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Abstract

When G is a finite-dimensional Haar subspace of C
(
X, Rk

)
, the vector-valued functions (including

complex-valued functions when k is 2) from a finite set X to Euclidean k-dimensional space, it is well-known

that at any function f in C
(
X, Rk

)
the best approximation operator satisfies the strong unicity condition of

order 2 and a Lipschitz (Hőlder) condition of order 1
2 . This note shows that in fact the best approximation

operator satisfies the usual Lipschitz condition of order 1 and has a Gateaux derivative on a dense set of

functions in C
(
X, Rk

)
.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Best Chebyshev approximation; Vector-valued best approximation

1. Introduction

Let X be a finite set with the discrete topology and C
(
X, Rk

)
be the space of vector-valued

functions from X to k-dimensional Euclidean space Rk . A natural norm for functions in C
(
X, Rk

)
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is defined as follows:

‖f ‖ := ‖f ‖X := max
x∈X

‖f (x)‖2 , (1)

where ‖·‖2 denotes the Euclidean norm on Rk .
Let G be an n-dimensional Haar subspace in C

(
X, Rk

)
with dim G�1 (i.e., the trivial case

G = {0} is excluded) and basis {g1, . . . , gn}. For a given function f in C
(
X, Rk

)
consider the

vector-valued Chebyshev approximation problem of finding a function B(f ) in G that is a best
approximation to f, i.e., ‖f − Bf ‖ = dist (f, G), where

dist (f, G) := min
g∈G

‖f − g‖ . (2)

One special case of the above best approximation problem is the complex Chebyshev approx-
imation problem on the set X when k = 2 since C (X, C) can be identified with C

(
X, R2

)
using

f1(x) + if2(x) ↔ (f1(x), f2(x)). The norm in (1) is just the usual Chebyshev norm for complex
functions when k = 2.

Say that B(f ) := BG(f ) is strongly unique of order � if there exists a positive constant �
(depending on f, � and G) such that

‖f − g‖� �dist (f, G)� + � · dist (g, B(f )) for g ∈ G. (3)

Zukhovitskii and Stechkin [14] (cf. also [2]) showed that there is a unique best approximation
to every f in C

(
X, Rk

)
if and only if G satisfies the (generalized) Haar condition. From now

on, G is assumed to be Haar. When G is a Haar subspace there is strong unicity of order � = 2
for B(f ) [2]. However, in general, there will not be strong unicity of order 1 as observed for
complex approximation [7,10]. Cheney [5] showed that in a normed linear space whenever a best
approximation operator B has strong unicity of order 1 at a given function f, then it satisfies at f a
Lipschitz condition of order 1, i.e., there is a positive constant � such that

‖Bf − Bh‖ �� ‖f − h‖ (4)

for all h in the normed linear space. The operator B is said to satisfy a Hőlder continuity condition
of order 1

2 at f [2] if there exists a positive number � = �(f ) such that

‖B(f ) − B(h)‖ �� ‖f − h‖ 1
2 (1 + ‖f + h‖) 1

2 (5)

for all h in C
(
X, Rk

)
. Equivalently

‖Bf − Bh‖ �� ‖f − h‖ 1
2 (6)

for all h in C
(
X, Rk

)
satisfying ‖f ‖ �M for some constant M. In approximation in C

(
X, Rk

)
and therefore in complex approximation, it is known [2] that B satisfies a Hőlder condition of
order 1

2 .
Part of the original motivation for this paper comes from the well-known [12] fact that in

Hilbert space even though the projection operator onto a closed subspace (the best approximation
operator associated with that subspace) has strong unicity of order 2, but not of order 1 in general,
it is Lipschitz continuous of order 1. This leads to the following conjecture:

Conjecture 1. In C
(
X, Rk

)
the best approximation operator from a Haar subspace has Lipschitz

continuity of order 1 when X is finite.
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We do not prove the conjecture. However, we prove in Theorem 16 and Corollary 17 that there
is a dense subset of C

(
X, Rk

)
where B has Lipschitz continuity of order 1 and in Theorem 19 that

in the special case of k = 2 (complex approximation) when G is the constants that the conjecture
holds.

Blatt [4] showed that the best approximation operator in complex approximation was strongly
unique of order 1, and hence Lipschitz continuous, on a dense subset of C (X, C), but this was
under the assumption that X had at most dim G isolated points. Thus, Corollary 17 is an extension
of Blatt’s result to the case when X is finite.

In the real-valued case [8,9] (k = 1), the best approximation operator B has a left Gateaux
derivative at any f in C

(
X, R1

)
, i.e., the limit

lim
t→0−

B(f + t�) − Bf

t
:= D−

f B (�)

exists in the sup norm for any function (direction) �. Similarly, the right Gateaux derivative
D+

f B (�) is defined and if D+
f B (�) = D−

f B (�) = Df B (�), call Df B (�) the Gateaux deriva-
tive of B at f. The Gateaux derivative was shown to exist at f if and only if the cardinality
of the set of extreme points of f − Bf was exactly 1 + dim G. In Theorem 16 and
Corollary 17 it is shown that there is a dense subset of C

(
X, Rk

)
on which the Gateaux derivative

exists.

2. Definition and preliminaries

In this section let X be a compact Hausdorff space which is not necessarily finite.
As usual let the extreme point set be given by

E(f − g) := {
x ∈ X : ‖(f − g) (x)‖2 = ‖f − g‖}, g ∈ G.

For completeness we give the definition of Zukhovitskii and Stechkin [14] for a Haar set in
C
(
X, Rk

)
.

Definition 2. An n-dimensional subspace G in C
(
X, Rk

)
is called a Haar set if

(i) every nonzero g in G has at most m zeroes, and
(ii) for any m distinct points x1, . . . , xm in X and any m vectors v1, . . . , vm in Rk , there is a

vector-valued function g in G such that g (xi) = vi, i = 1, . . . , m, where m is the unique
maximal integer satisfying mk < n�(m + 1)k.

We use the Kolmogorov criterion for best approximates and the strong Kolmogorov criterion for
strongly unique best approximates. The notation 〈, 〉 stands for the usual Euclidean inner product
in Rk .

Proposition 3. Let f ∈ C
(
X, Rk

) \G.

(i) (Kolmogorov criterion) A function g∗ in G is a best approximate to f if and only if

max
x∈E(f −g∗)

〈
f (x) − g∗(x), g(x)

〉
�0 for all g in G. (7)
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(ii) (Strong Kolmogorov criterion) A function g∗ in G is a strongly unique of order � = 1 best
approximate to f if and only if

max
x∈E(f −g∗)

〈
f (x) − g∗(x), g(x)

〉
> 0 (8)

for every nonzero g in G.

We also need a characterization of the best approximate which is a generalization of the notion
of a reference introduced by Stiefel [13] and Blatt [4] which is closely related (see Proposition
13) to the notion of an annihilator [2,6]. Let x1, . . . , xq be points in X and let S1, . . . , Sq be
orthogonal linear transformations on Rk . Let 〈 , 〉 denote the standard inner product on Rk and
let ei, i = 1, . . . , k, denote the standard basis vectors in Rk . For � ∈ Rq, � > 0 means that
�i > 0, i = 1, . . . , q.

Definition 4. The collection R = {(xi, Si) : i = 1, . . . , q} is called a reference if the q×n matrix
B = (〈

Sigj (xi) , e1
〉)q,n

i=1,j=1 has rank q −1 and if there exists � ∈ Rq, � > 0, such that �T B = 0.
Note that q �n + 1.

Definition 5. If f ∈ C
(
X, Rk

)
, then a reference R is called a reference with respect to f if

S(f )(x) = ‖f ‖ e1 for each (x, S) ∈ R.

Definition 6. A function � : X → Rk is said to be an annihilator of G if there exist points
x1, . . . , xq in X with �(xi) 	= 0 for i = 1, . . . , q, such that

∑q
i=1 〈�(xi), g(xi)〉 = 0 for every

g ∈ G.

Remark 7. If � is an annihilator of G, then it can be assumed that the matrix(〈
�(xi )‖�(xi )‖2

, gj (xi)
〉)q,n

i=1,j=1
, where {g1, . . . , gn} is a basis for G, has rank q − 1.

Proof. We have
q∑

i=1

‖� (xi)‖2

〈
�(xi)

‖� (xi)‖2
, gj (xi)

〉n
j=1

= 0

or

‖� (x1)‖2

〈
�(x1)

‖� (x1)‖2
, gj (x1)

〉n
j=1

+
q∑

i=2

‖� (xi)‖2

〈
�(xi)

‖� (xi)‖2
, gj (xi)

〉n
j=1

= 0.

Since a positive combination of vectors can always be replaced by a positive combination of an
independent subset (cf. [11]), we can replace

q∑
i=2

‖� (xi)‖2

〈
�(xi)

‖� (xi)‖2
, gj (xi)

〉n
j=1

by, let us say,

r∑
i=2

�i

〈
�(xi)

‖� (xi)‖2
, gj (xi)

〉n
j=1

, �i > 0, i = 1, . . . , r,
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where the vectors
〈

�(xi )‖�(xi )‖2
, gj (xi)

〉n
j=1

, i = 2, . . . r , are independent. The resulting matrix has

rank r − 1. Just relabel r as q. The function �̂ (x1) = � (x1), �̂ (xi) = �1‖�(xi )‖2
� (xi), i = 2, . . . , r ,

is an annihilator of G. �

Recall the following characterization of best approximation.

Theorem 8 (Deutsch [6]). A function h ∈ G is a best approximation to f ∈ C
(
X, Rk

)\G if and
only if there exist points x1, . . . , xq , satisfying ‖f (xi) − h (xi)‖2 = ‖f − h‖ and an annihilator

� of G satisfying �(xi )‖�(xi )‖2
= f (xi )−h(xi )‖f −h‖ , i = 1, . . . , q, where q �n + 1.

Call the points x1, . . . , xq an annihilator or the support of an annihilator for f − Bf . We then
have the following characterization of best approximation:

Theorem 9. A function g ∈ G is a best approximation to f ∈ C
(
X, Rk

) \ G if and only if there
exists a reference R with respect to f − g.

Proof. First assume that g ∈ G is a best approximation of f. Then, by Theorem 8, there exist
points x1, . . . , xq and a function � : X → Rk such that � (xi) 	= 0, i = 1, . . . , q,

�(xi)

‖� (xi)‖2
= f (xi) − g (xi)

‖f − g‖
and

∑q
i=1

〈
� (xi) , gj (xi)

〉 = 0, j = 1, . . . , n. Thus,
∑q

i=1 �i

〈
f (xi) − g(xi), gj (xi)

〉 = 0,
j = 1, . . . , n, where �i = ‖� (xi)‖2. By Remark 7 we can assume that the matrix B =(〈
f (xi) − g (xi) , gj (xi)

〉)q.n

i=1,j=1 has rank q − 1. Let ST
i be an orthogonal transformation on

Rk whose first column is f (xi )−g(xi )‖f −g‖ . Then ST
i e1 = f (xi )−g(xi )‖f −g‖ and so

〈
f (xi) − g (xi) , gj (xi)

〉 =
‖f − g‖ 〈ST

i e1, gj (xi)
〉 = ‖f − g‖ 〈e1, Sigj (xi)

〉
. Thus, {(xi, Si) : i = 1, . . . , q} is a reference

with respect to f − g. Thus card (reference) �n + 1. Now assume there exists a reference R =
{(xi, Si) : i = 1, . . . , q} with respect to f − g. Then ‖f (xi) − g (xi)‖2 = ‖f − g‖ ∥∥ST

i e1
∥∥

2 =
‖f − g‖ and, for each j = 1, . . . , n,

q∑
i=1

�i

〈
Sigj (xi) , e1

〉= q∑
i=1

�i

〈
gj (xi) , ST

i e1

〉
=

q∑
i=1

�i

〈
gj (xi) ,

f (xi) − g (xi)

‖f − g‖
〉

= 0. (9)

Defining � by � (xi) = �i (f (xi) − g (xi)) completes the proof. �

The following theorem shows that there is a particular set of functions in C
(
X, Rk

)
at which

B, by the result of Cheney, has Lipschitz continuity of order 1.

Theorem 10. Suppose G is a generalized Haar subspace of dimension n. If there exists a reference
of cardinality n + 1 with respect to f − Bf , where Bf is the unique best approximation to f ,
then Bf is strongly unique.



182 M. Bartelt, J.J. Swetits / Journal of Approximation Theory 148 (2007) 177–193

Proof. Let x1, . . . , xn+1 be points that comprise a reference. Then by (9)

n+1∑
i=1

�i 〈f (xi) − Bf (xi) , g (xi)〉 = 0

for all g ∈ G, where �i > 0. Suppose there exists g such that

max {〈f (xi) − Bf (xi) , g (xi)〉 : i = 1, . . . , n + 1} �0.

Then necessarily 〈f (xi) − Bf (xi) , g (xi)〉 = 0, i = 1, . . . , n + 1.
However, the matrix

(〈
f (xi) − Bf (xi) , gj (xi)

〉)n+1,n

i=1,j=1 has rank n. Therefore g is identically
zero. Thus, the strong Kolmogorov criterion is satisfied on J := {x1, . . . , xn+1}. Thus there exists
c > 0 such that

‖f − g‖J � ‖f − Bf ‖J + c ‖Bf − g‖J

for all g ∈ G. But ‖‖J is a norm on G and ‖f − Bf ‖J = ‖f − Bf ‖. Observing that ‖f − g‖J �
‖f − g‖, we thus have � > 0 such that

‖f − g‖ � ‖f − Bf ‖ + � ‖Bf − g‖ . �

It is easy to see that the following gives an equivalent condition for a reference.

Proposition 11. A set of points x1, . . . , xq in E (f − Bf ) is a reference for f − Bf if and only
if there exist positive constants �1, . . . , �q such that

(i)
q∑

i=1

�i 〈f (xi) − Bf (xi) , g (xi)〉 = 0, g ∈ G, (10)

and
(ii) the q × n matrix

M := M
(
x1, . . . , xq

) := (〈
f (xi) − Bf (xi) , gj (xi)

〉)q,n

i=1,j=1 (11)

has rank q − 1.

Notice that (i) implies that rank (M)�q − 1.

Remark 12. From the proof of Theorem 9 and Proposition 11 we see that if x1, . . . , xq are the
points in an annihilator then some subset of them is the set of points in a reference and conversely
that the points in a reference (by definition) are the points in an annihilator.

The following result clarifies the relationship between annihilator and reference.

Proposition 13. The set of points
{
x1, . . . , xq

}
are the points in a reference for f − Bf if and

only if they are the support of an annihilator which has no proper subset which is the support of
an annihilator.

Proof. Suppose
{
x1, . . . , xq

}
is a reference for f − Bf . Let R1, . . . , Rq be the rows of M in

(11). Then there exist positive constants �1, . . . , �q such that
∑q

i=1�iRi = 0. By renumbering, if
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necessary, assume x1, . . . , xr , r < q is the support of an annihilator for f −Bf . Then there exist
positive constants �1, . . . , �r such that

∑r
i=1�iRi = 0. Then Rq is dependent on

{
R1, . . . , Rq−1

}
,

but also
{
R1, . . . , Rq−1

}
is dependent. Hence rank (M)�q − 2 which is a contradiction. Con-

versely, let
{
x1, . . . , xq

}
be the support of an annihilator no proper subset of which is the support of

an annihilator. If
{
x1, . . . , xq

}
does not give a reference then rank (M)�q −2 so there must exist

positive constants �1, . . . , �q such that
∑q

i=1 �iRi = 0. We can represent (cf. [11])
∑q

i=1 �iRi as
a positive linear combination of an independent subset {R1, . . . , Rr}, r �q −2 as

∑r
i=1 �iRi = 0

for positive constants �1, . . . , �r . But then {x1, . . . , xr} is the support of an annihilator which is
a contradiction. �

Recall that the �-local Lipschitz constant ��(f ) is defined (cf. [1]) for B at f in C
(
X, Rk

)
by

��(f ) := sup

{‖Bf − Bh‖
‖f − h‖ : 0 < ‖f − h‖ < �

}
. (12)

The Lipschitz constant (of order 1) is defined by

�(f ) := sup

{‖Bf − Bh‖
‖f − h‖ : 0 < ‖f − h‖

}
. (13)

It follows easily that ��(f ) < ∞ for some � > 0 if and only if �(f ) < ∞, for if ��(f ) < ∞
then since lim‖h‖→∞ ‖Bf −Bh‖

‖f −h‖ �2, it follows that for ‖f − h‖ �M for sufficiently large M,
‖Bf −Bh‖

‖f −h‖ will be bounded and sup
{ ‖Bf −Bh‖

‖f −h‖ : �� ‖f − h‖ �M
}

is clearly bounded.

3. Main results

Remark 14. It is known ([3], Corollary (15)) that when Bf is strongly unique Rn is the con-
vex cone generated by

{∑n
m=1 〈Bf (x) − f (x), gm(x)〉 em : x ∈ E(f − Bf )

}
where {em : m =

1, . . . , n} is the standard basis for Rn and {gm : m = 1, . . . , n} is a basis for the approximating
subspace G. Hence if f has a strongly unique best approximate then card (f − Bf ) �n+1. Hence
none of the functions in the next theorem have strong unicity when q �n.

When f satisfies the conditions of the following theorem, f has a strongly unique best approxi-
mate if and only if q = n+1 by Theorem 10 and Remark 14.Also it is easy to find examples where
there are functions satisfying the condition of the theorem with q < n + 1. One such example is

G the constant in C
(
X, R2

)
, X = {x1, x2, x3} , f (x1) =

(−1
0

)
= f (x2) , f (x3) =

(
1/2
0

)
with card (E(f − B(f ))) = 2 < n + 1. Furthermore, the number of points in a reference and
hence in E(f − Bf ) is at least n

k
+ 1. Thus if card (E (f − Bf )) = n

k
+ 1, the minimal number,

f satisfies the conditions of the following theorem. Corollary 17 will show that there actually are
many functions satisfying the conditions of the following theorem.

It is well known that in the cases of real-valued and complex-valued approximations that the
best approximation operator is linear if the cardinality of X is n + 1 and the dimension of the
approximating subspace is n. The following example shows that this need not be the case in the
more general vector-valued setting.
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Example 15. Let X = {x1, x2} and let G be the two-dimensional Haar subspace of C(X, R2)

with basis {g1, g2} where g1 (x1) = g1 (x2) =
(

1
0

)
, g2 (x1) =

(
0
1

)
and g2 (x2) =

(
0
2

)
. Let

f (x1) =
(

1
0

)
, f (x2) =

(−1
0

)
, h (x1) =

(
0
1

)
and h (x2) =

(
0

−1

)
. Then it is easy to see

that Bf = 0 = Bh. However, B(f + h) 	= 0 since there are no positive scalars �1 and �2 such
that �1 〈(f + h) (x1), gi(x1)〉 + �2 〈(f + h) (x2), gi(x2)〉 = 0, i = 1, 2.

Theorem 16. Suppose X is a finite set and G is an n-dimensional Haar subspace of C
(
X, Rk

)
.

Let f in C
(
X, Rk

)
and assume E (f − Bf ) = {

x1, . . . , xq

}
and that

{
x1, . . . , xq

}
is a reference

for f − Bf . Then

(i) the best approximation operator is Gateaux differentiable at f, and
(ii) the best approximation operator is Lipschitz continuous of order 1 at f .

Proof. The proof of the theorem uses the Implicit Function Theorem to show that a particu-
lar system of equations yields implicit functions which are continuously differentiable. We first
give the equations and then give a long verification that the Jacobian of the system is invert-
ible. Let {g1, . . . , gn} be a basis for G. Assume without loss of generality that Bf = 0 and
‖f ‖ = 1. Since

{
x1, . . . , xq

}
is a reference for f, there are positive constants �1, . . . , �q such

that
∑q

i=1 �i

〈
f (xi) , gj (xi)

〉 = 0, j = 1, . . . , n and the q × n matrix
〈
f (xi) , gj (xi)

〉q,n

i=1,j=1

has rank q − 1. We can assume without loss of generality that �q = 1. Let � ∈ C
(
X, Rk

)
with

‖�‖ = 1. Then since X is finite there exists a � > 0 such that if |t | ��, then

E (f + t� − B (f + t�)) ⊆ E (f ) (14)

and
{
x1, . . . , xq

}
is a reference for f + t� − B (f + t�). Therefore, there are positive constants

�i (t), i = 1, . . . , q such that

q∑
i=1

�i (t)
〈
f (xi) + t� (xi) − B (f + t�) (xi) , gj (xi)

〉 = 0. (15)

By continuity, limt→0 �i (t) = �i > 0, i = 1, . . . , q. Since �q = 1, we can normalize and
assume �q(t) = 1 for all t, |t | ��. Then (15) becomes

q−1∑
i=1

�i (t)
〈
f (xi) + t�(xi) − B(f + t�)(xi), gj (xi)

〉
+ 〈f (xq) + t�(xq) − B(f + t�)(xq), gj (xq)

〉 = 0,

and

q−1∑
i=1

�i

〈
f (xi), qj (xi)

〉+ 〈
f (xq), gj (xq)

〉 = 0. (16)

Let B(f + t�) = ∑n
m=1 am(t)gm. So am(0) = 0, m = 1, . . . , n.

Define a function F : Rn+q × R → Rn+q by

Fj (�1, . . . , �q−1, a1, . . . , am, t, e)
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=
q−1∑
i=1

�i

〈
f (xi) + t�(xi) −

n∑
m=1

amgj (xi), gj (xi)

〉

+
〈
f (xq) + t�(xq) −

n∑
m=1

amgm(xq), gj (xq)

〉
, j = 1, . . . , n

and

Fj (�1, . . . , �q−1, a1, . . . , am, t, e) =
∥∥∥∥∥f (xj−n) + t�(xj−n) −

n∑
m=1

amgm(xj−n)

∥∥∥∥∥
2

2

− e,

j = n + 1, . . . , n + q. (17)

By (16), (17) satisfies F = 0 at t = 0, �i = �i , i = 1, . . . , q − 1, am = 0, m = 1, . . . , n, and

e = 1. F = 0 is a system of n + q equations in the n + q + 1 unknowns t,
{
�i

}q−1
i=1 , {am}nm=1

and e.
Now there is a lengthy verification that the Jacobian for the system of equations (17) is invertible.

For the first n equations

�Fj

��i

= 〈
f (xi), gj (xi)

〉
, i = 1, . . . , q − 1, j = 1, . . . , n,

�Fj

�am

= −
q−1∑
i=1

�i

〈
gm(xi), gj (xi)

〉− 〈
gm(xq) − gj (xq)

〉
, m = 1, . . . , n, j = 1, . . . , n,

�Fj

�e
= 0, j = 1, . . . , n.

For the second q equations

�Fj

��i

= 0, i = 1, . . . , q − 1, j = n + 1, . . . , n + q,

�Fj

�am

= −2
〈
f (xj−n), gm(xj−n)

〉
, j = n + 1, . . . , n + q, m = 1, . . . , n,

�Fj

�e
= −1, j = n + 1, . . . , n + q.

So the Jacobian of the system of equations with respect to �i , i = 1, . . . , q−1, am, m = 1, . . . , n

and e has the block structure⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

AT B
...

0

−1

0 C
...

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:=
⎛⎝AT

D

0

⎞⎠ ,
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where A is the (q − 1) × n matrix
〈
f (xi), gj (xi)

〉q−1,n

i=1,j=1 which has rank q − 1 and B is the

n × n matrix
(
−∑q−1

i=1 �i

〈
gm(xi), gj (xi)

〉− 〈
gm(xq), gj (xq)

〉)n

m,j=1
and C is the q × n matrix

−2 〈f (xi), gm(xi)〉q,n
i=1,m=1.

First we verify that B has rank n. Suppose that B

⎛⎜⎝ b1
...

bn

⎞⎟⎠ = 0. Then

−
q−1∑
i=1

�i

〈
n∑

m=1

bmgm(xi), gj (xi)

〉
−
〈

n∑
m=1

bmgm(xq), gj (xq)

〉
= 0, j = 1, . . . , n.

Let ĝ = ∑n
m=1 bmgm. Because {g1, . . . , gn} is a basis for G and ĝ ∈ G it follows that −∑q−1

i=1 �i〈
ĝ(xi), ĝ(xi)

〉− 〈
ĝ(xq), ĝ(xq)

〉 = 0. Since �i > 0, i = 1, . . . , q − 1, it follows that
∥∥ĝ(xi)

∥∥
2 =

0, i = 1, . . . , q. Therefore ĝ(xi) = 0, i = 1, . . . , q. Because
{
x1, . . . , xq

}
is a reference for f

and G is Haar it follows that ĝ is identically zero. Therefore bi = 0, i = 1, . . . , n. Thus the rank
of B is n. Now the matrix

⎛⎜⎝ −1

C
...

...

−1

⎞⎟⎠ is row equivalent to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

... −1

−2A
...

...
... −1

0 · · · 0
... −1 −

q−1∑
i=1

�i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore, the column rank of D is n + 1 and the column rank of

(
AT

0

)
is q − 1. Now we

show that no linear combination of the columns of

(
AT

0

)
is equal to a linear combination of the

columns of D except for the zero vector. Once that is done we use the fact that if S1 and S2 are two
subspaces such that S1 ∩S2 = {0}, then a basis for S1 union a basis for S2 is a linearly independent

set to conclude that the Jacobian is nonsingular. Here S1 is the column space of

(
AT

0

)
and S2

is the column space of D. Suppose a linear combination of the columns of

(
AT

0

)
is equal to a

linear combination of the columns of D. From the structure of the two matrices it is clear that the
last column of D is not involved. So there are scalars �1, . . . , �q−1 and �1, . . . , an such that

q−1∑
m=1

�m

〈
f (xm), gj (xm)

〉 = n∑
r=1

�r

⎡⎣−
q−1∑
i=1

�i

〈
gj (xi), gr (xi)

〉− 〈
gj (xq), gr(xq)

〉⎤⎦
and

0 =
n∑

r=1

�r [−2 〈f (xl), gr (xi)〉] , l = 1, . . . , q − 1. (18)
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Let ĝ = ∑n
r=1 �rpr . Then

0 = 〈
f (xl), ĝ(xl)

〉
, l = 1, . . . , q − 1, (19)

and
q−1∑
m=1

�m

〈
f (xm), gj (xm)

〉 = −
q−1∑
i=1

�i

〈
gj (xi), ĝ(xi)

〉− 〈
gj (xq), ĝ(xq)

〉
, j = 1, . . . , n.

(20)

From (20) we get
∑q−1

m=1 �m

〈
f (xm), ĝ(xm)

〉 = −∑q−1
i=1 �i

〈
ĝ(xi), ĝ(xi)

〉− 〈
ĝ(xq), ĝ(xq)

〉
.

Using (19) we get

0 = −
q−1∑
i=1

�i

〈
ĝ(xi), ĝ(xi)

〉− 〈
ĝ(xq), ĝ(xq)

〉
. (21)

Since �i > 0, i = 1, . . . , q − 1 we obtain from (21), ĝ(xi) = 0, i = 1, . . . , q which implies
ĝ ≡ 0 which implies �1 = · · · = �m = 0 as before. Consequently,

∑q−1
m=1 �m

〈
f (xm), gj (xm)

〉 =
0, j = 1, . . . , n. Since

(
AT

0

)
has full column rank it follows that �1 = · · · = �m = 0. Hence

we now have verified that the Jacobian for the system of equations (17) is invertible. Now by the
Implicit Function Theorem, there is a neighborhood of t0 = 0 such that the system of equations
(17) define �i (t), am(t) and e(t) as continuously differentiable functions of t. In particular

B(f + t�) =
n∑

m=1

am(t)gm (22)

is differentiable at t0 = 0 and thus B has a Gateaux derivative at f in any given direction �. To
prove (ii) we modify slightly the argument used to prove (i) by assuming that the �(xi) values
are variable. So consider the system of equations

q−1∑
i=1

�i

〈
f (xi) + t	(xi) −

n∑
m=1

amgm(xi), gj (xi)

〉

+
〈
f (xq) + t	(xq) −

n∑
m=1

amgm(xq), gj (xq)

〉
= 0, j = 1, . . . , n, (23)

∥∥∥∥∥f (xi) + t	(xi) −
n∑

m=1

amgm(xi)

∥∥∥∥∥
2

2

− e = 0, i = 1, . . . , q, (24)

where we now consider the values {	(xi)}qi=1 as variables. The system (23) is satisfied at t0 =
0, �i = �i , i = 1, . . . , q − 1, am = 0, m = 1, . . . , n,	(xi) = �(xi), i = 1, . . . , q, and e = 1.

Thus (23) is a system of n + q equations in the n + 2q + 1 variables t,
{
�i

}q−1
i=1 , {am}nm=1 , e and

{	(xi)}qi=1. The Jacobian of system (23) with respect to the variables e, �i and am at e = 1, �i =
�i , am = 0, t0 = 0 and 	(xi) = �(xi) is the same as the Jacobian of (17) so it is invertible.
By the Implicit Function Theorem then, there is a neighborhood of t0 = 0 and a neighborhood
U(�) in Rk×q , i.e., a neighborhood of (�(x1) , . . . ,�(xq)), such that e, �i and am are continuously
differentiable functions of t and 	(xi), i = 1, . . . , q, for all t close to 0 and all 	 ∈ U (�). Denote
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the neighborhood of t0 = 0 by N (0, 
(�)). So e, �i and am are continuously differentiable for
all (t, 	) ∈ N (0, 
 (�)) × U (�). Let Z := {(

�(x1), . . . ,�(xq)
) : � ∈ C

(
X, Rk

)
, ‖�‖ = 1

}
.

Then Z is a compact subset of Rk×q , {U (�)} is an open covering of Z and hence there is a finite
subcover

{
U
(
�l
) : l = 1, . . . , p

}
. Let 
 = min

{


(
�l
) : l = 1, . . . , p

}
. Then e, �i and am are

continuously differentiable for all (t, 	) ∈ N(0, 
) × (⋃p
l=1 U

(
�l
))

, and N (0, 
/2) × Z is a

compact subset of N (0, 
)×(⋃p
l=1 U

(
�l
))

. Therefore, each am (t, �) and �am

�t
(t, �) is uniformly

bounded on W := N (0, 
/2) × Z. Let

K := max
1�m�n

{
max

{∣∣∣∣� (am)

�t

∣∣∣∣ : (t, �) ∈ W

}}
.

By the Mean Value Theorem, for some s between 0 and t

|am (t, �)| =
∣∣∣∣�am (s, �)

�t

∣∣∣∣ |t | �K |t | .

Therefore

‖B (f + t�)‖ =
∥∥∥∥∥

n∑
m=1

am (t, �) gm

∥∥∥∥∥ �
((

K

2

) n∑
m=1

‖gm‖
)

|t |

and therefore the best approximation operator is Lipschitz continuous at f. �

Corollary 17. The set of functions

S =
{
f ∈ C

(
X, Rk

)
: E (f − Bf ) = {xi}qi=1 is a reference for f

}
is dense in C

(
X, Rk

)
. Hence C

(
X, Rk

)
contains a dense set of functions on which B is Gateaux

differentiable and has Lipschitz continuity of order 1.

Proof. By Theorem 16 it is only necessary to show that the set S is dense in C
(
X, Rk

)
. Let

h ∈ C
(
X, Rk

)
and let

{
x1, . . . , xq

}
be a reference for h−Bh. Let f (xi) := h(xi), i = 1, . . . , q.

For each x 	= xi in X, let �(x) be a vector such that

‖h(x) − Bh(x) + �(x)‖ < ‖h − Bh‖
and let f (x) = h(x)+ �(x). Then Bh = Bf and E(f −Bf ) = {

x1, . . . , xq

}
and it is a reference

for f so f ∈ S. �

The following is a converse to Theorem 16 (i).

Theorem 18. Suppose X is a finite set and G is an n-dimensional Haar subspace of C
(
X, Rk

)
.

If the best approximation operator has a Gateaux derivative at f, then no proper subset of E(f )

is a reference.

Proof. Assume that ‖f ‖ = 1 and Bf = 0 and let E(f ) = {x1, . . . , xm} with
{
x1, . . . , xq

}
a

reference for f and q < m. We first assume that every reference has cardinality greater than or



M. Bartelt, J.J. Swetits / Journal of Approximation Theory 148 (2007) 177–193 189

equal to 2. Then
{
x1, . . . , xq

}
is the support of an annihilator for f so there exist positive scalars

�1, . . . , �q such that

q∑
i=1

�i 〈f (xi), g (xi)〉 = 0 for all g in G. (25)

Define � in C
(
X, Rk

)
by

� (x) =
⎧⎨⎩

f (xi), x = x1, . . . , xq,

−2f
(
xq+1

)
, x = xq+1,

0, x /∈ {x1, . . . , xq+1
}
.

Then

(f + t�) (x) =
⎧⎨⎩

(1 + t) f (xi) , i = 1, . . . , q,

(1 − 2t) f
(
xq+1

)
, x = xq+1,

f (x) , x /∈ {x1, . . . , xq+1
}
.

So for t > 0 and sufficiently small,

‖(f + t�) (x)‖2 =
⎧⎨⎩

1 + t, x = x1, . . . , xq,

|1 − 2t | , x = xq+1,

1, x /∈ {x1, . . . , xq+1
}
.

Hence ‖(f + t�)‖ = 1 + t and, using (24) we have

q∑
i=1

�i 〈(f + t�)(xi), g (xi)〉 = (1 + t)

q∑
i=1

�i 〈f (xi), g (xi)〉 = 0

for all g in G and hence B (f + t�) = 0. Therefore, limt→0+ B(f +t�)
t

= 0. Assume now

that limt→0− B(f +t�)
t

= 0, or equivalently that limt→0+ B(f −t�)
t

= 0. Then if t is sufficiently
small E ((f − t�) − B (f − t�)) ⊆ E(f ) and one can easily verify that any reference for
f − t� − B (f − t�) contains a reference for f. Let {y1, . . . , yl} be a reference for f that is
contained in a reference for f − t� − B (f − t�). By assumption l�2. Let x ∈ E(f ). Then

‖f − t� − B (f − t�)‖2 − 1 � ‖f − t� − B (f − t�) (x)‖2
2 − 1

= ‖−t� − B (f − t�) (x)‖2
2 + 2 〈f (x), −t� (x)

−B (f − t�) (x)〉 ,

and if x ∈ E (f − t� − B (f − t�)) these are all equalities. Dividing by t and letting t → 0+
we get

A := lim
t→0+

‖f − t� − B (f − t�) (x)‖2 − 1

t
= 2 〈f (y) , −� (y)〉 , y ∈ {y1, . . . , yl} ,

and

A�2 〈f (x) , −� (x)〉 , x ∈ E(f ).

Since xq+1 ∈ E (f ) we then have A�4. Since l�2 there is a point y in {y1, . . . , yl} with
y 	= xq+1. Then �(y) = f (y) or �(y) = 0 and so A = 2 or 0 and we have a contradiction.
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Now we consider the situation where a reference can have cardinality 1 which can occur if
n < k. There are two cases to consider.

Case I: At least one of the points in E(f ) is not a reference for f . Let {x2} be a point that
is not a reference. Let � (x1) = f (x1), � (x2) = −f (x2), � (xi) = 0, i = 3, . . . , m. Then
(f + t�) (x1) = (1 + t) f (x1), (f + t�) (x2) = (1 − t) f (x2), (f + t�) (xi) = f (xi) , i =
3, . . . , m. Then if t > 0, ‖f + t�‖ = 1 + t and 〈f (x1) + t� (x1) , g (x1)〉 = (1 + t) 〈f (x1),

g(x1)〉 = 0 for all g ∈ G. So B(f + t�) = 0 if t > 0. Therefore p(�) = 0 and

lim
t→0−

(
‖f + t� − B(f + t�)‖2 − ‖f ‖2

)
/t �2 〈f (xi) , � (xi)〉

for every i. Therefore

lim
t→0−

(
‖f + t� − B(f + t�)‖2 − ‖f ‖2

)
/t = −2.

The consequence is that E(f + t� − B(f + t�)) = {x2} if t < 0 is sufficiently close to 0 which
in turn implies {x2} is a reference for f. This contradiction shows that the best approximation
operator is not Gateaux differentiable at f .

Case II: Every point in E(f ) is a reference for f . Note that

〈f (xi) , g (xi)〉 = 0 for all g ∈ G and for all i. (26)

Also note that for each i, the set
{
gj (xi) : j = 1, . . . , n

}
is a linearly independent set in Rk

because every nontrivial element of G has no zeroes. Choose � to satisfy

〈f (x2) , � (x2)〉 < 〈f (xi) , � (xi)〉 < 〈f (x1), � (x1)〉 , i = 3, . . . , m. (27)

Because of (25),

lim
t→0+

(
‖f + t� − B(f + t�)‖2 − ‖f ‖2

)
/t �2 〈f (xi) , � (xi)〉 for every i. (28)

Therefore because of (26), E(f + t� − B(f + t�)) = {x1} if t > 0 is sufficiently small. This
means, using (25),

〈� (x1) − p(�)(x1), g(x1)〉 = 0, g ∈ G. (29)

Also from (25),

lim
t→0−

(
‖f + t� − B(f + t�)‖2 − ‖f ‖2

)
/t �2 〈f (xi) , � (xi)〉 for every i. (30)

Therefore from (26), E(f + t� − B(f + t�)) = {x2} if t < 0 is sufficiently small. Therefore,

〈� (x2) − p(�)(x2), g(x2)〉 = 0, g ∈ G. (31)

Letp(�)=∑n
j=1 ajgj . LetP1 be then×nmatrix

(〈
gk (x1) , gj (x1)

〉)
(k=1, . . . , n, j=1, . . . , n).

P1 is nonsingular because of the linear independence of
{
gj (x1) : j=1, . . . , n

}
. Eq. (28) can be

expressed as the linear system

P1

⎛⎜⎜⎜⎜⎝
a1
·
·
·

an

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
〈� (x1) , g1 (x1)〉

·
·
·

〈� (x1) , gn (x1)〉

⎞⎟⎟⎟⎟⎠ . (32)
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In a similar way Eq. (30) can be expressed as the linear system

P2

⎛⎜⎜⎜⎜⎝
a1
·
·
·

an

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
〈� (x2) , g1 (x2)〉

·
·
·

〈� (x2) , gn (x2)〉

⎞⎟⎟⎟⎟⎠ , (33)

where P2 is the n × n matrix
(〈
gk (x2) , gj (x2)

〉)
(k = 1, . . . , n, j = 1, . . . , n). Eq. (31) has a

unique solution and therefore the left side of (32) is a fixed vector in Rn. All that is needed is
to choose � (x2) in such a way that 〈� (x2) , g1 (x2)〉 is different from the first component of
the left side of (32) and still satisfies 〈f (x2), � (x2)〉 < 〈f (x1), � (x1)〉. Clearly this is possi-
ble and so we again contradict the assumed Gateaux differentiability of the best approximation
operator. �

We consider now the special case of approximation by complex constants.

Theorem 19. Let G be the Haar space of constants in C
(
X, R2

)
. Then the best approximation

operator is Lipschitz continuous at every function in C
(
X, R2

)
.

Proof. Let f ∈ C
(
X, R2

)
and assume without loss of generality that ‖f ‖ = 1 and Bf = 0.

Assume ‖�‖ = 1 and let B (f + t�) = (x (t), y (t)). By Definition 6 of an annihilator and
Theorem 8 it follows that if � is an annihilator for f then 2�card (�) �3. Let Ft := f + t� −
B (f + t�) and � (xi) = (

�i1, �i2
)
, for xi ∈ E (Ft ), i = 1, . . . . For t small enough it is easily

shown that E (Ft ) ⊆ E (f ) contains a reference for f. If that reference has cardinality 3 we are
done since then Bf is strongly unique to f. Thus assume {x1, x2} ⊆ E (Ft ) is a reference for f. Since
X is finite we can assume that for some sequence

{
tj
}∞
j=1 converging to zero, {x1, x2} ⊆ E(Ftj ).

We know by the Kolmogorov criterion that

max
xi∈E(Ft )

〈Ft(xi), (a, b)〉 �0, (a, b) ∈ G. (34)

Since B is continuous at f [2], limt→0 x (t) = limt→0 y (t) = 0 and hence for some � >

0, |x(t)| �1 and |y(t)| �1 if |t | < �. By the definition of an annihilator there exist positive
constants �1, �2 such that

�1 〈f (x1) , g (x1)〉 + �2 〈f (x2) , g (x2)〉 = 0, g ∈ G. (35)

Let f (x1) = (u, v) and f (x2) = (u, v). Then letting g be (1, 0) and then (0, 1) in (34) gives
u = (−�1/�2) u and v = (−�1/�2) v. Since u2 + v2 = 1 we obtain �1 = �2 and so u = −u and
v = −v. Thus f (x1) = (u1, v1) = −f (x2). Without loss of generality we may assume by rotation
that f (x1) = (0, 1) = −f (x2). For convenience now write B (f + t�) = (x(t), y(t)) = (x, y).
We seek to solve

min
x,y

max
i>2

{(
x − t�11

)2 + (
y − (

1 + t�12
))2

,
(
x − t�21

)2 + (
y − (−1 + t�22

))2
,

x − (
pi + t�i1

)2 + (
y − (

gi + t�i2
))2}

,
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where f (xi) = (pi, qi) , i > 2 and p2
i + q2

i = 1. Thus we seek the minimum of the maximum of

− 2tx�11 + t2�2
11 − 2y − 2ty�12 + 2t�12 + t2�2

12, (36)

− 2tx�21 + t2�2
21 + 2y − 2ty�22 − 2t�22 + t2�2

21, (37)

− 2xpi − 2xt�i1 + 2pit�i1 + t2�2
i1 − 2yqi − 2yt�i2 + 2qit�i2 + t2�2

i1, i�3. (38)

Now x1, x2 ∈ E (Ft ) implies (35) = (36) and solving that for y gives

y = t

4

(
−2x�11 + 2x�21 + t�2

11 − 2y�12 + 2�12

+t�2
12 − t�2

31 + 2y�22 + 2�22 − t�22

)
. (39)

Using
∣∣�i1

∣∣ � ‖�‖ �1 and |x| �1 and |y| �1 in (37) gives

|y| �4 |t | . (40)

Now if E (Ft ) = {x1, x2}, then letting (a, b) = (1, 0) and then (−1, 0) in (33) we find that

|x| � |t | . (41)

Now assume there exists an x3 ∈ E (Ft ) \ {x1, x2}. From (36) = (37) with i = 3 in (39) we
obtain

y (2q3 − 2) = −2xp3 + t
(

2x�11 − t�2
11 + 2y�12 − 2�12 − t�2

12

−2x�31 + 2p3�31 + t�2
31 − 2y�32 + 2q3�32 + t�2

32

)
. (42)

Thus using (38), ‖�‖ = 1, |x| �1, |y| �1 and |q3| �1 in (40) we find that

|p3x| �17 |t | . (43)

If p3 	= 0 then from (41),

|x| � (17/ |p3|) |t | . (44)

Now suppose p3 = 0 and q3 = 1. Then in (41) cancel a t and let t ↓ 0. This implies �12 = �32
and hence �11 = ±�31. If �11 = �31 then the point (x, y) equidistant from the three points
(f + t�) (xi) , i = 1–3, i.e., satisfying (35) = (36) = (37) for i = 3 is the intersection
of the perpendicular bisector of the sides of the triangle formed by (f + t�) (xi), i = 1–3 if
the points are distinct. When �11 = �31, (f + t�) (x1) = (f + t�) (x3) = (

t�11, 1 + t�12
)

and so x = t�11 and |x| � |t |. If �11 = −�31, then (f + t�) (x1) = (
t�11, 1 + t�12

)
and

(f + t�) (x3) = (−t�11, 1 + t�12
)

and so x = 0. If p3 = 0 and q3 = −1 we similarly obtain
the same result after setting (36) = (37) with i = 3. Finally then for any fixed annihilator {x1, x2}
for f + tj� − B

(
f + tj�

)
we find∥∥B (f + tj�

)− Bf
∥∥ = ∥∥(x (tj ), y (tj ))∥∥

satisfies
∣∣y (tj )∣∣ �4 |t | and

∣∣x (tj )∣∣ � {
(17/ |p3|) |t | if p3 	= 0,

|t |, if p3 = 0.
(45)
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Since X is finite, when f (x) = (p, q) either p = 0 or there exists an � > 0 such that |p| �� > 0.
Thus in (44) there is an � > 0 such that |p3| �� > 0 and thus there is a � > 0 such that for |t | ��∥∥B (f + tj�

)− Bf
∥∥ ��

∣∣tj ∣∣.
Here � depends on the sequence

{
tj
}
. However, since there are only finitely many possible pairs

{x1, x2} we see that there is a � > 0 such that∥∥B (f + tj�
)− B(f )

∥∥ �� |t |
if |t | ��. Since then B satisfies a local Lipschitz constant at f, it is Lipschitz continuous at f and
the proof is complete. �
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