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ABSTRACT 

EFFECTS OF HZE IRRADIATION ON CHEMICAL NEUROTRANSMISSION 
IN RODENT HIPPOCAMPUS 

Mayumi Machida 
Eastern Virginia Medical School, 2009 

Director: Dr. Gyorgy Lonart 

Space radiation represents a significant risk to the CNS (central nervous system) 

during space missions. Most harmful are the HZE (high mass, highly charged (Z), high 

energy) particles, e.g. 56Fe, which possess high ionizing ability, dense energy deposition 

pattern, and high penetrance. 

Accumulating evidence suggests that radiation has significant impact on cognitive 

functions. In ground-base experiments, HZE radiation induces pronounced deficits in 

hippocampus dependent learning and memory in rodents. However, the mechanisms 

underlying these impairments are mostly unknown. 

Exposure to HZE radiation elevates the level of oxidation, resulting in cell loss, 

tissue damage and functional deficits through direct ionization and generation of reactive 

oxygen species (ROS). When hippocampal slices were exposed to ROS, neuronal 

excitability was reduced. My preliminary results showed enhanced radio-vulnerability of 

the hippocampus and reduction in basal and depolarization-evoked [ H]-norepinephrine 

release after HZE exposure. These results raised the possibility that HZE radiation 

deteriorates cognitive function through radiation-induced impairments in hippocampal 

chemical neurotransmission, the hypothesis of this dissertation. 

In Aim 1 I have focused on the effects of HZE radiation on release of major 

neurotransmitter systems in the hippocampus. I have further extended my research on the 



levels of receptors of these systems in Aim 2. In Aim 3, I have studied the level of 

oxidation in membranes of my samples. 

My research reveals that HZE radiation significantly reduces hyperosmotic 

sucrose evoked [3H]-glutamate and [14C]-GABA release both three and six months post 

irradiation. The same radiation regimen also significantly enhances oxidative stress as 

indicated by increased levels of lipid peroxidation in the hippocampus, suggesting that 

increased levels of lipid peroxidation may play a role in reduction of neurotransmitter 

release. HZE radiation also significantly reduces levels of neurotransmitter receptors 

critical to synaptic plasticity; glutamatergic NMDA (TV-methyl /^-aspartate) receptors and 

pi adrenergic receptors, three months post irradiation. By six months post irradiation, the 

levels of these receptors are returned to normal, implying that partial repair may take 

place. 

My findings demonstrate that a single dose of HZE radiation alters the 

neurochemical environment in the hippocampus, which may underlie radiation-induced 

cognitive dysfunction. 
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CHAPTER I 

1 

INTRODUCTION 

INTRODUCTION TO THE PRESENT STUDY 

In the 20-year Strategic Program Plan (SPP) for Space Radiation Health Research 

(SRHR), NASA has identified four major health concerns regarding exposure to space 

HZE (high mass, highly charged (Z), high energy) radiation; 1) acute radiation 

syndromes, 2) degenerative tissue effects, 3) carcinogenesis, and 4) damage to the 

Central Nervous System (CNS) (1). Currently, with the possible exception of cataracts, 

there are no direct human data available for space radiation risk assessment (2). The CNS 

risks are classified as acute and delayed radiation effects (1), and the late delayed effects 

of radiation are the major concern in estimating risks to crew members (3, 4). Currently, 

the following delayed risks are reported; 1) deterioration in motor function (5), 2) 

behavioral impairments mediated by the dopaminergic system (6-8) and 3) cognitive 

dysfunction (9, 10), with no proven mitigation strategies (2). These risks may be 

enhanced by synergistic effects such as bone loss, cardiovascular alterations, and 

impaired sensory-motor adaptation (1, 11). NASA plans to return humans to the Moon 

by 2019 and to Mars by 2030. They have placed high priority on investigating CNS risks 

(1), as CNS injury may cause severe interference with job performance during an 

extended space mission to Mars. Phase 1 of this plan (2006 -2013) emphasizes the 

The model journal for this dissertation is Radiation Research. 
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urgent needs to; 1) develop a new risk model to reduce uncertainties regarding radiation 

induced CNS damage. 2) develop experimental evidence for radiation induced CNS 

damage, and 3) validate permissible exposure limits for space radiation in terms of CNS 

functions (12). 

Studies with conventional radiation, e.g., X-rays and y-rays, in ground based 

settings have established deleterious effects of ionizing radiation on the human brain. 

Long-term studies with childhood cancer survivors revealed that cranial radiation therapy 

often results in progressive cognitive dysfunction (13-16). Young and adult patients of 

acute lymphoblastic leukemia and brain tumors who had received cranial radiation 

therapy display a delayed and progressive decline in cognitive performance including 

impairments in attention, visual perceptual skills, executive function, and memory (75). 

Ris and co-workers reported that brain tumor survivors had a 17.4 point decrease in full 

scale intelligence quotient (IQ) four years after radiation therapy even when moderate 

doses of radiation were applied (14). The neuronal mechanisms that underlie these effects 

remain mostly unknown. Possible causes include demyelination suggested by quantitative 

magnetic resonance imaging (MRI) studies that detected white matter necrosis (15). 

Since the damage correlated with decreased attention, lower IQ and academic 

achievement (16), this histopathological change has been hypothesized as a mechanistic 

base for radiation induced cognitive dysfunction (13). Rodents given a 25 Gy dose of X-

ray radiation have been used extensively to investigate the histopathology of the 

radiation-induced damage, as this dose induces vascular lesions as well as radionecrosis 

that is associated with demyelination one year after irradiation (17). 
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Research on hippocampal neurogenesis has revealed that radiation may induce 

cognitive impairments even at doses that are well below the threshold for producing 

histopathological changes. Whole brain irradiation of mice subjected to a single mild 

dose (10 Gy) of X-rays showed reduced performance in a Barnes maze, a hippocampal-

dependent spatial learning test (18). Since the same dose of radiation nearly abolishes the 

production of new neurons in rodents one or two months post irradiation (19, 20), it has 

been suggested that radiation-induced cognitive dysfunction may depend on adult 

neurogenesis in the hippocampus. However, there was no correlation between radiation 

induced suppression of adult neurogenesis and spatial learning tested in a different 

behavioral paradigm, e.g. Morris water maze (21, 22). In addition, when other techniques 

were used to suppress adult neurogenesis, they failed to establish an unambiguous link 

between adult neurogenesis and learning and memory (23, 24). Thus, a causative 

relationship between radiation induced suppression of neurogenesis and radiation induced 

cognitive impairment still awaits clarification (24). 

An alternative neuronal mechanism of radiation-induced cognitive dysfunction is 

perturbation of chemical neurotransmission, a mechanism mostly independent of 

neurogenesis (25). Transduction of neuronal signal may be achieved by electrical 

coupling of pre- and postsynaptic elements at electrical synapses. However, the 

overwhelming majority is chemical synapses, which use chemical substances for 

transmission". Exposure to radiation results in the generation of toxic free radicals (26, 

27) which affects neurotransmission (28-31). When a hippocampal slice preparation was 

exposed to H2O2, an experimental model to assess effects of HZE radiation (28), the 

In the rest of the text, the term "neurotransmission" will refer to "chemical neurotransmission". 
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exposure altered neuronal excitability, the ability to generate action potentials (29), and 

reduced synaptic efficacy at both inhibitory and excitatory synapses (30). H2O2 also 

suppressed [K+]-depolarization-evoked [3H]-glutamate release from isolated cortical 

nerve terminals, suggesting that radiation induced reactive oxygen species (ROS) 

production may perturb the functional integrity of release machinery (31). 

Currently neurochemical research on space HZE radiation effects has been mostly 

limited to nigrostriatal dopaminergic (DA) and cholinergic neurotransmission (5, 32, 33), 

a brain region mostly involved in movement coordination (34). Joseph et al found that 0.1 

to 1.0 Gy of HZE radiation significantly reduced the enhancement of depolarization-

evoked DA release by oxotremorine, muscarinic cholinergic receptor agonist (5). This 

effect was region-specific, as decrements were observed only in the striatum but not in 

the hippocampus (35). 

Much less understood are the effects of space radiation on hippocampal 

neurotransmission, despite the well documented HZE radiation-induced impairments in 

hippocampus dependent behavior (9, 10, 36), and radio-sensitivity of the region (28, 37). 

In line with these previous reports, my preliminary results also demonstrated significantly 

enhanced radio-vulnerability of the hippocampus (Chapter I, Preliminary Results for a 

full detail). Thus, in this study, I have focused on the effects of HZE radiation on 

chemical neurotransmission in the hippocampus. My hypothesis is that HZE radiation 

disrupts functional integrity of hippocampal neurotransmission, which may be a 

component of radiation-induced cognitive dysfunction. 
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Since major events in synaptic neurotransmission are release of neurotransmitters 

and activation of neurotransmitter receptors, I addressed possible HZE effects on these in 

the following specific aims. 

In Aim 1, I tested effects of HZE radiation on release of major hippocampal 

neurotransmitters. I assayed basal and hyperosmotic-shock evoked release from 

glutamatergic, GABAergic (y-amino-butyric acid), and noradrenergic systems 

(Chapter II). Hyperosmotic sucrose evoked release has been used as a measure of the size 

of the readily releasable pool, which reflects release probability (38) and synaptic 

strength (39). Glutamate is the major excitatory transmitter in the CNS and the 

participation of glutamatergic NMD A receptors in long-term potentiation (LTP) and 

depression (LTD) provides a strong link between the glutamatergic systems and the 

mechanisms of learning and memory (40). GABA is the major inhibitory transmitter in 

the CNS, and behavioral/pharmacological studies have suggested that GABA receptor 

blockade can improve hippocampal dependent learning and memory (41). NE is also 

implicated in synaptic plasticity; a- and P-adrenergic receptor manipulations modulate 

LTP in hippocampal pathways (42, 43) and learning tasks (44). My working hypothesis 

was that HZE radiation perturbs release of these hippocampal neurotransmitters, which 

play critical roles in hippocampal dependent learning and memory. 

In Aim 2, I tested the effects of HZE radiation on levels of neurotransmitter 

receptors (Table 1) by quantitative western blot analysis to elucidate biochemical 

correlates of possible changes in neurotransmission (Chapter III). My working hypothesis 

was that HZE radiation may affect these protein levels, and in turn these may lead to 

alterations in synaptic strength, giving rise to impaired learning and memory. 
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TABLE 1A 

Neurotransmitter Receptors Evaluated in Quantitative Western Blot Analysis 

Receptor subtype; 

NMDANR1 
NMDANR2A 
NMDANR2B 
AMPAGluRl 

GABAA al 
GABAB 

al 
a2A 

PI 

Mw 

120kDa 
170 kDa 
180kDa 
106 kDa 

50 kDa 
130 kDa 

60 kDa 
45 kDa 
64 kDa 

Glutamatergic 

GABAergic 

Noradrenergic 

TABLE IB 

Synaptic Proteins Evaluated in Quantitative Western Blot Analysis 

Description Proteins Mw 

Synaptic vesicular protein Synaptophysin 
Vesicular glutamate transporter VGlutl 
Scaffold protein for glutamatergic re PSD-95 
Microtubule associated protein MAP2a/2b/2c 

38 kDa 
70-80kDa 

95kDa 
280kDa (2a, 2b), 70kDa (2c) 

Loading control Actin 42 kDa 
Loading control VCP 97 kDa 



7 

Aim 3 was designed to test HZE effects on lipid peroxidation in the 

hippocampus (Chapter IV). By definition, ionizing radiation generates ions, which 

increase the formation of free radicals and reactive oxygen species (ROS). Imbalance 

between the pro-oxidants and anti-oxidants may cause oxidative stress, e.g. oxidation of 

membranes. My working hypothesis was that lipid peroxidation of membranes may 

underlie impairments in hippocampal neurotransmission. 

To investigate these specific aims, I exposed rats to single doses of 0.6, 1.4, 2.0 

Gy of HZE (56Fe, 1 GeV/n, 150 keV/|j.m) radiation, or sham radiation. The dose of 2.0 

Gy was chosen based on my preliminary study where 2.0 Gy significantly inhibited basal 

and evoked [3H]-norepinephrine release from rat hippocampal slices (Chapter I, 

Preliminary Results). One point four Gy was chosen to approximate doses that inhibit 

hippocampus dependent cognitive performance previously reported (9, 10, 36). I have 

chosen 0.6 Gy as the lowest test dose, since our behavior data displayed highly variable 

performance of 0.6 Gy irradiated animals in hippocampus dependent spatial learning test, 

which implies that the dose is capable to induce neurochemical change in hippocampus, 

but a degree of change depends on sensitivity to radiation within each individual (45). 

As discussed earlier, it is the delayed effects that may lead to severe neurological 

consequences in the CNS (46, 47). In this study, animals were sacrificed three and six 

months post-irradiation to investigate the early and late delayed radiation effects. 

I used synaptosomal preparation to evaluate effects of HZE irradiation on 

hippocampal neurotransmission and protein levels. Synaptosomes are isolated nerve 

terminals, and have been used as an experimental model system to study the structure and 

function of the synapse (48), and synaptic plasticity (49). 
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My findings indicate that a single treatment with 0.6 Gy of 56Fe HZE particlesb 

(1 GeV/n, whole-brain irradiation) significantly disturbs functional integrity of the 

release machinery of rat hippocampal synaptosomes, and results in the reduction of 

evoked [3H]-glutamate and [14C]-GABA release three months post irradiation. A 

pronounced change has also been found at the 6 month time-point, indicating that the 

effects are persistent. Exposure to 56Fe HZE radiation also significantly perturbs levels of 

glutamatergic NMDA receptors and P adrenergic receptors, while levels of marker 

proteins for glutamatergic nerve terminals, and glutamatergic synaptic vesicles are not 

significantly altered, thus it is unlikely that observed reduction in glutamatergic release is 

caused by radiation-induced depletion of glutamatergic store or apoptotic damage of 

nerve terminals. Increased level of lipid peroxidation after exposure may be a possible 

mechanism of disrupted neurotransmission in the hippocampus. 

Considering critical roles of glutamatergic and GABAergic systems, and NMDA 

receptors and p adrenergic receptors in learning and memory, my findings provide 

experimental evidence which underlie radiation-induced cognitive dysfunction. 

INTRODUCTION TO SPACE RADIATION BIOLOGY 

Radiation is a process in which energy radiates, i.e. energy travels outward in 

straight lines to all directions from a source. When radiated energy hits atoms or 

molecules, it may lead to excitation or ionization of them. Excitation is where energy 

causes an electron in an atom or molecule move to a higher energy level without actual 

'Fe particles are discussed in Chapter I, Introduction to Space Radiation Biology. 
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ejection of the electron, while ionization is a process where the incident energy is 

sufficient to eject orbital electrons from the atom or molecule. Ejected electrons are 

capable of causing damage to biological materials by breaking a chemical bond and 

initiating a chain of events, or to induce free radical production. An important 

characteristic of potentially hazardous radiation is the ability to ionize, and such radiation 

is classified as ionizing radiation. 

Ionizing radiation is categorized as either electromagnetic or particulate, 

depending on the source of energy. X-rays are a conventional example of electromagnetic 

radiation and are used in clinical practice. The source of particulate radiation could be 

electrons, protons, a-particles, neutrons and heavy charged ions (HZE, high mass, 

highly charged (Z), high energy). 

The biological effects of radiation are caused by either direct or indirect action 

of ionization. Direct action of radiation is where energy directly interacts with targets in 

cells and initiates a chain of events that leads to a biological change (Fig. 1, direct action). 

Alternatively, radiation may interact with other atoms or molecules in the cell, for 

example, water, to produce reactive oxygen species (ROS) that are able to diffuse to 

critical targets and inflict damage (Fig. 1, indirect action). A principal target for direct 

action is chromosomal DNA, as depicted in Figure 1. 

Galactic cosmic radiation (GCR) is a major constituent of space radiation, which 

is composed of protons (85%), helium (14%) and heavier HZE particles (1%) (2). 

Although protons make up a large portion of the radiation spectrum, no significant effect 

of proton radiation at any dose on behavibral and neurochemical endpoints has been 

reported (50). In contrast, HZE particles have multiple biological effects (8, 33, 51, 52). 
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Indirect 
Action 

FIG. 1. Direct and indirect actions of ionizing radiation. In direct action, an emitted 
electron (e") interacts with a target, for example, DNA helix, to produce an insult. In 
indirect action, an electron interacts with, for example, a water molecule to produce ROS, 
here a hydroxyl radical (OH"), which in turn produces the damage to the DNA. (Modified 
from Hall, 2006; ref. 46) 



11 

Thus, the general consensus is that HZE particles represent the most hazardous type of 

radiation in space. Human exposure to HZE in space was first described as an episode 

during the lunar missions of the 1970's, when astronauts "saw" light flashes with eyes 

closed in complete darkness. This phenomenon was caused by HZE particles crossing the 

retina. It has been estimated (53) that on a 3-year mission to Mars, 3% of cells in the 

body would be traversed by HZE (56Fe) particles even behind aluminum shielding of 4 

g/cm300. 

HZE particles are nuclei of elements; e.g. carbon, neon, argon, or iron. They are 

positively charged because some or all of the planetary electrons have been stripped away 

(46). In ground based studies, HZE particles must be accelerated to energies of mega 

(106) to giga (109) electron volts, therefore, can be produced in only specialized facilities. 

HZE radiation has a characteristic pattern of energy deposition in a defined range along a 

linear track. Figure 2 shows computer simulations for track structures of proton (A) and 

three types of HZE particles (B, C, D) in liquid water to estimate energy distribution in 

biological matter (54). In contrast with a diffuse pattern of proton (A), HZE particle 

tracks take the appearance of a dense "bottle brush" pattern with a central "core". In the 

core, the local dose may be quite high, but may drop to zero just a few microns away. 

Thus, HZE particles are categorized as high LET (linear energy transfer) radiation per 

unit length of track. 

Another important property of HZE particles is that they undergo nuclear 

fragmentation reactions to produce multiple secondary particles (55). These secondary 

particles, whose effects are similar to X-rays, create their own tracks (delta-ray) and may 

extend the range of effects beyond that of the primary particle. In Figure 2, lateral 
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FIG. 2. Computer simulation of tracks of representative particulate radiation: proton 
(A), carbon (B), silicon (C), and iron (D) ion passing through a thin slab (1 um) of liquid 
water with initial energy 100 MeV/nucleon. The particles are started in positive Z-
direction, and the coordinates are given in Angstrom (A), Lateral tracks indicate delta-ray 
from secondary particles. (From Dingfelder, 2006; ref 54) 
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delta-ray tracks are shown along the longitudinal primary trajectories. 

Also, as the panels B, C, and D show, the greater the nuclear charge (Z), the 

higher the ionization density becomes, which leads to the increased probability of a direct 

interaction between the particle track and target molecule. A characteristic dense 

pronounced track of 56Fe shows that heavy HZE particles could be more devastating. 

Another important feature of HZE particles is so called "bystander effect", which 

is illustrated in Figure 3 (55). Bystander effect is when an isolated individual cell in a 

population is traversed by a particle, both the "hit" cell and many of its "un-hit" 

neighbors (bystanders) respond to radiation exposure (56-58). The effect is likely 

mediated by damage-inducing factor(s), as transfer of culture medium from an exposed 

culture to unexposed cells often exhibits the effect. Protection by ROS (reactive oxygen 

species) scavengers such as superoxide dismutase (SOD) or catalase blocks the bystander 

effect in some systems, while proteases block the effect in others, thus it is assumed that 

damage in a "hit" cell may lead to the spread of either radical products or signaling 

proteins to neighboring cells. This effect may persist for several years (58). Although 

currently bystander effects have been reported in preparations exposed at low dose, the 

existence of the effect provides evidence for damage amplification. 

Considering the highly-layered and interconnected structure of the CNS, the 

possibility of HZE tracks to cause a "functional micro-lesion" via its characteristic dense 

energy deposition pattern or via bystander effect in the organ is extremely high (55), in 

contrast to isotropic tissues such as liver Or connective tissue. Thus, the CNS has been 

suggested as a system of the body that might be particularly sensitive to HZE particles. 
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Radiation 

Transfer of Signals 
by Intercellular junctions 

* * 

FIG. 3. "Bystander effect". Damage created in a cell struck by a single charged 
particle radiation leads to the spread of signals or toxic products to many neighboring 
cells via intercellular junctions, soluble molecules, or remodeling of the extracellular 
matrix. The "bystander effect" amplifies the damage from charged particles. •*: DNA 
damage. (From Nelson, 2003; ref. 55) 
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It is estimated that during a three-year mission to Mars, 2% to 13% of cells in the CNS 

would be directly hit at least once by HZE particles (53). 

HZE radiation is a heterogeneously composed beam including elements heavier 

than helium 4He. On ground level experiments, however, effects of individual ions, such 

as 56Fe, are investigated extensively to simulate effects of HZE radiation. 56Fe (Z — 26) is 

the most abundant element in the HZE flux, followed by 28Si (Z = 14) (52). 56Fe has the 

highest nuclear binding energy derived from the strong nuclear force (Fig. 4). Nuclear 

binding energy is defined as energy required for disassembling a nucleus into free 

unbound neutrons and protons per nucleon. High binding energy of 56Fe (8.79 

MeV/nucleon) explains an increase in stability toward formation of 56Fe, indicated by the 

arrows in Figure 4 (59). Much lighter elements tend to fuse together to yield heavier 

elements such as 56Fe, and much heavier elements split apart to yield lighter elements, 

also leading to 56Fe production. 

Accumulating evidence indicates that 56Fe particles can induce distinctive effect 

on biological materials. When behavioral toxicity caused by direct action of HZE on 

gastrointestinal system was evaluated using conditioned taste aversion learning, effects of 

56Fe was significantly greater than that of 4He, 20Ne, 40Ar, and even the heavier 93Nb (Fig. 

5) (6, 60). One characteristic of 56Fe effects is its extremely steep dose-response curve 

(P, di), as observed in Figure 5. 56Fe also can induce significant effects on motor 

performance assessed in wire suspension test (5), and prevent the acquisition of an 

amphetamine-induced conditioned taste aversion (8). Since these behaviors depend on 

the integrity of the central dopaminergic transmission, it has been suggested that the locus 

of 56Fe induced change is located at the level of the nigrostriatal system (62). 
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FIG. 5. Dose effects of selected HZE particles on conditioned taste aversion (GTA) 
production. Rats were presented a novel 10% sucrose solution and immediately exposed 
to one of the following HZE particles: 56Fe, iron; 93Nb, niobium; 20Ne, neon; 40Ar, argon; 
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these particles, 56Fe particles showed significantly greater behavioral toxicity than other 
particles. (From Rabin, 1994; ref. 6) 
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Joseph et al. suggested the 56Fe exposure induced deficits in dopaminergic 

neurotransmission are due to decreased sensitivity to muscarinic receptors, which 

indirectly contributes to dopamine dependent behaviors. A proposed mechanism 

underlining the deficits is radiation induced changes in striatal membrane structure and 

fluidity caused by lipid peroxidation, which is known to affect a variety of 

neurotransmitter receptor systems (62). Deleterious effects of 56Fe radiation on behavior 

were also found in hippocampal dependent learning and memory tests (9, 10, 36). The 

hippocampus plays a major role in acquisition of spatial information, temporary storage 

of that information, and transfer of information to long term storage to cortical areas (63). 

Failure of the hippocampus results in anterograde memory loss that interferes with proper 

cognitive functions. The region has been known to be highly vulnerable to insults such as 

trauma, ischemia, stress, aging (64), and also radiation. Even extremely low doses (0.005 

Gy) of 4 Ar or 56Fe induce a decrease in synaptic density and synaptic spine length in the 

mouse hippocampus (65, 66). 

In animal behavioral studies, hippocampal integrity is often assayed in spatial 

memory tasks. 1.0 Gy to 1.5 Gy of 56Fe radiation caused impairment in spatial memory 

performance of rodents tested in Morris water maze (9, 27), Barns maze (67), and 8-arm 

radial maze (7 0). These results suggest a detrimental effect of 56Fe particles on 

hippocampus dependent cognitive functions, although the underling neurochemical 

mechanisms are not fully understood. 

Considering these significantly pronounced effects, in this study I choose Fe 

particles to simulate effects of space radiation. 56Fe particles were accelerated to energies 

of 1 GeV/n (giga electron volts per nucleon) in the Alternating Gradient Synchrotron in 
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Brookhaven National Laboratory of NASA Space Radiation Laboratory (Chapter II, 

Materials and Methods in detail), and utilized to irradiate rats. 

PRELIMINARY RESULTS 

Initially, I had tested effectiveness of 56Fe particles on catecholaminergic 

neurotransmission in several brain regions three month post irradiation. I had used a 

slice preparation, which maintains integrity of local neuronal circuits and glial 

connection, thus, is suitable to assess neurotransmission ex vivo. I tested transmission of 

norepinephrine (NE) and dopamine (DA), which plays important roles in learning and 

memory (63), and are vulnerable to radiation (68, 69). 

Unlike glutamatergic and GABAergic regulation which rely on dual glial-

neuronal reuptake property (discussed in Chapter II), catecholamine transmitters are 

mostly cleared by transporters on presynaptic terminals. Thus the action of NE or DA is 

terminated largely by removal of these by transporters from the synaptic cleft and either 

recycled to synaptic vesicles or enzymatically degraded (70). In my experiments, 

pargyline, an inhibitor of monoamine oxidase, the major degradative enzyme, was added 

to a buffer to prevent conversion of [3H]-DA or -NE to [3H]-metabolites. Thus, 

measurement of 3-H indexes [3HJ-catecholamine release, not [3H]-metabolites. 

Three brain regions were tested site-by-site: hippocampus, associative cortex 

and striatum. Since NE and DA are not uniformly distributed, noradrenergic nerve 

terminals in hippocampal slices were labeled with [ H]-NE, while dopaminergic 

terminals in striatum and associative cortex were labeled with [3H]-DA. Basal release 
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was determined before a depolarization stimulus, 50 mM KC1, was applied to induce 

evoked release. 

My results demonstrated that exposure to > 2.0 Gy of 56Fe HZE radiation (1 

GeV/n, 150 keV/um) perturbed neurotransmission (Fig. 6), and resulted in significant 

reduction in both basal and [K+]-depolarization-evoked [3H]-NE release from 

hippocampal slices, while [ H]-DA release from cortical and striatal slices was not 

significantly altered under the test condition. 

Using the same experimental approaches, I have measured release after X-ray 

exposure to assess relative biological effectiveness (RBE) of 56Fe radiation. 13 Gy of X-

rays produced similar neurochemical changes as observed with > 2.0 Gy of 56Fe radiation. 

It reduced both basal and [K+]-depolarization-evoked [3H]-NE release from hippocampal 

slices (Fig. 7), while 10 Gy of X-rays did not significantly alter neurotransmitter release 

(data not shown). [3H]-DA release from cortical and striatal slices was not significantly 

altered under any test conditions (Fig. 7). 

In summary, my preliminary results show 1) enhanced radio-sensitivity of the 

hippocampus, and 2) high effectiveness of HZE (56Fe) radiation with RBE value 6.5 in 

inhibiting hippocampal noradrenergic transmission. The results also serve to estimate 

effective 56Fe radiation doses for our main studies. Determination of RBE to a standard 

radiation, or X-rays, is a common practice in radiation research (55, 71). RBE is 

calculated as the ratio of the dose of X-rays to the dose of a test radiation that produces 

the same biological effect. 
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FIG. 6. Over 2 Gy of HZE (56Fe, 1 GeV/n, 150 keV/^m) radiation effects on [3H]-
catecholaminergic release from rat brain slices: associative cortex (A, B); hippocampus 
(C, D); and striatum (E, F). Endogenous norepinephrine (NE) stores in hippocampal 
slices were labeled with [3H]-NE. Endogenous dopamine (DA) stores in striatum and 
associative cortex slices were labeled with [3H]-DA. Catecholamine release was induced 
by depolarization using a 1.5 min pulse of 50 mM KC1 (arrow). Basal and depolarization-
evoked release in response to either 2 or 2.25 Gy of 6Fe radiation was determined in 
comparison with sham treated animals three month post irradiation. Panel A, C, E: 
Representative experiment. Panel B, D, F: Summary data. The fractional release values 
under normal conditions were set to 100% and treatment effects were normalized to 

control. Data are presented as mean ± SEM (n = 4 rats/treatment). *: P < 0.05, Student's 

Mest. 
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FIG. 7. Thirteen Gy of X-ray effects on [3H]-catecholaminergic release from rat brain 
slices: associative cortex (A, B); hippocampus (C, D); and striatum (E, F). Endogenous 
norepinephrine (NE) stores in hippocampal slices were labeled with [3H]-NE. 
Endogenous dopamine (DA) in striatum and associative cortex slices was labeled with 
[3H]-DA. Catecholamine release was induced by depolarization using a 1.5 min pulse of 
50 mM KC1 (arrow). Basal and depolarization-evoked release in response to 13 Gy of X-
rays was determined in comparison with sham treated animals at three month post 
irradiation. Panel A, C, E: Representative experiment. Panel B, D, F: Summary data. The 
fractional release values under normal conditions were set to 100%, and treatment effects 

were normalized to control. Data are presented as mean ± SEM (n = 3 rats/treatment). *: 
P < 0.05, Student's /-test. 
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CHAPTER II 

EFFECTS OF HZE RADIATION ON NEUROTRANSMITTER RELEASE 

BACKGROUND 

In the hippocampus the majority of synaptic activity is driven by the excitatory 

neurotransmitter glutamate and I have focused my attention mostly on the glutamatergic 

system. Direct involvements of glutamate in learning and memory have been established, 

e.g. a critical role of glutamatergic NMD A receptors in long-term potentiation (LTP) 

(72), long-term depression (LTD) (73) and memory (74) has been shown. Disturbance 

of the hippocampal glutamatergic neurotransmission also has been implicated in the 

pathogenesis of neurological disorders, such as schizophrenia (75), and functional decline 

was found during aging (64 for review, 76) 

The processes related to the glutamatergic neurotransmission are schematically 

depicted in Figure 8. The synthesis of glutamate (GLU) occurs from glutamine (GLN) 

through the action of glutaminase (Gln-ase) which is localized in the mitochondria of 

glutamatergic nerve terminals (76) (step 1). Glutamate is then incorporated to synaptic 

vesicles by vesicular glutamate transporter (VGlut, discussed in Chapter III) (77) (step 

2). Glutamate is released from synaptic vesicles into the synaptic cleft upon action 

potential triggered by Ca influx (step 3) and activates lonotropic receptors (AMPA, 

NMD A, kainate (KA) (step 4) to produce excitatory postsynaptic potential (EPSP). 

Glutamate also activates metabotropic receptors (mGluR), which transduce signals to 

enzymatic activity and/or channel activity. The main mechanism for clearing 

extracellular glutamate is by uptake through high-affinity neuronal glutamate transporters 
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FIG. 8. Schematic representation of glutamatergic neurotransmission; 1) synthesis of 
glutamate (GLU) from glutamine (GLN) through the action of glutaminase (Gln-ase). 2) 
storing of glutamate into synaptic vesicles. 3) Ca2+ dependent exocitotic release of 
glutamate. 4) glutamate activation of its receptors (AMPA, AMPA receptors; KA, kainate 
receptors; NMD A, NMD A receptors; mGluR, metabotropic receptors; R-ex, 
extrasynaptic receptors (ionotropic or metabotropic)). 5) uptake of glutamate through 
high affinity transporters (empty box) located in astrocytes and presynaptic terminals. 6) 
synthesis of glutamine from glutamate though the action of glutamine synthetase (Gln-s). 
(From Segovia, 2001; ref. 64) 



25 

(excitatory amino acid transporter (EAAT)) located in presynaptic terminal or glial 

glutamate transporter (GLT) located in astrocyte surrounding glutamatergic terminals 

(step 5). As for the catabolism of glutamate, the glial enzyme glutamine synthetase (Gln-

s) converts glutamate to glutamine (76) (step 7), which is taken up by neurons and is 

converted to glutamate. 

Glutamate transporters are driven by Na+/K+ electrochemical gradients. The 

transport of one molecule of glutamate is coupled to the co-transport of three Na+ and one 

H+, and the counter-transport of one K+ (step 5). When these gradients are dissipated and 

ionic disequilibrium occurs, glutamate may also be "released" by reverse operation of the 

glutamate transporters (step 6). The physiological role of this Ca2+-independent release of 

glutamate is questioned, but is associated with excitotoxicity in pathological 

circumstances, e.g. ischemia (64). 

As Figure 8 shows, synaptic glutamate concentration is the result of a balance 

between these neuronal-glial release and uptake processes. This dual-component system 

makes it difficult to differentiate between effects on release and re-uptake when brain 

slices are used for release experiments/To circumvent this problem, in the present study, 

we have utilized isolated nerve terminals, synaptosomes (Fig. 9). Synaptosomes are 

prepared by gentle homogenization in iso-osmotic sucrose solution, followed by a series 

of differential centrifugations. The purity of synaptosomal preparation is estimated to be 

about 70% (78). It contains 1) mitochondria, 2) synaptic vesicles, 3) active zone, a 

specialized region of presynaptic plasma membrane where synaptic vesicles fuse, and 4) 

attached fragments of postsynaptic membranes containing signal transducing proteins 

(Fig. 9) (79). Under proper experimental conditions, synaptosomal preparation is 
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FIG. 9. Electron micrograph of rat brain synaptosome. The terminal (T) with 
mitochondria (M) is in contact with dendritic spine containing postsynaptic density 
(PSD) (small arrow) and a spine apparatus (large arrow). Bar, 300 nm. (From Kiebler, 
1999; ref. 80) 
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metabolically active. It respires, takes up oxygen and glucose, maintains a normal 

membrane potential by extruding Na+ and accumulating K+, and upon depolarization, 

releases transmitter in a Ca2+-dependent manner (78). Since glial elements are mostly 

eliminated from synaptosomes, glial source of release and uptake is minimized. 

In addition to glutamate, I have also investigated GABA and NE release 

properties. GABA is the major inhibitory neurotransmitter in the adult hippocampus, 

associated with synaptic inhibition by causing a hyperpolarization of postsynaptic 

membrane through ionotropic GABAA receptors, which is coupled to CI" ion conductance 

(70). GABAB receptors are metabotropic and behavioral studies have suggested that 

GABAB receptor blockade can improve cognition (41). GABA is synthesized from L-

glutamate by GAD (glutamic acid decarboxylase) which localizes at neurons with the 

GABA containing synaptic vesicles. Similar to glutamatergic neurotransmission, GABA 

also has dual glial/neuronal reuptake process and after release, the action of GABA is 

terminated largely by removal from the synaptic cleft by these transporters. 

NE plays a prominent role in hippocampal cognitive function as a neuromodulator. 

It enhances LTP, widely believed to be an important cellular mechanism of learning and 

memory. Mossy fiber LTP in the hippocampus is modulated by both 0- and a l -

adrenergic receptors (43, 81, 82). NE has also been known to display vulnerability to 

ionizing radiation. After X-ray exposure, NE content in rat brain and heart were reduced 

(68) and y radiation reduced NE release in the hippocampus (69). The precise 

mechanisms underling these findings are unknown. A pharmacological study implicates 

reduced mobilization of intracellular Ca2+ stores (83), however, our own studies 

determined only a minor role for internal Ca stores for neurotransmitter release 
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regulation (84). The involvement of hippocampal glutathione's anabolic/metabolic 

pathways was also suggested (85). 

Synaptic vesicles (SV) cycle between functionally heterogeneous subpopulations 

is depicted in Figure 10. After the uptake of neurotransmitters (NT) (step 1), synaptic 

vesicles form a cluster termed the reserve pool (step 2). Next, vesicles are docked at the 

active zone (step 3), and through an ATP-dependent process, the release machinery is 

"primed" (step 4). During priming, fusion core complex, or SNARE complex (soluble N-

ethylmaleimide-sensitive fusion protein attachment protein receptors), is assembled into 

a trans configuration, which contains synaptobrevin (vesicular SNARE motif), SNAP-25 

and syntaxin (target SNARE motif on the plasma membrane). This complex spans 

synaptic vesicle membrane and plasma membrane, and brings these into close proximity. 

Also, synaptotagmin, a putative Ca2+ sensor, constitutively associate with SNARE 

complex. Though these processes, synaptic vesicles become fusion competent and form 

the readily releasable pool (RRP). After fusion (step 5), synaptic vesicles undergo 

endocytosis and recycle via several routes: fast recycling without an endosomal 

intermediate (step 6), or clathrin-mediated endocytosis (step 7) with recycling via 

endosomes (step 8). The total number of vesicles that participates in exo- and endocytosis 

during prolonged stimulation is referred to as the recycling pool. This pool is composed 

of the RRP and the reserve pool, which serves to replenish the RRP upon its depletion 

(86). Using cultured hippocampal neurons, one study estimated 17 - 20 vesicles in the 

reserve pool and 4 - 8 vesicles in RRP, estimating total of 21 - 25 vesicles in the 

recycling pool (86). 
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FIG. 10. Readily Releasable Pool (RRP) in synaptic vesicle cycle. After synaptic 
vesicles are filled with neurotransmitters (NT) (step 1), they form a vesicle cluster that 
serves as a reserve pool (step 2). Filled vesicles dock at the active zone (step 3), and there 
they undergo an ATP-dependent priming reaction (step 4) which makes them competent 
for Ca2+ triggered fusion-pore opening (step 5). Primed synaptic vesicle cluster is termed 
RRP. (Modified from Sttdhof, 2004; ref 86) 
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RRP informs on synaptic release probability (pr) and synaptic strength (38, 87). 

These parameters are actively regulated under physiological conditions, e. g. learning and 

memory related processes (88), and under neurodegenerative conditions (89, 90). 

I used a pulse of hyperosmotic sucrose to probe the size of the RRP (38, 88). The 

30 sec pulse I applied does not induce membrane damage but mimic action potential 

evoked vesicular neurotransmitter release (38, 88, 91) with the exception that it does not 

require Ca2+ influx. This allowed me to bypass possible treatment effects on Ca2+ 

homeostasis and focus on HZE radiation induced modulation of the RRP and changes in 

the "proximal" release machinery proteins that are directly involved in the synaptic 

vesicle cycle. 

Whereas action potential/depolarization evoked release is the most studied, even 

in the absence of action potentials, synapses exhibit low-probability "spontaneous" 

release. This represents mostly fusion of a single synaptic vesicle of a distinct vesicle 

pool (92). Spontaneous release had been considered as a "leak" of neurotransmitter in a 

random Ca independent fashion, however, recent studies revealed that spontaneous 

release may also be Ca sensitive, although to a different degree (93). The physiological 

role of spontaneous release is not clear, but several roles e.g. spine maintenance, have 

been suggested (94). Basal release in my assay may correlate with spontaneous release. 

In my release assay, neurotransmitter pools in synaptosomal preparations were 

first labeled with 3H or I4C tagged neurotransmitter in a low enough concentration that 

would not offset the natural distribution of the endogenous neurotransmitter. In principle, 

release of the radiolabel accurately reflects the endogenous neurotransmitter release. 
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After I determined basal release, release was evoked by applying a stimulus. Basal and 

stimulus evoked neurotransmitter efflux was determined by counting the isotope amounts. 

MATERIALS AND METHODS 

Animals and Irradiation Procedures 

A total of seventy-eight male0 Wistar rats (Harlan Sprague-Dawley, Inc., 

Indianapolis, IN) were used in this study. 49 animals were exposed either to X-rays or 

56Fe radiation, while 29 rats were exposed to the same procedural steps, except that they 

received no radiation. These were termed as sham control animals. The animals were 3 to 

4 weeks old weighing approximately 180 g when they were received at Eastern Virginia 

Medical School (EVMS) or Brookhaven National Laboratory (BNL, Brookhaven, NY) 

animal facility. They were allowed to acclimate for at least one week before radiation 

exposure. 

At about 5 weeks of age, rats were anesthetized with LP. ketamine (80 

mg/kg)/xylazine (8 mg/kg) and placed in a custom-made irradiation jig that held their 

head in a fixed position by a tooth bar. The jig was placed behind a 6 mm lead shield for 

c Gender differences in response to radiation have been reported in patients receiving cranial radiotherapy 

(13, 95). These reports found that girls had increased risk for neurocognitive impairments. However the 

underlying mechanisms of gender differences are not well understood. While gender differences to 

radiation have important basic science and practical implications at this exploratory stage of the project, I 

felt that avoiding the possible influences of menstrual cycle was more prudent. Also, previous HZE 

radiation studies mostly used male rodents, allowing more direct comparisons with my studies. 
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X-rays or a 40 mm tungsten shield for HZE that protected the anterior portion of the rats' 

muzzle and the posterior portion of the body from the pinnae backwards. Body doses of 

the cranial dose were 1-3% for X-rays and < 0.8% for HZE. Rats were given a single 

dose of irradiation using either X-rays or 56Fe particles. For X-ray exposure, the animals 

were given whole brain irradiation of 10 or 13 Gy of 200 kVp X-rays at a dose rate of 3 

Gy/min at EVMS. Tron-56 particle radiation (1 GeV/n, LET = 150 keV/um) was 

generated using the Alternating Gradient Synchrotron (AGS) in Brookhaven National 

Laboratory (BNL) of NASA Space Radiation Laboratory (NSRL). The animals were 

given a single dose (0.6, 1.4 or 2.0 Gy) of whole brain irradiation at a dose rate of 0.5 

Gy/min. After a week of recovery time, the rats were transported to EVMS. 

The animals were housed either singularly or in pairs in standard cages in a group 

housing environment, maintained on a 12-h light/dark cycle with lights on from 7:00 AM 

to 7:00 PM. Ambient temperature was maintained at 24.5 ± 0.5°C. The rats were given ad 

libitum access to autoclaved rat chow and water. Their weight was monitored on a 

weekly basis. No specificity of weight loss was observed in any of dose groups. 

Three or six months after irradiation, animals were sacrificed under anesthesia of 

15% halothane in mineral oil, and brain regions of interest were dissected. These time 

points were selected to investigate late-developing radiation effects on the CNS (46), 

One half of the brain tissue was immediately used for making slice or synaptosomal 

preparations for release assay. The other half was kept as dry tissues at -80°C until use 

for western blotting and lipid peroxidation experiments. 

The present project was conducted in accordance with the National Institutes of 

Health guidelines for the care and use of animals in research, and was approved by the 
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Institutional Animal Care and Use Committee of EVMS and by those of BNL. Animal 

facilities at EVMS are accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care, International. 

Slice and Synaptosomal Preparation 

After anesthesia with 15% halothane in mineral oil and decapitation, brains were 

rapidly removed and placed into ice-cold phosphate buffered saline (PBS), pH 7.4. The 

associative cortex, the hippocampus, and the striatum were dissected using visual 

landmarks. 

For slice preparation, brain tissues were cut into minces to increase surface area 

for radioactive-tagged neurotransmitter uptake and oxygen/glucose supply. 

Synaptosomal preparation was made as previously described (88). Briefly, brain 

tissues were homogenized at 900 rpm with a motor-driven homogenizer in ice-cold iso-

osmotic solution containing 0.32 M sucrose, 100 uM EDTA, and 5 mM HEPES, pH 7.4. 

Debris and nuclei were pelleted by differential centrifugation at 900 x g at 4°C for 10 min, 

and supernatant containing synaptosomes was pelleted at 11,500 x g at 4°C for 20 min. 

Final pellets were resuspended in ice-cold aerated (95% O2,5% CO2) Krebs-bicarbonate-

HEPES buffer (KBH) composed of the following (in mM): NaCl, 118; KC1, 3.5; CaCl2, 

1.25; MgS04, 1.2; KH2PO4, 1.2;NaC03,25; HEPES-NaOH, 5, (pH 7.4); D-glucose, 11.5, 

and allowed to equilibrate for at least 30 min on ice. For catecholamine release 

measurement, ascorbic acid, 0.6 mM; EDTA (ethylene-diamine-tetra-acetic acid), 0.1 

mM; and pargyline, 0.01 mM was added to KBH buffer to reduce chemical oxidization, 

free radical formation, and monoamine oxidase (MAO) mediated rapid catecholamine 

metabolism. 
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Measurement of Radioactive-tagged Neurotransmitter Release from Slices 

Neurotransmitter release was measured as described previously (88). To label 

endogenous neurotransmitter pool, hippocampal slices were incubated for 30 min with 

173 nM [3H]-norepinephrine (NE) (l-[7, 8-3H] norepinephrine, 35.0 Ci/mmol specific 

activity, Amersham Biosciences). Frontal associative cortex and striatal slices were 

incubated with 110 nM [3H]-dopamine (DA) (3, 4-[ring-2, 5, 6-3H]-

dihydroxyphenylethylamine hydrochloride, 55 Ci/mmol specific activity, PerkinElmer) 

for 30 min at 35°C in freshly bubbled KBH buffer with pargyline addition. Next, slices 

were transferred to a superfusion chamber (0.1 ml chamber volume) containing a glass 

fiber filter (GF/B) and superfused continuously with bubbled KBH (warmed to 35°C, 0.2 

ml/min superfusion rate) for 40 min to remove un-incorporated radioactivity. Three 3-

min fractions of the superfusate were collected to determine basal level of efflux, then, 

evoked release was triggered by rapid switching of superfusion lines from normal KBH 

to a KBH containing 50 mM KC1, for 1.5 min to induce neuronal depolarization. In the 

depolarizing buffer the NaCl concentration was reduced from 118 mM to 72.7 mM in 

order to maintain iso-osmolarity. The total of nine superfusate fractions was collected 

continuously throughout the experiment. 

Measurement of Radioactive-tagged Neurotransmitter Release from Synaptosomes 

To label endogenous neurotransmitter pools, synaptosomes were incubated with 

173 nM [3H]-NE (l-[7, 8-3H] norepinephrine, 35.0 Ci/mmol specific activity, Amersham 

Biosciences) for 5 min at 35°C in freshly bubbled KBH. To simultaneously measure both 

glutamate and GABA release, 115 nM [3H]-glutamate (L-[3, 4-3H]-glutamic acid, 52.0 

Ci/mmol specific activity, PerkinElmer, Boston, MA) and 73 nM [14C]-GABA (4-
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aminobutyric acid-earboxy-14C, 8.3 Ci/mmol specific activity, SIGMA) were added to 

synaptosomes for 5 min at 35°C in freshly bubbled KBH. Labeled synaptosomes were 

transferred to a superfusion chamber (0.1 ml chamber volume) containing a glass fiber 

filter (GF/B) covered with 50 ul of 50% Sephadex slurry, and superfused with 

continuously bubbled KBH (warmed to 35°C, 0.8 ml/min superfusion rate) for 12 min to 

remove un-incorporated radioactivity. Three 1-min fractions of the superfusate were 

collected to determine basal neurotransmitter efflux (basal release). Release was induced 

by rapid switching of superfusion lines from normal KBH to a KBH containing 0.5 M 

sucrose for 30 sec to produce a temporary hyperosmotic shock. The total of nine 

superfusate fractions was collected continuously throughout the experiment. 

Determining Radioactivity and Calculating Neurotransmitter Release 

Tritium and/or 14C contents of individual fractions and activity remaining in the 

superfusion chamber was counted at the end of the experiment by liquid scintillation 

spectrometer (LS 3801, Beckman Instruments, Inc., Fullerton, CA), which was calibrated 

and validated in the range of expected radioactivity efflux values. 14C and 3H decay emit 

different energy spectra (18.3 keV, 156 keV, respectively), allowing separate detection. 

Release was expressed as the fractional release rate, calculated as the fraction of 

radioactivity released at any given time divided by the amount remaining in sample 

preparation at that particular time point. Total evoked release was calculated from the 

area under the peak. 

Statistics 

Effects of radiation dose and time course between 3 and 6 month points were 

analyzed by Kruskal-Wallis one-way ANOVA on ranks followed by Dunn's method for 
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pair-wise comparisons (SigmaStat 2.03). Treatment effects in comparison with controls 

were evaluated with Student's i-test or non-parametric Mann-Whitney Rank Sum test 

(SigmaStat 2.03) when normality tests failed. Significance was considered at P < 0.05. 

RESULTS 

Point six Gy of56Fe (1 GeV/n) radiation produced a significant inhibitory effect on [ HJ-
glutamate efflux from the hippocampal synaptosomes 

Iron-56 induced CNS effects have several characteristics in common, e.g. either 

an extremely steep dose-response curve or the lack of a dose-response relationship 

depending on the measured endpoint (61). To evaluate 56Fe radiation dose effect on the 

hippocampal nerve terminal, I have tested three doses; 0.6, 1.4, and 2.0 Gy. 

Dose-response analysis on 0.5 M sucrose-evoked [3H]-glutamate efflux revealed 

that 0.6 Gy of 56Fe radiation (1 GeV/n) produced the most significant inhibitory effect 

(14.9 ± 3.61% of control, P = 0.02, Kruskal-Wallis one-way ANOVA followed by 

Dunn's pairwise comparison) three months after exposure (filled circle) (Fig. 11), while 

1.4 Gy radiation did not significantly alter evoked release (9.6 ± 7.06% of normal). These 

results suggest that the threshold for this biochemical endpoint may be equal or lower 

than 0.6 Gy three months post irradiation. 

Furthermore, six months after exposure (open circle), the inhibitory effect induced 

by 0.6 Gy persisted (25.0 ± 5.23% of normal, P = 0.002, Kruskal-Wallis one-way 

ANOVA followed by Dunn's pairwise comparison), while the effects of > 1.4 Gy of Fe 

radiation were non-significant. Based on these findings, I choose to use a single dose of 

0.6 Gy to further investigate biochemical effects of 56Fe radiation on hippocampal 

neurotransmission. 
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FIG. 11. Dose effects of 56Fe radiation (1 GeV/n) on hyperosmotic sucrose evoked 
[3H]-glutamate efflux from hippocampal synaptosomes at three (filled circle) and six 
(open circle) months post irradiation. * indicates significant differences from controls (P 
< 0.05), analyzed with Kruskal-Wallis one-way ANOVA followed by Dunn's pairwise 
comparison. 
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Figure 12A shows representative experiment on effects of 0.6 Gy of 56Fe radiation 

on [3H]-glutamate release from hippocampal synaptosomes. While basal release, 

observed the first 4 minute time window, was not significantly affected (95.6 ± 2.08% of 

control, Figs. 12B, C), hyperosmotic sucrose evoked [3H]-glutamate efflux from 

hippocampal synaptosomes observed 5 and 6 minute time window was significantly 

reduced (85.2 ± 3.61% of control, P = 0.01, Mann-Whitney Rank Sum Test, Figs. 12B, 

Effects of 0.6 Gy of56Fe radiation (1 GeV/n) were more pronounced on hippocampal 
than associative cortical synaptosomes. 

Glutamate is the principal excitatory neurotransmitter in the brain, and is 

abundant in the hippocampus as well as in the cortex (70, 96). To determine if the same 

dose of 56Fe particles exerts inhibitory effect on glutamatergic nerve terminals of 

different brain regions, I have evaluated [3H]-glutamate release from the associative 

cortex. Associative cortex is functionally distinct cortical area, located in the anterior part 

of the cortex, which includes prefrontal cortex (PFC). The basic function of the brain area 

is to orchestrate goal oriented behavior. Associative cortical glutamatergic system is 

vulnerable to aging, and aging induced reduction of glutamate content in the area was 

documented(64). 

My results showed that 0.6 Gy of 56Fe radiation did not disturb [3H]-glutamate 

release in associative cortical nerve terminals when tested three months after exposure 

(Fig. 13). Normalized basal and 0.5 M sucrose evoked release were 93.8 ± 4.27% and 



39 

20 

E £ • 
_3 

<L> 

* 2 10 

5H 

Hippocampal Glutamate Release 

-0 - - Control 

o —•— 06 Gy 

t"-»-» 
n — p — i — i — i — i — i 

1 2 3 4 5 6 7 8 9 
Time (min) 

B 
20 

E 3? 15 
to S^ 

o) i 10 

D Control 
B 0.6 Gy 

X 

3 100 -
i > -
u - «-«• 
« o 
0) L. 
<-> -^ (0 C 
£ ° 

4rf <•-
3 O 
9s 3? 
X 
" 0 -

1 

Basal Evoked %Basal %Evoked 

FIG. 12. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on [3H]-glutamate release from 
rat hippocampal synaptosomes three months post irradiation. (A) Representative 
experiment. Glutamate release was evoked from superfused synaptosomes by 30 sec 
pulses of hypertonic sucrose (arrow). (B) Summary graph of experiments indicating the 
fractional release of [3H]-glutamate basal and hypertonic sucrose evoked release 
calculated as the area under the peak. (C) Fractional release values under normal 
conditions were set to 100% and treatment effects were normalized to control. Graphs 
show means ± SEM (n = 8, each). *': P < 0.05. 
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FIG. 13. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on [3H]-glutamate release from 
associative cortical synaptosomes three months post irradiation. (A) Representative 
experiment. Glutamate release was evoked in superfused synaptosomes by 30 sec pulses 
of hypertonic sucrose (arrow). (B) Summary graph of experiments indicating the 
fractional release of [3H]-glutamate basal and hypertonic sucrose evoked release 
calculated as the area under the peak. (C) Fractional release values under normal 
conditions were set to 100% and treatment effects were normalized to control. Graphs 
show means ± SEM (n - 3, each). 
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95.5 ±3.05%, respectively. The results suggest that hippocampal glutamatergic nerve 

terminals are more sensitive to 0.6 Gy of 56Fe particle radiation. 

Point six Gy of56Fe radiation (1 GeV/n) produced a significant inhibitory effect on 
hippocampal GABA release 

My next question was whether the inhibitory effect of 0.6 Gy of 56Fe radiation 

was selective for glutamatergic nerve terminals. To address this question, I labeled 

hippocampal synaptosomes with [14C]-GABA as well as [3H]-glutamate to compare both 

release in the same preparation. [14C]-GABA is incorporated through nerve terminal and 

synaptic vesicle transporters, while [3H]-glutamate is incorporated by a different set of 

nerve terminal transporters (GLT-1 and EAAC1) and synaptic vesicle transporter (VGlut). 

Release was triggered by a pulse of hypertonic sucrose, and 14C and 3H contents were 

simultaneously collected, as described earlier. 

Evoked [14C]-GABA efflux highly correlated with that of [3H]-glutamate (Fig. 14, 

R2 = 0.893). 0.6 Gy of 56Fe radiation reduced evoked [14C]-GABA release significantly 

(82.5 ± 6.06% of control, P < 0.001, Mann-Whitney Rank Sum Test), while basal evoke 

was not altered (97.6 ± 2.62%, n.s., Fig. 15). These data indicate that inhibitory effect of 

0.6 Gy of 56Fe radiation on hippocampal nerve terminals was not selective to the 

glutamatergic system, and that the same cellular defects may underlie the functional 

impairments in both glutamatergic and GABAergic functions. 

Effects of 0.6 Gy of36Fe radiation were not significant on hippocampal noradrenergic 
system 

I have also tested the effects of 0.6 Gy of 56Fe particles on noradrenergic 

terminals in the hippocampus. Although a trend of decrease was observed in the size of 
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FIG. 14. Correlation between evoked [3H]-glutamate release and [14C]-GABA release. 
Hippocampal synaptosomal preparation was double labeled with [3H]-glutamate and 
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(1 GeV/n) was not selective for neurotransmitter types. 
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hypertonic sucrose (arrow). (B) Summary graph of experiments indicating the fractional 
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44 

evoked release, it was not statistically significant (91.5 ± 5.20% of control, P = 0.343, Fig. 

16). Basal release was spared (107.7 ± 10.65% of control). 

The inhibitory effects of 0.6 Gy of 56Fe radiation on [ HJ-glutamate and [ CJ-GABA 
release persisted at 6 month post irradiation 

To test the temporal changes in HZE induced neurotransmitter release, I have 

evaluated the effects of 0.6 Gy of 5^Fe radiation six months after irradiation (Fig. 17). The 

results revealed that the effects were persistent on both glutamatergic (evoked release; 

75.2 ± 5.23% of control, P < 0.05) and GABAergic release (75.8 ± 3.65 of control, P < 

0.005) compared to control. There was a statistically significant difference in time course 

effect (glutamatergic, P = 0.002; GABAergic, P < 0.001, Kruskal-Wallis one-way 

ANOVA), indicating a possible progressive effect, although measures taken at 3 months 

and 6 months were not statistically different. Basal levels of both systems were not 

changed: glutamatergic, 103.8 ± 2.33%; GABAergic, 99.6 ± 6.00%. There was no effect 

observed in either basal or evoked release from noradrenergic nerve terminals. 

DISCUSSION 

I found that 0.6 Gy of 56Fe radiation (1 GeV/n) led to significant reduction in 

hypertonic sucrose evoked release, a measure of the readily releasable pool (RRP), of two 

major neurotransmitters, glutamate and GABA, at three months after exposure. Moreover, 

these effects were persistent until six months post radiation. 

While further studies with lower doses need to be carried out, 0.6 Gy may be a 

threshold dose for inducing impairments in hippocampal glutamatergic and GABAergic 
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FIG. 16. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on [3H]-norepinephrine (NE) 
release from rat hippocampal synaptosomes three months post irradiation. (A) 
Representative experiment. NE release was evoked in superfused synaptosomes by 30 sec 
pulses of hypertonic sucrose (arrow). (B) Summary graph of experiments indicating the 
fractional release of [3H]-NE basal and hypertonic sucrose evoked release calculated as 
the area under the peak. (C) Fractional release values under normal conditions were set to 
100% and treatment effects were normalized to control. Graphs show means ± SEM (n = 
8, each). 
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neurotransmission. It is of note that the lowest dose we tested induced the largest deficits 

in hippocampal neurotransmission. This finding is in line with dose response studies for 

the induction of ROS by 56Fe radiation (26). Limoli and co-authors found that in a range 

of low dose (0.25 ~'l Gy) of 56Fe particles, ROS production was linear until a peak was 

reached at 1 Gy. After that point, ROS production started to decline. Rabin and co­

workers also documented that the dose-response curve of 56Fe particle induced changes in 

neurochemical function are extremely steep (61). They observed a significant reduction 

in K+-depolarization evoked striatal DA release by doses 0.1 to 0.5 Gy, but there was no 

effect when dose was increased to 5 Gy. Thus, my results are consistent with the 

characteristics of 56Fe irradiation reported by others. 

In contrast to glutamatergic and GABAergic impairments, release from the 

noradrenergic nerve terminals was not significantly changed by the same regimen of 

irradiation. It is noteworthy that 2.0 Gy of 56Fe particle could induce significant reduction 

in depolarization evoked [3H]-norepinephrine release from slices of rat hippocampus 

(Chapter I, Preliminary Results), suggesting that threshold dose to cause perturbation in 

hippocampal noradrenergic neurotransmission may be higher than 0.6 Gy. Alternatively, 

it is possible that other elements of neurons, not terminals, which are preserved in slices, 

but not in synaptosomes, may be direct targets of radiation. 

Glutamate and GABA are the two major neurotransmitters in the hippocampus 

and are involved in cognitive functions. The hippocampus is vulnerable to aging, and 

numerous studies suggest that disintegrating glutamatergic neurotransmission is a factor 

in aging (64, 97, 98). It is noteworthy that radiation accelerates aging, and the similarity 

of aged rats and 56Fe irradiated rats in measures of nigrostriatal system dependent 
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functions (5) and in hippocampal dependent spatial learning and memory (9) have been 

noted. 

My results also indicate that the effect of 0.6 Gy of 56Fe radiation is region 

specific; glutamatergic chemical transmission was disturbed in nerve terminals of the 

hippocampus, while it was normal in the associative cortex. The nature of this region 

specificity is difficult to discern at the present level of investigation. One possible 

explanation may be regional differences in antioxidative activities. Todorovic et al. found 

that after 2.0 Gy of y-radiation exposure mitochondrial superoxide dismutase (SOD) 

activity was significantly lower in the hippocampus than in the cortex (37). Considering 

that mitochondrial SOD is induced in response to radiation, and that neurons cannot 

tolerate the depletion of mitochondrial SOD, their finding, at least partially, may explain 

the higher radio- vulnerability of the hippocampus. 

Despite significant reduction in evoked release in glutamatergic and GABAergic 

nerve terminals, basal release remained unchanged in both nerve terminals. Basal release 

reflects spontaneous release, which is independent of action potential depolarization. 

Studies have shown that spontaneous release may originate from a different vesicle pool 

from the RRP with different states of releasability (92). The exact nature of the molecular 

diversity between these two vesicle pools remains to be identified, although it has been 

suggested that isoforms of SNARE proteins involved in basal release are different from 

those participated in evoked (92, 93). My findings of unaltered basal release and 

significantly altered evoked release, thus, suggest that radiation effects may have spared 

proteins underlining spontaneous release, and also the basic release machinery. 
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The question still remains, however, as to the locus of the radiation-induced 

deficit(s) in perturbation of glutamatergic and GABAergic release. The extent of 

hypertonic sucrose evoked release probes the size of the RRP, which reflects the rate of 

recycling of synaptic vesicles during extended stimulation (99). Upon depletion of 

vesicles in RRP, vesicles are replenished from a reserve pool. Reduction in release might 

reflect radiation induced change in size of the reserve pool, or total size of the recycling 

pool, which combines both RRP and the reserve pool. To test this, I have investigated 

effects of 56Fe radiation on the abundance of synaptic vesicles by quantitative analysis of 

synaptic vesicle marker proteins (Chapter III). 

Moreover, significant influence on the size of release originates Ca dynamics, 

which depends on: 1) numbers and types of voltage-gated Ca2+channels.; 2) Ca + 

buffering and transient local Ca2+ concentration; and 3) Ca2+-binding property of Ca2+ 

sensor (86, 99). These factors will influence the size of hyperosmotic sucrose evoked 

release, even though the stimulus itself does not require influx of Ca2+. Thus, any change 

that alters composition and tension of the participating membranes of the active zone 

influences neurotransmitter release, even by simply stretching the membrane (100). 

Considering oxidative effects induced by radiation and increased levels of lipid 

peroxidation previously documented (27, 36), there may be possible alterations in 

membrane structure and fluidity after 0.6 Gy 56Fe irradiation. Consequence of lipid 

peroxidation is unregulated membrane potential (101), which may imbalance cytoplasmic 

Ca2+ concentration and ultimately affects Ca2+ dependent steps of the synaptic vesicle 

cycle. I have tested the level of lipid peroxidation in the hippocampus, and obtained 

supportive results (Chapter IV). 
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CHAPTER III 

EFFECTS OF HZE RADIATION ON 
SELECTED SYNAPTIC PROTEIN LEVELS 

BACKGROUND 

In the previous chapter I reported significant reduction of hypertonic sucrose 

evoked release from glutamatergic and GABAergic nerve terminals in the hippocampus, 

three and six months after exposure to 0.6 Gy of 56Fe radiation. The reduction could be a 

reflection of radiation induced depletion of synaptic vesicle pools. To address this, I 

assayed synaptic vesicle marker protein levels in hippocampal synaptosomes after 56Fe 

irradiation. Synaptophysin was used as a general marker of all synaptic vesicle types and 

VGlutl (vesicular glutamatergic transporter 1) was used as a marker of glutamatergic 

synaptic vesicles. 

Neurotransmitter receptor levels are differentially regulated during development 

(102), and in synaptic plasticity processes (103). Membrane structure and fluidity (62) 

and radiation (25) also affect neurotransmitter receptor levels. Because of the importance 

of those proteins in glutamatergic, GABAergic and noradrenergic transmission, I 

determined levels of glutamatergic AMP A (a-amino-3-hydroxy-5 -methyl -4-isoxazole-

propionic acid) and NMDA (N-methyl D-aspartate) receptors (NR1, NR2A and NR2B), 

GABAergic (y-amino butyric acid) GABAA and G A B A B receptors, and noradrenergic al , 

a2 and pi adrenergic receptors after 0.6 Gy of 56Fe radiation exposure. 
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PSD-95 (postsynaptic density 95 kDa), a scaffold protein which anchors 

glutamatergic receptors, was also tested to evaluate whether number or size of excitatory 

postsynaptic contacts were affected. 

To probe a possible neuronal regeneration as compensatory response after 

irradiation, I also have analyzed the level of MAP2 (microtubule associated protein 2), 

which is involved in the stabilization and extension of dendrites (104). 

Each protein is discussed in the following sections. 

Synaptophysin 

Synaptophysin is a synaptic vesicle associated protein that constitutes about 7% 

of the total vesicle proteins (105). Due to its ubiquity at all types of synaptic vesicles, it 

has been widely used as a general marker for nerve terminals (106, 107). Synaptophysin 

interacts with an essential SNARE protein (soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor), synaptobrevin (also referred to as VAMP, vesicle associated 

membrane protein). Exact function of the synaptophysin-synaptobrevin complex is 

largely unknown, however it is speculated that synaptophysin may temporally restrict 

availability of synaptobrevin by binding to it (106). 

Since synaptophysin levels positively correlate with the number of synaptic 

vesicles (68), I have used this protein as a general marker of total synaptic vesicle pool in 

nerve terminals. 

VGlutl 

VGlutl is a transporter of glutamate into synaptic vesicles. VGlutl is driven by an 

ATP dependent electrochemical proton gradient. Since VGlut is exclusive to vesicles 

containing glutamate, and undetectable in other neuron types or neuronal components 
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(77), it has been used as a marker for glutamatergic synaptic vesicles and nerve terminals. 

Two isoforms, VGlutl and VGlut2, are identified in glutamatergic synapses. Both mRNA 

(75) and protein (108) levels of VGlutl are predominant in hippocampus, thus, VGlutl is 

more extensively used for hippocampal studies (108). 

A recent study showed diminished VGlutl expression in the hippocampus and 

prefrontal cortex of schizophrenic patients, suggesting usefulness of this marker in 

pathological studies (75). Glutamate is a ubiquitous amino acid in neural tissue and 

participates in a variety of intermediary metabolisms. For example, glutamate functions 

in the detoxification of ammonia, is a building block in the synthesis of proteins and 

peptides including glutathione, and is a precursor in GABA synthesis. Only 20 to 30% of 

neural glutamate content functions as an excitatory neurotransmitter. 

To evaluate 56Fe radiation effects on glutamate as a neurotransmitter, I assayed 

VGlutl levels, as a measure of total glutamatergic synaptic vesicle pool. 

Glutamatergic receptors 

A recent study showed that rats subjected to a clinically relevant regimen of 

radiation induced significant reduction in performance of hippocampus dependent 

learning tasks, and also that the same regimen altered NMD A receptor levels in the 

hippocampus, indicating a role of NMDA receptors in radiation induced cognitive 

impairments (25). The importance of glutamatergic NMDA receptors in LTP (40) and 

LTD (73) has been well documented, providing a strong link between the glutamatergic 

systems and the mechanisms of learning and memory (40, 74). These results prompted us 

to evaluate NMDA receptor levels after 56Fe irradiation. 
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The NMDA receptor functions as a glutamate gated ion channels that is highly 

permeable to Na+ and Ca2+. Mg2+ blocks this NMDA channels in a voltage-dependent 

manner, thus, rendering NMDA receptors voltage sensitive. NMDA receptors are 

heterometric complexes consisting of obligatory NR1 and various NR2 subunits. The 

NR1 subunit serves as a key subunit essential for ion selectivity of the NMDA channels, 

whereas the NR2 subunit mainly participates in channel gating by voltage and Mg . Liu 

and co-authors reported that distinct NMDA subunits were critical factors to determine 

the direction of synaptic plasticity (73). They found that the activation of NR2A-

containing NMDA receptors led to LTP formation, while the activation of NR2B-

containing NMDA receptor produced LTD (73). Although this is still under debate, e.g. 

other group demonstrated NR2B's involvement in LTP (109), general consensus is that 

the combinations of NR1 with different NR2 subunits give rise to functional diversity. 

To probe the effects of HZE radiation on these functionally different subunits, I 

have used antibodies against NR1, NR2A and NR2B subunits. 

In addition, I have extended our investigationto AMP A receptors, another type of 

glutamatergic ionotropic receptors, which possess mostly Naf-permeable channels. 

Excessive release of glutamate may cause overload of cellular Na+ and Ca2+ through 

these glutamatergic ionotropic receptors, leading to excitotoxic cell death. Such scenario 

may play a role in cerebral ischemia and traumatic brain injury, and also, in chronic 

neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) (110), 

Parkinson's disease (111) and Alzheimer's disease (112). 

AMPA receptors respond faster to glutamate than NMDA receptors and mediate 

the bulk of rapid excitatory synaptic current induced by glutamate (113). Previous results 
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showed that LTP requires insertion of new AMP A receptors to the synapse by a 

mechanism that involves the association between GluRl AMPA subunit and a PDZ 

domain protein, such as PSD-95 (discussed below) {114). 

To probe the effects of HZE radiation on levels of AMPA receptors, I have used 

antibody against GluRl subunit. 

GABAergic receptors 

GAB A is the major inhibitory neurotransmitter in the adult hippocampus and 

can hyperpolarize postsynaptic membrane by influx of CI" through GABAA receptors. 

Metabotropic GABAB receptors are coupled to cAMP, K+ channel or Ca2+ channel 

regulation. Behavioral studies have suggested that GABAB receptor blockade can 

improve cognition (41). 

To probe the effects of HZE radiation on levels of GAB A receptors, I have used 

antibody against GABAA and GABAB subunits. 

Noradrenergic receptors 

NE is a neuromodulator and plays a prominent role in learning tasks (44). It 

transmits the effects through three subtypes of receptors; i.e. Gq-coupled al-, Gi-coupled 

a2-, and Gs-coupled pi-adrenergic receptors. NE activates cAMP-dependent PKA and 

calmodulin-dependent protein kinase (CaMKII) via (31 adrenergic receptors, and 

stimulation of pi adrenergic receptors leads to profound effects on the induction of LTP 

in multiple hippocampal pathways (42, 43, 115). NE also modulates LTP through al 

adrenergic receptors (43, 81, 82), and reduces LTP through Gi-coupled <x2 adrenergic 

receptors (116). Since NE is released during emotional arousal, its involvement in 

emotional influence on learning and memory has been suggested. Supporting this notion, 
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recent study showed that NE-driven phosphrylation of GluRl subunit of-AMPA receptors 

facilitates synaptic delivery of AMP A receptors in LTP expression (117). 

To test for possible radiation effects on noradrenergic signal transmission, I have 

used antibodies against al-, a2- and (31-adrenergic receptors in this study. 

PSD-95 

The postsynaptic compartment of excitatory synapses is characterized by an 

electron-dense region, referred to as the postsynaptic density (PSD) (indicated by small 

arrows in Figure 9) that consists of adhesion molecules, neurotransmitter receptors, and 

high density of scaffolding proteins. PSD-95 (PSD-95 kDa) is a major scaffold protein 

enriched at glutamatergic postsynaptic membranes. By homomultimerizing through N-

terminus, PSD-95 molecules form a scaffold. PSD-95 contains three PDZ domains (a 

domain commonly discovered in PSD-95/Dlg/ZOl proteins), which anchor various 

proteins such as adhesion molecules, e.g. neuroligin-1, glutamatergic NMDA receptors, 

and through an adapter protein, stagazin, glutamatergic AMP A receptors. PSD-95 

controls subcellular localization of glutamatergic receptors by facilitating alignment of 

postsynaptic receptors with the presynaptic active zone. 

The reduced glutamatergic release we observed (Chapter II) may produce a 

coordinated reduction in the levels of PSD-95. To test this possibility, I have determined 

PSD-95 levels by immunoblotting. 

MAP2 

Microtubules are major structural components of the neuronal cytoskeleton in 

axons and dendrites. MAPs (microtubule-associated protein) are a family of proteins 

involved in neuromorphogenesis, among which MAP2 is the best characterized. In 
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mature neurons MAP2 is compartmentalized within dendrites of neurons {118) and 

largely excluded from axons (119). It forms microtubule bundles with straight and rigid 

appearance (120). MAP2 also plays an important role in the extension of the dendritic 

cytoskeleton and in dendritic stability by forming cross-bridge between microtubules and 

other cytoskeletal elements (104). Multiple lines of evidence also indicate that MAP2 

levels correlate with neuronal response to oxidative stress (121, 122). Treatments with 

H2O2 led to a remarkable reduction in MAP2 levels, while antioxidant treatments up-

regulated MAP2 levels. 

The MAP2 family consists of three isoforms, MAP2a, 2b and 2c. Each has 3 to 4 

microtubule-binding repeats near the C-terminus (123) and an N-terminal projection 

domain of varying size, which has a net negative charge and exerts a long-range repulsive 

force (124) that regulates microtubule spacing (118). MAP2a and 2b are large proteins 

with longer projection domains (Mw 280 kDa), while MAP2c, which is often highly 

expressed during early development, is smaller (Mw 70 kDa). Different MAP2 isoforms 

may have distinct capacities in stabilizing the cytoskeleton. And MAP2c may have the 

highest capacity to interact with both microtubules and F-actin (125). It induces neurite 

initiation by reorganizing a primary actin-rich structure into a secondary microtubule-rich 

structure (122). 

MAP2c may have at least two phosphorylated sites, and is a substrate for a 

number of protein kinases (126). It has been suggested that MAP2 phosphorylation state 

may modify microtubule stability, and thus, regulate neuronal development (126, 127). 

Previous studies found that highly phosphorylated MAP2c showed a lower affinity for 
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microtubule, resulting in decreases in microtubule bundling (126), although precise 

functions of individual phosphorylation sites are not known. 

I measured MAP2c levels as an index of dendritic neuronal response to radiation 

induced oxidative stress. 

MATERIALS AND METHODS 

Sample Preparation for Western Blotting 

Samples were prepared from hippocampal tissues as described earlier (Chapter II, 

Materials and Methods, Sample Preparation). After thawing frozen samples on ice, 

tissues from 4 to 6 animals were pooled. This was necessary for obtaining reliable signals 

in the dynamic range of detection from low density synaptic proteins. Pooled tissues were 

homogenized in isotonic sucrose containing 0.32 M sucrose, 100 uM EDTA, and 5 mM 

HEPES, pH 7.4, and synaptosomes were prepared. Total protein concentration in SI 

fractions was determined using the Coomassie Plus better Bradford assay kit (Pierce) 

according to manufacturer's instructions. 

Simultaneous Detection of Two Proteins on Western Blots using Two Near-Infrared (IR) 
Fluorophores 

Synaptosomes were suspended in SDS-PAGE sample buffer with 8 M urea and 

2% mercaptoethanol, and incubated at 60°C for 20 min to accelerate protein denaturing. 

Proteins were separated on 3% polyacrylamide stacking and 7.5% running gels for 20 

min at 80 V followed by 40 min at 150 V, then transfer to nitrocellulose membrane 

(Whatman, Dassel, Germany) for 1 h at 1.5 A in a high intensity field kept at room 

temperature by a cooling coil (Bio-Rad, Hercules, CA). Membranes were blocked in 
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buffer containing 5% nonfat milk and 5% porcine serum in TBST (Tris-buffered saline 

Tween-20) containing Tris 20 mM, NaCl 134 mM, pH 7.6 with 0.1% v/v Tween-20 for 

30 min at room temperature, and then incubated with primary antibodies overnight at 4°C. 

I utilized Odyssey (Li-Cor) Multiplexed Detection which uses two IR 

fluorescence channels for simultaneous analysis of two targets. Two primary antibodies 

from different host species were incubated together to probe a blot; rabbit antibody 

against a protein of interest, and mouse antibody against loading controls, actin or vasolin 

containing protein (VCP). After washing with PBS (phosphate buffered saline) 

containing 0.01 M phosphate buffer, 2.7 mM KC1, and 137 mM NaCl, pH 7.4 with 1% 

Tween-20, incubation with two IR-conjugated secondary antibodies was carried out for 1 

hour at room temperature. Five washes were carried out to remove nonspecific antibody 

binding in PBS with 1% Tween-20, or plain PBS. 

Visualization of the Western blot signals from two IR fluorophores was done 

using the Odyssey IR Imaging System (LICOR, Lincoln, NE) in 700 and 800 nm 

channels in a single scan at 42 urn high resolution. Quantification was performed with 

Odyssey Application Software version 2.1 (LICOR, Lincoln, NE). 

Integrated intensity signal was normalized for loading controls to gain a measure 

independent of sample loading errors. For each specific protein, I optimized general 

immunoblotting parameters (Table 2) and determined the linear range of IR fluorescence 

signal, by loading different protein amounts of the sample. 

In some cases where the two primary antibodies were raised in the same species, 

diluent dilutions factor of secondary antibody were determined to obtain conditions with 

the least competition between the primary antibodies for the secondary antibody. Samples 



TA
B

LE
 2

 

O
pt

im
iz

ed
 G

en
er

al
 Im

m
un

ob
lo

tti
ng

 P
ar

am
et

er
s 

Se
co

nd
ar

y 
A

b 
Pr

im
ar

y 
A

b 

Pr
ot

ei
n 

lo
ad

ed
 la

: 
Pr

od
uc

ed
 in

 
Im

m
un

og
en

 
D

ila
tio

n 
D

ila
tio

n 

L
oa

di
ng

 C
on

tr
ol

 
1"

 A
b.

 D
ilu

tio
n,

 2
uA

b.
 D

ila
tio

n 

N
M

D
A

M
U

 
N

M
D

A
M

12
A

 
N

M
D

A
!<

*R
2B

 
A

M
PA

G
lu

R
l 

G
A

B
A

A
al

 
G

A
B

A
B

 

al
 

a2
A

 
(il

 

Sy
na

pt
op

hy
si

n 

V
G

lu
tl 

PS
D

-9
5 

25
 u

g 
25

 u
g 

40
 u

g 
25

 u
g 

25
 u

g 
25

 u
g 

80
 u

g 
80

 u
g 

80
ug

 

20
ug

 

<
10

ug
 

25
 u

g 

M
A

P2
 

ra
bb

it 
po

ly
cl

on
al

 
C

-t
er

m
in

al
oi

ra
tM

tl
 

1:
50

0 
ra

bb
it 

po
ly

cl
on

al
 

M
ou

se
 a

a.
 1

26
5-

14
64

 
1:

50
0 

ra
bb

it 
po

ly
cl

on
al

 
1:

25
0 

ra
bb

it 
po

ly
cl

on
al

 
R

at
 a

a.
 2

76
-2

87
 

1:
50

0 

ra
bb

it 
po

ly
cl

on
al

 
hu

m
an

 a
a.

 1
66

-2
96

 
1:

25
0 

m
ou

se
 m

on
oc

lo
na

l 
R

at
 R

2 
aa

. 8
09

-9
30

 
1:

25
0 

ra
bb

it 
po

ly
cl

on
al

 
hu

m
an

 a
a.

 3
39

-3
49

 
1:

25
0 

ra
bb

it 
po

ly
cl

on
al

 
K

A
SR

W
R

G
R

G
M

E
K

R
 

1:
25

0 
ra

bb
it 

po
ly

cl
on

al
 

M
ou

se
 a

a.
 3

94
-4

08
 

1:
25

0 

m
ou

se
 m

on
oc

lo
na

l 
R

at
 a

a.
 2

05
-3

06
 

1:
25

00
0 

ra
bb

it 
po

ly
cl

on
al

 
R

at
 a

a.
 4

56
-5

60
 

1:
10

00
0 

m
ou

se
 m

on
oc

lo
na

l 
R

at
 a

a.
 3

53
-5

04
 

1:
50

0 

25
 u

g 
ra

bb
it 

po
ly

cl
on

al
 

M
ou

se
 a

a.
 2

-3
09

 
1:

10
00

 

IR
D

ye
SO

O
 

1:
15

00
0 

ad
in

 1
:5

00
0 

IR
D

ye
 6

80
1:

15
00

0 
IR

D
ye

SO
O

 
1:

15
00

0 
ad

in
 1

:5
00

0 
IR

D
ye

 6
80

1:
15

00
0 

IR
D

ye
SO

O
 

1:
10

00
0 

ac
tin

 1
:5

00
0 

IR
D

ye
 6

80
1:

15
00

0 
IR

D
ye

SO
O

 
1:

15
00

0 
ac

tin
 1

:5
00

0 
IR

D
ye

 6
80

1:
15

00
0 

IR
D

ye
 8

00
 

1:
15

00
0 

V
C

P 
1:

25
0 

IR
D

ye
68

01
:1

50
00

 
IR

D
ye

 6
80

 
1:

15
00

0 
ac

tin
 1

:5
00

0 
IR

D
ye

 6
80

1:
15

00
0 

IR
D

ye
80

0 
1:

15
00

0 
ac

tin
 1

:5
00

0 
M

D
je

 6
80

1:
15

00
0 

IR
D

ye
SO

O
 

1:
15

00
0 

V
C

P 
1:

25
0 

IR
D

je
68

01
:1

50
00

 
IR

D
ye

SO
O

 
1:

15
00

0 
ac

tin
 1

:5
00

0 
IR

D
ye

 6
80

1:
15

00
0 

IR
D

ye
 6

80
 

1:
15

00
0 

V
C

P 
1:

25
0 

IR
D

ve
68

0 
1:

15
00

0 

IR
D

ye
SO

O
 

1:
15

00
0 

IR
D

ye
 6

80
 

1:
15

00
0 

IR
D

ye
SO

O
 

1:
15

00
0 

ac
tin

 1
:5

00
0 

IR
D

ye
 6

80
1:

15
00

0 

ad
in

 1
:5

00
0 

IR
D

ye
 6

80
1:

15
00

0 

ac
tin

 1
:5

00
0 

IR
D

ye
 6

80
1:

15
00

0 

IR
D

ye
 6

80
 c

on
ju

ga
te

d 
go

at
 (p

ol
yc

lo
na

l)
 a

nt
i-m

ou
se

 Ig
G

 
IR

D
ye

 8
00

 c
on

ju
ga

te
d 

go
at

 (p
ol

yc
lo

na
l)

 a
nt

i-
ra

bb
it 

Ig
G

 
ac

tin
: m

ou
se

 m
on

oc
lo

na
l 

V
C

P:
 m

ou
se

 m
on

oc
lo

na
l 



60 

were assayed in duplicates for each experiment, and each experiment was repeated at 

least three times. 

Antibodies 

The rabbit polyclonal antibodies against; NR2A, TSTR1 and GluRl were purchased 

from Millipore (Temecula, CA), NR2B, al,and pi were from Abeam (Cambridge, MA), 

GABAA was from BD Biosciences (San Jose, CA), a2 was from Neuromics (Edina, MN), 

and VGlutl and MAP2 were from Synaptic Systems (Goettingen, Germany), The mouse 

monoclonal antibodies against synaptophysin, actin, PSD-95, GABAB and VCP were 

purchased from BD Biosciences (San Jose, CA). Goat anti-rabbit or goat anti-mouse 

antibodies conjugated to IR dyes (IRDye 800CW, IRDye 680, respectively, were 

purchased from LI-COR, Lincoln, NE). 

Statistics 

The results were analyzed by Student's Mest to evaluate treatment effects in 

comparison with sham-control. Time course effects were evaluated by Kruskal-Wallis 

one-way ANOVA followed by Dunn's pairwise comparison to assess three and six 

months post radiation effects. Differences between means were considered significant at 

P<0.05. 

RESULTS 

Reduction of [ HJ-glutamate release was not due to decrease in nerve terminal number 
or in glutamatergic synaptic vesicle number. 

My findings on 0.6 Gy of 56Fe radiation induced reduction in RRP (Chapter II 
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Background in detail) raised the possibility of nerve terminal loss or reduced 

glutamatergic synaptic vesicle numbers. I have assessed the levels of VGlutl and 

synaptophysin in hippocampal synaptosomes obtained from rats subjected to Fe 

irradiation to investigate synaptic vesicle densities on nerve terminal, 

VGlutl antibody detected a single band at approximately 70 kDa (Fig. 18B). The 

synaptophysin antibody also detected a single band migrating at approximately 40 kDa 

(Fig. 18B). These immunoreactive bands corresponds to the previously published 

molecular weights of VGlutl (70-80 kDa) and synaptophysin (38 kDa) (106, 108). 

Normalized levels of integrated intensity showed that 56Fe radiation did not have a 

significant effect on VGlutl or synaptophysin immunoreactivity (Fig 18A, Table 3) three 

and six months post irradiation. These results suggest that radiation did not cause global 

changes in glutamatergic nerve terminal population, or in glutamatergic synaptic vesicle 

numbers. 

0.6 Gy of56Fe radiation significantly reduced levels ofNMDA, but not AMP A receptors . 
3 months post irradiation 

It was previously reported that ionizing radiation affected glutamatergic NMDA 

receptor levels (25). I assessed NMDA and AMPA receptor abundance in hippocampal 

synaptosomes obtained from rats subjected to 0.6 Gy of 56Fe irradiation. The NR1 

antibody detected a strong band at 120 kDa, and the NR2A antibody detected a strong 

band at 170 kDa (Fig. 19B). The NR2B antibody detected two bands at approximately 

180 kDa and 150 kDa. The lower band was probably a product of proteolytic degradation 

(128). Our results showed that degradation rate calculated as intensities of 150 kDa over 

180 kDa was not significantly altered after irradiation. 
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FIG. 18. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on VGIutl and synaptophysin 
levels. Protein levels were analyzed by quantitative western blotting, using VGIutl and 
synaptophysin antibodies. Data were normalized to sham irradiated values, which was set 
to 1. Data shown are means ± SEMs. (A) Summary graph of VGIutl and synaptophysin 
(Syn) levels in hippocampal synaptosomes three and six months post irradiation. (B) 
Representative immunoblots of VGIutl and synaptophysin (Syn) with loading controls, 
actin and VCP, respectively. 
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Proteins 

NMDA NR1 
NMDANR2A 
NMDANR2B 
AMPA GluRl 

GABAAal 
GABAB 

al 
a2A 

PI 

Synaptophysin 

VGutl 

PSD-95 

Change of Levels in 

TABLES 

i Selected Synaptic Proteins 

3 and 6 Months Post 0.6 Gv ^Ee Irradiation 
3 Months 

Integrated intensity 

0.894 ±0.023 
0.792±0.023 
0.783 ±0.073 
1.038 ±0.063 

0.972 ±0.100 
0.904 ± 0.161 

0.876 ±0.117 
0.917 ±0.175 
0.612 ±0.156 

1.076 ±0.031 

1.172 ±0.114 

0.899 ±0.047 

p value 

.•D.01.0 
*0.001 
*0.024 
0.583 

0.672 
0.584 

0260 
0.607 

*0.038 

0.069 

0.183 

0.097 

6Months 
Integrated intensity 

1282 ±0.055 
0.905 ±0.035 
0.933 ± 0.073 
0.913 ±0.126 

1.003 ±0.154 
0.963 ± 0.123 

0.954 ±0.108 
1.120 ±0.072 
0.998 ± 0.045 

1.046 ±0.032 

1.093 ±0.136 

0.907 ±0.136 

p value 

*0.007 
*0.033 
0.396 
0.528 

0.984 
0.712 

0.692 
0.172 
0.959 

0.220 

0.531 

0.519 

MAP2c 0.861 ±0.047 *0.018 1238 ±0.044 *0.006 

: P < 0.05, analyzed by Student's t -test (two-tailed distribution) 
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FIG. 19. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on selected glutamatergic 
receptor levels. Protein levels were analyzed by quantitative western blotting. Data were 
normalized to sham irradiated values, which was set to 1. Data shown are means ± SEMs. 
(A) Summary graph of NMDA NR1, 2A, 2B and AMPA GluRl levels in hippocampal 
synaptosomes three and six months post irradiation. (B) Representative immunoblots. *: 
P < 0.05 analyzed by Student's Mest compared to control. 
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The 150 kDa unit is a constituent of the NMD A receptor complex. It is stable and 

maintains basic properties, suggesting functionality (128). Thus, I added up intensities 

from both bands to quantify NR2B levels. A representative band at 180 kDa is shown in 

Figure 19B. The AMPA antibody detected a strong band at 100 kDa. 

For all three NMD A receptor subunits, normalized integrated intensity was 

significantly reduced three months post irradiation, while AMPA receptor 

immunoreactivity was spared (Fig 19A, Table 3). The effects were statistically significant, 

and were more pronounced on NR2 subunits. Both NR2A and NR2B isoform levels were 

reduced by « 20% (NR2A: 0.79 ±0.02 of control: NR2B, 0.78 ± 0.07 of control). 

Six months post irradiation, however, the levels returned to normal. The levels of 

NR2 subunits were comparable to controls, whereas NR1 levels were up-regulated by 

28%. Statistical analysis revealed a significant time course effect on NR1 receptors 

between three and six months (Kruskal-Wallis one-way ANOVA on ranks followed by 

Dunn's pairwise comparison, P = 0.004). AMPA levels were unaltered six months post 

irradiation. 

Radiation exposure did not change PSD-95 levels 

Either directly or indirectly, reduction in glutamatergic release and level of 

NMD A receptors might produce a coordinated change in a major glutamatergic receptor 

scaffolding protein, PSD-95. The PSD-95 antibody I used detected a single band at 

approximately 95 kDa, as expected (Fig. 20B). Three months after exposure the level of 

PSD-95 showed a trend of decrease (0.90 ± 0.05 of controls), but this was not statistically 
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FIG. 20. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on PSD-95 levels. Protein 
levels were analyzed by quantitative western blotting, using PSD-95 antibodies. Data 
were normalized to sham irradiated values, which was set to 1. Data shown are means ± 
SEMs. (A) Summary graph of PSD-95 levels in hippocampal synaptosomes three and six 
months post irradiation. (B) Representative imniunoblots. 
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significant (Fig. 20A, Table 3). The level was unchanged when tested six months after 

irradiation (0.91 ±0.14 of controls). 

pi adrenergic receptor displayed significant radio-sensitivity 3 months post irradiation, 
whereas GABA and a-adrenergic receptors did not. 

In addition to glutamatergic receptors, I have evaluated levels of GABAergic and 

noradrenergic receptors. I found both GABAA and GABAB receptors were relatively 

resistant to 0.6 Gy of 56Fe irradiation. The levels of these receptors did not show any 

significant changes in comparison with control at either 3 or 6 month time point (Table 3). 

Among three noradrenergic receptors tested, only the level of pi adrenergic receptor was 

significantly reduced three months after irradiation (Fig. 21, Table 3), while a subunits of 

adrenergic receptors were not altered (Table 3). p receptor levels returned to normal six 

months post irradiation (Table 3). 

Radiation induced a reduction in MAP2c levels 3 months post irradiation that recovered 
6 months post irradiation 

To assess the possibility of neurite degeneration/regeneration, I tested MAP2 

levels in hippocampal synaptosomes. The MAP2 antibody detected two strong bands for 

MAP2 isoforms at approximately 280 kDa (MAP2a and 2b), and 70 kDa (MAP2c), as 

previously documented {129). Thirty percent of total signal came from MAP2c alone 

(30.9 ± 3.92% in sham-control). The results verified that MAP2c, which is highly 

expressed during early neuronal development (118), was still detectable in the 4 - 7 

months old test subjects. Although MAP2a/2b levels did not significantly change, 

MAP2c levels showed significant changes both at three and six months post irradiation. 

Western blots identified three major MAP2c species with slightly different 
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FIG. 21. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on |31 adrenergic receptor 
levels. Protein levels were analyzed by quantitative western blotting. Data were 
normalized to sham irradiated values, which was set to 1. Data shown are means ± SEMs. 
(A) Summary graph of J31 adrenergic receptor levels in hippocampal synaptosomes three 
and six months post irradiation. (B) Representative immunoblots. *: P < 0.05 analyzed by 
Student's Mest compared to control. 
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electrophoretic mobility, which may be due to different phosphorylation states (126) (Fig. 

22B). The highest electrophoretic mobility MAP2c species (band 1), which showed the 

strongest immunoreactivity, is likely to be in de-phosphorylated state. Levels of band 1 

showed 14% reduction three months after exposure (Fig 22A, P = 0.02, Student's /-test). 

More interestingly, at six months post-irradiation, intensity of this MAP2c species were 

up-regulated by 24% in comparison with sham-control (Fig 22A, P = 0.01). The 

difference in the mean values between these two time points was statistically significant 

(one-way ANOVA;P< 0.001). 

As thephosphorylated states of MAP2c species, i.e. band 2 /band 1 and band 3 / 

band 1 ratios, were unaltered at three months post irradiation, no radiation effects on 

phosphorylation were suggested. However, at six months post irradiation, band 3 / band 1 

ratio was significantly reduced compared to control by 20%, indicating reduced 

phosphorylation state of MAP2c. Since MAP2c species in de-phosphorylated state are 

more likely to regulate microtubule growth and stability (126), the band 1 level results, 

i.e. reduction at 3 months and up-regulation at 6 months post irradiation, suggest 

dendritic degeneration and dendritic growth, respectively, which may correspond with 

our findings on NMDA and pi receptor levels. 

DISCUSSION 

The most significant finding in this study was the inhibitory effects of 0.6 Gy of 

56Fe radiation on the levels of glutamatergic NMDA receptors and pi adrenergic 

receptors. For all three NMDA receptor subunits tested, namely NR1, NR2A and NR2B, 

levels were significantly reduced three months post irradiation. Inhibition or reduction of 
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FIG. 22. Effects of 0.6 Gy of 56Fe radiation (1 GeV/n) on MAP2c levels. Protein 
levels were analyzed by quantitative western blotting. Data were normalized to sham 
irradiated values, which was set to 1. Data shown are means ± SEMs. (A) Summary 
graph of MAP2c (Band 1) levels in hippocampal synaptosomes three and six months post 
irradiation. (B) Representative immunoblots. *: P < 0.05 analyzed by Student's Mest 
compared to control. 
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NMD A receptor levels in the hippocampus are considerably associated with impairments 

in learning and memory. Specifically, L-AP5, a NMD A receptor antagonist, blocks the 

induction of LTP in the hippocampus and decreases spatial memory performance (130). 

Also, knockout mice lacking the obligatory NR1 subunit exhibit impaired LTP and 

spatial memory performance (131). Moreover, preferential inhibition of NR2A subunits 

prevented the induction of LTP, and selective blocking of NR2B subunit abolished the 

induction of LTD (73). Furthermore, we have detected severe reduction of the level of pi 

adrenergic receptors, which also play a critical role in LTP induction (82). Thus, my 

finding on HZE radiation induced reduction of these receptor levels provides a potential 

link between HZE radiation and radiation-induced cognitive dysfunction. 

In contrast, glutamatergic AMPA receptor levels were unchanged. This result is 

consistent with a previous radiation research. Shi and co-workers found that 45 Gy of 

Cs radiation, a dose for the treatment of brain tumors, induced significant alternation in 

NMDA receptor, but not in AMPA receptors. The nature of this specificity is difficult to 

discern from the present experiments, however, it is reported that NMDA possesses a 

unique reduction-oxidation site and ROS oxidizes the sulfhydryl residues associated with 

this site (132), which facilitates vulnerability of NMDA receptors to oxidative stress (64, 

132). Twenty to fifty percent decreases in the density of NMDA receptors during aging 

have been reported, probably due to age related oxidative stress (64). In accordance with 

these reports, pi adrenergic receptor is also susceptible to oxidative stress (133), and the 

level declines by pretreatment with H2O2 (134) and also with age (135). Consequently, 

we presume the specificity of effects of HZE radiation on levels of neurotransmitter 

receptors may associate with susceptibility of each receptor to oxidative stress. 
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Levels of a scaffold protein, PSD-95, was not significantly altered after radiation 

exposure. Thus, we speculate that the observed reduction in NMDA receptors did not 

influence number or size of downstream postsynaptic contacts. The result is in line with 

previous studies, which suggested relatively less functional association of PSD-95 with 

NMDA receptors. Mice lacking PSD-95 show normal NMDA receptor clustering and 

function, but reduced AMP A receptor function (136). In addition, over-expression of 

PSD-95 did not influence NMDA receptor clustering, but enhanced AMPA receptor 

recruitment in developing hippocampal neurons (137). It is likely that a predominant role 

of PSD-95 may be to regulate AMPA receptor insertion and retention at the synapse, 

therefore, that PSD-95 has the closer association with AMPA receptors. My finding of 

unaltered levels of AMPA is consistent with this notion. 

Questions still remain about the unaltered receptor levels 6 months post 

irradiation. I speculate that a possible "repair mechanism" may take place after radiation 

damage. Recovery of HZE radiation induced damage on dendritic spine was previously 

reported, e.g. decrease in dendritic spine length of CA1 hippocampal neurons was less 

severe after one year (65). My finding in MAP2c levels also supports the possible 

recovery. Pronounced reduction in MAP2c level was found at 3 months post irradiation, 

whereas the level was up-regulated 6 months post irradiation. MAP2 provides scaffolds 

in dendrites and facilitates the localization of signal transduction apparatus there, 

particularly near dendritic spines (127). The correlation with levels of NMDA NR1 

subunit and MAP2c suggest some degree of dendritic spine recovery at 6 months. This 

cellular process likely affected NMDA receptor sub-synaptic domains more specifically, 

since levels of AMPA receptors, which are also localized to dendritic spines but within 
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the distinct domains (138), were unaltered in our experiments. 

My study on two synaptic vesicle markers assure that 0.6 Gy of 56Fe irradiation 

did not affect synaptic vesicle stores in the hippocampus, thus, depletion of glutamate 

stores or apoptotic damage of nerve terminals are unlikely to be a cause of reduction in 

glutamatergic release observed in our experiments (Chapter II). In line with my results, a 

previous study using a higher dose (2.0 Gy) of 56Fe radiation also reported unaltered 

levels of synaptophysin in hippocampus (139), supporting the notion that 

neurotransmitter stores are not the direct locus of radiation-induced deficits. 

Overall, my findings on reduced levels of glutamatergic NMD A and pi 

adrenergic receptors, both of which are critical in synaptic plasticity and in learning and 

memory, provide mechanistic evidence underlying HZE radiation induced cognitive 

dysfunction. 

Although there were overall changes in neurotransmitter release (Chapter II) and 

neurotransmitter receptor levels by HZE irradiation, there were a number of differences. 

Regarding the time course of the HZE effects, I observed persisting suppression of 

evoked glutamate and GAB A release, but a recovery in NMD A and pi adrenergic 

receptor levels. Also, while both glutamate and GABA release were suppressed, only the 

NMDA type glutamate receptors changes, leaving GABA receptors unchanged. 

Moreover, while NE release was not affected, pi adrenergic receptor levels were reduced 

at 3 months post irradiation. These findings suggest that the effects of HZE radiation in 

neurotransmitter release and neurotransmitter receptor levels are either completely 

independent or subjected to complex interactions that may involve homeostatic regulation. 
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CHAPTERVI 

HZE RADIATION INDUCED LIPID PEROXIDATION 

BACKGROUND 

As we documented in Chapter II, 56Fe radiation (0.6 Gy, 1 GeV/n)) induces 

significant reduction in hippocampal neurotransmitter release. The results raised a 

question on the integrity of cell membrane in the hippocampus after radiation exposure. 

One important factor that affects the membrane integrity is lipid peroxidation, a 

consequence of oxidative stress. Lipid peroxidation leads to disturbance of Ca 

homeostasis that may affect functions of release machinery (discussed in Chapter II). To 

test this possibility, I have measured levels of lipid peroxidation in the hippocampus three 

and six months post irradiation. 

Oxidative stress can be perceived as an imbalance of cellular pro-oxidant and 

anti-oxidant processes, resulting in the generation of ROS. The brain by nature provides 

favorable environments for generation of ROS (47). It consumes 20% of the oxygen 

utilized by the body, although the brain itself comprises only 2% of the body weight. 

Despite the high ratio of aerobic glycolysis, neurons contain relatively lower levels of 

antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase 

compared with other organs in the body (140). Moreover, the brain is exceptionally 

vulnerable to lipid peroxidation, for neurons contain high levels of peroxidizable fatty 

acids (141). 

Ionizing radiation is capable of producing a variety of ROS (26, 27, 30). HZE 

radiation is a type of high LET (linear energy transfer) radiation, and predominant effects 
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involve direct ionization. Peroxide (H2O2) pretreatment have been used extensively to 

study free radical chemistry of HZE radiation (28, 29, 142), whereas water radiolysis, in 

which indirect effect of ionizing radiation leads to the formation of hydroxyl radicals 

("OH), has been used to model low-LET type radiation such as X-rays (101). 

H2O2 is a ROS, but it is a non-radical and is relatively unreactive. It is converted 

to highly reactive 'OH in the presence of decompartmentalized Fe ions: 

Fe2+ 

i 
H202 + e- -» OH- + "OH 

Because "OH is high reactive, its diffusion radius is only 0.3 nm (141). Diffusible H2O2 

penetrates cell membranes, whose thickness is between 6 ran to 10 ran, and contributes to 

a short-lived 'OH to be distributed both intra- and extracellularly. Thus, "OH is able to 

contact oxidative targets of hydrophobic lipid tails in the cell membrane and becomes a 

major source of lipid peroxidation products. 

Treatment of a hippocampal slice with H2O2 altered electrophysiological 

properties including decreased ability to generate action potentials (29). The treatment 

also increased lipid peroxidation, raising the possibility that the electrophysiological 

effects were mediated by a lipid peroxidation mechanism (30). In line with the finding, 

H2O2 suppressed K+-stimulated [3H]-glutamate release by 20% using cortical 

synaptosomal preparation (31). Pretreatment with antioxidants including iron chelator 

revealed that "OH, but not H2O2, was responsible for the observed effects (30). These 

results suggested that impairments in hippocampal neurotransmission after HZE 

irradiation may be mediated by lipid peroxidation. 
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Previous studies using dichlorofluorescein (DCFH) assay showed that 1.5 Gy of 

Fe radiation led to increased ROS production in the frontal cortex of rats one month 

after exposure (139). Limoli and co-authors also demonstrated that a lower dose of 56Fe 

radiation (< 1.0 Gy) could elicit significant increase in ROS production in hippocampal 

precursor cells one month post irradiation (26). Another line of evidence showed that 

whole body irradiation with 1.5 Gy of 56Fe particles substantially augmented lipid 

peroxidation in mice cerebellum one months post irradiation, and exposure also impaired 

the reference memory (27). Although the above studies support a role for ROS 

production and lipid peroxidation in HZE radiation induced brain damage, there are no 

reports that directly correspond to our experimental conditions. Therefore, we have 

estimated the levels of lipid peroxidation in the hippocampus three and six months post 

0.6 Gy of 56Fe irradiation. 

Lipid peroxidation is oxidative degradation of lipids (LH) by ROS (X"), such as 

OH". Most often affected is the methylene group (-CH2-) in polyunsaturated fatty acids, 

which possess reactive hydrogen to produce unstable lipid radical (L-); 

1) LH + X' -> L' + XH (Initiation) 

Lipid radical readily reacts with O2 to produce lipid peroxyl radical (LOO"); 

2) L' + 0 2 -» • LOO" 

Reaction can propagate, and eventually changes the membrane structure; 

3) LOO" + LH -» LOOH + L" (Propagation) 

Hydroperoxides (LOOH) result in production of a series of new reactive species, e.g. 4-

hydroxyalkenals (HAE) and malondialdehyde (MDA); 

4) LOOH -> short chain radicals, reactive aldehydes 
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The radical chain continues to proceed, until it is terminated; 

5) LOO' + LOO' -> non-radical product (Termination) 

As this bimolecular scheme illustrates, LOO' possesses paradoxical abilities to serve in 

both propagation and termination, which explains the inverse dose-response effect at 

radiation induced lipid peroxidation {101, 143). The inverse dose-response means that 

high production rates of free radiais, which initiate lipid peroxidation, yield a smaller 

amount of reactive end products than low production rates. This is distinct from the dose-

response of radiation effects, where high dose is more effective than low dose. It is 

noteworthy that these secondary reactive species such as L", LOO', as well as 

degradation products of LOOH, are also capable to interact with lipids and membrane 

proteins. 

The alteration of membrane structures leads to increased membrane permeability. 

Inactivation of ion channels and increase of unspecific membrane leak was found after 

oxidative insult (101). These allow membrane depolarization (144) and non-specific Ca + 

influx (145). An important pathophysiological consequence is disruption of Ca 

homeostasis and alteration of neural transmission. 

I assayed levels of MDA and HAE, end products of LOOH (Eq. 4). 

Measurements of them have been used as an indicator of lipid peroxidation. As a result, I 

have found that 0.6 Gy of 56Fe radiation (1 GeV/n) induced high levels of lipid 

peroxidation in the hippocampus three months post irradiation. The high levels persisted 

six months post irradiation. 
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MATERIALS AND METHODS 

Sample Preparation 

Hippocampus was dissected and stored at -80°C to prevent loss of MDA and HAE, 

and to prevent further oxidation. Frozen samples were thawed on ice. Tissues from 4 

animals were pooled, and then homogenized in ice-cold PBS containing 5 mM butylated 

hydroxytoluene (BHT), an antioxidant, to prevent new lipid peroxidation during 

homogenization. Homogenates were centrifuged at 3000 x g at 4°C for 10 min to pellet 

cell debris. Aliquots of supernatant were taken to determine protein concentration using 

the Coomassie Plus better Bradford assay kit (Pierce) according to manufacturer's 

instructions. Protein concentration of samples was adjusted to 15 - 60 mg/ml. Samples 

were kept on ice until use. 

Lipid Peroxidation Assay 

Measurement of MDA in combination with HAE was performed using a micro-

plate assay kit (Oxford Biomedical Research, Oxford, MI) according to the 

manufacturer's directions. The assay is based on a color reaction of a chromogenic 

reagent, N-methyl-2-phenylindole, with MDA and HAE. One molecule of either MDA or 

HAE reacts with 2-molecules of the reagent to yield a stable chromophore with 

absorbance at 570 nm. Samples were added to the reagent, and incubated at 45°C for 60 

min, followed by centrifugation at 15,000 x g for 10 min to obtain a supernatant clear 

from precipitates. Values were expressed as MDA + HAE nmol/mg protein. Samples 

were assayed in triplicate in each experiment. Each measurement was repeated at least 

three times. 
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Statistics 

The results were analyzed by Student's /-test. Differences between means were 

considered significant at P < 0.05. 

RESULTS 

Point six Gy of 56Fe radiation (1 GeV/rt) leads to a significant increase in lipid 
peroxidation in the hippocampus three and six months post irradiation 

My results showed that the level of MDA + HAE was about two times higher in 

0.6 Gy irradiated samples than in the sham control animals (control: 1.8 ± 0.30 nmol/mg 

protein; irradiated: 3.8 ± 0.82 nmol/mg protein, P < 0.05, Student's t-test,n = 4, Fig. 23.) 

The effects persisted six months post irradiation (irradiated: 4.0 ± 0.48 nmol/mg protein, 

P < 0.05, Student's /-test, n = 4, Fig. 23.) 

The temporal correlation between lipid peroxidation and reduction in 

hippocampal glutamate and GAB A transmitter release caused by 0.6 Gy of 56Fe radiation 

raises the possibility of a causal relationship. 

DISCUSSION 

My results demonstrate an inverse relationship between hippocampal 

neurotransmitter release and level of lipid peroxidation in the hippocampus of animals 

exposed to 0.6 Gy of 56Fe radiation. These two phenomena correlated well and the 

inverse relationship persisted even through 6 months. This delayed effect of oxidative 

insults on membrane might be a contributing factor to the observed reduction of 

hippocampal neurotransmission. 
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FIG. 23. Point six Gy of 56Fe radiation (1 GeV/n) induced changes in products of lipid 
peroxidation in the hippocampus. Levels of lipid peroxidation were evaluated as 
described in the Materials and Methods. Briefly, hippocampal homogenate was loaded 
with a chromogenic reagent, iV-methyl-2-phenylindole at 45°C for 60 min, and lipid 
peroxidation was assessed by measuring the levels of MDA (malondialdehyde) in 
combination with a derivative, HAE (4-hydroxyalkenals) at three months and six months 
post irradiation. Values are expressed as means of MDA + HAE (nmol/mg protein) ± 
SEM. Asterisks indicate statistical significance analyzed by two- tail Student's Mest. (n 
= A). 
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Radiation induced lipid peroxidation is a non-enzymatic random reaction (146), 

but extremely common phenomena in the brain. It is noteworthy that this radiation 

induced insult was one of a few uniform responses among irradiated subjects, based on a 

long-term investigations after the Chernobyl nuclear accident (45). Generally, radiation 

effects display high variability among subjects due to different radio-sensitivity of each 

individual. 

While previous studies focused on the early delayed effects of HZE radiation on 

ROS production (147) and lipid peroxidation (27) detected one month post irradiation, 

my results indicate that the effects can persist well beyond one month, for as long as 6 

months, suggesting that production of ROS can be continuous and may play a critical role 

in late delayed effects of HZE radiation on neurotransmission. Mechanistic explanation 

of this prolonged membrane oxidization is beyond the scope of this study, however, it has 

been suggested that paradoxical ability of reactive species, which both initiate and 

terminate chain reaction that results in lipid peroxidation, might be relevant to prolonged 

production (143). In order to terminate the chain of events, it is necessary to reduce lipid 

hydroperoxides as well as to decompose concomitant formation of LOO". Consequently, 

the role of endogenous antioxidants has received extensive attention. It is likely that an 

optimal concentration of antioxidants may exist that will restore the free radical level to 

yield the best combination of inhibition and termination to minimize net lipid 

peroxidation, and any concentration other than this optimal leads to increased, thus, 

prolonged lipid peroxidation (143). 
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SUMMARY 

The main findings of the present study were: 1) 0.6 Gy of 56Fe radiation (1 

GeV/n) significantly perturbed chemical neurotransmission of rat hippocampal nerve 

terminals, resulting in a persisted reduction of hypertonic sucrose evoked [3H]-glutamate 

and [14C]-GABA release; 2) exposure to 0.6 Gy of 56Fe radiation also significantly 

reduced levels of glutamatergic NMDA receptors as well as pi adrenergic receptors three 

months post irradiation, however, partial repair may take place by six months post 

irradiation; 3) the same radiation regimen significantly enhanced oxidative stress as 

indicated by increased levels of lipid peroxidation products in the hippocampus both 

three and six months post irradiation, suggesting that increased levels of lipid 

peroxidation played an important role in reduction of neurotransmitter release. 

Although it is presently untested whether these alterations within the 

hippocampus directly contribute to aspects of radiation induced cognitive impairments, 

our findings demonstrate that, after a single dose of 56Fe radiation as low as 0.6 Gy, the 

neurochemical environment in the hippocampus becomes significantly altered, which 

may underlie impairments in cognitive functions. It is of importance that synaptic 

plasticity may be significantly altered via reduction of NMDA and pi adrenergic receptor 

levels in the hippocampus. 

Although precise mechanisms are still under debate, a generally accepted model 

of radiation-induced cognitive dysfunction is depicted in Figure 24. In this classic 

paradigm, neuronal cell death due to radiation induced generation of ROS leads to cell 
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Classic Paradigm of Radiation-induced Cognitive Dysfunction 
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FIG. 24. Classic paradigm of radiation-induced cognitive dysfunction. The solid 
arrows indicate the generally accepted sequence of events from the absorption of 
radiation to the expression of the various forms of biological damage, which 
consequently leads to cognitive dysfunction. Dotted line indicates postulated 
neurogenesis hypothesis (19, 36). Dashed line indicates a pathway proposed by the 
present work. 



84 

loss and/or tissue damage, which can deteriorate functions of the CNS (46). With high 

dose radiation exposure, white matter necrosis is the dominant histopathological 

presentation and consistently associated with demyelination (47). Demyelination impairs 

the conduction of action potentials, and consequently impairs cognitive performance. 

Whereas high doses of radiation produce overt histopathological changes, lower dose 

exposures produce cognitive dysfunction without inducing obvious morphological 

changes. Recently it was reported that radiation impaired neurogenesis via 

neuroinflammatory process. Two Gy of 56Fe radiation reduced the rate of proliferation 

among neuronal progenitors within the dentate gyrus, and also impaired hippocampus 

dependent performance (19, 36). My findings with 0.6 Gy, which is regarded sub­

threshold for impairing neurogenesis, raise the possibility that HZE radiation could cause 

functional deficits in cognitive behavior without involving neurogenesis or 

histopathological changes as previously proposed (dashed line in Fig. 24). 

Overall, this work contributes to Phase 1 of NASA Strategic Program Plan by 1) 

uncovering a risk to the integrity of hippocampal chemical neurotransmission in the CNS, 

and 2) collecting specific evidence for radiation induced alterations in synaptic functions 

/ elements that are critical for normal cognitive functions. 

In future studies, I would like to further extend my investigation to 1) validate 

permissible exposure limits using a series of our assays. Also, assuming that lipid 

peroxidation may at least partially underlie the observed reduction in neurotransmitter 

release, optimized concentration of cellular antioxidants may rescue the radiation induced 

deficits. Thus, the current assays would facilitate to: 4) develop effective mitigation 

strategies. Pretreatment with RGS scavengers, such as polyethylene glycol-conjugated 
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catalase (PEG-CAT), a cell permeable H2O2 scavenging enzyme, may reduce radiation-

induced deficiencies. Also, diet antioxidants, such as vitamin E, are known to inhibit lipid 

peroxidation and might ameliorate HZE radiation effects on neurotransmission. 
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