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ABSTRACT

DECOMPOSITION DYNAMICS IN RESTORED AND NATURALLY 

RECOVERING ATLANTIC WHITE CEDAR (CHAMA EC YPARJS 

THYOIDES) WETLANDS

Edward R. Crawford 
Old Dominion University, 2002 

Director: Frank P. Day

Restoration efforts and ecologically based management practices for Atlantic 

white cedar wetlands have recently focused on soil organic matter sequestration and 

aggradation as critical ecosystem functions in the maintenance o f this imperiled 

community type. This work addresses how developmental stage, litter quality and 

environmental conditions influenced aboveground leaf litter and belowground root decay 

in naturally regenerating and restored Atlantic white cedar wetlands. Using standard 

litterbags for leaf litter and a modified litterbag technique for roots, decay dynamics of 

naturally regenerating and restored Atlantic white cedar stands were measured to 

compare ecosystem development trends with restoration conditions. Effects on rates of 

mass loss, nitrogen, phosphorus and carbon dynamics during decomposition o f a 

common root and leaf litter type (Chamaecyparis thyoides) and native leaves and roots 

are discussed.

Native root decay was significantly faster at all depth intervals within the 

restoration setting compared to the stands along a chronosequence. In contrast, 

Chamaecyparis root decay was similar along the chronosequence and restoration setting. 

Native leaf litter decay was faster than Chamaecyparis leaf litter decay but no differences
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occurred among litter decay rates along the chronosequence and restoration setting.

Within all sites, native leaf litter and Chamaecyparis thyoides litter immobilized 

nitrogen over the course o f the study, while phosphorus was released. Nitrogen in leaf 

litter was immobilized over two times initial amounts. Site hydrology and initial 

phosphorus content were strongly correlated with leaf litter decay rates.

Native roots and standard roots immobilized nitrogen and released phosphorus 

throughout the study. Roots accumulated nitrogen but increases were less pronounced 

relative to leaf litter. Root decay was highly correlated with initial phosphorus and lignin 

concentration and L:N ratio. Decay o f Chamaecyparis roots were similar across all sites 

despite significant differences in site hydroperiod. Root decay was not correlated with 

site hydrology. With regards to native root material, these results suggest that within 

restored sites the current status o f belowground carbon storage functions appear to be 

deficient in comparison to the naturally regenerating sites. Continued long-term study of 

these and similar restoration sites are needed to provide greater insight into appropriate 

recovery models for various wetland functions o f Atlantic white cedar.
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I

CHAPTER I 

INTRODUCTION

OVERVIEW OF THE RESEARCH PROBLEM

This research represents a  portion of a larger collaborative systems-level study on 

Atlantic white cedar wetland restoration between researchers from Christopher Newport 

University and Old Dominion University, Virginia, USA. An integrated suite o f 

environmental parameters were measured in Atlantic white cedar wetlands to better 

understand important ecosystem processes in this imperiled community type. Hydrologic 

regimes, soil nutrient flux, pollution fate and effects, atmospheric gas exchange, plant and 

animal diversity and production, and decomposition were studied within naturally 

recovering and restored Atlantic white cedar stands to help identify potential ecological 

metrics suitable to evaluating the success of current restoration and management 

attempts.

The primary objective o f the project was to evaluate carbon cycling dynamics in 

Atlantic white cedar wetlands because of its importance in ecosystem structure, function, 

and self-maintenance o f this community type. Soil organic matter sequestration and 

subsequent peat accumulation are a critical component o f carbon cycling in Atlantic 

white cedar wetlands. This work is a result o f efforts to quantify decay dynamics in 

naturally regenerating and restored Atlantic white cedar wetlands as part o f the larger 

effort to develop whole system models o f carbon cycling for this community  type.

The journal model used for this dissertation is Wetlands.
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2

ATLANTIC WHITE CEDAR ECOLOGY AND RESTORATION

Atlantic white cedar [Chamaecyparis thyoides (L.) B.S.P.] Cupressaceae, is an 

arborescent, obligate, hydrophyte (Tiner 1996). The distribution of C. thyoides is 

restricted to freshwater wetlands in a narrow band along the eastern coastal United States 

ranging from mid-Maine to Mississippi (Laderman 1989). These tall, slender branched 

monoecious conifers typically form monotypic stands that primarily occur on organic 

soils (histosols); however, stands also occur over a sand or sand/gravel base in Florida 

and Mississippi (Laderman 1989). Species composition and canopy structure within 

stands are dependent on soil characteristics (Korstian and Brush 1931), fire regime and 

fire characteristics (Little 1950), hydroperiod (Laderman 1989) and region (Ward and 

Clewell 1987). At the time of European settlement, there was an estimated 200,000 

hectares o f C. thyoides wetlands throughout its range (Kuser and Zimmermann 1995). 

North Carolina alone may have contained over half o f the original Atlantic white cedar 

swamp acreage (Kuser and Zimmerman 1995).

Historically, the largest known stand in the entire known range o f Atlantic white 

cedar, estimated at 26,000 -  45,000 ha, was found in the Great Dismal Swamp (Frost 

1987, Moore and Allen 1998). The current study was conducted in the mid-Atlantic 

region where cedar stands often occur in dense, monotypic, even-aged stands with 

scattered hardwood tree species such as red maple (Acer rubrum L.), black gum (Nyssa 

sylvatica van biflora Marsh.) and a well developed layer o f ericaceous shrubs and 

various lianas. The regeneration and development of this unique community type is 

dependent on the interplay o f several environmental drivers including the catastrophic 

disturbance o f fire, fire intensity, and the ground water elevation at the time o f fire
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(Laderman 1989). Catastrophic fire at a period of high water table is optimal for the 

natural regeneration of an even-aged cedar stand (Little 1950). The rapid and extremely 

dense seedling recruitment that results from these conditions reduces colonization rates of 

faster growing hardwood species, thus aiding Atlantic white cedar regeneration (Korstian 

and Brush 1931).

Ehrenfeld (1995) has identified the development of deep peat substrate as a key 

component of the structure and function of Atlantic white cedar wetlands. Peat deposits 

strongly affect the hydrology of Atlantic white cedar wetlands by increasing the water 

holding capacity of the soil (Levy and Walker 1979), and are required for seedling 

recruitment (Beull and Cain 1943). The wetter hydrologic conditions can lead to 

anaerobic conditions and reduced soil pH, which can lead to decreasing decay rates (Day 

1982, Tupacz and Day 1990) ultimately affecting nutrient availability and production. As 

a result, hydrologic regimes and carbon cycling are tightly coupled mechanisms that 

either directly or indirectly affect other ecosystem functions.

As a result of extended hydroperiods, high litter production rates coupled with 

slow decomposition rates, Atlantic white cedar is typically found on deep organic soils 

(Day 1987). The dystrophic soil conditions found within Atlantic white cedar wetlands 

reduces turnover of organic matter, nutrient availability and production rates. According 

to Laderman (1998), Atlantic white cedar is a poor competitor able to survive in nutrient 

poor, saturated soils that inhibit the encroachment of faster growing hardwood species. 

Once these other species become established, they can outcompete Atlantic white cedar, 

ultimately replacing it.

Thus, the process of paludification, a gradual rise in the water table as peat
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accumulation impedes drainage, is of paramount importance for the self-regulation and 

maintenance of Atlantic white cedar wetlands.

The role of wetlands in maintaining the carbon cycle and atmospheric stability has 

only recently been appreciated since increased air pollution has begun to affect global 

balances (Odum 1989). The edaphic conditions found within Atlantic white cedar 

wetlands result in sequestration and aggradation of soil organic matter leading to the 

production of histosols. This peat accumulation in Atlantic white cedar wetlands has 

important regional and global implications. On a regional scale, not only are these 

wetlands important sinks for carbon, the accumulating peat decreases nutrient loading to 

coastal rivers and estuaries, thus improving downstream surface-water quality (Hinesly 

and Wicker 1999). On a global scale, histosol development within Atlantic white cedar 

wetlands represent an important carbon sink. While histosols cover approximately 1% of 

the world’s land area, they hold 20% of the global soil carbon (Brady and Weil 1996).

Following European settlement, dramatic decline of the species and ecosystem 

has been attributed to commercially valuable attributes of the wood, along with 

concomitant hydrologic modifications, harvest without replanting, fire suppression, and 

extensive development of coastal areas (Frost 1987). These anthropogenic alterations of 

Atlantic white cedar wetlands have reduced this forested wetland type by as much as 95% 

throughout its former range (Frost 1987). In Virginia and the Carolinas, remnant Atlantic 

white cedar swamps are mostly second-growth, isolated and fragmented (Levy 1987).

Extensive Atlantic white cedar forests that occurred at the periphery of the Great 

Dismal Swamp prior to lumbering in 1899 (Musselman et al. 1977) have declined to 

relatively minor importance at present. By comparison, the importance of red maple and
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other euryhydric species in the forest canopy has been increasing, ultimately replacing 

Atlantic white cedar (Levy and Walker 1979, Day 1985).

Recently, the interest in restoring Atlantic white cedar wetlands along the Atlantic 

coast of the United States is on the rise (Kuser and Zimmerman 1995, Atkinson et al. 

1996). Pocosins and associated wetlands (including Atlantic white cedar swamps) are 

among the least studied ecosystems in the United States (Richardson 1991). However, 

the United States Department of Interior Fish and Wildlife Service, the Department of 

Defense and various conservation groups have recently launched initiatives for the 

purpose of better understanding how to manage, maintain, and restore Atlantic white 

cedar ecosystems.

The majority of Atlantic white cedar restoration efforts have centered around the 

harvesting and regeneration of C. thyoides as a commercial crop (Korstian and Brush 

1931). These early restoration efforts utilized a myopic approach to Atlantic white cedar 

regeneration ignoring the ecological functions and processes of these systems. The 

ecosystem is the functional ecological unit, and ecological restoration means more than 

simply replacing the dominant plant cover or habitat structure (Pratt 1994). Restoration 

ecology takes a holistic, systems level approach to restoration of ecosystem structure and 

function ultimately resulting in self-maintaining ecosystems (Jordan et al. 1987).

A more ecologically based restoration effort of Atlantic white cedar swamps 

requires this holistic approach. According to Jordan et al. (1987), elucidation of how 

ecosystem level processes recover through time following allogenic and autogenic 

perturbations is a primary concern in restoration ecology. Experimental evidence of the 

effects of various disturbances on Atlantic white cedar wetland function (Ehrenfeld and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

Schneider 1991, Day and Megonigal 1993, Zhu and Ehrenfeld 2000) can provide 

valuable insight for management and restoration strategies. Cairns and Heckman (1996) 

proposed that the modeling of natural recovery patterns may facilitate the development of 

assessment tools for restoration and management decisions in mitigation programs.

Currently, there are only a few studies of long-term temporal and spatial recovery 

patterns for belowground systems, especially in forested communities (Berish 1982, 

Gleeson andTilman 1990). In terms of belowground biomass and production following 

disturbance, Fahey and Hughes (1994) and Jones et al. (1996) have reported rapid 

recovery of biomass and production. Bridgham et al. (1991) determined that 

belowground cellulose decay rates in North Carolina peatlands were up to 10 times faster 

on disturbed sites compared to natural sites. Peat accumulation is relevant to global 

atmospheric carbon balance, and may be critical to long-term self-maintenance of 

Atlantic white cedar wetlands. Further investigation of long-term decomposition 

dynamics in relation to ecosystem recovery will aid in an understanding of the controls 

and processes important in creating self-sustaining ecosystems. According to Cairns and 

Heckman (1996), elucidation of the primary factors that control ecosystem health and self 

maintenance coupled with the inter-relations of these factors provides the foundation of 

restoration strategies.

This collaborative effort between researchers from Christopher Newport 

University and Old Dominion University has initiated an extensive examination of 

carbon budgets for Atlantic white cedar wetlands in the mid-Atlantic region to integrate 

multiple factors important to Atlantic white cedar ecosystems into a central model of 

ecosystem health. The underlying assumption of this approach is that soil carbon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

accumulation rates will help to assess the ecological condition of Atlantic white cedar 

communities in addition to providing a quantifiable metric for restoration success.

It is widely recognized that belowground processes play an important role in 

ecosystem dynamics (McClaugherty et al. 1982, Nadelhoffer et al. 1985, Mckane et al. 

1990, Perry 1994, Brady and Weil 1996). Accurate assessments of whole-system carbon 

budgets require that belowground components o f the community be estimated, especially 

in forested ecosystems. However, according to Vogt et al. (1986), our knowledge 

concerning the ecological processes in the belowground environment lags far behind the 

advances made in understanding aboveground dynamics. This is especially true of decay 

dynamics within wetland ecosystems. A general lack of belowground decomposition 

research within wetlands historically can be attributed to the technical difficulties 

encountered in the study of belowground systems and the time consuming nature of 

belowground measurements (Symbula and Day 1988, Tupacz and Day 1990, Conn and 

Day 1977). The present study will examine leaf litter and root litter decomposition 

dynamics within several naturally regenerating and restored Atlantic white cedar 

wetlands.

STUDY OBJECTIVES

The primary objectives of this research were to 1) quantify and compare 

aboveground and belowground organic matter decay rates along a chronosequence 

(intermediate, and mature age classes) of naturally recovering Atlantic white cedar 

wetlands; 2) compare above and belowground decay rates of the chronosequence to those 

of young Atlantic white cedar restoration plantings; and 3) determine if the influences of
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8

environment and substrate quality on leaf and root litter decay rates operate in similar 

ways within naturally regenerating sites and restored sites.

The questions addressed are: Do aboveground decomposition dynamics behave 

in ways similar to belowground decay dynamics in naturally occurring and restored 

Atlantic white cedar wetlands? Do influences of environment and substrate quality 

operate in similar ways in naturally occurring and restored Atlantic white cedar wetlands? 

Answers to these questions were approached by determining mass loss over time of 

decomposing root and leaf litter and by studying environmental and substrate quality 

controls on carbon, nitrogen, phosphorus and lignin dynamics of root and litter decay. 

Additionally, this research was conducted along a chronsequence of nutrient limited 

Atlantic white cedar wetlands that provided the opportunity to evaluate environmental 

influences and the unique physical, chemical and biological influences associated with 

site age on the decay dynamics of both leaf litter and roots.

The central hypothesis of this research was that litter and root decomposition 

differs between age classes of naturally regenerating Atlantic white cedar wetlands and 

that litter and root decomposition is faster in restored systems relative to all age classes of 

naturally recovering Atlantic white cedar wetlands. In addition, the null hypothesis that 

restored and naturally recovering sites do not differ in soil pH and hydroperiod was tested 

in an attempt to identify potential environmental factors associated with observed 

decomposition dynamics.

The following chapters present the research findings in detail. Chapter II 

compares above and belowground trends in decay dynamics along a chronosequence 

(intermediate and mature-aged sites) of naturally regenerating Atlantic white cedar
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wetlands to those of the restoration settings. Chapter IH evaluates weight loss and 

nutrient changes in decomposing leaf litter in regenerating and restored sites. How these 

dynamics differ in response to differences associated within each site was quantified. 

Chapter IV addresses the environmental and substrate quality controls on the carbon, 

nitrogen and phosphorus dynamics of root decay. How these dynamics differ in 

response to differences associated with site age and within restoration efforts were 

evaluated. Chapter V summarizes the research results. Results of above and 

belowground decomposition dynamics within an Atlantic white cedar restoration planting 

at Pocosin Lakes National Wildlife Refuge, Washington County, North Carolina is 

presented in the appendix.

The results from this research constitute a major component of a whole-system 

analysis of carbon dynamics in restored and naturally recovering Atlantic white cedar 

wetlands. Specifically, this research will provide a clearer understanding of the 

importance of above and belowground decomposition rates in the establishment of 

critical ecosystem functions and processes in restored or created forested wetlands.

STUDY SITES

Atlantic white cedar wetlands in Virginia and North Carolina are primarily 

located on the Pamlico Terrace east of the Suffolk Scarp. The sites selected for study are 

located in the mid-Atlantic coastal plain in the vicinity of southeastern Virginia and 

northeastern North Carolina (Figure 1.) In an effort to minimize site effects in the 

comparative aspects of this project, we selected was made to select only those Atlantic
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Figure 1. Satellite imagery o f the study region. Study sites were located in the Great 
Dismal Swamp National Wildlife Refuge, Virginia/North Carolina, the Alligator River 
and Pocosin Lakes National Wildlife Refuges, North Carolina, and the White Cedar LLC 
Mitigation Bank located on the eastern boundary o f  the Great Dismal Swamp National 
Wildlife Refuge, Virginia.
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white cedar stands that exhibited the structural characteristics of less disturbed historic 

conditions (Korstian and Brush 1931, Levy 1987). Given the declining numbers of 

remaining Atlantic white cedar forests in the mid-Atlantic region, site selection was 

generally limited to the Great Dismal Swamp National Wildlife Refuge and Alligator 

River National Wildlife Refuge. Atlantic white cedar wetlands found within these 

refuges are the nearest to undisturbed conditions for this region.

Selection of local restoration sites for study were limited to a few small-scale 

replanting projects, a <1 year old restoration pilot study within Pocosin Lakes National 

Wildlife Refuge, North Carolina, and an Atlantic white cedar mitigation bank located 

along the eastern boundary of the Great Dismal Swamp National Wildlife Refuge, known 

as the White Cedar LLC Mitigation Bank. These sites are on agricultural fields that are 

prior converted wetlands of the Great Dismal Swamp. Since the mitigation bank was 

already established and likely reflects typical conditions under which Atlantic white 

cedar restoration is expected to take place, it was selected for extensive examination in 

this study.

The Great Dismal Swamp (GDSNWR) is a seasonally flooded, non-riverine 

forested wetland located in the coastal plain of southeastern Virginia and northeastern 

North Carolina. Approximately 40% of the GDSNWR is located in Virginia and 60% in 

North Carolina. The Dismal Swamp is one of the few large forested wetlands remaining 

in the eastern United States ( L e v y  and Walker 1979, Lichtler and Walker 1979).

Alligator River (ARNWR) and Pocosin Lakes (PLNWR) National Wildlife 

Refuges are both located within the Albermarle-Pamlico Peninsula in North Carolina. 

The ARNWR was created in 1984 when Prudential Life Insurance Company donated
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approximately 61,000 hectares of pocosin, marsh, and forested wetlands to the U.S. Fish 

and Wildlife Service (Richardson 1991). Much of these natural areas have endured 

extensive ditching, nutrient loading, and fire-suppression over the centuries (Richardson

1991). In 1991, PLNWR was established. Prior to public ownership, most of the area 

was cleared, ditched and drained for commercial farming and in anticipation of being 

mined for peat. The histosols formed on the Albermarle-Pamlico Peninsula (the old East 

Dismal Swamp) have developed over the last 9,000 years since the Wisconsin period of 

glaciation (Hinesly and Wicker 1999). Dolman and Buol (1967), as cited in Hinesly and 

Wicker (1999), purport that peat formation in these areas started about the same time as it 

did in the DiSmal Swamp in Virginia, 8,900 ± 160 years before present.

Atlantic white cedar wetlands found within the GDSJNWR and ARNWR are the 

nearest to undisturbed conditions found within this region. As a reference for various 

ecological parameters of Atlantic white cedar wetlands, a chronosequence of age classes 

of naturally regenerating Atlantic white cedar wetlands was established for this study. 

Within the GDSNWR, three sites representing an age class gradient of wetlands 

recovering from canopy removal were selected: young (1 year since tree harvest), 

intermediate (26 years since harvest), and mature (68 years since harvest). The three 

wetlands were selected because 1) they were in close proximity to each other and 

therefore shared similar environmental conditions, 2) they shared the same watershed as 

the restored sites, and 3) their species components and stand structure were typical for the 

region (Levy and Walker 1979). The three sites were located within 2 km of each other 

along Corapeake Ditch Road at the North Carolina/Virginia state border. The mature and 

intermediate stands were located south of Corapeake Ditch Road in Camden Co., North
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Carolina approximately 6 km west of the refuge boundary.

The mature stand (36° 32’ 38” N, 76° 29’ 21” W) was characterized by a nearly 

monotypic and even-aged canopy of Atlantic white cedar with scattered Acer nibrum L., 

Nyssa sylvatica Marsh., Persea borbonia Spreng., and Pinus taeda L. The understory 

was dominated by Toxicodendron radicans L., Lyonia lucida C. Koch, Vaccinium 

corymbosum L., Smilax laurifolia L., and Clethra alnifolia L. As with most areas within 

the Great Dismal Swamp, the hydroperiod has been altered by ditching, road 

construction, and various water management practices that have resulted in lower ground 

water elevations and alteration of natural seasonal fluctuations (Whitehead 1972). The 

soils within this site are Pungo soils, classified as Dysic-Thermic Typic Medisaprists 

(U.S. Department of Agriculture 1995), with pH values near 3.3.

The intermediate-aged stand (36° 32’ 23” N, 76° 28’ 43” W) was also 

characterized by a monotypic and even-aged canopy of Atlantic white cedar, with the 

major difference being the greater density of trees. Several authors have described stand 

development in Atlantic white cedar wetlands as beginning with very dense seedling 

establishment followed by density-dependent stand thinning as the canopy closes 

(Korstian and Brush 1931, Buell and Cain 1943, DeBerry 2000). The understory and 

ground cover strata of the intermediate site were similar to the mature wetland in species 

composition, although vegetative cover was greatly reduced. The soils within this site 

are classified as Pungo soils, Dysic-Thermic Typic Medisaprists (U.S. Department of 

Agriculture 1995), with pH values near 3.4.

The young site (36° 33’ 09” N, 76° 28’ 43” W) was located approximately 2 km 

northeast of the mature site in Suffolk City, Virginia. This site was harvested of nearly
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all Atlantic white cedar in the spring of 1997 using low impact harvesting methods to 

reduce ground compaction and understory disturbance. The remaining slash was left on 

site. At the time of initial sampling on site, the wetland was approximately 1 year since 

harvesting and vegetation consisted of remnant understory species (especially 

Toxicodendron radicans L., Vaccinium corymbosum L., and Clethra alnifolia L.) and 

emerging seedlings of Atlantic white cedar and Acer rubrum L. Soils at this site were 

classified as Pungo Muck soils, which are deep histosols (>2m deep), classified as Dysic- 

Thermic Typic Medisaprists (U.S. Department of Agriculture 1981), with pH values near 

3.4.

The restoration sites (Edge Farm Restoration) (36° 36’ 35” N, 76° 25’ 17” W) are 

located on a 1 km2 former agricultural area located on the eastern edge of the Great 

Dismal Swamp National Wildlife Refuge in southeastern Virginia. This site was under 

rotational crop cultivation for several decades prior and had been fallow for > 5 years 

before conversion to an Atlantic white cedar mitigation bank (known as the White Cedar 

LLC Mitigation Bank). Restoration efforts for this site included minor regrading to 

remove agricultural field crowns and furrows, plugging of existing drainage ditches, 

planting Atlantic white cedar saplings, and localized herbicide treatments to control 

encroaching hardwood species.

Atlantic white cedar saplings were planted on 3-m (±) centers in two phases, with 

plantings in 1992 and 1994. Supplemental plantings occurred in 1996 to offset localized 

mortality of planted material. The vegetation, which was in transition from a fallow 

agricultural field to an emergent freshwater wetland, contained components of old Held 

vegetation, emergent freshwater marsh vegetation, and a developing canopy of planted
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Atlantic white cedar. Dominant species included Andropogon virginicus L., Eupatorium 

capillafolium (Lam.) Small., Panicum dichotomoflomm Michx., Juncus effusus L., 

Euthamia tenuifolia (Pursh) Nutt., and Chamaecyparis thyoides (L.) B.S.P. Soils within 

the restoration sites are currently classified as Made Land but prior to cultivation were 

classified as Typic Umbraqualts, very poorly drained loam soils with high fractions of 

organic matter (U.S. Department of Agriculture 1953). Decades of intensive cultivation 

have resulted in the loss of much of the organic fraction typical of the surficial soils in the 

adjacent forested wetlands.

Two naturally regenerating Atlantic white cedar wetlands were selected for 

intensive study in ARNWR, Dare County, North Carolina. These two sites (intermediate 

and mature) are located approximately 90-ion southeast of the intermediate and mature 

sites within the GDSNWR. The mature site was located approximately 0.5 km to the 

northwest terminus of North Sandy Ridge Road, located in the central section of the 

refuge. This site was harvested approximately 62 year ago and has since regenerated 

with a dense, monotypic canopy of Atlantic white cedar. Scattered throughout the 

canopy were individuals of Acer rubrum L., Gordonia lasianthus L. Ellis., and Pinus 

taeda L.

Vegetation in the understory was similar to that of the Great Dismal Swamp 

mature site, with Lyonia lucida C. Koch, Clethra alnifolia L., Smilax rotundifolia L., and 

Toxicodendron radicans L. The soils at the site are Pungo Muck with Belhaven 

inclusions and are classified as aTerric Medisaprist (U.S. Department of Agriculture

1992), with average pH values around 3.4.

The intermediate site was located approximately one kilometer south of the
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mature site, adjacent to North Sandy Ridge Road. This site was logged around 25 years 

ago and has since regenerated with a dense monotypic stand of Atlantic white cedar with 

scattered individuals of the aforementioned species throughout. The shrub layer was less 

prominent, but contained the same species found within the mature stand. The soils at 

this site are Pungo Muck with Belhaven inclusions and are classified as a Terric 

Medissaprist (U.S. Department of Agriculture 1992), with soil pH values near 3.3.

METHODS

Aboveground and belowground decay rates were determined and compared 

among two restored sites within the Great Dismal Swamp periphery (Edge Farm sites 1 

and 2) and with sites that formed a chronosequence of naturally recovering stands within 

the GDSNWR and ARNWR. Results from the restoration site within PLNWR will be 

presented in the appendix. However, the following methodologies used were the same 

for all sites.

Within each site, two 10 x 15 m plots (each one consisting of 48 evenly dispersed 

stations) were identified for intensive above and belowground process and 

microenvironmental measurements. Within each of the sampling plots, nylon mesh litter 

bags containing roots were inserted into the soil profile during November 1998. The 

litter bags were constructed to integrate decay processes over a vertical soil profile 

(Tupacz and Day 1990, Conn and Day 1997). The litterbag technique using known 

amounts of selected vegetation has been successfully used in forests (Berg et al. 1984), 

tundra (Heal and French 1974), grasslands (Clark 1970), and wetlands (Day 1982, 

Tupacz and Day 1990, Thormann and Bayley 1997). Mesh bags permit organic matter 

quickly to become part of the natural litter layers as well as provide reasonable estimates
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of decay rates (Chamie and Richardson 1978). Using nylon mesh with 1mm openings 

permits maximum movement of all but the largest decomposer organisms and minimizes 

possible vegetation loss from bags due to fragmentation (Chamie and Richardson 1978). 

Although there has been much criticism directed at the use of litterbags (Witkamp and 

Olson 1963), they do provide a reproducible approximation of decomposition rates that 

integrate the effects of daily or weekly environmental variation (Gallagher 1978).

Belowground plant materials (roots and rhizomes, where applicable) were 

collected via pit excavations during the summer of 1998 from within each of the sites, 

were representative of the dominant communities at each site. A heterogeneous 

assortment of litter more closely approximates the decay dynamics of the entire 

community (Day 1982, Dwyer and Merriam 1983). Root material collected from each 

site represented the dominant species at each site. Upon harvesting, the root material was 

washed free of peat and air dried. Air dry weights were recorded and converted to oven 

dry weights using conversion factors obtained from subsamples of the original 

belowground material. The air-dried substrate approach was used to avoid any chemical 

alterations of the material that might have occurred by oven drying (Hackney and de la 

Cruz 1980).

Roots of approximately 9,000 Chamaecyparis thyoides seedlings were used as 

standard substrates across all sites to elucidate environmental/site effects. Within each 

site, comparison of Chamaecyparis thyoides seedling root decay with native 

“community” level root decay demonstrated litter quality influences under similar 

environmental conditions. Roots native to each site were buried to evaluate community 

decay dynamics and the influence of litter quality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Known weights of air-dried roots were placed in 1 mm nylon mesh litter bags.

The bags were constructed of L mm pore size nylon mesh and were 40 cm long, divided 

into four 10 cm sections that were inserted lengthwise into a vertical slit in the soil. 

Approximately 3 g of root material was placed in each of 4 10-cm sections in each litter 

bag. Most roots were 2-5 mm in diameter (all <  10 mm) and about 10-20% by volume 

were less than 2 mm in diameter. Subsamples were oven dried for 48 hr at 75° C to 

constant mass for air dry:oven dry mass ratios.

In the field, the top of the litterbag was positioned at the top of the soil- 

atmosphere interface. Once inserted, the opened slit was closed, allowing full soil 

contact with the buried litterbag. Within each plot, litterbags were randomly assigned to 

a station. Six bags per site (3 from each plot) were collected at each sampling interval 

from randomly selected stations (within each plot) throughout the course of the study. 

Samples were installed in the Held in November 1998 and sampling continued on a 

regular basis through August 2000. Over the course of the first year, sampling intervals 

were approximately one month intervals (when logisticaily possible); during the second 

year, samples were collected on a quarterly basis. Root decay rates and nutrient 

dynamics were compared among all sites.

Upon retrieval, the root bags were rinsed with tap water to remove adhering peat, 

and roots growing into bags were plucked out using forceps. The decomposing substrate 

was oven dried and weighed to determine mass loss. In order to determine ash free dry 

weight conversion ratios for the samples, individual samples were ground in a Wiley mill 

(40 mesh) and ashed in a muffle furnace at 550° C for 5 hours (Allen et al. 1986).

Decay rates and nutrient dynamics of leaf litter were also quantitatively
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compared among the sites. Recently senesced leaf litter was collected from tarps setup 

within each site during the fall of 1998. Approximately 3 g of air-dried leaves were 

placed in 20 x 20 cm nylon mesh (1 mm hole size) bags. Subsamples of leaves were 

oven dried at 75° C for 48 hours to constant mass for air dry:oven dry mass ratios. A 

second group of litterbags that contained Chamaecyparis thyoides leaf litter served as site 

controls. The C. thyoides leaf litter was collected during the fall of 1998 from an 

individual tree that fell during the late summer within the mature stand at the GDSNWR. 

Samples were deployed in January 1999 and collection coincided with root sample 

collection. Six litterbags of each type (native/standard) were removed from each site 

following the same protocol described earlier for the root litterbags.

Statistical Analyses

The data were evaluated using both linear and exponential decay models to test 

for the best fit. Relative decomposition rates (k [yr -l]) for native/standard leaf litter and 

roots were derived from a fixed-intercept negative exponential decay model (Weider and 

Lang 1982) according to the following formula:

X = e'*r

Where X = the proportion of initial mass remaining, k  is the decay constant and t 

is time. Significant differences (p = 0.05) among all decay coefficients (k) at each depth 

for native and standard root decay and for litter decay across all sites were detected by the 

Tukey-Kramer method (Sokal and Rohlf 1981). Within each site, significant differences 

in decay coefficients between Chamaecyparis roots and native roots and Chamaecyparis 

leaf litter and native leaf litter were detected by f-tests (Zar 1998). Using the derived k
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values, time required to reach 1 percent mass remaining was extrapolated.

For all one-way and two-way ANOVA’S, assumptions of normality and 

homogeneity of variance were evaluated and transformations (arcsine, log, square root) 

were performed, if needed. Differences between means were detected using Tukey’s 

Honestly Significant Difference (p = 0.05) test. ANOVA tests were conducted using the 

GLM procedure in SAS (SAS Institute 1985).

On the 1st, 3rd, and 6th sampling periods and on the 9th (370 days) and the 13th (670 

days) for roots and 12th (610 days) for leaf litter, 3 bags of root material and leaf litter 

were randomly chosen for chemical analysis. Individual root samples were bulked by 

depth, and along with leaf samples were ground in a Wiley mill (40 mesh). Nutrient 

analysis was done on material left at the termination of the study to determine rates of 

nitrogen, phosphorus, carbon, and lignin loss from all tissues. Total carbon and nitrogen 

were analyzed using a CNS elemental analyzer (Elemental Vario Max CNS Analyzer). 

Phosphorus was determined by dry ashing of sample, followed by digestion in 

hydrochloric acid then digestate is analyzed by inductively coupled plasma emission 

spectroscopy (AOAC 1996). For each site and treatment combination (native/standard), 

ground replicates from subsamples were bulked and analyzed for lignin-like constituents. 

This approach sacrificed statistical testing but significantly reduced the time and cost 

required for analysis. Carbon quality was analyzed by an acid detergent fiber 

fractionation method (Ceramic Fiber Filter Method, AOAC 1998), resulting in an acid- 

insoluble residue. This fraction also contains non-lignin acid-insoluble substances, but is 

collectively referred to as lignin due to similarities in decomposability (Berg and 

McClaugherty 1989).
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Researchers from Christopher Newport University and Old Dominion University 

measured the following variables on varying sampling schedules: stand structural 

characteristics, floristic surveys, aboveground production, belowground production (fine 

roots), hydrology, air and soil temperature, volumetric water content, soil nutrient 

content, and soil water content. With the exception of some edaphic parameters, these 

data are not presented in this dissertation, but are integral to the development of whole- 

system assessments of carbon cycling and other processes important to the overall 

objectives of the project.

Microsite environments are important in regulating decomposition rates (Day 

1995). Over the course of this study, hydroperiod and soil pH were measured within the 

plots at each site. Monitoring microenvironmental variation over depth allowed for tight 

coupling between biological processes and the corresponding microenvironmental 

influences. Soil pH was measured from soils collected adjacent to regions where 

litterbags were removed during each sampling period. Four depths in the soil profile were 

sampled (0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm). At each site, samples were 

collected, placed on ice in a cooler and brought back to the laboratory for analysis. Soil 

pH was measured using a portable pH meter (Orion, 290A) and combination glass and 

reference electrode immersed in a 50:50 soil:deionized water slurry.

Depth of rusting on steel rods was used as a means of determining depth to water 

table and the reducing zone within each of the sites (Bridgham et al. 1991, Thormann and 

Bayley 1997). Six uncoated mild steel welding rods, 81-cm long, were cleaned with steel 

wool and inserted in the soil within 1 plot at each site to a depth of 71 cm. After a one 

month incubation period (steel rod collection coincided with sample bag collection), the
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six rods were removed from the soil and six new rods (scored with steel wool) were 

inserted back into the soil. Upon collection, the steel rods were brought back to the 

laboratory and the depth of oxidation (rusting depth) was recorded. After measurements 

where made, the steel rods where inoculated (scored with steel wool) before being 

installed back in the field.
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CHAPTER H

DECAY DYNAMICS IN REGENERATING SERAL STAGES AND 

RESTORATION SETTINGS: A CHRONOSEQUENCE APPROACH

INTRODUCTION

Historically, the net trend around the world has been toward the destruction of 

wetlands. However, significant efforts are now being focused on restoration and creation 

of these habitats (Mitsch and Gosselink 2000). The primary goal of wetland restoration 

and creation is to establish self-sustaining ecosystems that are similar in structure and 

function to the natural systems that they are designed to emulate, or one that will become 

like the natural system through succession of the flora and fauna (Broome 1990, Zedler 

1992). While most wetland restoration studies characterize the temporal dynamics of 

vegetation composition (Broome et al. 1986, Broome 1990), few studies document the 

maturation of ecosystem processes, such as primary productivity and nutrient 

accumulation (Richardson 1994, Craft et al. 1999). In a recent review of the literature, 

Atkinson and Caims (2001) could not find any estimates of plant decomposition rates in 

created wetlands. This finding is disconcerting as soil organic matter sequestration and 

subsequent carbon accumulation are critical functions in natural wetlands. It is crucial 

that these processes develop in restored and created wetlands if they are expected to reach 

functional equivalency with their natural counterparts.

Wetland restoration and creation are frequently used to replace ecological 

functions and values lost when natural wetlands are degraded or destroyed (Craft et al.
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1999). According to Havens et al. (1997), in the United States, the use of constructed 

wetlands to replace natural wetlands is becoming pandemic, and the literature suggests 

(Zedler 1996, 1999, 2000, Mitsch and Wilson 1996, Mitsch and Gosselink 2000, Ness 

2001) that these replacement wetlands are not reaching functional parity with their 

natural counterparts. With the exception of a 25-year study of soils in coastal North 

Carolina marshes (Craft et al. 1999), the long-term development of restored wetland 

ecosystems is poorly recorded (Zedler 2000).

Pocosins and associated wetlands (including Atlantic white cedar wetlands) are 

among the least studied ecosystems in the U.S. (Richardson 1991). These wetlands are 

highly recognized as peat storing wetlands (Mitsch and Gosselink 2000). With our 

limited knowledge of the ecosystem structure and function of these types of wetlands, is 

it possible to create or restore the soil organic matter sequestration functions that are 

critical to the development and self-maintenance of these wetlands? Brinson and 

Rheinhardt (1996) suggested that these peat-based wetlands cannot be created without 

either removing peat from existing wetlands or waiting the decades to millennia for 

sufficient peat to accumulate. According to Whittecar and Daniels (1999), forested 

pocosins are more likely to be developed only by restoring saturated conditions to former 

pocosins or by regrading transitional areas that fringe existing pocosins. Cole et al. 

(2001) found no evidence of increasing levels of soil organic matter within created 

wetlands that varied in time since development. Ecosystem-level research and ecosystem 

model development may provide guidance on when restored and created wetlands can 

reasonably be expected to comply with criteria that measure their success (Mitsch and 

Wilson 1996).
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above and belowground organic matter decay along a chronosequence (intermediate and 

mature age classes) of naturally recovering Atlantic white cedar wetlands and 2) compare 

these trends to those of Atlantic white cedar restoration settings.

METHODS

Study Design

The current study was conducted along a chronosequence of naturally 

regenerating Atlantic white cedar wetlands within the GDS and AR National Wildlife 

Refuges and within restored Atlantic white cedar sites along the eastern periphery of the 

GDSNWR. The study sites along the chronosequence and within restoration efforts were 

selected based on similarities of site age, vegetative composition, topography and soils. 

This approach was taken to obtain replicate sites that were as similar as possible. 

Although it is rarely possible to select identical sites for replication of field experiments, 

the use of sites meeting a series of criteria of similarity allows for the results of the study 

to be generalized (Hurlbert 1984, Ehrenfeld and Schneider 1991). Whole-ecosystem 

experiments are often difficult to replicate. However, ecosystem experiments on this 

scale are important because they include major processes not often found in smaller-scale 

experiments (Mitsch et al. 1998). Decay measurements quantified along the 

chronosequence and restoration treatment are based on 2 replicates per treatment.
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RESULTS 

Leaf Litter Decay

Patterns of mass loss of aboveground leaf litter were similar along the 

chronosequence and within the restored sites (Figure 2). Native leaf litter decay rates (k) 

ranged from 0.60 to 0.65 y r 1 with no significant differences occurring along the 

chronosequence or within the restoration setting (Table 1). In general, it took 

approximately 7 years for leaf litter to reach L % mass remaining within all treatments. 

Chamaecyparis leaf litter exhibited less mass loss relative to native litters and decay rates 

(k) ranged from 0.33 to 0.43 y r 1 (Table 1). No significant differences occurred in 

Chamaecyparis leaf litter decay rates among sites. Under similar environmental 

conditions (within sites) r-tests between native leaf litter and Chamaecyparis leaf litter 

revealed significant differences in decay rates (p = 0.05) (Table 1). Decay of native leaf 

litter was faster than Chamaecyparis leaf litter.

Native Root Decay

In contrast to aboveground decomposition trends, percent mass loss was 

substantially greater for native roots in the restoration setting compared to native roots 

along the chronosequence (Figure 3). There was a pronounced vertical decay gradient of 

decreased mass loss with increasing depth in the restoration setting. Patterns of mass loss 

of native roots were similar along the chronosequence. Decay rates of native roots were 

similar along the chronosequence, but differed significandy from native root decay in the 

restored sites (Table 2). Along the chronosequence, native root decay ranged from 0.32 

to 0.37 yr*1 with no significant differences in decay rates across the vertical soil profile.
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Figure 2. Percent mass remaining of native leaf litter (A), and Chamaecyparis 
thyoides leaf litter (B), along chronosequence and restoration treatment. Values 
represent means with one standard error.
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Figure 3. Percent mass remaining of native roots along chronosequence and in restoration 
setting. Values represent means with one standard error.

there a significant difference in decay rates and this occurred between the restored and 

mature treatments. Trends of decreasing decay with increasing depth in the vertical soil 

profile were variable along the chronosequence, but were apparent within the restoration 

treatment (Table 3). Under the same environmental conditions (within sites) r-tests 

revealed that significant differences (p = 0.05) occurred between decay rates of native 

roots and decay rates of Chamaecyparis roots within the restoration treatment
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I “7Table 2, Decay rate constants [~£(yf )], coefficient of determination ( r ), time to reach 1% mass remaining (to.oi)> and 
percent mass remaining after 665 days of decay (% M) for native roots. All regressions are significant at p  = 0.0001. 
Different uppercase letters indicate significant differences (p = 0,05) between sites. Different lowercase letters indicate 
significant differences (p= 0.05) between depths.

Site Depth
Class

k SE
2r *0.01

(yr)

Final
%Mass

Mature 0-10 cm 0,37Aa 0,02 0,96 12.52 67.15

10-20 cm 0.36Aa 0,03 0,94 13,04 71.68

20-30 cm 0.35Aa 0,03 0.93 13,12 73.54

Intermediate
30-40 cm 0,34Aa 0.03 0,93 13.59 73.14

0-10 cm 0.36Aa 0.02 0.96 12.88 68.45

10-20 cm 0.32Aa 0,02 0,94 14,41 72.79
20-30 cm 0.34Aa 0.03 0.94 13,56 72,70

Restoration
30-40 cm 0,33Aa 0,03 0,94 14.07 72.41

0-10 cm 0.83Da 0.03 0.98 5,55 37.01

10-20 cm 0.71Bb 0,01 0.98 6,53 38.98
20-30 cm 0,59Bc 0,03 0.96 7,79 50.78

30-40 cm 0.50Bc 0.02 0,97 9,21 57.61
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Figure 4. Percent mass remaining of Chamaecyparis thyoides roots along the 
chronosequence and restoration setting. Values represent means with one standard error.

(Tables 2 and 3). This difference was maintained across all depths of the vertical soil 

profile. No significant differences occurred between native root decay and 

Chamaecyparis root decay along the chronosequence.

In the upper soil profile (0 — 20 cm) of the restoration setting, less than 40 % mass 

remained for native roots following almost two years of incubation in the field. In the 

lower soil profile (20 -40 cm), approximately 53 % of native root mass remained over the
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Table 3. Decay rate constants [-&(yf )], coefficient of determination (r ), time to reach 1% mass remaining (tooi), and 
percent mass remaining after 665 days of decay (% M) for Chamaecyparis thyoides roots. All regressions are significant at 
p  -  0,0001, Different uppercase letters indicate significant differences {p = 0,05) between sites. Different lowercase letters 
indicate significant differences (p= 0,05) between depths.

Location Depth
Class

k SE
2r *0.01

(yr)

Final
%Mass

Mature 0-10 cm 0,39ABa 0,02 0,96 11,80 68,99
10-20 cm 0,36ABa 0.03 0,95 12,79 73,31

20-30 cm 0.38ABa 0.02 0,95 12.11 70.31

30-40 cm 0,40Aa 0,02 0,95 11,51 68.09
Intermediate

0-10 cm 0.37ABa 0,02 0,96 12,44 69.79
10-20 cm 0,36ABa 0,02 0,97 12.79 72,23

20-30 cm 0,38ABa 0,02 0,96 12.11 70,89

30-40 cm 0,39ABa 0,03 0,95 11,80 68.72
Restoration

0-10 cm 0,35ABa 0,02 0,96 13.15 69.40

10-20 cm 0.31ABa 0,02 0.95 14,85 71.35
20-30 cm 0.30ABa 0,02 0.96 15,35 71.73
30-40 cm 0.29Ba 0,02 0.97 15,87 72,05

U>
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course of the same time period. Mass loss of Chamaecyparis root material was similar 

within the restoration setting relative to the chronosequence; however, marked 

differences in mass loss occurred between the native root material and Chamaecyparis 

roots within this treatment. In the restoration setting, Chamaecyparis roots had about 

70% mass remaining across all depths of the vertical soil profile after almost two years of 

incubation in the field. The native roots collected from the restored treatment were 

representative of the extant dominant vegetative community on both sites. The 

vegetation within these sites was dominated by various graminoid and forb species. The 

dominant woody species within the restoration sites was planted Chamaecyparis 

thyoides. The native root material for the restoration sites included 0.3 grams of 

Chamaecyparis roots within each pocket of each 40 cm long vertically oriented 

litterbags. This fraction of woody root material was included in each litterbag to simulate 

community level vegetation decay dynamics within this treatment. Unlike native root 

material in the restoration setting, patterns of mass loss for Chamaecyparis roots were not 

as pronounced with increasing depth in the vertical soil profile.

DISCUSSION

Aboveground Decay Trends

A primary concern with wetland creation and restoration projects is whether these 

wetlands successfully replace functional attributes that are lost when natural wetlands are 

destroyed or degraded. Rates of decomposition influence soil fertility, nutrient cycling 

and organic matter accumulation in wetlands and are a forcing factor controlling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

ecosystem structure and function. In spite of the fundamental role of decomposition in 

the structure and function of restored or created wetlands, few studies have measured this 

process, and there is a paucity of information to indicate and predict functional 

development over time. This is also the case within serai stages of natural wetlands 

undergoing succession. In the present study, leaf litter decay rates did not differ between 

serai stages of Atlantic white cedar ecosystem development. Other studies have 

demonstrated slower decay rates within early developmental stages. Atkinson and Cairns 

(2001) determined that decomposition of emergent vegetation in created depressional 

wetlands was faster in 20-yr-old sites than in 2-yr-old sites. However, they stated that 

wetland functional equivalence in regard to decomposition had not been achieved, and 

that decomposition functions of these wetlands were still developing after 20 years. 

Bakker et al. (1997) examined organic matter accumulation rates along a sere from open 

water to carr forest in the Netherlands and determined that an intermediate serai stage had 

the highest organic matter accumulation rates compared to earlier or later developmental 

stages.

Interestingly, aboveground decay in the restored treatment was also similar to that 

occurring along the chronosequence. This result was unexpected as the litter from the 

restored treatment was dominated by emergent graminoids and forbs. Benner et al. 

(1985) found that the lignocelluloses from herbaceous plants were mineralized several 

times faster relative to woody species under similar environmental conditions. Whigham 

et al. (1989) determined that litter that contained only leaves of herbaceous vegetation, 

lost weight faster than litter that contained both leaves and stem material. Perhaps the 

inclusion of stems and other aboveground parts led to a decrease in mass loss within the
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restoration setting. The lack of a canopy within the restoration treatment may have 

influenced the microclimate at the soil surface. Based on qualitative observations 

between the restoration treatment relative to chronosequence treatments, photosynthetic 

photon flux density was greater and exhibited a longer diel periodicity, fetch was greater 

within this setting leading to greater sustained wind movement, and relative humidity was 

reduced while temperatures were more variable. The interplay of these environmental 

variables, although not directly measured, could have potentially produced inimical 

conditions for microbial decay, resulting in decreased decay rates associated with the 

restoration treatment.

Decay rates of leaf litter along the chronosequence were higher compared to other 

studies in Atlantic white cedar wetlands. In a mature Atlantic white cedar stand in the 

GDSNWR, Day (1982) determined a decay rate of 0.34 yr*1 for mixed litter and 0.34 yr*1 

for cedar litter, while Yates and Day (1983) calculated a decay rate of 0.48 yr*1 for mixed 

litter using an exponential decay model. Differences between previously determined 

decay rates and the decay rates determined in this study may be the result of the interplay 

of numerous environmental factors within sites at the time of the studies, differences in 

species composition of native litter in litter bags, as well as the use of fixed versus non­

fixed intercept models. According to Wieder and Lang (1982), fixed intercept models 

estimate higher (k) values relative to unfixed intercept models.

Differences in decay rates between this study and previous studies in Atlantic 

white cedar wetlands may also be due to natural climatological variability during the time 

of the studies. Working within a bottomland hardwood forested wetland in Louisiana, 

Rybczyk et al. (2002) found that annual leaf litter decay rates varied from 0.49 to 1.71 yr*
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1 over the course of a four year study. Starting date of experiment and initial condition 

of Utter coUected were some reasons cited as potential sources of annual variation of 

decay rates for their study. However, the annual rates of aboveground decomposition 

measured during this study fell within the range of other forested wetlands (Brinson 

1990, Conner and Day 1991, Mitsch and Gosselink 2000, Rybczyk et al. 2002). Native 

and Chamaecyparis leaf litters exhibited a period of rapid mass loss after about 200 days 

of incubation followed by a period of slow decay. This period coincided with flooding 

events caused by major hurricanes that struck the study area during late summer/early fall 

of 1999. Day (1982, 1983) determined that surface waters can accelerate mass loss via 

leaching, and after surface flooding recedes, decay slows and becomes more linear.

Belowground Decay Trends

In the GDSNWR, Megonigal and Day (1988) estimated that roots contribute 65% 

of the annual increment of soil organic matter in an Atlantic white cedar stand. Bridgham 

et al. (1991) found the highest rates of belowground cellulose decay in an agricultural 

site, with high nutrients and less acidic conditions and relatively low soil moisture. In the 

current study, native root decay was significantly faster within the restoration treatment 

relative to the chronosequence. The restoration setting in this study was an abandoned 

agricultural site with less acidic soil conditions compared to the chronosequence.

The rinding of significantly higher rates of decomposition across the vertical soil 

profile within the restored treatment is of paramount importance. This suggests that 

native root contributions to soil organic matter pools are significantly less compared to 

the chronosequence o f regenerating Atlantic white cedar stands. Broome et al. (1986)
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determined that belowground biomass in a restored saltmarsh was similar to a reference 

marsh after four growing seasons. Craft and Broome (2000) suggested that macro- 

organic matter (the living and dead mat of roots and rhizomes) pools can achieve 

similarity with natural marshes in 15 to 30 yr. Evidence of soil organic matter 

sequestration in restored/created wetlands is limited despite studies indicating recovery of 

above and belowground production.

Broome et al. (2000) determined that low soil organic matter contents of restored 

marsh soils were associated with low nutrient concentrations and slowed the rate of 

functional development of the restored marshes. According to Craft et al. (1999), while it 

seems likely that with sufficient time, correctly designed constructed salt marshes will 

become similar to natural marshes, it is not clear how much time is required for these 

ecosystems to achieve levels of community structure and ecosystem function equivalent 

to natural counterparts. Craft (2001) determined that soil-nutrient concentrations, ratios, 

pools and accumulation in a 42-year-old restored marsh provided the same level of 

biogeochemical and water quality improvement functions as a natural reference marsh. 

However, these estimates of reaching functional equivalence in biogeochemical 

properties are for structurally simple salt marshes. The biogeochemistry of forested 

wetlands is considered by Lockaby and Walbridge (1998) to be the most difficult and 

complex to study with any type of forested ecosystem. The mechanism by which organic 

matter is incorporated into soils is generally attributed to saturated conditions that serve 

to retard decomposition (Collins and Kuehl 2001). Despite above and belowground 

biomass exceeding that of reference freshwater marshes in Pennsylvania, Cole et al. 

(2001) found no relationship of biomass to soil organic matter in created marshes. Also
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working within created freshwater marshes, Cambell et al. (2002), determined that 

reference wetlands had significantly higher organic matter than created wetlands and 

after more than 10 years of development, the created wetlands appear not to be 

accumulating meaningful amounts of soil organic matter.

It does appear that created and restored wetlands can become structurally 

equivalent (with respect to plant biomass) with their natural counterparts, but functionally 

different relative to the presence of soil organic matter and associated functions. 

Significantly faster native root decay occurred across all depth intervals in the restored 

treatment. Native root decay was almost 120% faster compared to that of the 

chronosequence in the 0 -20 cm depth interval, with the fastest decay rate occurring in 

the upper 0 -  10 cm interval. In a concomitant study, Rodgers (2001) determined that the 

fraction of fine roots in the upper 10 cm of soil accounted for 69% of the roots found over 

a 60 cm depth profile in the restored treatment. Additionally, based on calculations of 

mass-based root length production, Rodgers (2001) determined that belowground carbon 

inputs from fine roots were significantly less in restored sites and root turnover rates were 

significantly higher relative to the naturally regenerating sites. The finding of 

significantly faster belowground decay rates within the restoration treatment is important, 

because significantly higher rates of decomposition across the vertical soil profile within 

this treatment suggests that root contributions to soil organic matter pools are 

significantly less compared to the sites along the chronosequence.

Production and decomposition are counterbalancing processes that control 

ecosystem structure, function and development, fit naturally occurring Atlantic white 

cedar wetlands high litter production rates coupled with low decomposition rates
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typically result in the production of deep organic soils (Day 1987). Higher planting 

densities of Atlantic white cedar and associated shrub species in the restoration sites may 

be required in order to achieve similar contributions of litter and roots to accumulating 

soil organic matter (DeBerry 2000). The results o f the current study utilizing 

Chamaecyparis thyoides leaf litter and roots as standard substrates support this 

suggestion. There were no significant differences in above or belowground decay 

coefficients among the restoration treatment or chronosequence sites. Decay rates in the 

20 - 4 0  cm depth interval were actually slower in the restoration treatment compared to 

the chronosequence.

Findings of this research suggest that while decomposition of native material is 

significantly faster within the restored treatment relative to the chronosequence, future 

increases in aboveground and belowground production of Atlantic white cedar coupled 

with the low decay rates of cedar litter could result in increased contributions to soil 

organic matter pools.
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CHAPTER HI

WEIGHT LOSS AND NUTRIENT CHANGES IN DECOMPOSING LEAF 

LITTER WITHIN REGENERATING AND RESTORED ATLANTIC 

WHITE CEDAR (<CHAMAECYPARIS THYOIDES) WETLANDS

INTRODUCTION

Primary production of forested wetlands is closely tied to hydrology, with 

productivity typically highest in moderately wet conditions relative to either drier or 

wetter conditions. The effects of hydrology on decomposition pathways in forested 

wetlands are less clear than the effects on primary productivity (Mitsch and Gosselink

2000). Mechanisms controlling decomposition are extremely complex in seasonally 

flooded systems where terrestrial and aquatic influences alternate during a given year and 

year to year (Day 1987). Since wetlands combine attributes of both terrestrial and 

aquatic ecosystems but are neither, they have unique properties that are not adequately 

covered by present ecological paradigms and by fields such as freshwater and terrestrial 

ecology (Mitsch and Gosselink 2000).

Working in a riparian tupelo swamp in North Carolina, Brinson (1977) found leaf 

litter decay to be greatest in the wettest sites. Conner and Day (1991) found leaf litter 

decay rates were slowest in an impounded forested wetland site in Louisiana relative to 

decay rates in an impoundment where hydroperiod was experimentally manipulated. Day 

(1982) determined that decay rates of red maple were similar within four forested 

wetland sites with differing hydroperiods. The decomposition of organic matter and 

resultant release of nutrients involves as least two processes. Abiotic leaching is usually
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attributed to an initial loss o f soluble materials. Respiration, denitrification and 

incorporation into decomposer organisms also results in nutrient release. Antithetically, 

accumulation of materials by components of the microfaunal detritus community and by 

abiotic factors (throughfall, aeolian deposition etc.) can cause increased nutrient content 

in decomposing litter. The end result of abiotic and biotic interactions during 

decomposition is that some materials are released (and potentially used in plant growth), 

while others are immobilized or stored temporarily or permanently (Whigham et. al. 

1989). Rates of organic decomposition are most rapid in the presence of oxygen and 

slower for electron acceptors such as nitrates and sulfates (Mitsch and Gosselink 2000). 

Megonigal and Day (1988) estimated that leaf litter contributed 6-28% of the annual 

increment to soil organic matter within forested wetlands of the GDSNWR. Therefore, 

leaf litter represents a significant contribution to soil organic matter pools within forested 

wetland ecosystems. Aboveground decay processes within Atlantic white cedar wetlands 

are poorly understood (Day 1982, Yates and Day 1983, Ehrenfeld 1995)

The objectives of this study were to evaluate environmental and substrate quality 

factors influencing leaf litter decomposition within recovering stands of Atlantic white 

cedar and compare those measurements with decay dynamics of restored Atlantic white 

cedar wetlands. Regulatory factors influencing aboveground decomposition and nutrient 

cycling were tested by the following hypotheses: (1) leaf litter will decay more slowly in 

recovering stands relative to the restored sites, (2) leaf litter with high initial nitrogen 

content will have faster decay than leaf litter with low nitrogen content.
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METHODS

Environmental influences (hydroperiod, pH) on decay were tested directly by 

deploying a standard substrate (Chamaecyparis thyoides leaf litter) at all sites. The native 

litter decay study incorporated both environmental and litter quality factors. In order to 

separate the influence of both factors, native litter decay and standard litter 

(Chamaecyparis) decay were compared within each site and interpreted in relation to 

differences in litter quality.

Statistical Analyses

Initial nitrogen and carbon concentrations of native and Chamaecyparis leaf litter 

were analyzed using one-way ANOVA’s. Two way ANOVA (site x time) tested for 

differences in percent nitrogen and carbon remaining in the litter. Annual means of soil 

pH and depth to water table were analyzed by one-way ANOVA’s. The relationships 

among annual environmental factors (hydroperiod, soil pH), initial chemical composition 

of the litter and annual decay rates ([fc) within all sites were examined by correlation 

analysis.

RESULTS

Decomposition Rates

Despite marked differences in edaphic characteristics between the recovering and 

restored Atlantic white cedar wetlands (Table 4), patterns of native leaf litter mass loss 

were similar across refuges and within all sites (Figure 5). Annual decay rate constants
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Table 4. Average soil pH, bulk density, volumetric water content, organic matter content and groundwater 
levels within restored and naturally regenerating Atlantic white cedar wetlands. Alligator River National Wildlife 
Refuge = (ARNWR), Great Dismal Swamp National Wildlife Refuge = (GDSNWR) and Edge Farm Restoration = 
(EFR). Groundwater level determined by oxidation depth on steel rods. An (A*) indicates data from Thompson 
(2001).

ARNWR GDSNWR EFR
Mature Intermediate Mature Intermediate Young Site 1 Site2

Soil pH 3.4 3.2 3,3 3.4 3,4 4.5 4.4

Bulk Density* 
(g/cm3) 0.084 0.097 0.117 0.163 0,153 0.567 0,705

Volumetric Water* 
Content (%) 32.6 37.8 33.2 24.2 29.0 35 31

Organic Matter* 
Content (%) 97,6 97,3 93.2 92,2 92.9 38,6 23,3

Groundwater Level (cm) 
relative to soil surface -8,8 -7.5 -34.7 -32,6 -14,7 -11.2 -11.3

*
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Figure 5. Percent mass remaining of native leaf litter within all sites. Values represent 
means with one standard error.
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Table 5. Decay rate [-k (yr‘1)], coefficient o f determination (r2) and fraction remainin 
for native litter decay among Atlantic white cedar restored and regenerating sites. All 
regressions are significant at p  = 0.0001. One standard error in parentheses. 
Different upper case letters indicate significant differences (p = 0.05) between sites.

Site k ( y x l) r2
Fraction

Remaining

Alligator River N.W.R.
Mature 0.60 (0.03)A 0.97 0.563
Intermediate 0.62 (0.05)A 0.93 0.604

Dismal Swamp N.W.R.
Mature 0.60 (0.02)A 0.98 0.552
Intermediate 0.68 (0.03)A 0.98 0.508

Edge Farm Restoration
Site I 0.65 (0.03)A 0.97 0.549
Site 2 0.61 (0.02)a 0.98 0.590

Table 6. Decay rate [-k (yr'1)], coefficient of determination (r2) and fraction remainin 
for Chamaecyparis thyoides litter decay among Atlantic white cedar restored and 
regenerating sties. All regressions are significant at/? = 0.0001. One standard error 
in parentheses. Different upper case letters indicate significant differences (p = 0.05) 
between sites.

Fraction
Site * ( y r l) r2 Remaining

Alligator River N.W.R.
Mature 0.40 (0.02)AB 0.97 0.691
Intermediate 0.41 (0.02)^ 0.96 0.685

Dismal Swamp N.W.R.
Mature 0.45 (0.02)a 0.96 0.615
Intermediate 0.38 (0.03)^ 0.94 0.669
Young 0.32 (0.01)B 0.96 0.730

Edge Farm Restoration
Site 1 0.35 (0.02)^ 0.94 0.701
Site 2 0.31 (0.02)b 0.93 0.737
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Figure 6. Percent mass remaining in Chamaecyparis thyoides leaf litter within all sites. 
Values represent means with one standard error.
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Table 7, Initial native leaf litter quality indices (0) and after 1,6 years of decay (1,6) for nitrogen concentration (%N), 
phosphorus concentration (%P), carbon concentration (%C), and carbon:nitrogen ratio (C:N)f One standard error in 
parentheses, Different lowercase superscripts between rows indicate significant differences ip = 0,05), N=3 for all 
% P where n=l,

%N %P %C C;N
0 1.6 0 1.6 0 1.6 0 1,6

Alligator River
Mature 1,03 (0,06)8 1.56(0.09)“ 0,12 0,08 50,36 (0,02)“ 50,59(0.11)“ 49 32

Intermediate 1,03 (0,06)a 1,39(0.09)“ 0.12 0,09 50,36(0,02)“ 51,23(0.14)“ 49 37

Dismal Swamp

Mature 0,79(0.13)“ 2,01 (0.07)b 0,14 0,11 48.26 (1.61)“b 49.06 (0,08)“ 64 24
Intermediate 0,79 (0,13)“ 2,29 (0,03)b 0,14 0.12 48.26 (1.61 )“b 49,26(0.04)“ 64 22

Edge Farm

Site 1 0,72 (0,07)“ 1.48(0.05)“ 0.25 0.17 45,62 (0.28)b 43,39(0.1 l)b 64 29
Site 2 0,72 (0.07)a 1,38 (0,08)“ 0,25 0.14 45.62 (0,28)b 45.19 (0.18)b 64 33
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Table 8. Initial Chamaecyparis thyoides leaf litter quality indices (0) and after 1.6 years of decay (1,6) for, nitrogen 
concentration (%N), phosphorus concentration (%P), carbon concentration (%C), and carbon:nitrogen ratio (C:N). One 
standard error in parentheses. Different lowercase superscripts indicate significant (p = 0.05) differences. N=3 for all 
indices except % P where n=l,

%N %P %C C:N
0 1,6 0 1,6 0 1,6 0 1.6

Alligator River
Mature 1.37(0.11) 1.77 (0,01 )a 0,17 0,13 51.56 (0,32) 51,18 (0,06)a 38 31
Intermediate 1.37(0.11) 1,69 (0.01 )b 0.17 0.14 51.56(0.32) 51,95 (0,03)b 38 29

Dismal Swamp
Mature 1.37(0,11) 1,91 (0.0I)C 0,17 0,13 51,56(0,32) 51,07 (0,06)a 38 27
Intermediate 1.37(0,11) 1.89(0.01)° 0.17 0,12 51,56 (0,32) 51,25 (0,02)a 38 27

Edge Farm

Site 1 1.37(0.11) 1.92(0.01)° 0.17 0.13 51,56 (0.32) 47.91 (0.08)° 38 25

Site 2 1.37 (0.11) 1.81 (0.01 )a 0.17 0,11 51,56 (0.32) 49,69 (0.03)d 38 26
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to all other sites (Tables 7 and 8). After 1.6 years of incubation, Chamaecyparis leaf 

litter accumulated nitrogen within all sites (Table 8). Nitrogen accumulation in 

Chamaecyparis leaf litter within the restored sites was similar to naturally regenerating 

sites within both refuges. Phosphorus was released within all sites and after 1.6 years of 

incubation. Initial carbon content was similar in Chamaecyparis litter and native litter 

within the naturally regenerating sites. After 1.6 years of incubation, carbon content of 

Chamaecyparis leaf litter was significantly lower in the restored sites relative to the 

naturally regenerating sites (Table 8).

Trends in Nitrogen and Phosphorus Dynamics

Significant site (F = 141.03, p < 0.0001), time (F = 88.46, p  <0.001) and site x 

time (F = 5.87, p  < 0.001) effects resulted in different patterns of nitrogen behavior in 

native leaf litter within the naturally regenerating sites compared to the restored sites 

(Figure 7). Sites within the GDSNWR immobilized nitrogen amounts to over twice the 

initial amounts. After 1.6 years, greater than 100% of original nitrogen remained within 

all study sites with significantly higher amounts of nitrogen remaining within the stands 

in the GDSNWR (Figure 7 B).

Native leaf litter decay showed dynamic phosphorus behavior over time and 

between all the sites (Figure 8). Due to a finite amount of leaf litter available, 

phosphorus content could not be tested statistically (n = 1). While differences in 

remaining phosphorus were not statistically tested, the phosphorus data presented here 

may suggest trends operating within these sites. Net phosphorus immobilization (> 

100%) occurred within the intermediate-aged site within the GDSNWR and the mature
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Figure 7. Percent nitrogen remaining in native leaf litter in (A), Alligator River N.W.R., 
(B), Great Dismal Swamp N.W.R., and (C) Edge Farm Restoration. Values represent 
means with one standard error.
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stand in ARNWR, at the end of the first year of the study, although these trends were 

short-lived (Figure 8 A and B).

Significant site (F = 9.22, p  = < 0.0001), time (F = 139.59, p = < 0.0001), and site 

x time (F = 4.49, p = < 0.0001) effects resulted in different patterns of nitrogen behavior 

in Chamaecyparis thyoides leaf litter over time and between sites (Figure 9). All sites 

experienced nitrogen accumulation over the course of the study and all sites immobilized 

nitrogen. After 1.6 years, all sites had exhibited net nitrogen immobilization with 

significantly higher amounts occurring within the sites in the GDSNWR and Site 1 of the 

restored sites, relative to the remaining sites.

Phosphorus behavior in Chamaecyparis thyoides leaf litter decay varied over time 

and between all the sites (Figure 10). Only Site 1 of the restoration sites exhibited net 

phosphorus immobilization (122%), but this period was short lived.

Lignin Dynamics

Initial lignin content of native leaf litter could not be statistically tested (n = 1). 

Qualitative comparisons of initial lignin content within the naturally regenerating and 

restored Atlantic white cedar wetlands showed similar amounts which ranged from a low 

of 29.66 % within litter from the GDSNWR to a high of 34.32 % within the restored sites 

(Table 9). The native litter from the restored sites had a slightly higher lignin content 

compared to those of the naturally regenerating sites. This may have been attributable to 

the woody nature (i.e. higher recalcitrant fraction) of standing dead graminoid stems and 

other aboveground components (relative to leaves) of the old field vegetation present 

within both sites. After a year of incubation, lignin content exhibited considerable
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Table 9. Changes in lignin derived indices for initial native litter (0) and after 1.0 years of decay (1.0) for lignin concentration 
(% L), lignin:nitrogen ratio (L:N), lignin:phophorus ratio (L:P), and nitrogen:phosphorus ratio (N:P). N=1 for all lignin 
indices,

%L L:N L:P N:P
0 1.0 0 1.0 0 1.0 0 1.0

Alligator River
Mature 33,06 33,74 32 21 276 225 9 11
Intermediate 33.06 37,24 32 29 276 372 9 13

Dismal Swamp
Mature 29,66 30.75 38 17 212 220 6 13
Intermediate 29.66 27.02 38 12 212 193 6 13

Edge Farm
Site 1 34.32 30.66 48 27 137 180 3 7
Site 2 34,32 33.48 48 27 137 239 3 7
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variation in remaining litters (Table 9).

Lignin to nitrogen ratios varied markedly between the naturally regenerating and 

restored sites. After a year, L:N ratios declined. The restored sites exhibited the lowest 

L:P ratio (137), while sites within the ARNWR had the highest L:P ratio (276). Nitrogen 

to phosphorus ratios exhibited the same trend.

Initial lignin content of Chamaecyparis thyoides litter was markedly higher 

compared to the native litters from within all sites (Table 10). Lignin content of 

Chamaecyparis litter increased within all sites after one year of incubation in the field. 

Initial L:N ratio for Chamaecyparis litter fell within the range of L:N ratios for the native 

litters (Tables 9 and 10). Initial L:P ratio for Chamaecyparis litter also fell within the 

range of L:P ratios for all native litters and tended to increase. Initial N:P ratio for 

Chamaecyparis litter fell within the range of N:P ratios for all native litters and after a 

year of incubation, N:P ratio generally increased (Table 10).

Environmental and Litter Quality Influences on Decay

Relationships between annual decay of Chamaecyparis litter and environmental 

influences resulted in correlations with hydrology (r = -0.757, p = 0.048), and weaker 

non-significant correlations with soil pH (r = 0.506, p = 0.241). With the inclusion of all 

independent variables, multiple regression explained 63 % of the variation of 

decomposition of Chamaecyparis thyoides litter (F = 3.34, r2 = 0.625, p = 0.140). While 

these two variables were not significant, as the first variable selected, hydrology 

accounted for most of the explained variance (F = 6.71, r  = 0.573, p = 0.048).

A series of correlational analyses were performed to establish the potential
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Table 10, Changes in lignin derived indices for initial Chamaecyparis thyoides litter (0) and alter 1.0 years of decay (1.0) for 
lignin concentration (% L), lignin:nitrogen ratio (L:N), lignin:phophorus ratio (L:P), and nitrogen:phosphorus ratio (N:P).
N = 1 for all lignin indices.

%L L:N L:P N:P
0 1.0 0 1.0 0 1.0 0 1.0

Alligator River
Mature 45.47 50.21 33 30 268 456 8 15
Intermediate 45.47 52,47 33 32 268 524 8 16

Dismal Swamp
Mature 45.47 49.46 33 28 268 412 8 15
Intermediate 45.47 54.03 33 29 268 540 8 19

Edge Farm
Site 1 45,47 52,68 33 31 268 263 8 13
Site 2 45.47 52.57 33 31 268 404 8 8

U\
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influences litter quality characteristics had on decay dynamics. The variables included 

nitrogen, phosphorus and lignin content and the various ratios (C:N, L:N, N:P) listed in 

Tables 7 and 9 respectively. No significant correlations resulted. Initial C:N ratio 

yielded the highest (r) value (r = 0.427, p = 0.397), followed by nitrogen content (r = - 

0.410, p = 0.418), and phosphorus (r = 0.239, p = 0.647). With the remaining variables, 

(r) values tended to decrease (<0.3S) while p values tended to increase. Thus suggesting 

that over the period of decay measured in this part of the study (one year), influences of 

initial litter quality may not be as important as within site environmental drivers 

(hydrology) on the decay process. Soil pH was positively correlated with native litter 

phosphorus (r = 0.985, p =0.003).

Long-Term Decay Trends

The exponential decay constants reported in this study are on an annual basis to 

facilitate comparisons with the majority of values reported for other systems. However, 

we also wanted to evaluate leaf litter decay within these systems over longer temporal 

scales. This was done in an effort to determine if trends, apparent over the course of the 

first year of study, continued throughout the duration (1.6 years) of the study. In terms of 

mass loss of native leaf litter, the naturally regenerating sites had a greater fraction 

remaining relative to the restored sites (Table 11). The restored sites exhibited the fastest 

decay over the course of the study. The reverse was true of Chamaecyparis litter decay 

(Table 12). Chamaecyparis decay rates (it) within the young (recent clearcut) and 

restored sites were significantly lower than the decay rates within the remaining sites.
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Table 11. Decay rate [-k (1.6yr'1)], coefficient o f determination (r2) and fraction 
remaining for native litter decay among Atlantic white cedar restored and naturally 
regenerating sites. All regressions are significant a tp  = 0.0001. One standard 
error in parentheses. Different upper case letters indicate significant differences 
(p = 0.05) between sites.________________________________________________

Site k  ( l.6 y rl) 2r
Fraction

Remaining
•

Alligator River N.W.R.
Mature 0.46 (0.03) 0.95 0.513
Intermediate 0.50 (0.03)ab 0.94 0.498

Dismal Swamp N.W.R.
Mature 0.51 (0.02) 0.97 0.475
Intermediate 0.54 (0.03)ab 0.95 0.472

Edge Farm Restoration
Site 1 0.60 (0.02) 0.98 0.369
Site 2 0.56 (0.02)ab 0.98 0.385

Table 12. Decay rate [-k (1.6yrl)], coefficient of determination (r2) and fraction 
remaining for Chamaecyparis thyoides litter decay among Atlantic white cedar 
restored and naturally regenerating sites. All regressions are significant a tp  = 0.0001 
One standard error in parentheses. Different upper case letters indicate significant 
differences (p = 0.05) between sites.________________________________________

Fraction
Site k  (l.6yr*1) r2 Remaining

Alligator River N.W.R.
Mature 0.36 (0.01)A 0.98 0.591
Intermediate 0.36 (0.01)A 0.97 0.600

Dismal Swamp N.W.R.
Mature 0.37 (0.02)A 0.96 0.582
Intermediate 0.33 (0.01)AB 0.96 0.606
Young 0.30 (0.01)B 0.98 0.629

Edge Farm Restoration
Site I 0.29 (0.01)B 0.95 0.627
Site 2 0.29 (0.01)B 0.96 0.621

Relationships between Chamaecyparis litter decay and environmental parameters
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were not tested over the remainder of the study. However, additional correlational 

analyses were performed to evaluate the potential influences litter quality characteristics 

exerted on decay dynamics. As before, variables included nitrogen, phosphorus and 

lignin content and the various ratios (N:C, L:N, L:P) listed in Tables 7 and 9. Native leaf 

litter decay rates were significantly correlated with nitrogen content (r = -0.851, p = 0.03) 

and phosphorus content (r = 0.864, p = 0.026). Carbon to nitrogen ratio (r = 0.761, p = 

0.078) and lignin content (r = 0.288, p = 0.579) were not significantly correlated with 

decay. However, L:N ratio was highly correlated with decay (r = 0.907, p = 0.012).

Litter quality influences on decay dynamics that were not apparent on a short term (1 

year) basis, emerged as decay continued over longer temporal scales (> 1 year), thus 

underscoring the importance of long-term studies on decay dynamics within these and 

other ecosystems.

DISCUSSION

Decomposition Rates

Despite differences in depth to ambient water tables within the sites, there were 

no apparent discemable trends of native leaf litter decay within any of the sites over the 

first year of this study. While Chamaecyparis litter decay was strongly correlated with 

hydrology, too little moisture can limit decay as easily as too much moisture (Bunnell et 

al. 1977, Heal et al. 1987). Flooded conditions can result in enhanced leaching (Chamie 

and Richardson 1978), while anaerobic conditions can limit microbial processes. 

Alternating periods of aerobic and anaerobic conditions can enhance decomposition in 

natural wetlands (Brinson et al. 1981) and created wetlands (Atkinson and Cairns 2001).
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similar to P levels from Maryland stands (Whigham and Richardson 1988). Foliar 

contents of nitrogen (1.50) and phosphorus (0.20) are the minimum concentrations 

needed for adequate growth (Epstien 1972). This suggests that the Atlantic white cedar 

present within these study sites may be nutrient deficient. Nitrogen accumulation 

patterns in this study were similar to those observed by Day (1982) in the GDSNWR and 

by Conner and Day (1991) in Louisiana forested wetlands. Immobilization such as this is 

likely to occur when a nutrient is limiting or when initial nutrient concentrations are low 

(Maclean and Wein 1978).

Initial C:N ratios ranged from 49 — 64 for native litters within this study.

Working within coastal plain swamps of South Carolina, Shure et al. (1986) found that 

litter decomposition was slower and N immobilization was greater for leaf litter with high 

initial C:N ratios. Carbon to nitrogen ratios above 30 are representative of the passive 

fraction in soil organic matter and limit microbial decomposition (Brady and Weil 1996). 

Microbial immobilization throughout this study reduced the C:N ratio in all sites. 

Nitrogen is often the most limiting nutrient in flooded soils, whether the flooded soils are 

in natural wetlands or agricultural wetlands such as rice patties. Nitrogen fixation by 

blue-green algae is also important in northern bogs and rice cultures, which are often too 

acidic to support large bacterial populations (Mitsch and Gosselink 2000). Phosphorus is 

fixed as aluminum and iron phosphates in acid soils and is most bioavailable at slightly 

acidic to neutral pH (Mitsch and Gosselink 2000).

The patterns of nitrogen and phosphorus change indicate the potential role that 

decomposing litter might play in the retention of these materials within these wetland 

sites. An initial decline in P concentrations could be attributed to leaching or microbial
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metabolism of labile materials. Over the course of the first year of the study, phosphorus 

concentrations increased following initial losses and nitrogen accumulated throughout the 

duration of the study. Thus the litter may act as a short term sink for phosphorus (1 yr), 

and a long-term sink for nitrogen. Whigham et al. (1989) found that the litter layer in 

freshwater tidal wetlands acted as a short-term sink for both nitrogen and phosphorus. 

Whereas Chamie and Richardson (1978) and Bayley et al. (1985) found litter of emergent 

dominated wetlands to act as long-term sinks for nitrogen and phosphorus. Working in a 

marsh complex in Manitoba, Canada, van der Valk et al. (1991) found that marsh litter 

with initial lower nitrogen and phosphorus concentrations accumulated more nitrogen and 

phosphorus than litter with higher initial concentrations.

Lignin levels generally increased over the course of this study and L:N ratios 

were highly correlated with litter decay at the terminus of the study. Melillo et al. (1982) 

found that the mass of hardwood litter in the Hubbard Brook Experimental Forest after I 

year was more highly correlated with initial lignin to nitrogen ratios of leaf material than 

with lignin or nitrogen content alone. Benner et al. (1985) also found the lignin to 

nitrogen ratio to be a good predictor of biodegradability in litters from the Okefenokee 

Swamp and a coastal Georgia saltmarsh. During the decomposition process recalcitrant 

substances are produced which are analyzed as lignin and which often cause an apparent 

absolute increase in the amount of lignin (Berg and Theander 1984). These recalcitrant 

ligninlike substances can be derived from aromatic compounds produced during 

microbial metabolism or from the recondensation of lignin degradation products (Berg et 

al. 1984). Nitrogen was immobilized throughout the course of this study (ca. 20 months) 

in all litters and within all sites. Microbial biomass incorporated into the litter matrix or
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synthesis of nitrogenous compounds in the decomposing litter could have contributed to 

this nitrogen accretion. The temporal scale of this study may not have been sufficient to 

document nitrogen mineralization. Following decomposition of red pine needles, Melillo 

et al. (1989) determined that nitrogen accumulated and reached a maximum (Nmax) at 22 

months of decay. After that phase, a phase of net nitrogen mineralization continued for 

the next 55 months.

Lignin is probably not degraded in the absences of an available carbohydrate 

energy source (Berg et al. 1984). In partially decomposed litter, the degradation rate of 

lignin determines the decay rate of the litter that is turning into soil organic matter (Berg 

2000). During this stage, high nitrogen concentrations will have a rate-retarding effect on 

lignin degradation and thus on the litter (Berg 2000). Benner et al. (1985) evaluated the 

effect of pH on lignin and lignocellulose degradation in a Georgia saltmarsh and in the 

Okefenokee Swamp. They determined that rates of the lignin component of 

lignocellulose were minimally affected within the range of pH 4-8, while mineralization 

of the polysaccharide component of lignocellulose increased 3 fold with increasing pH. 

Differences in biodegradability of lignocelluloses were observed with those coming from 

herbaceous plants being mineralized several times faster than those from woody species.

Benner et al. (1985) determined that organic acids present in Okefenokee Swamp 

water inhibit microbial degradation of lignocellulose primarily by lowering the ambient 

pH of the water rather than by other mechanisms such as the binding of extracellular 

degradative enzymes. Their results indicate that pH selectively influences the mechanism 

of biodegradation of the polysaccharide component of lignocellulose without 

substantially affecting the mechanism of lignin degradation and thus functions to partially
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uncouple lignin and polysaccharide degradation. However, the low pH associated with 

the naturally regenerating sites in the current study could directly inhibit degradation of 

polysaccharides that would indirectly decrease the degradability of lignin.

Annual aboveground decomposition rates in the restored sites were comparable to 

those found within the naturally regenerating sites. However, these findings may be 

misleading, while decay rates where similar over the course of a year, patterns of 

increased decay started to emerge over longer temporal scales. As the litter within these 

sites were beginning to be incorporated into the 02 litter layer (i.e. covered over by new 

litter etc.), changes in microclimate may have become more conducive to microbial 

decay. Further long-term studies are required to elucidate aboveground contributions to 

soil organic matter within these developing ecosystems.
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CHAPTER IV

THE INFLUENCE OF LITTER QUALITY AND ENVIRONMENT 

ON ROOT DECOMPOSITION DYNAMICS IN NATURAL 

AND RESTORATION SETTINGS

INTRODUCTION

Decomposition of organic matter is a fundamental property within all ecosystems. 

By influencing soil fertility and nutrient cycling, decomposition is a forcing factor 

controlling ecosystem structure and function. The size of plant organic matter pools and 

decomposer activity affect the availability and mobility of mineral nutrients that in turn 

provide feedbacks on production and decay (Kuenzler et al. 1980). According to Swift 

et al. (1979), the decomposition of organic matter is regulated by three groups of 

variables: the decomposer organisms (invertebrates and microorganisms), the chemical 

composition of the resource (resource quality), and the physical rate determinants 

(primarily moisture and temperature). The physiological capacities of the bacteria and 

fungi are the ultimate factors determining the mineralization rates of organic carbon, with 

temperature and moisture operating at the cellular level as proximate controls (Anderson 

1991).

More distal factors come into play and act as rate determinants as the scale 

increases from the cellular to the ecosystem level, with the macro-climate ultimately 

setting constraints within which the organism and resource quality factors operate 

(Anderson 1991). At a global scale, Aerts (1997) suggested that actual 

evapotranspiration is the best predictor of decay, whereas within a particular climatic
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region litter chemistry parameters were the best predictors of decay values. Microsite 

environments are also important in regulating decomposition rates (Day 1995). Decay 

dynamics on a local level are influenced by site specific factors such as micro-climate, 

soil texture, microtopography, soil moisture, oxygen availability, pH, and the types of 

decomposer communities present (Smith 1982, Cornejo et al. 1994).

Substrate quality also regulates rates of decay (Day 1982, Aerts 1997). Root 

material that is high in recalcitrant carbon fractions such as lignin and low in nitrogen 

and/or phosphorus, makes a poor substrate for decomposers. Decomposition is generally 

slower in conifer than temperate deciduous forests (Perry 1994). Tupacz and Day (1990) 

found slower rates of root decay within an Atlantic white cedar wetland relative to other 

forested wetland types within the Great Dismal Swamp. Decomposition rates of low- 

quality tree litters may be predicted from the initial concentration of lignin (Berendse et 

al. 1987) or the lignin/N (L/N) ratio (Aber and Melillo 1980, Melillo et at. 1982).

Many authors suggest that hydrology is the most significant force in forested 

wetlands controlling production and turnover of organic matter (Conner et al. 1981, 

Brinson et al. 1984, Day and Megonigal 1993). Carbon cycling is central to nutrient 

dynamics and accretion rates in wetlands. Wetlands contain a greater amount of detrital 

soil carbon per unit surface area than any other ecosystem (Schlesinger 1977). The 

accumulation of partially decomposed organic matter under anaerobic conditions is 

central to their development, hydrology, and nutrient status (Moore and Bellemy 1974). 

This is especially critical in Atlantic white cedar wetlands (Ehrenfeld 1995). Wetland 

hydrology regulates organic matter decay through abiotic factors (dystrophic conditions) 

and operates on horizontal scales and vertical scales (Brinson et al. 1981). Aboveground
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decay may be increased due to moisture availability and oxygen flux while belowground 

decay may be inhibited due to prolonged periods of soil anoxia.

Waterlogged soils, especially organic soils, develop a thin oxidized layer that is a 

few millimeters thick. Generally, the surface layer undergoes aerobic respiration, while 

the remaining areas undergo anaerobic respiration and fermentation (Chamie and 

Richardson 1978). Anaerobic decomposition is much slower and is done by obligate 

anaerobic and some facultative anaerobic bacteria. Working in a Michigan peatland, 

Chamie and Richardson (1978) determined that buried aerial parts consistently decayed 

at a slower rate than similar tissue exposed at the surface. Prolonged flooding or soil 

saturation induces anoxic conditions and slows rates of decay (Hackney and de la Cruz 

1980, Brinson et al. 1981). Slower rates of decomposition with increasing depth in the 

soil profile are well documented and generally attributed to anaerobic conditions (Chamie 

and Richardson 1978, Hackney and de la Cruz 1980, Tupacz and Day 1990). Hydrologic 

regimes and carbon cycling are tightly coupled mechanisms that either directly or 

indirectly affect other ecosystem functions. Further investigation of long-term root 

decomposition dynamics in relation to ecosystem recovery will aid in our understanding 

of the controls and processes important in creating self-sustaining ecosystems.

The objectives of the current study were to evaluate environmental and substrate 

quality factors influencing root decomposition within recovering Atlantic white cedar 

wetlands and to compare those measurements with decay dynamics within restored 

Atlantic white cedar wetlands.

Regulatory factors influencing belowground decomposition and nutrient cycling 

were tested by the following hypotheses: (1) roots will decay more slowly in recovering
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stands relative to restored sites (2) regardless of site type, root litter with high initial litter 

quality will have faster decay than root litter with low initial quality.

METHODS 

Study Design

Within each site, deployment of a standard root substrate (Chamaecyparis 

thyoides) allowed forevaluation of environmental influences (hydroperiod, pH) on decay. 

The native root decay study incorporated both environmental and litter quality factors. In 

order to separate the influence of both factors, native root decay and standard root 

(Chamaecyparis) decay were compared within each site and interpreted in relation to 

differences in litter quality. All decay and environmental measurements were conducted 

to a depth of 40 cm to incorporate the vertical dimension present in a soil profile.

Statistical Analyses

Initial nitrogen and carbon concentrations of native and Chamaecyparis roots 

were analyzed using one-way ANOVA’s. Two way ANOVA (site x time) tested for 

differences in percent nitrogen, phosphorus and carbon remaining in the litter. Annual 

means of soil pH (depth combined) and within site (by depth) and depth to water table 

were analyzed by one-way ANOVA’s. The relationships among annual environmental 

factors (hydroperiod, soil pH), initial chemical composition of the roots and annual decay 

rates (k) within all sites were examined by correlation analysis. A stepwise multiple 

regression tested for environmental influences on standard substrate decay across all 

sites.
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Figure 11. Hydroperiod as indicated by rusting depth on steel rods. Dismal Swamp 
mature (DM), Dismal Swamp intermediate (DI), Dismal Swamp young (DY), Alligator 
River mature (AM), Alligator River intermediate (Al), restoration site 1 (El), restoration 
site 2 (E2). Values represent means with one standard error.

aged sites within the GDSNWR and all other sites. Site x time interactions (F = 116.49, 

p <0.001) resulted in differing water tables within sites from January 1999 through 

August 1999. After August 1999, water levels within all sites were near or at the surface 

(or ponded) throughout the remainder of the first year of the study.

Significantly greater (F = 271.05, p < 0.001) mean annual soil pH (depth 

combined) occurred in both restored sites relative to the naturally regenerating Atlantic 

white cedar sites (Table 13). Few consistent trends in soil pH levels were evident 

throughout the study except that soil pH within the restored sites was, on average, an 

order of magnitude higher compared to all other sites. This trend was maintained with
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Table 13. Annual means for soil pH, bulk density, volumetric water content, organic matter content and groundwater levels 
within restored and naturally regenerating Atlantic white cedar wetlands. Alligator River National Wildlife Refuge = 
(ARNWR), Great Dismal Swamp National Wildlife Refuge = (GDSNWR) and Edge Farm Restoration = (EFR). 
Groundwater level determined by oxidation depth on steel rods. Different uppercase superscripts indicate significant 
differences (p = 0.05) between sites (average of depth). Different lowercase superscripts indicate significant differences 
(p -  0,05) between depths. One standard error in parentheses. An (*) indicates data from Thompson (2001).

ARNWR GDSNWR EFR
Mature Intermediate Mature Intermediate Young Site 1 Site 2

Soil pH 3.4 (0.01 )A 3.3 (0,02)a 3.3 (0.01)A 3,4 (0.01)A 3,4 (0,02)a 4,3 (0,05)b 4.3 (0,05)b

0-10 cm 3.4 (0.03)° 3.2 (0.05)8 3.3 (0,02)a 3,4 (0.04)8 3,4 (0,03)a 4.5 (0,09)a 4,4 (0.13)a
10-20 cm 3.4 (0.01 )a 3.3 (0,04)a 3.3 (0,02)a 3.4 (0,02)a 3,4 (0.02)a 4,4 (0,07)a 4.3 (0,09)a
20-30 cm 3.4 (0,02)a 3.3 (0,04)a 3.3 (0,02)a 3.4 (0,0 l)a 3.3 (0.03)8 4,3 (0,06)ab 4.3 (0.07)a
30-40 cm 3.4 (0.03)8 3.3 (0.02)a 3.3 (0.03)8 3.4 (0,03)a 3.4 (0.02)a 4,1 (0,04)b 4.4 (0.13)a

Bulk Density4' 
(g/cm3) 0.084 0.097 0.117 0,163 0,153 0.567 0.705

Volumetric Water* 
Content (%) 32.6 37.8 33.2 24,2 29.0 35 31

Organic Matter* 
Content (%) 97,6 97.3 93,2 92.2 92.9 38.6 23.3

Groundwater Level (cm) 
relative to soil surface -8.1 (0.9) -8.5 (0.8) -33.5 (2,2) -31.6(2,6) -13.9(1.4) -9,9 (0.6) -9,1 (0,9)

-4
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depth within the restored sites relative to all the other sites. Other edaphic characteristics 

varied among the sites (Table 13).

Decomposition Rates

Vertical decay profiles within the stands in ARNWR exhibited similarities in 

mass loss over time for both native root material and Chamaecyparis roots (Figure 12). 

The trend of decreasing mass loss with increasing depth in the soil profile was not 

evident within ARNWR (Figure 12).

In contrast, there was a decrease in mass loss with an increase in depth of the soil 

profile within all sites in the GDSNWR (Figure 13). Mass loss of native roots and 

Chamaecyparis roots were similar across the entire soil profile in both the intermediate 

and mature stands. Only decay of Chamaecyparis roots were evaluated within the young 

(clear-cut) site. This was done primarily due to the fact that roots within sites would have 

been in various stages of senescence, which would have made collection and separation 

of live versus recently senesced material extremely difficult. Evaluating decay dynamics 

using Chamaecyparis roots within the young site allowed for the examination of 

differences in mass loss under varying hydroperiods within the GDSNWR. Mass loss of 

native roots and Chamaecyparis roots were strikingly different within the restored sites 

(Figure 14). Mass loss of native roots was substantially faster relative to root standards. 

Native root decay rates were similar within the naturally regenerating sites of both 

refuges regardless of site hydrology, but were statistically different from native root 

decay within the restored sites (Table 14). In general, native root decay within 

GDSNWR sites tended to decrease with increasing depth in the soil profile. This was not
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standard error.

the case within the sites in the ARNWR where patterns of decay over the soil profile 

were variable. There were no significant differences in decay coefficients within all of 

the naturally regenerating sites regardless of individual site differences. Patterns of 

Chamaecyparis root decay over the soil profile were variable and exhibited similar trends 

relative to native root decay within each site (Table 15).
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Influence of litter quality on decay

One-way ANOVAS between native roots and Chamaecyparis roots revealed 

significant differences for initial nitrogen content (F =  152.97, p  <0.0001), initial carbon 

content (F =  36.89, p <0.0001), and initial C:N ratios (F = 178.51, p  <0.0001) (Tables 16 

and 17).
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Initial phosphorus content was over twice as high within the restored sites’ root litter 

relative to the naturally regenerating sites, but significant differences could not be 

statistically tested (n =  I) (Table 16). Initial C:N ratios were significantly higher
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Table 14. Decay rate [-fc(yr)] and coefficient of determination ( r ) for native root decay at each depth interval. All 
regressions are significant atp -  0.0001. One standard error in parentheses. Different uppercase letters between rows indicate 
significant differences (p -  0.05) between sites. Different lowercase letters between columns indicate significant differences 
(p -  0.05) between depths.

Depth belowground (cm)

Site 0-10 10-20 20-30 30-40

*(yr'1) r2 *(yr') r2 * ( y r ‘)
2r k(yf ' ) r2

Alligator River

Mature 0.34 (0,02)Aa 0,94 0.33 (0,03)Aa 0.91 0,34 (0,03)Aa 0.90 0,36 (0.03)Aa 0,92
Intermediate 0.33 (0.02)Aa 0,94 0.31 (0,03)Aa 0,92 0.35 (0,03)Aa 0,94 0,36 (0.03)Aa 0,94

Great Dismal Swamp
Mature 0.40(0,01 )Aa 0.98 0.38 (0,02)Aab 0,96 0,36 (0,02)Aab 0.96 0,32 (0.02)Ab 0,94
Intermediate 0.39 (0.01 )Aa 0.99 0.33 (0.01)Ab 0.97 0,33 (0,02)Aab 0.95 0.30 (0.02)Ab 0.95

Edge Farm Restoration

Site 1 0,80 (0.03)Ba 0.98 0.69 (0,01 )Bb 0.99 0.60 (0.03)Bb 0,97 0.49 (0.01)Bc 0.98
Site 2 0.86 (0,03)Ba 0,98 0.72 (0,01)Bb 0.99 0.58 (0.03)Bc 0,96 0.51 (0,03)Bc 0,96
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Table 15, Decay rate [-Ar(yr' )] and coefficient of determination ( r ) for Chamaecyparis thyoides root decay at each depth 
interval. All regressions are significant a t p -  0.0001, One standard error in parentheses. Different uppercase letters 
between rows indicate significant differences (p = 0.05) between sites. Different lowercase letters between columns 
indicate significant differences (p= 0.05) between depths,

Depth belowground (cm)
Site 0-10 10-20 20-30 30-40

* ( y r ‘) r2 * (y r ‘) r2 *<yf') r2 k ( y f l) r2

Alligator River

Mature 0.39 (0,02)Aa 0.96 0.37 (0,03)Aa 0.94, 0,40 (0,02)Aa 0.96 0,45 (0,03)Aa 0.96

Intermediate 0.35 (0,02)Aa 0.96 0.35 (0.02)Aa 0.97 0.39 (0,02)Aa 0.97 0.42 (0,03)Aa 0.95

Great Dismal Swamp

Mature 0.38 (0,02)Aa 0,97 0.35 (0,02)Aa 0.97 0,36 (0,02)ABa 0,95 0,35 (0.02)ABa 0.94
Intermediate 0.39 (0.02)Aa 0.97 0.37 (0.02)Aa 0.97 0.37 (0.02)ABa 0.96 0,35 (0.02)ABa 0.95
Young 0.38 (0.01)Aa 0.99 0.35 (0.02)Aab 0.96 0.31 (0.01 )AB 0.97 0.29 (0.01 )Bb 0.98

Edge Farm Restoration

Site 1 0,35 (0.0 l)Aa 0.97 0,29 (0.0 l)Aab 0,96 0.29 (0.0 l)Bab 0.98 0.28 (0,01)Bb 0,98
Site 2 0,34 (0,03)Aa 0,95 0.33 (0,02)Aa 0,94 0,31 (0,02)ABa 0.94 0,30 (0,02)Ba 0,96
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Table 16, Initial native root litter quality indices (0) and after 1,8 years of decay (1,8) for nitrogen concentration (%N), 
phosphorus concentration (%P), carbon concentration (%C), and carbon:nitrogen ratio (C:N), One standard error in 
parentheses, Differences between lowercase superscripts indicate sgnificant (p =0,05) differences. N=3 for all indices 
except initial % P where n=l.

%N %P %C C:N
0 1,8 0 1,8 0 1.8 0 1.8

Alligator River
Mature 0,52 (0.0 l)a 0.56(0,01)“ 0.11 0,04(0,01)“ 49,59(0,42)“ 51,37(0.08)“ 96 90

Intermediate 0.52(0.01)° 0.63 (0,02)“ 0.13 0,04(0,001)* 49.59 (0.42)* 50,23 (0,62)* 96 81

Dismal Swamp
Mature 0,84 (0.01 )b 1,05 (0.09)b 0.09 0,04 (0,001)“ 47.51 (0,2 l)b 50,85 (0,29)“ 57 49

Intermediate 0.84 (0,01 )b 0,96 (0,03)b 0.12 0,05 (0,001)* 47,51 (0.2 l)b 49,84(0,06)“ 57 50

Edge Farm

Site 1 0.78 (0,03)b 1.13 (0.04)b 0.26 0.13 (0.0 l)b 45,41 (0,22)c 46.11 (0.30)b 58 41
Site 2 0.78 (0.03)b 1.27 (0.08)c 0,26 0,15 (0,01 )b 45,41 (0,22)c 45.41 (0.55)b 58 36

OQ
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Table 17, Initial Chamaecyparis thyoides root litter quality indices (0) and after 1,8 years of decay (1,8) for nitrogen 
concentration (%N), phosphorus concentration (%P), carbon concentration (%C), and carbon:nitrogen ratio (C:N). One 
standard error in parentheses, Different lowercase superscripts between rows indicate significant (p = 0,05) differences. N=3 
for all indices except initial % P where n=l,

%N %P %C C:N
0 1.8 0 1,8 0 1.8 0 1.8

Alligator River
Mature 0,38(0,01) 0.52 (0,06)a 0,13 0,05 (0,001 )a 45,83 (0,33) 49.51 (0,19)a 121 98

Intermediate 0,38(0.01) 0.52 (0.05)8 0,13 0,04 (0,003)" 45,83 (0,33) 49.63 (0,06)a 121 98

Dismal Swamp

Mature 0,38 (0,01) 0,54 (0,0 l)ab 0,13 0,04 (0,003)a 45,83 (0,33) 49,45 (0,09)a 121 92

Intermediate 0,38 (0,01) 0,60 (0,02)ab 0,13 0,05 (0,001 )a 45.83 (0,33) 49.41 (0,15)a 121 82

Edge Farm
Site 1 0.38 (0,01) 0,60 (0,01 )ab 0.13 0,11 (0,00 l)b 45,83 (0,33) 47.26 (0,34)b 121 80

Site 2 0.38 (0,01) 0.75 (0,05)b 0,13 0,12 (0,01 )b 45.83 (0.33) 45.62 (0,10)b 121 62
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in the ARNWR relative to sites in the GDSNWR and the restored sites.

Chamaecyparis root litter had the lowest initial nitrogen content and accumulated 

nitrogen within all sites (Table 17). Initial phosphorus content of Chamaecyparis roots 

was similar to that of the native roots harvested from the naturally regenerating sites, and 

twice as low as the initial phosphorus content of native roots from the restored sites 

(Tables 16 and 17). Initial carbon content was similar between native roots of the 

restored sites and Chamaecyparis roots, but was significantly lower relative to the 

naturally regenerating sites.

Significant site (F = 126.41, p <0.0001) and time (F = 17.52, p <0.0001), but not 

site x time (F = 1.04, p = 0.4314), effects resulted in different patterns of nitrogen 

behavior in native root litter within the sites in ARNWR compared to all other sites 

(Figure 15). Net phosphorus immobilization potentials were nonexistent with no 

increases above 100 percent phosphorus remaining (Figure 16). Significant site (F = 

137.14, p <0.0001), time (F = 56.95, p  <0.0001), andsitex time (F = 2.11, p  =0.0494) 

effects resulted in different patterns of phosphorus behavior in native roots within the 

naturally regenerating sites and restored sites.

Significant site (F = 6.77, p <0.0001), time (F =  26.20, p <0.0001), and site x time 

(F = 2.16, p — 0.0114) effects resulted in different patterns of nitrogen behavior in 

Chamaecyparis roots over time and between sites (Figure 17). Significant site (F = 

29.86, p  <0.0001), time (F = 9.10, p — 0.0006), and site x time (F = 8.94, p  <0.0001) 

effects resulted in different patterns of phosphorus behavior in Chamaecyparis roots over 

time and between sites (Figure 18).
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Initial lignin content of native root material could not be statistically tested (n =

1). Qualitative comparisons of initial lignin content within the naturally regenerating 

sites ranged from 52.39 % to 56.38 % (Table 18). In contrast, initial lignin content of 

native root materials from the restored sites was around 37.03 %. These dramatic 

differences can be attributed to the increased recalcitrant tissues common in woody roots 

compared to herbaceous root material. Following a year of incubation, lignin content 

increased in all roots. Significant differences in initial nitrogen content (Table 16) 

resulted in substantial differences in L:N ratios between the refuges and the restored sites 

(Table 18). The L:P ratio of native roots within the restored sites were substantially 

lower relative to all of the naturally recovering sites. Nitrogen to phosphorus ratios 

exhibited similar trends.

Initial lignin content and Lmutrient ratios of Chamaecyparis roots were variable 

compared to native root material within the naturally regenerating sites and the native 

roots from the restored sites (Tables 18 and 19).

Environmental influences on decay

Relationships between annual decay of Chamaecyparis roots and environmental 

influences resulted in strong correlations with soil pH (r = -0.607, p = 0.0006) and 

weaker non-significant correlations with hydrology (r = 0.205, p = 0.294). However, 

with the inclusion of all independent variables, multiple regression only explained 37% 

of the variation in decomposition of Chamaecyparis thyoides roots (F = 7.4L, C — 0.37, p 

= 0.003). As the first variable selected, soil pH accounted for most of the explained
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variance (F = 15.23, r2 = 0.369, p = 0.0006). Addition of hydrologic variables did not 

result in improvements. The level of resolution allowed by the multiple regression 

technique could not identify specific depth related effects. Despite significant differences 

in groundwater levels across the sites, Chamaecyparis thyoides decay (Table 13) was 

generally similar across all sites. A direct gradient analysis examining annual decay rates 

(depth combined) of Chamaecyparis roots along a gradient of ambient water tables found 

no relationship (F = 0.07, r2 = 0.014, p = 0.795) between the two variables.

Litter Quality Influences on Decay

A series of correlation analyses were performed to establish the potential 

influences litter quality characteristics exerted on decay dynamics. The variables 

included nitrogen, phosphorus and lignin content and the various ratios (C:N, L:N, N:P) 

listed in Tables 17 and 18. Initial nitrogen content was weakly correlated with decay (r = 

0.327, p = 0.117). Conversely, all other variables were strongly correlated with decay. 

Phosphorus content was positively correlated with decay (r = 0.866, p <0.0001). Carbon 

to nitrogen ratio was negatively correlated with decay (r = -0.451, p = 0.0269), as was 

lignin (r = -0.870, p <0.0001), L:N ratio (r = -0.659, p = 0.0005) and N:P ratio (r = - 

0.588, p = 0.0025). Among all sites, high lignin content coupled with low phosphorus 

and L:N ratios corresponded with low decay. Soil pH was positively correlated with 

native root phosphorus levels (r = 0.983, p = 0.0004).

Differences in litter quality between woody and herbaceous roots produced 

different patterns of mass, nitrogen, and phosphorus loss when decomposing in the same 

site. Chamaecyparis roots (lower nitrogen, lower phosphorus, and higher lignin content)
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buried in the restored sites next to native roots showed slower decay and greater 

phosphorus and nitrogen retention.

Long-term Decay Trends

The exponential decay constants reported in this study are on an annual basis 

because they are comparable with the majority of values reported for other systems. 

However, we also wanted to evaluate root decay within these systems over longer 

temporal scales (Tables 20 and 21). This was done in an effort to determine if trends, 

apparent over the course of the first year of study, continued throughout the duration (1.8 

years) of the study. While decay rates decreased in all sites, the trends in native root 

decay did not change within the recovering and restored sites (Table 14). The restored 

sites exhibited the fastest decay over the course of the study. Decay rates of 

Chamaecyparis roots were similar to the one year decay rates, although all rates were 

lower (Table 21).
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Table 20. Decay rate [-A(1.8yr’')] and coefficient of determination (r2) for native root decay at each depth interval. All 
regressions are significant at p=  0.0001, One standard error in parentheses. Different uppercase letters between rows 
indicate significant differences (p = 0.0S) between sites, Different lowercase letters between columns indicate 
significant differences (p= 0,05) between depths.

Depth belowground (cm)

Site 0-10 10-20 20-30 30-40

k(yr' ) r2 *(yr‘) 2r *(yr'’) r2 *(yr‘) r2

Alligator River
Mature 0.23 (0.01 )Aa 0.92 0.21 (0,02)Aa 0.86 0.22 (0,02)Aa 0,87 0.25 (0,02)Aa 0,91
Intermediate 0,23 (0,02)Aa 0,91 0.20 (0.02)Aa 0.88 0,22 (0.02)Aa 0.88 0.24 (0,02)Aa 0.90

Great Dismal Swamp

Mature 0,31 (0,02)Aa 0.94 0,27 (0.02)Aab 0.92 0.24 (0.02)Aab 0.87 0,21 (0,02)Ab 0.87
Intermediate 0.30 (0.01 )Aa 0.95 0.25 (0,01 )Ab 0.94 0.23 (0.01)Aab 0.92 0.20 (0,01 )Ab 0.89

Edge Farm Restoration

Site 1 0,66 (0,03)Ba 0.96 0,61 (0,02)Ba 0.98 0,45 (0.03)Bb 0.94 0,38 (0,02)Bb 0.96

Site 2 0.69 (0,03)Ba 0.96 0,59 (0.01 )Ba 0.97 0,45 (0.02)flb 0,95 0,37 (0,02)Bb 0.92

N©U>
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Table 21, Decay rate f-A:(1,8yr’J)J and coefficient of determination (r2) for Chamaecyparis thyoides root decay at each 
depth interval. All regressions are significant atp=  0,0001, One standard error in parentheses. Different uppercase letters 
between rows indicate significant differences (p = 0.0S) between sites. Different lowercase letters between columns indicate 
significant differences (p -  0,05) between depths.

Depth belowground (cm)

Site 0-10 10-20 20-30 30-40
*(yr') r2 *(yr') r2 t(y f ') r2 k(yr') r2

Alligator River

Mature 0,25 (0,02)Aa 0.89 0,23 (0,02)Aa 0.87 0.27 (0,02)Aa 0,91 0.32 (0,02)Aa 0.93
Intermediate 0,23 (0,02)Aa 0,91 0,22 (0,02)Aa 0,89 0,25 (0,02)Aa 0.89 0.29 (0.02)Aa 0,92

Great Dismal Swamp
Mature 0.26 (0,02)Aa 0.92 0,24 (0,02)Aa 0.90 0,24 (0.02)Aa 0,88 0.23 (0,02)ABa 0.88

Intermediate 0,28 (0.02)Aa 0,93 0,25 (0,02)Aa 0,91 0,25 (0,02)Aa 0.89 0,23 (0,02)ABa 0.89

Young 0.27 (0.01 )Aa 0.93 0,24 (0,02)Aa 0,90 0,22 (0.0 l)Aa 0.91 0,21 (0,01)Ba 0.93

Edge Farm Restoration
Site 1 0,24 (0,02)Aa 0,90 0,21 (0,01 )Aa 0.92 0,21 (0,01 )Aa 0,94 0,21 (0,01 )Ba 0.94
Site 2 0,26 (0,01 )Aa 0,93 0,24 (0.0 l)Aa 0,92 0,23 (0.01)Aa 0,93 0,22 (0.01)Ba 0.92

SO4̂
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DISCUSSION

Environmental Influences on Root Decay

Patterns of root decay over the soil profile were variable within each site. Within 

the GDSNWR sites and the restored sites, decreases in root decay were expected in 

response to increased depth and degree of saturation. Studies examining belowground 

decay, while incorporating a depth component in saturated soils, have demonstrated this 

diminishing effect (Hackney and de la Cruz 1980, Tupacz and Day 1990). Other studies 

have found no depth effect or relationship with soil redox potential (Hackney 1987, Blum 

1993).

Decay of native and Chamaecyparis roots in ARNWR varied with depth, but not 

in a predictable manner. The highest rates of decay were found within the lowest depth 

interval in the soil profile, which was saturated over the course of this study.

Continuously flooded and stagnant systems tend to be low in nutrients and oxygen 

deficient. Low oxygen levels inhibit decomposition and retard nutrient uptake due to 

poor aeration in the rooting zone (Schlesinger 1978). Ransom and Smeck (1986) 

determined that reduced soil conditions reflected the availability of inorganic electron 

donors and acceptors (including but not limited to O2) and organic matter as opposed to 

the degree of soil saturation. According to Melillo et al. (1989), the presence of easily 

degradable carbohydrates can enhance the rate of degradation of complex carbohydrates 

such as lignin.

Enhanced decay within these sites under saturated soil conditions may be 

indicative of greater microbial activity responding to greater cometabolite availability and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

might explain why decay of native and Chamaecyparis roots within ARNWR sites does 

not decrease directly with increasing depth in the soil profile. Methanogenisis was found 

to occur at both sites within ARNWR and did not occur within the GDSNWR. Lower 

amounts of methane flux were recorded at the restored sites. In the Atlantic white cedar 

sites examined in this study, it took between six to eight months before methanogen 

activity was detected on decomposing substrates. Increased leaching could also have 

occurred within the sites at ARNWR as they exhibited the highest water tables over the 

course of the study.

Hydrologic differences among sites did not influence Chamaecyparis root decay 

even though the frequency and duration of saturation within the rooting zone differed, 

creating greater periods of oxic soil conditions within the intermediate and mature-aged 

stands in the GDSNWR. In a study experimentally mimicking hydroperiods typical of 

seasonally saturated soils, Neckles and Neill (1994) found no differences in belowground 

decay. However, native and Chamaecyparis root decay decreased with increasing depth 

in the soil profile across all other sites, similar to other woody root decay in wetland 

systems (Day et al. 1989, Tupacz and Day 1990).

According to Taylor et al. (1991), woody litter is actually more sensitive to 

microenvironmental differences than herbaceous litter. Excess moisture inhibits fungal 

activity important for lignin degradation (Fahey et al. 1988) and fragmentation of bark 

(Harmon and Hua 1991). Tissue fragmentation, either through fungal activity, live root 

activity or faunal activity, can stimulate decay in woody roots (Day et al. 1989, Harmon 

and Hua 1991). Increased fungal activity under drier, less anoxic conditions should have 

contributed to greater decay within sites in the GDSNWR, but did not. Day et al. (1989)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

found similar rates of decay in bald cypress roots under contrasting hydroperiods. This 

evidence, coupled with the lack of correlation between Chamaecyparis root decay and 

hydrology, suggests that litter quality exerts a strong controlling factor regulating decay 

within the naturally regenerating Atlantic white cedar wetlands.

Patterns of soil pH with increasing depth in the vertical soil profile did not behave 

in a predictable manner. In all recovering sites, soil pH remained constant as the degree 

of saturation increased. In the restored sites, soil pH tended to decrease with increasing 

soil saturation. A consequence of flooding previously drained soils is that carbonic acid 

can form as a result of CO2 build up and lead to a decrease in pH. The opposite can 

occur in peat soils where pH increases as a result of the reduction of ferric iron 

hydroxides (Mitsch and Gosselink 2000). The spatial soil pH dynamics within the 

recovering sites were virtually identical. Despite seasonal differences in ambient water 

tables, the extremely acidic conditions were maintained within these sites. Peat soils 

often remain acidic during submergence through the slow oxidation of sulfur compounds 

near the surface, producing sulfuric acid, and the production of humic acids and selective 

cation exchange by sphagnum mosses (Mitsch and Gosselink 2000). Other studies 

working in Atlantic white cedar wetlands have found an increasing pH with decreasing 

water table levels (Day 1982, Tupacz and Day 1990).

Soil pH levels along the recovering sites were 10 times more acidic 

compared to the restoration sites. The range of pH values measured in the recovering 

sites (3.1 to 3.4) were generally lower than most estimates including 3.55 to 4.01 in New 

Jersey (Zhu and Ehrenfeld 1999), 4.95 and 4.26 in Rhode Island (Golet and Lowry 1987), 

5.34 in Maryland (Whigham and Richardson 1988), 4.8 to 5.0 in Mississippi (Eleuterius
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and Jones 1972), and 6.6 to 7.5 in Florida (Collins et al. 1964). They were similar to soil 

pH levels (3.4) that Bandle and Day (1985) found within an Atlantic white cedar stand in 

the GDSNWR. Working in Rhode Island, Golet and Lowery (1987) determined that C. 

thyoides maximum growth rates were highest at sites with a pH above 4.0. This would 

suggest that Chamaecyparis growth in the recovering sites may be inhibited by low soil 

pH relative to the restored sites.

Root Decay and Nutrient Dynamics

Plant nutrient status and carbon allocation patterns have a profound influence on 

the chemical composition and physical structure of litter types (Swift et al. 1979). The 

types of carbon available in the litter substrate, such as cellulose and lignin, which vary in 

quantity and degradability, also regulate decay rates (Day 1982, Berendse et al. 1987).

Decomposing root material (native/standard) within all sites immobilized 

nitrogen over the course of the study. Nitrogen dynamics within decaying litter exhibit a 

phase of leaching, followed by a period of nutrient accumulation, and terminate with a 

phase of net release (mineralization) (Melillo et al. 1989). These dynamics can be 

tentatively extended to phosphorus. Accumulation of nitrogen greater than twice initial 

amounts commonly occurs (net nitrogen immobilization). Increases to twice initial 

amounts are possible (Melillo and Aber 1984). Net nitrogen mineralization is triggered 

by carbon limitations imposed on microbial decomposers as C:N ratio drops to a critical 

threshold (Berendse et al. 1987) and is also correlated with the onset of lignin 

degradation. Decomposers are forced to attack more resistant forms of carbon and are no 

longer nitrogen limited (Berg and McCIaugherty 1989).
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nitrogen limited decay and may serve as an important mechanism for conserving nitrogen 

in these nutrient limited systems.

Nutrient concentrations and availability in wetlands are influenced by soil and 

groundwater acidity. Nitrogen and phosphorus availability is greatly affected by the 

acidic conditions found in peat soils common in Atlantic white cedar wetlands. Lucas 

and Davis (1961) evaluated the relationship between nutrient availability and pH in 

organic soils and determined that organic soils with a pH above 5.0 usually contain over 

2% total nitrogen, but when the pH drops below 4.0 the total nitrogen content is typically 

less than one percent. The total nitrogen in the soil and the effect of pH on decomposers 

influence nitrogen release and availability. Highly acidic soils typically have poor 

microbial activity, low soil nitrogen, and an unfavorable carbon to nitrogen ratio that may 

limit plant growth (Lucas and Davis 1961). The initial nitrogen content of litter is 

generally considered a good predictor of decay rates, especially in similar habitats 

(Stump and Binkley 1989). Results of the current study seem to contradict these 

findings. Native roots and Chamaecyparis root decay under the same environmental 

conditions contradict the idea that initial nitrogen content can predict decay rates. Within 

each naturally regenerating Atlantic white cedar stand, Chamaecyparis roots that had a 

lower initial nitrogen content decayed at similar rates relative to native roots.

Phosphorus concentrations in soil water of natural peatlands are low (Paavilainen 

and Paivanen 1995). A very acidic peat soil often contains as little as 0.01 % 

phosphorus. Strongly acidic soil conditions tend to limit phosphorus availability for plant 

uptake (Day 1982). When the pH drops below 5.5, phosphorus availability is reduced 

due to increased solubility of iron and aluminum (Lucas and Davis 1961). In native roots
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phosphorus exhibited an initial leaching phase, with subsequent peaks of accumulation, 

followed by a decrease in remaining phosphorus. In standard roots, phosphorus was 

rapidly mineralized and susceptible to leaching. It has been suggested that belowground 

phosphorus cycles may lack an immobilization interval resulting from a predominance of 

unavailable forms of phosphorus in soils (Seastedt 1988).

Litter with high initial lignin content and lignin to nitrogen ratio are often 

associated with low decay (Berg et al. 1984, Melillo et al. 1982). These generalities are 

supported by my results. Native roots within the naturally regenerating stands and 

Chamaecyparis roots had high initial levels of lignin and L:N ratios relative to the native 

roots from the restored sites. Additionally, phosphorus was twice as high in native roots 

(and highly correlated with decay) in the restored sites compared to the naturally 

regenerating sites and Chamaecyparis roots. Seastedt (1988) determined that N:P ratios 

above 10 can impose phosphorus limitations on decomposers. Nitrogen to phosphorus 

ratios were lowest (3) for the native roots in the restored sites, relative to the native roots 

from the naturally regenerating sites.

Significant differences in native root decay coefficients occurred between 

restoration sites and the naturally regenerating Atlantic white cedar sites. This was 

expected as herbaceous roots tend to have lower lignin content and higher labile fractions 

relative to woody tissues. Native root decomposition rates in this study were highly 

correlated with lignin concentration and L:N ratios, which are assumed to be higher in the 

roots within the naturally regenerating sites due to greater densities of woody species 

(Benner etal. 1985).

The results of the current study suggest that decay of Atlantic white cedar roots
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appears to be strongly regulated by litter quality factors. Studies that neglect the 

potentially confounding effects of litter quality and site environmental drivers may result 

in erroneous interpretation of data. The influence of litter quality on decay is complex 

and may not rest solely on one pivotal factor such as initial lignin content and could be 

further complicated by integrative site effects. Studies that evaluate decay of native 

material among a variety of sites without adequate controls may be missing a more 

complex picture.
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CHAPTER V 

CONCLUSIONS

Recent interest in the management and restoration of Atlantic white cedar 

wetlands has resulted in numerous studies examining various aspects of ecosystem 

structure and function (Shear and Summerville 1999). Few studies have examined 

aboveground decay dynamics within these forested wetlands (Day 1982, Yates and Day 

1983, Ehrenfeld 1995). Additionally, due to the limitations of studying belowground 

decay dynamics in natural settings, very few data regarding root decay processes are 

available for Atlantic white cedar ecosystems (Tupacz and Day 1990). Understanding 

above and belowground decay processes in developing Atlantic white cedar wetlands 

allows for more complete assessments of soil organic matter accrual and carbon storage 

functions in this community type. It is estimated leaf and root litter contribute over 80% 

of the annual increment of soil organic matter in Atlantic white cedar wetlands 

(Megonigal and Day 1988). Decomposition of this litter material plays a significant role 

in soil organic matter aggradation, an ecosystem process considered to be crucial for the 

long-term self-maintenance of this wetland type.

This study examined the regulatory control that litter quality and 

environmental influences impose on above and belowground decay dynamics and was 

unique in that a chronosequence of age classes was incorporated into the design. 

Considerable insight into Atlantic white cedar development, at the ecosystem level, can 

be revealed through chronosequence studies. Examination of above and belowground 

decay processes revealed similar rates o f leaf litter decay and root decay within differing 

age classes along the chronosequence. In all naturally regenerating stands, leaf litter
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decomposed at faster rates than did roots. This result was expected as differences in litter 

quality between leaf litter and roots and differences in microclimates often result in 

increased decay at the soil surface relative to belowground. Vertical gradients found 

within a soil profile, such as environment, litter quality, root production and root 

mortality, all contribute to an added dimension of complexity that is absent in 

aboveground decay studies. In contrast, root decay within the 0 -20 cm depth interval 

exhibited faster decay rates than native leaf litter within the restored sites. This was 

unexpected because native leaf litter within the restored sites had comparable nitrogen 

and phosphorus levels and slightly lower levels of lignin compared to native roots. The 

differences in decay rates may be partly explained by environmental differences found 

within the leaf litter layer and root/soil matrix.

Root material was live at collection while leaf litter was senescent. The leaf 

material may have previously lost a greater proportion of water soluble organics and 

cellulose that are rapidly metabolized or leached during early decay. Decomposition 

processes in the restoration sites’soils have greater access to soil resources, such as 

moisture and nutrients, than on the soil surface. Standard leaf litter within the restored 

sites and young (recent clear-cut) exhibited the slowest decay rates relative to the forested 

regenerating sites. The microclimate at the soil surface within the restoration sites and 

young site was dramatically different compared to the closed canopied naturally 

regenerating sites. Working in a coastal dune environment, Conn (1994) found lower 

rates of leaf litter decay compared to root decay within the same dune complex. Decay 

patterns of native material within the restored sites increased significantly over longer 

temporal scales relative to the naturally regenerating sites, while Chamaecyparis leaf
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litter decomposed slower within these sites compared to the other sites. These emerging 

patterns suggest that litter fall from Atlantic white cedar within these sites has the 

potential to contribute greater amounts to soil organic matter pools while extant 

vegetation will be rapidly mineralized with increased time in the litter layer. The need 

for further examination of long-term aboveground decomposition patterns within these 

developing systems is warranted.

Nutrient dynamics were similar within all sites and between above and 

belowground materials. Nitrogen accumulated in all litters while phosphorus was 

released. In nutrient poor ecosystems, mechanisms exist to prevent nutrient losses, such 

as slower decay rates and greater immobilization of nutrients (Barbour et al. 1999). 

Developing ecosystems should show increasing nutrient capital through increases in 

biomass and soil organic matter components and greater amounts of total nutrients should 

be recycled rather than lost (Vitousek and Howarth 1991, Odum 1969). Additionally, at 

least in early to mid stage development, nutrient outflows should decrease and production 

rates should increase (Vitousek and Reiners 1975). This was not the case in the current 

study. Across all age classes and in restoration settings, nitrogen was immobilized and 

continued to accumulate, while phosphorus was rapidly leached, accumulated over the 

first year, then was mineralized over the course of the study. Paradigms of ecosystem 

development based on upland systems may not apply to wetlands where hydrology is a 

primary driver of vegetation dynamics (Mitsch and Gosselink 2000).

Aboveground litters accumulated nitrogen to nearly twice their original levels, 

while root nitrogen accumulations were more modest. Aboveground litters potentially 

have more exogenous sources of nitrogen available via throughfall, cyanobacteria,
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diazotrophs and fugal hyphae. Nitrogen immobilization in aboveground Litter is 

influenced by hyphal bridges that translocate nitrogen from the soil to the litter (Harmon 

and Hua 1991).

Rodgers (2001) found substantial differences in belowground allocation patterns 

between the naturally regenerating sites and restoration sites suggesting that root 

contributions to soil organic matter pools are substantially less in restoration settings.

This finding coupled with the results of my study would imply that not only is root 

production less within restored sites, but these roots are decomposing at significantly 

faster rates compared to the naturally regenerating sites. In these restored sites, a simple 

shift from a herbaceous dominated community to one dominated by woody species may 

not be enough to substantially increase belowground contributions of roots to 

accumulating soil organic matter pools. Colonization and subsequent domination by 

species other than Atlantic white cedar within these sites could have deleterious 

consequences for carbon sequestration and accrual which are critical to ecosystem 

function and self-maintenance of this wetland type.

To date, the planted Atlantic white cedar in the restored sites have been decimated 

by herbivory, only 25% of the original planted stock remain, and the site is being 

colonized by Acer rubrum, Nyssa spp., and Taxodiwn distichum (Steve Martin, 

U.S.A.C.O.E., Norfolk Disrtict, personal communication). Tupacz and Day (1990) 

determined that roots of Atlantic white cedar decomposed more slowly than those of 

Taxodium distichum, Acer rubrum, and Nyssa sylvatica var. biflora. Thus it would 

appear that these sites are currently not following a trajectory of ecosystem recovery in 

terms of successional development and above and belowground decay processes.
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Management Implications

Laderman (1989) stated that planting Atlantic white cedar has proven to be so 

difficult that natural regeneration is preferred in areas where opportunities exist.

However, restoration of this wetland type through planting new sites will be critical to 

reversing the trends of range wide habitat destruction. Reversing the trend of Atlantic 

white cedar habitat loss will require forging partnerships between governmental and non­

governmental organizations as well as private and public entities. The results of this 

study suggest that decay rates of Atlantic white cedar leaf litter and root material in the 

restored sites are equal to and in some cases lower than the decay rates determined for the 

naturally regenerating stands.

Based on the results of this study, it also appears that decay dynamics of Atlantic 

white cedar are strongly regulated by litter quality factors rather than environmental 

conditions within sites. This would suggest that these restoration sites could achieve 

similar contributions of leaf litter and root litter to accumulating soil organic matter 

pools, if Atlantic white cedar are planted at densities that more closely emulate seedling 

densities found in natural settings. Continued long-term study of these and similar 

restoration sites are needed to provide greater insight into appropriate recovery models 

for various wetland functions of Atlantic white cedar.
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APPENDIX

DECAY DYNAMICS IN A RESTORATION SETTING AT 

POCOSIN LAKES NATIONAL WILDLIFE REFUGE

INTRODUCTION

Atlantic white cedar has been the most valuable timber species on the Albemarle- 

Pamlico peninsula since the mid-1970s. Elaborate networks of roads, canals and ditches 

were constructed to provide direct access to the pure, dense stands (Laderman 1989). 

Alligator River and Pocosin Lakes National Wildlife Refuges were established in this 

region over the past two decades in part to conserve and manage the areas unique 

wetlands, including Atlantic white cedar forests (Bryant 1999). They currently contain 

over 10,000 acres of Atlantic white cedar clearcuts and scattered disjunct remnants of 

Atlantic white cedar stands (Eagle 1999). The absence of post-harvest forest 

management coupled with poor logging practices and hydrologic modifications have 

resulted in poor Atlantic white cedar regeneration in many areas (Eagle 1999).

The primary objectives of these refuges are the preservation and restoration of 

unique habitats, and restoration of Atlantic white cedar habitat is a priority in Refuge 

management practices (Bryant 1999). While there are many recent studies examining 

various aspects of Atlantic white cedar restoration (see Shear and Summerville 1999), 

there are no studies documenting decay processes occurring in Atlantic white cedar 

restoration settings. Soil organic matter accumulation and sequestration are regarded as 

critical components to ecosystem function and self-maintenance o f these wetlands.

The objectives of this study were to quantify aboveground and belowground
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decomposition rates within a restoration setting.

METHODS

The current study was conducted within a restoration effort of a former Atlantic 

white cedar wetland. The stand was located off of F2 road and was approximately 3 km 

south of Lake Phelps within Pocosin Lakes National Wildlife Refuge. The stand was 

planted with Atlantic white cedar seedlings during the fall of 1998. The site had burned 

two years prior to planting, and was colonized by bracken fem (Pteridium aquilinum (L.) 

Kuhn.), an unidentified Solidago spp. and barnyard grass (Echinochloa cnisgalli (L.)). 

Atlantic white cedar seedlings were the dominant woody species on site. The site is on 

acidic organic soils which are ombrotrophic, and classified as Typic Haplosaprists 

(National Soil Survey Center (2000). Within site comparison of Chamaecyparis thyoides 

leaf and root decay with native leaf and root decay demonstrated litter quality influences 

under similar environmental conditions. Depth of ambient water table was determined by 

depth of rusting on steel rods, and soil pH was evaluated over a 0 — 40 cm soil profile.

RESULTS

Native leaf litter exhibited greater initial mass loss relative to Chamaecyparis 

litter mass loss and maintained this trend throughout the year (Figure 19). Native decay 

rates were over twice as fast compared to Chamaecyparis litter, with time to reach 1 

percent mass remaining also doubled for standard litter (Table 22). T-tests between 

native leaf litter and Chamaecyparis leaf litter revealed significant differences (p =  0.05)
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Figure 19. Percent mass remaining for native and Chamaecyparis thyoides leaf litter 
at Pocosin Lakes National Wildlife Refuge. Values represent means with one standard 
error.

between decay rates (Table 22).

Native roots exhibited greater mass loss over time relative to Chamaecyparis 

roots (Figure 20). There was a trend of decreasing mass loss with increasing depth of the 

vertical soil profile for both native and standard roots (Figure 20). Native root decay 

rates were more than doubled in the 0 - 10 cm depth interval and nearly doubled in the 10 

—20 cm depth interval relative to standard roots (Figure 20). Across all depth intervals, r- 

tests revealed significant differences (p = 0.05) between native root decay and
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Figure 20. Percent mass remaining of native and Chamaecyparis thyoides root litter at 
Pocosin Lakes National Wildlife Refuge. Values represent means with one standard error.

Chamaecyparis root decay (Table 22).

Soil pH averaged around 3.5, and there was little temporal or spatial variation 

throughout the study (Figure 21). Depth of water table as indicated by oxidation depth on 

steel rods varied seasonally throughout the study (Figure 22).
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•I ^Table 22. Decay rate constants M:(yr )1, coefficient of determiniation (r~), time to 
reach 1% mass remaining (to.oi), and percent mass remaining after 370 days of 
decay (%M). All regressions are significant at p =0.000 L.

Litter
Type

Depth
Class

k SE
1

r“ to.oi
fvrt

Final 
% Mass

Leaf

Native 0.79 0.05 0.96 5.82 47.50
Standard 0.36 0.07 0.98 12.79 69.54

Root

Native
0-L0 (cm) 0.78 0.03 0.98 5.82 48.76
10-20 (cm) 0.57 0.04 0.95 8.07 62.97
20-30 (cm) 0.54 0.02 0.97 8.52 62.59
30-40 (cm) 0.50 0.03 0.95 9.21 63.06

Standard
0-10 (cm) 0.36 0.03 0.93 12.79 75.64
10-20 (cm) 0.34 0.02 0.95 13.54 76.14
20-30 (cm) 0.30 0.01 0.96 15.35 76.60
30-40 (cm) 0.28 0.02 0.96 16.44 77.63
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Figure 21. Vertical gradient in soil pH within Pocosin Lakes National Wildlife Refuge. 
Values represent means with one standard error.
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Figure 22. Depth to water table at Pocosin Lakes National Wildlife Refuge as 
determined by rusting depth on steel rods. Values represent means with one standard error.

Jan 99 June 99 Jan 00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



134

DISCUSSION

Successful regeneration of Atlantic white cedar within its historic range has been 

hindered due to shade intolerance (Smith 2002), improper hydrologic conditions 

(Hinesley and Wicker 1999) and herbivory by deer, mice, and rabbits (Guidry 1999). 

These problems were experienced at the Pocosin Lakes restoration site over the course of 

this research. Summer drought coupled with intense herbivory decimated the plantings 

such that there were few to no seedlings remaining at the site by the summer of 1999 

(personal observation). Additionally, the site was being rapidly colonized by southern 

wax myrtle (Myrica cerifera L.). This actinorhizal and mycorrhorizal species can rapidly 

colonize nutrient poor coastal habitats eventually forming dense monotypic stands. 

Despite the loss of Atlantic white cedar at this site, annual decay rates were measured and 

compared to other restoration attempts and naturally regenerating sites in this region.

Native leaf litter decay rates at PLNWR were faster than native litter decay rates 

in other restored and regenerating sites in the study region. Although not tested, these 

differences may be attributed to differences in litter quality as the dominant species in 

this restored site were P. aquilinum, an unidentified Solidago spp., and £. crusgalli. The 

decay rate of Chamaecyparis litter (0.36 yr'1) was well within the range of values 

reported for other regional restored and regenerating sites (this dissertation) and close to 

those reported for Atlantic white cedar by Day (1982) and Yates and Day (1983).

The average soil pH was also within the range of those reported for other 

restored/regenerating stands in the region (this dissertation), and also within the range 

found for other regional Atlantic white cedar stands (Tupacz and Day 1990, Whigham 

and Richardson 1988). Based on hydrology data inferred from rusting depth on steel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

rods, with the exception of summer drought during 1999, antecedent and post drought 

water tables were comparable with other East Coast Atlantic white cedar wetlands (Golet 

and Lowry 1987).

The trend of decreasing root decay with increasing depth in the soil profile was 

similar between native and Chamaecyparis roots. However, native root decay was 

significantly faster than Chamaecyparis within each depth interval. These trends were 

also exhibited in other Atlantic white cedar restoration sites in the study region (this 

dissertation). Native root decay rates at PLNWR were similar to those of other regional 

restoration sites. Decay rates of Chamaecyparis roots were similar to those found in all 

the study sites within this region (this dissertation). The highest native root decay rate 

occurred in the 0 - 1 0  cm depth interval and is likely a result of aerobic conditions found 

at that interval.

Litter quality appears to be the overriding factor influencing differences in decay 

rates between the dominant extant vegetation and Chamaecyparis litters. Thus it appears 

that the current input into the soil organic matter pool from extant above and 

belowground materials is deficient within this site compared to other naturally 

regenerating Atlantic white cedar stands in the region. According to Laderman (1989), 

while it may be necessary at times, planting Atlantic white cedar has proven to be so 

difficult that natural regeneration is preferred in areas where opportunity exists. The 

problems experienced during this restoration attempt are symptomatic of the difficulties 

encountered when trying to restore Atlantic white cedar within its historic range.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



136

VITA

Edward Ratcliffe Crawford, Department of Biological Sciences, Old Dominion 

University, Norfolk, Virginia 23529-0266.

Edward Ratcliffe Crawford received his Bachelor of Science in Marine Biology 

from the University of North Carolina-Wilmington in May 1989. Edward completed his 

Master of Science degree in Biology at Virginia Commonwealth University in 1995. He 

was awarded the Phi Sigma award for academic excellence during the spring of 1995. 

Edward began doctoral research at Old Dominion University, where he conducted the 

research presented in this work. He was inducted into the Phi Kappa Phi National Honor 

Society for superior academic achievement during the spring of 1999. He currently has 

three refereed publications in print, two in press and numerous published abstracts for 

oral and poster presentations at annual meetings of the Association o f Southeastern 

Biologists, Ecological Society of America and Society of Wetland Scientists. Edward 

currently lives in Richmond, Virginia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Decomposition Dynamics in Restored and Naturally Recovering Atlantic White Cedar (Chamaecyparis thyoides) Wetlands
	Recommended Citation

	tmp.1558363733.pdf.n4vyC

