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ABSTRACT

Swift and Greenberg (2012) observed that variables influencing the decision to 

drop out fluctuate according to the primary presenting problem, the amount of structure 

in therapy, the length of treatment, and the clinical setting. Due to these reports, 

researchers may focus on predictors of premature termination (PT) in treatment settings 

where the unique situational characteristics may have an idiosyncratic influence on the 

decision to withdraw from services (Phillips, 1985; Swift & Greenberg, 2012). The 

purpose of this exploratory study was to examine client characteristics that impact 

dropout in University Based Clinics (UBC). Results from the logistic regression analysis 

indicated higher levels of social anxiety and lower levels of pretherapy functional 

impairment reduced the probability of PT. Findings from the Classification and 

Regression Tree (CART) analysis suggested higher levels o f hostility and generalized 

anxiety may predict an increase the dropout rate even when accounting for the protective 

influence of social anxiety and higher levels of pretherapy functioning. Lastly, results 

from the Survival Analysis suggested the risk of PT was lowest during the early stages o f 

counseling and steadily increased for clients who remained in services. These findings 

indicate that higher levels o f social anxiety and lower levels o f pretherapy functioning 

may partially attenuate the risk of PT as clients progress along the episode of care.

Results from this analysis were triangulated against the existing PT literature and 

implications for teaching, practice, and future research are discussed.

Keywords: Premature Termination, Unilateral Termination, University Based Clinic, 

Symptom Severity, Functional Impairment
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CHAPTER I 

INTRODUCTION

Background

Premature Termination (PT) has been referred to as the foremost problem facing 

mental health providers and researchers (Pekarik, 1985b; Phillips, 1985). PT is also 

thought to undermine the effectiveness of psychotherapy (Gottschalk, Mayerson, and 

Gottleib, 1967; Ogrodniczuk, Joyce, and Piper, 2005), contribute to inflated 

administrative costs (Baekeland and Lundwall, 1975), negatively impact the ability to 

interpret and generalize research findings (Beckham, 1992; Harris, 1998; Ogrodniczuk, 

Joyce, and Piper, 2005), and negatively affects the confidence of therapists (Barrett, Chua, 

Crits-Christoph, Gibbons, Casiano, & Thompson, 2008). Despite years of research, the 

professional literature has been unable to establish clear correlates and predictors of PT. 

(Coming and Malofeeva, 2004, Coming, Malofeeva, & Bucchianeri, 2007; Barrett et al, 

2008). For those variables that do emerge during data analysis, follow-up studies often 

fail to replicate research findings (Garfield, 1994, Harris, 1998). Swift and Greenberg 

(2012) reported premature termination (PT) in counseling may be affected by factors 

such as the treatment setting, how researchers define dropout, the amount o f structure in 

therapy, and the type of treatments offered. Currently, there is literature examining which 

predictors of PT are unique to various mental health treatment settings (i.e. inpatient 

treatment programs, mental health centers, hospitals, etc.). Also, research activity has 

been focused on which correlates o f PT can be associated with a variety o f presenting 

problems (i.e. eating disorders, substance abuse, male batterers, depression, personality 

disorders, etc.). However, little research appears to have exclusively examined predictors



of PT among college students receiving individual services within university counseling 

centers.

Hyun, Quinn, Madon, & Lustig, (2006) reported that college students represent a 

diverse clientele with unique social and psychological characteristics. Mennicke, Lent, 

and Burgoyne (1988), suggested the students seeking services in college counseling 

centers may represent a unique group that would benefit from independent investigation 

outside o f the broader PT literature. Also, factors contributing to PT are, at least, partially 

moderated by the presenting problem, and the treatment setting (Swift and Greenberg, 

2012). According to epidemiological findings from the American College Health 

Association (ACHA, 2010), college students face various factors that pose challenges to 

academic success. Some of the commonly observed challenges include: relationship 

difficulties (11%), depression (11.7%), concern for a troubled friend or family member 

(11.9%), anxiety (18.3%), and stress (27.4%). Additionally, the incidence rates of mental 

health issues observed on college campuses include: attempted suicide (1.3%), self-injury 

(5.3%), suicidal ideation (6.2%), debilitating depression (30.7%), overwhelming anger 

(38.2%), feelings of hopelessness (45%), loneliness (56.4%), and sadness (60.7%; ACHA, 

2010). A growing debated within the literature concerns the question, are counseling 

centers observing an increasing number of students with more severe psychological 

problems (Benton, Robertson, Tseng, Newton, and Benton, 2003; Hoeppner, Hoeppner, 

and Campbell, 2009). Researchers have used a variety of strategies to measure these 

trends.

Historically, Stone and Archer (1990) predicted that the mental health needs 

among college students would steadily rise. Such reported increases have even received
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attention in the national media, suggesting there is a growing concern for the state of 

mental health services on college campuses (Shea, 2003). Although the national media 

reports that the increase in the mental health needs facing college students is an 

indisputable truth, few firm conclusions can be drawn from the discrepant evidence 

available in the empirical literature (Heppner, Kivlighan, Good, & Roehlke, 1994; 

Sharkin, 1997, Benton, Robertson, Tseng, Newton, and Benton, 2003; Sharkin, 2003, 

Hoeppner, Hoeppner, and Campbell, 2009).

The Counseling Center Assessment for Psychological Symptoms -  34 (CCAPS- 

34) is a new and emerging instrument. Initially conceived by an expert panel of clinical 

personnel, the CCAPS-34 provides a brief measurement tool targeting symptoms and 

presenting problems that most commonly affect students in university settings (Locke et 

al, 2009). The CCAPS-34 was developed to create a symptom checklist that provides 

relevant diagnostic information to clinic staff while collecting data that allows 

researchers to monitor trends in mental health service utilization. Because of its 

widespread deployment in counseling centers across the nation, unpacking the versatile 

measurement properties for CCAPS-34, might allow clinicians to further enhance their 

ability to differentiate clients who run the risk of prematurely terminating mental health 

services across the during the episode of care.

First, it is well documented that little convergence has emerged in the literature 

consistently identifying correlates and/or predictors of PT (Baekeland & Lundwall, 1975; 

Garfield, 1994; Coming & Malofeeva, 2004). Some authors suggest that without a 

standardized definition of PT, researchers will not be able to replicate results or 

synthesize their findings across studies (Garfield, 1994; Hatchett & Park 2003). Second,



some researchers argue that the cross sectional analytic approaches, often used in the PT 

literature, are ill suited for measuring a dynamic constmct that varies as treatment 

progresses (Coming & Malofeeva, 2004). Lastly, there is a dearth of literature examining 

the specific correlates and predictors of PT unique among clients receiving services in 

University Counseling Clinics (UBC). As mentioned by Bados, Balaguer, and Saldana, 

(2007), correlates and predictors of PT may vary according to the primary presenting 

problem, the treatment setting, and the treatment type (i.e. Cognitive Behavioral Therapy; 

Psychoanalytic; etc.). For example, among clients receiving inpatient CBT treatment for 

Anorexia Nervosa, Binge-Purge (ANB) type, childhood sexual abuse, maturity fears, and 

low self-esteem have emerged in the literature as consistent predictors of early treatment 

withdrawal (Carter, Bewell, Blackmore, & Woodside, 2006; Halmi et al, 2005; Tasca,, 

Taylor, Bissada, Ritchie, & Balfour; 2004; Woodside, Carter, & Blackmore, 2004; Zeeck, 

Hartmann, Bucholz, C., & Herzog, 2005). In contrast, predictors of PT in offender 

treatment programs have emerged as a complex menu of demographic characteristics, 

indicators of criminality (i.e. presence of psychopathy, Antisocial Personality Disorder, 

prior violent offenses, etc.), factors related to treatment responsiveness (i.e. denial, low 

levels of treatment motivation, poor treatment engagement), and psychological variables 

(i.e. below average intelligence, presence of personality diagnoses, etc.; Olver, Stockdale, 

& Wormith, 2011). To date, valid and reliable predictors of PT in UBCs have yet to be 

identified (Mennicke, Lent, & Burgoyne, 1988).

Because of these concerns, this investigation explored how variables identified in 

the PT literature and clinical variables measured by the CCAPS-34 influenced early 

treatment withdrawal. This observational study examined archival data collected from
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college students receiving services in a UBC. First, this investigation used techniques 

from the data mining literature to model the capability and accuracy of these variables in 

predicting termination status. Then this study, modeled fluctuations in the risk o f PT as 

clients progressed along the Episode of Care (EOC)

Problem Statement

After years of research investigators have been unable to derive firm conclusions 

from the discrepant evidence that has emerged. To date, the literature has been saturated 

with methodological limitations, inconsistent definitions, and inadequate analytic 

techniques. Moreover, the PT research also lacks a firm theoretical foundation to drive 

future research activity. Finally, the stream of research investigating PT in University 

Counseling Centers remains narrow, with few consistent predictors emerging from the 

existing analyses. The purpose of this investigation was to model pretherapy client 

variables that predicted dropout, and how the risk o f PT varied as clients progressed in 

their treatment.

Terms

Binary Logistic Regression (LR)

Is a multivariate approach to data analysis where the dependent variable 

comprises two binary categories. Unlike ordinary least squares (OLS) regression, binary 

LR relies on maximum likelihood parameter estimation to model the influence of the 

predictors on the outcome variables (Field, 2009). This analysis relied on propensity 

scores to estimate the sensitivity and specificity of the model in predicting completion or 

dropout.

Classification and Regression Trees (CART)
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-Classification and regression tree (CART) are relatively new methods that offer 

an alternative approach for differentiating between groups (Finch and Schneider, 2006). 

CART modeling is an exploratory multivariate technique drawn from the data mining 

literature. It is used to identify the relationships between variables and assists researchers 

in deriving decision-making algorithms (Fawcett, 2006; Kieman et al, 2002).

College/University Counseling Center

A program embedded within an accredited institution o f higher education seeking 

to provide preventive and remedial services to students and faculty presenting with a 

broad range of mental health needs. Services include personal counseling, career 

counseling, vocational guidance, psychiatric services, and psychological testing 

(Whiteley, Mahaffey, and Geer, 1987).

Episode of Care (EOC)

Time-limited ( 12 sessions) mental health services provided to a client by the 

university counseling and psychological services center. The episode of care refers to the 

client’s longitudinal progression in treatment; beginning with the initial intake evaluation 

and ending with the final counseling appointment (Hamilton, Moore, Crane, & Payne,

2011; Wampold & Brown, 2005)

Missed-last session criteria

Clients were classified as treatment dropouts if  they failed to attend their last 

scheduled appointment or failed to schedule a follow-up session before achieving the 

treatment goals mutually agreed upon between the client and counselor.

Premature Termination (PT)
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A client-initiated withdrawal from therapy prior to achieving the treatment goals 

mutually agreed upon between the client and counselor (this term is used interchangeably 

with early dropout, unilateral termination, early withdrawal, attrition, and early 

termination).

Receiver Operating Characteristic (ROC) Plot

The ROC plot is, “a technique for visualizing, organizing, and selecting classifiers 

based on their performance (Fawcett, 2006 p. 861).” The ROC curve has been used to 

graph the performance of medical diagnostic tests and statistic models in correctly 

detecting group membership.

Survival Analysis

This investigation conducted a Discrete-Time Cox Proportional Hazards (Cox 

PH) Regression analysis. This analytic strategy falls under a family of statistical 

modeling techniques called survival analysis. Sometimes referred to as an event history 

analysis, failure time analysis, hazard analysis, transition analysis, and duration analysis. 

This data analytic method predicts the probability or risk that an event (a qualitative 

change) will occur at a specific point in time (i.e. death). This class of techniques treats 

the dependent variable as a measure of the rate of event occurrence (Allison, 2010).

Treatment Completion

Occurs when client and counselor terminate the counseling relationship after 

achieving the treatment goals mutually agreed upon between the therapist and client 

(used interchangeably with mutual termination).

Research Questions
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1. What combination o f variables assessed by the CCAPS-34 and identified in the 

PT literature best differentiate between completers and dropouts among clients 

seeking services in a UBC?

H i: In a UBC sample, completers and dropouts will not differ along the 

dimensions measured by the CCCAPS-34 or outlined in the PT literature.

2. Do variables measured by the CCAPS-34 and identified in the PT literature 

increase the risk of PT along the episode of care among clients seeking services in 

a UBC?

H2 : The covariates measured by the CCAPS-34 and identified in the PT literature 

will not increase the hazard of PT as the client progresses along the EOC 

Theoretical Perspectives

As many authors have noted, the PT literature is saturated with discrepant 

findings, unclear operational definitions, and inadequate statistical analyses (Barrett et al, 

2008; Coming and Malofeeva, 2004; Garfield, 1994; Hatchett & Park, 2003; Swift, 

Callahan, & Levin, 2009; Pekarik, 1985; Wierzbicki & Pekarik, 1993). Despite years of 

research into PT, investigators have been unable to synthesize the existing evidence into a 

theoretical framework capable of explaining and predicting PT. To date, three models 

have been used to underpin the PT literature (Barrett et al, 2008): Andersen’s Behavioral 

Model of Health Services Use (BMHSU; Andersen, 1968/1995), The Barriers to 

Treatment Model, 1997 (Kazdin, Holland, and Crowley, 1997; Kazdin and Wassell,

2000), and the Delay Discounting Model (Swift and Callahan, 2010). Additionally, five 

models have emerged in the literature describing how clients progress in treatment. These 

include the Decay Curve (Phillips, 1985), the Dose Effect Model of Psychotherapy
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(Howard, Kopta, Krause, and Orlinsky, 1986), the Phase-Model of Psychotherapy 

Outcome (Howard, Luger, Maling, and Martinovich, 1993), and the good enough level 

model (Barkham et al, 1996).

This research project relied upon the Decay/Attrtion Curve (Phillips, 1985/1987), 

the Phase-Model of Psychotherapy Outcome (Howard, Luger, Maling, and Martinovich, 

1993), and the good enough level model (GEL; Barkham et al, 1996). This section will 

review each of these models and discuss how they were used to conceptualize PT.

Andersen’s behavioral model of health services use.

Originally, introduced during the 1960’s to predict and explain the utilization of 

health services, the behavioral model provides a flexible structure for understanding the 

complex system of variables influencing a clients’ decision to seek health care services 

(Andersen, 1968/1995). According to Andersen (1995), the decision to seek healthcare 

depends on three general domains: primary determinants of health behavior, health 

behavior, and health outcomes. Primary determinants of health behavior represent 

individual and environmental characteristics that influence one’s decision to pursue 

healthcare services. Some examples of these determinants include: gender, age, SES, and 

social attitudes toward healthcare treatment. Health behavior characteristics refer to 

personal health practices and how clients use healthcare services. Health outcomes 

represent the quality of healthcare services available to clients. Factors that influence 

health outcomes include public confidence in healthcare services, access to services, 

customer satisfaction, and client improvement. For this proposed research study, the 

BMHSU provides the foundation for conceptualizing how different variables influence 

the decision to prematurely withdraw from counseling services. Under this model, the
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decision to prematurely terminate services is a function of complex dynamics involving 

individual attitudes, social norms, and the quality o f health care services available to 

clients.

The phase-model of psychotherapy outcome.

Howard, Luger, Maling, and Martinovich (1993) introduced the phase-model of 

psychotherapy outcome. This model describe clients’ progress in therapy as moving 

through a series o f three sequential phases; remoralization, remediation, and 

rehabilitation. During the remoralization phase, clients may interpret their situation as 

helpless and perceive themselves as powerless to improve their negative emotional state. 

Progression through this phase can occur quickly as the client begins to restore their self- 

efficacy by reactivating their existing coping skills. During the remediation phase therapy 

focuses on the development and implementation of new coping skills to reduce the 

impact of maladaptive symptoms. Finally, during the rehabilitation stage clients continue 

in treatment to address pattemistic behaviors or beliefs that prevent the client’s 

attainment of life goals.

The phase-model of psychotherapy outcome provides conceptual tool regarding 

therapy as a dynamic process. As clients progress in treatment, different phases of 

treatment are associated with a unique set o f objectives. For this proposed research study, 

the phase-model will be used to conceptualize dropout as occurring within different 

phases along the episode of care (EOC). Clients who withdraw from services during the 

early phases of treatment may be influenced by different factors than those who withdraw 

during the later phases of treatment. This model provides justification for examining how
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correlates and predictors of PT influence termination rates differently as clients progress 

in treatment.

The good enough level model.

Barkham et al (1996) observed that the improvement rates remained stable until 

treatment progress reached an observed cutoff point, after which the increment appeared 

to decelerate. Barkham et al (1996) referred this cutoff point as the “good enough level.” 

The good enough level (GEL) model hypothesizes that improvement rates are a function 

o f multiple influences that vary across clients. After the GEL is reached, the rate of 

improvement may change due to the influence of client, problem, or treatment 

characteristics. This model holds particular utility for clinicians and administrators, as it 

emphasizes that improvement rates are variable across clients, clinicians, and presenting 

problems (Baldwin et al, 2009).

The GEL model suggests that the rate of improvement remains stable until a 

cutoff point is reached. This observation suggests that clients who withdraw from 

treatment before reaching the cutoff point may be influenced by different factors than 

those dropout during later phases of treatment. For this research study, the GEL and 

phase-model suggest that correlates and predictors o f PT may not be static indicators that 

remain stable across the EOC. Instead, the decision to withdraw from services may be 

dependent upon a number factors related to personal factors, social characteristics, the 

quality and accessibility of healthcare services, and progress in treatment.

Procedures

This study is observational in nature and relied on convenient sampling 

procedures to examine archival data collected from college students receiving services in
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a UBC. In this program, mental health providers offer time-limited, non-manualized 

counseling services for individuals, groups, and couples. These services are designed to 

provide students with support when facing personal, academic, or career-related issues. 

This researcher analyzed student protected health information (PHI) using a priori 

criteria to determine suitability for participation in the study. This sample was used to 

develop predictor models that explain early treatment withdrawal in UBC’s.

For this investigation the dependent variable under study was treatment status 

(TS). TS represented a binary variable comprised o f two categories: PT or Completed.

PT represented (1) a conscious decision by the client to leave treatment, (2), resulting in 

the discontinuation of counseling against the therapist’s recommendations, and (3) 

divergent from the originally agreed upon duration of treatment. PT was operationalized 

as a client-initiated, withdrawal from therapy prior to achieving the treatment goals 

mutually agreed upon between the client and counselor (Baekeland & Lundwall, 1975; 

Wierzbicki & Pekarik, 1993; Garfield, 1978/1994; Hatchett and Parks, 2003,

Ogrodniczuk, Joyce, and Piper, 2005; Coming, Malofeeva & Bucchianeri, 2007). 

Completion of treatment was defined by one of the following criteria: (1) Client and 

counselor mutually agreed that treatment goals had been completed. (2) Client remained 

in counseling until the maximum number of sessions had been reached. (3) Client was 

referred to an external mental health providers following completion of the maximum 12 

sessions. (4) Client and counselor agreed that no further appointments are necessary.

After receiving approval from the Institutional Review Board (IRB), data was 

collected through a hand search of student protected health information (PHI) securely 

maintained by the OCS.
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Data Analysis

Classification and Regression Trees (CART)

Classification and regression tree (CART) methods were used to differentiate 

completers from dropouts. CART modeling is an exploratory multivariate technique 

drawn from the data mining literature. It is used to identify the relationships between 

variables and assists researchers in deriving decision-making algorithms (Fawcett, 2006). 

CART Modeling is also a recursive partitioning technique designed to generate rather 

than test hypothesis (Kieman et al, 2002). CART methods are useful when researchers 

aren’t clear which variables are influencing a dependent variable.

Classification and regression tree (CART) are relatively new methods that offer 

an alternative approach for differentiating between groups (Finch and Schneider, 2006). 

CART modeling is a nonparametric statistic, which uses iterative techniques to divide 

participants into homogenous groups based on the relationships between the IV and DV. 

CART modeling has been successfully applied in DNA sequencing, medicine, genetics, 

epidemiology, and psychological research (Stobl, Malley, and Tutz, 2009).

Binary Logistic Regression (LR)

Binary LR was selected for this analysis because both continuous and categorical 

variables can be included in the model (Henington, 1996). Although computationally 

different, Binary LR has become increasingly popular because it yields similar outputs to 

those produced by OLS regression (Keith, 2006). Like OLS regression, LR is informed 

by the general linear model and measures the relationships between a series o f covariates 

and the target outcome. However, unlike OLS regression, the target outcome in LR is 

categorical and are made of two or more levels. For this analysis, treatment status was the
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target variable, and comprised two levels: dropout or completer. Additionally, multiple 

regression techniques often rely on ordinary least squares estimation. In contrast, because 

the outcome variables are categorical and violate the assumption of normality, LR uses 

maximum likelihood methods to derive parameter estimates (Field, 2009).

Because LR techniques are informed by the general linear model they offer 

different modeling techniques compared to those underlying the Classification and 

regression tree (CART) methods. According to Raubertas, Rodewald, Humiston, and 

Szilagi, (1994), neither technique consistently produces superior estimates of group 

membership in comparison studies. By comparing the predicted group membership 

estimates along an ROC plot, this analysis endeavored to derive a precise model capable 

of predicting group membership for this sample.

Receiver Operating Characteristic (ROC) Analysis

Receiver operating characteristic (ROC) analyses have become popular in the 

health science literature for measuring the accuracy of medical diagnostic tests and relies 

on Signal Detection theory (SDT) to compare the probability o f correctly identifying 

someone with a disease against the tests’ capability of identifying a patient who is healthy. 

(Pintea and Moldovan ,2009). SDT is an analytic technique developed by researchers 

studying psychophysics, cognitive psychology, engineering, and statistics (Link, 1994).

Under this approach, the signal represents a dichotomous outcome variable (i.e. 

Premature Terminator or Treatment completer) and detection refers to the I Vs predicting 

group membership. Signal detection compares predicted estimates of group membership 

based on the statistical model to outcome events observed in the data. The statistical 

package calculates the model’s accuracy in predicting group membership. In order to



interpret the adequacy of a model in distinguishing between groups, a statistic referred to 

as area under the receiver operating characteristic (AUROC) curve is used. An AUROC 

ranging from .5 to .7 is regarded as having low accuracy, from .7 to .9 is considered 

moderately accurate, and > .9 is highly accurate (Steiner and Caimey, 2007). This 

analysis plotted classifier performance in the ROC space using propensity scores. More 

simply, the predicted probability o f dropping out derived from both analytic models was 

compared against the observed values in the dataset (Fawcett, 2006).

Survival Analysis (SA)

SA refers to a family of sophisticated analytic techniques used to model how a 

series of explanatory variables impact the occurrence (conditional probability) of an 

event along an interval of time (Allison, 1984/2010; Kleinbaum & Klein, 2005; Muthen 

& Masyn, 2005; Singer & Willet, 1993; Willett & Singer, 1993).). Given the lack of 

convergence within the PT literature, speculation has emerged that the statistical 

techniques used to measure predictors of early dropout are inadequate as they assume 

variables occur within a single point in time (Coming and Malofeeva, 2004; Muthen & 

Masyn, 2005). Some authors have argued that standard statistical techniques (i.e logistic 

regression, ordinary least squares [OLS] regression, Analysis o f Variance [ANOVA], and 

Analysis of Covariance [ANCOVA]) are ill equipped for analyzing time-dependent 

explanatory variables (i.e. age, weight, income, etc.), potentially leading to biased results 

or a loss of information (Allison, 1984; Willett and Singer, 1994?). As a result, Coming 

and Malofeeva (2004) warned that the PT literature appears to be saturated with distorted 

findings and misleading inferences. Coming and Malofeeva (2004) argued that SA
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techniques may improve the precision of research findings as they provide more 

information about how the target variables influence PT at various points along the EOC.



CHAPTER TWO 

LITERATURE REVIEW

Introduction

This literature review examined, the mental health needs found in college 

counseling centers; presents the various definitions used to operationalize PT to derive a 

reliable and valid procedure for studying this phenomenon; surveyed the broader PT 

research and epidemiological studies to identify crosscutting variables that predict PT 

across a number of treatment settings and presenting problems; discuss the research on - 

predictors o f PT unique to UBCs; examine existing theoretical frameworks used by 

researchers to underpin PT research.

The literature examining PT among clients receiving services in University Based 

Clinics (UBC) remains a developing area of inquiry. Swift and Greenberg (2012) found 

evidence supporting the variability of discontinuation rates across treatment settings, 

client diagnosis, the length of treatment, the amount of structure in therapy, and therapist 

level of experience. More research is needed to identify valid and reliable predictors of 

PT in UBCs (Mennicke, Lent, & Burgoyne, 1988).

Mental Health in College Counseling Centers

The University of Pittsburgh, the American College Counseling Association 

(ACCA), and the International Association of Counseling Services (IACS) have 

collaboratively published the annual National Survey of Counseling Center Directors 

since 1981 (NSCCD; Gallager, 2010). The findings serve as an analogue for mental 

health trends on college campuses. Since 1995, center directors have observed increases 

in the number of severe and/or complex mental health cases treated in their clinics



(Gallagher, 1995; Gallagher, 2000; Gallagher, 2005; Gallagher, 2010). In 2005, it was 

estimated that 42.8% of service recipients were suffering from severe psychological 

symptoms. In 2010, this number increased to 44% with 6.3% of those students requiring 

more complex treatments in order to maintain their enrollment. Counseling center 

directors have also noted increases in crisis issues, psychiatric medication issues, learning 

disabilities, alcohol abuse, illicit drug abuse, self-injury, on-campus sexual assault, eating 

disorders, career-planning issues, and problems related to earlier sexual abuse (Gallagher, 

2010). Limitations exist with this retrospective method as the results embody perceptions 

of college counseling center directors instead of true epidemiological trends. The NSCCD 

is limited to measuring the perceptions of counseling center directors over time. Some 

evidence in the literature suggests the level o f severity in psychological symptoms has 

remained stable on college campuses (Sharkin, 1997; Benton, Robertson, Tseng, Newton, 

and Benton, 2003; Hoeppner, Hoeppner, and Campbell, 2009).

A review of the literature suggests that college students face a number of 

pressures impacting academic performance. According to the National College Health 

Assessment (ACHA, 2000, [n = 16,024]; ACHA, 2005, [n = 54,111]; ACHA, 2010, [n = 

95,712]), students cite a number of stressors that disrupt academic success including: 

stress (28.6%), sleep difficulties (20.4%), anxiety (19.9%), cold/flu (14.8%), depression 

(11.9%), and concern for a troubled friend or family member (10.8%; ACHA, 2011). 

Benton, Robertson, Tseng, Newton, and Benton (2003), analyzed archival data gathered 

over a 13-year period (n=13,257) from a college counseling center housed in a large 

Midwestern University. Results from the analysis noted that patterns o f substance abuse, 

eating disorders, legal problems, and chronic mental illness remained stable during the
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observation period. However, significant increases were observed in abuse (physical, 

sexual, and emotional), anxiety, depression, suicidal ideation, sexual assault, relationship 

problems, stress/anxiety, family issues, physical problems, and personality disorders. 

Sharkin (2003) urged caution when interpreting these findings and recommended that 

researchers need more stringent criteria to classify severe psychological phenomena. He 

highlighted the difficulty with classifying presenting problems as primarily 

developmental, or psychologically disordered. He further argued that researchers should 

reserve the term severity for students who present with diagnosable conditions that 

interfere with academic success. Sharkin concluded that if  Benton et al (2003) had 

classified severity differently, the evidence may have suggested that mental health 

problems were stabilizing rather than increasing (Sharkin, 2003).

Hoeppner, Hoeppner, and Campbell (2009) also researched increased 

psychopathology for college students. Results from their analysis did not indicate that 

college counseling centers are treating students with more severe mental health needs. 

Hoeppner, Hoeppner, and Campbell, analyzed an archival sample of 6,675 students at a 

UBC between 1993 to 2005. The purpose was to analyze trends in service utilization 

over a span >10 years using the criteria recommended by Sharkin (2003), Results from 

their investigation suggested that the need for mental health services among college 

students and the severity of psychopathology had remained stable.

Design limitations for Hoeppner, Hoeppner, and Campbell’s (2009) study mirror 

those reported in Sharkin’s (2004) review of Benton et al (2003). Although the data 

collection period was extended past 10 years, investigators did not offer specific 

parameters for determining severe psychopathology, and limited external validity by
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relying on archival data gathered from a single UBC (Hoeppner, Hoeppner, and 

Campbell, 2009).

It remains unclear if UBC’s have observed significant increases in the number of 

clients reporting mental health concerns, relationship problems, or psychopathology. It is 

clear from the evidence that college students continue to face pressures impacting their 

mental health and disrupting academic success. Clear evidence has yet to emerge 

definitively supporting an increase in the severity o f symptoms and/or the prevalence of 

complex mental health diagnoses. The research described in this section drew from large, 

longitudinal datasets, but those represent a small subset o f the larger population. Further 

research with nationally representative samples is needed to uncover true epidemiologic 

trends.

Counseling Center Assessment of Psychological Symptoms (CCAPS-34/CCAPS-62)

The Center for Collegiate Mental Health was established in 2005 as a large-scale 

national research initiative to investigate the mental health needs of college students 

across the nation (CCMH, 2010). Their mission was to advance the understanding of 

mental health in the college setting, and to improve the provision of mental health 

services. Three instruments were created to gather epidemiological and clinical data; the 

Standardized Data Set (SDS), the CCAPS-62, and its shorter version, the CCAPS 34.

The CCAPS is a data collection mechanism for conducting large-scale research 

while also serving as a clinically relevant psychometric tool for practicing clinicians. The 

test developers designed an instrument to ensure administration and scoring could be 

completed without compromising staff resources (CCMH, 2010; Locke et al. 2011). Two 

symptom checklists were created: 1) the CCAPS-62 and 2) the CCAPS-34. Although, the
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CCAPS-62 takes seven to ten minutes to complete, the CCMH began receiving requests 

for a shorter version (CCMH, 2010). The development team used item response theory 

(ERT) techniques to reduce the item pool without compromising information (CCMH, 

2010; Locke et al, 2012). The final version resulted in the CCAPS-34, which measures 

seven subscales: Depression, Eating Concerns, Substance Use, General Anxiety, Hostility, 

Social Anxiety, and Academic Distress.

CCAPS-34

The CCAPS-34 is a self-administered questionnaire that can be completed by 

paper and pencil or through a Titanium Schedule software system. This system operates 

as a web-based networking tool, collecting and aggregating data gathered from all 

participating UBCs. Scoring can be completed by hand, through the Titanium Schedule 

software system, or through a Microsoft Excel scoring program (CCMH, 2010).

Although, the CCAPS-34 is designed to be administered at the beginning and at the end 

of treatment, longitudinal administration throughout the EOC can be used to provide time 

series data (CCMH, 2010; Locke et al, 2010; Locke et al, 2012). Items on the CCAPS-34 

are scored along a 5-point, Likert-type rating scale (Not at all like me -0, 1,2,3,4 - 

Extremely like me). Neither instrument produces a composite score as each subscale is 

treated as a discrete construct.

The CCAPS-34 uses two scoring procedures. First, normative scores are obtained 

by comparing raw scores (arithmetic mean for a subscale) against the percentile tables 

located in the testing manual (CCMH, 2010). The CCAPS-62 and the CCAPS-34 both 

use percentile rankings to interpret test scores against clinical norms derived from a large 

sample of college students. Percentile ranks are limited in their ability to determine if  the
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degree of change is due to the effect of the therapeutic intervention or if  the degree of 

change can be attributed to measurement error (Jacobson & Truax, 1991; CCMH, 2010).

The CCAPS-34 measures therapeutic gains using a reliable change index (RCI). 

The RCI)is used as an alternative method to measuring therapeutic improvement where 

clinically significant change is defined as, “The level of functioning subsequent to 

therapy places that client closer to the mean of the functional population, than it does to 

the mean of the dysfunctional population (pg. 13; Jacobson and Truax, 1991).” RCI 

scores represent the minimum amount of change (either positive or negative) that must 

occur before the change can be attributed to something other than measurement error.

This index represents a robust alternative to percentile rankings because it is calculated 

using the raw scores from each subscale at various test administrations, (Jacobson & 

Truax, 1991; CCMH, 2010).

The implementation of the CCAPS-34 in college counseling centers offers a 

practical symptom checklist specifically tailored to examine those mental health issues 

often treated in UBC’s, and can provide clinical data for researchers to examine client 

variables that influence early treatment withdrawal. This study will be able to capitalize 

on the widespread use of this instrument to effort to examine its capability in 

distinguishing clients at higher risk of early treatment withdrawal.

Operationalizing Premature Termination

The literature examining premature termination (PT) often analyzes the 

differences between clients who prematurely withdraw from therapy against those who 

continue to completion. Investigators would benefit from an empirically derived 

definition of PT that can represent a discrete construct comparable across studies
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(Hatchett & Park, 2003). PT researchers use an assortment o f terms; attrition, dropout, 

early termination, early withdrawal, and unilateral termination (Swift, Callahan, and 

Levine, 2009). Researchers have also relied on intuitive but inconsistent operational 

definitions. This variability may have contributed to the lack of consistent findings 

despite decades of research into psychotherapy dropout. Failure to use a standardized 

construct for research may prevent the accurate comparison of research findings 

(Baekeland & Lundwall, 1975; Hatchett & Park, 2003; Pekarik, 1985; Sharf, Primavera, 

and Diener, 2010; Swift & Greenberg, 2012; Wierzbicki & Pekarik, 1993).

Another constraint is the differences in how clients are categorized as completers 

or dropouts. The treatment duration method categorizes dropouts as those who failed to 

attend a certain number of sessions. In addition, various researchers selected different 

cutoff points (ranging from 3 to 10 sessions). Clients who left treatment before reaching 

the cutoff point were classified as terminators. Those who continued were defined as 

completers. Opponents of this method argued that clients who terminate counseling 

during the early stages of treatment may be influenced by different factors than clients 

who dropout later. Clients under this classification system could represent multiple 

groups with unique, statistically independent, characteristics and outcomes (Baekeland & 

Lundwall, 1975).

Another criticism suggests treatment duration is problematic because clients may 

withdraw prematurely after achieving positive therapeutic gains whereas others may 

complete treatment without improvement (Baekeland & Lundwall, 1975; Pekarik & 

Wierzbicki, 1993; Pekarik, 1986, Garfield, 1994). Pekarik (1985) empirically tested 

treatment duration as a reliable and valid construct and concluded that treatment duration
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is an ineffective classification system incapable of distinguishing premature terminators 

from mutual completers. Pekarik, urged researchers to avoid describing PT under the 

traditional duration-based method and suggested using therapist judgment instead.

Hatchett and Park (2003) examined the relationship between termination rates and 

interrater agreement across four operational definitions of PT. After calculating PT rates 

under each definition, they measured interrater reliability for detecting early treatment 

withdrawal. Results from this analysis suggest that two definitions (1. therapist judgment 

and 2. missed-last session criteria) produce termination rates consistent with the previous 

literature. Both definitions also produced considerable interrater agreement between 

therapeutic providers. Alternative definitions including median-split method or intake 

only, observed inflated estimates of PT with lower interrater reliability.

Hatchett and Park (2003) suggested that missed last session criteria would 

produce the most reliable comparisons across studies and recommended this definition as 

the most appropriate index. They also proposed that researchers measure the rate of 

clinically significant change just before termination. Under this method, clients whose 

scores fell within the clinically significant range are classified as dropouts while those 

who fall within the normal range would be considered as completers.

Swift, Callahan, & Levine (2009), examined the utility of this method against 

other classification systems commonly referenced in the literature. Their findings did not 

support using clinically significant change as an independent approach. However, the 

results did suggest that researchers may extend their description to include (a) clients who 

were classified as dropouts despite achieving recovery, or (b) clients who were classified 

as completers without achieving recovery.



The PT literature uses a variety o f operational definitions to categorize clients as 

completers or dropouts. It is important for investigators to rely on empirically derived 

methods for categorizing early treatment withdrawal in order to increase the accuracy of 

research findings (Swift, Callahan, and Levine, 2009; Swift and Greenberg, 2012). This 

study used the term PT interchangeably with dropout, attrition, early termination, PT, 

early withdrawal, discontinuation, and unilateral termination According to Ogrodniczuk, 

Joyce, and Piper (2005), the term PT denotes (1) a conscious decision by the client to 

leave treatment, (2), the discontinuation of treatment that is against the therapist’s 

recommendations, and (3) divergent from the originally agreed upon duration of 

treatment. For this investigation, PT was defined as a client-initiated, withdrawal from 

therapy prior to achieving the treatment goals mutually agreed upon between the client 

and counselor (Baekeland & Lundwall, 1975; Wierzbicki & Pekarik, 1993; Garfield, 

1978/1994; Hatchett and Parks, 2003, Ogrodniczuk, Joyce, and Piper, 2005; Coming, 

Malofeeva & Bucchianeri, 2007).

Correlates and Predictors of Premature Termination

This section will expand our focus beyond college treatment centers and survey 

the literature across a broad range of treatment settings. The purpose is to narrow the 

field of variables identified in the literature down to a series of indicators that have the 

most consistent and robust influence on termination rates for all types o f therapy. Also, 

this review will survey the epidemiological research to learn how PT manifests in 

nationally representative samples.

Baekeland and Lundwall (1975) reviewed empirical findings suggesting that a 

number of variables may place clients at greater risk for prematurely withdrawing from
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treatment. Such variables included age (<25), gender, socioeconomic status, insecure 

attachments to others, occupational, marital, or residential instability, aggressive or 

passive aggressive behavior, sociopathy, drug dependence, and the desire to seek help.

Baekeland and Lundwall (1975) also highlighted conceptual limitations that 

inhibited the advancement of PT research proposing that conventional wisdom failed to 

account for the variability among clients who unilaterally withdrew from treatment at 

different points along the EOC. In addition, some clients left counseling after achieving 

positive therapeutic gains, suggesting that PT is not a negative therapeutic outcome in all 

cases. They concluded that these findings suggest that motivations for dropping out of 

treatment may be linked to the amelioration of symptoms and/or the point during therapy 

at which a client withdraws. They also proposed that symptom severity should be 

considered an influential factor in PT. Its degree of influence was unclear as findings 

showed variability across treatment settings and presenting diagnoses. For example, in 

outpatient mental health settings, clients with lower levels of depression and anxiety were 

at increased risk of PT. In substance abuse programs, these same diagnoses were 

associated with a lower risk of PT (Baekeland and Lundwall, 1975). Although the 

influence of symptom severity remains unclear in the literature, recent findings reviewed 

by Barrett et al (2008) lent further support to its relationship with PT.

Field dependence (FD) emerged as an important variable associated with PT. FD 

refers to an individual’s cognitive style representing one’s sense of self in relation to 

others. As clients advance in their development, their sense of individuality moves from a 

dependent to differentiated sense of self. A client who is FD may look for others to guide 

their decision-making because their sense of self is heavily influenced by referent cues
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from others. Clients who rely less on the social environment and more on their own 

internal frame of reference are described as field independent (FI; Witkin, Goodenough,

& Ottman, 1979).

Researchers hypothesized that FI clients would be more autonomous, self-reliant, 

and possess stronger psychological boundaries. Researchers hypothesized that these 

characteristics would place them at greater risk for PT (Baekeland and Lundwall, 1975). 

The utility of this variable remains unclear as findings from independent samples produce 

discrepant outcomes. Results have sometimes produced counterintuitive findings directly 

refuting the proposed hypothesis (Baekeland and Lundwall, 1975). Because field 

dependence-independence has received little attention in the recent PT research, little is 

known about its relationship to early treatment withdrawal.

Baekeland and Lundwall (1975) also identified treatment provider characteristics 

that may increase the risk of PT. The therapist variables include ethnocentrism, dislike 

for their clients, and aversion to medication. Therapists who exhibit such characteristics 

were more often male, detached, too permissive, had a tendency toward introversion, and 

frequently cancelled appointments. Baekeland and Lundwall (1975) also noted client- 

counselor relationship variables including discrepant treatment expectations and having 

multiple treatment options as potentially linked to early treatment withdrawal.

Garfield (1978/1994) conducted a follow-up comprehensive literature review 

examining the research on correlates of PT in psychotherapy. Garfield’s focus differed 

from Baekeland and Lundwall’s (1975) as he narrowed his field of literature to recipients 

of mental health services and appeared more cautious in formulating conclusive 

interpretations (Pekarik, 1985). He found that the median number of sessions attended



35

was six. This distribution follows a negatively accelerating curve with a sizable majority 

of clients terminating treatment by the end of the 10 session. Garfield noted there is a 

lack of convergence within the scientific literature and emphasized that the research of 

the era made little progress in identifying reliable and stable predictors of PT.

Findings from Garfield’s (1978/1994) review did emphasize that recipients of 

psychotherapy prefer short-term treatment approaches. He also highlighted the 

conceptual difference between cancellations and no-shows, reporting that no-shows tend 

to be correlated with higher rates of PT, and that variables commonly examined in the PT 

research including sex, age, occupation, income, and psychiatric diagnoses appear 

unreliable. Although race did emerge in the literature as a predictor of PT, few 

researchers attempted to partial out the variance accounted for by social class factors, 

producing inflated estimates of predictive utility. Garfield (1978/1994) reviewed a 

number of studies investigating the use of personality assessments as potential tools for 

identifying clients at risk of PT. Findings suggest that neither the Rorshach nor the MMPI 

were able to predict PT across clinical settings. According to Garfield’s findings, 

empirical support was only obtained for SES and level of education as reliable predictors 

of PT. Garfield also cautioned that the effect of education on PT is small.

Pekarik (1985) focused his review on the impact of discrepant expectations 

among clients and service providers in terms of treatment duration. Pekarik suggests that 

clients expect short-term treatment approaches, to immediately begin relevant 

interventions, and may settle for a modest level of improvement. Pekarik emphasized that 

although SES appears statistically related to PT, discrepant expectations predict PT 

across all socioeconomic categories, and theorized that discrepant expectations for
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treatment duration and the failure to establish mutually agreed upon goals could inflate 

the risk of PT. Pekarik found that clients expect psychotherapy will last for 

approximately 10 sessions, whereas therapists tend to view psychotherapy as taking place 

over a longer time period (Garfield, 1978/1994; Koss, 1979; Pekarik, 1985).

Results from the literature reviews suggest that clients often withdraw from 

treatment before the 10th session. These findings suggest that clients may designate 

treatment length in spite of the therapist’s recommendations (Garfield, 1978/1994; 

Pekarik, 1985). Further,-these findings lend support to the hypothesis that clients only 

attend treatment until a crisis has abated (Baekeland and Lundwall, 1975; Pekarik, 1985). 

In some cases, PT is only early withdrawal from the therapist’s perspective, whereas the 

client determines that sufficient treatment gains have been achieved to warrant the 

discontinuation of services. SES and level of education emerged as consistent 

pretreatment variables correlating to PT, although the size of their effect on early 

treatment withdrawal remained unclear. Interaction variables associated with the 

therapeutic alliance provided preliminary groundwork for the development of strategies 

to reduce the rate of PT. Finally, the influence of age (<25), gender, insecure attachments 

to others, occupational, marital, or residential instability, aggressive or passive aggressive 

behavior, sociopathy, drug dependence, field dependence-independence, symptom 

severity, and the desire to seek help remained unclear.

Meta-Analytic Evidence.

The literature reviews discussed to this point attempted to synthesize the vast 

network of empirical findings contributing to PT. The lack of convergence and 

supporting data for inferences proposed by researchers are addressed by five meta­
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analyses on PT (Pekarik and Wierzbicki, 1993, Sharf, Primavera, and Diener, 2010, Swift, 

Callahan, and Volmer, 2011, Olver, Stockdale, and Wormith, 2011, and Swift and 

Greenberg, 2012). This review examines four of these investigations given their 

relevance to PT in a UBC. The review conducted by Olver, Stockdale, and Wormith 

(2011) is excluded as research findings were strictly focused on variables influencing 

dropout in offender treatment programs.

Pekarik and Wierzbicki (1993) conducted the first meta-analysis of the PT 

research and found that the pooled mean dropout rate was 46.86% (95% CI=[42;9,

50.82]) across treatment settings. An analysis of variance (ANOVA) examining the rate 

o f PT among different treatment approaches, clinical settings, and demographic groups 

did not produce significant mean differences. However, significant mean differences 

were found when different definitions of PT were used. These findings lent support to the 

argument that conflicting definitions in the PT literature can influence discontinuation 

rates. They also examined the pooled effect sizes for sex, race, age, education, SES, and 

marital status. Results suggested that clients who are African American, are under 

educated, and/or come from a low SES are at greater risk for prematurely terminating 

treatment. This analysis was limited to six demographic variables

Sharf, Primavera, and Diener (2010) conducted a meta-analysis on 11 studies to 

examine the relationship between therapeutic alliance and premature termination. 

Additionally, Sharf, Primavera, and Diener tested the moderating effects of age, 

education, ethnicity, treatment length, primary diagnosis, treatment setting, and definition 

of dropout on the relationship between therapeutic alliance and PT. Results suggest that 

clients, in dyads which had a weaker therapeutic alliance, were more likely to withdraw



38

from treatment. Although the relationship between therapeutic alliance was statistically 

significant, the strength of the relationship was moderate (*£=.55 95% Cl [.37, 73]). Also, 

educational history (< 12th grade; >12th grade), treatment length, and setting were 

observed to have statistically significant moderating effects on the relationship between 

therapeutic alliance and premature termination. Although these results support previous 

empirical findings, the relationship between therapeutic alliance and PT yield moderate 

effect sizes. These findings suggest that while the therapeutic relationship is an important 

influence, there are other unexamined forces that may impact arclient’s decision to 

prematurely leave treatment.

Swift, Callahan, and Vollmer (2011) conducted a meta-analysis on 38 studies 

examining the influence of client preferences on therapeutic outcomes including: 1) role 

preferences, 2) therapist preferences, and 3) treatment preferences. Role preferences 

represent how clients and therapists negotiate their activity in session. Some clients may 

prefer the therapist to be more directive, whereas other clients prefer that the counselor 

assumes a more passive role. Therapist preferences comprise ideal characteristics that 

clients would like their therapist to possess. For example, clients may hold preferences 

regarding their therapists’ gender, experience, or age. Treatment preferences refer to the 

clients desired format for the interventions used during counseling. Some clients may 

only be interested in pharmacotherapy but not in psychosocial treatment, whereas other 

clients may be interested in individual counseling but refuse group therapy. Results 

indicate that preference matching reduced the likelihood of PT (OR=5.59, p < .001 95% 

Cl [.44, .78])



Swift and Greenberg (2012) conducted the most recent meta-analysis on 669 

studies representing nearly 84,000 participants. According to their findings the pooled 

dropout rate across treatment settings was 19% (95% Cl [18.7%, 20.7%]). These findings 

represent a more conservative and precise measure of PT than the dropout rate 46.86% 

(95% CI=[42.9, 50.82]) published by Wierzbicki and Pekarik (1993). A number of 

variables relevant to this investigation were observed to increase the risk o f early 

treatment withdrawal including younger age (d=A6\ 95% Cl [.07,.24],/? <.008; k=52) , 

clients treated in a UBC (30.4%; 95% Cl [26:6%,34.4%]; k=53), diagnosis (Q= 93.58,/?

< .001), clients receiving treatment that was not time limited (29%; 95% Cl [26.6%, 

31.6%]; &=131), or treatment that wasn’t manualized (28.3%; 95% Cl [25.9%, 30.7%]; k  

= 138). Termination rates were not affected by race, employment status, treatment 

orientation, individual or group treatment, or provider demographic characteristics (age, 

race, or gender). Swift and Greenberg also used meta-analytic and meta-regression 

techniques to examine the influence of client gender, marital status, and level of 

education on PT. Results from the meta-regression analysis indicated that committed 

relationships may serve as a protective barrier against the decision to withdraw from 

services. Significantly higher rates of PT were also observed in studies with a higher 

percentage of male subjects. Client age and diagnoses were observed as the most robust 

predictors of PT. Consistent with findings published by Wierzbicki and Pekarik (1993), 

the dropout rate was affected by the definition used to operationalize PT. Swift and 

Greenberg (2012) observed that more experienced therapists have lower dropout rates 

when compared against trainees. The authors theorize that this discrepancy is related to 

the greater emphasis experienced therapists place upon the therapeutic alliance. These
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findings are consistent with those reported by Sharf, Primavera, and Deiner (2010) 

suggesting that the relationship between the therapeutic alliance and PT is moderated by 

treatment length, setting, and therapist experience.

These findings suggest that early attempts to measure the rate o f PT produced 

inflated estimates. The 46.86% dropout rate reported by Pekarik and Wierzbick (1993) 

was a function of early meta-analytic techniques. Using a random effects model, Swift 

and Greenberg (2012) observed an average weighted dropout rate of 19%. UBC’s were 

observed to have the highest rate compared against other treatment settings. Empirical 

findings also support the hypothesis that dropout rates found are sensitive to the 

operational definition used by researchers. These findings suggest the need for a 

standardized definition of PT to guide research. Another finding suggests that therapeutic 

relationship has a robust but moderate effect on the decision to withdraw from treatment 

across treatment settings. This finding is also consistent with the psychotherapy outcomes 

literature suggesting that the therapeutic alliance is a consistent but moderate predictor o f 

positive treatment outcomes (Wampold et al 1997; Fluckiger, Del Re, Wampold, 

Symonds, and Horvath, 2012). Variables observed to moderate the relationship between

t h  tVithe therapeutic alliance and PT include educational history (<12 grade; >12 grade), 

treatment length, and clinical setting. Findings also suggest that younger age, diagnosis, 

having a less experienced therapist, and receiving treatment that wasn’t time limited or 

manualized are significant correlates of PT. In contrast to previous research dropout rates 

were not affected by race, employment status, treatment orientation, individual or group 

treatment, or provider demographic characteristics (age, race, or gender).

Epidemiological Research.
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Another approach to PT research examines early treatment withdrawal from an 

epidemiological perspective. This targeted approach places early treatment withdrawal in 

the context of large-scale population patterns. Epidemiological studies also compare 

termination rates across medical and psychosocial treatments provided by medical and 

mental health professionals.

Edlund et al (2002) conducted an epidemiological study on clients who received 

mental health treatment in the United States and Canada to uncover patterns and identify 

global predictors associated with PT from pharmacotherapy, talk therapy, combined talk 

therapy and pharmacotherapy, and spiritual counseling. Findings from their analyses 

produced an unweighted dropout rate of 19% supported previous research that clients 

younger than 25 were at higher risk for PT (OR=1.64, p  < .05 95% Cl [1.01—2.64]). The 

authors speculated that these findings could be linked with a) the greater reliance young 

people have on others to attend appointments or b) the greater dysfunction associated 

with early onset mental illness. Clients who received concurrent treatment with 

medication and psychosocial techniques were more likely to remain in treatment. Positive 

treatment outcomes remained stable if the combined treatment methods were provided by 

a general,practitioner (pharmacotherapy) and a nonmedical professional (talk therapy). 

Finally, clients who do not believe in the efficacy of mental health treatments were more 

likely to withdraw from treatment. According to Edlund et al, when compared against 

respondents who felt very comfortable with mental health treatment, those who reported 

being very uncomfortable were around 2.46 times more likely to dropout o f treatment 

(OR = 2.4, 95% CI=[1.4—4.1]). Respondents who reported feeling somewhat 

uncomfortable with mental health treatment were approximately 2.7 times more likely to
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dropout of treatment (OR=1.6, 95% CI=[l.l-2.2]). Finally, those respondents who felt 

somewhat comfortable with treatment were roughly 1.6 times more likely to dropout 

(OR=1.6, 95% C l—[ 1.1-2.2]). When compared against respondents who believe in the 

efficacy of mental health treatment, respondents who did not were about 1.6 times more 

likely to dropout (OR=1.6, 95% Cl = [1.2-2.2]).

Wang (2007) conducted a follow-up to the Edlund et al (2002) study. Results 

from this analysis found that clients who believe mental health treatment is ineffective 

had a higher rate of dropout (29.3% 95% CI=[(23.5,35.1]). Clients who presented with 

more severe distress also had a higher rate of PT (34.1%, p < .05, 95% CI=[28.5,39.8]) 

and were roughly 1.39 times more likely to withdraw from services (OR=l .39, 95%

CI=[ 1.0,1.92]). Wang observed that dropout rates varied among mental health treatment 

providers. Termination rates across provider specialty were: 1.) Family doctors/ general 

practitioners=l 1.8% (95% Cl = [10.0,13.6]); 2.) Other medical doctors= 17.7% (95% 

CI=[9.8-25.5]); 3.) Any medical doctor=19.4% (95% CI=[17.3, 21.4]); 4.) Religious 

advisors=19.9% (95% CI-[14.0, 25.8]); 5.) Social Workers/Therapists = 20% (95%

Cl—[16.3-23.8]); 6.) Psychologists=21.9% (95% CI=[17.3, 26.4]); 7.) Any health 

professional=22.4% (95% CI=[20.4, 24.3]). 8.) Psychiatrists=22.7% (95% CI=[18.8, 

26.7]); 9.) Alternative medicine practitioners-24.8% (95% CI=[13.9,21.4]); 10.) 

Nurses=29.1% (95% CI=[21.3, 36.8]). These findings show higher rates o f PT among 

clients treated by psychiatrists and psychologists when compared against primary care 

physicians. The authors speculated that mental health specialists encounter more complex 

and chronic mental health conditions that are inherently difficult to treat. Wang also 

reported that dropout rates from mental health treatment may be lower than other chronic



medical conditions. Reviewing findings from previous epidemiological studies Wang 

reasoned that the average, unweighted dropout rate from mental health treatment (22.3%) 

may be lower than other chronic medical conditions including: 1.) Hypertension (33%); 

2.) Rheumatoid arthritis (31 -  41%). Lastly, clients between the ages of 15 -  25 (30.1%, 

p < .001, 95% CI= [24.6,35.6]), nonwhite (24.3%, 95% Cl=[17.1,31.6]), and/or 

diagnosed with a mood (31.0%, p < .001, 95% CI= [27.2, 34.8]), anxiety (28.2%, p 

< .005, 95% CI= [23.6, 32.6]), or substance abuse disorder (40.8%, p < .001, 95% CI= 

[33.7, 48.0]) were at increased risk of PT.

The most recent epidemiological investigation (n=693) conducted by Westmacott 

(2010) focused on identifying variables that differentiate clients who prematurely 

withdraw from treatment because they feel better than from those who are dissatisfied 

with their progress. Results from the analysis found that the most frequent reasons for 

withdrawing from treatment were feeling better (43.4%), belief that psychotherapy 

wasn’t helping (14.1%), or the course of therapy had been completed (13.4%). Other 

results from the analysis supported previous findings that a low-income status would 

increase the odds of citing therapy as unhelpful as a reason for PT. Finally, the presence 

of substance dependency, mood, or anxiety disorders decreased the odds of reporting that 

improvement in therapy had contributed to their early withdrawal. A major limitation is 

that clients who endorsed more than one reason for PT were excluded from the final 

analysis although previous research shows that clients who unilaterally withdraw from 

treatment endorse multiple reasons contributing to their decision (Westmacott, Hunsley, 

Best, Rumstein-McKean, & Schindler, 2010).
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These findings suggest that age (<25) is a robust predictor of PT across treatment 

settings, modality, provider, and clinical presentations. Other findings include clients who 

do not believe in the efficacy of mental health treatment are less likely to continue 

services whereas those who have experienced positive change are more likely to remain; 

mental health treatment providers appeared to have higher rates of PT when compared 

against primary care providers, suggesting that the complex diagnostic profiles 

encountered by mental health specialists could influence the decision to withdraw; and 

the rate of PT in psychotherapy may be lower than treatments for chronic medical 

conditions such as diabetes and hypertension. These findings appear to suggest that the 

decision to withdraw from treatment may be linked to the chronicity and complexity of 

the presenting problem, experiencing positive gains in treatment, and believing that 

mental health treatment is effective.

Premature Termination in University Based Clinics

According to Swift and Greenberg (2012), UBC’s have the highest termination 

rates when compared against other treatment settings, and the authors speculate that these 

findings are due to a higher proportion of younger clients and trainee clinicians than are 

found in other treatment settings. PT from treatment has been investigated across a 

number of clinical settings (Baekeland and Lundwall, 1975), but the topic of dropout in 

UBC’s appears to be an evolving area of inquiry.

Rodolfa, Rappaport, and Lee (1983), investigated the differences between 

treatment completers and dropouts using numerous therapist, client, and administrative 

variables. They found that clients assigned to practicum students were more likely to 

withdraw from treatment. Another finding was the rate of PT increased as the length of
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time from intake until assignment to a counselor increased. Tracey (1986) measured the 

influence of therapeutic alliance on PT, and used topic determination (TD) to describe the 

mutuality of treatment expectations between client and therapist. Tracey defined TD as, 

“the proportion of topic initiations that were subsequently followed by the other 

participant (pg. 785).” Results from the analysis showed that poor topic determination 

during early sessions could be used to predict lower client satisfaction ratings and PT. 

Implications for these findings emphasized the importance of establishing clear roles 

between the'client and counselor while also negotiating which topics are to be discussed 

in counseling.

Martin, McNair, & Hight (1988), used the hypothesis that clients prematurely 

terminate from UBC’s because they do not view their therapists as expert, attractive, or 

trustworthy with a survey that also asked their reasons for prematurely withdrawing from 

treatment. Results did not support the hypothesis that clients withdrew from treatment 

because they found their therapist untrustworthy or viewed them as unattractive or 

unskilled. Other reasons for withdrawal included that they didn’t have the time, felt they 

no longer needed treatment, or forgot their appointments.

Hynan (1990) also investigated client reasons for prematurely withdrawing from 

treatment and hypothesized that early terminators would provide different reasons than 

late terminators for why they withdrew from treatment. Early termination was 

operationalized as attending five or fewer sessions, and late termination was 

operationalized as attending six or more sessions. Hynan, surveyed 31 student 

participants who had prematurely terminated counseling services for anxiety or 

depression. Results from the chi-square analysis suggested that late terminators reported



withdrawing because they had improved and felt therapy was no longer needed. 

Additional findings suggested that early terminators cited situational constraints 

preventing them from continuing in therapy and discomfort with counseling as reasons 

for withdrawing from services. There are two limitations associated with this research 

design. First, the sampling procedure excluded subjects who sought services after the first 

24 weeks of the academic calendar resulting in a restricted sample size. Also, empirical 

findings have demonstrated that using a median-split method to operationalize PT 

produces inflated dropout rates (Hatchett and Park, 2003).

Kokotovic and Tracey (1990) wanted to test if  a poor working alliance would 

predict PT in a UBC, using Hotelling’s T 2 to differentiate between dropouts and 

completers. The variables used to measure working alliance were client and counselor 

agreement on treatment plan, agreement on interventions, the bond between client and 

counselor, client’s satisfaction with treatment, overall adjustment, educational concerns, 

emotional arousal, public speaking, and intimate relationships. Findings suggest that none 

of the variables could be used to differentiate among treatment completers and dropouts. 

Although such findings were unexpected, the methodological-analytic techniques used in 

this research may have had two constraints; one, constraint is that it used a restricted 

definition of PT defined as failure to attend more than four counseling sessions or failure 

to continue in treatment after the initial session; and second single administration of the 

instruments used to measure the variables during the initial session. The resulting 

analysis appears to reflect a cross-sectional perspective, rather than approaching data 

collection longitudinally. Longitudinal or time-series data have been recommended in the 

literature as uniquely suited for PT research (Coming and Malofeeva, 2004). The results
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from Koktovic and Tracey’s (1990) analysis contradict recent meta-analytic evidence 

suggesting that a poor working alliance (Sharf, Primavera, and Diener, 2010) and failure 

to match the treatment to client preferences (Swift, Callahan, and Vollmer, 2011) may 

significantly impact rates of PT.

One problem that may hinder the understanding of PT is that many studies 

analyze arbitrary variables that are not informed by a theoretical framework (Mennicke et 

al., 1988; Longo, Lent, & Brown, 1992). One study that did use a theoretical framework 

was the one by Longo, Lent, and Brown (1992) that tested the applicability o f self- 

efficacy from Bandura’s social cognitive theory (Bandura, 1986) to explain and predict 

PT. Findings lent preliminary support for the predictive utility of self-efficacy in 

differentiating completers from dropouts. However, results from the analysis should be 

interpreted with caution as the findings yielded a small effect size which indicates that the 

predictors were inadequate in fully differentiating completers from early terminators.

Levy, Thompson-Leonardelli, Smith, and Coleman (2005) used a sample of 1,461 

participants to measure the predictive possibilities o f race, time on waiting list, presenting 

problem, and attrition. The logistic regression analysis results showed that African 

American (AA) clients were less likely than European American (EA) clients to return 

for counseling following the intake session regardless of presenting problem; that clients 

who were on a waiting list for longer than three weeks were less likely to return; and that 

EA clients were more likely to return than all other ethnic groups if the wait time was 3 

weeks or less. Previous research suggests that SES moderates the relationship between 

race and treatment withdrawal, meaning that AA clients of low SES are more likely to 

withdraw from treatment than AA clients who fall under the middle of high SES
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categories (Mennicke, Lent, and Burgoyne, 1988). Researchers should be cautious when 

using race as a variable without accounting for the moderating effect o f SES.

Westmacott, Hunsley, Best, Rumstein-McKean, and Schindler (2010), examined 

the divergent experiences reported by clients and therapists when reporting the reasons 

behind premature termination in terms of working alliance and barriers to treatment.

Their findings supported the hypothesis that clients who prematurely withdrew from 

treatment would rate situational barriers, dislike for the therapist, and the desire to end 

treatment over and above the desire to accomplish treatment goals. They also found that 

counselors tended to assign a higher rate o f psychological distress to clients who 

withdrew from treatment early. Other findings were that clients who prematurely 

withdrew from treatment cited multiple reasons for terminating treatment unilaterally, 

whereas treatment providers only identified a few, and that the development of a strong 

working alliance by the end of the third session would predict the termination type. These 

findings highlight the importance of the working alliance in establishing mutually agreed 

upon roles between the counselor and client, diagnosis, treatment planning, and 

interventions.

Lampropolous, Schneider, and Spengler (2009) examined predictors of early 

termination among college students receiving services in a training clinic under the care 

of graduate student interns. An archival sample was used («=380) to develop a predictor 

model capable of differentiating clients who complete treatment from those who 

prematurely withdraw from services. Findings showed a 16% dropout rate after intake, a 

57.4% dropout rate from therapy, and a 26.6% completion rate. Additional findings were 

that client age, income, perceived difficulty, and functional impairment were influential
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in classifying clients who would prematurely withdraw from treatment, and that 

functional impairment (measured by GAP score at intake) was identified as the only 

statistically significant variable in the 4-predictor model to have a large effect on the 

decision to withdraw. Results from this study provided evidence supporting the influence 

of functional impairment at intake.

Another variable that may contribute to PT in UBCs is the use of trainees as 

treatment providers. Swift and Greenberg (2012) found that the pooled mean termination 

rate in UBC’s is‘approximately 30.4% (95% Cl [26.6%, 34.4%], but that the termination 

rate among clients receiving services from graduate trainees is 26.6% (95% Cl [22.2%, 

31.5%]). Such evidence suggests that these findings may not be directly translatable to 

UBC’s where clients receive services from experienced treatment providers. More 

research is needed to examine the moderating effect of therapist level o f experience on 

the relationship between functional impairment and the decision to prematurely terminate 

counseling services.

Romans et al (2011) examined the influence of symptom distress at intake on 

premature termination. Their findings suggest that women who report higher levels of 

symptom distress at intake are at greater risk for PT. The authors reported that these 

results are novel and of concern, as prior research findings have failed to support gender 

differences in unilateral termination.

In summary, clients receiving services from trainee clinicians and those with 

higher functional impairment were more likely to drop out of treatment. The rate o f PT 

also increased with longer waiting lists. Further, clients who withdraw during initial 

sessions often cite situational barriers as the reason for withdrawal. Clients who withdraw
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during later phases o f treatment are more likely to report their presenting symptoms had 

improved and further therapy was unnecessary. Findings also suggest that a positive 

working alliance is associated with the decision to remain in treatment. Dyads with a 

strong working alliance and collaborative topic determination observed lower dropout 

rates. Clients were also at greater risk of PT if a strong working alliance was not 

established by the third session.

Empirical evidence also suggests that clients who withdraw from treatment cite 

■multiple reasons for their departure. Some of these include; obtaining treatment goals and 

deeming further therapy unnecessary, inability to incorporate therapy into their schedule, 

experiencing external barriers, forgetting to attend, and dislike for the therapist or 

discomfort with the counseling process. Researchers also examined how therapists 

conceptualized PT. Findings suggest that counselors assign a higher rate of 

psychological distress to dropouts and their attributions for why clients choose to 

withdraw from services aren’t consistent with those offered by clients.

Results from the reviewed studies provide some empirical support for the 

importance of establishing and maintaining a positive working alliance. Consistent with 

.reported by Swift, Callahan, and Vollmer (2011), these findings also suggest that 

discrepant treatment or role preferences could increase the rate of PT. These findings also 

highlight the influence of external barriers, therapist experience, and functional 

impairment on PT. Although a strong therapeutic alliance is a robust predictor of 

treatment completion and positive outcomes, its effect size is consistently moderate 

(Wampold et al 1997; Fluckiger, Del Re, Wampold, Symonds, and Horvath, 2012; Sharf, 

Primavera, and Deiner, 2010; Swift and Greenberg, 2012). This evidence highlights that
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other contributing factors have yet to be identified such as; the influence of pretreatment 

variables on PT and the influence of these variables controlling for covariates such as age, 

functional impairment, therapist experience, manualized versus non-manualized 

treatments, treatment length, diagnosis, and therapeutic alliance.

Theoretical Models of Premature Termination

Much of the research examining PT investigates arbitrary variables that aren’t 

determined by a theoretical framework (Mennicke et al., 1988; Longo, Lent, & Brown, 

1992), and this has led to the difficulty in synthesizing existing evidence into a theoretical 

framework capable of explaining and predicting PT. To date, three models have been 

used to underpin the PT literature: Andersen’s Behavioral Model of Health Services Use 

(1968/1995), The Barriers to Treatment Model, 1997 (Kazdin, Holland, and Crowley, 

1997; Kazdin and Wassell, 2000), and the Delay Discounting Model (Swift and Callahan, 

2010). Although each of these models has been introduced in the professional literature, 

more research is needed to investigate the utility o f each model in explaining PT. Each 

model is briefly discussed below.

Andersen’s Behavioral Model of Health Services Use (BMHSU).

The BMHSU provides a flexible structure for understanding the complex system 

of variables influencing the decision to seek health care services (Andersen, 1968/1995). 

His model proposes that the useof health care services depends on three general domains: 

primary determinants of health behavior, health behavior, and health outcomes (see 

figure 1-1).

The primary determinants of health utilization behavior contain three 

subcategories: 1) population characteristics, 2) the healthcare system, and 3) the external



environment. Population characteristics represent predisposing and enabling factors. 

Predisposing variables explain how both individual and socio-environmental 

characteristics influence the decision to pursue healthcare services, and are characteristics 

such as : demographics of race, age, and gender; social structure such as culture, social 

network, social interaction, education, occupation, and ethnicity;, health beliefs such as 

attitudes, values, and knowledge of health; genetic factors; and psychological such as, 

cognitive deficits, mental dysfunction, and autonomy). Enabling or inhibiting factors are 

variables that may improve or hinder access to healthcare services. These variables 

include the individual’s status in the community, available resources such as . money, 

social networking, health insurance; and the ability to cope with problems. The health 

care system refers to organizational/systemic characteristics that influence health policy, 

the availability of health resources in the community such as adequate access to inpatient 

psychiatric beds, and how changes in health policy fluctuate over time. The external 

environment describes physical characteristics of the environment such as; rural, urban, 

crime rates, etc.; political influences, and economic variables.

The second general domain includes health behavior and is divided into two 

clusters: personal health practices and the use of health care services. Personal health 

practices are behaviors such as diet, exercise, and self-care. The use o f healthcare 

services refers to the type of health care services accessed, the setting, and the reason for 

seeking services.

The last domain examines health seeking outcomes which is divided into three 

separate factors; perceived health status, evaluated health status, and consumer 

satisfaction. Perceived health status is the degree to which both professionals and the
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general public believe that current services are effectively maintaining or improving 

public health. Evaluated health status refers to the effective access to the selected services 

that are shown to improves health, and efficient access, such as when health status 

improves with increased utilization and consumer satisfaction. All o f these serve as 

additional outcome measures for assessing utilization (see figure 1 for a graphical 

depiction).

PRIMARY DETERMINANTS HEALTH BEHAVIOR — ► HEALTH OUTCOMES
OF HEALTH BEHAVIOR

Personal Health 
Practices

Use of Health 
Services

Population Characteristics

Health Care System

External Environment

Perceived Health 
Status

Evaluated Health 
Status

Consumer
Satisfaction

Figure 1. Andersen’s Behavioral Model of Health Services Use. from, “Revisiting the 

behavioral model and access to medical care: Does it matter? “ by R. Andersen, 1995, 

Journal o f  Health and Social Behavior, 36, p.2. Copyright by SAGE publications, Inc. 

Reprinted with permission (see Appendix J).

Barriers-to-Treatment Model.

The barriers-to-treatment model was originally developed to provide researchers 

with a conceptual tool to aid in understanding and predicting PT. This model proposes 

that therapy may be viewed as an inconvenient and demanding task (Kazdin and Wassell, 

2000). Kazdin, Holland, and Crowley (1997) write that clients encounter barriers that 

interfere with treatment progress and inhibit motivation to continue receiving services. 

Kazdin (1996) found that clients who encounter multiple treatment obstacles are at
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greater risk for prematurely terminating treatment. The barriers-to-treatment model.lists 

three general barriers: structural barriers, perceptions about mental health problems, and 

obstructive perceptions about mental health services (Owens et al, 2002). Structural 

barriers refer to external obstacles preventing access to treatment; such as a lack of health 

insurance, inadequate coverage, a lack of qualified providers, transportation difficulties, 

unreasonable service costs, and difficulties in accessing services. The perceptions about 

mental health problems barrier refer to internally held attitudes by the individual that may 

limit or prevent access to treatment services. Such perceptions may include minimization 

of the mental health problem, failing to recognize the existence of a mental health 

diagnosis, and inadequate perceptions about the ability to control mental health 

symptoms. Obstructive perceptions about mental health services describe negative beliefs 

about treatment that may inhibit the decision to initiate or remain in therapy. These may 

include negative experiences with previous treatment providers and social stigma

surrounding mental health treatment (See Figure 2; Owens et al, 2002).

Structural Perceptions about mental 
health problems

Perceptions about mental 
health services

• Lack of health insurance • Minimization of the • Negative experiences

• .Inadequate coverage mental health problem with previous treatment

• Lack of qualified • Failing to recognize the providers

providers existence of a mental • Social stigma

• Transportation health diagnosis surrounding mental

difficulties • Inadequate perceptions health treatment

• Unreasonable service about the ability to

costs control mental health

• Difficulties in accessing symptoms

services

Figure 2. Barriers-to-Treatment model
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Delay Discounting Model.

The delay discounting model seeks to explains how the value of a reward , 

decreases as the time until its received increases (Green & Myerson, 2004; Swift & 

Callahan, 2010). When faced with two potential outcomes, delay discounting represents 

the decision to choose between a small- but received sooner reward versus a larger- but 

received later reward (Madden & Johnson, 2010). For example, when presented the 

choice to accept a $5.00 payment today versus a $10.00 payment in two weeks, delay 

discounting represents the individual’s decision to discount the value of the larger-later 

reward ($10.00) in favor of the smaller-sooner reward ($5.00).

The delay discounting model uses an individually determined decision-making 

process that depends upon an individual’s needs and unique situational contexts. As the 

delayed time until receipt is extended, observers may notice fewer and fewer people 

choosing to wait for the larger - later reward. The individual discounts the value of 

receiving the $10.00 reward in approximately 3-months versus accepting the $5.00 

payment today.

The delay discounting model has been introduced as a potential framework to 

understand PT (Swift & Callahan, 2010). Evidence in the literature suggests that the 

median number sessions attended are near six and as the length of treatment increases, 

the number of clients who continue in therapy falls. Garfield (1995) reports that the 

majority of clients withdraw from treatment by the tenth session. The delay discounting 

model appears to warrant further investigation as a potential conceptual framework to 

underpin research into PT. A delay discounting measure of treatment expectancy could 

allow clinicians to determine a client’s desired recovery rate and how many sessions a



56

client will tolerate before dropping out. The utility o f this model in predicting PT has yet 

to be examined empirically. More research is needed before firm conclusions can be 

made about the role of delay discounting in early treatment withdrawal

Dose-Effect Literature.

This section will discuss four models discussed in the professional literature 

including: the decay curve, the dose-effect model, the phase model of psychotherapy 

outcomes, and the good enough level model.

Garfield (1978/1994) reported that the median number of counseling sessions 

attended is six. This distribution follows a negatively accelerating curve with most clients 

terminating services after the 10th session, and the findings emphasize that short-term 

treatment approaches are preferred (Garfield, 1978/1994; Koss, 1979; Pekarik, 1985). 

Pekarik (1985) also suggests that clients may settle for a modest level of improvement 

and may designate treatment length in spite of the therapist’s recommendations (Garfield, 

1978/1994; Pekarik, 1985). These findings suggest that the decision to withdraw from 

treatment may be due to clients feeling that they have achieved acceptable gains in 

treatment and deem further therapy unnecessary.

Examining how termination rates vary at different points along the course of 

treatment would permit a better understanding of what motivates clients to prematurely 

withdraw from services based upon their level of improvement in therapy, and the 

number of sessions attended.

Decay curve. Baekeland and Lundwall’s (1975) found that approximately 20 -  

57% of clients drop out after the initial session and 31 -  56% withdraw before 

completing 4 visits. Phillips (1985) reported evidence from the literature suggesting that
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the mean number of sessions attended is 4.7. Phillips also reported that 27 — 70% of 

clients show marked improvements between 1 and 3 months o f treatment and another 

18% improve between 4 -  6 months o f treatment. Phillips (1985) concluded that the 

termination rate was an unstable construct that appeared to vary along the course of 

treatment. He also believed such findings provided evidence for the existence of a decay 

curve.

Phillips (1985/1987) proposed that, as the length of treatment increases, the 

number of clients participating in therapy and the degree of marked improvement appears 

to steadily decline creating a negatively accelerating, decline curve. Phillips argued that 

focusing on the attrition curve could allow identification of therapist, client, and policy 

variables that are affecting continuation in treatment. He also proposed that attrition 

research needs to focus on how the therapeutic encounter adapts to the client’s needs and 

how unique characteristics within the delivery system interact to increase the risk of 

premature termination.

The dose-effect model o f  psychotherapy. Howard, Kopta, Krause, and Orlinsky 

(1986), introduced the dose-effect model of psychotherapy to describe that positive 

therapeutic gains progress along a negatively accelerating function of treatment length. 

Early research into this model suggested that positive therapeutic gains (effect) increase 

as the numbers of sessions (dose) accumulate. Preliminary findings illustrated that 10- 

18% of clients improve prior to the first session, 48-58% of clients improve after 8 

sessions, 75% improve after 6-months, and 85% of clients can be expected to show 

improvements after a year o f treatment (Howard, Kopta, Krause, & Orlinsky, 1986).

Also, as the numbers of sessions rise, the rate o f improvement contracts leading to larger



therapeutic gains during the earlier stages of treatment and smaller incremental gains at 

later stages, and that the dose-effect relationship varies according to the presenting 

problem. The findings reported by Howard, Kopta, Krause, and Orlinksy (1986) showed 

that 50% clients suffering from depressive disorders or anxiety symptoms showed 

improvement between 8 and 13 sessions. In contrast, 50% of clients who fell on the 

borderline-psychotic diagnostic continuum, reported that they had improved between 13 

and 26 sessions, whereas treatment providers documented improvement occurring 

between 26 and 52 sessions. Follow-up research lent further support to the dose-effect 

hypothesis, demonstrating that clients experiencing distress symptoms such as anxiety, 

depression, and obsessive-compulsive disorder, recover at a faster rate when compared 

against clients presenting with characterological symptoms, such as hostility, paranoid 

ideation, psychoticism, sleep disturbances, and overeating (Kopta, Howard, Lowry, and 

Beutler, 1994).
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Figure 3. Dose-Effect Response to Psychotherapy

Phase-model o f  psychotherapy outcome. Howard, Luger, Maling, and 

Martinovich (1993) introduced the phase-model of psychotherapy outcome. This model 

describe clients’ progress in therapy as moving through a series of three sequential 

phases; remoralization, remediation, and rehabilitation. Remoralization refers to the 

enhancement of the client’s subjective well-being. Prior to treatment, clients may 

interpret their situation as helpless and perceive themselves as powerless to improve their 

negative emotional state. Progression through this phase can occur quickly when the 

clinician and/or client engage in activities that increase the client’s sense o f hope and 

locus of control such as setting up an appointment, taking steps to improve one’s 

situation. The remoralization phase can restore hope which provides clients with the 

motivation and self-efficacy to reactivate their existing coping skills. The remediation 

phase refers to the middle stage of psychotherapy that focuses on the development and 

implementation of new coping skills to reduce the impact of negative symptomatology. 

The rehabilitation stage describes what is popularly viewed as psychotherapy (Howard, 

Luger, Maling, and Martinovich, 1993). Clients in this stage choose to continue in 

treatment to address pattemistic behaviors or beliefs that prevent the client’s attainment 

of life goals. This model is consistent with empirical findings reported by Kopta, Howard, 

Lowry, and Beutler, (1994), showing that distress symptoms achieve a faster rate of 

recovery than characterological symptoms. Also, the dose-effect and phase models of 

psychotherapy have each received empirical support in the literature (Lutz, Lowry, Kopta, 

Einstein, and Krause, 2001; see Figure 4 for a graphical depiction).
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Figure 4. Phase Model of Psychotherapy Outcome

The good enough level model. Barkham et al (1996) cautioned that previous 

methods used to measure the dose-response curve assume that the rate o f improvement 

remains constant across all participants, but this assumption unintentionally excludes 

those participants who experienced rapid improvement and discontinue treatment after 

reaching their target goals (see Figure 5). Barkham et al (1996) conducted a randomized 

controlled trial to investigate both the pattern of negative acceleration and the hypothesis 

that different symptoms respond variably to the number of treatment sessions. Their 

analysis was unable to replicate the standardized negative acceleration documented by 

Howard et al (1986) until after session 16. This result showed that the improvement rate 

remained stable until treatment progress reached an observed cutoff point, after which the 

increment appeared to decelerate. Barkham et al (1996) referred this cutoff point as the 

“good enough level.” The good enough level (GEL) model hypothesizes that 

improvement rates are a function of multiple influences that vary across clients, for 

example, after the GEL is reached, “the rate of improvement might vary depending on the
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characteristics of the problem, characteristics of the client, or characteristics of the 

treatment, and as a consequence, different problems would take a different numbers of 

sessions to reach their GEL (p. 161).”

This model holds particular utility for clinicians and administrators, as it 

emphasizes that improvement rates are variable across clients, clinicians, and presenting 

problems (Baldwin et al, 2009). Programs seeking to limit the number of treatment 

sessions may unintentionally favor clients who show rapid improvement while 

obstructing therapeutic gains for those who progress at a slower rate and require a higher 

dosage of sessions.

p e rc e n t improved

good«enough level

session s

Figure 5. The Good Enough Level Model

In summary, the median number of counseling sessions attended were six, and 

this distribution followed a negatively accelerating curve with most clients terminating 

services after the 10th session. Researchers have observed that clients may settle for a 

modest level of improvement and may place limits on the length of therapy in spite of 

treatment recommendations (Garfield, 1978/1994; Pekarik, 1985). These findings seem 

to suggest that recipients of psychotherapy prefer short-term treatment approaches and
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attend treatment until a crisis has receded (Baekeland and Lundwall, 1975; Garfield, 

1978/1994; Koss, 1979; Pekarik, 1985). Swift and Greenberg (2012) found evidence 

suggesting the long-term treatments are associated with a higher risk o f PT, which is 

consistent with earlier findings.

Phillips (1985/1987) found that as the length of treatment increases, the number 

of clients participating in therapy and the degree of marked improvement appears to 

steadily decline. Howard, Kopta, Krause, and Orlinsky (1986) found that 10-18% of 

clients improve prior to the first session, 48-58% o f clients improve after 8 sessions, 75% 

improve after 6-months, and 85% of clients can be expected to show improvements after 

a year of treatment. Kopta, Howard, Lowry, and Beutler, (1994) found that clients 

presenting with characterological symptoms must stay longer in treatment before 

achieving marked improvement. Barkham et al (1996) showed that the rate of 

improvement differs across participants and is a function of treatment characteristics, the 

clinical setting, and client characteristics. They also suggested that the rate of 

improvement increases steadily until a cutoff point, referred to as the “good enough 

level”, was reached. These findings appear consistent with those offered by Swift and 

Greenberg (2012). In their analysis, those presenting with eating disorders or personality 

disorders were higher risk for PT when compared against clients presenting with mood, 

psychotic, or anxiety disorders. This finding could have implications for PT researchers 

by accounting for clients receiving long-term treatment are also at higher risk of PT. 

Results from this vein of research also suggests that as clients pass through the stages of 

treatment (remediation, remoralization, and rehabilitation), therapeutic gains are affected 

by the nature of the problem, unique characteristics of the client, and characteristics of
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improvement will begin to decelerate. These findings are also consistent with prior 

research reporting that clients may withdraw from treatment once the crisis has been 

resolved or they have achieved a level of recovery sufficient for them to decide that no 

further treatment is necessary (Baekeland and Lundwall, 1975; Garfield, 1978/1994; 

Koss, 1979; Pekarik, 1985; Phillips. 1985). An examination o f these findings appears to 

suggest that the decision to withdraw from treatment may be due to clients achieving 

acceptable gains and deeming further therapy unnecessary, and that the decision to 

remain in treatment is impacted by different variables dispersed along the EOC. The 

purpose of this investigation is to determine how client variables impact the decision to 

withdraw from services as treatment progresses.



CHAPTER THREE 

Methodology

Chapter three provides a detailed account o f the methodological procedures used 

to conduct this analysis. This study is descriptive in nature to illustrate the clinical utility 

of the CCAPS-34 in predicting PT among service recipients in a college counseling 

center. This section will document the purpose of this study, the research questions and 

hypotheses, research design and rationale, participants, sampling procedures, data 

analysis procedures, variables, instrumentation, threats to internal and external validity, 

limitations, and delimitations.

Purpose

This study investigated the capability of the CCAPS-34 and variables identified in 

the PT literature for differentiating between completers and dropouts. This study also 

analyzed the risk of PT in a UBC as treatment progresses along the EOC. Finally, this 

study investigated the development of a practically useful model capable o f helping 

clinicians identify clients at the greatest risk of PT.

Research Questions

Research Question 1

What combination of variables assessed by the CCAPS-34 and identified in the 

PT literature will best differentiate between completers and dropouts among clients 

seeking services in a UBC?

Hypothesis

In a UBC sample, completers and dropouts will not differ along the dimensions 

measured by the CCCAPS-34 or outlined in the PT literature.
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Research Question 2

Do variables measured by the CCAPS-34 and identified in the PT literature 

increase the risk of PT along the episode of care among clients seeking services in a 

UBC?

Hypothesis

The covariates measured by the CCAPS-34 and identified in the PT literature will 

not increase the hazard of PT as the client progresses along the EOC.

Participants -

This analysis relied upon archival data, gathered since 2009, from the counseling 

and psychological services (CAPS) center housed within Old Dominion University. The 

researcher analyzed student protected health information (PHI) using a priori criteria to 

determine suitability for participation in the study. The inclusionary criteria required that: 

1) All participants must have been enrolled as either undergraduate or graduate students 

while receiving services or be employed through the university in a staff or faculty 

position; 2) All participants must have received mental health counseling services in the 

UBC clinic where investigators will collect and analyze the data; 3.) All participants must 

have signed a written consent form agreeing that their records may be used for future 

research prior to initiating counseling services; 4.) Service recipients must have begun 

services after the CCAPS-34 was implemented in daily practice by clinic staff. 5.)

Clients who receive an intake but do not meet criteria for counseling services will be 

excluded. 6.) Participants receiving couple or group counseling services will also be 

excluded.



66

Data Collection

All data was collected from Old Dominion University’s (ODU) Office of 

Counseling Services (OCS). The OCS program is located in the Webb Center on ODU’s 

main campus. Therapeutic providers offer time-limited, non-manualized counseling 

services for individuals, groups, and couples. These services are designed to provide 

students with support when facing personal, academic, or career-related issues. This 

study drew from a sample of undergraduate and graduate students enrolled in ODU who 

have received-counseling services in the OCS program. This sample was used to develop 

predictor models that explain early treatment withdrawal in UBC’s. This investigation 

relied on archival data collected during routine treatment services. The principal 

investigator did not have direct contact with participants and no experimental 

manipulation was applied. A data collection research assistant (employed by the OCS 

program) examined electronic health records under supervision from the counseling 

center director. All data was recorded using a codebook developed for this investigation. .

Precautions were developed to ensure client information is protected. All data was 

anonymized and secured to protect participants from violations of privacy and/or 

breaches of confidentiality. No identifying information was used in the analysis such a s , . 

employer names, relatives names, university identification numbers, home addresses, e- 

mail addresses, social security numbers, emergency contact information, or telephone/fax 

numbers.

After receiving approval from the Institutional Review Board (IRB), data was be 

collected through a search of student protected health information (PHI) securely 

maintained by the OCS. The following guidelines were used to prevent any inappropriate
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or unintended disclosure of student PHI: 1.) All data collection was conducted onsite by a 

research assistant employed by the principal investigator; 2.) All identifiable information 

was removed from the codebook and subsequently mailed to the principle investigator for 

analysis. All data was anonymized prior to leaving the clinic and direct access to student 

files was prohibited for anyone other than OCS employees.

Instrumentation

Counseling Center Assessment of Psychological Symptoms - 34 

The CCAPS-34 is 34-item, multi-factorial symptom checklist designed to gather 

data describing the mental health needs of college students, while still maintaining 

functional clinical utility for practitioners (Locke et al, 2012). According to the CCMH 

(2010), the CCAPS-34 uses scores measured along a 5-point Likert-type rating scale {not 

at all like me to extremely like me).

The CCAPS-34 is the short form version of the Counseling Center Assessment for 

Psychological Symptoms -  62 (CCAPS-62). Researchers began receiving requests for a 

shortened version that would allow for multiple administrations (Locke et al, 2012).

Using classical test theory (CTT) and item response theory (IRT) methods, researchers 

measured the performance of each item as it related to the target construct (for a detailed 

description of the procedures see Locke et al, 2012). This narrowing process allowed 

researchers to remove items without reducing the measurement properties of each 

subscale.

During a large-scale validation study, researchers used Cronbach’s a  to assess 

for internal consistency. Reliability estimates ranged from.822 to .915 on the CCAPS-62 

and from .824 to .876 on the CCAPS-34 (CCMH, 2010). The following table depicts: 1)
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the internal consistency values for each subscale on the CCAPS - 34, 2) the number of 

items contained in each subscale, and 3) the range of internal consistency values 

identified by Ponterotto and Ruckdeshel (2007) representing the adequacy of reliability 

estimates.

Table 1

Internal Consistency o f  the CCAPS-34

Subscale # of Items Adequacy Estimates*
Depression .876 6 Excellent .85
(#=19,247) Good .80

Moderate .75
Fair .70

Generalized Anxiety .825 6 Excellent .85
(#=19,247) Good .80

Moderate .75
Fair .70

Social Anxiety .824 5 Excellent .85
(#=19,247) Good .80

Moderate .75
Fair .70

Academic Distress .824 4 Excellent .85
(#=19,247) Good .80

Moderate .75
Fair .70

Eating Concerns .890 3 Excellent .85
(#=19,247) Good .80

Moderate .75
Fair .70

Hostility .843 6 Excellent .85
(#=19,247) Good .80

Moderate .75
Fair .70

Substance/Alcohol Use .826 4 Excellent .85
(#=19,247) Good .80

Moderate .75
Fair .70

Test -  retest reliability estimates after 1 week (n=86) ranged from .792 to .866 and 

from .742 to .864 after 2 weeks («=47; Locke et al, 2012). Construct validity was
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assessed using a Confirmatory Factor Analysis (CFA). The reported model fit statistics 

lent support to the hypothesized factor structure (SUB[3(506) = 1096.05P  <.001; 

CFI-.98; NNFI=.98;RMSEA=49 [Cl 90% (.045, .O53)];SRMR=.063).

Convergent validity was examined by comparing the performance on each 

subscale of CCAPS-34 to an established psychometric measure including: The Alcohol 

Use Disorders Identification Test (AUDIT, Saunders, Aasland, Babor, de la Fuente, and 

Grant, 1993), Beck’s Depression Inventory (BDI; Beck, Ward, Mendelson, Mock, and 

Erbaugh, 1961), the Beck Anxiety Inventory (BAI; Beck, Epstein, Brown, Steer, 1988), 

Social Phobia Diagnostic Questionnaire (SPDQ; Newman, Kachin, Zuellig, Constantino, 

& Cashman-McGrath, 2003), the Student Adaptation to College Questionnaire (SACQ; 

Baker, & Siryk, 1984; Baker, & Siryk, 1986) , the Eating Attitudes Test (EAT-26; Gamer 

& Garfinkel, 1979, Gamer, Olmstead, Bohr, & Garfinkel, 1982; Mintz & O ’halloran, 

2000), State-Trait, Anger Expression Inventory-2 (STAXI-2; Spielberger, 1999), Self- 

report Family Inventory (SRFI; Beavers, Hampson, & Hulgus, 1985; Beavers, Hampson, 

& Hulgus, 1990).
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Table 2

Comparison o f  CCAPS-34 Subscales to existing assessment tools

CCAPS -  34 Subscale Corresponding Psychometric Instrument

Alcohol Abuse Alcohol Use Disorders Identification Test (AUDIT)

Depression Beck’s Depression Inventory (BDI)

Generalized Anxiety Beck Anxiety Inventory (BAI)

Social Anxiety Social Phobia Diagnostic Questionnaire (SPDQ)

Academic Distress Adaptation to College Questionnaire (SACQ)

Eating Concerns Eating Attitudes Test (EAT-26)

Hostility State-Trait Anger Expression Inventory (STAXI-2)

A non-clinical sample o f 483 undergraduate students (mean age of 18.49) who received 

course credit for participation was used for the analysis. The Pearson product moment 

correlations between the corresponding instruments ranged from .520 (the Eating 

Concerns subscale with he EAT-26) to .77 (the Alcohol Abuse subscale and the AUDIT; 

Locke et al 2012). The measurement properties for the CCAPS-34 reported by Locke et 

al (2012) suggest that this instrument will be suitable for this investigation. The 

performance for each subscale of the CCAPS-34 will be assessed prior to the data 

analysis and compared against the psychometric properties discussed above.

Procedures 

Outcome Variable

For this investigation the dependent variable under study was treatment status 

(TS). TS represented a binary variable comprised of two categories: PT or Completed.
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Dummy coding was used to categorize clients into either group. Completer will be 

dummy coded as 0 and PT will be coded as 1.

PT represents (1) a conscious decision by the client to leave treatment, (2), 

resulting in the discontinuation of counseling against the therapist’s recommendations, 

and (3) divergent from the originally agreed upon duration of treatment. PT was defined 

as a client-initiated, withdrawal from therapy prior to achieving the treatment goals 

mutually agreed upon between the client and counselor (Baekeland & Lundwall, 1975;

' Wierzbicki & Pekarik, 1993; Garfield, 1978/1994; Hatchett and Parks, 2003, 

Ogrodniczuk, Joyce, and Piper, 2005; Coming, Malofeeva & Bucchianeri, 2007). As 

recommended by Swift and Greenberg (2012), this investigation used two methods for 

categorizing clients as completers or dropouts: missed last session criteria and therapist 

judgment. Using these procedures PT was characterized by one who (1) fails to schedule 

or attend any subsequent appointments, and (2) the counselor determines that treatment 

was discontinued. Withdrawal from treatment must occur before treatment goals have 

been achieved and before reaching the mutually agreed upon number of sessions.

Completion of treatment was defined by one of the following criteria: (1) Client 

and counselor mutually agreed that treatment goals have been completed. (2) Client 

remained in counseling until the maximum number o f sessions had been reached. (3) 

Client was referred to an external mental health provider following completion of the 

maximum 12 sessions. (4) Client and counselor agree that no further appointments are 

necessary.

Design

A non-experimental design methodology was selected as this investigation seeks



to observe naturalistic events without the manipulation of an independent variable 

(Johnson, 2001; Wiersma and Jur 2009). This study is observational in nature and will 

rely on convenient sampling procedures to examine archival data collected from college 

students receiving services in a UBC. According to findings reported by Swift and 

Greenberg (2012), the rate of PT in UBC’s was approximately 30.4% (95% Cl [26.6%, 

34.4%]). The base termination rate reported by Swfit and Greenberg (2012) was used to 

compare results from this analysis against an empirically derived benchmark.

Data Analysis ?

As mentioned above, these analyses modeled the capability o f the CCAPS-34 and 

variables identified in the PT literature in differentiating between completers and 

dropouts. To overcome concerns cited in the literature regarding inadequate analytic 

techniques, this investigation implemented various statistical procedures commonly used 

in medical research. The analytic strategy for research question 1 drew from the 

methodological procedures introduced by Lampropolous, Schneider, and Spengler (2009), 

while the analytic strategy for research question 2 drew from the techniques used by 

Coming and Malofeeva (2004). Analyses were conducted using EQS, SAS 9.3, and the 

Statistical Package for the Social Sciences (SPSS) version 20.0.0.

For this analysis, variables identified in the PT literature and the subscales 

measured by the CCAPS-34 were used to derive a model capable of predicting group 

membership. All data was collected through a search of electronic client records and 

recorded using the coding sheet listed under Appendix A.

This analysis examined the following predictor variables drawn from the PT 

literature age, gender, marital status, academic status, race/ethnicity, and functional
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client scores on the Global Assessment of Functioning (GAF) scale obtained during 

intake (APA, 2000; Endicott, Spitzer, Fleiss, and Cohen, 1976). To measure the influence 

of symptom severity on PT, the following clinical variables measured by the CCAPS-34 

were evaluated: GA, Depression, Social Anxiety, Academic Distress, Eating Concerns, 

Hostility, and Substance/Alcohol Use. Treatment status serveed as the criterion/grouping 

variable and comprised two levels: completers and dropouts (see Appendix B for the list 

of variables included in the analysis and a detailed codebook).

Research question 1. This analysis took place in 4 phases: 1) Building the 

Logistic Regression Model (Hosmer and Lemeshow, 2004), 2) Fitting the Logistic 

regression model to the data, 2) Growing a classification and regression tree (CART), and 

3) Comparing the predictive accuracy for each model along the Receiver Operating 

Characteristic (ROC) Curve.

Logistic regression analysis. First, the data was modeled using a binary logistic 

regression (LR) analysis. Because LR techniques are informed by the general linear 

model they offer different modeling techniques compared to those underlying the 

Classification and regression tree (CART) methods. According to Raubertas, Rodewald, 

Humiston, and Szilagi, (1994), neither technique consistently produces superior estimates 

of group membership in comparison studies. By comparing the predicted probability of 

group membership (propensity scores) along an ROC plot, this analysis attempted to 

determine which model is more accurate in predicting group membership for this sample. 

Odds ratios, the log-likelihood, standard errors, the Wald statistic, the Hesmer-Lemeshow 

goodness of fit index, and the chi-square goodness o f fit indexes from the LR analysis
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will be examined to determine which covariates can be removed to derive an optimal but 

parsimonious model.

To obtain the best fitting model, the purposeful selection macro written for SAS 

9.3 was used to systematically narrow the field of covariates (Bursae, Gauss, Williams, & 

Hosmer, 2007; Hosmer and Lemeshow, 2002). Results from the model-building 

procedure identified SA, GA, and GAF as important contributors. The purposeful 

selection procedure entered all explanatory variables (e.g. age, gender, marital status, 

academic status, race/ethnicity, functional impairment, Depression, Generalized Anxiety, 

Social Anxiety, Academic Distress, Eating Concerns, Hostility, and Alcohol Abuse) into 

a series of univariable logistic regression models. Explanatory variables with a p  value 

< .25 were retained for the analysis. Using the remaining variables, a series o f multiple 

logistic regression models were fitted to the data. The purpose of this step was to examine 

each variable’s influence on overall model fit when other covariates are included in the 

analysis. Because Generalized Anxiety, Social Anxiety, and Functional Impairment were 

shown to alter model fit when removed, these variables were retained. Finally, all 

covariates are analyzed for interactions effects and entered into the model. No interaction 

effects were noted. Propensity scores were calculated to compare specificity and 

sensitivity estimates between the LR and CART models.

Classification and regression tree (CART) analysis. The classification and 

regression tree (CART) methods were used to differentiate completers from dropouts. 

Because predictive discriminant analysis (PDA) assumes that the independent variables 

operate on a continuous scale (Henington, 1994; Keith, 2006), CART methods were 

selected in order to account for categorical independent variables. CART modeling is an
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exploratory multivariate technique drawn from the data mining literature. It is used to 

identify the relationships between variables and assists researchers in deriving decision­

making algorithms (Fawcett, 2006). The goal of this analysis was to provide identify 

common characteristics shared by clients who prematurely terminate services.

CART Modeling is a recursive partitioning technique (Kieman et al, 2002).

CART methods are appropriate in this investigation for two reasons. First, recursive 

partitioning methods are exploratory techniques useful for generating new hypotheses as 

opposed to hypothesis testing strategies often employed in counseling research (Kieman 

et al, 2000). Because there is no theoretical foundation or firm empirical conclusions 

available in the literature, a systematic approach is needed to inform the variables 

included in the hazard model. Also, recursive partitioning models are sensitive to 

misclassification (i.e. false positives, false negatives; Kieman et al, 2000).

Classification and regression tree (CART) are relatively new methods that offer 

an alternative approach for differentiating between groups (Finch and Schneider, 2006). 

CART modeling is a nonparametric statistic, which uses iterative techniques to divide 

participants into homogenous groups based on the relationships between the IV and DV. 

The groups are divided even further, with subsequent iterations, until a stopping point 

criterion is reached (Kieman, Kraemer, Winkleby, King, and Barr, 2001; Finch and 

Schneider, 2007). The stopping point is achieved when there aren’t enough participants in 

each node to warrant further partitioning, or if all participants in the node fall under one 

homogenous group (Raubertas, Rodewald, Humiston, and Szilagyi, 1994).

The analysis began with all participants in a primary node. The modeling package 

then mathematically divided the initial node into two homogenous groups. This analysis
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DV was targeted for further partitioning (Raubertas, Rodewald, Humiston, and Szilagyi, 

1994). With each step during the analysis, more nodes were created until no additional 

improvements to the model could be made through subsequent partitioning.

CART modeling has been successfully applied in DNA sequencing, medicine, 

genetics, epidemiology, and psychological research (Stobl, Malley, and Tutz, 2009). 

CART modeling produces a decision tree referred to as a dendogram (Lampropoulous, 

Schneider, and Spengler, 2009). The resulting dendogram can be used to understand how 

various deviations among the independent variables relate to the outcome variables. For 

example, Lampropopolous, Schneider, and Spengler (2009) investigated predictors of PT 

in graduate training clinics. Results from their analysis produced the following CART 

dendogram. Interpretation of the model suggests that clients younger than 40.5, with an 

annual income below $20,000, and a GAF score < 49 at intake are not likely to remain in 

treatment. However, those who were most likely to complete treatment, presented with an 

annual income < $20,000, were younger than 23.5 years old, and received an intake GAF 

falling between 72.5 and 83.5. These findings suggest that functional impairment was an 

important factor discriminating between the completer and dropout groups.
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Age < 40.5 years

Age < 23.5 yearsG A F  <  4 9

Low Difficulty

Income < $20,000

GAF < 72.5

G A F  < 8 3 .5

Figure 6. Sample Dendogram. From, “Predictors o f early termination in a university 

counseling training clinic” by G. Lampropolous, M. Schneider, and P. Spengler, 2009, 

Journal o f  Counseling and Development. 87, p. 41. Copyright by John Wiley & Sons, Inc. 

Reprinted with permission (see Appendix K).

Practical decision-making algorithms can be produced by analyzing the 

dendogram outputs. The final step will use propensity scores derived from the logistic 

regression analysis to make comparisons with propensity scores derived from the CART 

model. The ROC analysis was used to compare the model characteristics between the 

Binary logistic regression model and CART model.

Receiver operating characteristic (ROC) analysis. Receiver operating 

characteristic (ROC) analyses have become popular in the health science literature for 

measuring the accuracy of medical diagnostic tests and relies on Signal Detection theory 

(SDT) to compare the probability of correctly identifying someone with a disease against 

the tests’ capability of identifying a patient who is healthy. (Pintea and Moldovan ,2009). 

SDT is an analytic technique developed by researchers studying psychophysics, cognitive 

psychology, engineering, and statistics (Link, 1994). According to Agras et al (2000)
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Signal Detection (SD) is also well-established procedure in epidemiology and medical 

research.

For this analysis, the signal was represented by a dichotomous outcome variable 

(i.e. dropout or completer) and detection refers to the IVs predicting group membership. 

Signal detection compares propensity scores based on the statistical model to outcome 

events observed in the data (see figure 3.2 below). Because PT is the target variable 

under investigation Dropout will be identified as a positive result and Completed will be 

identified as a negative result.

Table 3

2X2 Confusion Matrix (Fawcett, 2005)

Results
Dropout Completed Total

T 3
<D■w
o

Dropout Hit
True Positive [TP]

Miss
False Positive [FP] T+

-3
<D

Oh Completed Miss
False Negative [FN]

Hit
True Negative [TN] T-

Total D+ D-

The statistical package calculated the model’s accuracy in predicting the 

probability of group membership. Metrics required to plot the accuracy of a diagnostic 

test along an ROC curve are specificity, sensitivity, positive predictive value (PPV), and 

the negative predictive value (NPV). Sensitivity and specificity measure the predictive 

capability of the model while the PPV and NPV represent the probability that the 

outcome will occur (Linden, 2005). Sensitivity is the probability for correctly predicting 

treatment dropouts, and Specificity refers to the probability of correctly predicting that
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clients will complete treatment (Raubertas et al, 1994). PPV is the probability that a 

client will drop out when they are classified as dropouts, and NPV refers to the 

probability that a client will remain in treatment when classified as completers (Pintea 

and Moldovan, 2009).

The ROC curve provides a visual representation for the number of “hits” or 

“misses,” observed between the predicted estimates and the sample data (see figure 3.3). 

The ROC is divided in half by a reference line representing a test whose capability for 

discriminating between groups is no better than chance. Because the reference line - 

represents the null hypothesis, for a test to be meaningful the plots should fall well 

toward the northwest comer of the ROC space (Pintea and Moldovan, 2009). ROC curves 

have a lower bound of 0 and have an upper bound of 1 meaning that the areas above and 

below the reference line are equal to .50 (Swets, 1988). In order to interpret the adequacy 

of a model in distinguishing between groups, a statistic referred to as area under the 

curve (AUC) is used. An AUROC ranging from .5 to .7 is regarded as having low 

accuracy, from .7 to .9 is considered moderately accurate, and > .9 is highly accurate 

(Steiner and Caimey, 2007). This analysis will plot classifier performance in the ROC 

space. More simply, the predicted group membership derived from the logistic regression 

analysis and CART models were compared against the observed values in the dataset 

(Fawcett, 2006).
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| Figure 7. ROC space example

Research question 2. This analysis modeled the influence of the predictor 

variables on PT. A Discrete-Time Cox Proportional Hazards (PH) model was used to 

estimate the influence of the model on the risk of PT as an individual progressed along 

the EOC. Cox PH modeling falls under the family o f survival analytic techniques often 

used in the medical and health sciences. In the analysis discussed above, treatment status 

(TS) was the target DV and comprised two levels: dropout and completer. Under this 

statistical model, the DV represented the time until a client drops out o f treatment. The 

analysis measured the effect of the predictor variables on the time until a client either 

completed or withdrew from treatment. This section will describe the observation period 

and a brief summary of survival analytic techniques.

Observation period. This analysis measured the risk of PT as treatment 

progressed along the EOC. Treatment began during the initial intake and proceeded until 

the maximum number of 12 allotted sessions has been reached. Time represents a discrete
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variable measured at one-week intervals. Dummy coding was used to represent each 

session.

The data was drawn from archival data set collected since 2009. Because entry 

participation in the study was not dependent upon a designated observation period clients 

who entered treatment at different times were analyzed as one group. This strategy 

eliminated left censoring within the data as all clients had either completed or withdrew 

from treatment prior to analysis. Censoring is a unique feature in survival analysis that 

refers to cases where researchers are missing the exact time when the event occurred 

(Kleinbaum and Klein, 2010). Missing event data on the right side of the observation 

period is called right censored whereas data missing on the left side o f the observation 

period is known as left censored (Allison, 1984). Kleinbaum and Klein (2010) suggest 

that right censoring is the most common. Some examples of right censoring occur when 

participants remain alive at the end of the data collection period or withdraw prematurely 

from the research study. Left censoring refers to instances where, the true survival time is 

less than or equal to the observed survival time (Kleinbaum and Klein, 2010). This may 

occur when researchers observe a positive diagnostic test during data collection but are 

unsure when individual was truly infected with a disease. Survival analysis uses special 

corrections to address different censoring issues within the dataset (Allison, 1984).

Survival analysis. Coming and Malofeeva (2004) advocated for the use Survival 

Analysis (SA) techniques when researching premature termination as such procedures 

may improve the precision and interpretability of the research findings. They propose this 

because psychotherapy is a longitudinal process (i.e. occurring over a period of 6 -  12 

sessions), data analysis procedures must account for changes, trends, and patterns
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observed across the episode of care. SA techniques appear to offer a potential resolution, 

as these analytic methods statistically model the time until the occurrence of an event 

(Allison, 1984/2010; Kleinbaum & Klein, 2005).

S A techniques are referred to by various names throughout the literature 

including: event-history analysis, survival analysis, hazard analysis, failure time analysis, 

transition analysis, and duration analysis (Allison, 2010). For example, biostatisticians 

employ SA procedures to model the progression of a disease, from initial onset until the 

occurrence of death (Mapp, Hardcastle, Moss, & Robinson, 1999). Additionally, 

engineers may conduct a failure-time analysis to measure the log time until mechanical 

failure when machinery is exposed to environmental stress (Joyce, Gaffney, Kher, & 

Wilson, 2009). Readers can reference additional examples of these techniques across the 

literature as applied to medicine (Hakemi et al, 2010), education (Scarborough, Hebbeler, 

Spiker, & Simeonsson, 2011), economics (Mehmet, 2011), and psychology (Krebs,

Strom, Koetse, & Lattimore, 2009). A number of studies implementing SA procedures to 

examine the topic of PT have emerged in the existing professional literature (Coming, & 

Malofeeva, 2004; Coming, Malofeeva, & Bucchianeri, 2007; Giese-Bloo et al, 2006; 

Jimenez-Murcia et al, 2007; Woodside, Carter, & Blackmore, 2004). A number of 

doctoral dissertations introduce SA techniques for research examining PT (Chasson,

2008; Ozanian, 2003; Patra, 2007; Sim, 2007; Wolfson, 2007). Despite broad application 

across various scientific disciplines, few studies are found in the professional literature 

where SA procedures are used to specifically examine PT among students seeking 

services in a UBC.



SA is a family of sophisticated analytic techniques used to model how a series of 

explanatory variables impact the occurrence of an event along an interval of time (Allison, 

1984/2010; Kleinbaum & Klein, 2005; Muthen & Masyn, 2005). SA attempts to model 

the time until the occurrence of an event by treating time as either discrete or continuous 

(Allison, 2010; Singer & Willet, 1993; Willett & Singer, 1993). According to Allison 

(1984), although time is always measured in discrete units (i.e. milliseconds, seconds, 

minutes, hours, days, weeks, years, decades etc.), when time intervals are narrow and 

precise, they can be treated as continuous. In contrast, discrete units represent cases 1 

wherein the measurement of time is broad, and narrow intervals are unavailable. It can be 

difficult to measure time along continuous intervals in the social and behavioral sciences 

and researchers have underscored the utility o f discrete-time SA for research in both 

educational and clinical settings (Lesick, 2007; Muthen & Masyn, 2005; Singer and 

Willett, 1995; Willett & Singer, 1993). Using discrete versus continuous-time methods 

yield similar findings and the selection between approaches depends more upon 

convenience and cost rather than statistical precision. (Allison, 1984).

Associated with SA are the Cox PH models used to measure the risk that an event 

will occur .within the observation period (Allison, 2010). Cox PH modeling is a popular 

approach to statistical analysis that yields findings interpreted similarly to Ordinary Least 

Squares (OLS; Kleinbaum and Klein, 2005). Output statistics are interpreted using 

regression coefficients, standard errors, p values, and the hazard ratio, and relies on 

maximum likelihood (ML) estimation to calculate model coefficients. Because of this 

the Wald Statistic and log likelihood ratio (LR) are used in place of the unstandardized 

regression coefficients (b) and R2 respectively (Field, 2009; Kleinbaum and Klein,



20005). Simulation studies suggest that the LR analysis produces more accurate estimates 

when compared against the Wald statistic (Kleinbaum and Klein, 2005).



Chapter 4 

Results

This study explored how variables identified in the PT literature and clinical 

variables measured by the CCAPS-34 influenced early treatment withdrawal in a 

University Based Clinic (UBC). This investigation used binomial logistic regression to 

build a model capable of differentiating completers from dropouts; Classification and 

Regression Trees (CART) were used to examine how the variables under study interact to 

differentiate completers from dropouts; and survival analysis techniques were used to 

model how the risk of PT fluctuates as clients progress along the Episode of Care (EOC). 

The purpose of this chapter is to present the findings from these analyses.

Data Preparation

Sample Characteristics. Table 4 presents the demographic characteristics for 

gender, race/ethnicity, residency, and academic status of this sample (n=285). The 

majority of participants (62.5%; n=T78) were female and 54.4% (n=155) were Caucasian. 

Ages ranged from 18 -  56 (n = 282; 3 missing values), with a mean age o f 22 (Range= 18 

-  25 y/o, SD= 4.53, Variance= 20.525, Median = 21, Mode = 21). Ninety-four percent (n 

= 269) of participants were domestic students and 2.4% (n = 7) of participants were 

international students (9 cases missing from the analysis). The majority of the students 

(56.8%; n=162) were single and 38.6% (n=l 10) were seriously dating/in a committed 

relationship. Most participants were upper classmen with 27.7% (n=79) juniors and 

23.2% (n=66) were seniors. Approximately 35 % were either sophomores (n=53) or 

freshmen (n=49). The remaining participants were graduate/professional students 

(11.9%) or non-degree seeking students (n=2). Most of the sample (57.9%) lived off-



campus in an apartment/house, 40.7% lived on campus, 1.1% (n=3) shared a house on/off 

campus with other students, and .4% (n=l) lived in a fraternity/sorority house.

Table 4

Demographic Characteristics
Variable N %
Gender (N=285)
Male 107 37.5%
Female 178 62.5%
Race/Ethnicity (N=284)
Caucasian 155 54.4%
African American/Black 80 28.1%
Multi-Racial 18 6.3%
Asian-American/Asian 14 4.9%
Latino(a)/Hispanic 11 3.9%
Other 3 1.1%
Hawaiian/Pacific Islander 2 .7%
Alaskan Native 1 .4%
Residency Status (N=276)
Domestic 269 94.4%
International 7 2.4%
Academic Status (N=283)
Freshman 49 17.2%
Sophomore 53 18.6%
Junior 79 27.7%
Senior 66 23.2%
Graduate/Professional Student 34 11.9%
Non-Degree Seeking 2 .7%

For this investigation PT was characterized by one who (1) fails to schedule or 

attend any subsequent appointments, or (2) the counselor determines that treatment was 

discontinued. Withdrawal from treatment must occur before treatment goals have been 

achieved and before reaching the mutually agreed upon number of sessions. Completion 

of treatment was defined by one of the following criteria: (1) Client and counselor 

mutually agreed that treatment goals have been completed. (2) Client remained in 

counseling until the maximum number of sessions had been reached. (3) Client was
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referred to an external mental health provider following completion of the maximum 12 

sessions. (4) Client and counselor agree that no further appointments are necessary.

Students in the sample completed a mean of 2.46 sessions (Median=2, Mode=0, 

SD=3.1). A one-way analysis of variance (ANOVA) was conducted in SPSS 20.0 to 

determine if the average number of completed sessions differed between completers and 

dropouts (F [l,281]=34.440, p  < .05, =.11). Results indicated that clients who

completed treatment (n= 116) attended an average of 3.71 sessions (SD= 3.753,

SE= .275; 95% Cl [3.17, 4.25]), whereas clients who prematurely withdrew (n=167) from 

services attended an average of 1.61 sessions (SD= 2.26, SE= .23; 95% Cl [1.16, 2.06]). 

An examination of the confidence intervals suggests that the mean difference is 

statistically significant. Hansen, Lambert, and Forman (2002) reported that the mean 

number of sessions attended by clients in UBCs was 5.8 (Median= 4; SD-5.2). Because 

the results for this sample deviated from Hansen et al.’s findings, the rate of treatment 

withdrawal was examined. Figure 8 presents the decay curve observed in this sample.

The x-axis depicts the session number while the y-axis represents the percentage of 

clients withdrawing from treatment. The results indicated that the percentage of clients 

withdrawing from treatment at each session appeared to follow a negatively accelerating^ 

attrition curve with 61.97% of clients terminating after the initial visit, 34.51% after the 

3rd session, and 13% withdrew after the 6th session.
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Figure 8. Decay/Attrition Curve

Participant scores on the GAF had a mean o f 63.77 (Median=64, Mode = 60, 

80=6.284) and a range of 42 (Max=84 [.4%], Min=42[.4%]). These findings appear 

consistent with Kettman et al (2007) who conducted a 7 -  year longitudinal study 

(n=827) documenting trends in the severity of mental health issues treated in UBC’s. 

Results from their analysis produced a mean GAF score of 63.95 (SD=6.81). The 

dispersion of GAF scores were normally distributed across this sample (Skewness=.020, 

Kurtosis=.409). The modal number of psychiatric diagnoses was 2 (Median=2.04) with a 

range of 5 (Max=5, Min=0), and the dispersion was also normally distributed for this 

sample (Skewness= .491, Kurtosis=-.296). The treatment status variable indicated that 

58.9% (n=168) of participants prematurely withdrew from treatment (dropout) and 40.7% 

(n=l 16) completed services (Completion; 1 missing case). The rate of PT in this sample 

approached findings reported by Pekarik and Wierzbicki (1993; 46.86%; 95% CI=[42.9,
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50.82]) while surpassing the average termination rate (30.4%; 95% Cl [26.6, 34.4]) 

reported by Swift and Greenberg (2012). These divergent findings suggest a need for 

replication studies to examine predictors of PT using large-scale, multi-site samples 

specifically targeting termination rates in UBC’s.

CCAPS-34 Calibration. A series o f Confirmatory Factor Analyses (CFA) were 

conducted on the study sample (n = 285) using EQS 6.2 software (Bentler and Wu, 2012). 

Each scale measured by the CCAPS-34 was examined to ensure the measurement 

properties were performing adequately with this dataset (Dimitrov, 2010). Because the 

CCAPS-34 is not designed to produce a total score, individual CFA’s were examined for 

each subscale. Also, a multi-factorial CFA was used to examine a 7-factor model 

(comprising 7 subscales measured by the CCAPS-34) for comparison with the validation 

study published by Locke et al (2011).

Maximum likelihood (ML) methods were used to estimate model parameters. The 

robust estimation function in EQS 6.2 was used to accommodate for deviations from 

multivariate normality (Bentler, 2006). All missing data were corrected using the ML 

estimation function in EQS 6.2. Additionally, all factor loadings were scaled to 1 and 

error terms were not permitted to correlate with one another (Byme, 2006; Kline, 2010; 

Locke et al, 2011). Finally, to achieve an acceptable balance between Type I and Type II 

error rates, Hu and Bentler (1999) recommended that researchers use .6 as the minimum 

cutoff for RMSEA and .95 as the minimum cutoff for NFI, NNFI, CFI, and IFI. The 

following fit indices are referenced in this analysis: the Satorra-Bentler (S-B) (Satorra 

and Bentler, 2010), the Bentler-Bonnett Normed Fit Index (NFI; Bentler & Bonnett,

1980), the Bentler-Bonnett Nonnormed Fit Index (NNFI; Bentler & Bonett, 1980), the
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Comparative Fit Index (CFI; Bentler, 1990), Bollen’s Incremental Fit Index (IFI; Bonnett, 

1989), and McDonald’s Fit Index (MFI; McDonald, 1989), and the Root-Mean-square 

Error of Approximation (RMSEA; Steiger & Lind, 1980). Table 5 depicts the results 

from the confirmatory factor analyses. Using the minimum cut off criteria recommended 

by Hu and Bentler (1999), Depression, Academic Distress, and Alcohol Abuse exhibited 

adequate model fit where as Generalized Anxiety, Social Anxiety, and Hostility fell 

below the recommended values.

Table 5

CCAPS— 34 Subscale fit indices
# S-B J NFI NNFI CFI IFI MFI RMSEA

DEP 9 47.70** .941 .918 .951 .951 .934 .123 .869
GA 9 76.99** .857 .784 .870 .872 . 8 8 8 .163 .805
SA 9 88.32** .808 .629 .815 .817 .864 .242 .775
AD 2 12.95** .974 .934 .978 .978 .981 .139 .816
EC* 0 - - - - - - - .877
HOS 9 61.09** .830 .748 .849 .852 .912 .143 .763
AA 2 7.18** .969 .931 .977 .978 .991 .096 .846
*The EC subscale produced a just-identified model that fully explained the variance 
in the data. No model fit indices could be derived from the analysis.
**p < 0 1

A 7-factor model was examined to test the performance of the CCAPS-34 with 

this sample. Table 6  compares model fit statistics derived from this analysis against those 

reported by Locke et al (2011). The normalized Mardia’s coefficient was 35.549, 

suggesting that the robust function in EQS would be necessary to adequately estimate 

model parameters. Results from this analysis were S-B (506) =1168.613 p < .001,

NF1= .762, NNFI= .831, CFI = .841, IFI=.849, MFI=.310, and RMSEA= .068 (90% Cl 

[.063, .073]). Cronbach’s alpha for the CCAPS-34 was .898. Using the minimum cut off 

criteria recommended by Hu and Bentler (1999), these results suggest that the CCAPS-34
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underperformed with this sample and results from this investigation might be an artifact 

of instrument bias.

Table 6

Comparing Jit indices to Locke et al (2011)

Current Sample Locke et el (2011)
S-B 2(506) 1168.613* 1096.05*

NNFI .762 .98
CFI .841 .98
IFI .849 .98

MFI .310 —

RMSEA . .068 .049
*p< .0 1

Research Question 1

1. What combination of variables assessed by the CCAPS-34 and identified in the 

PT literature will best differentiate between completers and dropouts among 

clients seeking services in a UBC?

Hi: In a UBC sample, completers and dropouts will not differ along the 

dimensions measured by the CCCAPS-34 or outlined in the PT literature.

Logistic Regression Analysis. The logistic regression analysis was conducted 

using SPSS 20.0. Raw scores were calculated for each subscale and converted to 

normalized scores using procedures outlined in the CCAPS manual (CCMH, 2012). 

Results from the model-building procedure (outlined in Chapter 3) identified SA, GA, 

and GAF as potentially important contributors. Using these variables, a three-parameter 

(3-P) binomial logistic regression (BLR) model was fitted to the data. Results from the 

analysis indicated that the 3-P BLR for this sample was significantly different from the 

baseline model (LR 2(3)=15.358, p < .002; Additionally, an examination of the Hosmer- 

Lemeshow goodness of fit index (GFI) was non-significant (HL 2[8 ]= 4.508, p > .809)
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suggesting that predicted values derived from the model were not significantly different 

from the observed values. These findings suggest that the omnibus model was a 

significant predictor of PT. Because regression coefficients are difficult to interpret when 

using logistic regression (Osbome, 2012), the following formula offered by King (2008):

Percent change =100 (OR -  1) (1)

was used to calculate the percentage of change in odds ratios (OR; Osbome, 2006). Table 

7 depicts the regression coefficients derived from the logistic regression model. These 

findings suggest that for each one-unit increase in GA (OR=1.252; p > .05, 95% Cl [.951, 

1.649]) at intake, we can predict rates of dropout to increase by multiplicative constant of 

25.23%. Further, for each one-unit increase in SA (OR=.6 8 8 ; p  < .05, 95% Cl 

[.528, .897]) at intake, we can predict rates of dropout to decrease by 31.20%. Finally, for 

each one-unit increase in the GAF score (OR=.948; p  < .05, 95% Cl [.907, .991]) at 

intake, we can predict rates of dropout to decrease by 5.16%. Finally, although these 

findings suggest that the BLR model was statistically significant, its practical predictive 

utility in this setting is small (-2 log L= 363.091; C-S Pseudo R2~ .053; Nagelkerke 

Pseudo R2 =.072).

Table 7

Regression coefficients and Odds Ratios

B S.E d f Exp(B)
GAF -.053* . 0 2 2 1 .948
GA .225 .140 1 1.252
SA -0.374* .135 1 . 6 8 8

* p  < .05

Classification and Regression Tree (CART) Analysis. The purpose of this 

analysis is to profile interactions between predictor variables that can be used to 

differentiate between those participants who completed treatment from those who
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unilaterally terminated. CART methods were used to model clusters of variables that 

collaboratively influence the decision to prematurely terminate from counseling services 

(Kitsantas, Moore, & Sly, 2006).

Because percentile rankings can be used to streamline interpretation in clinical 

settings, each subscale was transformed using percentile tables available in the CCAPS 

manual (CCMH, 2012). Percentile rankings simplify the interpretation of the model 

allowing these findings to translate into clinical practice. Tree induction was performed 

using SPSS 20.0 software. All study variables were entered into the model 

simultaneously (e.g. Age, Race/Ethnicity, International Status, Relationship Status, 

Current housing status [on campus or off campus], academic status, GAF, DEP, GA, SA, 

AD, EC, HOS, and AA).

The primary root node (node 0) was partitioned to create two subsets based on 

scores derived from the SA subscale (Improvement = .014; see figure 5 for a visual 

depiction of this summary). The following child nodes were identified: 1.) Participants 

with scores below the 25th percentile (n=69; node 1); 2) Participants with subscale scores 

above the 25th percentile (n-215; node 2). A stopping criterion prevented any further 

partitioning in node 1. Results indicated that 73.9% (n=5.1) of participants in this node 

prematurely withdrew from treatment and 26.1% (n=18) successfully completed services. 

These findings suggest that if clients score below 1.00 on the SA subscale, they may be 

more likely to drop out of treatment. Of the 215 participants who scored above the 25th 

percentile, node 2 was further partitioned into two subsets (Improvement = .020). A score 

of 73.5 on the GAF was identified as the cutoff point dividing the subsample into: 1.) 

GAF < 73.5 (node 3); 2.) GAF > 73.5 (node 4). A stopping point criterion produced a



terminal node for participants in node 4 (n=T2). Results indicate that 91.7% (n=l 1) of 

participants in this node completed treatment and 8.3% (n=l) unilaterally withdrew from 

services. An examination of this pathway (e.g. root to node) suggests that clients who 

scored above 1.00 on the SA subscale and above 73.5 on the GAF, were more likely to 

complete treatment. Participants who scored below 73.5 on the GAF scale were 

partitioned into two additional child nodes based on scores derived from the HOS 

subscale (Improvement = .018). The recursive partitioning algorithm identified the 16.5th 

percentile as a decision rule. A terminal node was observed for participants who scored
jL

below the 16.5 percentile (n=34; node 5). Within node 5, 32.4% (n -11) discontinued 

treatment, and 67.6% (n=23) completed. An examination of this decision pathway 

suggests that if clients score above 1.00 on the SA subscale, below 73.5 on the GAF, and 

deny any items on the HOS scale, they were more likely to be classified as completers.

tViAdditionally, participants with HOS scores above the 16.5 percentile (n=169; node 6 ) 

were again partitioned into two additional nodes based on GA scores (Improvement 

= .014). The decision mle identified the 46th percentile on the GA subscale as the cutoff

thpoint. A terminal node was observed among participants with GA scores above the 46 

percentile (n=l 17; node 8 ). Within this terminal node, 69.2% (n=81) of participants 

prematurely terminated services and 30.8% (n=36) of participants successfully completed 

treatment. An examination of this pathway suggests that if clients scored above 1.00 on 

the SA subscale, below 73.4 on the GAF, above 0.00 on HOS, and above 1.5 on the GA 

subscale, they were more likely to prematurely withdraw from services. Lastly, clients 

with GA subscales below the 46th percentile (node 7) were partitioned into two terminal 

nodes based upon GAF Scores (Improvement = .010). Participants with GAF Scores



above 61.5 (n=37; node 10), 56.8% (n=21) o f clients discontinued services and 43.2% 

(n=16) completed treatment. This decision rule suggests if  clients score above 1.00 on the 

SA subscale, below 73.4 on the GAF, above 0.00 on HOS, below 1.5 on GA, and below 

61.5 on the GAF, they were more likely to discontinue treatment. Among those 

participants whose GAF scores fell below 61.5 (n=15; node 9), 20% (n=3) were 

identified as dropouts and 80% (n=12) as completers. An examination of this alternative 

pathway suggests if clients score above 1.00 on the SA subscale, above 73.4 on the GAF, 

above 0.00 on HOS, above 1.5 on GA, and score above 61.5 on the GAF, they were more 

likely to discontinue treatment.

An examination of these results suggest that participant scores derived from the 

GAF, SA, GA, and HOS subscales may be useful in classifying clients as completers and 

dropouts. Additionally, the majority of clients who scored below 1.00 on the SA subscale 

withdrew from treatment prematurely. However, a summary o f these findings suggests 

that most participants in the sample who scored above 1 . 0 0  on the SA subscale, were 

influenced by additional variables. Using participant scores on the SA subscale as a 

baseline, classification profiles emerged for each group (completers, dropouts). This 

profile suggests that completers were more likely to score above 73.5 on the GAF. 

However, for those completers who received GAF score below 73.5, they also endorsed 0 

items on the HOS subscale. In contrast, participants who dropped out of treatment often 

scored below 73.4 on the GAF, above 0.00 on HOS, and above 1.5 on the GA subscale.
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Figure 9: CART Dendogram



Area under the Receiver Operating Characteristic Curve (AUROC). The

purpose of the AUROC analysis was to examine the model’s accuracy to distinguish 

between groups. This analysis plotted propensity scores from the logistic regression 

model and the Classification Tree against the observed values in the dataset (Fawcett,

2006). Figure 10 depicts the AUROC for the logistic regression model (AUROC=.638, 

SE=.033, 95% Cl [.572, .703]).
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Figure 10: AUROC analysis for the Logistic Regression model

Additionally, Figure 11 depicts the AUROC analysis for the CART model 

(AUROC- .693, SE-.033, 95% Cl [.629, .757]). Using the estimates offered by Steiner 

and Caimey (2007), AUROC values ranging from .5 to .7 are regarded as having low 

accuracy, from .7 to .9 are considered moderately accurate, and > .9 is highly accurate. 

Results from this analysis suggest that while both models predicted group membership 

better than chance, neither model offered enough accuracy to be practically useful in
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clinical settings. Additionally, an examination of the confidence intervals suggests that 

the difference between the LR and CART models is not statistically significant.
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Figure 11: AUROC analysis for the CART model 

Research Question 2

Q2: Do variables measured by the CCAPS-34 and identified in the PT literature increase 

the risk of PT along the episode of care among clients seeking services in a UBC?

H 2 : The covariates measured by the CCAPS-34 and identified in the PT literature will not 

increase the hazard of PT as the client progresses along the EOC.

Survival Analysis.

Baseline Model. Figure 8  depicts the baseline hazard function demonstrating the 

risk of PT at each session without including any covariates in the model. The x-axis



represents the number of sessions attended and the 7 -axis represents the hazard 

probabilities. A visual inspection of the baseline hazard function suggests that the risk of 

PT is lowest during the early stages of treatment and appears to steadily increase along 

the EOC. The rate of acceleration appeared to reach a plateau between sessions 6  and 11, 

after which the hazard rate appeared to accelerate rapidly.
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Figure 12: The Baseline Hazard Function 

Testing covariates. A Discrete-Time Cox PH Regression analysis was selected to 

test covariates. The PHREG function in SAS 9.3 was used to estimate the best fitting 

model. The DISCRETE function was also used to account for ties. Allison (2010) 

suggests that the DISCRETE method is suitable for applications where target events 

occur simultaneously. This method of analyzing ties was selected because dropout is a 

discrete-time variable that is evaluated by session attendance/absence. A determination of 

treatment status can only be made after appointments operating on a weekly interval 

schedule (Coming and Malofeeva, 2004). Initially, a 3 -  parameter (e.g. SA, GA, and
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GAF) model was fitted to the data (LR 2(3)=9.644, p < .022; -2 Log L=782.63; 

AIC=787.63). Results from this model suggested that the time until PT was significantly 

different between completers and dropouts. However, participant scores on the GA 

subscale ( =.084, p > .38; SE=.095, HR=1.087) were not statistically significant, 

suggesting that the time until PT did not differ between completers and dropouts based on 

GA symptoms. To test if GA modified the effect o f the Cox PH Model, a 2 parameter (2- 

P) model (e.g. GAF, SA) was fitted to the data. Results from the analysis indicated that 

the 2-P PH model was significantly different from the baseline model (LR 2(2)=8.46, p 

< .015; -2 Log L= 782.812; AIC=786.812), These findings suggest that the 2-P Cox PH 

model may also be useful in predicting the risk of PT as clients progress along the EOC. 

The removal of GA from the model did not improve model fit. These findings are 

consistent with Allison (2010), who indicates that model fit is negatively influenced by 

the omission of important covariates rather than the inclusion of statistically non­

significant predictors. Because the numerical magnitude of regression coefficients are 

difficult to interpret when examining Cox PH models, these values were converted to 

Hazard Ratios (HR; Allison, 2010b). The estimated percent o f change in the Hazard 

Ratio for every one-unit increase in the covariate was evaluated using the following 

formula by Allison (2010a):

Percent change =100 (HR -  1) (2)

Table 8  depicts the regression coefficients for Cox PH model. These findings suggest that 

GAF scores appear to be approaching significance ( =-.294, SE=.306, p > .052,

HR=.971). After adjusting for other variables in the model, for every one-unit increase in 

GAF scores, the risk of PT decreases by an estimated 2.9%. Additional findings suggest



that scores on the SA subscale were statistically significant ( =-.786, SE=.015, p <.010, 

HR=.456), and that for every 1-unit increase in SA, the risk of PT decreases by 54.4%. In 

other words, higher scores on the GAF and SA subscale may protect clients from early 

treatment withdrawal in UBC’s.

Table 8

Regression coefficients and Hazard Ratios

SE d f Exp(

GAF -.294 .306 1 .052 .971

SA -.786 .015 1 . 0 1 0 .456

Hazard Function. Figure 13 presents the Hazard probabilities derived from the 

Cox PH model plotted for each session to compare how the model covariates influenced 

the rate of PT along the EOC. A visual inspection shows that the risk of PT is lowest 

during early sessions and increases throughout treatment. Also, the rate of acceleration 

appears to vary along the EOC for each group. These findings indicate that the Cox PH 

model was able to differentially map the probability of PT for each group along the EOC, 

with the largest discrepancy between completers and dropouts observed during session 7. 

The 2-P Cox PH model may have some utility in modeling the probability of drop out at 

various points along the EOC in UBC’s.
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CHAPTER 5 

DISCUSSION

Although University Based Clinics (UBC) are uniquely positioned to impact the 

mental health of college students, little is known about the scope or consequences of PT 

within this clinical setting. Given the broad spectrum of influential covariates, more 

awareness is needed to address this fundamental problem facing clinical providers. The 

purpose of this exploratory study was to examine client characteristics that impact 

dropout in UBCs. First, we tested if completers and dropouts differed along demographic 

characteristics including age, gender, marital status, academic status, and race/ethnicity. 

Then, we examined if dropouts and completers differ along clinical characteristics 

including depression, generalized anxiety (GA), social anxiety (SA), academic distress 

(AD), eating concerns (EC), hostility, alcohol abuse (AA), and functional impairment 

(FI). Finally, we tested if the risk of PT remains stable as clients progress along the 

episode of care (EOC). This section will review the findings that emerged from the 

analysis and triangulate the results against the existing PT literature.

Research Question 1

What combination of variables assessed by the CCAPS-34 and identified in the PT 

literature will best differentiate between completers and dropouts among clients seeking 

services in a UBC?

Hypothesis 1

In a UBC sample, completers and dropouts will not differ along the dimensions measured 

by the CCCAPS-34 or outlined in the PT literature.

Findings
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The results from the analysis partially supported the hypothesis that completers and 

dropouts would not differ along the dimensions measured by the CCAPS-34 or outlined 

in the PT literature. Results from the purposeful selection procedure indicated that age, 

gender, marital status, academic status, race/ethnicity, depression, AD, EC, hostility, and 

AA did not significantly influence the conditional probability of PT.

Age (< 25) is a robust but moderate predictor of PT across various clinical settings 

and client problems (Baekeland and Lundwall, 1975; Edlund et al, 2002; Lampropolous, 

Schneider, «and Spengler, 2009; Swift and Greenberg, 2012; Wang, 2007). In the current 

investigation, client age did not significantly alter the likelihood of PT among completers 

or dropouts. As mentioned in chapter 4, the age distribution in this sample favored clients 

younger than 25 ( 22; Median=21; Mode=21; Range=38, SD= 4.53, Variance^

20.525; Skewness= 3.105, Kurtosis = 14.462). These findings may indicate that the 

unique features of the clinical setting influenced the effect of age in this sample. These 

results were consistent with recent meta-analytic evidence suggesting that race and 

marital status did not significantly influence the decision to leave treatment (Swift and 

Greenberg, 2012).

Among the clinical dimensions measured by the CCAPS-34, SA and GA emerged 

as influential covariates; as SA increases, the probability of PT drops by 31% and as 

scores on the GA subscale increase, the likelihood of PT increases by 25.32%. The effect 

size estimates for the Logistic Regression (LR) model (C-S Pseudo R2= .053; Nagelkerke 

Pseudo R2 =.072) indicate the omnibus model only accounts for a small amount of 

variance in the data. The results also indicated that the level o f FI influences the 

conditional probability of PT. These findings appear to indicate that as level of
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functioning decreases the probability of PT increases by 5.16%.

CART methods were used as a hypothesis generating technique and are designed to 

detect the latent interactive structure among variables (Kitsantas Moore, & Sly, 2006). 

Given this unique design characteristic, CART methods were used to develop a 

preliminary decision-making model capable of identifying clinical characteristics that 

differentiate between completers and dropouts. The logistic regression and CART models 

were then compared for accuracy in classifying clients by treatment status. Although both 

models displayed low accuracy in predicting group membership, a number of findings 

emerged. Findings from the CART analysis indicated that SA,FI, hostility, and GA may 

form a dynamic network of interacting variables that collectively influence termination 

rates in UBCs. Results suggest that even when accounting for the protective influence of 

SA and lower levels of FI, higher levels of hostility appear to increase the percentage of 

clients who unilaterally withdrew from services. Lastly, the CART model observed 

higher completion rates among clients with elevated hostility scores, who also presented 

with lower levels of GA and higher levels of FI.

Conclusion

Results from the logistic regression analysis indicated that dropouts did not differ 

according to demographic variables including age, gender, marital status, academic status, 

and race/ethnicity. Also, clinical variables including depression, AD, GA, academic 

concerns, EC, and AA did not significantly impact the probability of PT. The results did 

appear to indicate that pretherapy SA and FI did influence the probability o f PT. This 

suggests that the likelihood of PT increases with lower levels o f SA, whereas the 

probability o f PT increases with higher levels of FI.



These findings were consistent with the CART analysis, which reported that 

pretherapy FI and the severity of SA at intake were capable o f differentiating dropouts 

from completers. Further examination of these findings also suggested that higher levels 

of FI and hostility might indirectly suppress the protective influence of SA. Still this 

investigation provides exploratory findings and the underlying mechanisms driving these 

relationships are unclear. Findings from the CART analysis were consistent with previous 

research suggesting that higher levels of hostility were associated with a greater 

probability of PT in an urban training clinic (Greenfield, 2008). Because hostility 

negatively impacts the client’s perception of the therapeutic relationship, these findings 

may suggest that hostility inhibits the formation of a collaborative working alliance 

(Bums, Higdon, Mullen, Lansky, and Wei, 1999).

Research Question 2

Do variables measured by the CCAPS-34 and identified in the PT literature increase the 

risk of PT along the EOC among clients seeking services in a UBC?

Hypothesis 2 '

The covariates measured by the CCAPS-34 and identified in the PT literature will not 

increase the hazard of PT as the client progresses along the EOC.

Findings

Results from this analysis partially supported the hypothesis that covariates 

measured by the CCAPS-34 and in the PT literature would not increase the hazard of PT 

as clients progress along the EOC. Neither the logistic regression or CART analyses 

accounted for time as factor in the decision to unilaterally terminate from services. An 

examination of the baseline hazard function indicates that the risk of PT is lowest during
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early sessions and steadily increases as clients move along the EOC. Findings also ' 

suggest that the level of SA and FI partially influenced the probability o f PT as clients 

progressed in their treatment. An inspection of the Hazard plot suggests the risk of PT is 

lowest during early sessions and continues to increase over time. The 7th session appeared 

to mark the largest point of deviation between each group, as the rate o f acceleration 

increased for the dropout group and temporarily declined for the completion group.

Conclusion

The baseline Hazard function (Figure 8 .) observed in this investigation appeared 

inconsistent with findings reported by Coming and Malofeeva (2004). According to their 

results, the risk of PT is highest during early sessions and appears to steadily decline over 

time. In contrast, the baseline Hazard function emerging from this analysis indicated that 

the risk of PT was lowest during the early stages of treatment and steadily grew with each 

subsequent session. The failure to replicate the baseline Hazard function may be due to 

the different methods for defining the outcome variable. The Coming and Malofeeva 

(2004) investigation analyzed a multinomial logistic regression model measuring mutual 

termination, premature termination, and censored cases. In contrast, because the current 

study examined a dichotomous outcome variable (e.g. dropout and completion). However, 

because both research analyses explored predictors of PT in a UBC and achieved 

opposing results, replication studies may compare how different methods for subdividing 

the outcome variable influence the Hazard function. Findings from the Hazard plot 

indicate that pretherapy FI and scores on the SA subscale may be a useful starting point 

when examining clinical predictors that may identify clients at risk of PT.

Summary of Findings and Conclusions
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The rate of PT observed in this study exceeded the average termination rate 

recorded for UBC’s in other studies. (Swift and Greenberg, 2012). However, this elevated 

dropout rate could be due to the erratic variability o f dropout rates inherent to this body 

of literature and our use of therapist determination to dichotomize treatment status (Swift 

and Greenberg, 2012). Also, results from this investigation indicated that 61.9% of the 

sample withdrew following the initial visit, 34.5% withdrew after the third visit, and 13% 

withdrew after the 6 th visit. These findings are consistent with Phillips (1985/1987) and 

Baekeland and Lundwall, (1975) who reported that client attrition in treatment appears to- 

follow a negatively accelerating decay curve (See Figure 8 ). The dropout rate from this 

investigation indicated that 58.9% (n=168) of participants prematurely withdrew from 

treatment (dropout) and 40.7% (n=l 16) completed services. The rate of withdrawal 

observed in this study observed a large proportion of clients terminating services after the 

initial session. These findings suggest that the highest proportion of clients withdrew 

from treatment when the risk of PT was at its lowest point.

It was observed that when SA increases, the likelihood ofPT drops by 31% for 

this sample. As FI decreases, the probability of PT drops by 5.16% and as scores on the 

GA subscale increase, the likelihood of PT increases by 25.32%. These findings support, 

the notion that symptom severity at intake may influence the decision to unilaterally 

withdraw from services. The findings also suggest that SA, GA, and FI may have clinical 

utility in predicting the probability of PT in UBC’s. These results appear consistent with 

earlier findings suggesting that higher levels of SA may act as a protective factor against 

PT (Chisholm, Crowther, & Ben-Porath, 1997; Baekeland & Lundwall, 1975; Conte, 

Plutchik, Picard, and Karasu, 1988) whereas higher levels of FI at intake may increase



the risk of early termination (Lampropolous, Schneider, and Spengler, 2009; Lewis,

2007; Romans et al, 2011; Wang, 2007). Although the protective influence of SA has 

previously emerged in the literature, little is known about its relationship to PT. Social 

fears influence role performance across a wide range of functional domains (Kessler,

Stein, and Berglund, 1998). According to Olfson et al (2000) respondents with SA were 

more likely to avoid treatment for fear of what others may say or think. Stein and 

Gorman (2001) suggest that social fears are linked to missed opportunities, as educational, 

career, and interpersonal decisions are influenced by the desire to avoid anxiety- 

producing roles. Also, according to epidemiological findings from Ruscio et al (2008), 

the likelihood of seeking treatment decreases as the degree of FI and the number of social 

fears increase. Perceived self-efficacy (Bandura, 1989) may provide a potential lens to 

aid in the interpretation of these findings (Hoffman, 2006). This model suggests that 

because clients with social phobia tend to evaluate their social skills unfavorably, 

increasing mastery over their fear of social rejection may reinforce continuation in 

treatment. Longo, Lent, and Brown (1992) observed that perceived self-efficacy showed 

a small, but statistically significant effect on dropout.

Lastly, this investigation examined the influence of hostility and academic 

concerns on the decision to unilaterally withdraw from services. Results from the BLR 

and Cox PH modeling strategies indicated that these variables have little influence on the 

decision to prematurely terminate services. In contrast, results from the CART model 

indicate that hostility and generalized anxiety may influence the termination rate in UBCs.

Applications to University Based Clinics

In the broader literature, PT impacts 1 in 5 clients (Swift and Greenberg, 2012;
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Swift, Greenberg, Whipple, and Kominiak, 2012). In UBCs, 3 out of 10 clients withdraw 

prematurely (Swift and Greenberg, 2012). Although 15 sessions are needed for 50% of 

clients to show improvement, the median number o f sessions in UBCs is 4 (M=5.8, 

SD=5.2; Hansen, Lambert, and Forman, 2002). These findings suggest that a substantial 

proportion of service recipients may be discontinuing treatment before achieving 

measurable improvement (Swift, Greenberg, Whipple, and Kominiak, 2012). These 

findings suggest a need for further research to profile thostilitye client characteristics that 

elevate or attenuate the risk of PT. Identifying clients at an elevated risk of PT and then 

implementing empirically supported interventions to increase the likelihood of treatment 

completion may offer a useful model for translating PT research into clinical practice.

Results from this investigation suggest that within a UBC, SA, FI, hostility, and 

GA may (directly or indirectly) influence the probability of PT. While the preliminary 

findings from this analysis may identify clients at a higher risk of dropout, they do not 

offer recommendations for preventing PT. Recently, Swift, Greenberg, Whipple, and 

Kominiak (2012) published a series of empirically supported practice recommendations 

developed to reduce PT across a wide range of clinical settings. According to their 

findings, duration and patterns of change education,.role induction, preference matching, 

strengthening early hope, fostering the therapeutic alliance, and comparing client 

expectations against the observed trajectory of change can all be used to reduce the rate 

of PT.

Applications and suggestions for training

Investigators from psychology, epidemiology, and medicine have generated a 

significant amount of the PT literature. Although few empirical studies have emerged in



the professional counseling literature, the impact o f PT on clients, clinicians, and 

administrative costs continue to impact all mental health providers. PT is a significant 

problem that receives little attention in the professional counseling literature.

Additionally, the 2009 standards published by the Council for the Accreditation of 

Counseling and Related Programs (CACREP) failed to provide competency standards for 

preventing client attrition. This gap in the professional counseling curriculum renders 

graduates of counselor training programs unprepared to both identify and intervene when 

working with clients at high risk for PT. Although the topic o f PT is broad and 

multifaceted, counselor-training programs may train graduate students to identify 

risk/protective factors that influence PT and then review interventions that may increase 

the likelihood of remaining in treatment. Results from this investigation may help 

training programs narrow the field of covariates that potentially influence the rate of PT 

in UBC’s.

Limitations of the study

First, a clear distinction must be made between the influence of covariates linked 

to the probability of PT and the internal decision-making processes driving early 

treatment withdrawal (Swift, Greenberg, Whipple, and Kominiak, 2012). Although 

findings from the current investigation may narrow the field o f influential covariates, 

these findings should be regarded as preliminary as the underlying causal mechanisms 

have yet to be identified or explored.

Because this analysis implemented a retrospective research design from a single 

UBC, the generalizability of these findings cannot be extended to other institutions (Horn, 

Snyder, Coverdale, Louie, & Roberts, 2009). The geographic region, size of the
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institution, SES characteristics of the student population, and class size may have 

influenced the findings. Without further research into how these institutional and 

demographic variables affect PT in a UBC setting, these findings must be interpreted 

cautiously.

According to Pintea and Moldovan (2009), CART methods risk “over fitting” the 

model to the data under study. Because of this risk, independent validation samples are 

recommended to evaluate the model characteristics. Without cross-validating the CART 

model against ai^ independent sample, these findings must be interpreted with caution.

For this investigation, the statistical cross-validation procedure in SPSS 20.0 failed and 

could not be used to evaluate the dendogram output.

The operational definition of PT used in this study combined various definitions 

of PT according to recommendations offered by Swift and Greenberg (2012). However, 

an empirically valid definition of PT has not yet been fully operationalized. More 

research is needed for investigators to be certain that comparisons across studies are 

measuring the same construct.

Finally, using the minimum cut-off criteria for model fit indices recommended by 

Hu and Bentler (1999), results from the initial series of confirmatory factor analyses 

suggest that the CCAPS-34 exhibited inadequate model fit when triangulated against data 

reported in the validation study (Locke et al, 2012). This result may indicate that the 

statistically significant findings emerging from this analysis may be explained as an 

artifact of instrument bias.

Recommendations for future studies
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The decision to prematurely withdraw-from counseling services is an important 

topic for practitioners, researchers, and educators. After decades of research, PT is still 

regarded as a significant problem facing mental health treatment providers (Swift, 

Greenberg, Whipple, and Kominiak, 2012). Given the findings that emerged from the 

CART analysis, the effect o f hostility on PT warrants further development. Future 

research may examine how hostility influences the relationship between clients’ 

perceptions of the therapeutic alliance and PT. Next, results from this investigation 

? indicated that S A may offer a protective factor that attenuates the risk of PT. Future 

research may seek to disentangle the effect of perceived self-efficacy on the relationship 

between SA and the decision to withdraw from services.

Traditionally, the broad scope of research examining PT has focused on 

nomothetic indicators derived from quantitative techniques. As mentioned above, the PT 

literature is saturated with inconsistent and distorted findings (Barrettt et al, 2009;

Coming and Malofeeva, 2004; Garfield, 1994; Hatchett & Park, 2003; Swift, Callahan, & 

Levin, 2009; Pekarik, 1985; Wierzbicki & Pekarik, 1993). Although, researchers are 

adapting research designs to overcome these challenges (i.e. Coming and Malofeeva,

„ 2004; Swift and Greenberg, 2012; Lampropolous, Schneider, and Spengler, 2009), few 

conclusions can be made about the decision to prematurely terminate counseling services. 

In response to the inconsistent findings reported in the PT literature, future research may 

instead focus on idiographic indicators of PT using qualitative research methods. This 

wide gap in the PT literature represents an integral stream of unexamined data. Also, a 

number of administrative, client, therapist, and interpersonal dyadic variables have been 

found to influence unilateral termination (Reis and Brown, 1999; Barrettt et al, 2008).



However, the relationship among these variables has not been fully explored. Future 

research may look to modeling the structural relationships between these variables to 

better understand the dynamic factors that influence the decision to withdraw from 

services.



115

CHAPTER 6  

MANUSCRIPT

THE IMPACT OF SYMPTOM SEVERITY AND FUNCTIONAL IMPAIRMENT ON

PREMATURE TERMINATION IN A UNIVERSITY BASED COUNSELING

CENTER

Sean Benjamin Hall 
Visiting Assistant Professor and Clinic Director 

University of Alabama at Birmingham 
sbhall@uab.edu 

Tel: (757) 287-7777

Nina W. Brown 
Professor and Eminent Scholar of Counseling 

Old Dominion University

To be submitted to

Measurement and Evaluation in Counseling and Development

Keywords: Premature Termination, Unilateral Termination, University Based Clinic, 
Symptom Severity, Functional Impairment

Sean B. Hall, Ph.D. is a visiting assistant professor and outpatient clinic director in the 
Department of Human Studies at the University of Alabama-Birmingham.

Nina W. Brown, Ed.D. is a professor and eminent scholar in the Department of 
Counseling and Human Services at Old Dominion University. She served as president of 
the American Psychological Association’s Division 49 (2011-2012) and is a fellow of the 
American Group Psychotherapy Association (AGPA)

mailto:sbhall@uab.edu


116

ABSTRACT

Swift and Greenberg (2012) observed that variables influencing the decision to 

drop out fluctuate according to the primary presenting problem, the amount of structure 

in therapy, the length of treatment, and the clinical setting. Due to these reports, 

researchers may focus on predictors of premature termination (PT) in treatment settings 

where the unique situational characteristics may have an idiosyncratic influence on the 

decision to withdraw from services (Phillips, 1985; Swift & Greenberg, 2012). The 

purpose of this exploratory study was to examine client characteristics that impact 

dropout in University Based Clinics (UBC). Results from the logistic regression analysis 

indicated that higher levels of social anxiety and lower levels of pretherapy functional 

impairment reduced the probability of PT. Findings from the Classification and 

Regression Tree (CART) analysis suggested that higher levels of hostility may increase 

the dropout rate even when accounting for the protective influence of social anxiety and 

higher levels of functioning. This effect may be also intensified as the severity of 

generalized anxiety increases. Results from the Survival Analysis suggest that the risk of 

PT was lowest during the early stages of counseling and steadily increased for clients 

who remained in services. These findings also indicate that higher levels of social anxiety 

and lower levels of pretherapy functioning may partially attenuate the risk o f PT as 

clients progress along the episode of care. Results from this analysis are triangulated 

against the existing PT literature and implications for teaching, practice, and future 

research are discussed.

Keywords: Premature Termination, Unilateral Termination, University Based Clinic, 

Symptom Severity, Functional Impairment
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INTRODUCTION

Premature Termination (PT) has been referred to as the foremost problem facing 

mental health providers (Pekarik, 1985; Phillips, 1985). PT is also thought to undermine 

the effectiveness of psychotherapy (Gottschalk, Mayerson, and Gottleib, 1967; 

Ogrodniczuk, Joyce, and Piper, 2005), contribute to inflated administrative costs 

(Baekeland and Lundwall, 1975), negatively impact the ability to interpret and generalize 

research findings (Beckham, 1992; Harris, 1998; Ogrodniczuk, Joyce, and Piper, 2005), 

and negatively affects the confidence of therapists (Barrett et al, 2008). Because the PT 

literature is saturated with discrepant findings (Barrettt et al, 2009; Wierzbicki & Pekarik, 

1993), unclear operational definitions (Hatchett & Park, 2003; Swift, Callahan, & Levin, 

2009), and inadequate statistical analyses (Coming and Malofeeva, 2004), follow-up 

studies using independent samples often fail to replicate earlier findings (Garfield, 1994, 

Harris, 1998).

Partially influenced by methodological limitations, the stream of generalizable PT 

research in university-based clinics (UBC) remains narrow. Hyun, Quinn, Madon, & 

Lustig, (2006) reported that college students represent a diverse clientele with unique 

social and psychological characteristics. Mennicke, Lent, and Burgoyne (1988), 

suggested the students seeking services in college counseling centers may represent a 

unique group that would benefit from independent investigation outside of the broader PT 

literature. Swift and Greenberg (2012) observed that variables influencing the decision to 

dropout vary according to the primary presenting problem, the amount o f structure in 

therapy, the length of treatment, and the clinical setting. Due to these reports, researchers 

may focus on predictors of PT in clinical settings where the unique environmental
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characteristics may have an idiosyncratic influence on the decision to withdraw from 

services (Phillips, 1985; Swift & Greenberg, 2012).

Historically, Stone and Archer (1990) predicted that the mental health needs of 

college students would continue to rise steadily. Epidemiological findings from the 

American College Health Association (ACHA, 2010) show that college students face a 

number of mental health issues including suicide (1.3%), self-injury (5.3%), suicidal 

ideation (6.2%), debilitating depression (30.7%), overwhelming anger (38.2%), feelings 

of hopelessness (45%), loneliness (56.4%), and sadness (60.7%; ACHA, 2010). In 2010, 

91% of counseling center directors perceived that clients were presenting with more 

complex mental health needs (Gallagher, 2010). Benton, Robertson, Tseng, Newton, and 

Benton (2003), tracked the mental health trends among college students over a 13-year 

observation period (n=13,257). The authors noted that patterns of substance abuse, eating 

disorders, legal problems, and chronic mental illness remained stable while significant 

increases were observed in abuse (physical, sexual, and emotional), anxiety, depression, 

suicidal ideation, sexual assault, relationship problems, stress/anxiety, family issues, 

physical problems, and personality disorders.

Although, UBCs are uniquely positioned to impact .the mental health of college 

students, little is known about the scope or consequences of PT within this clinical setting. 

In the broader literature, PT impacts 1 in 5 clients (Swift and Greenberg, 2012; Swift, 

Greenberg, Whipple, and Kominiak, 2012). In UBCs, 3 out of 10 clients withdraw 

prematurely (Swift and Greenberg, 2012). Although 15 sessions are needed for 50% of 

clients to show improvement, the median number o f sessions in UBCs is 4 (M-5.8, 

SD=5.2; Hansen, Lambert, and Forman, 2002). These findings suggest that a substantial
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proportion of service recipients may be discontinuing treatment before achieving 

measurable improvement (Swift, Greenberg, Whipple, and Kominiak, 2012).

Research into those clinical characteristics that influence PT allows clinicians, 

counselors, and educators to tailor their services to client needs. Given the broad 

spectrum of influential covariates, more awareness is needed to address this fundamental 

problem facing clinical providers. The purpose of this exploratory study was to examine 

client characteristics that impact dropout in UBCs. First, we tested if completers and 

dropouts differed along the dimensions of age, functional impairment, or symptom 

severity. Then, we examined if the risk of PT remains stable as clients progress along the 

episode of care (EOC).

METHODS 

Data Collection

A number of client characteristics have emerged in the literature as influencing 

the decision to unilaterally withdraw from counseling. According to Barrettt, Chua, Crits- 

Christoph , Gibbons, Casiano, and Thompson (2008) variables influencing PT can be 

categorized into six components including: client characteristics, enabling factors/barriers, 

need-related factors, environmental factors, perceptions of mental health, and perceptions 

of treatment. For this investigation, we restricted our analysis to examine how client 

characteristics commonly encountered in UBC’s predict the likelihood of PT. After 

selecting influential explanatory variables from the broader PT literature, we tested the 

impact of these covariates on dropout within a UBC setting. Variables included in our 

analyses were: younger age (< 25; Edlund et al, 2002; Swift and Greenberg, 2012, Wang, 

2007), symptom severity (Baekeland and Lundwall, 1975; Romans et al, 2010; Wang,
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2007), and functional impairment (Lampropolous, Schneider, and Spengler, 2009). This 

investigation relied on archival data collected during routine practice at a UBC housed 

within large Southeastern University. Within this setting, treatment providers offer time- 

limited ( sessions), non-manualized mental health counseling services for 

individuals, groups, and couples. Clinic staff consisted of 4 Ph.D. level practitioner’s and 

6 Master’s level providers. Practicum or internship students did not provide counseling 

services in this UBC during the period of data collection.

Instrumentation

Counseling Center Assessment of Psychological Symptoms -  34 

The Center for Collegiate Mental Health (CCMH) was established in 2005 as a 

large-scale national research initiative investigating the mental health needs of college 

students (CCMH, 2012). Its goal is to advance the understanding of mental health in the 

college setting, and to improve the provision of mental health services. The CCAPS-34 is 

34-item, multi-factorial symptom checklist designed to gather data describing the mental 

health trends facing college students, while still maintaining clinical utility for applied 

practice (Locke et al, 2012). According to the CCMH (2012), the CCAPS-34 uses scores 

measured along a 5-point likert-type rating scale (not at all like me to extremely like me). 

Reliability estimates (IV=482) ranged from.824 to .876 (CCMH, 2012). Test -  retest 

reliability estimates after 1 week («=86) ranged from .792 to .866 and from .742 to .864 

after 2 weeks («=47; Locke et al, 2012). Construct validity was assessed using a 

Confirmatory Factor Analysis (CFA). The reported model fit statistics lent support to the 

hypothesized factor structure (S-B (506)=1096.05, p<.001, CFI=.98; 

NNFI=.98;RMSEA=.49 [Cl 90% (.045, 053)];SRMR=.063). The CCAPS-34, measures
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seven independent subscales: Depression, Eating Concerns, Substance Use, General 

Anxiety, Hostility, Social Anxiety, and Academic Distress (CCMH, 2012; Locke et al, 

2010; Locke et al, 2012). The CCAP’s deployment in counseling centers across the 

nation offers a unique tool specifically tailored to examine those mental health issues 

often treated in UBC’s.

Global Assessment of Functioning Scale

Pretherapy functional impairment is a continuous independent variable measured 

by client scores on the Global Assessment of Functioning (GAF) scale (APA, 2000; 

Endicott, Spitzer, Fleiss, and Cohen, 1976).

Procedures 

Outcome Variable

For this investigation the dependent variable was treatment status (TS) comprised 

of two dichotomous outcomes: Dropout or Completed. PT was defined as a client- 

initiated, withdrawal from therapy prior to achieving the treatment goals mutually agreed 

upon between client and counselor (Baekeland & Lundwall, 1975; Wierzbicki & Pekarik, 

1993; Hatchett and Parks, 2003; Coming, Malofeeva & Bucchianeri, 2007). Completion 

was defined by one (or more) of the following criteria: (1) Client and counselor mutually 

agree that treatment goals have been completed. (2) Client remains in counseling until the 

maximum number of sessions has been reached. (3) Client is referred to an external 

mental health provider following completion of the maximum 12 sessions. (4) Client and 

counselor agree that no further appointments are necessary.
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Data Analysis

This investigation examined the influence of symptom severity (measured by the 

CCAPS-34), functional impairment (GAF), and age in differentiating completers from 

dropouts. The analytic procedure implemented during this investigation was inspired by 

Lampropolous, Schneider, and Spengler (2009) and Coming and Malofeeva (2004). 

Analyses were conducted using EQS 6.2, SAS 9.3, and the Statistical Package for the 

Social Sciences (SPSS) version 20.0.0.

RESULTS s

Data Preparation

Sample Characteristics. Results from the descriptive analysis were examined to 

obtain demographic characteristics for the study participants (n=285). For this sample, 

62.5% (n=178) were female and 37.5% (n = 107) were male. According to the 

racial/ethnic data 54.4% (n=155) were Caucasian, 28.1% (n = 80) were African 

American/Black, 6.3% (n=18) were multi-racial, 4.9% (n=14) were Asian 

American/Asian, 3.9% (n = 11) were Latino(a)/Hispanic, 1.1% (n=3) self-identified as 

“other,” 7% (n -2 )  were Hawaiian or Pacific Islander, and .4% (n =1) were Alaskan 

Natives. The age of participants ranged from 18 -  56 (n = 282; 3 missing values). The 

mean age was 22 (Range=38, SD= 4.53, Variance= 20.525). The age distribution was 

positively skewed and leptokurtic (Skewness= 3.105, Kurtosis = 14.462) with most cases 

clustering between the ages of 18 -  25 (Median = 21.00, M o d e^ l). Additionally, 94.4% 

(n = 269) of participants were domestic students and 2.4% (n = 7) of participants were 

international students (9 cases missing from the analysis). The academic status variable 

indicated that 27.7% (n=79) of participants were juniors, 23.2% (n=66) were seniors,



18.6% (n=53) were sophomores, 17.2% (n=49) were freshman, 11.9% (n=34) were 

graduate/professional students, and .7% (n=2) were non-degree seeking (see table 4).



Table 4

Demographic Characteristics
Variable N %
Sex (N=285)
Male 107 37.5%
Female 178 62.5%
Race/Ethnicity (N=284)
Caucasian 155 54.4%
African American/Black 80 28.1%
Multi-Racial 18 6.3%
Asian-American/Asian 14 4.9%
Latino(a)/Hispanic 11 3.9%
Other 3 1.1%
Hawaiian/Pacific Islander 2 .7%
Alaskan Native 1 .4%
Residency Status (N=276)
Domestic 269 94.4%
International 7 2.4%
Academic Status (N=283)
Freshman 49 17.2%
Sophomore 53 18.6%
Junior 79 27.7%
Senior 66 23.2%
Graduate/Professional Student 34 11.9%
Non-Degree Seeking 2 .7%



On average, participants completed 2.46 sessions (Median=2, Mode=0, SD=3.1) with a 

range of 14 (Min=0 [37.9%], Max=14 [.4%]). A one-way analysis of variance (ANOVA) 

was conducted in SPSS 20.0 to determine if the average number of completed sessions 

differed between completers and dropouts (F[l,281]=34.440, p <. 05, =. 11). Results

indicated that clients who completed treatment (n= 116) attended an average o f 3.71 

sessions (SD= 3.753, SE= .275; 95% Cl [3.17, 4.25]) whereas; clients who prematurely 

withdrew (n=167) from services attended an average of 1.61 sessions (SD= 2.26,

SE= .23; *95% Cl [1.16, 2.06]). An examination of the overlapping confidence intervals 

suggests that the mean difference is statistically significant. According to Hansen, 

Lambert, and Forman (2002), the mean number of sessions attended by clients receiving 

services in UBCs was 5.8 (Median= 4; SD-5.2). Because these results deviated from 

findings reported in the literature, the rate o f treatment withdrawal was examined. 

Consistent with previous research (Phillips, 1987), the percentage of clients withdrawing 

from treatment at each session appeared to follow a negatively accelerating decay curve 

with 61.97% terminating after the initial visit, 34.51% after the 3rd session, and 13% 

withdrawing after the 6th session (see figure 8).
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Participant scores observed on the GAF produced a mean of 63.77 (Median=64, Mode = 

60, SD=6.284) and a range of 42 (Max=84 [.4%], Min=42[.4%]) and were normally 

distributed across this sample (Skewness=.020, Kurtosis=.409). The modal number of 

psychiatric diagnoses was 2 (39.6%, Median=2.04) with a range of 5 (Max=5 [.4%], 

Min=0 [1.1%]). The dispersion of psychiatric diagnoses was normally distributed 

(Skewness= .491, Kurtosis=-.296). The treatment status variable indicated that 58.9% 

(n=168) of participants prematurely withdrew from treatment and 40.7% (n=l 16) 

completed services (1 missing case). The rate PT*in this sample trended toward findings 

reported by Pekarik and Wierzbicki (1993; 46.86%; 95% CI=[42.9, 50.82]) while 

surpassing the average termination rate (30.4%; 95% Cl [26.6, 34.4]) reported by Swift 

and Greenberg (2012)..

CCAPS-34 Calibration. A Confirmatory Factor Analysis (CFA) was conducted 

on the study sample (n = 285) using EQS 6.2 software (Bentler and Wu, 2012) to ensure 

the measurement properties were performing adequately with this dataset (Dimitrov, 

2010). A multi-factorial CFA was used to examine a 7-factor model (comprising 7 

subscales measured by the CCAPS-34) for comparison with the validation study 

published by Locke et al (2011). Maximum likelihood (ML) methods and robust statistics 

were used to estimate model parameters (Bentler, 2006). All missing data was corrected 

using the ML estimation function in EQS 6.2. Factor loadings were scaled to 1 and error 

terms were not permitted to correlate with one another (Byrne, 2006; Kline, 2010; Locke 

et al, 2011). Results from this analysis were S-B 2 (506) =1168.613 p < .001, NFI= .762, 

NNFI= .831, CFI = .841, IFI=.849, MFI=.310, and RMSEA= .068 (90% Cl [.063, .073]). 

Cronbach’s alpha for the CCAPS-34 was .898. Using the minimum cut off criteria



recommended by Hu and Bentler (1999), these results suggest that the CCAPS-34 didn’t 

perform adequately with this sample (see Table 4 for a comparison of model fit statistics 

between the current sample and Locke et al [2011]).
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Table 5

A comparison o f  fit indices between the current sample and Locke et al (2011)

Current Sample Locke et el (2011)
S-B 2(506) 1168.613* 1096.05*

NNFI .762 .98
CFI .841 .98
IFI .849 .98

MFI .310 —

RMSEA .068 .049
*p<.01
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Logistic Regression Analysis

Raw scores were calculated for each subscale and converted to normalized scores 

using procedures outlined in the CCAPS manual (CCMH, 2012). To obtain the best 

fitting model, a purposeful selection procedure was used to systematically narrow the 

field of covariates (Bursae, Gauss, Williams, & Hosmer, 2007; Hosmer and Lemeshow, 

2002). Results from the model-building procedure identified SA, GA, and GAF as 

important contributors. Using these variables, a three-parameter binomial logistic 

regression (LR) model was fitted to the data. Results from the analysis indicated that the 

LR model was significantly different from the baseline model (LR 2(3)=15.358, p 

< .002; Additionally, an examination of the Hosmer-Lemeshow goodness of fit index 

(GFI) was non-significant (HL 2[8]= 4.508, p > .809) suggesting that predicted values 

derived from the model were not significantly different from the observed values. These 

findings suggest that the omnibus model was capable of differentiating completers from 

dropouts. An examination of the regression coefficients were: GA (OR=1.252; 95% Cl 

[.951, 1.649]), SA (OR=.688; 95% Cl [.528, .897]), and GAF (OR=.948; 95% Cl 

[.907, .991]). These findings suggest that for each one-unit increase in GA at intake we 

can predict rates of dropout to increase by multiplicative constant of 25.23%. Further, for 

each one-unit increase in SA at intake we can predict rates of dropout to decrease by 

31.20%. Finally, for each one-unit increase in the GAF score at intake, we can predict 

rates of dropout to decrease by 5.16%. Finally, although these findings suggest that the 

LR model was statistically significant, it’s practical predictive utility in applied settings is 

small (-2 log L= 363.091; C-S Pseudo R2= .053; Nagelkerke Pseudo R2 =.072).
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Classification and Regression Tree. The purpose of this analysis is to profile 

interactions between predictor variables that can be used to differentiate between those 

participants who completed treatment from those who unilaterally terminated. CART 

methods will be used to model clusters of variables that collaboratively influence the 

decision to prematurely terminate from counseling services (Kitsantas, Moore, & Sly, 

2006). Because percentile rankings can be calculated to streamline interpretation in 

clinical settings, each subscale was transformed using percentile tables available in the 

CCAPS manual (CCMH, 2012). Percentile rankings; simplify the interpretation of the 

model allowing these findings to translate into clinical practice. Tree induction was 

performed using SPSS 20.0 software. All study variables were entered into the model 

simultaneously (e.g. Age, GAF, DEP, GA, SA, AD, EC, HOS, and AA).

The primary root node (node 0) was divided to create two subsets based on scores 

derived from the SA subscale (Improvement = .014; see figure 1 for a visual depiction of 

this summary). The following child nodes were identified: 1.) Participants with scores 

below the 25th percentile (n=69; node 1); 2) Participants with subscale scores above the 

25th percentile (n=215; node 2). A stopping criterion prevented any further partitioning in 

node 1. Results indicated that 73.9% (n=51) of participants in this node prematurely 

withdrew from treatment and 26.1% (n=18) successfully completed services. These 

findings suggest that if clients score below 1.00 on the S A subscale, they may be more 

likely to dropout of treatment.

Of the 215 participants who scored above the 25th percentile, node 2 was further 

partitioned into two subsets (Improvement = .020). A score o f 73.5 on the GAF was 

identified as the cutoff point dividing the subsample into: 1.) GAF < 73.5 (node 3); 2.)
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GAF > 73.5 (node 4). A stopping point criterion produced a terminal node for 

participants in node 4 (n=12). Results indicate that 91.7% (n=l 1) of participants in this 

node completed treatment and 8.3% (n=l) unilaterally withdrew from services. An 

examination of this pathway (e.g. root to node) suggests that if  clients score above 1.00 

on the SA subscale and score above 73.5 on the GAF, they may be more likely to 

complete treatment.

Participants, who scored below 73.5 on the GAF scale, were partitioned into two 

additional child nodes based on scores derived from the HOS subscale (Improvement 

= .018). The recursive partitioning algorithm identified the 16.5 percentile as a decision 

rule. A terminal node was observed for participants who scored below the 16.5th 

percentile (n=34; node 5). Within node 5, 32.4% (n = ll) discontinued treatment, and 

67.6% (n=23) completed. An examination of this decision pathway suggests that if 

clients score above 1.00 on the SA subscale, below 73.5 on the GAF, and deny any items 

on the HOS scale, they were more likely to be classified as completers.

Participants with HOS scores above the 16.5th percentile (n=169; node 6) were 

again partitioned into two additional nodes based on GA scores (Improvement = .014).

The decision rule identified the 46th percentile on the GA subscale as the cutoff point. A 

terminal node was observed among participants with GA scores above the 46th percentile 

(n=l 17; node 8). Within this terminal node, 69.2% (n=8I) of participants prematurely 

terminated services and 30.8% (n=36) of participants successfully completed treatment.

An examination of this pathway suggests that if clients scored above 1.00 on the SA 

subscale, below 73.4 on the GAF, above 0.00 on HOS, and above 1.5 on the GA subscale, 

they were more likely to prematurely withdraw from services.
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Clients with GA subscales below the 46th percentile (node 7) were partitioned into 

two terminal nodes based upon GAF Scores (Improvement = .010). O f participants with 

GAF Scores above 61.5 (n=37; node 10), 56.8% (n=21) of clients discontinued services 

and 43.2% (n=16) completed treatment. This decision rule suggests if  clients score above 

1.00 on the SA subscale, below 73.4 on the GAF, above 0.00 on HOS, below 1.5 on GA, 

and below 61.5 on the GAF, they were more likely to discontinue treatment. Among 

those participants whose GAF scores fell below 61.5 (n=15; node 9), 20% (n=3) were 

identified as dropouts and 80% (n=12) as completers. An examination of this alternative 

pathway suggests if clients score above 1.00 on the SA subscale, above 73.4 on the GAF, 

above 0.00 on HOS, above 1.5 on GA, and score above 61.5 on the GAF, they were more 

likely to discontinue treatment.

These results indicate that participant scores derived from the GAF, SA, GA, and 

HOS subscales may be useful in classifying clients as completers and dropouts. A 

summary of these findings suggests that most participants in the sample who scored 

above 1.00 on the SA subscale, were influenced by additional variables. Using participant 

scores on SA as a baseline, classification profiles emerged for each group (completers, 

dropouts). This profile suggests that completers were more likely to score above 73.5 on 

the GAF. However, for those completers who received GAF score below 73.5, they also 

endorsed 0 items on the HOS subscale. Participants who dropped out of treatment often 

scored below 73.4 on the GAF, above 0.00 on HOS, and above 1.5 on the GA subscale.
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Figure 1: CART Dendogram



Area under the Receiver Operating Characteristic Curve (AUROC). This 

analysis compared the accuracy of the BLR model to the CART model in predicting PT. 

This analysis plotted propensity scores derived from the logistic regression model and the 

Classification Tree against the observed values in the dataset (Fawcett, 2006). An 

examination of the results produced an AUROC of .638 (SE=.033, 95% Cl [.572, .703]) 

for the logistic model and an AUROC of .693 (SE=.033, 95% Cl [.629, .757] for the 

Classification Tree. Using the rule of thumb estimates offered by Streiner and Caimey 

(2007), AUROC values ranging from .5 to .7 are regarded as having low accuracy, 

from .7 to .9 are considered moderately accurate, and > .9 is highly accurate. Results 

from this analysis suggest that while both models predicted group membership better than 

chance, neither model offered enough accuracy to be practically useful in clinical settings. 

Additionally, an examination of the confidence intervals suggests that difference between 

the LR and CART models is not statistically significant.

Survival Analysis

A baseline hazard function was plotted to determine the risk o f PT at each session 

without including any covariates in the model. A visual inspection of the hazard plot 

indicates that the risk of PT is lowest during early stages of treatment and appears to 

steadily increase as clients progress along the EOC. A Discrete-Time Cox Proportional 

Hazards (PH) Regression analysis was conducted to examine the influence of symptom 

severity and pretherapy functional impairment on PT. The PHREG and DISCRETE 

functions in SAS 9.3 were used to estimate the model. Allison (2010) suggests that the 

DISCRETE method is suitable for applications where target events occur simultaneously. 

This method was selected because dropout is discrete-time variable evaluated by session
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attendance/absence on a weekly interval schedule (Corning and Malofeeva, 2004). Using 

covariates identified during the logistic regression analysis, a 2 parameter Cox PH model 

(e.g. GAF, SA) was fitted to the data. Results from the analysis indicated that the Cox PH 

model was significantly different from the baseline model (LR (2)=8.46, p < .015; -2 

Log L= 782.812; AIC=786.812), These findings suggest that our model may be useful in 

predicting the risk of PT as clients progress along the EOC. An analysis o f the regression 

coefficients observed: GAF ( =-.294, SE=.306, p > .052, HR=.971) and SA ( =-.786, 

SE=.015, p <.010, HR=.456). These findings suggest that GAF scores appear to be 

trending toward significance. After adjusting for other variables in the model, for every 

one-unit increase in GAF scores, the risk of PT decreases by an estimated 2.9%. 

Additional findings suggest that scores on the SA subscale were statistically significant. 

These findings suggest that for every 1-unit increase in SA, the risk o f PT decreases by 

54.4%. In other words, higher levels of pretherapy functioning and social anxiety 

subscale may protect clients from PT in UBC’s. Hazard probabilities derived from the 

Cox PH model were plotted for each session to compare how the model covariates 

influenced the rate of PT along the EOC. A smoothing spline function was fitted to the 

data. Figure 2 depicts the unique hazard functions for completer and dropout groups. A 

visual inspection shows that the risk of PT is lowest during early sessions and increases 

throughout treatment. Also, the rate of acceleration appears to vary along the EOC for 

each group. These findings indicate that the Cox PH model was able to differentially map 

the probability of PT for each group along the EOC. The 2-P Cox PH model may have 

some utility in modeling the probability of drop out at various points along the EOC in 

UBC’s.
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DISCUSSION

The dropout rate from this investigation indicated that 58.9% (n=168) of 

participants prematurely withdrew from treatment (dropout) and 40.7% (n=l 16) 

completed services (Completion; 1 missing case). The rate of PT observed in this study 

exceeded the average termination rate recorded for UBC’s (Swift and Greenberg, 2012; 

30.4%; 95% Cl [26.6, 34.4]). However, Swift and Greenberg also noted substantial 

variation in the rate of PT across studies (range=0% -74.23%) and observed higher rates 

of dropout in studies using therapist determination. The elevated dropout rate observed in 

this investigation could be due the natural variability in termination rates inherent to this 

body of literature and our use of therapist determination to dichotomize treatment status.

Across the PT literature age (< 25) emerged as a robust but moderate predictor o f 

PT across various clinical settings and client problems (Baekeland and Lundwall, 1975; 

Edlund et al, 2002; Lampropolous, Schneider, and Spengler, 2009; Swift and Greenberg, 

2012; Wang, 2007). In the current investigation age was not significantly different 

between completers or dropouts. As mentioned above, the age distribution in this sample 

strongly favored clients younger than 25 ( 22; Median=21; Mode=21; Range=38, SD=

4.53, Variance= 20.525; Skewness= 3.105, Kurtosis = 14.462). These findings,may lend 

support to Swift and Greenberg (2012) who observed that dropout rates vary according to 

the treatment setting. These results may indicate that the unique demographic profile of 

the UBC suppressed the influence of age on PT.

During this investigation it was observed that when SA increases, the likelihood 

of PT drops by 31 %, as functional impairment decreases the probability o f PT drops by 

5.16%, and as scores on the GA subscale increase the likelihood of PT increases by
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25.32%. These findings support the notion that symptom severity at intake may influence 

the decision to unilaterally withdraw from services. This finding also suggests that the 

Social Anxiety, Generalized Anxiety, and pretherapy functional impairment may have 

clinical utility in predicting the probability of PT in UBC’s. According to the effect size 

estimates, GAF, GA, and SA accounted for approximately 7.2% of the variance in the 

sample. Due to the small amount of variance explained in the data, GAF, GA, and SA 

may reflect lower order facets of a broader latent structural model that unifies the above- 

mentioned dimensions into a hierarchical conceptual framework

Results from this investigation appear consistent with earlier findings suggesting 

that higher levels of SA may act as a protective factor against PT (Chisholm, Crowther,

& Ben-Porath, 1997; Baekeland & Lundwall, 1975; Conte, Plutchik, Picard, and Karasu, 

1988) whereas higher levels of functional impairment at intake may increase the risk of 

early termination (Lampropolous, Schneider, and Spengler, 2009; Romans et al, 2011; 

Wang, 2007). Although the protective influence of SA has previously emerged in the 

literature, little is known about its relationship to PT. Social fears are a common and 

debilitating clinical state that influence role performance across a wide range of 

functional domains (Kessler, Stein, and Berglund, 1998). Stein and Gorman (2001) 

suggest that social fears are linked to missed opportunities, as educational, career, and 

interpersonal decisions are influenced by the desire to avoid anxiety producing roles. 

Perceived self-efficacy (Bandura, 1989) may provide a potential lens to aid in the 

interpretation of these findings (Hoffman, 2006). This model suggests that because 

clients with social phobia tend to evaluate their social skills unfavorably, increasing 

mastery over their fear of social rejection may reinforce continuation in treatment. Longo,
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Lent, and Brown (1992) observed that perceived self-efficacy showed a small, but 

statistically significant effect on dropout. Further research may seek to examine the 

potential effect o f perceived self-efficacy on the relationship between social anxiety and 

PT.

These results did not support findings in the literature suggesting that disordered 

eating and depression influence the risk of PT (Swift and Greenberg, 2012). Results from 

the LR and Cox PH regression analyses failed to reject the null hypothesis, indicating that 

Hostility and Academic Concerns had little- if any, influence of the decision to remain in 

treatment. In contrast to LR and Cox PH models, CART method offer a hypothesis 

generating technique and are designed to detect the latent interactive structure between 

variables (Kitsantas Moore, & Sly, 2006). Given this unique design characteristic, 

findings from the CART model indicate that Hostility may be an influential variable in 

discriminating between dropouts and completers.

The baseline hazard function observed in this investigation appeared inconsistent 

with findings reported by Coming and Malofeeva (2004). According to their results, the 

risk of PT is highest during early sessions and appears to steadily decline over time. In 

contrast, our baseline hazard function indicated that the risk of PT was lowest during the 

early stages of treatment and steadily grew with each subsequent session. The failure to 

replicate the baseline hazard function may be due to the different methods for defining 

the outcome variable. The Coming and Malofeeva (2004) investigation analyzed a 

multinomial logistic regression model measuring Mutual Termination, Premature 

Termination, and Censored Cases. These findings are consistent with Phillips 

(1985/1987) and Baekeland and Lundwall, (1975) who reported that client attrition in
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treatment appears to follow a negatively accelerating decay curve (See Figure 8). Results 

from this investigation indicated that 61.9% of the sample withdrew following the initial 

visit, 34.5% withdrew after the third visit, and 13% withdrew after the 6th visit. 

Limitations of the study

Because this analysis implemented a retrospective research design from a single 

UBC, the generalizability of these findings cannot be extended to other institutions 

(Horn, Snyder, Coverdale, Louie, & Roberts, 2009). The geographic region, size o f the 

institution, SES characteristics of the student population, and class size may have 

influenced the findings. Without further research into how these institutional and 

demographic variables affect PT in a UBC setting, these findings must be interpreted 

cautiously.

Studies using tree induction techniques risk “over fitting” the model to the sample 

(Pintea and Moldovan, 2009). Given this risk, independent validation samples are 

recommended to evaluate model characteristics. For this investigation, the statistical 

cross-validation procedure in SPSS 20.0 failed and could not be used to evaluate the 

model. Without cross-validating the CART model against an independent sample, these 

findings must be interpreted with caution.

The operational definition of PT used in this study combined various definitions 

of PT according to recommendations offered by Swift and Greenberg (2012). However, 

an empirically valid definition of PT has not yet been fully operationalized. More 

research is needed for investigators to be certain that comparisons across studies are 

measuring the same construct.

Finally, using the minimum cut off criteria for model fit indices recommended by
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Hu and Bentler (1999), results from the initial GFA suggest that the CCAPS-34 exhibited 

inadequate model fit when triangulated against data reported in the validation study 

(Locke et al, 2012). This result may indicate that the statistically significant findings 

emerging from this analysis may be explained as an artifact of instmment bias. 

Implications

The decision to prematurely withdraw from counseling services is an important 

topic for practitioners, researchers, and educators. After decades of research, PT is still 

regarded as significant problem facing mental health treatment providers (Swift, < 

Greenberg, Whipple, and Kominiak, 2012). Traditionally, the broad scope of research 

examining client characteristics that influence PT have focused on nomothetic indicators 

derived from quantitative techniques. As mentioned above, the PT literature is saturated 

with inconsistent and distorted findings (Barrettt et al, 2009; Coming and Malofeeva, 

2004; Garfield, 1994; Hatchett & Park, 2003; Swift, Callahan, & Levin, 2009; Pekarik, 

1985; Wierzbicki & Pekarik, 1993). Although, researchers are adapting research designs 

to overcome these challenges (i.e. Coming and Malofeeva, 2004; Swift and Greenberg, 

2012; Lampropolous, Schneider, and Spengler, 2009), few conclusions can be made 

about the decision to prematurely terminate counseling services. In response to the 

inconsistent findings reported in the PT literature, future research may instead focus on 

idiographic indicators of PT using qualitative research methods. This wide gap in the PT 

literature represents an important stream of unexamined data. Also, a number of 

administrative, client, therapist, and interpersonal dyadic variables have been found to 

influence unilateral termination (Reis and Brown, 1999; Barrettt et al, 2008). However, 

the relationship among these variables has not been fully explored. Future research may
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look to modeling the structural relationships between these variables to better understand 

the dynamic factors that influence the decision to withdrawal from services.

Conclusions

Because of it’s widespread deployment in UBCs across the nation, this 

investigation sought to examine if variables measured by the CCAPS-34 are capable of 

differentiating between completers and dropouts. This analysis also examined the risk of 

PT as clients progress along the EOC. Results partially supported findings previously 

discussed within the literature. For example, the results from the’logistic regression 

analysis, the CART model, and the Cox PH regression model appeared to indicate that 

higher levels of social anxiety at intake appeared to be a protective factor against PT. 

Additionally, findings indicate that clients with higher levels o f functional impairment 

were at increased risk of PT. Lastly, the rate of withdrawal observed in this study 

appeared to follow a negatively accelerating decay curve with a large proportion of 

clients terminating services after the initial session. Results also showed that the risk of 

PT is lowest during the early stages of treatment. These findings suggest that the highest 

proportion of clients withdrew from treatment when the risk of PT was at its lowest point. 

This result appears to indicate a large number of clients in the current sample are 

achieving therapeutic gains at an unusually rapid rate and mutually terminating services 

after achieving a good enough level (Baekeland and Lundwall, 1975; Barkham et al,

1996; Garfield, 1994; Hansen, Lambert, and Forman, 2002; Howard et al, 1986; Pekarik, 

1985; Phillips. 1985). This investigation also examined the influence of hostility and 

academic concerns on the decision to unilaterally withdraw from services. Results from 

the BLR and Cox PH modeling strategies indicated that these variables have little
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influence on the decision to prematurely terminate services. In contrast, results from the 

CART model indicate that hostility may be an influential variable for PT in UBCs. These 

findings suggest the effect of hostility needs further development and future research may 

examine its moderating or mediating influence on the decision to unilaterally withdraw 

from services. ?
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APPENDIX A

DATA CODING SHEET

1.
2.

5.
6.

Client Gender

Race/Ethnicity

Demographic Information for descriptive sample statistics 
Client Age*

0 = Male
1 = Female
0 = African-American / Black American
1 = Indian or Alaskan Native
2 = Asian American / Asian
3 = Caucasian / White
4 = Hispanic / Latino/a
5 = Native Hawaiian or Pacific Islander
6  = Multi-racial 
7= Other/Unknown 
0 - Yes 
1 =N o

International
student
Country of Origin 
Relationship Status

Current academic 
status:

0 = Single
1 = Serious dating or committed relationship
2 = Civil union
3 = Domestic partnership equivalent
4 = Married
5 = Separated
6  = Divorced
7 = Widowed
0 = Freshman / First-year
1 = Sophomore
2 = Junior
3 = Senior
4 = Graduate / professional degree student
5 = Non-student
6  = High-school student taking college classes
7 = Non-degree student
8  = Faculty (Full-time/Adjunct/Instructor)
9 = Staff
0 = On-campus residence hall/apartment
1 = On/off campus fraternity/sorority house
2 = On/off campus co-operative house
3 = Off-campus apartment/house
4 = Other (please specify)

Variables Indentified in the Premature Termination Literature 
Diagnosis 1 = Adjustment Disorders

2 = Anxiety Disorders
3 = Delirium, Dementia, and Amnestic and Other Cognitive

8 . Housing Status
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Disorders
4 = Attention Deficit/Hyperactivity Disorder
5 = Dissociative Disorders
6  = Eating Disorders
7 = Factitious Disorders
8  = Impulse-Control Disorders
9 = Mental Disorders Due to a General Medical Condition
10 = Mood Disorders
11= Other Conditions That May Be a Focus of Clinical 

Attention (receiving a V code diagnosis)
12 = Personality Disorders
13 = Schizophrenia and Other Psychotic Disorders
14 = Sexual and Gender Identity Disorders
15 = Sleep Disorders | Somatoform Disorders
16 = Substance-Related Disorders

11. Functional impairment (GAF Score) at intake_________________________
_____________     Treatment Status.
12. Treatment Status 0 = Dropout

1= Completed
13. Number of sessions attended

• Will also be analyzed in the research questions.
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Clinical Variables Measured by the CCAPS-34
Time 1 Time 2 Time 3

12. Depression Scale
Item 4 I don’t enjoy being around people as much as I used to
Item 5 I feel isolated and alone
Item 11 I feel worthless
Item 12 I feel helpless
Item 21 I feel sad all the time
Item 25 I have thoughts of ending my life

Total Score

13. General Anxiety
Item 2 My heart races for no good reason
Item 7 I’m anxious that I might have a panic attack in public
Item 9 I have sleep difficulties
Item 10 My thoughts are racing
Item 15 I have spells of terror or panic
Item 17 I feel tense

Total Score:

14. Social Anxiety
Item 1 I am shy around others 
Item 19 I make friends easily
Item 22 I am concerned that other people do not like me 
Item 24 I feel uncomfortable around people I don’t know 
Item 26 I feel self-conscious around others

Total Score:

15. Academic Distress
Item 8  I feel confident I can succeed academically 
Item 28 I am not able to concentrate as well as usual 
Item 30 It’s hard to stay motivated for my classes 
Item 33 I am unable to keep up with my schoolwork

Total Score:

16. Eating Concerns
Item 3 I feel out of control when I eat
Item 6  I think about food more than I would like to
Item 13 I eat too much

Total Score

17. Hostility
Item 18 I have difficulty controlling my temper

Total Score
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Item 20 I sometimes feel like breaking or smashing things
Item 23 I get angry easily
Item 29 I am afraid I may lose control and act violently
Item 32 I frequently get into arguments
Item 34 I have thoughts of hurting others___________________
18. Alcohol Use
Item 14 I drink alcohol frequently
Item 16 When I drink alcohol I can’t remember what happened
Item 27 I drink more than I should
Item 31 I have done something I have regretted because of drinking

Total Score
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APPENDIX B

VARIABLE CODEBOOK

Variable Label Description Measurement
Level

Age Participant age (in years) Scale
Gender Participant Gender (dummy coding) Nominal
Race Ethni Race/Ethnicity (eight levels; simple coding) Nominal
Inter Stu International Status (dummy coding) Nominal
Rela Stat Relationship status ( 8  levels; simple coding) Nominal
Aca Stat Academic Status (10 levels; simple coding) Nominal
House Stat Housing Status (5 levels; simple coding) Nominal
Diagn DSM Diagnosis (17 levels; simple coding) Nominal
Experien Therapist yrs of experience Ordinal
GAF Functional Impairment at intake Scale
TxStatus DV -Treatment status (2 levels; dummy coding) Nominal
Session Number of Sessions attended -  measures time until target event 

(Termination or Completion; 1-12)
Ordinal

! c c a p s  :
Depression

TIDTotal Total score for CCAPS-34 Depression subscale at first 
measurement point (intake).

Scale

T2DTotal Total score for CCAPS-34 Depression subscale at second 
measurement point (midpoint).

Scale

T3DTotal Total score for CCAPS-34 Depression subscale at third 
measurement point (final).

Scale

General Anxiety
TIGATotal Total score for CCAPS-34 Generalized Anxiety subscale at 

first measurement point (intake).
Scale

T2GATotal Total score for CCAPS-34 Generalized Anxiety subscale at 
second measurement point (midpoint).

Scale

T3GATotal Total score for CCAPS-34 Generalized Anxiety subscale at 
third measurement point (final).

Scale

Social Anxiety
TISATotal Total scores for the CCAPS-34 Social Anxiety subscale at first 

measurement point (intake)
Scale

T2SATotal Total scores for the CCAPS-34 Social Anxiety subscale at 
second measurment point (midpoint)

Scale

T3SATotal Total scores for the CCAPS-34 Social Anxiety subscale at third 
measurement point (final)

Scale

Academic Distress
TIADTotal Total Scores for the CCAPS-34 Academic Distress subscale at 

first measurement point (intake)
Scale

T2ADTotal Total Scores for the CCAPS-34 Academic Distress subscale at Scale
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second measurement point (midpoint)
T3ADTotal Total Scores for the CCAPS-34 Academic Distress subscale at 

final measurement point (final)
Scale

Eating Concerns
TIECTotal Total Scores for the CCAPS-34 Eating Concerns subscale at 

first measurement point (intake)
Scale

T2ECTotal Total Scores for the CCAPS-34 Eating Concerns subscale at 
second measurement point (midpoint)

Scale

T3ECTotal Total Scores for the CCAPS-34 Eating Concerns subscale at 
final measurement point (final)

Scale

Hostility
TIHTotal Total Scores for the CCAPS-34 Hostility subscale at first 

measurement point (intake)
Scale

T2HTotal Total Scores for the CCAPS-34 Hostility subscale at second 
measurement point (midpoint)

Scale

T3HTotal Total Scores for the CCAPS-34 Hostility Subscale at final 
measurement point (final)

Scale

Alcohol Abuse
TIAATotal Total Scores for the CCAPS-34 Alcohol Abuse Subscale at 

first measurement point (intake)
Scale

T2AATotal Total Scores for the CCAPS-34 Alcohol Abuse Subscale at 
second measurement point (midpoint)

Scale

T3AATotal Total Scores for the CCAPS-34 Alcohol Abuse Subscale at 
final measurement point (final)

Scale

| CCAPS-34 Subscale Item Scores at 3. Time Points ,'y  -1

Depression Factor ( 6  items; 5 point Likert scale 0-4)
T 1 D 4 I don’t enjoy being around people as much as I used to 

(Intake)
Scale

T2_D4 I don’t enjoy being around people as much as I used to (Time 
2 )

Scale

T 3 D 4 I don’t enjoy being around people as much as I used to (Time 
3)

Scale

T1 D5 I feel isolated and alone (Intake) Scale
T2 D5 I feel isolated and alone (Time 2) Scale
T3 D5 I feel isolated and alone (Time 3) Scale
T1 D ll I feel worthless (Intake) Scale
T2 D ll I feel worthless (Time 2) Scale
T3 D ll I feel worthless (Time 3) Scale
T1 D12 I feel helpless (Intake) Scale
T2 D12 I feel helpless (Time 2) Scale
T3 D12 I feel helpless (Time 3) Scale
T1 D21 I feel sad all the time (Intake) Scale
T2 D21 I feel sad all the time (Time 2) Scale
T3 D21 I feel sad all the time (Time 3) Scale
T1 D25 I have thoughts of ending my life (Intake) Scale
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T2 D25 I have thoughts of ending my life (Time 2) Scale
T3 D25 I have thoughts of ending my life (Time 3) Scale

Generalized Anxiety Factor (6 items; 5 point Likert scale 0-4)
T1 GA2 My heart races for no good reason (Intake) Scale
T2 GA2 My heart races for no good reason (Time 2) Scale
T3 GA2 My heart races for no good reason (Time 3) Scale
T1 GA7 I’m anxious that I might have a panic attack in public (Intake) Scale
T2 GA7 I’m anxious that I might have a panic attack in public (Time 2) Scale
T3 GA7 I’m anxious that I might have a panic attack in public (Time 3) Scale
T1 GA9 I have sleep difficulties (Intake) Scale
T2 GA9 I have sleep difficulties (Time 2) Scale
T3 GA9 I have sleep difficulties (Time 3) Scale

: T1 GA10 My thoughts are racing (Intake) Scale
T2 GA10 My thoughts are racing (Time 2) Scale
T3 GA10 My thoughts are racing (Time 3) Scale

; T1 GA15 I have spells of terror or panic (Intake) Scale
T2 GA15 I have spells o f terror or panic (Time 2) Scale
T3 GA15 I have spells o f terror or panic (Time 3) Scale

: T1 GA17 I feel tense (Intake) Scale
T2 GA17 I feel tense (Time 2) Scale
T3 GA17 I feel tense (Time 3) Scale

Social Anxiety Factor (5 items; 5 point Likert scale 0-4)
: T1 SA1 I am shy around others (Intake) Scale

T2 SA1 I am shy around others (Time 2) Scale
T3 SA1 I am shy around others (Time 3) Scale
T1 SA19 I make friends easily (Intake) Scale
T2 SA19 I make friends easily (Time 2) Scale
T3 SA19 I make friends easily (Time 3) Scale
T1 SA22 I am concerned that other people do not like me (Intake) Scale
T2 SA22 I am concerned that other people do not like me (Time 2) Scale
T3 SA22 I am concerned that other people do not like me (Time 3) Scale
T1 SA24 I feel uncomfortable around people I don’t know (Intake) Scale
T2 SA24 I feel uncomfortable around people I don’t know (Time 2) Scale
T3SA24 I feel uncomfortable around people I don’t know (Time 3) Scale
T1 SA26 I feel self-conscious around others (Intake) Scale
T2 SA26 I feel self-conscious around others (Time 2) Scale
T3 SA26 I feel self-conscious around others (Time 3) Scale

Academic Distress Factor (4 items; 5 point Likert scale 0-4)
T1 AD8 I feel confident I can succeed academically (Intake) Scale
T2 AD 8 I feel confident I can succeed academically (Time 2) Scale
T3 AD8 I feel confident I can succeed academically (Time 3) Scale
T1 AD28 I am not able to concentrate as well as usual (Intake) Scale
T2 AD28 I am not able to concentrate as well as usual (Time 2) Scale
T3 AD28 I am not able to concentrate as well as usual (Time 3) Scale
T1 AD30 It’s hard to stay motivated for my classes (Intake) Scale
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T2 AD30 It’s hard to stay motivated for my classes (Time 2) Scale
T3 AD30 It’s hard to stay motivated for my classes (Time 3) Scale
T1 AD33 I am unable to keep up with my schoolwork (Intake) Scale
T2 AD33 I am unable to keep up with my schoolwork (Time 2) Scale
T3 AD33 I am unable to keep up with my schoolwork (Time 3) Scale

Eating Concerns Factor (3 items; 5 point Likert scale 0-4)
T1 EC3 I feel out of control when I eat (Intake) Scale
T2 EC3 I feel out of control when I eat (Time 2) Scale
T3 EC3 I feel out of control when I eat (Time 3) Scale
1 1 EC6 I think about food more than I would like to (Intake) Scale
T2 EC6 I think about food more than I would like to (Time 2) Scale
T3 EC6 I think about food more than I would like to (Time 3) Scale
T1 EC13 I eat too much (Intake) Scale
T2 EC13 I eat too much (Time 2) Scale
T3 EC13 I eat too much (Time 3) Scale

Hostility Factor ( 6  items; 5 point Likert scale 0-4)
T1 H18 I have difficulty controlling my temper (Intake) Scale
T2 H18 I have difficulty controlling my temper (Time 2) Scale
T3 H18 I have difficulty controlling my temper (Time 3) Scale
T1 H20 I sometimes feel like breaking or smashing things (Intake) Scale
T2 H20 I sometimes feel like breaking or smashing things (Time 2) Scale
T3 H20 I sometimes feel like breaking or smashing things (Time 3) Scale
T1 H23 I get angry easily (Intake) Scale
T2 H23 I get angry easily (Time 2) Scale
T3 H23 I get angry easily (Time 3) Scale
T1 H29 I am afraid I may lose control and act violently (Intake) Scale
T2 H29 I am afraid I may lose control and act violently (Time 2) Scale
T3 H29 I am afraid I may lose control and act violently (Time 3) Scale
T1 H32 I frequently get into arguments (Intake) Scale
12 H32 I frequently get into arguments (Time 2) Scale
T3 H32 I frequently get into arguments (Time 3) Scale
11 H34 I have thoughts of hurting others (Intake) Scale
T2 H34 I have thoughts of hurting others (Time 2) Scale
T3 H34 I have thoughts of hurting others (Time 3) Scale

Alcohol Use Factor (5 items; 5 point Likert scale 0-4)
T1AU14 I drink alcohol frequently (Intake) Scale
T2 AU14 I drink alcohol frequently (Time 2) Scale
T3 AU14 I drink alcohol frequently (Time 3) Scale
T1 AU16 When I drink alcohol I can’t remember what happened (Intake) Scale
T2 AU16 When I drink alcohol I can’t remember what happened (Time 

2 )
Scale

T3 AU16 When I drink alcohol I can’t remember what happened (Time 
3)

Scale

T1 AU27 I drink more than I should (Intake) Scale
T2 AU27 I drink more than I should (Time 2) Scale
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T3 AU27 I drink more than I should (Time 3) Scale
T1 AU31 I have done something I have regretted because of drinking 

(Intake)
Scale

T2 AU31 I have done something I have regretted because of drinking 
(Time 2 )

Scale

T3 AU31 I have done something I have regretted because of drinking 
(Time 3)

Scale

Key:

CCAPS-34 Subscale Total Scores at 3 Time Points 
Tl=Data Collected at administration 1 
T2=Data Collected at administration 2 
T3=Data Collected at administration 3

3

D=Depression 
GA=Generalized Anxiety 
SA=Social Anxiety 
AD=Academic Distress 
EC=Eating Concerns 
H^Hostility 
AA=Alcohol Abuse
Total = Composite score (mean score of the items)
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APPENDIX C

DEPRESSION SUBSCALE 

PAIRWISE SAMPLE COVARIANCE MATRIX

CCAPS-34 Depression Subscale

1 Item 4 Item 5 Item 11 Item 12 Item 21

Item 4 1.927

Item 5 0.959 1.979

Item 11 0.669 1.145 1.944

Item 12 0.773 1.255 1.362 1.897
Item 21 0.928 1.291 1.086 1.094 1.725
Item 25 0.297 0.541 0.710 0.569 0.561 1.066
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APPENDIX D

GENERALIZED ANXIETY SUBSCALE 

PAIRWISE SAMPLE COVARIANCE MATRIX

CCAPS-34 Generalized Anxiety Subscale

Item 2 Item 7 Item 9 Item 10 Item 15 Item 17 

Item 2 2.115

Item 7 1 .0 2 1 2 . 0 1 1

Item 9 0.678 0.455 2.025

Item 10 1.054 0.566 0.765 2.025
Item 15 1.067 1.336 0.634 0.649 2.016

Item 17 0.994 0.828 .609 1 . 0 2 2 0.875
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APPENDIX E

SOCIAL ANXIETY SUBSCALE 

PAIRWISE SAMPLE COVARIANCE MATRIX

CCAPS-34 Social Anxiety Subscale_______________________
Item 1 Item 19 " Item 22 Item 24 Item 26

Item 1 1.483
Item 19 0.892 1.591
Item 22 0.360 0.316 2.081
Item 24 0.019 0.665 0.698 1.771
Item 26 0.758 0.465 1.192 0.922
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A PPENDIX F

ACADEMIC DISTRESS SUBSCALE 

PAIRWISE SAMPLE COVARIANCE MATRIX

CCAPS-34 Academic Distress Subscale

Item 8  Item 28 Item 30 Item 33 
Item 8  1.446

Item 28 0.469 1.899
Item 30 0.775 1.323 2.169
Item 33 0.846 1.026 1.564 2.100
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A PPEND IX  G

EATING CONCERNS SUBSCALE

CCAPS-34 Eating Concerns Subscale

Item 3 Item 6  Item 13
Item 3 1.396
Item 6  0.917 1.412

Item 13 1.000 1.138 1.534
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A PPEN DIX H

HOSTILITY SUBSCALE 

PAIRWISE SAMPLE COVARIANCE MATRIX

CCAPS-34 Hostility Subscale

Item 18 Item 20 Item 23 Item 29 Item 32 Item 34 

Item 18 1.504

Item 20 0.889 1.897

Item 23 1.123 0.910 1.685

Item 29 0.445 0.678 0.447 0.937

Item 32 
Item 34

0.748
0.207

0.423
0.385

0.768
0.181

0.243
0.368

2.565
0.136
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A PPEND IX  I

ALCOHOL ABUSE SUBSCALE 

PAIRWISE. SAMPLE COVARIANCE MATRIX

CCAPS-34 Alcohol Abuse Subscale

_______________Item 14________ Item 16 Item 27________ Item 31
Item 14 1.133
Item 16 0.519 0.711
Item 27 0.847 0.503 0.940
Item 31 0.629 0.550 0.631 1.450
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