
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Civil & Environmental Engineering Theses &
Dissertations Civil & Environmental Engineering

Summer 2012

Efficient Stand-Alone Generalized Inverse Algorithms and Efficient Stand-Alone Generalized Inverse Algorithms and

Software for Engineering/Sciences Applications: Research and Software for Engineering/Sciences Applications: Research and

Education Education

Subhash Chandra Bose S V Kadiam
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

 Part of the Civil Engineering Commons

Recommended Citation Recommended Citation
Kadiam, Subhash C.. "Efficient Stand-Alone Generalized Inverse Algorithms and Software for Engineering/
Sciences Applications: Research and Education" (2012). Doctor of Philosophy (PhD), Dissertation, Civil &
Environmental Engineering, Old Dominion University, DOI: 10.25777/fwcf-9z49
https://digitalcommons.odu.edu/cee_etds/51

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/51?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

EFFICIENT STAND-ALONE GENERALIZED INVERSE ALGORITHMS AND

SOFTWARE FOR ENGINEERING/SCIENCES APPLICATIONS: RESEARCH

AND EDUCATION

by

Subhash Chandra Bose S V Kadiam
B.E. May 2004, Osmania University, India

M.Tech. June 2006, Acharya Nagaijuna University, India

A Dissertation Submitted to the Faculty of Old Dominion University
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

CIVIL AND ENVIRONMENTAL ENGINEERING

OLD DOMINION UNIVERSITY
August 2012

Approved by:

Due T. Nguyen (Director)

Manwo Ng (Member)

Yaohang Li ^Member)

Julie Zhili Hao (Member)

UMI Number: 3529759

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ttswWioft FtoMsh«i

UMI 3529759

Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

EFFICIENT STAND-ALONE GENERALIZED INVERSE ALGORITHMS AND
SOFTWARE FOR ENGINEERING/SCIENCES APPLICATIONS: RESEARCH AND

EDUCATION

Subhash Chandra Bose S V Kadiam
Old Dominion University, 2012

Director: Dr. Due T Nguyen

Efficient numerical procedures for finding the generalized (or pseudo) inverse of

a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular,

real/complex numbers) matrix and solving systems of Simultaneous Linear Equations

(SLE) are formulated and explained. The developed procedures and its associated

computer software (under MATLAB computer environment) have been based on "special

Cholesky factorization schemes" (for a singular matrix), the generalized inverse of the

matrix product, and were further enhanced by the Domain Decomposition (DD)

formulation.

Test matrices from different fields of applications have been chosen, tested and

compared with other existing algorithms. The results of the numerical tests have

indicated that the developed procedures are far more efficient than existing algorithms.

Furthermore, an educational version of the generalized inverse algorithms and

software for solving SLE has also been developed to run any FORTRAN and/or 'C'

programs over the web. This developed technology and software is freely available and

can run on any device with internet connectivity and browser capability.

iii

Copyright, 2012, by Subhash Chandra Bose S V Kadiam, All Rights Reserved

iv

This dissertation is dedicated to my father.

V

ACKNOWLEDGMENTS

I am extremely grateful to the people who, directly or indirectly, helped to make

this research possible. Firstly, I would like to express my deepest gratitude to my advisor,

Professor Due T. Nguyen, for his patient guidance, encouragement and valuable

discussions during the course of this research. I have been very fortunate to have an

advisor who helped me overcome many difficult situations and finish this dissertation. It

would not have been possible to accomplish this work without his constant support.

I would like to thank the other members of my committee Dr. Julie Zhili Hao, Dr.

Yaohang Li and Dr. ManWo Ng for their valuable comments and suggestions. I would

also like to thank Mr. Amit H. Kumar from OCCS, ODU for his support.

A special thanks to all the graduate students from Civil and Environmental

Engineering department for creating excellent working conditions.

Most importantly, I would like to thank my family, who have been supportive

throughout my life and academic career.

SVD

SLE

SPD

GMRES

CG

DD

LDLT

nsu

pinvQ

invQ

A+

CG

Bi - CG

GMRES

PCG

ODU — ginverse

geninv

MATLAB — pinv

ODU — ginverse iterative

vi

NOMENCLATURE

Singular Value Decomposition

Simultaneous Linear Equations

Symmetric Positive Definite

Generalized Minimal Residual

Conjugate Gradient Algorithm

Domain Decomposition Formulations

LDL Transpose Algorithm

Number of Sub-domains

MATLAB Command to Compute Generalized

Inverse

MATLAB Command to Compute Regular Inverse

Generalized Inverse of A

Conjugate Gradient Algorithm

Bi-Conjugate Gradient Algorithm

Generalized Minimal Residual Algorithm

Preconditioned Conjugate Gradient Algorithm

ODU Generalized Inverse Solver

Generalized Inverse Algorithm Discussed in [13]

MATLAB Generalized Inverse Solver

CG Iterative Method in ODU Generalized Inverse

Solver

vii

ODU - DD

Original System ginverse MV

Original System geninv

ODU Generalized Inverse Domain Decomposition

Solver

ODU Generalized Inverse Solver

Generalized Inverse Algorithm discussed in [13]

TABLE OF CONTENTS

Page

LIST OF TABLES xi

LIST OF FIGURES xv

Chapter

1. INTRODUCTION 1

1.1 Literature Survey 1

1.2 SVD and the Generalized Inverse 3

1.3 Objective 4

2. DIRECT AND ITERATIVE METHODS FOR SYSTEM OF NON-SINGULAR

SLE 6

2.1 Direct Methods for Solving SLE 6

2.2 Iterative Methods for Solving SLE 11

3. DOMAIN DECOMPOSITION SOLVER 15

4. GENERALIZED INVERSE ALGORITHMS FOR

SINGULAR/NON-SINGULAR, SQUARE/RECTANGULAR SYSTEM OF SLE.. 17

4.1 Basic Conditions for the Generalized Inverse 17

4.2 Potential Engineering/Science Generalized Inverse Applications 18

4.3. Least Squares Curve Fitting Problem 18

4.4. Special Cholesky Algorithms for Factorizing A Singular Matrix 22

4.5. Special LDLT Algorithms for Factorizing a Singular Matrix 24

4.6. Efficient Generalized Inverse Algorithms 26

4.7. Mixed Direct-Iterative Generalized Inverse Algorithms for Solving SLE 35

4.8. Domain Decomposition Generalized Inverse Solver 37

ix

Page

5. ENGINEERING/SCIENCES NUMERICAL APPLICATIONS 40

5.1. Description of the Test Examples 40

5.2. Numerical Performance of ODU Generalized Inverse Solver 42

5.3. Numerical Performance of ODU Generalized Inverse DD Solver 48

6. EDUCATIONAL GENERALIZED INVERSE SOFTWARE FOR INTERNET

USERS 58

6.1 Description for Executing FORTRAN Software on the Internet 58

6.2 Client-Server Interface 61

6.3. Detailed Step-by-Step Procedures 62

6.4. Demonstrated Examples 63

7. MATLAB - MPI BUILT-IN FUNCTIONS FOR PARALLEL

COMPUTING APPLICATIONS 70

7.1. Introduction 70

7.2. MatlabMPI Functions 71

7.3. Example 1: Display Rank of Processors 73

7.4. Example 2: Matrix-Matrix Multiplication 75

8. CONCLUSIONS AND FUTURE WORKS 77

REFERENCES 79

APPENDICES

A. Singular Value Decomposition (SVD) and the Generalized Inverse 82

B. An Educational Fortran Source Code of "Special LDLT Algorithm for

Factorization of Singular/Square/Symmetrical Coefficient Matrix 84

C. A Complete Listing of an Educational Fortran Source Code of

"Cholesky Generalized Inverse" Algorithms for SLE 91

D. MatlabMPI Source Code for Matrix-Matrix Multiplication

X

(Matrix In Dense Format) 105

E. Graphical Comparisons (In Terms of Computational Times) of ODU-ginverse

with other Algorithms 108

VITAE 115

xi

LIST OF TABLES
Table Page

5.1 Symmetric Singular Test Matrices for ODU Generalized Inverse Solver 41

5.2 Un-Symmetrical Singular Test Matrices for ODU Generalized Inverse Solver 41

5.3 Rectangular Singular Test Matrices (Tall type: rows»cols) for ODU

Generalized Inverse Solver 41

5.4 Rectangular Singular Test Matrices (Fat type: rows«cols) for ODU

Generalized Inverse Solver 42

5.5 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices

with RHS Vector as Linear Combinations of Columns of Coefficient Matrix 43

5.6 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test

Matrices with RHS Vector as Linear Combinations of Columns of Coefficient

Matrix 44

5.7 Computational Times (in seconds) for Rectangular Rank-Deficient Test

Matrices (Tall type: Rows»Cols) with RHS Vector as Linear Combinations

of Columns of Coefficient Matrix 44

5.8 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices

(Fat Type: Rows«Cols) with RHS Vector as Linear Combinations of Columns

of Coefficient Matrix 44

5.9 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices

with Randomly Generated RHS Vector 45

5.10 Computational Times (in seconds) for Non-Symmetric Rank-Deficient

Test Matrices with Randomly Generated RHS Vector 45

5.11 Computational Times (in seconds) for Rectangular Rank-Deficient Test

Matrices (Tall Type: Rows»Cols) with Randomly Generated RHS Vector 46

xii

Page

5.12 Computational Times (in seconds) for Rectangular Rank-Deficient Test

Matrices (Fat Type: Rows«Cols) with Randomly Generated RHS Vector 46

5.13 Computational Times (in seconds) for Symmetric Rank-Deficient Test

Matrices (Using Iterative Solver inside Generalized Inverse) with

Randomly Generated RHS Vector 47

5.14 Computational Times (in seconds) for Non-Symmetric Rank-Deficient

Test Matrices (Using Iterative Solver inside Generalized Inverse) with

Randomly Generated RHS Vector 47

5.15 Computational Times (in seconds) for Rectangular (Tall) Rank-Deficient

Test Matrices (Using Iterative Solver inside Generalized Inverse) with

Randomly Generated RHS Vector 47

5.16 Computational Times (in seconds) for Rectangular (Fat) Rank-Deficient

Test Matrices (Using Iterative Solver inside Generalized Inverse) with

Randomly Generated RHS Vector 48

5.17 Symmetric Singular Test Matrices for ODU Generalized Inverse DD Solver 49

5.18 Un-Symmetrical Singular Test Matrices for ODU Generalized Inverse DD

Solver 49

5.19 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same K11 (GD98_c) Sub-Matrices using Domain Decomposition 50

5.20 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same K" (dwt_209) Sub-Matrices using Domain Decomposition 50

5.21 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same K i l (dwt_307) Sub-Matrices using Domain Decomposition 51

xiii

Page

5.22 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same Ku (gentl 13) Sub-Matrices using Domain Decomposition 51

5.23 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same Ku (gre_216b) Sub-Matrices using Domain Decomposition 52

5.24 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same Ku (GD00_a) Sub-Matrices using Domain Decomposition 52

5.25 Computational Times (in seconds) for Rank-Deficient Test Matrices with

different Ku (can_161) Sub-Matrices using Domain Decomposition 53

5.26 Computational Times (in seconds) for Rank-Deficient Test Matrices with

different K" (lock_700) Sub-Matrices using Domain Decomposition 54

5.27 Computational Times (in seconds) for Rank-Deficient Test Matrices with

different K11 (mesh3el) Sub-Matrices using Domain Decomposition 54

5.28 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same Kn (lock_700) Sub-Matrices and RHS as Linear Combinations of

Columns Cx + C2 + C3 + ••• + Cn using Domain Decomposition 55

5.29 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same Ku (dwt_307) Sub-Matrices and RHS as Linear Combinations of

Columns + C2 + C3 + —I- Cn using Domain Decomposition 55

5.30 Computational Times (in seconds) for Rank-Deficient Test Matrices with

same Kli (GD00_a) Sub-Matrices and RHS as Linear Combinations of

Columns Cj + C2 + C3 + —b Cn using Domain Decomposition 56

xiv

Page

5.31 Computational Times (in seconds) for Rank-Deficient Test Matrices with

different Ku (dwt_307) Sub-Matrices and RHS as Linear Combinations of

Columns Cx + C2 + C3-1 1-Cn using Domain Decomposition 56

5.32 Computational Times (in seconds) for Rank-Deficient Test Matrices with

different Kli (GD98_c) Sub-Matrices and RHS as Linear Combinations of

Columns Cj + C2 + C3 + —h Cn using Domain Decomposition 57

7.1 Time Results (in seconds) for Matrix-Matrix Multiplication using MatlabMPI 75

XV

LIST OF FIGURES
Figure Page

2.1 Preconditioned Conjugate Gradient Algorithm 13

2.2 GMRES Algorithm 14

6.1 Online 3-D Truss Analysis 60

6.2 Client Server Interface 61

6.3 Sample of Generalized Inverse Home Page 63

6.4 Generalized Inverse Input Page 64

6.5 Generalized Inverse Output Page 65

6.6 Sample of LU Decomposition Home Page 66

6.7 LU Decomposition Input Page 67

6.8 LU Decomposition Output Page 68

6.91-Phone Home Page, Input Data and Output Data 69

7.1 Graphical Representation of Time Results (in seconds) for

Matrix-Matrix Multiplication using MatlabMPI 76

E.l Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices

with RHS Vector as Linear Combination of Columns of Coefficient Matrix 108

E.2 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test

Matrices with RHS Vector as Linear Combination of Columns of Coefficient

Matrix 109

E.3 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices

(tall type) with RHS Vector as Linear Combination of Columns of Coefficient

Matrix 109

xvi

Page
E.4 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices

(fat type) with RHS Vector as Linear Combination of Columns of Coefficient

Matrix 110

E.5 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices

with Randomly generated RHS Vector 110

E.6 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test

Matrices with Randomly generated RHS Vector Ill

E.7 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices

(tall type) with Randomly generated RHS Vector 111

E.8 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices

(fat type) with Randomly generated RHS Vector 112

E.9 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices

with Randomly generated RHS Vector (Iterative Solver inside Generalized

Inverse) 112

E.10 Computational Times (in seconds) for Non-Symmetric Rank-Deficient

Test Matrices with Randomly generated RHS Vector (Iterative Solver

Inside Generalized Inverse) 113

E.l 1 Computational Times (in seconds) for Rectangular Rank-Deficient Test

Matrices (tall) with Randomly generated RHS Vector (Iterative Solver inside

Generalized Inverse) 113

E.l2 Computational Times (in seconds) for Rectangular Rank-Deficient Test

Matrices (fat) with Randomly generated RHS Vector (Iterative Solver

inside Generalized Inverse) 114

1

1. INTRODUCTION

In scientific computing, most computational time is spent on solving systems of

Simultaneous Linear Equations (SLE) which can be represented in matrix notations as

Ax = b (1.1)

where A G R n x n is a singular/non-singular matrix, and b is a given vector in R n . For

practical engineering/science applications, matrix A can be either sparse (for most cases),

or dense (for some cases). Solving large scale system of SLE has been (and continues to

be) a major challenging problem for many real-world engineering and science

applications.

The generalized (or pseudo) inverse of a matrix is an extension of the

ordinary/regular square (non-singular) matrix inverse, which can be applied to any matrix

(such as singular, rectangular, etc.). The generalized inverse has numerous important

engineering and science applications. Over the past decades, generalized inverses of

matrices and their applications have been investigated by many researchers [1-8].

1.1 Literature Survey

Various methods have been proposed for finding the generalized inverse and its

associated SLE. Xuzhou Chen et. al. [9] has proposed a method based on a finite

recursive algorithm. The approach was based on the symmetric rank-one update. The

algorithm proposed by Xuzhou Chen, however, was inefficient (in terms of

computational time) and requires lot of computer memory. It has been shown that this

algorithm [9] can be only effective for the computation of generalized inverse/Moore-

2

Penrose inverse of rectangular matrices (with rows«cols or cols«rows) and is

inefficient for square matrices.

The most commonly implemented method in programming languages to compute

generalized inverse (and its associated SLE) was based on Singular Value Decomposition

(SVD) [3,10-11]. This method is numerically very stable, however, it is computationally

expensive for practical applications. MATLAB [12] uses SVD to compute the

pseudo/generalized inverse by invoking the built-in function pinvQ. It should be noted

here that in finding the solution for SLE (with square/singular, or rectangular coefficient

matrices), MATLAB and most (if not all) other researchers have computed the

generalized inverse explicitly. Then, the solution can be found by a simple matrix times

vector operation.

Since the standard Eigen-value problems (of A xA H ,andA H x A) need to be

solved in SVD, this method is computationally expensive. Despite of this fact, solving

Eq. (1.1) by using SVD is still more efficient than Xuzhou Chen's proposed finite

recursive algorithm [9].

In [6], an efficient algorithm for finding the generalized inverse of a (full rank)

rectangular (or square) matrix has been proposed. However, this algorithm has not been

able to handle the cases where the matrix has rank deficiency (such as a matrix which has

some dependent rows and/or columns)

Pierre Courrieu [13] has proposed an algorithm to explicitly compute the

generalized inverse using full-rank Cholesky factorization on the coefficient matrix. His

algorithm was based on a theorem to compute the generalized inverse of a product of two

3

matrices. Pierre Courrieu's algorithm has proven to be more efficient than finite recursive

method [9] and SVD [10-11].

1.2 SVD and the Generalized Inverse

A general (square or rectangular) matrix A E R n x n can be decomposed as

A = U7LV"

where

Z = a diagonal matrix (does NOT have to be a square matrix)

(1.2)

_ f l i j = 0 . for i* j
~ l l 0 - > 0, for i = j (1.3)

[U]and [V] = unitary matrices

and = UT(for rea-l matrices)^ (1.4)

Let A be a singular matrix of size m x n and let k be the rank of the matrix.

Based on Eq. (1.2), one has

A = UZV";

r°i

where I =
<*2

(1.5) with a 1> a o k> 0;

and oi = y jEigen — Values o f A T A (orAA r)

Note: Eigen-values ofAxA" and Eigen-values of A H x A are the same. However, the

Eigen-vectors ofAxA" and Eigen-vectors of AH x A are "NOT" the same.

Then, the generalized inverse A+ of A is the n x m matrix and is given as

A+=VZ+\Jh (1.6)

4

where

E+ = j and E is the k x k diagonal matrix, with

En = If1 for 1 < i < k

More details about computing the SVD from a given matrix [i4] can be found in

the Appendix A.

1.3 Objective

The main objective of this dissertation is to develop an efficient (in terms of

computational time and computer memory requirement) generalized inverse formulation

to solve SLE with full or deficient rank of the coefficient matrix. The coefficient matrix

can be singular/non-singular, symmetric/unsymmetric, square/rectangular, and with

real/complex numbers. The proposed generalized inverse procedures can also be

integrated in to the Domain Decomposition (DD) formulation for solving general, large

scale SLE commonly encountered in engineering/sciences applications. Due to popular

MATLAB software, which is widely accepted by researchers and educators worldwide,

the developed code from this work is written in MATLAB language and has the

following capabilities/features:

a) A stand-alone generalized inverse software to solve SLE

b) A stand-alone DD generalized inverse software to solve SLE

c) Utilizing sparse storage scheme (whenever possible) for storing data and solving SLE

d) Developing user friendly interfaces to test new problems (including the numerical data

downloaded from popular web sites [14-15]).

5

e) Additional wall-time reduction for DD generalized inverse solver can be

realized/achieved by performing "parallel matrix times matrix" operations under

MATLAB-MPI computer environment.

f) Developing an "educational version" (written in FORTRAN language) of the software,

which uses the generalized inverse for solving general SLE on the internet.

In Chapter 2, some major algorithms for solving SLE by direct and iterative

methods are reviewed. These methods are mainly designed for solving non-singular SLE.

Simple/basic domain decomposition (DD) algorithms, using mixed direct-iterative

solvers, are discussed in Chapter 3. Major works in this dissertation are presented in

Chapter 4, where efficient "generalized (or pseudo-) inverse" algorithms are thoroughly

explained with and without incorporating the DD formulation. The numerical

performance of the proposed algorithms are conducted in Chapter 5, through extensive

set of coefficient matrices (including rectangular, square, symmetrical, non-symmetrical,

singular, non-singular matrices) obtained from well established/popular websites [14-15].

Detailed procedures for executing any FORTRAN code (such as the "educational

version" of the developed generalized inverse code for solving SLE) on the internet are

explained and demonstrated in Chapter 6. Basic/simple parallel MATLAB-MPI functions

(including parallel matrix times matrix operations) are summarized in Chapter 7. Finally,

conclusions and future research works are summarized in Chapter 8.

6

2. DIRECT AND ITERATIVE METHODS FOR SYSTEM OF NON-

SINGULAR SLE

Many real life, practical problems in scientific computing require efficient

solution of Simultaneous Linear Equations (SLE), which can be conveniently expressed

in the matrix notation as

Ax = b (2.1)

In general, solutions for Eq. (2.1) can be classified into 2 categories: Direct and

Iterative methods. In the subsequent sections, basic ideas behind these two types of

solution approaches will be briefly summarized and discussed.

2.1 Direct Methods for Solving SLE

Depending on the nature of the coefficient matrix A, shown in Eq. (2.1), different

direct methods/algorithms are available, such as:

a) Cholesky algorithm [if matrix A is Symmetric Positive Definite (SPD)]

b) LDLt algorithm [if matrix A is Symmetric, could be either positive or negative

definite]

c) LU decomposition algorithm [if matrix A is unsymmetric]

2.1.1 Cholesky Method

If the coefficient matrix A is Symmetric Positive Definite (SPD), then the

following three step Cholesky algorithm can be used to obtain the solution for Eq. (2.1)

Step I: Matrix Factorization Phase

The coefficient matrix A is decomposed into

[A] = [U] T U (2.2)

where U is an n x n upper triangular matrix. For a general n x n SPD [A], the diagonal

and off-diagonal terms of the factorized matrix U can be computed from the following

formulas [3,10-11]

uii = — ̂ ^(wfci)2

and

Aij ~ Uir fUkj
Uii

~ iT ull

Note: Since the "square root" operation is required for computing the diagonal terms of

U, positive definite is a requirement for matrix A to assure the number under the square

root is positive.

Step2: Forward solution phase

Substituting Eq. (2.2) in Eq. (2.1)

[U] T [U]{x) = {b} (2.3)

Let's define

[f]W = (y) (2.4)

Eq. (2.3) becomes

UTCri = M (2.5)

The intermediate unknown {y} can be easily solved from Eq. (2.5) and hence the name

"forward solution".

Step3: Backward solution phase

8

From Eq. (2.4), the unknown vector {*} can be effectively solved and hence the name

"backward solution".

The matrix factorization phase (step 1) is the most-time consuming part of solving

SLE in the Cholesky algorithm. However, if the right-hand-side (RHS) vector {b}, shown

in Eq. (2.1), becomes a matrix (with multiple columns), then the combined Forward and

Backward solution time may become significant (as compared to the matrix factorization

phase). As a general rule of thumb, computational time/effort for one matrix factorization

is roughly equivalent to 20-25 times the efforts for one Forward and Backward solution

phases.

2.1.2 LDLt Method

In many engineering and science applications, the coefficient matrix in Eq. (2.1)

is symmetric, however it may not be positive definite. The coefficient matrix could be

negative definite. In this case, LDLT algorithms can be used for solving Eq. (2.1), which

also requires the following 3 computational steps

Stepl: Matrix Factorization phase

In Eq. (2.6), matrices [L] and [D] represent the lower triangular (with 1 on its diagonal)

and diagonal matrices, respectively.

Step2: Forward Solution and Diagonal Scaling phase

Substituting Eq. (2.6) in Eq. (2.1), one gets

M = [tHDpr (2.6)

[i][D]WW = {6} (2.7)

9

Let's define

I i f {x} = {y}

\Du 0 0 ryii •Zi
[D]{y} = {z} ~ 0 D2 2 0 r2 = • *2 . 0 0 £>33 (y3. *3.
or, yt = §^;for i = 1,2,3,...N

Then Eq. (2.7) becomes:

(2.8)

(2.9)

(2.10)

1 0 0 Zl (b i)
[!]{*} = {b} L21 1 0 22 = \b2

X31 L32 1. .*3. W3/

or, Zj — bj]£fc=i for i 1,2,3;N

Step3: Backward Solution phase

In this step, Eq. (2.8) can be effectively solved for the original unknown vector {*}

(2.11)

(2.12)

1 L21 ^31 f'1) •yi
= {y} <=> 0 1 ^32 N = y2

.0 0 1 J Ua) y3.
(2.13)

or. , Xi=yi- Ik=i+1;/or i = N, N - 1,... 1

2.1.3 LU Decomposition Method

LU decomposition can be used to solve Eq. (2.1), when the coefficient matrix A is

unsymmetric.

Stepl: Factorization phase

The coefficient matrix in Eq. (2.1) can be factorized as a product of two matrices

A = L.U (2.14)

where L is lower triangular (with values 1 on its diagonal) and U is upper triangular.

For the case of 4 x 4 matrix A. Eq. (2.14) would look like

10

all a12 a13 a14 a21 a22 ®23 a24 a31 a32 a33 a34 a41 a42 a43 a44.

1 0 0 0
CC21 1 0 0
a31 a32 1 0
-a41 a42 a43 1.

fill Pl2 Pl3 Pl4

0 P22 P23 @24

0 0 ^33 ^34
0 0 0 /?44 J

(2.15)

Various tenns inside matrices [L] and [U] can be computed by equating both sides of Eq.

(2.15).

Step2: Forward solution phase

Substituting Eq. (2.14) into Eq. (2.1), one obtains

[L.U]x = b (2.16)

Let us define

[(/]{*} = y (2.17)

Substituting Eq. (2.17) in Eq. (2.16), one gets

[L]{y} = b (2.18)

In this "forward solution" phase, Eq. (2.18) can be easily solved for the "intermediate"

unknown vector {y}.

Step3: Backward solution phase

Solving the unknown vector {*} in Eq. (2.17) is called "backward solution" phase

[U] {*} = y (2.17, repeated)

While direct methods have offered advantages in terms of its robustness,

accuracy, and reliability, etc., for large/sparse SLE (especially for 3-D problems), these

direct methods may become excessively expensive. Furthermore, direct methods also

have the following limitations:

a) The amount of required computer memory can be high.

b) The operation counts can be high, especially when many non-zero fill-in terms

occurred during the factorization phase, even though reordering algorithms have

11

commonly used (to minimize the non-zero fill-in terms) prior to numerical factorization

phase, and

c) These methods have low degree of parallelism (or not easy to parallelize).

The above-mentioned drawbacks have motivated researchers to investigate iterative

methods as possible alternative choices.

2.2 Iterative Methods for Solving SLE

Iterative methods can be superior to direct methods in all the above mentioned

three aspects. Some of the popular iterative methods are Conjugate Gradient (CG), Bi-

Conjugate Gradient (Bi-CG) with or without stabilizers [1, 3, 10], Generalized Minimal

Residual (GMRES) [1, 3,10], etc. These methods (CG for symmetrical, while Bi-CG and

GMRES for unsymmetrical systems of SLE) can lead to low memory requirement and

make effectively use of parallelism. Most (if not all) existing iterative algorithms require

"matrix times vector" and "dot product of 2 vectors" operations. For these reasons,

iterative methods are much more easier to parallelize (for improving computational

efficiency) as compared to direct methods. These advantages make iterative linear system

solvers as attractive alternatives to direct methods, particularly for large (3-D) problems.

Despite of these desirable features, iterative methods may also have difficulties for fast

convergence (or even have divergence) to a specified (small) error tolerance etc..., unless

these iterative methods were used in conjunction with "efficient preconditioned"

algorithms [1-3,10-11] !

12

2.2.1 Conjugate Gradient (CG) Algorithm with Preconditioner

For systems of Symmetrical Positive Definite (SPD) SLE, the Preconditioned

Conjugate Gradient (PCG) algorithms can be considered as the method of choice. PCG

algorithms can be summarized in the following step-by-step numerical procedures [3, 10-

11], for solving Eq. (2.1)

Eq. (2.1) can be re-casted as:

PAPTP~Tx = Pb (2.19)

Eq. (2.19) can be expressed in the following general form [1, 3,10-11]:

where matrix

[/T] = [P] x [j4] x [PT] = symmetrical matrix, and the right-hand-side vector {£>*) is

defined as

[A*]y = b* (2.20)

{bl = [P] x {b}

y = P~Tx (2.22)

(2.21)

and [P]= preconditioned matrix

The step-by-step PCG algorithm is summarized in Fig. 2.1

13

Given the initial guessed vector

Compute (or input) the preconditioned matrix [p]

Compute r(0) = {Pb}~ \PAPrjx(0)

Set = 0,p_i = 1

Do i = 1,2,..

Pi-2

ai=WW\

^) = ^-1)+aid(-i)

Converge??

End do

If converged, then set

x=[jf*

Figure 2.1 Preconditioned Conjugate Gradient Algorithm

14

2.2.2 GMRES Algorithm [1,3,10,16]

For systems of "unsymmetrical" SLE, popular algorithms such as GMRES, Bi-

Conjugate Gradient (Bi-CG), Bi-Conjugate Gradient with Stabilizers (Bi-CG Stab) [1,3,

10, 16] are recommended. For readers' convenience, a version of GMRES algorithms can

be summarized in the following step-by-step numerical procedures [1, 3, 11], for solving

[A']f = P

r„ =b-Ax,

' M,
start

for j=l:m

w = AVj

f o r i - l : j

w = w-iT(i,j)vI

end

w

v' " " K
<tolerance Break

end

=[vi,v2,v3 v,+1]

H = Vj A V}

y = argiimi|l^+lr0 - •Hp|a

x = x0 + V}y

if |p4x-b\2 <tolerance SStop

else x0 = x and goto start

Figure 2.2 GMRES Algorithm

15

3. DOMAIN DECOMPOSITION SOLVER

Domain decomposition [1-2, 4, 11, 16] algorithm is a powerful method for

solving large scale system of equations arising from discretization of partial differential

equations (PDE) in finite element procedures. The computational domain is decomposed

into smaller sub-domains each of which is easier to solve.

Domain decomposition (DD) is an application of the divide-and-conquer

problem-solving strategy, which consists of expressing a large problem as a set of smaller

sub-problems defined on sub-domains and provides a way to determine the solution of

the original problem in terms of solutions to sub-problems.

The goal of DD is to divide the original problem into sub-problems that can be

solved independently. A critical issue in DD is to assure that the sub-problems preserve

the solution to the original problem.

Let us assume the system of linear algebraic equations

where the matrix of system is K G Rnxn and vectors r G Rn,f G Rn. It is possible to split

Eq. (3.1) into blocks (or sub-matrices)

Kr = f (3.1)

(3.2)

Eq. (3.2) can be written as

+ K12r™ = /(i)

K21r™ + K22r™ =

(3.3)

(3.4)

From Eq. (3.3), the vector can be expressed in the form

16

r{1> = - K12r<&) (3.5)

Substituting Eq. (3.5) in Eq. (3.4)

(K22 - K2sK^lK12)r<2'> = /<2> - K2lKrff<» (3.6)

From Eq. (3.6) we can observe that the number of unknowns have been reduced

as this matrix equation is only related to the unknown vector r^2\

The matrix (K22 — ^21^11^12) is often referred as the Schur's complement in

the mathematical community.

The basic ideas in DD solver is to solve for the unknown vector {r}, shown in Eq.

(3.1), in the following 2 major steps:

Step 1: The "boundary unknown" vector {r^} is solved from Eq. (3.6). Since the triple

matrix products appeared in Eq. (3.6) is usually dense, and computationally expensive

(because K12 is a matrix, and not a vector), iterative solver (which is based on matrix

times vector operations) is usually recommended in this step.

Step 2: The "interior unknown" vector {r^} is solved from Eq. (3.5). Since the

coefficient matrix is usually sparse (and is a vector, not a matrix), direct solver

(such as Cholesky, or LDLT, or LU algorithms) is strongly recommended.

17

4. GENERALIZED INVERSE ALGORITHMS FOR SINGULAR/NON-
SINGULAR, SQUARE/RECTANGULAR SYSTEM OF SLE

In Chapter 2, various direct and iterative methods for solving square/non-singular

system of SLE have been summarized. The (direct and iterative) methods described in

Chapter 2 can be significantly enhanced/improved by the Domain Decomposition (DD)

formulation [1-2, 11,16], described in Chapter 3. Domain decomposition formulation has

been widely adopted, since it can take full advantage of "parallel processing" capability

offered by most (if not all) today super-computers, and even to desktop/laptop computers,

which have multiple processors. In this Chapter 4, however, the main focus is shifted into

algorithms (numerical procedures) that can solve much more general classes of SLE,

shown in Eq. (2.1), for which the coefficient matrix [j4] can be square/rectangular, non-

singular/singular, well-posed/illed condition. These desirable algorithms have been based

on the so called Generalized (or Pseudo, or Moore-Penrose) inverse of a general matrix

[5-9, 11-13, 17-18]. Furthermore, DD formulation will also be used in this chapter to

further improve the numerical performance of the generalized inverse.

4.1 Basic Conditions for the Generalized Inverse

The Moore-Penrose inverse (or generalized inverse or pseudo inverse) of a m x n

matrix K (not necessarily a square matrix) is the unique nxm matrix K+ which satisfies

the following four conditions:

1. General condition: KK+K = K,

2. Reflexive condition: K+KK+ = K+,

3. Normalized condition: (KK+)' = KK+,

18

4. Reverse normalized condition: (K+K)' = K+K

4.2 Potential Engineering/Science Generalized Inverse Applications

There are some applications that result in (or lead to) an inconsistent system of

SLE. A solution may not exist in this case. However, we can consider to fit a vector x to

a given inconsistent system. That is, we can define a least-squares error problem for

finding x that minimizes the absolute error ||;4x — b\\2 which is equivalent to minimizing

^ 2
the summation of the square of the error \\Ax — b ||2> As should be obvious, such a

solution vector x may not be unique, and it can be obtained/computed by x = A+b, where

v4+is generalized (or pseudo-) inverse of A.

It has been well documented in the literature that many real-life

engineering/science/statistical applications can be efficiently solved by efficient

computation of the generalized inverse in conjunction with SLE. In the following section,

it can be shown that the popular "least square problem" can be formulated such that

generalized inverse algorithms can be incorporated for obtaining the desired solution.

4.3 Least Squares Curve Fitting Problem

Let us assume we are given a set of data points (*i,yi), (x2,y2)> — (xn> yn)> and

we wish to find parameters clt c2,... ck to be multiplied by the basis functions 0X, 02,.. 0k

such that the scalar function 5, defined as

5 = Z"=ik,|2 (4.1)

is minimized, where the errors can be computed by

19

ex =ci<f>l(xl)+c2<f>2(xl)+ + cktf>k (x,) - yl

e2 = c,0, (x2)+c2<f>2 (.x2)+ + ck<f>k {x2)-y2
(4.2)

= cA (*„)+ c2<f>2 (xn)+ + ck<pk (x „)-y„

In Eq. (4.1), the scalar parameter S represents the "summation of the square of the

errors". Ideally, we would like to set Eq. (4.1) to zero, i.e., each of the £,to be zero.

Otherwise, we would like to minimize the scalar function S. If c and >>are the vectors

(4.3)

V V
C2 and

y2

.Ck_ y».

respectively, and A is the n x k matrix

A =

AM Ai x x) A (X J

•ifa) AM AM
(4.4)

AM AM A(x„)_

Then, the Right-Hand-Side (or RHS) of Eq. (4.2) can also be written in the form

r „ \

J nxk /*x 1

y 2

\ y » j

(4.5)

nxl

Aix\) A(xx) A(xx)

AM AM ••• AM

.AM AM AM,

The requirement S = 0 is equivalent to

Ac = y (4.6)

From Eq. (4.5), if n > k, we have an over-determined system of linear equations,

since the number of equations is larger than that of the unknowns. It is generally not

possible to find a solution to this system, but we may find c,,c2,..rt such that Ac is close

20

to y (in the least squares sense). If there is a solution c+of the least squares problem, then

we write

c+ = A*y (4.7)

The matrix ^4+ is called the pseudo-inverse (or generalized inverse) of A. We

know that when n-k and A is invertible (i.e., A has an inverse), then

A+=A~1 (4.8)

4.3.1 The Normal Equations [3,10,19]

In order to minimize S, we must minimize

Smin = Z I)+ C2^2 (*') + + fo)~ ?< T ^
i=l

If we take for j = 1,2, A: the partial derivatives of 5 with respect to Cj and set them

equal to zero, we will get the following normal equations

2± [cA {x l)+c2</>2(x i)+ + ck0k{x,)-y, y>j (*,)=0 (4.10)
m

or, equivalently,

Z (* ,) +) + + cJ*)]^y (*,)=Z (*< <4'11 >
/-i i=i

The above normal equations can also be expressed (in matrix notations) as

ATAc = Ary (4.12)

where the matrix A has the entries atj = (jc,).

As an example, let k = 4 and <j>j(x) = xJ~ l, where j = 1,2= 4

Then,

<*.(*)=1

&(*)=*

' *) -*

x)=x3

and

A =

3\

1 X_ X!? X3 , » n n /

21

(4.13)

'1 1 • •• r

*1 *2 * •• *„

x2 • 2 JC2 A/t
x3 • 2 /

(4.14)

so that

» Z*/ Z*-2 Z*-n

Z*« Z*.2 2>I Z*.4

Z*.2 Z*,3 Z*<4 Z*.5

Z*.3 Z*.4 Z*/ Z*f

(4.15)

where in the summations, i runs from 1 to n and

ATy =

Z*

Z x&i

X ft)

(4.16)

If the matrix ArAin Eq. (4.15) is invertible, then there is a solution to the least squares

problem.

We then have

22

c = (ATA)'lATy, (4.17)

so that the pseudo-inverse A* (of the given matrix A, see Eqs. 4.6-4.7) is given by

A+ =(ArA)~lAT (4.18)

In subsequent sections, Eq. (4.18) can be generalized into the form shown in Eq. (4.27).

4.4 Special Cholesky Algorithms for Factorizing a Singular Matrix

The stiffness matrix of the "floating" sub-domain is singular due to the fact that

there are not enough (support) constraints to prevent its rigid body motion. To facilitate

the discussions, let's assume the "floating" sub-domain's stiffness matrix is given as:

r 1 2 -3 2 -2 -3 —2i
2 4 -6 4 -4 -6 -4
-3 -6 9 -6 6 9 6
2 4 -6 5 -1 -5 -7
-2 -4 6 -1 13 9 -5
-3 -6 9 -5 9 13 9

L—2 -4 6 -7 -5 9 27^

(4.19)

row2 = 2* row 1 (4.20)

row3 = —3* rowl (4.21)

row5 = — 8 * rowl + 3 * rowA (4.22)

In Eq. (4.19), it can be observed that rows number 2, 3 and 5 are dependent rows

(and columns). Thus, the above matrix is singular, and the regular/standard Cholesky

factorization algorithms will not work. To facilitate the development of efficient

"generalized inverse" algorithms (and its applications) in subsequent chapters, "special

23

Cholesky" factorization algorithm is needed. The "special Cholesky factorization"

algorithm is essentially identical to the regular/standard one, with the following two

modifications (or differences):

(a) During the numerical factorization phase, if the dependent row(s) is/are detected,

then these dependent row(s) is/are skipped!

(b) Factorization of the current ith row, in general, will require the previously already

factorized rows k = 1,2, — 1. However, if the previous kthtow was amongst

the dependent row(s), then the contribution from this kthrow to this current ith

row will be ignored.

(c) Having obtained the "special Cholesky" factorized square matrix, those

factorized/dependent rows will be deleted to obtain the so-called "truncated

Cholesky factorized rectangular matrix (/*".

Using MATLAB, the Eigen-values of matrix in Eq. (4.19) can be computed as:

1 = {0.0000, 0.0000, 0.0000, 0.2372, 4.9375, 24.9641, 41.8612}7"

Since there are 3 zero Eigen-values, it implies there are 3 rigid body modes (or 3

dependent rows/columns) in Eq. (4.19)

If row-by-row Cholesky factorization scheme is applied to Eq. (4.19), we will

encounter that the factorized^ = 0 = u33 = u55, which indicated that row number 2, 3 and

5 are dependent rows. Thus, if we set all factorized terms of rows number 2, 3 and 5 are

zero, and "ignoring" these three rows in the factorization of subsequent rows, one obtains

the following Cholesky factorized matrix [U] of a given matrix [Kfioat], shown in Eq.

(4.19):

24

r1 2 -3 2 -2 -3 -2
. 0 0 0 0 0 0

0 0 0 0 0
1 3 1 -3

0 0 0
1 7321 3.464

1.4145

Based on the above "special Cholesky factorization" algorithm, and using the

7x7 singular matrix data as shown in Eq. (4.19), the "truncated Cholesky factorized

matrix IT" (corresponding to the independent rows # 1, 4, 6, and 7) of the product

[KfioatY * [Kfioat] can be obtained/computed as:

For row #1 of the truncated 4x7 matrix U*:

5.9160 11.8321 -17.7482 11.6631 -12.3392 -21.4669 -19.1004

For row #4 of the truncated 4x7 matrix U*:

0.0000 0.0000 0.0000 4.4689 13.4068 0.9781 -21.7565

For row #6 of the truncated 4x7 matrix U*:

0.0000 0.0000 0.0000 0.0000 0.0000 4.4960 10.0650

For row #7 of the truncated 4x7 matrix U*:

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7209

4.5 Special LDLT Algorithms for Factorizing a Singular Matrix

If the square/symmetrical/singular coefficient matrix is NOT positive definite,

then the symmetrical, floating stiffness matrix (shown in Eq. 4.19) can be factorized by

the familiar sparse LDlJ algorithms [11], with the following minor modifications:

(a) Whenever a dependent ith row is encountered (such as the factorized uit =0), then

the following things need be done:

25

(a.l) Recording the dependent row nnmber(s). For the data given by Eq. (4.19),

the dependent rows are rows number 2, 3 and 5.

(a.2) Set all the nonzero terms of the factorized ith row (of ZT) to be zero

(a. 3) Set — = Du = 0
««

(b) Whenever an independent ith row is encountered, the factorized ith row will have

contributions from all appropriated previously factorized rows. However, contributions

from the previously factorized (dependent) rows will be ignored.

(c) Finally, the truncated/rectangular LDlI factorized matrix U* can be obtained by

deleting those dependent row(s) from the "special LDLT factorized" square matrix.

As an example, the (LDlI) factorized matrix (for the matrix data [Kfloat] shown

in Eq. (4.19)) can be computed as

rl

[U] =

2
0 0

0

2 -2

0 0
0
1

0
3
0

-3 —2]
0 0
0 0
1 -3
0 0

0.333 2
0.5J

(4.23)

7
and the truncated factorized LDLT matrix U* of the product [Kf l o a t] * [tf/joat] can be

obtained by deleting rows #2,3, and 5 of the above matrix U.

A complete educational version of "special LDLT " software code (written in

FORTRAN language) is listed/given in the Appendix B.

26

4.6 Efficient Generalized Inverse Algorithms

Moore-Penrose inverse can be computed using Singular Value Decomposition

(SVD) [10-13], Least Squares Method, QR factorizations, Finite Recursive Algorithm

[9], etc. In this work, our numerical algorithms have been based on:

(a) The "special Cholesky factorization" (for symmetrical/singular coefficient matrix) see

section 4.4 and the Appendix C, and

(b) The generalized inverse of a product of 2 matrices [5,13]

and can be described in the following paragraphs.

Consider Eq. (2.1) [G]x = b , with a square coefficient n x n matrix, and let the

rank be less than the size of the matrix (if ris the rank of the matrix, thenr < n). Let the

s i z e o f t h e k n o w n r i g h t - h a n d - s i d e v e c t o r b b e n x 1 . C o n s i d e r a s y m m e t r i c p o s i t i v e n x n

matrix G'G, with rank r < n (here, the matrix [G] plays the same role as matrix [j4] in

Eq. (2.1)), then based on the theorem presented in [5, 13, 17-18], there exists a unique

[A/] such that:

G'G = M'M (4.24)

In Eq. (4.24), matrices [C] and [G] have the dimensions nxm and mxn,

respectively.

M is the upper triangular (special) Cholesky factorized matrix and contains

exactly n-r zero rows. Removing the zero rows from M, one obtains a rx/j (upper,

rectangular) matrix L'.

A m M'M = LL' (4.25)

27

In this work, the upper triangular (special) Cholesky factorized matrix [M] can be

obtained by the regular/standard Cholesky factorization, with the following

modifications:

a) When the diagonal term of the current i'h row is very close to zero, then factorization

of this dependent row is skipped.

b) When the current ith row is factorized, all previous rows k = 1,2,..., i — lwere used

except those dependent row(s).

Consider the generalized inverse of a matrix product AB [5, 13,17-18]

(.ABF = B'(A'ABB')+A' (4.26)

From Eq. (4.26), if B = I then

A+ =(A'A)+A' (4.27)

Eq. (4.27) can be considered as a general version of the earlier Eq. (4.18).

If B = A' and A is a n x r matrix of rank r, then one obtains from Eq. (4.26)

(4.28)

Let us consider regular inverse in Eq. (4.28) in place of generalized inverse

(AA'Y = A(A'AA'A)''A'

= A(A'A)~1(A'A)-1A' (4.29)

Using Eq. (4.27),

G+ =(G'GyG' (4.30)

From Eqs. (4.24 - 4.25) and Eq. (4.29) one obtains,

(<G'G)+ = (LL'Y = L{l'LY{L'LY'L' (4.31)

Thus, Eq. (4.30) becomes

28

G+ = (iG'G)*G' = L{L'L)'X{L'L)-X L'G' (4.32)

While MATLAB solution can be obtained by x = pinv(G)xb, implying the

generalized inverse G+ [see Eq. 4.32] to be formed explicitly, our main idea is to solve

SLE where Ms a known right-hand-side vector, as described in the next section.

To facilitate the discussion of Generalized Inverse, and its usage for solving general

systems of SLE, the following (small-scale) numerical examples are used:

Example 4.1

The coefficient matrix [G] is a rectangular (tall type) matrix, and the RHS vector

{6} is a linear combinations of columns of [G].

In this example, we wish to solve for {*} from the SLE [G] * {x} = {b}, where the

numerical values of the coefficient matrix [G], and the RHS vector {b} are given as [refer

to Eq. (4.32)]:

r 2 0 0 1 1 i
- 1 0 0 - 2 - 1
3 0 0 0 0
0 1 2 - 3 1
0 - 2 5 1 0
1 -2 3 4 -1-1

Using MATLAB built-in function, the rank of G can be computed as

rank(jG) = 5

fxl) r6
c

*2
— D

/L
< *3[=

D
i

*4
1
A

,xsJ *r
L 6

and GT *G

-2 3 8 2

9 -14 -13 3
-14 38 11 -1
-13 11 31 -4

3 -1 -4 4

Special Cholesky factor of GT * G

29

3.8729 -0.5163 0.7745 2.0655 0.5163
0.0000 2.9552 -4.6020 -4.0380 1.1053
0.0000 0.0000 4.0275 -2.2800 0.9154
0.0000 0.0000 0.0000 2.2866 0.64909
0.0000 0.0000 0.0000 0.0000 1.1189

of independent rows = 5

Independent rows = 1 2 3 4 5

Dependent row = 6

Product of II * L

r 20.4000 -12.8609 -1.1172 5.0584 0.5778]
-12.8609
-1.1172
5.0584
0.5778

47.4396
-8.3159
-8.5160
1.2368

-8.3159
22.2581
-4.6195
1.0243

-8.5160
-4.6195
5.6500
0.7263

1.2368
1.0243
0.7263
1.2520

Regular Cholesky factorization of LT * L

4.5166 -2.8474 -0.2473 1.1199
0.0000 6.2714 -1.4383 -0.8494
0.0000 0.0000 4.4864 -1.2402
0.0000 0.0000 0.0000 1.4615
0.0000 0.0000 0.0000 0.0000

Generalized inverse of [G]

r0.07957
-0.4289
-0.1342
-0.0645

0.0648
-0.3494
-0.0723
-0.2377

0.2930
-0.1162
-0.0308
-0.1401

0.0117
0.9364
0.3504
0.1385

0.1279
0.2553
0.3172
0.8164
0.6350

-0.0206
-0.8888
-0.1133
-0.2425

L 0.4337 -0.2761 -0.2072 -0.2320 0.4060

0.0265
0.8570
0.2885
0.3118

-0.5220J

and the solution vector x is obtained as

\ r2.oooo^
0.9999

' ss < 0.9999
0.9999

J li.ooooJ

30

Example 4.2

The coefficient matrix [G] is a square/singular matrix, and the RHS vector {b} is a

random vector.

r - 2 - 1 0 0 1 - l l r 0
4 -2 0 0 2 -2 *2 0
0 0 1 2 0 2 *3 7
0 0 -2 5 -1 1 X4 4
13 0 11 3 *5 12
Ll 1 0 2 5 7 J oc6J L23J

Using MATLAB built-in function, the rank of G can be computed as

ranfc(C)= 5

22 -6 0 3 16 °1
-6 15 0 5 3 21
0 0 5 -8 2 0
3 5 -8 34 6 26

16 3 2 6 32 32
0 21 0 26 32 68-1

Special Cholesky factor of GT * G

T4.6904 -1.2792 0.0000 0.6396 0.3411 0.0000
0.0000 3.6556 0.0000 1.5915 2.0143 5.7445
0.0000 0.0000 2.2360 -3.5777 0.8944 0.0000
0.0000 0.0000 0.0000 4.2729 0.8921 3.9451

1-0.0000 0.0000 0.0000 0.0000 3.8353 4.4086

of independent rows = 5

Independent rows =1 2 3 4 5

Dependent row = 6

Product of ll * L

35.6818 3.2129 0.7627 5.7764 13.0832]
3.2129 52.9542 -3.8924 31.2607 33.0513
0.7627 -3.8924 18.6000 -14.4892 3.4304
5.7764 31.2607 -14.4892 34.6177 20.8144

13.0832 33.0513 3.4304 20.8144 34.1462^

Regular Cholesky factorization of LL * L

31

r5.9734 0.5378 0.1276 0.9670 2.1902
0.0000 7.2570 -0.5458 4.2359 4.3920
0.0000 0.0000 4.2761 -2.8765 1.2974
0.0000 0.0000 0.0000 2.7321 1.3996

L0.0000 0.0000 0.0000 0.0000 2.5331-1

Generalized inverse of [G]

0.0749 0.1498 0.0823 -0.0161 0.1882 -0.0742]
-0.0107 -0.0215 -0.1076 -5.146 x 10"3 0.3118 -0.0879
0.0182 0.0364 0.5157 -0.1939 0.0305 -0.0980
0.0151 0.0302 0.1518 0.1278 -7.108 x 10~4 -0.0271
0.0150 0.0301 -0.1820 -3.678 x 10"3 -0.0793 0.1366

-0.0242 -0.0485 0.0902 -0.0308 -0.0145 0.0761

and the solution vector x is obtained as

rl.0638^
*2 0.9459
*3 0.9465
X4 0.9423
*S 0.9029
lx6J ^2.0845^

Example 4.3

The coefficient matrix [G] is a square/non-singular matrix, and the RHS vector

{b} is a linear combination of columns of [G].

Using MATLAB built-in function, the rank of G can be computed as

r a n k (G) = 6

- 1 0 0 1 - I n
r1 CM 1

C
N

 1

O

o

CM 1 *2 -2
0 12 0 2 *3 5
0 - 2 5 - 1 1 *4 3
3 0 1 1 3 *5 9
3 0 1 6 1 - 1 u:6J L12J

32

r22 -4 0 2 1 —6]
-4 23 0 6 24 17
0 0 5 -8 2 0
2 6 -8 31 2 13
1 24 2 2 43 11

—6 17 0 13 11 20J

Special Cholesky factor of G R * G

1-4.6904 -0.8528
0.0000 4.7193
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
Lo.oooo 0.0000

of independent rows

0.0000 0.4204
0.0000 1.3483
2.2360 -3.5777
0.0000 4.0249
0.0000 0.0000
0.0000 0.0000

6

0.2132 -1.2792]
5.1239 3.3709
0.8944 0.0000
-0.4472 2.2360
3.9623 -1.2618
0.0000 0.6384

Independent rows = 1 2 3 4 5 6

Dependent row = none

Product oil! *L

24.5909 -6.6695 -1.3348 -1.2395 2.4589 -0.81671
-6.6695 61.7090 -0.2412 10.6735 16.0488 2.1522
-1.3348 -0.2412 18.6000 -14.8000 3.5440 0.0000
-1.2395 10.6735 -14.8000 21.4000 -4.5936 1.4276
2.4589 16.0488 3.5440 -4.5936 17.2923 -0.8056

L—0.8167 2.1522 0.0000 1.4276 -0.8056 0.4076

Regular Cholesky factorization of LT * L

[-4.9589 -1.3449 -0.2691 -0.2499 0.4958 -0.1646
0.0000 7.7390 -0.0779 1.3356 2.1597 0.2494
0.0000 0.0000 4.3036 -3.4303 0.8936 -5.78 x 10
0.0000 0.0000 0.0000 2.7903 -1.5370 0.3703
0.0000 0.0000 0.0000 0.0000 3.0365 -0.2266

1-0.0000 0.0000 0.0000 0.0000 0.0000 0.36012

Generalized inverse of [G]

33

-0.0396]
0.4206
-0.4444
0.2777
0.0000
-0.5000-1

and the solution vector x is obtained as

rX\1 rl.0000^1
*2 0.9999
*3 0.9999
*4

• — <

0.9999
*5 1.0000
bc6J Li.ooooJ

0.2341
-1.2817
-1.2222
-0.6388
0.5000

L 1.2500

0.0972
0.5694
0.6111
0.3194

-0.2500
-0.6250

-0.0317
-0.0634
0.5555
0.2222
0.0000
0.0000

-0.0158
-0.0317
-0.2222
0.1111
0.0000
0.0000

0.1825
-0.1349
—0.4444
-0.2777
0.0000
0.5000

Example 4.4

The coefficient matrix [G] is a square/singular matrix, and the RHS vector {b} is a

random vector.

2 -1 0 0 0 1 -in rXi> rli
4 2 0 0 0 2 -2 *2 6
0 0 1 2 -5 -3 6 *3 5
0 0 -2 5 6 2 1 - X4 . = 3
0 0 3 5 1 7 0 *5 9
1 2 -3 6 -2 1 3 *6 9
2 4 -6 12 -4 2 6 -1 LgJ

Using MATLAB built-in function, the rank of G can be computed as

rank(G) = 6

r 25 16 -15 30 -10 15 5 i
16 25 -30 60 -20 13 27
-15 -30 59 -83 16 -1 -41
30 60 -83 234 -35 69 107

-10 -20 16 -35 82 24 -54
-15 13 -1 69 24 72 -6

L 5 27 -41 107 -54 -6 87 J

Special Cholesky factor of GT * G

34

r5.0000 3.2000 -3.0000 6.0000 -2.0000 3.0000 1.0000
0.0000 3.8418 -5.3099 10.6198 -3.5399 0.8849 -1.0933
0.0000 0.0000 4.6695 -1.8438 -1.8838 2.7195 -1.0933
0.0000 0.0000 0.0000 9.0454 1.2293 5.1535 3.6698
0.0000 0.0000 0.0000 0.0000 7.7722 4.1069 -4.7144

1-0.0000 0.0000 0.0000 0.0000 0.0000 3.3756 -3.2763-

of independent rows = 6

Independent rows =1 2 3 4 5 6

Dependent row = 7

Product of LT * L

94.2400
107.8723
-14.2385
70.9443
-7.9381
6.8505

107.8723
207.4266
-42.0738
119.0041
-53.0841
-17.3091

-14.2385
-42.0738
37.3448
-8.9911
1.6820
12.7625

70.9443
119.0041
-8.9911
123.3579
13.4190
5.3727

-7.9381
-53.0841
1.6820

13.4190
99.5613
29.3094

6.8505
-17.3091
12.7625
5.3727
29.3094
22.1291

Regular Cholesky factorization of LT * L

r9.7077 11.1120 -1.4667 7.3080 -0.8177 0.7056
0.0000 9.1624 -2.8131 4.1252 -4.8019 -2.7449
0.0000 0.0000 5.2229 2.55271 -2.4940 1.1632
0.0000 0.0000 0.0000 0.81297 6.6882 1.2578
0.0000 0.0000 0.0000 0.0000 4.9813 2.2468
Lo.oooo 0.0000 0.0000 0.0000 0.0000 2.4723

Generalized inverse of [G]

r 0.2050 0.1624 0.1051 0.0748 -0.0440 -0.0119 -0.0239
-0.4999 0.2500 0.0000 -1.0547 0.0000 0.0000 0.0000
-0.1361 0.1144 0.1337 0.0393 0.0869 -0.0364 -0.0729
0.0579 -0.0468 2.017 X 10"4 0.0254 0.0272 0.0151 0.0303

-0.0938 0.0780 0.0410 0.1627 -0.0238 -0.0249 -0.0499
0.0303 -0.0267 -0.0633 -0.0582 0.0895 8.3858 x 10"3 0.0167

L—0.0596 0.0482 0.1468 0.0914 1.3269 X 10"3 -0.0156 -0.0312J

and the solution vector x is obtained from Eq. (4.32) as

35

FXL} rl.2092"\
*2 1.0000
*3 1.1341
X4 Y = « 0.5089
*5 0.1789
*6 0.4105
JC7J *•0.8290-'

4.7 Mixed Direct-Iterative Generalized Inverse Algorithms for Solving SLE

Instead of explicitly computing the generalized inverse from Eq. (4.32), which

involves a lot of "matrix times matrix" operations, one can/should repeatedly use "matrix

times vector" operations for improving its computational efficiency. Furthermore, it is

noted that the "regular (not generalized) inverse" of the matrix product [V * L] should be

replaced by the more efficient SLE, either by Direct or by Iterative algorithms. More

details can be explained in the following sub-sections.

4.7.1 Direct methods in Generalized Inverse for solving SLE

Using the matrix-product operations in Eq. (4.32), one can compute the unknown

solution vector x according to the following sequence of steps:

From Eq. (2.1), with [>4] = [G], and from Eq. (4.32),

;K = L(L'L)~l(L'L)~lL'G'b

Let

Minv = (L'Ly1

Then one computes the following sequence of matrix times vector:

tempo\ = G'xb

tempo 3 = V x tempo1

36

tempo2 = Mirrv x tempob

tempol = Minv x tempo!

tempo2 = Lx tempol

and the unknown solution vector x is stored in the temporary vector tempo2.

4.7.2 Iterative Method in Generalized Inverse for solving SLE

From Eq. (4.32),

3c = L(L'L)-\L'Ly L'G'b

Let

Ml = (L'L)

Then one computes the following sequence of matrix times vector:

tempo \ = G'xb

tempo3 = L'x tempol

Using MATLAB built-in (Conjugate Gradient) function, one computes the following

vectors:

tempdl = cg{Ml,tempS)

temp A = cg{M\, tempol)

tempol = Lx tempol

and the unknown solution vector x is stored in the temporary vector tempol.

where eg is the Conjugate Gradient (iterative) Algorithm for solving SLE and the

unknown solution vector x is stored in the temporary vector tempol.

37

Important Notes:

(a) Inside the "generalized inverse" algorithms, one needs to find the "regular inverse" of

the coefficient matrix (= V * L, in this case). This "regular matrix inversion" should be

equivalently solved by SLE, which can be done either by direct, or iterative solvers.

(b) For certain large-scale (especially for 3-D) problems, iterative solver (with

appropriated pre-conditioned strategies) can be a more preferable method of choice (as

compared to the direct method), due to the following desirable features:

• No fill-in terms occurred

• Much easier to parallelize

4.8 Domain Decomposition Generalized Inverse Solver

The efficient generalized inverse algorithms discussed in sections 4.6 and 4.7 can

be further improved by utilizing the Domain Decomposition (or DD) formulation. In

Chapter 3, some key equations resulted from DD formulation have already been derived,

based on the assumption that the coefficient of a square matrix is non-singular.

In this section, let us consider the system of linear algebraic equations

Kr = f (4.33)

where the matrix of system is K e R"*" (K can be either non-singular, or singular) and

vectors reR" , f eR" .

Let the original domain be decomposed into m sub domains. The coefficient

matrix can be represented in a special form as shown below

38

Kf ' o A:)'*1" f tfi ' l w
KP

0 Af1 K\b] $

'
K['b] m

K\b,] K\bi)
Af'1 • •• 4"'

g[bb\
U»JJ

From Eq. (4.34) the following notations are used

AjJj', where j e {l,2- vectors of displacements of interior nodes on the j'h sub

domain,

- vector of boundary displacements,

where j e { l , 2 , . v e c t o r s o f i n t e r i o r l o a d s a c t i n g o n / A s u b d o m a i n ,

/[t] - vector of boundary loads on the boundaries.

K^bb^ represents the summation of boundary stiffness matrices from all sub-domains.

For "structural engineering" applications, and using DD formulation, Eq. (4.33)

can be naturally expressed in the form as shown in Eq. (4.34). For general "field"

problems (or mathematical problems), one usually starts with Eq. (4.33). For these

problems, however, Nested Disection or METiS re-ordering algorithms [20-22] can be

used to transform Eq. (4.33) into the form shown in Eq. (4.34).

From Eq. (4.34), matrix contains contributions from "all" sub-domains and can be

expressed as

K { b b] =^Kf] (4.35)

For symmetrical cases, and Kf'' are the transpose of each other. Vectors rjjf'can be

expressed in the form

39

t l f 1 = W" r W"' - K f] >i") (4.36)

where j E {1,2,..., m}, and is a sub-set of the vector r^.

Also,

i(4'i)r'xf]V, =/„ (4.37)
y=1 j j-1

Eq. (4.37) is called the reduced system or resulting system.

If the matrix K, shown in Eq. (4.33), is singular, we can apply the concept of

generalized inverse to invert the (possible) singular coefficient matrix in Eq. (4.37) to

find the unknown boundary displacement vector first, and then use them in

computing the remaining unknown interior displacement vector r^, as shown in Eq.

(4.36).

For a typical j'h sub-domain j € {l,2,...,m}, one obtains

= [* < » >] - ' • (/ , " » «) < 4 - 3 8 >

40

5. ENGINEERING/SCIENCES NUMERICAL APPLICATIONS

Based on the discussions presented in the previous chapters (chapters 1-4), a

fairly extensive set of numerical examples are used in this chapter for validating the

accuracy and evaluating the (computational time) performance of the proposed

algorithms discussed in Chapter 4. Test examples to cover the cases where the

known/given coefficient matrix in the SLE can be a square/rectangular, singular/non-

singular, symmetrical/non-symmetrical matrix, and the known/given right-hand-side (rhs)

vector can be random vector, or it can be a linear combinations of columns of the

coefficient matrix are all investigated in this chapter.

5.1 Description of the Test Examples

Test matrices are collected from Tim Davis Sparse Matrix Collection [14],

University of Florida. Rank deficient (singular) matrices derived from various

engineering and science applications such as Linear Programming, Combinatorial

Problem, Directed Graph, Fluid Dynamics, Linear Programming, Chemical Process

Simulations, Cell traffic matrices, etc. are included in Tables 5.1-5.4

41

SI. No Name Size Rank nnz Group Description
1 lock_700 700x700 165 22,175 HB Finite Element

Problem
2 dwt 1005 1005x1005 995 8,621 HB Structural Problem
3 bcspwr06 1454x1454 1446 5,300 HB Power network

problem
4 bcsstml3 2003x2003 1241 21,181 HB Symmetric Mass

Matrix, Fluid Flow
Generalized Eigen

Values
5 lock2232 2232x2232 368 80,352 HB Finite Element

Problem
6 cegb2802 2802x2802 289 277,362 HB Finite Element

Problem
Table 5.1: Symmetric Singular Test Matrices for ODU Generalized Inverse Solver

SI. No Name Size Rank nnz Group Description
1 tomo_900 900x900 893 35,598 Regtools 2-D tomography test

problem
2 GD00_c 638x638 300 1,041 Pajek

network
Directed Multigraph

3 GD96_a 1096x1096 827 1,677 Pajek
network

Directed Multigraph

4 ex 6 1651x1651 1650 49,062 FIDAP CFD
5 CS_phd 1882x1882 705 1,740 Pajek

network
Directed Graph

6 tomo_2500 2500x2500 2496 166,782 Regtools 2-D tomography test
problem

Table 5.2: Un-symmetrical Singular Test Matrices for ODU Generalized Inverse Solver

SI. No Name Size Rank nnz Group Description
1 D_6 970x435 339 6,491 JGD_SL6 Differentials of

Voronoi complex of
perfect forms

2 mk9-b2 1260x378 343 3,780 JGDHomology Combinatorial
problem

3 n3c6-b3 1365x455 364 5,460 JGD_Homology Combinatorial
problem

4 Franzl 2240x768 755 5,120 JGD_Franz Combinatorial
problem

5 mkl0-b2 3150x630 586 9,450 JGD_Homology Simplical
complexes

6 n4c6-b3 5970x1330 1140 23,880 JGD_Homology Simplical
complexes from
Homology from
Volkmar Welker

Table 5.3: Rectangular Singular Test Matrices
Generalized Inverse

(Tall type: rows»cols) for ODU
Solver

42

SI. No Name Size Rank nnz Group Description
1 lpstandgub 361x1383 360 3,338 LPnetlib Linear

Programming
Problem

2 lp_ship041 402x2166 360 6,380 LPnetlib Linear
Programming

Problem
3 lp_ship08s 778x2467 712 7,194 LPnetlib Linear

Programming
Problem

4 Trecl2 551x2726 550 151,219 JGD_Kocay combinatorial
problem

5 lp_ship081 778x4363 712 12,882 LPnetlib Linear
Programming

Problem
6 lp_d6cube 415x6184 404 37,704 LPnetlib Linear

Programming
Problem

Table 5.4: Rectangular Singular Test Matrices (Fat type: rows«cols) for ODU
Generalized Inverse Solver

5.2 Numerical Performance of ODU Generalized Inverse Solver

Based on the detailed algorithms explained in Chapter 4, and using the rank-

deficient matrices as coefficient matrices described in section 5.1, the numerical

performance of our proposed procedures [for solving SLE, shown in Eq. (4.33)] are

evaluated in this section. The known RHS vector {b} can be random vector, or can be

chosen such a way that the unknown solution vector {*} = {1,1,

We also compared the performance of our algorithm with the efficient algorithm

described in [13] and also with MATLAB built-in function pinvQ [12] for computing the

generalized inverse explicitly. We use MATLAB version 7.6.0.324 (R2008a) on Intel

Core 2 CPU, 2.13GHZ, 2GB RAM, Windows XP Professional SP3 for numerical

comparisons. To be consistent and fair, sparse test matrices obtained from tables 5.1-5.4

are converted to full matrices (in this section).

43

Tables 5.5 through 5.16 records the times (in seconds) taken by our proposed

algorithm, the algorithm mentioned in [13] and MATLAB built-in function [12] pirtvQ.

For our convenience, we represent our algorithm with ODU — ginverseQ, algorithm in

[13] withgeninv and MATLAB built-in function with MATLAB-pirtvQ. In addition,

we have also presented the error norm for all the test matrices.

5.2.1 Direct Method in Generalized Inverse to Solve SLE with RHS Vector as
Linear Combination of Columns of the Coefficient Matrix

In this sub-section, the explicitly inverse of the matrix product[L' • L], shown in

Eq. (4.32), is implemented by MATLAB built-in function inv(JL' * L), and the results are

shown in Tables 5.5-5.12.

SI.
No

Name Size Rank ODU - ginverse

Error Norm

geninv

Error Norm

MATLAB - pinvQ

Error Norm

1 lock_700 700x700 165 0.1514
1.033x10*

0.3446
1.1399x1or6

1.2967
2.215x10"

2 dwt_1005 1005x1005 995 2.6634
7.1302^1 O9

4.2889
6.764x10*

14.0320
4.5736xlO'2

3 bcspwr06 1454x1454 1446 8.5029
1.477*10*

13.3176
1.829x10s

40.3646
2.7131 xio'2

4 bcsstml3 2003x2003 1241 11.5997
6.7629x1or9

19.1901
1.826x10s

36.3413
5.6493 xlO,}

5 lock2232 2232x2232 368 5.5518
7.9519xl0r9

10.8755
2.5797xlO?

40.7582
1.0761x10"

6 cegb2802 2802x2802 289 8.9571
9.7558x1(T9

18.6816
3.7220x107

69.9847
1.7532x10"

Table 5.5: Computational Times (in seconds) for Symmetric Rank-Deficient Test
Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix

44

SI. No Name Size Rank ODU - g inverse

Error Norm

geninv

Error Norm

MATLAB - pinvQ

Error Norm

1 tomo_900 900x900 893 1.8545
7.667*1(T9

3.0092
1.055 *70^

10.1396
2.789x70-"

2 GDOOc 638x638 300 0.1805
7.909*10rn

0.3961
2.602X70-"

1.8696
5.704x70""

3 GD96_a 1096x1096 827 2.5991
3.179 *i<r'3

4.1606
1.776x70""

7.3928
3.148x70""

4 ex_6 1651x1651 1650 12.78109
2.547 x/0"5

19.9238
0.00657

44.6059
4.6022x70""

5 CS_phd 1882x1882 705 8.5161
7.724x70""

12.8672
9.295 *1$'"

41.8010
2.707x70""

6 tomo_2500 2500x2500 2496 44.7203
2.031 x70-7

69.0133
0.0002893

221.6490
2.8190 x70r'°

Table 5.6: Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test
Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix

SI.
No

Name Size Rank ODU — ginverse

Error Norm

geninv

Error Norm

MATLAB — pinv 0

Error Norm
1 D_6 970x435 339 0.1347

1.216x70""
0.2809

1.333x70""
1.3240

7.403 x 70""
2 mk9-b2 1260x378 343 0.1162

5.950x70""
0.2478

1.018x70""
0.6098

1.681x70""
3 Franz1 2240x768 755 1.3077

1.457x70""
2.3649

1.290x70""
6.0490

2.806x70""
4 mklO-

b2
3150x630 586 0.8094

1.599x70""
1.5776

2.057x70""
3.2363

2.573x70""
Table 5.7: Computational Times (in seconds) for Rectangular Rank-Deficient Test

Matrices (Tall type: Rows»Cols) with RHS Vector as Linear Combination of Columns
of Coefficient Matrix

5/.
No

Name Size Rank ODU — ginverse

Error Norm

geninv

Error Norm

MATLAB -plnvO

Error Norm

1 lp_standgub 361x1383 360 0.1242
6.321 x70"7

0.4238
6.387 x70"7

1.0215
3.579x70""

2 lp_ship041 402x2166 360 0.1760
1.421 x70""

0.6712
1.056x70""

1.3390
1.851 x70""

3 lp_ship08s 778x2467 712 1.2747
1.178x70""

3.4073
1.052x70""

5.3489
1.583 x7*T"

4 lp_ship081 778x4363 712 1.5622
2.955 x70-"

5.2861
1.517x70-"

8.5278
4.243 x70r"

Table 5.8: Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (Fat type: Rows«Cols) with RHS Vector as Linear Combination of Columns

of Coefficient Matrix

45

5.2.2 Direct Method in Generalized Inverse to Solve SLE with Randomly Generated
RHS Vector {1,2, ...,n}T.

SI.
No

Name Size Rank ODU — ginverse

Error Norm

geninv

Error Norm

MATLAB - pinv0

Error Norm

1 lock_700 700x700 165 0.1483
1495.46

0.3423
1495.46

1.2948
1495.46

2 dwt_1005 1005x1005 995 2.6740
295

4.3156
295

14.0342
295

3 bcspwr06 1454x1454 1446 8.5747
102.551

13.3752
102.551

41.1197
102.551

4 bcsstml3 2003x2003 1241 11.7270
29034.7

19.3159
29034.7

36.3659
29034.7

5 lock2232 2232x2232 368 5.5934
106.489

10.9423
106.489

40.7723
106.489

6 cegb2802 2802x2802 289 9.1066
28002

18.7714
28002

69.7151
28002

Table 5.9: Computational Times (in seconds) for Symmetric Rank-Deficient Test
Matrices with Randomly Generated RHS Vector

SI.
No

Name Size Rank ODU — ginverse

Error Norm

geninv

Error Norm

MATLAB — pinv 0

Error Norm

1 tomo_900 900x900 893 1.8725
669.871

3.0287
669.871

10.0959
669.871

2 GD00_c 638x638 300 0.2012
6204.66

0.4092
6204.66

1.8748
6204.66

3 GD96_a 1096x1096 827 2.6079
4821.7

4.1399
4821.7

7.3863
4821.7

4 ex_6 1651x1651 1650 12.7676
1682.04

20.0046
1682.04

44.5628
1682.04

5 CS_phd 1882x1882 705 8.5641
40498.9

12.9633
40498.9

41.7883
40498.9

6 tomo_2500 2500x2500 2496 45.0147
1561.25

69.2692
1561.25

221.4820
1561.25

Table 5.10: Computational Times (in seconds) for Non-
Matrices with Randomly Generated

Symmetric Rank-Deficient Test
RHS Vector

46

SI. Name Size Rank ODU - g inverse geninv MATLAB - pinvQ

No Error Norm Error Norm Error Norm

1 D_6 970x435 339 0.1991
14795

0.3480
14795

1.3203
14795

2 mk9-b2 1260x378 343 0.1615
6376.16

0.2935
6376.16

0.6090
6376.16

3 Franz1 2240x768 755 1.2964
37127.5

2.3602
37127.5

6.0413
37127.5

4 mkl0-b2 3150x630 586 0.8063
26222.6

1.5845
26222.6

3.2379
26222.6

Table 5.11: Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (Tall type: Rows»Cols) with Randomly Generated RHS Vector

SI. Name Size Rank ODU — ginverse geninv MATLAB - pinvO

No Error Norm Error Norm Error Norm

1 lp_standgub 361x1383 360 0.1586
2

0.4580
2

1.0321
2

2 lp_ship041 402x2166 360 0.2250
1508.7

0.7126
1508.7

1.3383
1508.7

3 lp_ship08s 778x2467 712 1.2945
833468

3.3961
833468

5.3447
833468

5 lp_ship081 778x4363 712 1.5722
3724.81

5.2922
3724.81

8.5757
3724.81

Table 5.12: Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (Fat type: Rows«Cols) with Randomly Generated RHS Vector

5.2.3 Iterative Methods in Generalized Inverse to Solve SLE with Randomly
Generated RHS vector

In this sub-section, the explicit inverse of the matrix product [L' * L], shown in

Eq. (4.32), is implemented by MATLAB built-in (Conjugate Gradient iterative solver),

and the results are shown in Tables 5.13-5.16.

Iterative solver used: Conjugate Gradient Algorithm

Error tolerance used: 10 -7

47

SI.
No

Name Size Rank ODU - ginverse
Iterative

Error Norm

ODU - ginverse
direct

Error Norm

geninvQ

Error Norm

MATLAB pinv(

Error Norm

1 lock1074 1074x1074 155 0.5649
47.5347

0.4351
47.5347

1.0278
47.5347

4.1070
47.5347

2 lock2232 2232x2232 368 5.9314
63.1189

5.5499
63.1189

10.8729
63.1189

40.7251
63.1189

3 cegb2802 2802x2802 289 9.3092
77.0117

9.0585
77.0117

18.6983
77.0117

69.7249
77.0117

Table 5.13: Computational Times (in seconds) for Symmetric Rank-Deficient Test
Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated

RHS Vector

SI.
No

Name Size Rank ODU
- ginverse
iterative

Error Norm

ODU
- ginverse

direct

Error Norm

geninvQ

Error Norm

MATLAB pinvO

Error Norm

1 GD00_c 638x638 300 0.2835
46.1318

0.2125
46.1318

0.4097
46.1318

1.8861
46.1318

2 GD96_a 1096x1096 827 2.7595
28.0286

2.6291
28.0286

4.1385
28.0286

7.3832
28.0286

3 CS_phd 1882x1882 705 8.5563
96.906

8.5541
96.906

12.9385
96.906

41.6813
96.906

Table 5.14: Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test
Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated

RHS Vector

SI.
No

Name Size Rank ODU
— ginverse
Iterative

Error Norm

ODU - ginverse
direct

Error Norm

geninvQ

Error Norm

MATLAB pinvQ

Error Norm

1 mk9-b2 1260x378 343 0.1423
43.7972

0.1615
43.7972

0.2928
43.7972

0.6096
43.7972

2 Franz1 2240x768 755 1.2200
84.9266

1.3051
84.9266

2.3673
84.9266

6.0349
84.9266

3 n4c6-b3 5970x1330 1140 7.26591
128.086

7.8267
128.086

14.1278
128.086

25.7394
128.086

Table 5.15: Computational Times (in seconds) for Rectangular (Tall) Rank-Deficient
Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly

Generated RHS Vector

48

SI.
No

Name Size Rank ODU
— ginverse
iterative

Error Norm

ODU
— ginverse

direct

Error Norm

geninv 0

Error Norm

MATLAB pinv(

Error Norm

1 lp_ship08s 778x2467 712 1.59103
21.3141

1.2930
21.3141

3.3817
21.3141

5.3262
21.3141

2 lp_ship081 778x4363 712 1.7496
24.7184

1.6065
24.7184

5.2864
24.7184

8.4837
24.7184

3 lp_d6cube 415x6184 404 0.5738
10.7908

0.46281
10.7908

2.1500
10.7908

4.1469
10.7908

Table 5.16: Computational Times (in seconds) for Rectangular (Fat) Rank-Deficient Test
Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated

RHS Vector

Furthermore, graphical comparisons (in terms of the computational times) of ODU-

ginverse with other algorithms have been presented in Appendix E.

5.3 Numerical Performance of ODU Generalized Inverse DD Solver

As can be seen from the previous Section 5.2, our proposed implementation of the

generalized inverse for solving SLE have shown "significant time reduction" as

compared to MATLAB built-in function, and also compared to [13]. In this sub-section,

however, we want to investigate the numerical performance of our proposed generalized

inverse wi th in the f rame work of DD formula t ion (for so lv ing sys tem of [G] # {*} = {b} ,

where the coefficient matrix [G] has the dimension m x n and can be either rectangular,

or square/singular).

5.3.1 Description of Test Problems for ODU Generalized Inverse DD Solver

Test matrices are collected from Tim Davis Sparse Matrix Collection, University

of Florida [14]. Rank deficient (singular) matrices derived from various engineering and

science applications such as Linear Programming, Combinatorial Problem, Directed

Graph, Fluid Dynamics, Linear Programming, Chemical Process Simulations, Cell traffic

Matrices, etc. are included in Tables 5.17-5.18

49

SI. No Name Size Rank nnz Group Description/Kind
1 GD98_c 112x112 100 336 Pajek Pajek network,

undirected graph
2 dwt 209 209x209 208 1,743 HB Structural Problem
3 dwt 307 307x307 288 2,523 HB Structural Problem

Table 5.17: Symmetric Singular est Matrices for ODU Generalized Inverse DD Solver

SI No Name Size Rank nnz Group Description/Kind
1 gentll3 113x113 107 655 HB Statistical/Mathematical

Problem
2 gre 216b 216x216 215 812 HB Directed Weight Graph
3 GD00 a 352x352 178 458 Pajek Directed Graph

Table 5.18: Un-Symmetrical Singular Test Matrices for ODU Generalized Inverse DD
Solver

5.3.2 Problem Formulation with Same Sub Matrix

Let us construct a system matrix (Eq. (4.33)) in the form shown by Eq. (4.34). For

the sake of discussion, let us consider 3 sub domains. The system matrix takes the

following form

, O O K;'s

f r ' l yr

O K* O K'b r} /•

O O K; K'b f3

Kbl Kbi Kbi Kbb
J J*; K /b >

(5.1)

A singular coefficient matrix is considered from the test matrix collection [14-15] as K".

For simplicity/convenience, we also assume

(a) K{' = K'l = K? = Kbb (5.2)

(b) K,b = K'2b = K'b = Kbi = Kb' = Kbl = K" (5.3)

The known right hand side (RHS) vector is chosen as factory, random column vector.

Where factor is a user defined variable. The user can also specify the number of sub

domains and, accordingly, the system matrix and the right hand side vector will be

automatically generated.

This section presents a comparison of numerical results (in terms of timings) of

the developed Domain Decomposition generalized inverse formulations with other

existing algorithms. MATLAB sparse storage scheme has been adopted on the input test

matrices.

SI. No nsu Size Rank O D U - D D

Error Norm

Original system
ginverse MV

Error Norm

Original system
genlnv

Error Norm

1 2 336x336 300 0.06130
8.21375

0.07158
8.21375

0.11555
8.21375

2 3 448x448 400 0.09911
12.2835

0.15793
12.2835

0.26940
12.2835

3 4 560x560 500 0.12202
9.95631

0.30984
9.95631

0.49831
9.95631

4 5 672x672 600 0.15667
15.2519

0.56595
15.2519

0.88289
15.2519

5 6 784x784 700 0.2000
13.1714

0.95323
13.1714

1.45982
13.1714

6 7 896x896 800 0.20218
14.9267

1.44812
14.9267

2.19521
14.9267

7 8 1008x1008 900 0.24897
14.6983

2.16118
14.6983

3.21151
14.6983

Table 5.19: Computational Times (in seconds) for Rank-Deficient Test Matrices with
same Ku (GD98_c) Sub-Matrices using Domain Decomposition

SI. No nsu Size Rank ODU - DD

Error Norm

Original system
ginverse MV

Error Norm

Original system
geninv

Error Norm
1 2 627x627 624 0.28611

2.9162
0.53233
2.9162

0.859960
2.9162

2 3 836x836 832 0.401712
3.87701

1.37505
3.87701

2.10186
3.87701

3 4 1045x1045 1040 0.53614
2.0488

2.98979
2.0488

4.44309
2.0488

4 5 1254x1254 1248 0.59997
2.54757

5.08382
2.54757

7.43006
2.54757

5 6 1463x1463 1456 0.71609
1.06024

8.2171
1.06024

12.06235
1.06024

6 7 1672x1672 1664 0.87530
2.14487

12.46184
2.14487

18.24484
2.14487

7 8 1881x1881 1872 1.00417
8.99101

18.2003
8.99101

25.81453
8.99101

Table 5.20: Computational Times (in seconds) for Rank-Deficient Test Matrices with
same Kli (dwt_209) Sub-Matrices using Domain Decomposition

51

SI. nsu Size Rank O D U - D D Original system Original system

No
nsu Size

ginverse MV geninv

Error Norm Error Norm Error Norm

1 2 921x921 864 0.67732 1.70853 2.59315
14.6443 14.6443 14.6443

2 3 1228x1228 1152 1.0100 4.38649 6.43760
12.991 12.991 12.991

3 4 1535x1535 1440 1.2845 8.6928 12.76263
11.2669 11.2669 11.2669

4 5 1842x1842 1728 1.62886 15.2775 22.0046
17.1461 17.1461 17.1461

5 6 2149x2149 2016 1.96057 26.66948 35.4461
17.6758 17.6758 17.6758

6 7 2456x2456 2304 2.28013 36.77451 53.29277
17.0915 17.0915 17.0915

7 8 2763x2763 2592 2.70171 52.6385 75.09115
21.1027 21.1027 21.1027

Table 5.21: Computational Times (in seconds) for
same KU (dwt_307) Sub-Matrices using

Rank-Deficient Test Matrices with
Domain Decomposition

SI. nsu Size Rank O D U - D D Original system Original system

No ginverse MV geninv

Error Norm Error Norm Error Norm
1 2 339x339 321 0.075614 0.093916 0.14541

4.83871 4.83871 4.83871
2 3 452x452 428 0.010403 0.19469 0.305175

7.01463 7.01463 7.01463
3 4 565x565 535 0.134215 0.35666 0.575419

9.03996 9.03996 9.03996
4 5 678x678 642 0.166451 0.65779 1.03111

10.8548 10.8548 10.8548
5 6 791x791 749 0.20053 1.31634 1.89611

10.1139 10.1139 10.1139
6 7 904x904 856 0.224461 1.64580 2.46109

10.1037 10.1037 10.1037
7 8 1017x1017 963 0.30215 2.433860 3.65811

8.71228 8.71228 8.71228
Table 5.22: Computational Times (in seconds) for

same KIL (gentl 13) Sub-Matrices using
Rank-Deficient Test Matrices with
Domain Decomposition

52

SI. nsu Size Rank O D U - D D Original system Original system

No ginverse MV gentnv

Error Norm Error Norm Error Norm

1 2 648x648 643 0.213104 0.48045 0.73973
29.2826 29.2826 29.2826

2 3 864x864 857 0.32912 1.17688 1.77665
32.058 32.058 32.058

3 4 1080x1080 1066 0.45151 2.500164 3.57136
36.0931 36.0931 36.0931

4 5 1296x1296 1279 0.53808 4.33999 6.28897
40.1448 40.1448 40.1448

5 6 1512x1512 1492 0.64925 7.19551 10.12725
45.0203 45.0203 45.0203

6 7 1728x1728 1705 0.699806 10.70643 15.20850
44.2327 44.2327 44.2327

7 8 1944x1944 1918 0.80099 16.44834 23.81176
54.8367 54.8367 54.8367

Table 5.23: Computational Times (in seconds) for Rank-Deficient Test Matrices with
same Ka (gre_216b) Sub-Matrices using Domain Decomposition

SI.
No

nsu Size Rank ODU - DD

Error Norm

Original system
ginverse MV

Error Norm

Original system
geninv

Error Norm

1 2 1056x1056 534 0.38620
50.4652

1.05101
50.4652

1.62067
50.4652

2 3 1408x1408 712 0.56582
56.6697

2.96705
56.6697

4.05349
56.6697

3 4 1760x1760 890 0.71932
63.9613

5.83588
63.9613

8.01557
63.9613

4 5 2112x2112 1068 0.888563
69.849

10.48973
69.849

14.15703
69.849

5 6 2464x2464 1246 1.16060
79.2452

16.4323
79.2452

22.84216
79.2452

6 7 2816x2816 1424 1.48376
82.7129

25.37213
82.7129

34.37000
82.7129

7 8 3168x3168 1602 1.69688
85.8676

36.3547
85.8676

49.16511
85.8676

Ta >le 5.2^ : Computational Times (in seconds) for Rank-Deficient Test Matrices with
same K l i (GD00_a) Sub-Matrices using Domain Decomposition

5.33 Problem Formulation with Different Sub Matrix

Let us construct a system matrix (Eq. (4.33)) in the form shown by Eq. (4.34). For

the sake of discussion, let us consider 3 sub domains. The system matrix takes of the

form

53

0 0 i r >) 7,p

0 K; 0 zrib K2
K

f-

0 0 K'L KF F,3

KB ' KB I K bl KB B J r
U, <fi> >

A singular coefficient matrix is considered from the test matrix collection [14-15] as K".

For simplicity, we also assume

(a) K" * K![* K"

(b) K" = K I B = KB I

(c) K" = K'B = KBI

(d) K" = K I B = KB L

(e) K[' = KB B

The known right hand side vector is chosen as

fi = 1: m,fb = 1: m where [m, n] = size(K"). The user can also specify the number of

sub domains and accordingly, the system matrix and the right hand side vector will be

generated.

Numerical results for these test cases are presented in Tables 5.25-5.27

SI. nsu Size Rank ODU - DD Original system Original system

No glnverse MV genlnv

Error Norm Error Norm Error Norm

1 9 1610x1610 1573 0.59484 10.75132 15.65746
12.8452 12.8452 12.8452

2 10 1771x1771 1725 0.65966 14.52799 21.00736
J5.7321 15.7321 15.7321

3 11 1932x1932 1876 0.71032 19.01395 26.94307
18.9077 18.9077 18.9077

Table 5.25: Computational Times (in seconds) for Rank-Deficient Test Matrices with
different K11 (can_161) Sub-Matrices using Domain Decomposition

54

SI nsu Size Rank ODU - DD Original system Original system

No
nsu

ginverse MV geninv

Error Norm Error Norm Error Norm

1 3 2800x2800 660 2.46978 10.66420 14.53973
2990.92 2990.92 2990.92

2 4 3500x3500 825 2.83254 22.08674 29.95532
3343.95 3343.95 3343.95

3 5 4200x4200 990 3.88394 37.47156 49.44602
3663.12 3663.12 3663.12

Table 5.26: Computational Times (in seconds) for Rank-Deficient Test Matrices with
different Ku (lock_700) Sub-Matrices using Domain Decomposition

SI. nsu Size Rank O D U - D D Original system Original system

No
Size

ginverse MV geninv

Error Norm Error Norm Error Norm

1 4 1445x1445 1438 1.23158 7.89617 11.5578
2.73861 2.73861 2.73861

2 5 1734x1734 1723 1.33245 14.00956 20.0745
4.1833 4.1833 4.1833

3 6 2023x2023 2007 1.55488 22.07078 31.8324
5.91608 5.91608 5.91608

Table 5.27: Computational Times (in seconds) for Rank-Deficient Test Matrices with
different K" (mesh3el) Sub-Matrices using Domain Decomposition

5.3.4 Problem Formulation with Same Sub-Matrices and RHS as Linear
Combinations of Columns

The known right hand side vector is chosen as Q + C2 + C3 H V Cn, where n

is the number of columns, and C* (with i = 1,2,..., n) represents the ith column of the

coefficient matrix [G] in the big matrix.

Numerical results for the test cases are presented in Tables 5.28-5.30

55

SI.
No

nsu Size Rank ODU - DD

5>,l

Error Norm

Original system
ginverse MV

Error Norm

Original system
genlnv

Error Norm

1 3 2800x2800 660 2.52323
2764

1.9738*10*

10.26388
2764

5.0396*1 (X7

14.11214
2764

0.00016343
2 4 3500x3500 825 3.31814

3455
2.2792*1 Or6

20.38195
3455

3.0938*1?7

27.63699
3455

0.0001999
3 5 4200x4200 990 4.04986

4146
2.5482x10*

35.52977
4146

7.7514*10r7

48.13018
4146

0.0002406
Table 5.28: Computational Times (in seconds) for Rank-Deficient Test Matrices with

same K11 (lock_700) Sub-Matrices and RHS as Linear Combinations of Columns
Ci + C2 + C3 H h Cn using Domain Decomposition

SI.
No

nsu Size Rank ODU - DD

Zw
Error Norm

Original system
ginverse MV

Error Norm

Original system
geninv

Error Norm
1 3 1228x1228 1152 1.05252

1228
3.5175*1(T7

4.20519
1228

2.2430x10s

6.20720
1228

2.4071 *105

2 4 1535x1535 1440 1.37372
1535

4.0617*107

8.58372
1535

5.7408x10s

12.5739
1535

3.1755* 10s

3 5 1842x1842 1728 1.70161
1842

4.5413 *107

14.99398
1842

4.0396x10s

21.9261
1842

4.3923*10s

Table 5.29: Computational Times (in seconds) for Rank-Deficient Test Matrices with
same Ku (dwt_307) Sub-Matrices and RHS as Linear Combinations of Columns

C\ + C2 + C3 H 1- Cn using Domain Decomposition

56

SI.
No

nsu Size Rank O D U - D D

I1*'1

Error Norm

Original system
ginverse MV

gw
Error Norm

Original system
geninv

5V'1

Error Norm

1 5 2112x2112 1068 1.05579
1164

9.7350*1a13

9.72518
1164

9.69202* Iff'2

13.58581
1164

3.7717*1 ff"
2 6 2464x2464 1246 1.21400

1358
1.0599* Iff'2

15.7301
1358

1.0988*lff"

21.73368
1358

5.7415* Iff"
3 7 2816x2816 1424 1.42343

1552
1.3897* Iff12

23.75027
1552

1.3625*1 ff"

32.9830
1552

7.8649*1 ff"
Table 5.30: Computational Times (in seconds)

same KH (GD00_a) Sub-Matrices and RHS
Ci + C2 + C3 + —h Cn using

for Rank-Deficient Test
as Linear Combinations
Domain Decomposition

Matrices with
of Columns

5.3.5 Problem Formulation with DifTerent Sub-Matrices and RHS as Linear

Combinations of Columns

The known right hand side vector is chosen asC l + C 2 + C3 H 1- C n where n is

the number of columns and Q (with i = 1,2,..., n) represents the ith column of the

coefficient matrix [G] in the big matrix.

Numerical results for the test cases are presented in Tables 5.31-5.32

SI.
No

nsu Size Rank ODU - DD

Zw
Error Norm

Original system
ginverse MV

Z1*'1

Error Norm

Original system
geninv

2*
Error Norm

1 3 1228x1228 1152 1.04227
1228

3.9554* Iff7

4.381476
1228

2.7835*lff*

6.44660
1228

2.4688*1 ff5

2 4 1535x1535 1439 1.39427
1535

4.2179*lff7

8.91303
1535

5.0078* Iff8

12.98718
1535

3.237* Iff5

3 5 1842x1842 1725 1.64756
1842

4.42625* Iff7

15.51327
1842

5.60808*10*

22.31969
1842

4.6407* Iff5

Table 5.31: Computational Times (in seconds) for Rank-Deficient Test Matrices with
different Kli (dwt_307) Sub-Matrices and RHS as Linear Combinations of Columns

C\ + C2 + C3 + —h Cn using Domain Decomposition

57

Si
No

nsu Size Rank ODU - DD

Error Norm

Original system
ginverse MV

Z1*'1

Error Norm

Original system
geninv

Error Norm
1 15 1792x1792 1590 0.47628

1791.76
6.7768*1Or'2

13.16311
1791.76

2.0569* Iff10

19.00465
1791.76

1.4315* W9

2 16 1904x1904 1686 0.52987
1903.66

7.9443*1 (T12

15.83865
1903.66

2.9199*1 Or10

22.6178
1903.66

7.944*10r'2

3 17 2016x2016 1781 0.57382
2015.52

7.2594 *l(r'2

18.88350
2015.52

3.3548* Iff'0

26.91830
2015.52

2.16341* Iff9

Table 5.32: Computational Times (in seconds) for Rank-Deficient Test Matrices with
different Ku (GD98_c) Sub-Matrices and RHS as Linear Combinations of Columns

Ci + C2 + C3 H I- C„ using Domain Decomposition

58

6. EDUCATIONAL GENERALIZED INVERSE SOFTWARE FOR

INTERNET USERS

Most of the currently available commercialized software (and/or freely available

public source codes) for "large-scale" Engineering/Science computation has been written

in either FORTRAN, C, or C++ languages. Legacy (commercialized) Finite Element

Analysis (FEA) software, such as MSC-NASTRAN, SAP-2000, etc. have been written in

FORTRAN language. While these languages are efficient for "number crunching", these

FORTRAN/C/C++ software are NOT suitable for internet (educational) users. On the

other hand, it is too time consuming if one has to re-write these (large) source codes in

JAVA, or FLASH, etc... for internet/educational purposes. Based on our earlier research

works [23], a general procedure for executing "any" FORTRAN software on the internet

is explained and summarized in this chapter. More specifically, this chapter will explain

how to use the developed FORTRAN generalized software.

6.1 Description for Executing FORTRAN Software on the Internet

Since the 1960's, scientific programs have been developed in FORTRAN for the

solution of various structural, environmental, mathematical, chemical, etc. problems.

With the growing popularity and possibilities of the internet, web-based learning

is becoming more and more popular these days. The new trend focuses on developing

more effective learning methods for large pre-existing scientific languages like

FORTRAN, C etc. In this chapter, a web-based environment is utilized as a means to

introduce numerical methods concepts in civil engineering and other related fields of

engineering. Software development and implementation is presented, including detailed

descriptions of the techniques employed to link software written in high level computer

languages, such as C and FORTRAN, to a web-based, user friendly interface for both

input and output.

Web-based instruction systems represent a developing branch of computer-aided

instruction. This type of educational information emphasizes the use of the web for

transfer of educational information, and may be considered as a replacement to traditional

delivery methods of lectures and textbooks.

The motivation for developing this educational software is the challenges faced

while developing a 3-D truss analysis module in FLASH Actionscript language [24].

Initially, a web-based module was developed by converting 3-D truss analysis

FORTRAN code to FLASH Actionscript language. This module analyzes a 3-D truss

with the user specified input data. This module needs to re-write the entire FORTRAN

code to a different language (in this case FLASH Actionscript). This process is not only

time consuming; it requires a good knowledge of the other programming language

(FLASH Actionscript). Fig. 6.1 shows a sample of the developed web based 3D truss

module and can be found at http://www.lions.odu.edu/~skadi002/3d/. This emerged as

one of the many situations where developed FORTRAN computer programs are no

longer available for the public use (easy use) and are still considered to be valuable

source of both research and educational material. A better and convenient way to interact

the FORTRAN programs directly from the server is in needed to serve the purpose.

http://www.lions.odu.edu/~skadi002/3d/

TU eat vim* Favorite Took H^>

Specify units: [»Wr ̂ Qtf f<yoniwtqn Jj

No. of Joints» I 4 I

Figure 6.1: Online 3-D Truss Analysis.

61

6.2 Client Server Interface

Web application software is an application that uses a web browser as a client.

Commonly used web browsers are Internet explorer, Mozilla Firefox, Google Chrome,

Apple Safari, etc. A client is a system that accesses a remote service on another computer

commonly known as a server.

Web applications commonly use a combination of server-side scripting languages

like PHP, ASP, etc., and client-side languages like HTML, PHP, JAVA, etc. In the

developed software, PHP [25] is used as both client side and server side technologies.

In Fig. 6.2 client can be any one of desktop, laptop, Mac PC or PDA with browser

capabilities and an internet connection. The UNIX server is a machine where the

compiled FORTRAN programs are stored.

Laptop

Mac OS

m Desktop

Client Web Server

Figure 6.2: Client-Server Interface

62

63 Detailed Step-by-Step Procedures

Input and output interfaces are made user-friendly to attract users' attention, and

guide them into use of the software in an efficient manner.

(a) The user references http://www.lions.odu.edu/~skadi002/work/ as URL which directs

to a webpage containing number of educational applications. The user has a choice to

select from various FORTRAN applications.

(b) For the sake of discussion, let us assume the user has interest in solving SLE (singular

coefficient matrix) using generalized inverse. After clicking the appropriate link, the

browser directs to a new webpage containing the description and usage of the application

(see Fig. 6.3).

(c) The user clicks the "New" button to enter the input data in the textbox provided. It is a

hypertext preprocessor (PHP) form that is interpreted by the browser to allow the user to

enter the input data (see Fig 6.4).

(d) A sample/demo input data is provided in the input page so that the user can prepare in

the specified fashion. Well documented instructions are provided for the users to prepare

the input data to the application.

(e) Once the input data has been entered in the text box, the user hits the "Click here to

submit input file" button which is located below the input textbox.

(f) At this point the input data has been sent to the FORTRAN program. The user clicks

the "EXECUTE" button to execute/run the application.

(g) The output of the application is instantly seen on the same webpage (see Fig. 6.5)

63

6.4 Demonstrated Examples

In this section, various examples including the one explained in section 6.3 have

been demonstrated. Below are the descriptions of the applications.

6.4.1 Solving system of Simultaneous Linear Equations using Generalized Inverse

Algorithms

This application solves SLE of singular coefficient matrix using Generalized

inverse algorithms. Fig. 6.3 shows a screenshot of the application homepage. The input

data page with the sample of how input data page is prepared/entered is shown in Fig.

6.4. The output of the application is shown in Fig. 6.5.

Figure 6.3 Sample of Generalized Inverse Home Page

64

Figure 6.4 Generalized Inverse Input Page

Figure 6.5 Generalized Inverse Output Page

66

6.4.2 Solving System of Simultaneous Linear Equations using LU Decomposition

Algorithms

This application solves SLE of non-singular coefficient matrix using LU

decomposition algorithms. Fig. 6.6 shows a screenshot of the application homepage. The

input data page with the sample of how input data page is prepared is shown in Fig. 6.7.

The output of the application is shown in Fig. 6.8.

Figure 6.6: Sample of LU Decomposition Home Page.

9.2307E+05 0 0
3.4619E+05 -4.2857E+07 i.WlltOS
-0.15384 «.S 0.15384

0 4.28S7E+07 -
3.6057E+05

•7.887E+03

Figure 6.7: LU Decomposition Input Page

68

Figure 6.8: LU Decomposition Output Page

69

6.4.3 Solving System of Simultaneous Linear Equations using LU Decompositions

Algorithms on Portable Devices

Nowadays, most of the portable devices such as smart phones, tablet PCs,

personal digital assistants (PDA), e-book readers, etc., have internet browsing

capabilities. The developed application can be accessed on the above said portable

devices. One such example is shown in Fig. 6.9. In this example, the developed

educational software is accessed on I-Phone.

www.ttons.odu.sdu/-t... C Google www.Uons.odu.edu/-s... C I Googie

Figure 6.9: I-Phone Homepage, Input Data and Output Data.

http://www.ttons.odu.sdu/-t
http://www.Uons.odu.edu/-s

70

7. MATLAB - MPI BUILT-IN FUNCTIONS FOR PARALLEL

COMPUTING APPLICATIONS

7.1 Introduction

Matlab (MATrix LABoratory) is a tool to do numerical computations, solve

engineering and sciences applications, display 2D and 3D graphical information,

algorithm development, simulation, etc. It is a high-level scientific and engineering

programming environment which provides many useful capabilities and has an extensive

library of built-in functions.

Message Passing Interface (MPI) is widely used in large scale (intensive

numerical) computations. This is especially true for "generalized inverse" computer

implementation, where as matrix times matrix and/or Cholesky factorization operations

were required. MPI is a library of functions/routines that can be used to create parallel

programs in scientific languages such as FORTRAN, C, C++, etc.

Similar to traditional Message Passing Interface (MPI), MatlabMPI developed in

Lincoln Laboratory, MIT, allows any Matlab programs to run in parallel. MatlabMPI

implements the widely used MPI "look and feel" on the top of standard Matlab file

input/output, resulting in Matlab implementation of MPI.

MatlabMPI can be downloaded into user's local ZORKA account from

http://www.lI.mit.edu/mission/isr/matlabmpi/matlabmpi.html

71

7.2 MatlabMPI Functions

Some basic, most often used MatlabMPI built-in functions are briefly discussed below:

a. Junction MPIInit

This function is called at the start of an MPI program. It also initializes MPI in Matlab

environment.

Example:

MPIInit;

b. function NP = MPI_Comm_size(comm)

This function returns the numbers of processors in the communicator. The "comm" in

this function is an MPI communicator which is typically a copy of

MPI_COMM_ WORLD.

Example:

NP = MPICommsize(comm)

c. function my ID = MPICommrank(comm)

This function returns the rank (or processor ID #) of the current processor.

Example:

my_ID = MPICommrank(comm)

d. function MPI_Send(dest, tag, comm,varargin)

This function sends variable to a destination. It sends message containing variables to a

specified destination with a given tag. The argument "dest" contains processor ID #,

"tag" can be an any integer and "varargin" represents variable argument inputs.

Example:

MPI_Send (dest,tag,comm,data 1 ,data2,data3,..)

72

e. function varargout = MPI_Recv(source,tag,comm)

This function receives a message from a specified source processor with a given tag and

returns the output variable(s).

Example:

[varl,var2,var3,...] = MPI_Recv(source,tag,comm)

/ function MPI AbortQ

This function will abort any currently running MatlabMPI sessions by looking for

leftover Matlab jobs and killing them.

g. function MPI FinalizeQ

This function is the last statement indicating the end of a MatlabMPI program.

h. function MPI_Run(m Jile,n_proc,machines)

This function runs a Matlab file by name "mfile" on multiple processors. It also runs

"n_proc" number of copies of m file on machines. To run on multiple processors, the

argument "machines" are to be designated with "machine 1, machine2,..

Example:

MPI_Run('examplel \2,{}); for the case a single node (with 2 processors) is used.

MPI_Run('example2',4,{zorkal, zorka2}); for the case multiple nodes (assuming zorkal

and zorka2 are both available) are used.

The above discussed functions are used within traditional Matlab source code to run in

parallel environment. In addition to the MPI functions, Matlab uses other built-in

functions to perform various operations/tasks. Some of the additional functions are

discussed below:

73

i. function evalO

This function execute string with Matlab expression and is also used with MPI_Run.

Example:

eval(MPI_Run(' example 1' ,2, {}))

j. function dispQ

This function displays an array without printing the array name. It can also be used to

display a string or a text inside the Matlab code.

Example:

disp(['Examplel from rank: ',num2str(my_rank)]);

If the rank is 0 (master processor), the output appears on the screen. And if the rank is

more than 0, i.e 1,2,3..., the output prints to the corresponding file.

k. function MPI_Bcast(source,tag,comm,varargin)

This function broadcasts the variable(s) to all processors.

Example:

[varl, var2,..] = MPIJBcast(source,tag,comm,datal,data2,..)

7.3 Example 1: Display Rank of Processors

In this example, a simple MatlabMPI source code to print/display rank of

different processors is shown below.

% MPI INITIALIZE

MPIInit;

% MPI COMMUNICATOR

coram = MPICOMMWORLD;

74

% GET SIZE OR NUMBER OF PROCESSORS IN THE COMMUNICATOR

NP = MPI_Comm_size(comm)

% GET RANK (or ID #) OF CURRENT PROCESSOR

myrank = MPICommrank(comm)

% DISPLAY RANK OF EACH PROCESSOR

disp(['Hello Message from rank:num2str(my_rank)]);

% FINALIZE Matlab MPI

MPIFinalize;

% DISPLAY SUCCESS MESSAGE

disp('Success');

Let the file name for this MatlabMPI application be examplel.m. In order to run

in parallel environment, type the following statements in Matlab command prompt.

% ADDING PATH TO THE MatlabMPI SOURCE DIRECTORY TO INVOKE MPI

FUNCTIONS.

addpath /local/MatlabMPI/src

% examplel.m IS A MatlabMPI APPLICATION CODE WHICH NEEDS TO EXIST IN

THE SAME WORKING DIRECTORY AS THE OTHER MPI FUNCTIONS. IN THIS

CASE WE ARE USING 4 PROCESSORS.

eval(MPI_Run('example 1 ',4, {}));

% ONCE THE DESIRED OUTPUT IS OBTAINED/PRINTED, THE FUNCTION

MatMPIDeleteall HAS TO BE INVOKED. THIS FUNCTION DELETES

LEFTOVER MatlabMPI FILES FROM THE PREVIOUS RUN. THIS FUNCTION IS

ALSO INVOKED BEFORE THE START OF A NEW MatlabMPI APPLICATION.

75

MatMPI_Delete_all;

7.4 Example 2: Matrix-Matrix Multiplication

The MatlabMPI source code for matrix-matrix multiplication (dense format) can

be found in Appendix D.

Below are the time results for matrix times matrix multiplication (size = 1000).

Sl.No Number of Processors (NP) Time (seconds)

1 2 39.4087

2 4 15.7884

3 6 11.7958

4 8 9.5475

5 10 8.3805

6 12 7.5807

Table 7.1 Time Results (in seconds) for Matrix-Matrix Mu tiplication using MatlabMPI

76

MatlabMPI Time Results for Matrix Times Matrix Multiplication (size-1000
40

35

30

• 20

15

10

5
2 3

Number of Processors

Figure 7.1 Graphical Representation of Time Results (in seconds) for Matrix-Matrix
Multiplication using MatlabMPI

77

8. CONCLUSIONS AND FUTURE WORKS

In this dissertation, various efficient algorithms for solving SLE with full rank or

rank deficient have been reviewed, proposed and tested. These algorithms were based on

efficient generalized inverse algorithms, which had also been incorporated into the DD

formulation. Users are provided the options of incorporating either direct, or iterative

solvers into the developed DD generalized inverse formulation. Extensive numerical

results have been used to evaluate the performance (in terms of numerical accuracy,

calculated error norm, CPU/wall-clock time) of the proposed procedures. The developed

numerical procedures can be applied to solve "general" SLE (in the form [£]{*} = {£>},

where the coefficient matrix [G] could be square/rectangular,

symmetrical/unsymmetrical, non-singular/singular). Numerical results have shown that

the proposed algorithms are highly efficient as compared to existing algorithms [6, 9, 13]

(including the popular MATLAB built-in function pinv(G) * b) [12]. Further reduction

in wall-time can also be realized/achieved by taking advantages of "parallel matrix times

matrix operations" under MATLAB-MPI computer environment [26].

Furthermore, this dissertation has also contributed the "educational value" to the

educational communities, by providing the tools/technologies to execute any existing

FORTRAN code for internet users, without requiring them to download any

(commercial) software on their desktop/laptop computers. The only requirement for the

users to use/learn/execute our FORTRAN-web application is to have access to the

internet, which is readily available not only in every home, but also in most public places

(such as in the airports, hotels, universities, restaurants, etc.).

78

Extensions to this current work may include a variation of DD formulation

proposed in [4], parallel implementation of the proposed DD generalized inverse solver,

and incorporating METiS [20] reordering algorithm for automatically partitioned a given

coefficient matrix into diagonal blocks, in such a way to minimize the total number of

boundary (interface) nodes, etc.

79

REFERENCES

1. Greenbaum, A. (1997). Iterative Methods for Solving Linear Systems, Frontiers in

Applied Mathematics, SIAM, Philadelphia.

2. Farhat, C., Roux, F.X. and Oden, J.T. (1994). Implicit Parallel Processing in

Structural Mechanics. International Association for Computational Mechanics

Advances. Vol. 2., North-Holland publisher.

3. Heath, M.T. (1997). Scientific Computing: An Introductory Survey. McGraw-

Hill, New York.

4. Hou, G. and Y. Wang, A Substructuring Technique For Design Modifications of

Interface Conditions, Old Dominion University, Norfolk. (Personal Conversation)

5. Rakha, M.A. (2004). "On the Moore-Penrose Generalized Inverse Matrix."

Applied Mathematics and Computation, 158, 185-200.

6. Katsikis, V.N. and Pappas, D. (2008). "Fast Computing of the Moore-Penrose

Inverse Matrix." Electronic Journal of Linear Algebra, 17,637-650.

7. Kucera, R., Kozubek, T., Markopoulos, A., and Machalova, J. (2012). "On the

Moore-Penrose Inverse in Solving Saddle-Point Systems with Singular Diagonal

Blocks." Numerical Linear Algebra with Applications, 19,677-699.

8. Brzobohaty, T., Dostal, Z., Kozubek, T., Kovar, P., and Markopoulos, A. (2011).

"Cholesky Decomposition with Fixing Nodes to Stable Computation of a

Generalized Inverse of the Stiffness Matrix of a Floating Structure." International

Journal For Numerical Methods in Engineering, 88,493-509.

80

9. Chen, X. and Ji, Ji. (2011). "Computing the Moore-Penrose Inverse of a Matrix

through Symmetric Rank-One Updates." American Journal of Computational

Mathematics, 1,147-151.

10. Golub, G.H. and Loan, C.F.V. (1996). Matrix Computations, The John Hopkins

University Press.

11. Nguyen, D.T., Finite Element Methods: Parallel-Sparse Statics and Eigen-

Solutions, Springer.

12. MATLAB, MATLAB - The Language of Technical Computing.

13. Pierre, C. (2005). "Fast Computation of Moore-Penrose Inverse Matrices." Neural

Information Processing - Letters and Reviews, 8(2).

14. Davis, T. University of South Florida Matrix Collection.

15. SJSU. SJSUSingular Matrix Database.

16. Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. 2nd ed, SIAM,

Minnesota

17. Israel, B. and Greville, T.N.E. (1980). Generalized Inverses Theory and

Applications. 2nd ed, Krieger.

18. Rao, C.R, and Mitra, S.K. (1972). Generalized Inverse Matrices and its

Applications. Wiley Series in Probability and Mathematical Statistics.

19. Due T Nguyen, Kaw, A. and Kalu, E. (2011). Numerical Methods with

Applications customized for Old Dominion University.

20. Metis, http://glaros.dtc.umn.edu/gkhome/views/metis.

21. Pissanetsky, S. (1984). Sparse Matrix Technology. Academic Press

http://glaros.dtc.umn.edu/gkhome/views/metis

22. George, A., Liu, J.W.H., and Gilbert, J.R. (1993) Graph Theory and Sparse

Matrix Computation. Springer.

23. Kadiam, S., Mohammed, A. and Nguyen, D.T. (2011) "Development of Web-

Based Engineering, Educational and Assessment Modules for Learning

Numerical Methods." Proc., VMASC Student Capstone. Va.

24. FLASH ACTIONSCRIPT, http://www.adobe.com/devnet/actionscript.html,

25. PHP. http://php.net/manual/en/index.php.

26. Kepner, D.J. Parallel Programming with MatlabMPI.

http://www. II. mit. edu/mission/isr/matlabmpi/matlabmpi. html.

http://www.adobe.com/devnet/actionscript.html
http://php.net/manual/en/index.php
http://www

82

APPENDIX A

SINGULAR VALUE DECOMPOSITION (SVD) AND THE
GENERALIZED INVERSE

Example A1

Given ^ = g] (A.1)

Stepl: Compute AAH = AAT = J g *] = [» $ <A.2>

Also: AAH = (UZV")(VZHUH) = UX2UH

Similarly, A" A = VlzVH

Also compute AHA = ATA = g *] g *] = g° (A.3)

Step2: Compute the standard Eigen-solution individually for AATand A7A

Using MATLAB built-in function "eig Eigen-values and the corresponding Eigen­

vectors for AAT are given as

[ul,lambal] = eig(AA7)

,f1 f—0.8944 0.44721 ,A
Ul = I 0.4472 0.894J = " (A4)

lambdal = ®] (A.5)

Also, for AT A

[u2,lamba2] = eig (A7A)

„9 _ [-0.8321 0.55471 _ „ ,A ,*
"2 ~ l 0.5547 0.8321-1 = V (A'6)

lambda! £] (A.7)

83

From the above equations, we can observe that Eigen-values in both the cases are the

same, but their corresponding Eigen-vectors are different.

Also, a = Vlambdal = lambda2

Computing a = lambda! = lambdal = [jj ^

From Eqs. (A.4, A.7 and A.8), the SVD of Eq. (A.l) can be obtained as

A _ ijyu _ [—0.8944 0.44721 [0 0 1 [-0.8321 0.55471
L 0.4472 0.8944J lo V65J i 0.5547 0.832lJ

The generalized inverse A+ of Eq. (A.l) is computed as

A+= VZ+U"

where E+ =

Hence,

A

0
l

V65.

+ = [-0.8321 0.55471 f°
1 0.5547 0.8321J [0

0
i

V65.

—0.8944 0.44721
4472 0.8944J

f-G
I 0.

A+ _ [0.0308 0.06151
10.0462 0.0923J

(A.8)

(A.9)

(A. 10)

(A. 11)

(A. 12)

(A. 13)

The result obtained in Eq. (A. 13) has been checked with MATLAB generalized inverse

function pinvQ and same result is obtained.

84

APPENDIX B

AN EDUCATIONAL FORTRAN SOURCE CODE OF "SPECIAL LDlI"
ALGORITHM FOR FACTORIZATION OF

SINGULAR/SQUARE/SYMMETRICAL COEFFICIENT MATRIX

c
Implicit real* 8 (a-h, o-z)

c
c — . . .
c
c Remarks:
c (a) Identifying which are dependent rows of a "floating" substructure
c (b) Factorizing (by LDLjranspose) of a floating substructure stiffness
c Whenever a dependent row is encountered during LDL factored
c process, then we just:
c [1] set all factorized values of the dependent row to be ZEROES
c [2] ignore the dependent row(s) in all future faztorized rows
c (c) [K "float"] = [K11] [K12]
c [K21] [K22]
c where [K11] = full rank (=non-singular)
c (d) The LDL_transpose of [K11] can be obtained by taking the results
c of part (b) and deleting the dependent rows/columns
c Author(s) : Prof. Due T. Nguyen
c Version: 04-30-2004 (EDUCATIONAL purpose, LDL/FULL matrix is
assumed)
c Stored at: cd ~/cee/* odu* clas * /generalizedinver sebyldl. f
c
c —
c

dimension u(99,99), idepenrows(99), tempo 1(99)
c

iexample=l ! can be 1, or 2, or 3
c

if (iexample . eq. 1) n-3
c
if (iexample . eq. 2) n=12
c

if (iexample . eq. 3) n=7
c

do 1 i=l,n
do 2 j=l,n
u(ij)=0

2 continue
1 continue

if (iexample . eq. 1) then

u(l,l)=2. ! non-singular
u(l,l)=l. ! singular
u(l,2)=-l.
u(2,2)= 2.
u(2,3)=-l.
u(3,3)= 1.

elseif (iexample . eq. 2) then

u(l,l)= 1.88*10**5
u(l,2)= -4.91*10**4
u(l,3)= -1.389*10**5
u(l,7)=-4.91*10**4
u(l,8)= 4.91*10**4

u(2,2)= 1.88*10**5
u(2,6)=-1.389* 10**5
u(2,7)= 4.91 *10**4
u(2,8)=-4.91 *10**4

u(3,3)= 1.88*10**5
u(3,4)= 4.91 *10**4
u(3,5)=-4.91 *10**4
u(3,6)=-4.91 *10**4

u(4,4)= 1.88*10**5
u(4,5)= -4.91*10**4
u(4,6)= -4.91*10**4
u(4,8)= -1.389*10**5

u(5,5)= 2.371*10**5
u(5,7)=-1.389*10**5
u(5,ll)=-4.91*10**4
u(5,12)= 4.91*10**4

u(6,6)= 3.76* 10**5
u(6,10)=-1.389*10**5
u(6,ll)= 4.91*10**4
u(6,12)= -4.91*10**4

u(7,7)= 2.371*10**5
u(7,9)=-4.91 *10**4
u(7,10)= -4.91*10**4

86

u(8,8)= 3.76* 10**5
u(8,9)= -4.91*10**4
u(8,10)=-4.91*10**4
u(8,12)=-1.389*10**5

u(9,9)= 1.88*10**5
u(9,10)= 4.91*10**4
u(9,ll)=-1.389*10**5

u(10,10)= 1.88*10**5

u(l 1,11)= 1.88*10**5
u(l 1,12)=-4.91*10**4

u(12,12)= 1.88*10**5

elseif (iexample . eq. 3) then

u(l,l)=l.
u(l,2)= 2.
u(l,3)= -3.
u(l,4)=2.
u(l,5)= -2.
u(l,6)=-3.
u(l,7)= -2.

u(2,2)= 4.
u(2,3)= -6.
u(2,4)=4.
u(2,5)=-4.
u(2,6)= -6.
u(2,7)= -4.

u(3,3)=9.
u(3,4)=-6.
u(3,5)= 6.
u(3,6)=9.
u(3,7)=6.

u(4,4)= 5.
u(4,5)=-l.
u(4,6)= -5.
u(4,7)=-7.

u(5,5)= 13.

87

u(5,6)= 9.
u(5,7)= -5.

c
u(6,6)= 13.
u(6,7)= 9.

u(7,7)= 27.
Endif

c
do 4 i=l,n
do 5 j=l,n
uO,i)=u(ij)

5 continue
4 continue
c
call generalized_inverse_ldl (n, u, idependrows, ndependrows)
c

write(6,*) '# dependent rows = ',ndependrows
if (ndependrows .ge. 1) then
write(6,*)4 dependent rows = ' ,(idependrows(i) ,i=l, ndependrows)
endif

c write(6,*) ' LDL factorized u(-, -) =', ((u(ij) j=i,n) ,i=l,n)
c extracting & writing the LDL factorized of full rank of [K11]
c by deleting the dependent row(s) /column(s) of [u]

do 52 i=l,n
iskiprow=0

do 53 j—1, ndependrows
if (idependrows(j) .eq. i) iskiprow=l

53 continue
if (iskiprow .eq. 1) go to 52

icount=0
do 54 j=i,n
iskipcol=0

do 55 k=l,ndependrows
if (idepenrows(k) .eq. 0) iskipcol=l

55 continue
if (iskipcol .eq. 0) then
icount=icount+l
tempo 1 (icount)=u(i j)
endif

54 continue
write(6,*) 'LDL of [K11] =' ,(tempol(k) ,k=l,icount)

52 continue
c
stop

end

88

c
C%%%%%%%0/o%0/o%%0/o%0/o%0/o%0/o0/o0/o%%0/o0/o%0/o%0/o0/o%%%%0/o0/o%0/o%0/o0/o0/o

c
subroutine generalizedinverseldl (n, u, idependrows, ndependrows)
Implicit red* 8 (a-h, o-z)
dimension u(99,*), idepenrows(*)

c
c • - • •
c
c Remarks:
c (a) Identifying which are dependent rows of a "floating" substructure
c (b) Factorizing (by LDL_transpose) of a floating substructure stiffiiess

Whenever a dependent row is encountered during LDL factored
c process, then we just:
c [1] set all factorized values of the dependent row to be ZEROES
c [2] ignore the dependent row(s) in all future faztorized rows
c (c) [K "float"] = [K11] [K12]
c [K21] [K22]
c where [K11] = full rank (=non-singular)
c (d) The LDLtranspose of [K11] can be obtained by taking the results

of part (b) and deleting the dependent rows/columns
c Author(s) : Prof. Due T. Nguyen
c Version: 04-30-2004
c Stored at: cd ~/cee/*odu*clas */generalized_inverse_by_ldl. f
c
c •• • — — - - - —- —=====

c
eps=0.0000000001

do 11 i=2,n
do 22 k=l,i-l
if (dabs(u(k,k)) .It. eps) go to 22 ! check for "previous"

c ! dependent row(s)
xmult=u(k,i) /u(k,k)

do 33 j=i,n
u(ij)=u(ij) -xmult*u(kj)

33 continue
u(k,i)=xmult

22 continue
c
C —
c
c to zero out entire dependent row

if (dabs(u(i,i)) .It. eps) then
write(6,*) 'dependent row # i, u(i,i) = ' ,i ,u(i,i)
ndependrows= ndependrows+1
idependrows(ndependrows)= i

89

do 42 j=i,n
42 u(ij)=0.

do 44 k=l ,i-l
44 u(k,i)=0.

endif
c
c
c
11 continue
c
return

end
c
c%%

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 3

dependent row # i, u(i,i) = 2 0.0E+0
dependent row # i, u(i,i) = 3 0.0E+0
dependent row # i, u(i,i) = 5 0.0E+0
dependent rows = 3
d e p e n d e n t r o w s = 2 3 5

LDL of [Kll] = 1.0 2.0 -3.0 -2.0
LDL of [Kll] = 1.0 1.0 -3.0
LDL of [Kll] = 3.0 2.0
LDL of [Kll] = 2.0

IH H I I I I I I I II I I I I II I l-l •+++++++++++++1 I I I I I I I I I I I II I I I I I II I

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 2

dependent row # i, u(i,i) = 10 -8.731149137020111E-11
dependent row # i, u(i,i) = 11 -5.820766091346741E-11
dependent row # i, u(i,i) = 12 -2.9103830456733703E-11
dependent rows = 3
dependent rows = 10 11 12
LDL of [Kll] = 188000.0 -0.26117002127659574 -0.7388297872340426 0.0E+0
0.0E+0 0.0E+0 -0.26117002127659574 0.26117002127659574 0.0E+0
LDL of [Kll] = 175176.54255319148 -0.2070856178827499 0.0E+0 0.0E+0
-0.7929143821172502 0.2070856178827499 -0.2070856178827499 0.0E+0
LDL of [Kll] = 77864.19232391396 0.6305851063829787 -0.6305851063829787
-1.0 -0.36941489361702123 0.36941489361702123 O.OE+O
LDL of [Kll] = 157038.27127659574 -0.11550223476828982 0.0E+0
0.11550223476828982 -1.0 0.0E+0

90

LDL of [Kll] = 204043.26040931543 -0.24063524519998494 -
0.7593647548000151 0.0E+0 0.0E+0
LDL of [Kll] = 176184.80946068066 -0.211623292466662 -
2.0648651936724454E-17 0.0E+0
LDL of [Kll] = 78494.47532361932 0.6255217300016221 -0.6255217300016221
LDL of [Kll] = 157286.88305692037 -0.11690029517761087
LDL of [Kll] = 155137.45100017014

I I l I I I I I I I I I l I I I I I I l l I l l i l l l l l I I I I i I l M I l I I I I I I I I I I I I I I I l I I I I l I
L D L_t factorized of the "fixll rank" sub-matrix [K11] of Example 1 (singular case)

dependent row # i, u(i,i) - 3 0.0E+0
dependent rows = 1
dependent rows = 3

LDL of [Kll] = 1.0 -1.0
LDL of [Kll] = 1.0

I I I I I I I I I I I I I I I I M I I I I I I I I I I

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 1 (non-singular case)
dependent rows = 0

LDL of [Kll] = 2.0 -0.5 0.0E+0
LDL of [Kll] = 1.5 -0.6666666666666666
LDL of [Kll] = 0.33333333333333337

i i i i li i M i i i i i I-I i II i i i i i i i i i i i i i i i i

91

APPENDIX C

A COMPLETE LISTING OF AN EDUCATIONAL FORTRAN SOURCE
CODE OF "CHOLESKY GENERALIZED INVERSE" ALGORITHMS

FOR SLE

implicit real*8(a-h,o-z)
reed tar(2)
integer r, ractual

Remarks:
(a) Identifying which are dependent rows of a "floating" substructure
(b) Factorizing (by cholesky) of floating substructure stiffness

Whenever a dependent row is encountered during cholesky factored process,
then we just:
[1] set all factorized values of the dependent row to be ZEROES
[2] ignore the dependent row(s) in all future factorized rows

(c) [K "float"] = [K11] [K12]
[K21] [K22]

where [K11] = full rank (= non-singular)
= {K "float"] with deleting the dependent rows/columns

(d) The u_transpose * U of [K11] can be obtained by taking the results
of part (b) and deleting the dependent rows/columns

.Authors): Prof. Due T. Nguyen

.Version: 02-11-2012 (EDUCATIONAL purpose,LDL/FULL matrix is assumed)

.Stored at: cd ~/cee/*odu*clas*/generalized_inverse_by_cholesky.f

.Notes: Prof. Due Nguyen's "generalized cholesky" code has been correctly
verified for AT LEAST 7-8 different examples
[see generalize* cholesky *.dat; and see out 1-keep]

dimension u(1999,1999),idependrows(1999),tempo1(1999),
$ am_inv(1999,1999), tempo2(1999)
dimension ut(1999,1999), am(1999,1999), amt(1999,1999),

$ g(1999,1999), gt(1999,1999)
dimension itempol(1999), rhs(1999)

call pierrotime(tl)

write(6,*)' '
write(6,*)' =
write(6,*) 'today date: 04-23-2012; Prof. Due T. Nguyen'
write(6,*) '• •• • • • • —
write(6,*)'

maxnrl = 1999

92

maxncl=1999
maxnc2 = 1999

c
c input (or randomly generate rectangular/square matrix [G] of dimension mxn
c where we assume/prefer m > n
c

read(5,*) m, n, iautodata, irankn, iaxeqb
write(6,*) 'user input: m,n,iautodata,irankn,iaxeqb ='
write(6,*) m,n,iautodata,irankn,iaxeqb
write(6,*)'

c
c read user's input matrix data
c

if (iautodata .eq. 0) then
do 32 i=l, m
read(5,*) (g(ij), j=l,n)

32 continue
c
c user's input rhs vector {rhs} nxl
c

read^,*) (rhs(i), i=l,m)
c
c randomly generated input matrix data
c

elseif (iautodata .eq. 1) then
ndependcols = n - irankn
icount = 0
idum=0
do 61 j=l,n
if (j .LE. irankn) then
irandomcol = irand(l, n)

c write(6,*) 'irandomcol =', irandomcol
do 60 i=l, m
g(ij) = drand(idum) * lOOOO.dO

60 continue
elseif (j .GT. irankn) then
do 66 i=l, m
g(i j) = O.dO

66 continue
endif

61 continue
c
c generated rhs vector {rhs} nxl, such that solution vector = {1, 1,..., 1}
c

do 67 i=l, n
tempol(i) = l.dO

67 continue

93

call mtimesv(g, tempol, rhs, maxnrl, maxncl, m, n)
endif

c
write(6,*) 'user input, or randomly generated matrix G mxn =1

do 63 i=l, m
write(6,*) (g(ij), j=l,n)

63 continue
write(6,*)' 1

c
write(6,*) 'user input: right-hand-side (rhs) vector mxl ='
do 92 i=l, m
write(6,*) 'rhs(-) = *,rhs(i)

92 continue
write(6,*) *

c
c

call transpose(g, gt, maxnrl, maxncl, m, n)
c
c

if (m .ge. n) then
call mtimesm(gt, g, am, maxnrl, maxncl, maxnc2, n, m, n) ! compute G' * G
neq = n

c
write(6,*) 'print [am] = G transpose * G ='
do 72 i=l,n
write(6,*) (am(ij)j=l,n)

72 continue
write(6,*)'

c
elseif (m .It. n) then
call mtimesm(g, gt, am, maxnrl, maxncl, maxnc2, m, n, m) ! compute G * G1

neq = m
c

write(6,*) 'print [am] = G * G_transpose ='
do 73 i=l,m
write(6,*) (am(ij)j=l,m)

73 continue
write(6,*)' '

c
endif

c
c
c

call generalized_inverse_cholesky(neq,am,idependrows,
$ ndependrows,r, maxnrl, independrows, itempol)

write(6,*) 'special cholesky factor of Gt*G, or G*Gt '
do 22 i=l, r
write(6,*) (am(ij), j=l,neq)

22 continue

write(6,*) '# independent rows = '.independrows
write(6,*)' 1

if (independrows .ge. 1) then
write(6,*) 'independent rows = ',(itempol(i),i=l, independrows)
endif

*

call transpose(am, amt, maxnrl, maxncl, r, neq)
call mtimesm(am, amt, u, maxnrl, maxncl, maxnc2, r, neq, r) ! compute L' *
nactual = r
call generalized_inverse_cholesky(nactual,u,idependrows,

$ ndependrows,ractual, maxnrl, independrows, itempol)

write(6,*) 'regular cholesky factorization of M*Mt1

write(6,*) 'M = factorized of Gt*G, or G*Gt with deleted rows'
write(6,*) '# dependent rows = ndependrows = ',ndependrows
write(6,*)'

if (iaxeqb .eq. 0) then ! find generalized inverse explicitly

; find the actual inverse of [u] !!
%

do 43 irow = 1, nactual
do 42 i—1, nactual
tempo l(i) = O.dO

42 continue
tempol(irow) = l.dO
call fbe_cholesky(nactual, u, tempo 1, maxnrl)

do 44 i=l, nactual
am_inv(i,irow) = tempo l(i)

> write(6,*) 'i=row#, irow=col#, am_inv(-,-) = ',i,irow,tempol(i)
44 continue

43 continue

; applying the French's generalized inverse formula
«

if (m .ge. n) then
call mtimesm(amt, am inv, u, maxnrl, maxncl, maxnc2, neq,

$ nactual, nactual) ! compute L * [am inv]

call mtimesm(u, aminv, ut, maxnrl, maxncl, maxnc2, neq,
$ nactual, nactual) ! compute L * [am inv] * [am inv]
call mtimesm(ut, am, u, maxnrl, maxncl, maxnc2, neq,

$ nactual, neq) ! compute L * [am inv] * [am inv] * L'
call mtimesm(u, gt, ut, maxnrl, maxncl, maxnc2, neq,

$ neq, m) ! compute L * [am inv] * [am_inv] * L' * G'
write(6,*) 'generalized inverse of [G] ='
do 52 i=l, neq
write(6,*) (ut(ij), j=l ,m)

52 continue

elseif (m .It. n) then
call mtimesm(gt, amt, u, maxnrl, maxncl, maxnc2, n, m,

$ nactual) ! compute G' * L
call mtimesm(u, am inv, ut, maxnrl, maxncl, maxnc2, n,

$ nactual, nactual) ! compute G' * L * [am_inv]
call mtimesm(ut, aminv, u, maxnrl, maxncl, maxnc2, n,

$ nactual, nactual) ! compute G' * L * [am inv] * [am inv]
call mtimesm(u, am, ut, maxnrl, maxncl, maxnc2, n,

$ nactual, neq) ! compute G' * L * [am_inv] * [am inv] *

write(6,*) 'generalized inverse of [G] ='
do 54 i=l, n
write(6,*) (ut(ij), j=l,m)

54 continue
write(6,*)'
endif

.solution of [G] {x} = {rhs}
mxnnxl mxl

.thus, {x} = [G+] * {rhs}
nxl nxm mxl

call mtimesv(ut, rhs, tempo 1, maxnrl, maxncl, n, m)

elseif (iaxeqb .eq. 1) then ! AVOID computing generalized inverse explicitly

if (m .ge. n) then
.compute [G'] * {rhs}; with results stored in {tempo 1}
call mtimesv(gt, rhs, tempo 1, maxnrl, maxncl, n, m)
write(6,*) 'Gt * rhs = tempo 1 =',(tempol(i),i=l,n)
.compute [L'] * {tempo 1}; with results stored in {tempo2}
call mtimesv(am, tempo 1, tempo2, maxnrl, maxncl, nactual, n)
write(6,*) 'Gt * rhs = tempo2 = ',(tempo2(i),i=l,n)
.now, doing forward & backward solutions, stored the results in {tempo2}
call fbecholesky (nactual, u, tempo2, maxnrl)

96

c now, doing forward & backward solutions AGAIN, stored the results in {tempo2}
call fbe_cholesky(nactual, u, tempo2, maxnrl)

c finally, compute [L] * {tempo2} = same as compute [G+] * {rhs} !!
call mtimesv(amt, tempo2, tempo 1, maxnrl, maxncl, n, nactual)

elseif (m .It. n) then
c compute [L'] * {rhs}; with results stored in {tempol}

call mtimesv(am, rhs, tempol, maxnrl, maxncl, nactual, n)
c now, doing forward & backward solutions, stored the results in {tempol}

call fbe_cholesky(nactual, u, tempol, maxnrl)
c now, doing forward & backward solutions AGAIN, stored the results in {tempol}

call fbe_cholesky(nactual, u, tempol, maxnrl)
c compute [L] * {tempol}; with results stored in {tempo2}

call mtimesv(amt, tempol, tempo2, maxnrl, maxncl, n, nactual)
c finally, compute [G'] * {tempo2} = same as compute [G+] * {rhs} !!

call mtimesv(gt, tempo2, tempol, maxnrl, maxncl, n, m)
endif
endif

c
c output unknown solution vector {x} with 3 numbers:
c smallest (dabs{x}), biggest (dabs{x}), sum (dabs{x})
c

abssmallest = 10**8
abs_biggest = O.dO
sumabs = O.dO

write(6,*) 'solution vector {x} = pinv(G) * {rhs} is ...'
do 102 i=l, n
aa = dabs(tempo l(i))
bb - tempo l(i)
write(6,*) 'i, x(i) = ',i, bb
if (aa .LT. abs smallest) abs smallest = aa
if (aa .GT. absbiggest) absbiggest = aa
sumabs = sumabs + aa

102 continue
write(6,*)' '

write(6,*) 'abs smallest, abs biggest, sum abs ='
write(6,*) abs smallest, abs_biggest, sum_abs
write(6,*) *

c
c output absolute and relative error norm
c

call error_norm(g,tempol,rhs,maxnrl,maxncl ,m,n,abserr,relerr,
$ tempo2)

write(6,*) 'abserr, relerr = ',abserr, relerr

97

c
call pierrotime(t2)

timeatoz = t2 - tl

write(6,*) ' timeatoz =timeatoz
write(6,*)'

c
c

stop
end

c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
subroutine generalized_inverse_cholesky(n,u,idependrows,

$ ndependrows,r, maxnrl, independrows, independentrows)
implicit real*8(a-h,o-z)
integer r, ractual
dimension u(maxnrl ,*),idependrows(*),independentrows(*)

c 111 ' - - - : —

c Remarks:
c (a) Identifying which are dependent rows of a "floating" substructure
c (b) Factorizing (by cholesky) of floating substructure stiffness
c Whenever a dependent row is encountered during cholesky process,
c then we just:
c [1] set all factorized values of the dependent row to be ZEROES
c [2] ignore the dependent row(s) in all future factorized rows
c (c) [K "float"] = [K11] [K12]
c [K21] [K22]
c where [Kll] = full rank (= non-singular)
c = {K "float"] with deleting the dependent rows/columns
c (d) The U transpose * U of [K11] can be obtained by taking the results
c of part (b) and deleting the dependent rows/columns
c Authors): Prof. Due T. Nguyen
c Version: 02-11-2012
c Stored at: cd ~/cee/*odu*clas*/generalized_inverse_by_ldl.f
c " |

c
c write(6,*) 'check point #01'

eps=0.0000000001
ndependrows = 0
independrows - 0

c
r = 0

do 11 ir = 1, n

c write(6,*)' ir, r =ir, r

do 12 icol=ir, n
sum = u(ir, icol)

do 13 iprevrow=l, r-1
sum = sum - u(iprevrow,ir) * u(iprevrow,icol)

13 continue

c write(6,*) 'check point #02'

if (ir .eq. icol) then
: cholesky factorized diagonal terms of row # ir

: write(6,*) 'check point #03'

if (sum .gt. eps) then
u(r,ir)=dsqrt(sum)

: write(6,*)' u(r,ir) = \u(r,ir)
independrows = independrows + 1
independentrows(independrows) = ir

: write(6,*) 'check point #04'
else
ndependrows = ndependrows + 1

: idependrows(ndependrows) = ir
: write^,*) 'sum, u(r,ir) = diag term are ... ',sum,u(r,ir)

r = r -1
; write(6,*)' ir, r =', ir, r
: write(6,*) 'check point #05'

go to 11
endif

else
; cholesky factorized off-diagonal terms of row # ir
j write(6,*) 'check point #06'

u(r,icol) = sum/u(r,ir)
endif

>

12 continue

11 continue

: all lower triangular of cholesky factorized [U] are set to zero

99

do 22 ir=l, r
independr = independentrows(ir)
do 23 icol=l, independr-l

23 u(ir,icol)=0.d0
22 continue

c
c write(6,*) 'ndependrows =', ndependrows
c write(6,*) 'dependent rows = ',(idependrows(i), i=l,ndependrows)
c

return
end

C%%%%%%%0/o%0/o%%0/o%0/o0/o%%%0/o%%%%%%0/o0/o0/o0/o0/o%%0/o0/o0/o%0/o0/o%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%
subroutine transpose(a, at, maxnrl, maxncl, nrl, ncl)
implicit real* 8(a-h,o-z)
dimension a(maxnrl,*), at(maxncl,*)

c
do 1 i=l, nrl
do 2 j=l, ncl
atO,i) = a(ij)

2 continue
1 continue

return
end

c%%
%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine mtimesm(a, b, c, maxnrl, maxncl, maxnc2, nrl,ncl,nc2)
implicit real* 8(a-h,o-z)
dimension a(maxnrl,*), b(maxncl,*), c(maxnrl,*)

c
do 1 j=l, nc2
do2i=l,nrl
c(i j) = O.dO
do 3 k=l,ncl
c(ij) = c(ij) + a(i,k) * b(kj)

3 continue
2 continue
1 continue

return
end

c%%
%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine fbe_cholesky(n, u, rhs, maxnrl)
implicit real*8(a-h, o-z)

c
dimension u(maxnrl,*), rhs(*)

100

c
c forward cholesky solution
c

do 1 j = 1, n
sum = rhs(j)
do 2 i=l,j-1
sum = sum - u(i j) * rhs(i)

2 continue
rhs(j) = sum/u(j j)

1 continue
c
c backward cholesky solution
c

do 4 j=n, 1,-1
sum = rhs(j)
do 5 i=j+l, n
sum = sum - u(j,i) * rhs(i)

5 continue
rhs(j) = sum/u(j j)

4 continue
c

return
end

C%%%%%0/o%%%0/o0/o0/o0/o0/o0/o0/o%%0/o0/o%0/o%%%0/o%0/o%0/o0/o0/o%0/o0/o0/o0/o%%0/o%%

%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine mtimesv(g, tempo 1, rhs, maxnrl, maxncl, m, n)
implicit real*8(a-h,o-z)

c
dimension g(maxnrl,*), tempol(*), rhs(*)

c
do 1 i—1, m
sum = O.dO
do2j=l, n
sum = sum + g(ij) * tempo l(j)

2 continue
rhs(i) = sum

1 continue
c

return
end

c%%
%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine error_norm(a,x,b,maxnrl,maxncl ,nr 1 ,nc 1 ,abserr,relerr,
$ tempo 1)
implicit real*8(a-h,o-z)
dimension a(maxnrl,*), x(*), b(*), tempo 1(*)

c

101

call mtimesv(a, x, tempo 1, maxnrl, maxncl, nrl, ncl)
c

abserr = O.dO
relerr = O.dO

c
do 1 i=l, nrl
x(i) = tempo l(i) - b(i)
abserr = abserr + x(i)**2
relerr = relerr + b(i)**2

1 continue

abserr = dabs(abserr)
relerr = dabs(relerr)
relerr = abserr/relerr

c
return
end

c%%
%%%%%%%%%%%%%%%%%%%%%%%%%

subroutine pierrotime (time)
real tar(2)
real* 8 time

c
c purpose:
c This routine returns the user + system execution time
c The argument tar returns user time in the first element and
c system time in the second element. The function value is the
c sum of user and system time. This value approximates the
c program's elapsed time on a quiet system.
c
c Uncomment for your corresponding platform
c
c Note: On the SGI the resolution of etime is 1/HZ
c
c Output
c time: user+sytem executime time
c

c SUN -Solaris
time=etime(tar)

c HP-HPUX
c time=etime_(tar) !f90
c time=etime_(tar) !f77

c COMPAQ - alpha

102

c time=etime(tar)

c CRAY
c time=tsecndO

c IBM
c time=0.01 *mclock()

c SGI origin
c time=etime(tar)

return
end

C%%%0/o%%%%%%%%0/o%%%%0/o%0/o%%%0/o0/o0/o%0/o%0/o%%0/o%%%%0/o%%0/o%

%%%%%%%

C.l: A Complete Input File of an Educational FORTRAN Source Code of "Generalized
Inverse" Algorithms

For SLE

7 7 0 4 1

l.dO 2.d0 -3.d0 2.d0 -2.d0 -3 .dO -2.dO
2.d0 4.d0 -6.d0 4.d0 -4.dO -6.d0 -4.d0
-3.d0 -6.d0 9.d0 -6.d0 6.dO 9.d0 6.d0
2.dO 4.d0 -6.d0 5.d0 -l.dO -5.dO -7.d0
-2.d0 -4.d0 6.d0 -l.dO 13.dO 9.d0 -5 .dO
-3.d0 -6.d0 9.d0 -5.dO 9.d0 13.d0 9.d0
-2.d0 -4.d0 6.d0 -7.d0 -5.dO 9.d0 27.dO
-2.d0 -4.d0 6.d0 -7.d0 -5.dO 9.d0 27.d0

Note: MATLAB solution = (0,0,0,0,0,0,1) = satisfy SLE

C.2: A Complete Output File of an Educational FORTRAN Source Code of "Generalized
Inverse" Algorithms

For SLE

today date: 04-23-2012; Prof. Due T. Nguyen

user input: m,n,iautodata,irankn,iaxeqb =
7 7 0 4 1

103

user input, or randomly generated matrix G mxn =
1.02.0 -3.0 2.0-2.0 -3.0-2.0
2.0 4.0 -6.0 4.0 -4.0 -6.0 -4.0
-3.0 -6.0 9.0 -6.0 6.0 9.0 6.0
2.0 4.0-6.0 5.0-1.0 -5.0 -7.0
-2.0 -4.0 6.0-1.0 13.0 9.0 -5.0
-3.0 -6.0 9.0 -5.0 9.0 13.0 9.0
-2.0 -4.0 6.0 -7.0 -5.0 9.0 27.0

user input: right-hand-side (rhs) vector mxl =
rhs(-) = -2.0
rhs(-) = -4.0
rhs(-)= 6.0
rhs(-) = -7.0
rhs(-) = -5.0
rhs(-) = 9.0
rhs(-) = 27.0

print [am] = G transpose * G =
35.0 70.0 -105.0 69.0 -73.0 -127.0 -113.0
70.0 140.0 -210.0 138.0 -146.0 -254.0 -226.0
-105.0 -210.0 315.0 -207.0 219.0 381.0 339.0
69.0 138.0 -207.0 156.0 -84.0 -246.0 -320.0
-73.0 -146.0 219.0 -84.0 332.0 278.0 -56.0
-127.0 -254.0 381.0 -246.0 278.0 482.0 434.0
-113.0 -226.0 339.0 -320.0 -56.0 434.0 940.0

special cholesky factor of Gt*G, or G*Gt
5.916079783099616 11.832159566199232 -17.74823934929885 11.663128715253528
-12.339252119036342 -21.46691807010432 -19.100486156864473
0.0E+0 0.0E+0 O.OE+O 4.468940430507951 13.406821291523839

0.9781800942313469
-21.756515429211084
0.0E+0 0.0E+0 O.OE+O 0.0E+0 0.0E+0 4.496064087029694 10.065074253426936
0.0E+0 O.OE+O O.OE+O O.OE+O O.OE+O O.OE+O 0.7209335773362233
independent rows = 4

independent rows =14 6 7
regular cholesky factorization of M*Mt
M = factorized of Gt*G, or G*Gt with deleted rows
dependent rows = ndependrows = 0

solution vector {x} =pinv(G) * {rhs} is ...
1, x(i) = 1 1.6874571068360796E-13
i, x(i) = 2 3.3749142136721593E-13
i, x(i) = 3 -5.06237132050824E-13

i, x(i) = 4 -2.8787848147707946E-13
i, x(i) = 5 -2.2136011299001E-12
i, x(i) = 6 2.915937886998499E-12
i, x(i) = 7 0.9999999999987078

abs_smallest, abs biggest, sum_abs =
1.6874571068360796E-13 0.9999999999987078 1.0000000000051376

abserr, relerr = 8.793202261721907E-25 9.354470491193518E-28
time a to z= 9.539998136460781E-4

105

APPENDIX D

MatlabMPI SOURCE CODE FOR MATRIX-MATRIX
MULTIPLICATION (MATRIX IN DENSE FORMAT)

%Initialize MPI
MPIInit;

%Create communicator
comm = MPICOMMWORLD;

%Get Size and Rank
commsize = MPI_Comm_size(comm); %num tasks
myrank = MPI Comm rank(comm); %taskid

nn = 1000; % Matrix size

%tStart = tic;

% Master Processor task
if (my_rank=0)

% a = 10*rand(nn);
% b = 10*rand(nn);

for i = 1: nn
for j = l:nn

a(ij) = (i-l)+0-l);
end

end
a;

for i = 1: nn
for j = l:nn

b(ij) = (i+l)*(j+l);
end

end
b;

Z = zeros(nn);
tStart = tic;

domains = comm size-l; % numworkers

%divide matrix "b" to parts (domains)
len = floor(length(b)/domains);

106

for i = l:domains-l

MPI_Send(i,l,comm,a(:,:),b(:,((i-l)*len)+l:i,,[len)) %send parts of matrices to slaves
sent_part = sprintf('%g', i)
i;
dispC***"**');

end

MPI_Send(domains, l,comm,a(:,:),b(:,((domains-l)*len)+l:length(b))); %last part to
slave

disp('last part sent');
dispC*** ****');

for i = 1 :domains
Z = MPI_Recv(i,100,comm);
Z;
size(Z);
recv = sprintf('%g\ i);

end

end %end master

if my_rank > 0 %slave

[matrix_a matrixb] = MPI_Recv(0,l,comm);

%Computation

[ra ca] = size(matrix_a);
[rb cb] = size(matrixb);

for k = 1: cb
for i = 1 :ra

c(i,k) = 0;
for j = l:ca

c(i,k) = c(i,k) + matrix_a(i j) * matrix_b(j,k);
end

end
end

107

Z = c;

MPI_Send(0,100,comm,Z);
exit;

end %slave

MPIFinalize;
tElapsed = toc(tStart)
disp('Success');

108

APPENDIX E

GRAPHICAL COMPARISONS (IN TERMS OF COMPUTATIONAL
TIMES) OF ODU-GINVERSE WITH OTHER ALGORITHMS

In this appendix, we graphically compare the computational times of ODU-
ginverse with other existing algorithms. The description of the test problems can be found
in section 5.

70

60

50

f § 40
3
¥ 30

I
20

10

0

cegb2802

lock2232 bcspwr06 bcsstml3

dwt 1005

lock 700

-A//

/ ^v ̂ v ̂ <F

Test Problems

Figure E.l Computational Times (in seconds) for Symmetric Rank-Deficient Test
Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix

109

250

200

| 150
vx

£ 100

50

tomo 2500

•

1 1
*

tomo_900 GDOO_c GD96_a

ex 6

..1

CS_phd

..1 jd
,<#yv y>v y>y y>v

Test Problems

Figure E.2 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test
Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix

Franz1

inkl0-b2

mk9-b2

* v
• / / / € sr

<£' (P ^ <P

^
<<y

Test Problems

• / jt

£ V

Figure E.3 Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (tall type) with RHS Vector as Linear Combination of Columns of Coefficient

Matrix

110

lp ship081

Jp_ship041

Test Problems

Figure E.4 Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (fat type) with RHS Vector as Linear Combination of Columns of Coefficient

Matrix

lock 700

cegb2802

bcspwr06 bcsstml3 lock2232

I I 1
dwt 1005

ri i • 11 m i m

* v y &
kJK OK & C$ C$ vK & cr ^ ̂ &> ̂ ̂ ̂$ r$

Test Problems

Figure E.5 Computational Times (in seconds) for Symmetric Rank-Deficient Test
Matrices with Randomly generated RHS Vector

I l l

250

200

•3 5 150
o u <u

CO

100

50

tomo 2500

tomo_900 GD00 c GD96_a

& y ^ y ^ y ^ y ̂ y ̂ y
cr ^ <r ^ cr ^ cr ^ cr ^ <r

•i ^

<r ^

Test Problems

Figure E.6 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test
Matrices with Randomly generated RHS Vector

Franz1

Test Problems

Figure E.7 Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (tall type) with Randomly generated RHS Vector

112

lp_ship08s

jUl lp_ship041

Test Problems

Figure E.8 Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (fat type) with Randomly generated RHS Vector

lock2232 cegb2802

lock!074

Test Problems

Figure E.9 Computational Times (in seconds) for Symmetric Rank-Deficient Test
Matrices with Randomly generated RHS Vector (Iterative Solver inside Generalized

Inverse)

113

45

40

35

-S? 30
•2
§ 25
£
« 20

I .5

10

5

0

yV & if Or
<#•> *

GD96 a

ODOO c

.«? # yY
y j' V

</> ^ y 4^
r ^ <e

X*4

o< ̂

Test Problems

Figure E.IO Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test
Matrices with Randomly generated RHS Vector (Iterative Solver inside Generalized

Inverse)

H 10 Franz1

mk9-b2

& &
<F <$>

^ J? &
yy yy

<T ô '

^ f of?

/
Test Problems

o^o<^

Figure E.l 1 Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (tall) with Randomly generated RHS Vector (Iterative Solver inside Generalized

Inverse)

114

lp_d6cube

Test Problems

Figure E.12 Computational Times (in seconds) for Rectangular Rank-Deficient Test
Matrices (fat) with Randomly generated RHS Vector (Iterative Solver inside Generalized

Inverse)

VITAE

115

Education
Ph.D., Civil and Environmental Engineering, (Structural Engineering), Old Dominion
University, Norfolk, Virginia 23529

Modeling and Simulation for Large Scale Computational Mechanics Certificate, Jan 2008
- Dec 2008, Civil and Environmental Engineering Department, Old Dominion University

Master of Technology, Structural Engineering, Acharya Nagaijuna University
Andhra Pradesh, India, May 2006

Bachelor of Engineering, Civil Engineering, Osmania University, Andhra Pradesh, India,
June 2004

Research Interests
Numerical Methods, Parallel Programming, Algorithm Development, Finite Element
Analysis, Advanced Structural Analysis, Engineering Optimization

	Efficient Stand-Alone Generalized Inverse Algorithms and Software for Engineering/Sciences Applications: Research and Education
	Recommended Citation

	tmp.1556109701.pdf.PbeSM

