecular interactions “g” and “f” with its own S2 (Fig. 

8D, top IHM), reattach to the two neighbor S2s (Fig. 7) by re-establishing the anchoring 

intermolecular interactions “h,” “j,” and “i.” This allows the blocked head to be docked back 

and anchored precisely in the correct axial position (i.e., every 14.5 nm). It has been reported 

that interaction between the blocked head and its own S2 is needed to form a stable 

IHM.17, 61 These intramolecular interactions can be established between a blocked head and 

its S2 in isolated HMM molecules, in contrast to the intramolecular interactions “h,” “i,” and 

“j,” which can only be established in a filament.

Reassembly of IHM from a blocked head-S2 precursor motif—Once the partner 

diphosphorylated free head of a docked blocked head is Ser45 dephosphorylated by myosin 

light chain phosphatase, again becoming a Ser35 monophosphorylated swaying free head 

(Fig. 8D–C, middle IHM), they could eventually dock back onto the blocked head-S2 

precursor motif by re-establishing first the closer RLC–RLC interactions between both 

blocked and free heads and then the remaining intramolecular interactions ”e,” “d,” and “a.” 

This reassembly should be guided by the complementary charges of domain 1 of the blocked 

and free head RLC NTEs, as we have proposed.24 Thus, the RLC domain 1 seems to be 

better conserved than the rest of the RLC domains.64
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Formation of helical tracks of IHMs—When a similar process occurs in axially 

adjacent reassembled IHMs, pairs of “c” and “b” interactions can be re-established between 

them (Fig. 1), stabilizing the helix first in short patches and then so on. This finely tunes the 

formation of helical tracks of IHMs with a subunit distance of 14.5 nm, been the 43.5 nm 

helical repeat enforced by the twelve myosin subfilament symmetry.

Implications of IHM interactions on smooth muscle

It was striking to find that vertebrate smooth muscle IHM11, 34, 35 was present in invertebrate 

striated muscle5 with similar IHM models (PDB 1I8435 vs. PDB 3DTP23). Also, the thick 

filaments present in invertebrate striated muscle5 were similar to invertebrate smooth 

muscle12 with similar IHMs. In addition, a striking similarity between the myosin II RLCs 

of Schistosome and tarantula was observed: both RLCs exhibit a long NTE with two 

putative phosphorylatable serines,23, 24 suggesting that our present analysis in this paper 

could be applied to the smooth muscle IHM of Platyhelminthes. Concerning vertebrate 

smooth muscle, which has an unknown specialized side-polar thick filament structure, we 

cannot infer how the specific IHM interactions in vertebrate smooth muscle could be 

involved in assembling non-helical side-polar filaments Trybus et al.61 have discussed in 

detail the need for vertebrate smooth muscle to have two myosin heads, head–head 

interactions, and S2 for regulation by RLC phosphorylation. We can only mention that S2, 

which is suggested to mediate specific interactions with the head that are required to achieve 

an off state in vertebrate smooth and non-muscle myosin II61 and is essential for 

regulation,61 should be involved in IHM intramolecular interactions similar to “a,” “f,” and 

“g.” Supporting Trybus et al.,61 our results with tarantulas suggest that these interactions 

could correspond to interactions “a,” “f,” and perhaps “g,” explaining the necessity of a 

minimal length of S2 for regulation.61 Two of these interactions, “a” and “f,” are involved in 

the interaction of S2 Rings 2 and 1 with free head loop 2 and blocked head, which is part of 

myosin II regulation in smooth and skeletal muscle.42

Structural basis of the tarantula muscle SRX state

The two heads in the IHM have inhibited ATPase: the blocked head exhibits a closed 

conformation23 of the nucleotide pocket switch 2 (Fig. 4), preventing phosphate 

release,46, 47 and it is “parked,” or locked-in, to the backbone (Fig. 8C) with ATP activity 

that is sterically “blocked,” as its actin-binding interface is positioned on the converter 

domain of its partner free head. This inhibits ATPase activity by stabilizing the converter 

domain movements needed to release phosphate.11 Relaxed vertebrate skeletal and cardiac 

muscle fibers exhibit a slow ATP turnover rate.18, 19 Naber et al.22 proposed that this is an 

adaptation to save energy in animals like tarantulas that spend long periods immobile while 

poised to quickly capture prey. This state—which strongly inhibits myosin ATPase activity 

and has been observed in a variety of muscle types—was called the SRX state in the 

pioneering work of Cooke et al.20 Its importance in muscle has been described by many 

authors.18–20, 22, 6566 Structurally, SRX has been ascribed to the IHM.18, 20 In relaxed 

tarantula muscle, three rates are detected:22 very slow (>1800 s), slow (250–300 s), and fast 

(<30 s). Based on the PDB 3JBH model, its interactions, and the tarantula CPA 

mechanism14, 24, 26, 27 (Fig. 8C–F), we ascribe the very slow rate to the docked 

unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to 
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phosphorylated undocked heads. Therefore, as shown in Fig. 8C and explained below, the 

docked (helically ordered) unphosphorylated blocked and a few free heads, which both have 

a very slow rate, and the transiently docked Ser35 monophosphorylated free heads, which 

have a slow rate, are responsible for the two SRX levels in tarantulas,22 while the remaining 

(disordered) swaying free heads with Brownian motion exhibit the fast rate detected in the 

disordered relaxed state.

Structural basis of the very slow, slow, fast, and very fast rates in tarantula 
striated muscle

1. Very slow rate origin: The very slow rate is ascribed to unphosphorylated blocked 

heads and the few unphosphorylated Ser-35 free heads docked in the IHM motif. 

The ATPase rate is determined by the strength of the intramolecular interactions, 

and since this muscle is thick-filament-regulated, some other mechanism 

momentarily undocks or activates the myosin. The very slow rate is expected to 

exist in other thick-filament-regulated filaments. In relaxation, all blocked heads are 

unphosphorylated, as endogenous myosin light chain phosphatase is active, 

dephosphorylating any Ser45 mono-phosphorylated blocked heads. The blocked 

head rate is very slow, as its ATPase activity is sterically “blocked”11 and locked in 

to the backbone.26, 27 This “parking,” or locking in, of half the available myosin 

heads in a close conformation is an effective mechanism for saving energy by 

preserving bound ATP.

2. Slow rate origin: The slow rate is ascribed to docked swaying Ser35 

monophosphorylated free heads (Fig. 8C), for which ATP activity is transiently 

inhibited while docked in the IHM motif.

3. Fast rate origin: The fast rate is ascribed to undocked swaying Ser35 

monophosphorylated free heads (Fig. 8C) and interpreted as a way to enable at least 

half of the available heads to explore as structural sentinels if there are any 

activated thin filaments, to save energy, and to make a faster transition to active 

states if there are activated thin filaments nearby, favoring quick force production 

like in single twitches or twitch summation.24 The Ser35 monophosphorylation is 

constitutively (i.e., permanently) present on most free heads, suggesting that it is a 

simple way to segregate heads that are better located to quickly sway away by 

Brownian motion and interact with Ca2+-activated thin filaments.24

4. Very fast rate origin: In contrast to the relaxed state (Fig. 8C), remnants of these 

three heads’ populations (Fig. 8D–E) briefly coexist in an activated state (Fig. 8D–

F) together with a quickly increasing fourth population that is formed by released 

swaying Ser35-monophosphorylated free heads, Ser45-monophosphorylated 

blocked heads, and diphosphorylated free heads, which are in the transition pre-

power stroke conformation23 (Fig. 4) and are activated when bound to an activated 

thin filament located ~5 nm away.46 This population is associated with the very fast 

time constant (<0.1 s) detected in active muscle fibers18 (Fig. 8F), as a high rate is 

required after activation during muscle contraction.
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In relaxed tarantula thick filaments, a “closed” conformation that prevents phosphate release 

is required for the formation of helical tracks of IHMs on the backbone.46 Blebbistatin, 

which inhibits myosin II ATPase activity,67 stabilizes helical tracks in a relaxed state by 

promoting a closed state.68 These two results suggest that in tarantula blebbistatin should 

closely hold the two heads on IHMs, diminishing the free heads that sway away and 

implying a very slow rate. In fact, blebbistatin stabilizes the SRX state in skeletal muscle, 

producing a very long-lived myosin–nucleotide complex with a very slow time constant,65 

which favors our interpretation of the very slow rate in tarantulas. Additionally, in the 

presence of blebbistatin, the spin-labeled nucleotides bound to myosin have an oriented 

spectrum in SRX in both slow and fast skeletal muscle, similar to those observed in relaxed 

tarantula fibers without blebbistatin.65 This strongly supports the proposed structural origin 

of the SRX state (Fig. 8).

Comparison of the SRX states of vertebrate skeletal and cardiac muscle—In 

contrast to tarantula muscle, in which very slow (>1800 s), slow (250–300 s), and fast (<30 

s) rates are detected,22 in vertebrate skeletal18 and cardiac19 muscle only slow (230 and 

138–144 s) and fast rates are detected. Relaxed vertebrate and tarantula muscle have several 

structural and functional differences. Thick filaments from tarantulas exhibit four helical 

tracks of IHMs with similar motifs on the three crowns of a 43.5 nm repeat, while vertebrate 

and cardiac muscle exhibit three perturbed helical tracks in which only two crowns exhibit 

similar motifs. Additionally, cardiac muscle features the cMyBP-C zone. Tarantula muscle 

has thick filament activation, while in vertebrate skeletal and cardiac muscle, the thick 

filament acts as a modulator. This “locks in” the tarantula unphosphorylated blocked head to 

the very slow rate and causes it to become swaying blocked head (inducing the slow rate) 

only after becoming Ser45 monophosphorylated blocked head by a myosin light chain 

kinase,23–27 which can only occur upon Ca2+ activation. In vertebrate skeletal and cardiac 

muscle, in which thick filaments are not regulated, the blocked heads sway without 

phosphorylation, eliminating the very slow rate. Studies using bifunctional fluorescence 

labels that are bound to intact vertebrate skeletal muscle myosin unphosphorylated RLC to 

quantify the orientation of the myosin lever arm by obtaining polarization measurements 

revealed three preferred orientations in the relaxed state: two with a long axis that is roughly 

parallel to the filament axis, and one that is roughly perpendicular.28 In vertebrate skeletal 

muscle RLC, phosphorylation disrupts the parallel orientation, shifting the equilibrium 

toward a perpendicular orientation, which permanently releases phosphorylated free and 

blocked heads. Similar studies on vertebrate cardiac muscle, in which almost no endogenous 

(constitutive) Ser15 monophosphorylation was detected, revealed that in a relaxed state 

(with unphosphorylated RLCs), there was a conformational equilibrium between parallel 

and perpendicular states and Ser15 monophosphorylation destabilized the parallel 

conformations, promoting a perpendicular conformation.31 We believe that the two preferred 

parallel orientations are associated with the slow rate of docked blocked and free head 

(SRX) in the IHM and that the perpendicular orientation is associated with the fast rate in 

undocked swaying free and blocked heads, as the free and blocked heads are active and can 

sway away without being monophosphorylated. Therefore, in contrast to tarantula relaxed 

muscle, SRX in vertebrate relaxed muscle should ascribe the only detected rate (slow) to 

both swaying blocked and free heads without permanently docked blocked heads.
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Conservation of the SRX state—The SRX state has been detected in arthropod striated 

muscle22 and vertebrate skeletal (rabbit psoas and soleus18), cardiac (rabbit,19 human [Drs. 

James W. McNamara and Roger Cooke, personal communication]) and smooth muscle 

(preliminary result; Drs. Ed Pate and Roger Cooke, personal communication). The 

conservation of critical intramolecular interactions across animals and IHM structure across 

bilaterians (Table 1) suggests that SRX should be a conserved fundamental feature of IHM 

to save ATP.

In conclusion, the tarantula quasi-atomic model PDB 3JBH, its intra- and intermolecular 

interactions, and the cooperative-phosphorylation activation (CPA) mechanism show the 

structural basis of SRX in tarantula muscle and its differences from vertebrate muscle. IHM 

conservation reveals that intramolecular interactions, which maintain the asymmetric 

structure of IHM, are crucial for maintaining muscle relaxation in animal species.

Materials and Methods

Characterization of full-length cDNA of tarantula MHC

Aphonopelma MHC sequencing follows the approach of Zhu et al.38 The total length of the 

sequenced cDNA is 6611 bp, with a 5862 bp open reading frame that begins at position 126. 

The deduced residue sequence GenBank KT619079, which is comprised of 1953 residues, 

contains characteristic features of ATP-binding and actin-binding sites of myosin. A simple 

comparison with fully sequenced heavy chains shows that 50–64%, 31–35%, and 30% 

identity with sarcomeric (vertebrate striated and cardiac muscles and invertebrate muscles), 

non-sarcomeric (smooth muscle), and unicellular (Dictyostelium discoideus) MHCs, 

respectively. The myosin head region is more conserved (57–69% and 49–50% identity with 

sarcomeric and non-sarcomeric MHCs, respectively) than the coiled-coil rod (43–62% and 

26%).

Image processing and 3D reconstruction

The 3D map used for flexible fitting of the tarantula homology model was EMD-1950 with a 

2.0 nm resolution, the same 3D map we used for IHM PDB 3DTP.23

Homology modeling

Modeling of ELC—The tarantula Aphonopelma sequence was submitted to the 

BioInfoBank Meta Server (http://meta.bioinfo.pl/submit_wizard.pl). From all the models we 

received, those with the higher scores were chosen. From these, the model with all the 

residues in the sequence was selected: PDB 2OVK. Two copies were made, one for the free 

head and another for the blocked head, and they were superposed on the previous IHM 

structure (PDB 3DTP) by the Chimera MatchMaker tool69.

RLC modeling—The tarantula Aphonopelma sequence was submitted to the SwissModel 

Server to obtain the homology model of the RLC (http://swissmodel.expasy.org/) using the 

PDB 3DTP chains E and F as a template.
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Modeling of MHC (Motor domain and S2)—The sequences that correspond to the 

motor domain and S2 of PDB 3DTP were extracted from the full-length tarantula 

Aphonopelma MHC sequence. These 965 residues were aligned to the sequence of PDB 

3DTP chains A and B (free and blocked head MHC sequences) and submitted to 

SwissModel Server to obtain the corresponding free head and blocked head homology 

models. The final model was assembled and saved as a PDB file using Chimera.69

Flexible fitting

Flexible fitting was performed in seven steps: (1) Initial preparation of the model (assembly 

and minimization): An initial minimization of the structure was performed to avoid 

problems during the flexible fitting procedure, as the chains came from different sources. 

Using VMD,70 an explicit water box was generated with the VMD Automatic PSF Builder. 

Ions were placed in a separate step using 0.15 M of salt. Then, the solvated and ionized 

structure was minimized by 2000 steps using NAMD.71 To estimate the effect of the 

minimization, the amounts of clashes before and after the minimization procedure were 

calculated with Chimera. Before minimization, 2757 clashes were detected, and after 

minimization, the number of clashes decreased to 84. (2) Initial rigid body docking: The 

minimized model was fitted as a rigid body to the tarantula 3D map with the Situs qrange 

tool. (3) Preparing the PDB file for flexible fitting: The PDB file was edited and converted to 

a suitable format for X-PLOR72 refinement. Internal water molecules were added to empty 

cavities to stabilize the structure during flexible fitting using the Dowser program.73 (4) 

Flexible fitting using Situs (2.4) and Sculptor (1.1.6): Codebook (CB) vectors were created 

for the structure using Situs.74 The generated connectivity among CB vectors was edited to 

remove some bonds and provide the network with flexibility. The optimal connectivity 

network for the map was interactively chosen using the Sculptor (1.1.6) graphic interface. 

Finally, the flexible fitting step was performed using X-PLOR. (5) Full water box 

minimization of the flexibly fitted model: To reduce clashes in the flexibly fitted model, we 

performed a final minimization in the same way as the initial minimization. (6) Building two 

adjacent HMMs: The IHM model was duplicated and the copy was helically placed at the 

next upper crown to generate a model with two interacting HMMs that allow intermolecular 

interactions to be studied. (7) Remodeling of the interacting loops: To seek possible residues 

that can create interactions, we used X-PLOR scripts to allow the lateral chains of 

interacting loops to move freely in order to find the residues that can be located at the atomic 

contact distance range.

Bioinformatics analysis

We used JalView (ver. 2.8)75 to analyze the sequences retrieved from the UniProt database 

(http://www.uniprot.org/). The multiple sequence alignment was performed with Clustal 

(ver. 2.0)76 using default parameters and ordered according to the average percent identity in 

a distance tree (Suppl. Figs. 13–15). For the conservation analysis shown in Suppl. Figs. 1–

12 and Table 1, we chose the MHC sequences reported for non-muscle, smooth, skeletal, 

striated, and cardiac muscle of the 68 species shown in Suppl. Table 3. Myosin V sequences 

are included for comparison, as they do not establish IHM.17 In addition, we chose to align 

the myosin 28 RLCs and 62 ELCs sequences, as shown in Suppl. Tables 4 and 5. In Table 1, 

we analyzed the conservation of the residues involved in “d.1,” “d.2,” and “f.2” 
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intramolecular interactions by ascribing a score value to each sub-interaction (d.1 i, ii, iii; d.

2 i, ii, iii; f.2 i, ii, iii) as a percentage. In the sequence alignment, each species was compared 

to the corresponding tarantula sequence (which was considered 100%). The score was 

100%: 1) if both sides of the sub-interaction were composed by the same number of 

conserved residues and had opposite charges; 2) if the sides of the interactions had a 

different number of residues, all of which were conserved; 3) if the sides of the sub-

interactions had a different number of residues, one residue that was not conserved, and the 

same number of conserved residues on each side. Otherwise, the score was 75%, 50%, or 

25% if the conservation was present in the previous/following residue in the sequence (+/

− 1, 2, or 3 amino acids, respectively) or 0% if the difference in position was greater than 

three amino acids, there was no conservation on one side of the interaction, or a residue with 

the opposite charge was in the same position. We calculated the final conservation score, Cs, 

for each species as the average of the “d.1,” “d.2,” and “f.2” sub-interactions as well as the 

scores for the contributions of “d.1” and “d.2” (Cs–d) or “f.2” (Cs–f). Only complete 

sequences with evidence at the transcriptional or protein level were selected for the analysis. 

For anemone, we only used the few available MHC sequence fragments for different 

anemone species that are involved in the “d.1,” “d.2,” and “f.2” intramolecular interactions.

SAXS analysis

The sample preparation and data collection details for squid HMM were reported in a 

previous publication.15 Scattering intensity, I(q), is in arbitrary units, with q = 4π sin(θ)/λ in 

units of Å−1. The scattering angle is 2θ with a wavelength of λ=1.2563 Å. Scattering profiles 

for PDB 3DTP and 3JBH were computed using FoXS77 and CRYSOL78 to check 

consistency, especially at scattering angles beyond q = 0.3 Å−1. CRYSOL required more 

than the default number of harmonics (30) for agreement with FoXS. There were some 

systematic baseline shifts between the two algorithms at q > 0.3 Å−1 (not shown), but both 

algorithms agreed on the location and magnitude of the difference between the PDB models. 

Only FoXS results are reported here. FoXS was allowed to fit both the computed profiles to 

the squid HMM experimental data using the customary parameters of hydration layer, 

excluded volume, and background adjustment.15

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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C loop cardiac loop

CM loop cardiomyopathy loop

ELC essential light chain

FH free head

HMM heavy meromyosin

IHM interacting-heads motif

MHC myosin II heavy chain

NTE N-terminal extension

RLC regulatory light chain

S2 subfragment 2

SAXS small angle X-ray solution scattering

SRX super-relaxed state

References

1. Craig, R.; Padrón, R. Molecular structure of the sarcomere. In: Engel, AG.; Franzini-Armstrong, C., 
editors. Myology. 3rd. New York: McGraw-Hill, Inc; 2004. p. 129p. 166

2. Zoghbi ME, Woodhead JL, Moss RL, Craig R. Three-dimensional structure of vertebrate cardiac 
muscle myosin filaments. Proc. Natl. Acad. Sci. U. S. A. 2008; 105:2386–2390. [PubMed: 
18252826] 

3. AL-Khayat HA, Kensler RW, Squire JM, Marston SB, Morris EP. Atomic model of the human 
cardiac muscle myosin filament. Proc. Natl. Acad. Sci. U. S. A. 2013; 110:318–323. [PubMed: 
23251030] 

4. Gonzalez-Sola M, AL-Khayat HA, Behra M, Kensler RW. Zebrafish cardiac muscle thick filaments: 
isolation technique and three-dimensional structure. Biophys. J. 2014; 106:1671–1680. [PubMed: 
24739166] 

5. Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padrón R. Atomic model of a myosin 
filament in the relaxed state. Nature. 2005; 436:1195–1199. [PubMed: 16121187] 

6. Zhao FQ, Craig R, Woodhead JL. Head-head interaction characterizes the relaxed state of Limulus 
muscle myosin filaments. J. Mol. Biol. 2009; 385:423–431. [PubMed: 18976661] 

7. Pinto A, Sanchez F, Alamo L, Padron R. The myosin interacting-heads motif is present in the 
relaxed thick filament of the striated muscle of scorpion. J. Struct. Biol. 2012; 180:469–478. 
[PubMed: 22982253] 

8. Woodhead JL, Zhao FQ, Craig R. Structural basis of the relaxed state of a Ca2+-regulated myosin 
filament and its evolutionary implications. Proc. Natl. Acad. Sci. U. S. A. 2013; 110:8561–8566. 
[PubMed: 23650385] 

9. Sulbarán G, Alamo L, Pinto A, Márquez G, Méndez F, Padrón R, Craig R. Schistosome Muscles 
Contain Striated Muscle-Like Myosin Filaments in a Smooth Muscle-Like Architecture. Biophys. J. 
2014; 106:159a.

10. Craig R, Megerman J. Assembly of smooth muscle myosin into side-polar filaments. J. Cell Biol. 
1977; 75:990–996. [PubMed: 562890] 

11. Wendt T, Taylor D, Trybus KM, Taylor K. Three-dimensional image reconstruction of 
dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between 
myosin heads and placement of subfragment 2. Proc. Natl. Acad. Sci. U. S. A. 2001; 98:4361–
4366. [PubMed: 11287639] 

Alamo et al. Page 22

J Mol Biol. Author manuscript; available in PMC 2017 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Sulbaran G, Alamo L, Pinto A, Marquez G, Mendez F, Padron R, Craig R. An invertebrate smooth 
muscle with striated muscle myosin filaments. Proc. Natl. Acad. Sci. U. S. A. 2015; 112:E5660–
E5668. [PubMed: 26443857] 

13. Jung HS, Burgess SA, Billington N, Colegrave M, Patel H, Chalovich JM, Chantler PD, Knight PJ. 
Conservation of the regulated structure of folded myosin 2 in species separated by at least 600 
million years of independent evolution. Proc. Natl. Acad. Sci. U. S. A. 2008; 105:6022–6026. 
[PubMed: 18413616] 

14. Sulbarán, Mun JY, Lee KH, Alamo L, Pinto A, Sato O, Ikebe M, Liu X, Korn ED, Padrón R, Craig 
R. The inhibited, interacting-heads motif characterizes myosin II from the earliest animals with 
muscle. Biophys. J. 2015; 108:301a.

15. Gillilan RE, Kumar VS, O'Neall-Hennessey E, Cohen C, Brown JH. X-Ray Solution Scattering of 
Squid Heavy Meromyosin: Strengthening the Evidence for an Ancient Compact off State. PLoS. 
One. 2013; 8:e81994. [PubMed: 24358137] 

16. Houdusse A, Szent-Gyorgyi AG, Cohen C. Three conformational states of scallop myosin S1. 
Proc. Natl. Acad. Sci. U. S. A. 2000; 97:11238–11243. [PubMed: 11016966] 

17. Jung HS, Komatsu S, Ikebe M, Craig R. Head-head and head-tail interaction: a general mechanism 
for switching off myosin II activity in cells. Mol. Biol. Cell. 2008; 19:3234–3242. [PubMed: 
18495867] 

18. Stewart MA, Franks-Skiba K, Chen S, Cooke R. Myosin ATP turnover rate is a mechanism 
involved in thermogenesis in resting skeletal muscle fibers. Proc. Natl. Acad. Sci. U. S. A. 2010; 
107:430–435. [PubMed: 19966283] 

19. Hooijman P, Stewart MA, Cooke R. A new state of cardiac myosin with very slow ATP turnover: a 
potential cardioprotective mechanism in the heart. Biophys. J. 2011; 100:1969–1976. [PubMed: 
21504733] 

20. Cooke R. The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle. 
Biophys. Rev. 2011; 3:33–45. [PubMed: 21516138] 

21. McNamara JW, Li A, dos Remedios CG, Cooke R. The role of super-relaxed myosin in skeletal 
and cardiac muscle. Biophysical Reviews. 2015; 7:5–14.

22. Naber N, Cooke R, Pate E. Slow Myosin ATP Turnover in the Super-Relaxed State in Tarantula 
Muscle. J. Mol. Biol. 2011

23. Alamo L, Wriggers W, Pinto A, Bartoli F, Salazar L, Zhao FQ, Craig R, Padrón R. Three-
dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may 
regulate myosin activity. J. Mol. Biol. 2008; 384:780–797. [PubMed: 18951904] 

24. Brito R, Alamo L, Lundberg U, Guerrero JR, Pinto A, Sulbaran G, Gawinowicz MA, Craig R, 
Padron R. A molecular model of phosphorylation-based activation and potentiation of tarantula 
muscle thick filaments. J. Mol. Biol. 2011; 414:44–61. [PubMed: 21959262] 

25. Sulbarán G, Biasutto A, Alamo L, Riggs C, Pinto A, Mendéz F, Craig R, Padrón R. Different head 
environments in tarantula thick filaments support a cooperative activation process. Biophys. J. 
2013; 105:2114–2122. [PubMed: 24209856] 

26. Espinoza-Fonseca LM, Alamo L, Pinto A, Thomas DD, Padron R. Sequential myosin 
phosphorylation activates tarantula thick filament via a disorder-order transition. Mol. Biosyst. 
2015; 11:2167–2179. [PubMed: 26038232] 

27. Alamo L, Li XE, Espinoza-Fonseca LM, Pinto A, Thomas DD, Lehman W, Padron R. Tarantula 
myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it 
and blocking its docking back. Mol. Biosyst. 2015; 11:2180–2189. [PubMed: 26038302] 

28. Fusi L, Huang Z, Irving M. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: 
Implications for Myosin-Based Regulation. Biophys. J. 2015; 109:783–792. [PubMed: 26287630] 

29. Woodhead JL, Craig R. Through Thick and Thin-Interfilament Communication in Muscle. 
Biophys. J. 2015; 109:665–667. [PubMed: 26287618] 

30. Kampourakis T, Sun YB, Irving M. Orientation of the N- and C-terminal lobes of the myosin 
regulatory light chain in cardiac muscle. Biophys. J. 2015; 108:304–314. [PubMed: 25606679] 

31. Kampourakis T, Irving M. Phosphorylation of myosin regulatory light chain controls myosin head 
conformation in cardiac muscle. J. Mol. Cell Cardiol. 2015; 85:199–206. [PubMed: 26057075] 

Alamo et al. Page 23

J Mol Biol. Author manuscript; available in PMC 2017 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Baumann BA, Taylor DW, Huang Z, Tama F, Fagnant PM, Trybus KM, Taylor KA. Phosphorylated 
smooth muscle heavy meromyosin shows an open conformation linked to activation. J. Mol. Biol. 
2012; 415:274–287. [PubMed: 22079364] 

33. Taylor KA, Feig M, Brooks CL III, Fagnant PM, Lowey S, Trybus KM. Role of the essential light 
chain in the activation of smooth muscle myosin by regulatory light chain phosphorylation. J. 
Struct. Biol. 2014; 185:375–382. [PubMed: 24361582] 

34. Wendt T, Taylor D, Messier T, Trybus KM, Taylor KA. Visualization of head-head interactions in 
the inhibited state of smooth muscle myosin. J. Cell Biol. 1999; 147:1385–1390. [PubMed: 
10613897] 

35. Liu J, Wendt T, Taylor D, Taylor K. Refined model of the 10S conformation of smooth muscle 
myosin by cryo-electron microscopy 3D image reconstruction. J. Mol. Biol. 2003; 329:963–972. 
[PubMed: 12798686] 

36. Lawson CL, Baker ML, Best C, Bi C, Dougherty M, Feng P, van GG, Devkota B, Lagerstedt I, 
Ludtke SJ, Newman RH, Oldfield TJ, Rees I, Sahni G, Sala R, Velankar S, Warren J, Westbrook 
JD, Henrick K, Kleywegt GJ, Berman HM, Chiu W. EMDataBank.org: unified data resource for 
CryoEM. Nucleic Acids Res. 2011; 39:D456–D464. [PubMed: 20935055] 

37. Blankenfeldt W, Thoma NH, Wray JS, Gautel M, Schlichting I. Crystal structures of human 
cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment. 
Proc. Natl. Acad. Sci. U. S. A. 2006; 103:17713–17717. [PubMed: 17095604] 

38. Zhu J, Sun Y, Zhao FQ, Yu J, Craig R, Hu S. Analysis of tarantula skeletal muscle protein 
sequences and identification of transcriptional isoforms. BMC. Genomics. 2009; 10:117. 
[PubMed: 19298669] 

39. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. 
2005; 33:D34–D38. [PubMed: 15608212] 

40. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43:D204–D212. [PubMed: 
25348405] 

41. Uyeda TQ, Ruppel KM, Spudich JA. Enzymatic activities correlate with chimaeric substitutions at 
the actin-binding face of myosin. Nature. 1994; 368:567–569. [PubMed: 8139694] 

42. Rovner AS. A long, weakly charged actin-binding loop is required for phosphorylation-dependent 
regulation of smooth muscle myosin. J. Biol. Chem. 1998; 273:27939–27944. [PubMed: 9774407] 

43. Murphy CT, Spudich JA. Variable surface loops and myosin activity: accessories to a motor. J 
Muscle Res. Cell Motil. 2000; 21:139–151. [PubMed: 10961838] 

44. Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H, Westbrook J. The Protein Data 
Bank and the challenge of structural genomics. Nat. Struct. Biol. 2000; 7(Suppl):957–959. 
[PubMed: 11103999] 

45. Yang S, Zhao FQ, Sulbarán G, Woodhead JL, Alamo L, Pinto A, Padrón R, Craig R. Improved 
imaging, 3D reconstruction and homology modelling of tarantula thick filaments. Biophys. J. 
2015:589a.

46. Zoghbi ME, Woodhead JL, Craig R, Padrón R. Helical order in tarantula thick filaments requires 
the "closed" conformation of the myosin head. J. Mol. Biol. 2004; 342:1223–1236. [PubMed: 
15351647] 

47. Xu S, Offer G, Gu J, White HD, Yu LC. Temperature and ligand dependence of conformation and 
helical order in myosin filaments. Biochemistry. 2003; 42:390–401. [PubMed: 12525166] 

48. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, 
Winkelmann DA, Wesenberg G, Holden HM. Three-dimensional structure of myosin 
subfragment-1: a molecular motor. Science. 1993; 261:50–58. [PubMed: 8316857] 

49. O'Neall-Hennessey E, Reshetnikova L, Senthil Kumar VS, Robinson H, Szent-Gyorgyi AG, Cohen 
C. Purification, crystallization and preliminary X-ray crystallographic analysis of squid heavy 
meromyosin. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 2013; 69:248–252.

50. Yang S, Woodhead JL, Zhao FQ, Sulbaran G, Craig R. An approach to improve the resolution of 
helical filaments with a large axial rise and flexible subunits. J. Struct. Biol. 2015

51. Miller MS, Soto-Adames FN, Braddock JM, Wang JM, Robbins J, Vigoreaux JO, Maughan DW. 
Phylogenic and functional analysis of the myosin light chain amino terminal extensions. J. Muscle 
Res. Cell Motil. 2007; 28:442.

Alamo et al. Page 24

J Mol Biol. Author manuscript; available in PMC 2017 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



52. Maughan DW, Miller MS, Soto-Adames FN, Wang Y, Robbins J, Vigoreaux JO. Phylogenic and 
functional analysis of the myosin light chain amino terminal extensions. Biophys. J. 2008; 94:306–
307. [PubMed: 17827239] 

53. Crowther RA, Padrón R, Craig R. Arrangement of the heads of myosin in relaxed thick filaments 
from tarantula muscle. J. Mol. Biol. 1985; 184:429–439. [PubMed: 4046022] 

54. Liu J, Taylor DW, Krementsova EB, Trybus KM, Taylor KA. Three-dimensional structure of the 
myosin V inhibited state by cryoelectron tomography. Nature. 2006; 442:208–211. [PubMed: 
16625208] 

55. Geeves MA, Fedorov R, Manstein DJ. Molecular mechanism of actomyosin-based motility. Cell 
Mol. Life Sci. 2005; 62:1462–1477. [PubMed: 15924264] 

56. Lorenz M, Holmes KC. The actin-myosin interface. Proc. Natl. Acad. Sci. U. S. A. 2010; 
107:12529–12534. [PubMed: 20616041] 

57. Craig R, Woodhead JL. Structure and function of myosin filaments. Curr. Opin. Struct. Biol. 2006; 
16:204–212. [PubMed: 16563742] 

58. Padrón R, Alamo L. Review: The use of negative staining and cryo-electron microscopy to 
understand the molecular mechanism of myosin-linked regulation of striated muscle contraction. 
Acta Microscopica. 2004; 13:14–29.

59. Burgess SA, Yu S, Walker ML, Hawkins RJ, Chalovich JM, Knight PJ. Structures of smooth 
muscle myosin and heavy meromyosin in the folded, shutdown state. J. Mol. Biol. 2007; 
372:1165–1178. [PubMed: 17707861] 

60. Linari M, Brunello E, Reconditi M, Fusi L, Caremani M, Narayanan T, Piazzesi G, Lombardi V, 
Irving M. Force generation by skeletal muscle is controlled by mechanosensing in myosin 
filaments. Nature. 2015

61. Trybus KM, Freyzon Y, Faust LZ, Sweeney HL. Spare the rod, spoil the regulation: necessity for a 
myosin rod. Proc. Natl. Acad. Sci. U. S. A. 1997; 94:48–52. [PubMed: 8990159] 

62. Craig R, Padrón R, Kendrick-Jones J. Structural changes accompanying phosphorylation of 
tarantula muscle myosin filaments. J. Cell Biol. 1987; 105:1319–1327. [PubMed: 2958483] 

63. Padrón R, Pante N, Sosa H, Kendrick-Jones J. X-ray diffraction study of the structural changes 
accompanying phosphorylation of tarantula muscle. J. Muscle Res. Cell Motil. 1991; 12:235–241. 
[PubMed: 1874965] 

64. Ravaux J, Hassanin A, Deutsch J, Gaill F, Markmann-Mulisch U. Sequence analysis of the myosin 
regulatory light chain gene of the vestimentiferan Riftia pachyptila. Gene. 2001; 263:141–149. 
[PubMed: 11223252] 

65. Wilson C, Naber N, Pate E, Cooke R. The Myosin inhibitor blebbistatin stabilizes the super-
relaxed state in skeletal muscle. Biophys. J. 2014; 107:1637–1646. [PubMed: 25296316] 

66. Colson BA, Petersen KJ, Collins BC, Lowe DA, Thomas DD. The myosin super-relaxed state is 
disrupted by estradiol deficiency. Biochem. Biophys. Res. Commun. 2015; 456:151–155. 
[PubMed: 25446114] 

67. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ. Dissecting 
temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science. 2003; 299:1743–
1747. [PubMed: 12637748] 

68. Zhao FQ, Padron R, Craig R. Blebbistatin stabilizes the helical order of myosin filaments by 
promoting the switch 2 closed state. Biophys. J. 2008; 95:3322–3329. [PubMed: 18599626] 

69. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF 
Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 
25:1605–1612. [PubMed: 15264254] 

70. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 
14:33–38. [PubMed: 8744570] 

71. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, 
Varadarajan KSK. NAMD2: Greater Scalability for Parallel Molecular Dynamics. J. Comput. 
Phys. 1999; 151:283–312.

72. Brünger, AT. X-PLOR Version 3.1. A system for X-ray Crystallography and NMR. Yale University 
Press; 1992. 

Alamo et al. Page 25

J Mol Biol. Author manuscript; available in PMC 2017 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



73. Zhang L, Hermans J. Hydrophilicity of cavities in proteins. Proteins. 1996; 24:433–438. [PubMed: 
9162944] 

74. Wriggers W, Chacon P. Modeling tricks and fitting techniques for multiresolution structures. 
Structure. 2001; 9:779–788. [PubMed: 11566128] 

75. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple 
sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25:1189–1191. 
[PubMed: 19151095] 

76. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, 
Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X 
version 2.0. Bioinformatics. 2007; 23:2947–2948. [PubMed: 17846036] 

77. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A. Accurate SAXS profile computation and 
its assessment by contrast variation experiments. Biophys. J. 2013; 105:962–974. [PubMed: 
23972848] 

78. Svergun D, Barberato C, Koch MHJ. CRYSOL - A program to evaluate x-ray solution scattering of 
biological macromolecules from atomic coordinates. J. Appl. Cryst. 1995; 28:768–773.

79. Dominguez R, Freyzon Y, Trybus KM, Cohen C. Crystal structure of a vertebrate smooth muscle 
myosin motor domain and its complex with the essential light chain: visualization of the pre-power 
stroke state. Cell. 1998; 94:559–571. [PubMed: 9741621] 

Alamo et al. Page 26

J Mol Biol. Author manuscript; available in PMC 2017 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• An atomic model of two heavy meromyosin interacting-heads motifs (IHM) is 

achieved

• Conserved intramolecular interactions suggests IHM presence across animal 

species

• These interactions and IHM model explains the structural origin of super-

relaxation

• The super-relaxed state should also be conserved across animal species
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Fig. 1. 
Wide-eye stereo pair of the longitudinal view of the 3D reconstruction of the frozen-

hydrated tarantula thick filament, filtered to 2-nm resolution (EMD-1950)23 and showing 

four helical tracks of interacting-heads motifs (IHMs; blue), twelve myosin subfilaments 

(gray) and the paramyosin core (orange). The 3D map segment shows four 14.5-nm crowns, 

each of which has four IHMs. The quasi-atomic model PDB 3JBH (formed by two IHMs), 

which is shown as spheres in the right helix, was flexibly fitted to the 3D map (see Materials 

and Methods). The myosin heavy chain (MHC) of the blocked head (BH) and free head 

(FH) are shown in green and blue. The two myosin essential light chains (ELC) are in 

magenta (FH) or orange (BH). The two myosin regulatory light chains (RLC) are in red 

(FH) or yellow (BH). Bar: 14.5 nm.
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Fig. 2. 
Wide-eye stereo pairs of the 2-nm resolution 3D reconstruction of frozen-hydrated relaxed 

thick filament of tarantula (EMD-1950),23 shown in grey, with the flexibly fitted quasi-

atomic model PDB 3JBH, as viewed from the front (a) or back (b) of the filament surface. 

The model includes the densities where several loops are located in the blocked head region 

of interactions “b” and “c” (see Materials and Methods). The MHC in PDB 3JBH shows six 

surface loops (2, H, CM, 3, C, and I) that are involved in the interactions. Also, the ELC in 

the PDB 3JBH model shows the extra two amino acids that are missing in the chicken ELC 
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sequence. In (b), the intramolecular interactions are: “a” (FH MD loop 2–S2), “d” (FH MD–

BH MD), “e” (FH ELC–BH MD), “f” (S2–BH MD) and “g” (S2–BH ELC). The 

intermolecular interactions are: “b” (BH RLC–FH MD) and “c” (BH ELC–FH MD), which 

are established with the adjacent IHM in the filament, and “h,” which occurs between the 

blocked head SH3 domain and a neighbor myosin S2 (shown as a 2-nm pink cylinder). Each 

of these interactions is shown in Figs. 6 and 7. MD: motor domain of the myosin head. See 

legend of Fig. 1. Bar: 50 Å.
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Fig. 3. 
(a) Wide-eye stereo pairs of three adjacent IHMs forming part of a helix. The intermolecular 

interactions “b” and “c” are shown with the RLC and ELC of the neighboring blocked head 

regulatory domain, and interaction “h” is shown with the neighboring S2. The surface of the 

3D map corresponding to the IHM in the center is highlighted in yellow. For clarity, the S2 

of the model of the two left IHMs has been extended as coiled-coil α-helices (pink). Since 

the subfilament structure is not known, the two neighboring subfilaments are depicted as 

cylinders with diameters of about 2.2 nm. (b) Wide-eye stereo pairs of a rotated 90° view of 
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(a), showing that the model of the IHMs is present only in the slice between the two blue 

dotted lines in (a), causing the neighboring “h” interaction to be far and the “i” and “j” to be 

closer to the reader. In a relaxed state, the S2 of the IHM emerges from the top with a slight 

angle of 6°, causing the helix of IHMs to “float,” separated from the backbone surface by 

about 2 nm. The blocked head is the only part of the IHM that is in contact with the 

backbone and is covalently connected to it via the S2 and electrostatically connected by 

three “anchoring” intermolecular interactions: “h” (blocked head SH3 domain) with the 

extended S2 of an adjacent tail and “i” (blocked head relay/converter) and “j” (blocked head 

ELC) with the neighboring S2 (see Fig. 7). For a structure color code, see the legend of Fig. 

1.
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Fig. 4. 
Wide-eye stereo pairs of a comparison of the blocked head (green) and free head (blue) of 

the tarantula IHM PDB 3JBH (Figs. 1–2) with the crystal structures of the pre-power stroke 

closed PDB 1BR179 (yellow) and transition PDB 1DFL16 (red). The ELC and RLC were 

removed to highlight their lever arms, which are in the same plane but have different angles.
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Fig. 5. 
Small angle X-ray solution scattering (SAXS). Integrated scattering intensity (I in arbitrary 

units) is given as a function of momentum transfer, q = 4π sin(θ)/λ, with a scattering angle 

of 2θ and a wavelength of λ. The comparison of model-based (PDB 3DTP and 3JBH) and 

measured squid HMM scattering profiles15 in (a) shows that the models cannot be 

distinguished based on the scattering data that is currently available. The predicted scattering 

profiles are based on electron microscopy-derived striated tarantula muscle (PDB 3DTP23, 

Alamo et al. Page 34

J Mol Biol. Author manuscript; available in PMC 2017 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PDB 3JBH; Fig. 1) IHM models. Calculated wide-angle scattering data (b) confirms that the 

models do not significantly differ in the wide angle X-ray solution scattering region.
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Fig. 6. 
Wide-eye stereo pairs showing the general location of intramolecular interactions (a) “a” and 

“f,” (b) “e” and “g,” and (c) “d,” formed by two sub-interactions, “d.1” and “d.2.” (a) and (c) 

have the same viewpoint as Fig. 2a and (b) has the viewpoint as Fig. 2b.
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Fig. 7. 
Wide-eye stereo pairs of (a) intermolecular interactions “c” and “b” and (b) the anchoring 

intermolecular interactions “h”, “i,” and “j”. For clarity, the neighboring S2 has been 

extended from the IHM S2 as a coiled-coil α-helix (pink). The neighboring subfilaments, 

which have unknown structures, are depicted as cylinders with diameters of about 2.2 nm. 

(c) Stereo pairs of (b) as viewed transversally from the top, showing interactions “h,” “i,” 

and “j.”
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Fig. 8. 
Sequential formation, disruption, and reformation of intra- and intermolecular interactions 

(“interactions table”) in the tarantula IHM PDB 3JBH model upon relaxation (C), activation 

(C to F, green arrows) and relaxation after activation (F to C, red arrows) according to the 

cooperative phosphorylation activation (CPA) mechanism (C–F) proposed for tarantula thick 

filaments24–27 allow explanation of the structural basis of the ATP turnover rates detected in 

tarantula relaxed and Ca2+-activated states.22 (A) Model of a short segment of a precursor 

tarantula thick filament showing three precursor IHMs with disordered heads and 

unphosphorylated Ser35 (black circles). The heads do not make any inter- or intramolecular 

interactions. (B) Only one head of each precursor IHM in the pre-power stroke closed state 

(Fig. 4, green) can establish the three anchoring intermolecular interactions and dock them 

as blocked heads (light green) to the backbone. The free head (light blue), also in the pre-

power stroke closed conformation (Fig. 4, blue), can establish intramolecular interactions 

with the docked blocked head, which are needed to assemble the IHM. (C) In a relaxed state, 

these precursor IHMs become fully functional after half the Ser35 are monophosphorylated 

by a temporarily activated protein kinase C (PKC) (brown arrow). PKC can only 

phosphorylate the fully exposed Ser35 of the free heads (blue heads), as the Ser35 of the 

blocked heads (green heads) are not accessible.23, 24 Ser35 monophosphorylation of the free 

heads allows the free heads to sway away and back by Brownian motion (“swaying” heads) 

by breaking and reforming the intramolecular interactions (denoted by “±” in the 

“interactions table” and by dotted curved arrows in the illustration). (C–F) The tarantula 

CPA mechanism proposed for tarantula thick filament.24, 25 The interactions table shows 

how the intra- and intermolecular interactions established in the relaxed state (C) are 
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progressively removed (denoted by crossing them out) upon activation (D–F), ending in a 

disordered array (F) with fewer interactions. The table also shows how these interactions are 

progressively reformed from this final disordered array (F) to a newly achieved ordered 

relaxed array (C). The IHM model and CPA mechanism allow explanation of the structural 

origin of the very slow (>1800 s), slow (250–300 s) and fast (<30 s) ATP turnover rates 

detected in tarantula striated muscle22 in a relaxed state: (1) The very slow rate is associated 

with unphosphorylated docked blocked heads in the IHM (green heads with motor domains 

labeled as “VS”) and the few unphosphorylated docked free heads in the IHM (not shown); 

(2) the slow rate is associated with the Ser35 monophosphorylated free heads (blue heads 

with motor domains labeled as “S”); and (3) the fast rate is associated with the Ser35 

monophosphorylated swaying free heads that are undocked from the IHM (blue heads with 

motor domains labeled as “F”). Therefore, the docked (helically ordered) unphosphorylated 

blocked heads and the few free heads with a very slow rate, as well as the transiently docked 

Ser35 monophosphorylated free heads with a slow rate, are responsible for super-relaxation 

(SRX) in tarantulas,22 while the remaining (disordered) swaying free heads that move 

according to Brownian motion and are undocked from the IHM exhibit the fast rate detected 

in the disordered relaxed state.22 In contrast, the very fast (<0.1 s) rate detected in the Ca2+-

activated state in tarantula striated muscle22 is associated with Ser35 monophosphorylated 

free heads (blue heads with motor domains labeled as “VF”), Ser45 monophosphorylated 

blocked heads (green heads with motor domains labeled as “VF”), and biphosphorylated 

free heads (blue heads with motor domains labeled as “VF”) that are bound to actin (yellow 

spheres) on the activated thin filament. FH: free head, BH: blocked head.
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