Summer 2012

Efficient Stand-Alone Generalized Inverse Algorithms and Software for Engineering/Sciences Applications: Research and Education

Subhash Chandra Bose S V Kadiam

Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

Part of the Civil Engineering Commons

Recommended Citation
Kadiam, Subhash C.. "Efficient Stand-Alone Generalized Inverse Algorithms and Software for Engineering/Sciences Applications: Research and Education" (2012). Doctor of Philosophy (PhD), Dissertation, Civil & Environmental Engineering, Old Dominion University, DOI: 10.25777/fwcf-9z49
https://digitalcommons.odu.edu/cee_etds/51

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
EFFICIENT STAND-ALONE GENERALIZED INVERSE ALGORITHMS AND SOFTWARE FOR ENGINEERING/SCIENCES APPLICATIONS: RESEARCH AND EDUCATION

by

Subhash Chandra Bose S V Kadiam
B.E. May 2004, Osmania University, India
M.Tech. June 2006, Acharya Nagarjuna University, India

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
CIVIL AND ENVIRONMENTAL ENGINEERING

OLD DOMINION UNIVERSITY
August 2012

Approved by:

Duc T. Nguyen (Director)

ManWo Ng (Member)

Yaohang Li (Member)

Julie Zhili Hao (Member)
ABSTRACT

EFFICIENT STAND-ALONE GENERALIZED INVERSE ALGORITHMS AND SOFTWARE FOR ENGINEERING/SCIENCES APPLICATIONS: RESEARCH AND EDUCATION

Subhash Chandra Bose S V Kadiam
Old Dominion University, 2012
Director: Dr. Duc T Nguyen

Efficient numerical procedures for finding the generalized (or pseudo) inverse of a general (square/rectangle, symmetrical/unsymmetrical, non-singular/singular, real/complex numbers) matrix and solving systems of Simultaneous Linear Equations (SLE) are formulated and explained. The developed procedures and its associated computer software (under MATLAB computer environment) have been based on “special Cholesky factorization schemes” (for a singular matrix), the generalized inverse of the matrix product, and were further enhanced by the Domain Decomposition (DD) formulation.

Test matrices from different fields of applications have been chosen, tested and compared with other existing algorithms. The results of the numerical tests have indicated that the developed procedures are far more efficient than existing algorithms.

Furthermore, an educational version of the generalized inverse algorithms and software for solving SLE has also been developed to run any FORTRAN and/or ‘C’ programs over the web. This developed technology and software is freely available and can run on any device with internet connectivity and browser capability.
Copyright, 2012, by Subhash Chandra Bose S V Kadiam, All Rights Reserved
This dissertation is dedicated to my father.
ACKNOWLEDGMENTS

I am extremely grateful to the people who, directly or indirectly, helped to make this research possible. Firstly, I would like to express my deepest gratitude to my advisor, Professor Duc T. Nguyen, for his patient guidance, encouragement and valuable discussions during the course of this research. I have been very fortunate to have an advisor who helped me overcome many difficult situations and finish this dissertation. It would not have been possible to accomplish this work without his constant support.

I would like to thank the other members of my committee Dr. Julie Zhili Hao, Dr. Yaohang Li and Dr. ManWo Ng for their valuable comments and suggestions. I would also like to thank Mr. Amit H. Kumar from OCCS, ODU for his support.

A special thanks to all the graduate students from Civil and Environmental Engineering department for creating excellent working conditions.

Most importantly, I would like to thank my family, who have been supportive throughout my life and academic career.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD</td>
<td>Singular Value Decomposition</td>
</tr>
<tr>
<td>SLE</td>
<td>Simultaneous Linear Equations</td>
</tr>
<tr>
<td>SPD</td>
<td>Symmetric Positive Definite</td>
</tr>
<tr>
<td>GMRES</td>
<td>Generalized Minimal Residual</td>
</tr>
<tr>
<td>CG</td>
<td>Conjugate Gradient Algorithm</td>
</tr>
<tr>
<td>DD</td>
<td>Domain Decomposition Formulations</td>
</tr>
<tr>
<td>LDL^T</td>
<td>LDL Transpose Algorithm</td>
</tr>
<tr>
<td>nsu</td>
<td>Number of Sub-domains</td>
</tr>
<tr>
<td>$\text{pinv}()$</td>
<td>MATLAB Command to Compute Generalized Inverse</td>
</tr>
<tr>
<td>$\text{inv}()$</td>
<td>MATLAB Command to Compute Regular Inverse</td>
</tr>
<tr>
<td>A^+</td>
<td>Generalized Inverse of A</td>
</tr>
<tr>
<td>CG</td>
<td>Conjugate Gradient Algorithm</td>
</tr>
<tr>
<td>$Bi - CG$</td>
<td>Bi-Conjugate Gradient Algorithm</td>
</tr>
<tr>
<td>GMRES</td>
<td>Generalized Minimal Residual Algorithm</td>
</tr>
<tr>
<td>PCG</td>
<td>Preconditioned Conjugate Gradient Algorithm</td>
</tr>
<tr>
<td>$ODU - ginverse$</td>
<td>ODU Generalized Inverse Solver</td>
</tr>
<tr>
<td>geninv</td>
<td>Generalized Inverse Algorithm Discussed in [13]</td>
</tr>
<tr>
<td>$MATLAB - pinv$</td>
<td>MATLAB Generalized Inverse Solver</td>
</tr>
<tr>
<td>$ODU - ginverse \text{ iterative}$</td>
<td>CG Iterative Method in ODU Generalized Inverse Solver</td>
</tr>
<tr>
<td>Original System</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ODU - DD</td>
<td>ODU Generalized Inverse Domain Decomposition Solver</td>
</tr>
<tr>
<td>Original System $ginverse$ MV</td>
<td>ODU Generalized Inverse Solver</td>
</tr>
<tr>
<td>Original System $geninv$</td>
<td>Generalized Inverse Algorithm discussed in [13]</td>
</tr>
</tbody>
</table>
5. ENGINEERING/SCIENCES NUMERICAL APPLICATIONS ... 40
 5.1. Description of the Test Examples ... 40
 5.2. Numerical Performance of ODU Generalized Inverse Solver 42
 5.3. Numerical Performance of ODU Generalized Inverse DD Solver 48

6. EDUCATIONAL GENERALIZED INVERSE SOFTWARE FOR INTERNET USERS ... 58
 6.1 Description for Executing FORTRAN Software on the Internet 58
 6.2 Client-Server Interface ... 61
 6.3. Detailed Step-by-Step Procedures ... 62
 6.4. Demonstrated Examples .. 63

7. MATLAB - MPI BUILT-IN FUNCTIONS FOR PARALLEL COMPUTING APPLICATIONS ... 70
 7.1. Introduction ... 70
 7.2. MatlabMPI Functions .. 71
 7.3. Example 1: Display Rank of Processors ... 73
 7.4. Example 2: Matrix-Matrix Multiplication ... 75

8. CONCLUSIONS AND FUTURE WORKS ... 77

REFERENCES .. 79

APPENDICES

A. Singular Value Decomposition (SVD) and the Generalized Inverse 82
B. An Educational Fortran Source Code of “Special LDLT Algorithm for Factorization of Singular/Square/Symmetrical Coefficient Matrix .. 84
C. A Complete Listing of an Educational Fortran Source Code of “Cholesky Generalized Inverse” Algorithms for SLE ... 91
D. MatlabMPI Source Code for Matrix-Matrix Multiplication
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Symmetric Singular Test Matrices for ODU Generalized Inverse Solver</td>
<td>41</td>
</tr>
<tr>
<td>5.2 Un-Symmetrical Singular Test Matrices for ODU Generalized Inverse Solver</td>
<td>41</td>
</tr>
<tr>
<td>5.3 Rectangular Singular Test Matrices (Tall type: rows>>cols) for ODU Generalized Inverse Solver</td>
<td>41</td>
</tr>
<tr>
<td>5.4 Rectangular Singular Test Matrices (Fat type: rows<<cols) for ODU Generalized Inverse Solver</td>
<td>42</td>
</tr>
<tr>
<td>5.5 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combinations of Columns of Coefficient Matrix</td>
<td>43</td>
</tr>
<tr>
<td>5.6 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combinations of Columns of Coefficient Matrix</td>
<td>44</td>
</tr>
<tr>
<td>5.7 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Tall type: Rows>>Cols) with RHS Vector as Linear Combinations of Columns of Coefficient Matrix</td>
<td>44</td>
</tr>
<tr>
<td>5.8 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Fat Type: Rows<<Cols) with RHS Vector as Linear Combinations of Columns of Coefficient Matrix</td>
<td>44</td>
</tr>
<tr>
<td>5.9 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with Randomly Generated RHS Vector</td>
<td>45</td>
</tr>
<tr>
<td>5.10 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with Randomly Generated RHS Vector</td>
<td>45</td>
</tr>
<tr>
<td>5.11 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Tall Type: Rows>>Cols) with Randomly Generated RHS Vector</td>
<td>46</td>
</tr>
</tbody>
</table>
5.12 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Fat Type: Rows<<Cols) with Randomly Generated RHS Vector 46
5.13 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector ... 47
5.14 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector ... 47
5.15 Computational Times (in seconds) for Rectangular (Tall) Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector ... 47
5.16 Computational Times (in seconds) for Rectangular (Fat) Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector ... 48
5.17 Symmetric Singular Test Matrices for ODU Generalized Inverse DD Solver........ 49
5.18 Un-Symmetrical Singular Test Matrices for ODU Generalized Inverse DD Solver... 49
5.19 Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{ii} (GD98_c) Sub-Matrices using Domain Decomposition.......................... 50
5.20 Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{ii} (dwt_209) Sub-Matrices using Domain Decomposition.......................... 50
5.21 Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{ii} (dwt_307) Sub-Matrices using Domain Decomposition.......................... 51
5.22 Computational Times (in seconds) for Rank-Deficient Test Matrices with
same K^{ii} (gentl13) Sub-Matrices using Domain Decomposition 51

5.23 Computational Times (in seconds) for Rank-Deficient Test Matrices with
same K^{ii} (gre_216b) Sub-Matrices using Domain Decomposition 52

5.24 Computational Times (in seconds) for Rank-Deficient Test Matrices with
same K^{ii} (GD00_a) Sub-Matrices using Domain Decomposition 52

5.25 Computational Times (in seconds) for Rank-Deficient Test Matrices with
different K^{ii} (can_161) Sub-Matrices using Domain Decomposition 53

5.26 Computational Times (in seconds) for Rank-Deficient Test Matrices with
different K^{ii} (lock_700) Sub-Matrices using Domain Decomposition 54

5.27 Computational Times (in seconds) for Rank-Deficient Test Matrices with
different K^{ii} (mesh3e1) Sub-Matrices using Domain Decomposition 54

5.28 Computational Times (in seconds) for Rank-Deficient Test Matrices with
same K^{ii} (lock_700) Sub-Matrices and RHS as Linear Combinations of
Columns $c_1 + c_2 + c_3 + \ldots + c_n$ using Domain Decomposition 55

5.29 Computational Times (in seconds) for Rank-Deficient Test Matrices with
same K^{ii} (dwt_307) Sub-Matrices and RHS as Linear Combinations of
Columns $c_1 + c_2 + c_3 + \ldots + c_n$ using Domain Decomposition 55

5.30 Computational Times (in seconds) for Rank-Deficient Test Matrices with
same K^{ii} (GD00_a) Sub-Matrices and RHS as Linear Combinations of
Columns $c_1 + c_2 + c_3 + \ldots + c_n$ using Domain Decomposition 56
5.31 Computational Times (in seconds) for Rank-Deficient Test Matrices with
different \(K^{ii}\) (dwt_307) Sub-Matrices and RHS as Linear Combinations of
Columns \(C_1 + C_2 + C_3 + \cdots + C_n\) using Domain Decomposition.................. 56

5.32 Computational Times (in seconds) for Rank-Deficient Test Matrices with
different \(K^{ii}\) (GD98_c) Sub-Matrices and RHS as Linear Combinations of
Columns \(C_1 + C_2 + C_3 + \cdots + C_n\) using Domain Decomposition.................. 57

7.1 Time Results (in seconds) for Matrix-Matrix Multiplication using MatlabMPI........ 75
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Preconditioned Conjugate Gradient Algorithm</td>
<td>13</td>
</tr>
<tr>
<td>2.2 GMRES Algorithm</td>
<td>14</td>
</tr>
<tr>
<td>6.1 Online 3-D Truss Analysis</td>
<td>60</td>
</tr>
<tr>
<td>6.2 Client Server Interface</td>
<td>61</td>
</tr>
<tr>
<td>6.3 Sample of Generalized Inverse Home Page</td>
<td>63</td>
</tr>
<tr>
<td>6.4 Generalized Inverse Input Page</td>
<td>64</td>
</tr>
<tr>
<td>6.5 Generalized Inverse Output Page</td>
<td>65</td>
</tr>
<tr>
<td>6.6 Sample of LU Decomposition Home Page</td>
<td>66</td>
</tr>
<tr>
<td>6.7 LU Decomposition Input Page</td>
<td>67</td>
</tr>
<tr>
<td>6.8 LU Decomposition Output Page</td>
<td>68</td>
</tr>
<tr>
<td>6.9 1-Phone Home Page, Input Data and Output Data</td>
<td>69</td>
</tr>
<tr>
<td>7.1 Graphical Representation of Time Results (in seconds) for Matrix-Matrix Multiplication using MatlabMPI</td>
<td>76</td>
</tr>
<tr>
<td>E.1 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix</td>
<td>108</td>
</tr>
<tr>
<td>E.2 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix</td>
<td>109</td>
</tr>
<tr>
<td>E.3 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (tall type) with RHS Vector as Linear Combination of Columns of Coefficient Matrix</td>
<td>109</td>
</tr>
</tbody>
</table>
E.4 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices
(fat type) with RHS Vector as Linear Combination of Columns of Coefficient Matrix .. 110

E.5 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices
with Randomly generated RHS Vector ... 110

E.6 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with Randomly generated RHS Vector ... 111

E.7 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (tall type) with Randomly generated RHS Vector .. 111

E.8 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (fat type) with Randomly generated RHS Vector ... 112

E.9 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse) .. 112

E.10 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse) .. 113

E.11 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (tall) with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse) .. 113

E.12 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (fat) with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse) .. 114
1. INTRODUCTION

In scientific computing, most computational time is spent on solving systems of Simultaneous Linear Equations (SLE) which can be represented in matrix notations as

\[Ax = b \] \hspace{1cm} (1.1)

where \(A \) is a singular/non-singular matrix, and \(b \) is a given vector in \(R^n \). For practical engineering/science applications, matrix \(A \) can be either sparse (for most cases), or dense (for some cases). Solving large scale system of SLE has been (and continues to be) a major challenging problem for many real-world engineering and science applications.

The generalized (or pseudo) inverse of a matrix is an extension of the ordinary/regular square (non-singular) matrix inverse, which can be applied to any matrix (such as singular, rectangular, etc.). The generalized inverse has numerous important engineering and science applications. Over the past decades, generalized inverses of matrices and their applications have been investigated by many researchers [1-8].

1.1 Literature Survey

Various methods have been proposed for finding the generalized inverse and its associated SLE. Xuzhou Chen et. al. [9] has proposed a method based on a finite recursive algorithm. The approach was based on the symmetric rank-one update. The algorithm proposed by Xuzhou Chen, however, was inefficient (in terms of computational time) and requires lot of computer memory. It has been shown that this algorithm [9] can be only effective for the computation of generalized inverse/Moore-
Penrose inverse of rectangular matrices (with rows<cols or cols<rows) and is inefficient for square matrices.

The most commonly implemented method in programming languages to compute generalized inverse (and its associated SLE) was based on Singular Value Decomposition (SVD) [3, 10-11]. This method is numerically very stable, however, it is computationally expensive for practical applications. MATLAB [12] uses SVD to compute the pseudo/generalized inverse by invoking the built-in function \texttt{pinv()}. It should be noted here that in finding the solution for SLE (with square/singular, or rectangular coefficient matrices), MATLAB and most (if not all) other researchers have computed the generalized inverse explicitly. Then, the solution can be found by a simple matrix times vector operation.

Since the standard Eigen-value problems (of $A \times A^H$, and $A^H \times A$) need to be solved in SVD, this method is computationally expensive. Despite of this fact, solving Eq. (1.1) by using SVD is still more efficient than Xuzhou Chen's proposed finite recursive algorithm [9].

In [6], an efficient algorithm for finding the generalized inverse of a (full rank) rectangular (or square) matrix has been proposed. However, this algorithm has not been able to handle the cases where the matrix has rank deficiency (such as a matrix which has some dependent rows and/or columns)

Pierre Courrieu [13] has proposed an algorithm to explicitly compute the generalized inverse using full-rank Cholesky factorization on the coefficient matrix. His algorithm was based on a theorem to compute the generalized inverse of a product of two
matrices. Pierre Courrieu's algorithm has proven to be more efficient than finite recursive method [9] and SVD [10-11].

1.2 SVD and the Generalized Inverse

A general (square or rectangular) matrix \(A \in R^{n\times n} \) can be decomposed as

\[
A = U\Sigma V^H
\]

(1.2)

where

\(\Sigma = \text{a diagonal matrix (does NOT have to be a square matrix)} \)

\[
\Sigma = \begin{cases}
\Sigma_{ij} = 0, & \text{for } i \neq j \\
\Sigma_{ij} \geq 0, & \text{for } i = j
\end{cases}
\]

(1.3)

\([U]\text{ and } [V] = \text{unitary matrices}\)

\[
[U^H = U^T (\text{for real matrices})] \\
U^H = U^{-1}
\]

(1.4)

Let \(A \) be a singular matrix of size \(m \times n \) and let \(k \) be the rank of the matrix. Based on Eq. (1.2), one has

\[
A = U\Sigma V^H;
\]

(1.5)

where \(\Sigma = \begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\vdots \\
\sigma_k
\end{bmatrix} \)

with \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k > 0; \)

and \(\sigma_i = \sqrt{\text{Eigen-values of } A^TA \text{ (or } AA^T)} \)

Note: Eigen-values of \(A \times A^H \) and Eigen-values of \(A^H \times A \) are the same. However, the Eigen-vectors of \(A \times A^H \) and Eigen-vectors of \(A^H \times A \) are "NOT" the same.

Then, the generalized inverse \(A^+ \) of \(A \) is the \(n \times m \) matrix and is given as

\[
A^+ = V\Sigma^+ U^H
\]

(1.6)
where

\[
\Sigma^+ = \begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix} \text{ and } E \text{ is the } k \times k \text{ diagonal matrix, with }
\]

\[
E_{ii} = \Sigma_i^{-1} \text{ for } 1 \leq i \leq k
\]

More details about computing the SVD from a given matrix \([A]\) can be found in the Appendix A.

1.3 Objective

The main objective of this dissertation is to develop an efficient (in terms of computational time and computer memory requirement) generalized inverse formulation to solve SLE with full or deficient rank of the coefficient matrix. The coefficient matrix can be singular/non-singular, symmetric/unsymmetric, square/rectangular, and with real/complex numbers. The proposed generalized inverse procedures can also be integrated in to the Domain Decomposition (DD) formulation for solving general, large scale SLE commonly encountered in engineering/sciences applications. Due to popular MATLAB software, which is widely accepted by researchers and educators worldwide, the developed code from this work is written in MATLAB language and has the following capabilities/features:

a) A stand-alone generalized inverse software to solve SLE

b) A stand-alone DD generalized inverse software to solve SLE

c) Utilizing sparse storage scheme (whenever possible) for storing data and solving SLE

d) Developing user friendly interfaces to test new problems (including the numerical data downloaded from popular web sites [14-15]).
e) Additional wall-time reduction for DD generalized inverse solver can be realized/achieved by performing “parallel matrix times matrix” operations under MATLAB-MPI computer environment.

f) Developing an “educational version” (written in FORTRAN language) of the software, which uses the generalized inverse for solving general SLE on the internet.

In Chapter 2, some major algorithms for solving SLE by direct and iterative methods are reviewed. These methods are mainly designed for solving non-singular SLE. Simple/basic domain decomposition (DD) algorithms, using mixed direct-iterative solvers, are discussed in Chapter 3. Major works in this dissertation are presented in Chapter 4, where efficient “generalized (or pseudo-) inverse” algorithms are thoroughly explained with and without incorporating the DD formulation. The numerical performance of the proposed algorithms are conducted in Chapter 5, through extensive set of coefficient matrices (including rectangular, square, symmetrical, non-symmetrical, singular, non-singular matrices) obtained from well established/popular websites [14-15]. Detailed procedures for executing any FORTRAN code (such as the “educational version” of the developed generalized inverse code for solving SLE) on the internet are explained and demonstrated in Chapter 6. Basic/simple parallel MATLAB-MPI functions (including parallel matrix times matrix operations) are summarized in Chapter 7. Finally, conclusions and future research works are summarized in Chapter 8.
2. DIRECT AND ITERATIVE METHODS FOR SYSTEM OF NON-SINGULAR SLE

Many real life, practical problems in scientific computing require efficient solution of Simultaneous Linear Equations (SLE), which can be conveniently expressed in the matrix notation as

\[Ax = b \] \hspace{1cm} (2.1)

In general, solutions for Eq. (2.1) can be classified into 2 categories: Direct and Iterative methods. In the subsequent sections, basic ideas behind these two types of solution approaches will be briefly summarized and discussed.

2.1 Direct Methods for Solving SLE

Depending on the nature of the coefficient matrix \(A \), shown in Eq. (2.1), different direct methods/algorithms are available, such as:

a) Cholesky algorithm [if matrix \(A \) is Symmetric Positive Definite (SPD)]

b) LDL\(^T\) algorithm [if matrix \(A \) is Symmetric, could be either positive or negative definite]

c) LU decomposition algorithm [if matrix \(A \) is unsymmetric]

2.1.1 Cholesky Method

If the coefficient matrix \(A \) is Symmetric Positive Definite (SPD), then the following three step Cholesky algorithm can be used to obtain the solution for Eq. (2.1)

Step1: Matrix Factorization Phase
The coefficient matrix A is decomposed into

$$[A] = [U]^T U$$

(2.2)

where U is an $n \times n$ upper triangular matrix. For a general $n \times n$ SPD $[A]$, the diagonal and off-diagonal terms of the factorized matrix U can be computed from the following formulas [3, 10-11]

$$u_{ii} = \left(A_{ii} - \sum_{k=1}^{i-1} (u_{ki})^2 \right)^{1/2}$$

and

$$u_{ij} = \frac{A_{ij} - \sum_{k=1}^{i-1} u_{ki} u_{kj}}{u_{ii}}$$

Note: Since the "square root" operation is required for computing the diagonal terms of U, positive definite is a requirement for matrix A to assure the number under the square root is positive.

Step 2: Forward solution phase

Substituting Eq. (2.2) in Eq. (2.1)

$$[U]^T [U] \{x\} = \{b\}$$

(2.3)

Let's define

$$[U] \{x\} = \{y\}$$

(2.4)

Eq. (2.3) becomes

$$[U]^T \{y\} = \{b\}$$

(2.5)

The intermediate unknown $\{y\}$ can be easily solved from Eq. (2.5) and hence the name "forward solution".

Step 3: Backward solution phase
From Eq. (2.4), the unknown vector \(\{x\} \) can be effectively solved and hence the name "backward solution".

The matrix factorization phase (step 1) is the most-time consuming part of solving SLE in the Cholesky algorithm. However, if the right-hand-side (RHS) vector \(\{b\} \), shown in Eq. (2.1), becomes a matrix (with multiple columns), then the combined Forward and Backward solution time may become significant (as compared to the matrix factorization phase). As a general rule of thumb, computational time/effort for one matrix factorization is roughly equivalent to 20-25 times the efforts for one Forward and Backward solution phases.

2.1.2 LDL\(^T\) Method

In many engineering and science applications, the coefficient matrix in Eq. (2.1) is symmetric, however it may not be positive definite. The coefficient matrix could be negative definite. In this case, LDL\(^T\) algorithms can be used for solving Eq. (2.1), which also requires the following 3 computational steps

Step1: Matrix Factorization phase

\[
[A] = [L][D][L]^T \tag{2.6}
\]

In Eq. (2.6), matrices \([L]\) and \([D]\) represent the lower triangular (with 1 on its diagonal) and diagonal matrices, respectively.

Step2: Forward Solution and Diagonal Scaling phase

Substituting Eq. (2.6) in Eq. (2.1), one gets

\[
[L][D][L]^T\{x\} = \{b\} \tag{2.7}
\]
Let's define

\[[L]^{T}\{x\} = \{y\} \quad (2.8) \]

\[[D]\{y\} = \{z\} \Leftrightarrow \begin{bmatrix} D_{11} & 0 & 0 \\ 0 & D_{22} & 0 \\ 0 & 0 & D_{33} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} \quad (2.9) \]

or, \(y_i = \frac{z_i}{D_{ii}} \) for \(i = 1, 2, 3, \ldots N \) \quad (2.10)

Then Eq. (2.7) becomes:

\[[L]\{z\} = \{b\} \Leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ L_{21} & 1 & 0 \\ L_{31} & L_{32} & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad (2.11) \]

or, \(z_i = b_i - \sum_{k=1}^{i-1} L_{ik} z_k \) for \(i = 1, 2, 3, \ldots N \) \quad (2.12)

Step3: Backward Solution phase

In this step, Eq. (2.8) can be effectively solved for the original unknown vector \(\{x\} \)

\[[L]^{T}\{x\} = \{y\} \Leftrightarrow \begin{bmatrix} 1 & L_{21} & L_{31} \\ 0 & 1 & L_{32} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad (2.13) \]

or, \(x_i = y_i - \sum_{k=i+1}^{N} L_{ik} x_k \) for \(i = N, N - 1, \ldots 1 \)

2.1.3 LU Decomposition Method

LU decomposition can be used to solve Eq. (2.1), when the coefficient matrix \(A \) is unsymmetric.

Step1: Factorization phase

The coefficient matrix in Eq. (2.1) can be factorized as a product of two matrices

\[A = L \cdot U \quad (2.14) \]

where \(L \) is lower triangular (with values 1 on its diagonal) and \(U \) is upper triangular.

For the case of \(4 \times 4 \) matrix \(A \), Eq. (2.14) would look like
Various terms inside matrices \([L]\) and \([U]\) can be computed by equating both sides of Eq. (2.15).

Step 2: Forward solution phase

Substituting Eq. (2.14) into Eq. (2.1), one obtains

\[
[L.U]x = b
\]
(2.16)

Let us define

\[
[U]\{x\} = y
\]
(2.17)

Substituting Eq. (2.17) in Eq. (2.16), one gets

\[
[L]\{y\} = b
\]
(2.18)

In this "forward solution" phase, Eq. (2.18) can be easily solved for the "intermediate" unknown vector \(\{y\}\).

Step 3: Backward solution phase

Solving the unknown vector \(\{x\}\) in Eq. (2.17) is called "backward solution" phase

\[
[U]\{x\} = y
\]
(2.17, repeated)

While direct methods have offered advantages in terms of its robustness, accuracy, and reliability, etc., for large/sparse SLE (especially for 3-D problems), these direct methods may become excessively expensive. Furthermore, direct methods also have the following limitations:

a) The amount of required computer memory can be high.

b) The operation counts can be high, especially when many non-zero fill-in terms occurred during the factorization phase, even though reordering algorithms have
commonly used (to minimize the non-zero fill-in terms) prior to numerical factorization phase, and

c) These methods have low degree of parallelism (or not easy to parallelize).

The above-mentioned drawbacks have motivated researchers to investigate iterative methods as possible alternative choices.

2.2 Iterative Methods for Solving SLE

Iterative methods can be superior to direct methods in all the above mentioned three aspects. Some of the popular iterative methods are Conjugate Gradient (CG), Bi-Conjugate Gradient (Bi-CG) with or without stabilizers [1, 3, 10], Generalized Minimal Residual (GMRES) [1, 3, 10], etc. These methods (CG for symmetrical, while Bi-CG and GMRES for unsymmetrical systems of SLE) can lead to low memory requirement and make effectively use of parallelism. Most (if not all) existing iterative algorithms require "matrix times vector" and "dot product of 2 vectors" operations. For these reasons, iterative methods are much more easier to parallelize (for improving computational efficiency) as compared to direct methods. These advantages make iterative linear system solvers as attractive alternatives to direct methods, particularly for large (3-D) problems. Despite of these desirable features, iterative methods may also have difficulties for fast convergence (or even have divergence) to a specified (small) error tolerance etc..., unless these iterative methods were used in conjunction with "efficient preconditioned" algorithms [1-3, 10-11]!
2.2.1 Conjugate Gradient (CG) Algorithm with Preconditioner

For systems of Symmetrical Positive Definite (SPD) SLE, the Preconditioned Conjugate Gradient (PCG) algorithms can be considered as the method of choice. PCG algorithms can be summarized in the following step-by-step numerical procedures [3, 10-11], for solving Eq. (2.1)

Eq. (2.1) can be re-casted as:

\[PAP^T P^{-T} \tilde{x} = P b \]

Eq. (2.19) can be expressed in the following general form [1, 3, 10-11]:

\[[A^*] \tilde{y} = \overline{b^*} \]

(2.20)

where matrix

\[[A^*] = [P] \times [A] \times [P^T] \]

is symmetrical matrix, and the right-hand-side vector \(\{b^*\} \) is defined as

\[\{b^*\} = [P] \times \{b\} \]

(2.21)

\[\tilde{y} = P^{-T} \tilde{x} \]

(2.22)

and \([P]=\) preconditioned matrix

The step-by-step PCG algorithm is summarized in Fig. 2.1
Given the initial guessed vector $\tilde{x}^{(0)}$

Compute (or input) the preconditioned matrix $[P]$

Compute $\tilde{r}^{(0)} = \{Pb\} - [PAP] \tilde{x}^{(0)}$

Set $\tilde{d}^{(0)} = 0; \rho_{-1} = 1$

Do $i = 1, 2, ..$

$\rho_{i-1} = \{r^{(i-1)}\}^T \{r^{(i-1)}\}$

$\beta_{i-1} = \frac{\rho_{i-1}}{\rho_{i-2}}$

$d^{(i)} = r^{(i-1)} + \beta_{i-1} d^{(i-1)}$

$q^{(i)} = [PAP]^T d^{(i)}$

$\alpha_i = \frac{\rho_{i-1}}{\{d^{(i)}\}^T \{d^{(i)}\}}$

$x^{(i)} = x^{(i-1)} + \alpha_i d^{(i)}$

$r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)}$

Converge??

End do

If converged, then set

$\bar{x} = [P]^T \tilde{x}$

Figure 2.1 Preconditioned Conjugate Gradient Algorithm
2.2.2 GMRES Algorithm [1, 3, 10, 16]

For systems of “unsymmetrical” SLE, popular algorithms such as GMRES, Bi-Conjugate Gradient (Bi-CG), Bi-Conjugate Gradient with Stabilizers (Bi-CG Stab) [1, 3, 10, 16] are recommended. For readers’ convenience, a version of GMRES algorithms can be summarized in the following step-by-step numerical procedures [1, 3, 11], for solving

\[[A^*] \bar{y} = \bar{b}^* \]

\[
\begin{align*}
 r_0 &= b - Ax_0 \\
 v_1 &= \frac{r_0}{\|r_0\|_2} \\
 \text{start} & \\
 \text{for } j = 1: m \\
 w &= Av_j \\
 \text{for } i = 1: j \\
 H(i, j) &= (w, v_i) \\
 w &= w - H(i, j)v_i \\
 \text{end} \\
 v_{j+1} &= \frac{w}{\|w\|_2} \\
 \text{if } \|v_{j+1}\|_2 < \text{tolerance} \quad \text{Break} \\
 \text{end} \\
 V_{j+1} &= [v_1, v_2, v_3, \ldots, v_{j+1}] \\
 H &= V_j^T AV_j \\
 y &= \arg \min \|V_{j+1}r_0 - Hy\|_2 \\
 x &= x_0 + V_jy \\
 \text{if } \|Ax - b\|_2 < \text{tolerance} \quad \text{Stop} \\
 \text{else } x_0 = x \quad \text{and goto start}
\end{align*}
\]

Figure 2.2 GMRES Algorithm
3. DOMAIN DECOMPOSITION SOLVER

Domain decomposition [1-2, 4, 11, 16] algorithm is a powerful method for solving large scale system of equations arising from discretization of partial differential equations (PDE) in finite element procedures. The computational domain is decomposed into smaller sub-domains each of which is easier to solve.

Domain decomposition (DD) is an application of the divide-and-conquer problem-solving strategy, which consists of expressing a large problem as a set of smaller sub-problems defined on sub-domains and provides a way to determine the solution of the original problem in terms of solutions to sub-problems.

The goal of DD is to divide the original problem into sub-problems that can be solved independently. A critical issue in DD is to assure that the sub-problems preserve the solution to the original problem.

Let us assume the system of linear algebraic equations

\[K r = f \] \hspace{1cm} (3.1)

where the matrix of system is \(K \in \mathbb{R}^{n \times n} \) and vectors \(r \in \mathbb{R}^n, f \in \mathbb{R}^n \). It is possible to split Eq. (3.1) into blocks (or sub-matrices)

\[
\begin{bmatrix}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{bmatrix}
\begin{bmatrix}
r^{(1)} \\
r^{(2)}
\end{bmatrix} =
\begin{bmatrix}
f^{(1)} \\
f^{(2)}
\end{bmatrix}
\] \hspace{1cm} (3.2)

Eq. (3.2) can be written as

\[K_{11} r^{(1)} + K_{12} r^{(2)} = f^{(1)} \] \hspace{1cm} (3.3)

\[K_{21} r^{(1)} + K_{22} r^{(2)} = f^{(2)} \] \hspace{1cm} (3.4)

From Eq. (3.3), the vector \(r^{(1)} \) can be expressed in the form
\[r^{(1)} = K_{11}^{-1}(f^{(1)} - K_{12}r^{(2)}) \] \hspace{1cm} (3.5)

Substituting Eq. (3.5) in Eq. (3.4)

\[(K_{22} - K_{21}K_{11}^{-1}K_{12})r^{(2)} = f^{(2)} - K_{21}K_{11}^{-1}f^{(1)} \] \hspace{1cm} (3.6)

From Eq. (3.6) we can observe that the number of unknowns have been reduced as this matrix equation is only related to the unknown vector \(r^{(2)} \).

The matrix \((K_{22} - K_{21}K_{11}^{-1}K_{12}) \) is often referred as the Schur’s complement in the mathematical community.

The basic ideas in DD solver is to solve for the unknown vector \(\{r\} \), shown in Eq. (3.1), in the following 2 major steps:

Step 1: The “boundary unknown” vector \(\{r^{(2)}\} \) is solved from Eq. (3.6). Since the triple matrix products appeared in Eq. (3.6) is usually dense, and computationally expensive (because \(K_{12} \) is a matrix, and not a vector), iterative solver (which is based on matrix times vector operations) is usually recommended in this step.

Step 2: The “interior unknown” vector \(\{r^{(1)}\} \) is solved from Eq. (3.5). Since the coefficient matrix \([K_{11}] \) is usually sparse (and \(f^{(1)} \) is a vector, not a matrix), direct solver (such as Cholesky, or LDL\(^T\), or LU algorithms) is strongly recommended.
4. GENERALIZED INVERSE ALGORITHMS FOR SINGULAR/NON-SINGULAR, SQUARE/RECTANGULAR SYSTEM OF SLE

In Chapter 2, various direct and iterative methods for solving square/non-singular system of SLE have been summarized. The (direct and iterative) methods described in Chapter 2 can be significantly enhanced/improved by the Domain Decomposition (DD) formulation [1-2, 11, 16], described in Chapter 3. Domain decomposition formulation has been widely adopted, since it can take full advantage of “parallel processing” capability offered by most (if not all) today super-computers, and even to desktop/laptop computers, which have multiple processors. In this Chapter 4, however, the main focus is shifted into algorithms (numerical procedures) that can solve much more general classes of SLE, shown in Eq. (2.1), for which the coefficient matrix A can be square/rectangular, non-singular/singular, well-posed/illed condition. These desirable algorithms have been based on the so called Generalized (or Pseudo, or Moore-Penrose) inverse of a general matrix [5-9, 11-13, 17-18]. Furthermore, DD formulation will also be used in this chapter to further improve the numerical performance of the generalized inverse.

4.1 Basic Conditions for the Generalized Inverse

The Moore-Penrose inverse (or generalized inverse or pseudo inverse) of a $m \times n$ matrix K (not necessarily a square matrix) is the unique $n \times m$ matrix K^+ which satisfies the following four conditions:

1. General condition: $KK^+K = K$,
2. Reflexive condition: $K^+KK^+ = K^+$,
3. Normalized condition: $(KK^+)' = KK^+$,
4. Reverse normalized condition: \((K^+K)' = K^+K\)

4.2 Potential Engineering/Science Generalized Inverse Applications

There are some applications that result in (or lead to) an inconsistent system of SLE. A solution may not exist in this case. However, we can consider to fit a vector \(\hat{x}\) to a given inconsistent system. That is, we can define a least-squares error problem for finding \(\hat{x}\) that minimizes the absolute error \(\|Ax - \mathbf{b}\|_2^2\) which is equivalent to minimizing the summation of the square of the error \(\|Ax - \mathbf{b}\|_2^2\). As should be obvious, such a solution vector \(\hat{x}\) may not be unique, and it can be obtained/computed by \(\hat{x} = A^+\mathbf{b}\), where \(A^+\) is generalized (or pseudo-) inverse of \(A\).

It has been well documented in the literature that many real-life engineering/science/statistical applications can be efficiently solved by efficient computation of the generalized inverse in conjunction with SLE. In the following section, it can be shown that the popular "least square problem" can be formulated such that generalized inverse algorithms can be incorporated for obtaining the desired solution.

4.3 Least Squares Curve Fitting Problem

Let us assume we are given a set of data points \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), and we wish to find parameters \(c_1, c_2, \ldots, c_k\) to be multiplied by the basis functions \(\phi_1, \phi_2, \ldots, \phi_k\) such that the scalar function \(S\), defined as

\[
S = \sum_{i=1}^{n} |\epsilon_i|^2
\]

is minimized, where the errors \(\epsilon_i\) can be computed by
\[\varepsilon_1 = c_1 \phi_1(x_1) + c_2 \phi_2(x_1) + \ldots + c_k \phi_k(x_1) - y_1 \]
\[\varepsilon_2 = c_1 \phi_1(x_2) + c_2 \phi_2(x_2) + \ldots + c_k \phi_k(x_2) - y_2 \]
\[\vdots \]
\[\varepsilon_n = c_1 \phi_1(x_n) + c_2 \phi_2(x_n) + \ldots + c_k \phi_k(x_n) - y_n \]

(4.2)

In Eq. (4.1), the scalar parameter \(S \) represents the “summation of the square of the errors”. Ideally, we would like to set Eq. (4.1) to zero, i.e., each of the \(\varepsilon_i \) to be zero. Otherwise, we would like to minimize the scalar function \(S \). If \(c \) and \(y \) are the vectors

\[
\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_k
\end{bmatrix}
\text{ and }
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix},
\]

(4.3)

respectively, and \(A \) is the \(n \times k \) matrix

\[
A =
\begin{bmatrix}
 \phi_1(x_1) & \phi_2(x_1) & \ldots & \phi_k(x_1) \\
 \phi_1(x_2) & \phi_2(x_2) & \ldots & \phi_k(x_2) \\
 \vdots & \vdots & \ddots & \vdots \\
 \phi_1(x_n) & \phi_2(x_n) & \ldots & \phi_k(x_n)
\end{bmatrix}
\]

(4.4)

Then, the Right-Hand-Side (or RHS) of Eq. (4.2) can also be written in the form

\[
\begin{bmatrix}
 \phi_1(x_1) & \phi_2(x_1) & \ldots & \phi_k(x_1) \\
 \phi_1(x_2) & \phi_2(x_2) & \ldots & \phi_k(x_2) \\
 \vdots & \vdots & \ddots & \vdots \\
 \phi_1(x_n) & \phi_2(x_n) & \ldots & \phi_k(x_n)
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_k
\end{bmatrix}
=
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix}
\]

(4.5)

The requirement \(S = 0 \) is equivalent to

\[Ac = y \]

(4.6)

From Eq. (4.5), if \(n > k \), we have an over-determined system of linear equations, since the number of equations is larger than that of the unknowns. It is generally not possible to find a solution to this system, but we may find \(c_1, c_2, \ldots, c_k \) such that \(Ac \) is close
to y (in the least squares sense). If there is a solution c^* of the least squares problem, then we write

$$c^* = A^* y$$ \hfill (4.7)

The matrix A^* is called the pseudo-inverse (or generalized inverse) of A. We know that when $n = k$ and A is invertible (i.e., A has an inverse), then

$$A^* = A^{-1}$$ \hfill (4.8)

4.3.1 The Normal Equations [3, 10, 19]

In order to minimize S, we must minimize

$$S_{\text{min}} = \sum_{i=1}^{n} \left[c_1 \phi_1(x_i) + c_2 \phi_2(x_i) + \ldots + c_k \phi_k(x_i) - y, y > \right]^2$$ \hfill (4.9)

If we take for $j = 1, 2, \ldots, k$ the partial derivatives of S with respect to c_j and set them equal to zero, we will get the following normal equations

$$2 \sum_{i=1}^{n} \left[c_1 \phi_1(x_i) + c_2 \phi_2(x_i) + \ldots + c_k \phi_k(x_i) - y, y > \right] \phi_j(x_i) = 0$$ \hfill (4.10)

or, equivalently,

$$\sum_{i=1}^{n} \left[c_1 \phi_1(x_i) + c_2 \phi_2(x_i) + \ldots + c_k \phi_k(x_i) \right] \phi_j(x_i) = \sum_{i=1}^{n} \phi_j(x_i) y_i$$ \hfill (4.11)

The above normal equations can also be expressed (in matrix notations) as

$$A^T A c = A^T y$$ \hfill (4.12)

where the matrix A has the entries $a_{ij} = \phi_j(x_i)$. As an example, let $k = 4$ and $\phi_j(x) = x^{j-1}$, where $j = 1, 2, \ldots, k = 4$.

Then,
\[\phi_1(x) = 1 \\
\phi_2(x) = x \\
\phi_3(x) = x^2 \\
\phi_4(x) = x^3 \]

and

\[
A = \begin{pmatrix}
1 & x_1 & x_1^2 & x_1^3 \\
1 & x_2 & x_2^2 & x_2^3 \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_n & x_n^2 & x_n^3 \\
\end{pmatrix}
\] (4.13)

\[
A^T = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
x_1 & x_2 & \cdots & x_n \\
x_1^2 & x_2^2 & \cdots & x_n^2 \\
x_1^3 & x_2^3 & \cdots & x_n^3 \\
\end{pmatrix}
\] (4.14)

so that

\[
A^T A = \begin{pmatrix}
\sum_{i=1}^{n} \sum x_i & \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \\
\sum x_i^2 & \sum x_i^3 & \sum x_i^4 & \sum x_i^5 \\
\sum x_i^3 & \sum x_i^4 & \sum x_i^5 & \sum x_i^6 \\
\end{pmatrix}
\] (4.15)

where in the summations, \(i\) runs from 1 to \(n\) and

\[
A^T y = \begin{pmatrix}
\sum y_i \\
\sum x_i y_i \\
\sum x_i^2 y_i \\
\sum x_i^3 y_i \\
\end{pmatrix}
\] (4.16)

If the matrix \(A^T A\) in Eq. (4.15) is invertible, then there is a solution to the least squares problem.

We then have
\[c = (A^T A)^{-1} A^T y, \]
\[\text{(4.17)} \]

so that the pseudo-inverse \(A^+ \) (of the given matrix \(A \), see Eqs. 4.6-4.7) is given by

\[A^+ = (A^T A)^{-1} A^T \]
\[\text{(4.18)} \]

In subsequent sections, Eq. (4.18) can be generalized into the form shown in Eq. (4.27).

4.4 Special Cholesky Algorithms for Factorizing a Singular Matrix

The stiffness matrix of the “floating” sub-domain is singular due to the fact that there are not enough (support) constraints to prevent its rigid body motion. To facilitate the discussions, let’s assume the “floating” sub-domain’s stiffness matrix is given as:

\[[K_{\text{float}}] = \begin{bmatrix}
1 & 2 & -3 & 2 & -2 & -3 & -2 \\
2 & 4 & -6 & 4 & -4 & -6 & -4 \\
-3 & -6 & 9 & -6 & 6 & 9 & 6 \\
2 & 4 & -6 & 5 & -1 & -5 & -7 \\
-2 & -4 & 6 & -1 & 13 & 9 & -5 \\
-3 & -6 & 9 & -5 & 9 & 13 & 9 \\
-2 & -4 & 6 & -7 & -5 & 9 & 27
\end{bmatrix} \]
\[\text{(4.19)} \]

\[\text{row2} = 2 \times \text{row1} \]
\[\text{(4.20)} \]

\[\text{row3} = -3 \times \text{row1} \]
\[\text{(4.21)} \]

\[\text{row5} = -8 \times \text{row1} + 3 \times \text{row4} \]
\[\text{(4.22)} \]

In Eq. (4.19), it can be observed that rows number 2, 3 and 5 are dependent rows (and columns). Thus, the above matrix is singular, and the regular/standard Cholesky factorization algorithms will not work. To facilitate the development of efficient “generalized inverse” algorithms (and its applications) in subsequent chapters, “special
Cholesky factorization algorithm is needed. The "special Cholesky factorization" algorithm is essentially identical to the regular/standard one, with the following two modifications (or differences):

(a) During the numerical factorization phase, if the dependent row(s) is/are detected, then these dependent row(s) is/are skipped!

(b) Factorization of the current \(i^{th}\) row, in general, will require the previously already factorized rows \(k = 1, 2, \ldots, i - 1\). However, if the previous \(k^{th}\) row was amongst the dependent row(s), then the contribution from this \(k^{th}\) row to this current \(i^{th}\) row will be ignored.

(c) Having obtained the "special Cholesky" factorized square matrix, those factorized/dependent rows will be deleted to obtain the so-called "truncated Cholesky factorized rectangular matrix \(U^*\)."

Using MATLAB, the Eigen-values of matrix in Eq. (4.19) can be computed as:

\[\tilde{\lambda} = \{0.0000, 0.0000, 0.0000, 0.2372, 4.9375, 24.9641, 41.8612\}^T \]

Since there are 3 zero Eigen-values, it implies there are 3 rigid body modes (or 3 dependent rows/columns) in Eq. (4.19)

If row-by-row Cholesky factorization scheme is applied to Eq. (4.19), we will encounter that the factorized \(u_{22} = 0 = u_{33} = u_{55}\), which indicated that row number 2, 3 and 5 are dependent rows. Thus, if we set all factorized terms of rows number 2, 3 and 5 are zero, and "ignoring" these three rows in the factorization of subsequent rows, one obtains the following Cholesky factorized matrix \([U]\) of a given matrix \([K_{float}]\), shown in Eq. (4.19):
Based on the above "special Cholesky factorization" algorithm, and using the 7 × 7 singular matrix data as shown in Eq. (4.19), the "truncated Cholesky factorized matrix U" (corresponding to the independent rows # 1, 4, 6, and 7) of the product \([K_{f,\text{float}}] \times [K_{f,\text{float}}]\) can be obtained/computed as:

For row #1 of the truncated 4 × 7 matrix \(U^*\):

\[
5.9160 \quad 11.8321 \quad -17.7482 \quad 11.6631 \quad -12.3392 \quad -21.4669 \quad -19.1004
\]

For row #4 of the truncated 4 × 7 matrix \(U^*\):

\[
0.0000 \quad 0.0000 \quad 0.0000 \quad 4.4689 \quad 13.4068 \quad 0.9781 \quad -21.7565
\]

For row #6 of the truncated 4 × 7 matrix \(U^*\):

\[
0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 4.4960 \quad 10.0650
\]

For row #7 of the truncated 4 × 7 matrix \(U^*\):

\[
0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 0.0000 \quad 0.7209
\]

4.5 Special LDL\(^T\) Algorithms for Factorizing a Singular Matrix

If the square/symmetrical/singular coefficient matrix is NOT positive definite, then the symmetrical, floating stiffness matrix (shown in Eq. 4.19) can be factorized by the familiar sparse LDL\(^T\) algorithms [11], with the following minor modifications:

(a) Whenever a dependent \(i^{th}\) row is encountered (such as the factorized \(u_i = 0\)), then the following things need be done:
(a.1) Recording the dependent row number(s). For the data given by Eq. (4.19), the dependent rows are rows number 2, 3 and 5.

(a.2) Set all the nonzero terms of the factorized \(i^{th} \) row (of \(I^T \)) to be zero

(a.3) Set \(\frac{1}{u_{ii}} \equiv D_{ii} = 0 \)

(b) Whenever an independent \(i^{th} \) row is encountered, the factorized \(i^{th} \) row will have contributions from all appropriated previously factorized rows. However, contributions from the previously factorized (dependent) rows will be ignored.

(c) Finally, the truncated/rectangular \(LDL^T \) factorized matrix \(U^* \) can be obtained by deleting those dependent row(s) from the “special \(LDL^T \) factorized” square matrix.

As an example, the (\(LDL^T \)) factorized matrix (for the matrix data \([K_{float}]\) shown in Eq. (4.19)) can be computed as

\[
[U] = \begin{bmatrix}
1 & 2 & -3 & 2 & -2 & -3 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & 1 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.333 & 2 \\
0 & 0 & 0 & 0 & 0.5
\end{bmatrix}
\]

and the truncated factorized \(LDL^T \) matrix \(U^* \) of the product \([K_{float}]^T \cdot [K_{float}]\) can be obtained by deleting rows #2, 3, and 5 of the above matrix \(U \).

A complete educational version of “special \(LDL^T \)” software code (written in FORTRAN language) is listed/given in the Appendix B.
4.6 Efficient Generalized Inverse Algorithms

Moore-Penrose inverse can be computed using Singular Value Decomposition (SVD) [10-13], Least Squares Method, QR factorizations, Finite Recursive Algorithm [9], etc. In this work, our numerical algorithms have been based on:

(a) The "special Cholesky factorization" (for symmetrical/singular coefficient matrix) see section 4.4 and the Appendix C, and
(b) The generalized inverse of a product of 2 matrices [5, 13]

and can be described in the following paragraphs.

Consider Eq. (2.1) \([G] \hat{x} = \hat{b} \), with a square coefficient \(n \times n \) matrix, and let the rank be less than the size of the matrix (if \(r \) is the rank of the matrix, then \(r \leq n \)). Let the size of the known right-hand-side vector \(\hat{b} \) be \(n \times 1 \). Consider a symmetric positive \(n \times n \) matrix \(G'G \), with rank \(r \leq n \) (here, the matrix \([G] \) plays the same role as matrix \([A] \) in Eq. (2.1)), then based on the theorem presented in [5, 13, 17-18], there exists a unique \([M] \) such that:

\[
G'G = M'M
\] \hspace{1cm} (4.24)

In Eq. (4.24), matrices \([G'] \) and \([G] \) have the dimensions \(n \times m \) and \(m \times n \), respectively.

\(M \) is the upper triangular (special) Cholesky factorized matrix and contains exactly \(n - r \) zero rows. Removing the zero rows from \(M \), one obtains a \(r \times n \) (upper, rectangular) matrix \(L' \).

\[
A = M'M = LL'
\] \hspace{1cm} (4.25)
In this work, the upper triangular (special) Cholesky factorized matrix $[M]$ can be obtained by the regular/standard Cholesky factorization, with the following modifications:

a) When the diagonal term of the current i^{th} row is very close to zero, then factorization of this dependent row is skipped.

b) When the current i^{th} row is factorized, all previous rows $k = 1,2,...,i - 1$ were used except those dependent row(s).

Consider the generalized inverse of a matrix product AB [5, 13, 17-18]

$$(AB)^+ = B'(A'ABB')^+ A'$$

From Eq. (4.26), if $B = I$ then

$$A^+ = (A'A)^+ A'$$

Eq. (4.27) can be considered as a general version of the earlier Eq. (4.18).

If $B = A'$ and A is a $n \times r$ matrix of rank r, then one obtains from Eq. (4.26)

$$(AA')^+ = (A')'\left((A'AA')(A')^\prime\right)^+ A'$$

Let us consider regular inverse in Eq. (4.28) in place of generalized inverse

$$(AA')^+ = A(A'AA'A)^{-1} A'$$

$$= A(A'A)^{-1} (A'A)^{-1} A'$$

Using Eq. (4.27),

$$G^+ = (G'G)^+ G'$$

From Eqs. (4.24 - 4.25) and Eq. (4.29) one obtains,

$$(G'G)^+ = (LL')^+ = L(L'L)^{-1}(L'L)^{-1} L'$$

Thus, Eq. (4.30) becomes
\[G^+ = (G'G)^+ G' = L(L'L)^{-1}(L'L)^{-1} L'G' \]

(4.32)

While MATLAB solution can be obtained by \(\bar{x} = \text{pinv}(G) \times \bar{b} \), implying the generalized inverse \(G^+ \) [see Eq. 4.32] to be formed explicitly, our main idea is to solve SLE where \(\bar{b} \) is a known right-hand-side vector, as described in the next section.

To facilitate the discussion of Generalized Inverse, and its usage for solving general systems of SLE, the following (small-scale) numerical examples are used:

Example 4.1

The coefficient matrix \([G]\) is a rectangular (tall type) matrix, and the RHS vector \([b]\) is a linear combination of columns of \([G]\).

In this example, we wish to solve for \(x \) from the SLE \([G] \cdot [x] = [b]\), where the numerical values of the coefficient matrix \([G]\), and the RHS vector \([b]\) are given as [refer to Eq. (4.32)]:

\[
\begin{bmatrix}
 2 & 0 & 0 & 1 & 1 \\
-1 & 0 & 0 & -2 & -1 \\
 3 & 0 & 0 & 0 & 0 \\
 0 & 1 & 2 & -3 & 1 \\
 0 & -2 & 5 & 1 & 0 \\
 1 & -2 & 3 & 4 & -1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5
\end{bmatrix}
=
\begin{bmatrix}
 6 \\
-5 \\
 6 \\
 1 \\
 4 \\
 6
\end{bmatrix}
\]

Using MATLAB built-in function, the rank of \(G \) can be computed as

\[\text{rank}(G) = 5 \]

and \(G^T \cdot G = \)

\[
\begin{bmatrix}
-15 & -2 & 3 & 8 & 2 \\
-2 & 9 & -14 & -13 & 3 \\
3 & -14 & 38 & 11 & -1 \\
8 & -13 & 11 & 31 & -4 \\
2 & 3 & -1 & -4 & 4
\end{bmatrix}
\]

Special Cholesky factor of \(G^T \cdot G \)
\[
\begin{bmatrix}
3.8729 & -0.5163 & 0.7745 & 2.0655 & 0.5163 \\
0.0000 & 2.9552 & -4.6020 & -4.0380 & 1.1053 \\
0.0000 & 0.0000 & 4.0275 & -2.2800 & 0.9154 \\
0.0000 & 0.0000 & 0.0000 & 2.2866 & 0.64909 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.1189 \\
\end{bmatrix}
\]

of independent rows = 5

Independent rows = 1 2 3 4 5

Dependent row = 6

Product of \(L^T \times L \)

\[
\begin{bmatrix}
20.4000 & -12.8609 & -1.1172 & 5.0584 & 0.5778 \\
-12.8609 & 47.4396 & -8.3159 & -8.5160 & 1.2368 \\
-1.1172 & -8.3159 & 22.2581 & -4.6195 & 1.0243 \\
5.0584 & -8.5160 & -4.6195 & 5.6500 & 0.7263 \\
0.5778 & 1.2368 & 1.0243 & 0.7263 & 1.2520 \\
\end{bmatrix}
\]

Regular Cholesky factorization of \(L^T \times L \)

\[
\begin{bmatrix}
4.5166 & -2.8474 & -0.2473 & 1.1199 & 0.1279 \\
0.0000 & 6.2714 & -1.4383 & -0.8494 & 0.2553 \\
0.0000 & 0.0000 & 4.4864 & -1.2402 & 0.3172 \\
0.0000 & 0.0000 & 0.0000 & 1.4615 & 0.8164 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.6350 \\
\end{bmatrix}
\]

Generalized inverse of \([G]\)

\[
\begin{bmatrix}
0.07957 & 0.0648 & 0.2930 & 0.0117 & -0.0206 & 0.0265 \\
-0.4289 & -0.3494 & -0.1162 & 0.9364 & -0.8888 & 0.8570 \\
-0.1342 & -0.0723 & -0.0308 & 0.3504 & -0.1133 & 0.2885 \\
-0.0645 & -0.2377 & -0.1401 & 0.1385 & -0.2425 & 0.3118 \\
0.4337 & -0.2761 & -0.2072 & -0.2320 & 0.4060 & -0.5220 \\
\end{bmatrix}
\]

and the solution vector \(\hat{x} \) is obtained as

\[
\begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2 \\
\hat{x}_3 \\
\hat{x}_4 \\
\hat{x}_5 \\
\end{bmatrix} = \begin{bmatrix}
2.0000 \\
0.9999 \\
0.9999 \\
0.9999 \\
1.0000 \\
\end{bmatrix}
\]
Example 4.2

The coefficient matrix $[G]$ is a square/singular matrix, and the RHS vector $\{b\}$ is a random vector.

$$
\begin{bmatrix}
2 & -1 & 0 & 0 & 1 & -1 \\
4 & -2 & 0 & 0 & 2 & -2 \\
0 & 0 & 1 & 2 & 0 & 2 \\
0 & 0 & -2 & 5 & -1 & 1 \\
1 & 3 & 0 & 1 & 1 & 3 \\
1 & 1 & 0 & 2 & 5 & 7
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
7 \\
4 \\
12 \\
23
\end{bmatrix}
$$

Using MATLAB built-in function, the rank of G can be computed as

$$rank(G) = 5$$

$$G^T \ast G = \begin{bmatrix}
22 & -6 & 0 & 3 & 16 & 0 \\
-6 & 15 & 0 & 5 & 3 & 21 \\
0 & 0 & 5 & -8 & 2 & 0 \\
3 & 5 & -8 & 34 & 6 & 26 \\
16 & 3 & 2 & 6 & 32 & 32 \\
0 & 21 & 0 & 26 & 32 & 68
\end{bmatrix}$$

Special Cholesky factor of $G^T \ast G$

$$\begin{bmatrix}
4.6904 & -1.2792 & 0.0000 & 0.6396 & 0.3411 & 0.0000 \\
0.0000 & 3.6556 & 0.0000 & 1.5915 & 2.0143 & 5.7445 \\
0.0000 & 0.0000 & 2.2360 & -3.5777 & 0.8944 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 4.2729 & 0.8921 & 3.9451 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 3.8353 & 4.4086
\end{bmatrix}$$

of independent rows = 5

Independent rows = 1 2 3 4 5

Dependent row = 6

Product of $L^T \ast L$

$$\begin{bmatrix}
35.6818 & 3.2129 & 0.7627 & 5.7764 & 13.0832 \\
3.2129 & 52.9542 & -3.8924 & 31.2607 & 33.0513 \\
0.7627 & -3.8924 & 18.6000 & -14.4892 & 3.4304 \\
5.7764 & 31.2607 & -14.4892 & 34.6177 & 20.8144 \\
13.0832 & 33.0513 & 3.4304 & 20.8144 & 34.1462
\end{bmatrix}$$

Regular Cholesky factorization of $L^T \ast L$
\[
\begin{bmatrix}
5.9734 & 0.5378 & 0.1276 & 0.9670 & 2.1902 \\
0.0000 & 7.2570 & -0.5458 & 4.2359 & 4.3920 \\
0.0000 & 0.0000 & 4.2761 & -2.8765 & 1.2974 \\
0.0000 & 0.0000 & 0.0000 & 2.7321 & 1.3996 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 2.5331 \\
\end{bmatrix}
\]

Generalized inverse of \([G]\)

\[
\begin{bmatrix}
0.0749 & 0.1498 & 0.0823 & -0.0161 & 0.1882 & -0.0742 \\
-0.0107 & -0.0215 & -0.1076 & -5.146 \times 10^{-3} & 0.3118 & -0.0879 \\
0.0182 & 0.0364 & 0.5157 & -0.1939 & 0.0305 & -0.0980 \\
0.0151 & 0.0302 & 0.1518 & 0.1278 & -7.108 \times 10^{-4} & -0.0271 \\
0.0150 & 0.0301 & -0.1820 & -3.678 \times 10^{-3} & -0.0793 & 0.1366 \\
-0.0242 & -0.0485 & 0.0902 & -0.0308 & -0.0145 & 0.0761 \\
\end{bmatrix}
\]

and the solution vector \(\hat{x}\) is obtained as

\[
\begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2 \\
\hat{x}_3 \\
\hat{x}_4 \\
\hat{x}_5 \\
\hat{x}_6 \\
\end{bmatrix} = \begin{bmatrix}
1.0638 \\
0.9459 \\
0.9465 \\
0.9423 \\
0.9029 \\
2.0845 \\
\end{bmatrix}
\]

Example 4.3

The coefficient matrix \([G]\) is a square/non-singular matrix, and the RHS vector \(\{b\}\) is a linear combination of columns of \([G]\).

\[
\begin{bmatrix}
2 & -1 & 0 & 0 & 1 & -1 \\
4 & -2 & 0 & 0 & -2 & -2 \\
0 & 0 & 1 & 2 & 0 & 2 \\
0 & 0 & -2 & 5 & -1 & 1 \\
1 & 3 & 0 & 1 & 1 & 3 \\
1 & 3 & 0 & 1 & 6 & 1 \\
\end{bmatrix} \begin{bmatrix}
\hat{x}_1 \\
\hat{x}_2 \\
\hat{x}_3 \\
\hat{x}_4 \\
\hat{x}_5 \\
\hat{x}_6 \\
\end{bmatrix} = \begin{bmatrix}
1 \\
-2 \\
5 \\
3 \\
9 \\
12 \\
\end{bmatrix}
\]

Using MATLAB built-in function, the rank of \(G\) can be computed as

\[
\text{rank}(G) = 6
\]
Special Cholesky factor of $G^T \ast G$

\[
G^T \ast G = \begin{bmatrix}
 22 & -4 & 0 & 2 & 1 & -6 \\
 -4 & 23 & 0 & 6 & 24 & 17 \\
 0 & 0 & 5 & -8 & 2 & 0 \\
 2 & 6 & -8 & 31 & 2 & 13 \\
 1 & 24 & 2 & 2 & 43 & 11 \\
 -6 & 17 & 0 & 13 & 11 & 20
\end{bmatrix}
\]

of independent rows = 6

Independent rows = 1 2 3 4 5 6

Dependent row = none

Product of $L^T \ast L$

\[
L^T \ast L = \begin{bmatrix}
 24.5909 & -6.6695 & -1.3348 & -1.2395 & 2.4589 & -0.8167 \\
 -6.6695 & 61.7090 & -0.2412 & 10.6735 & 16.0488 & 2.1522 \\
 -1.3348 & -0.2412 & 18.6000 & -14.8000 & 3.5440 & 0.0000 \\
 2.4589 & 16.0488 & 3.5440 & -4.5936 & 17.2923 & -0.8056 \\
 -0.8167 & 2.1522 & 0.0000 & 1.4276 & -0.8056 & 0.4076
\end{bmatrix}
\]

Regular Cholesky factorization of $L^T \ast L$

\[
L^T \ast L = \begin{bmatrix}
 4.9589 & -1.3449 & -0.2691 & -0.2499 & 0.4958 & -0.1646 \\
 0.0000 & 7.7390 & -0.0779 & 1.3356 & 2.1597 & 0.2494 \\
 0.0000 & 0.0000 & 4.3036 & -3.4303 & 0.8936 & -5.78 \times 10^{-3} \\
 0.0000 & 0.0000 & 0.0000 & 2.7903 & -1.5370 & 0.3703 \\
 0.0000 & 0.0000 & 0.0000 & 0.0000 & 3.0365 & -0.2266 \\
 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.36012
\end{bmatrix}
\]

Generalized inverse of $[G]$
and the solution vector \hat{x} is obtained as

$$
\begin{align*}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6
\end{bmatrix} &=
\begin{bmatrix}
1.0000 \\
0.9999 \\
0.9999 \\
0.9999 \\
1.0000 \\
-1.0000
\end{bmatrix}
\end{align*}
$$

Example 4.4

The coefficient matrix $[G]$ is a square/singular matrix, and the RHS vector $\{b\}$ is a random vector.

$$
\begin{align*}
\begin{bmatrix}
2 & -1 & 0 & 0 & 0 & 1 & -1 \\
4 & 2 & 0 & 0 & 0 & 2 & -2 \\
0 & 0 & 1 & 2 & -5 & -3 & 6 \\
0 & 0 & -2 & 5 & 6 & 2 & 1 \\
0 & 0 & 3 & 5 & 1 & 7 & 0 \\
1 & 2 & -3 & 6 & -2 & 1 & 3 \\
2 & 4 & -6 & 12 & -4 & 2 & 6
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7
\end{bmatrix} &=
\begin{bmatrix}
1 \\
6 \\
5 \\
3 \\
9 \\
9
\end{bmatrix}
\end{align*}
$$

Using MATLAB built-in function, the rank of G can be computed as

$$
\text{rank}(G) = 6
$$

$$
G^T \cdot G =
\begin{bmatrix}
25 & 16 & -15 & 30 & -10 & 15 & 5 \\
16 & 25 & -30 & 60 & -20 & 13 & 27 \\
-15 & -30 & 59 & -83 & 16 & -1 & -41 \\
30 & 60 & -83 & 234 & -35 & 69 & 107 \\
-10 & -20 & 16 & -35 & 82 & 24 & -54 \\
-15 & 13 & -1 & 69 & 24 & 72 & -6 \\
5 & 27 & -41 & 107 & -54 & -6 & 87
\end{bmatrix}
$$

Special Cholesky factor of $G^T \cdot G$
of independent rows = 6

Independent rows = 1 2 3 4 5 6

Dependent row = 7

Product of $L^T \times L$

\[
\begin{bmatrix}
94.2400 & 107.8723 & -14.2385 & 70.9443 & -7.9381 & 6.8505 \\
107.8723 & 207.4266 & -42.0738 & 119.0041 & -53.0841 & 17.3091 \\
70.9443 & 119.0041 & -8.9911 & 123.3579 & 13.4190 & 5.3727 \\
6.8505 & -17.3091 & 12.7625 & 5.3727 & 29.3094 & 22.1291 \\
\end{bmatrix}
\]

Regular Cholesky factorization of $L^T \times L$

\[
\begin{bmatrix}
9.7077 & 11.1120 & -1.4667 & 7.3080 & -0.8177 & 0.7056 \\
0.0000 & 9.1624 & -2.8131 & 4.1252 & -4.8019 & -2.7449 \\
0.0000 & 0.0000 & 5.2229 & 2.5527 & -2.4940 & 1.1632 \\
0.0000 & 0.0000 & 0.0000 & 0.81297 & 6.6882 & 1.2578 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 4.9813 & 2.2468 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 2.4723 \\
\end{bmatrix}
\]

Generalized inverse of $[G]$

\[
\begin{bmatrix}
0.2050 & 0.1624 & 0.1051 & 0.0748 & -0.0440 & -0.0119 & -0.0239 \\
-0.4999 & 0.2500 & 0.0000 & -1.0547 & 0.0000 & 0.0000 & 0.0000 \\
-0.1361 & 0.1144 & 0.1337 & 0.0393 & 0.0869 & -0.0364 & -0.0729 \\
0.0579 & -0.0468 & 2.017 \times 10^{-4} & 0.0254 & 0.0272 & 0.0151 & 0.0303 \\
-0.0938 & 0.0780 & 0.0410 & 0.1627 & -0.0238 & -0.0249 & -0.0499 \\
0.0303 & -0.0267 & -0.0633 & -0.0582 & 0.0895 & 8.3858 \times 10^{-3} & 0.0167 \\
-0.0596 & 0.0482 & 0.1468 & 0.0914 & 1.3269 \times 10^{-3} & -0.0156 & -0.0312 \\
\end{bmatrix}
\]

and the solution vector \hat{x} is obtained from Eq. (4.32) as
Instead of explicitly computing the generalized inverse from Eq. (4.32), which involves a lot of "matrix times matrix" operations, one can/should repeatedly use "matrix times vector" operations for improving its computational efficiency. Furthermore, it is noted that the "regular (not generalized) inverse" of the matrix product \([L' \ast L]\) should be replaced by the more efficient SLE, either by Direct or by Iterative algorithms. More details can be explained in the following sub-sections.

4.7.1 Direct methods in Generalized Inverse for solving SLE

Using the matrix-product operations in Eq. (4.32), one can compute the unknown solution vector \(\tilde{x}\) according to the following sequence of steps:

From Eq. (2.1), with \([A] \equiv [G]\), and from Eq. (4.32),

\[
\tilde{x} = L(L'L)^{-1}(L'L)^{-1} L'G'b
\]

Let

\(Minv = (L'L)^{-1}\)

Then one computes the following sequence of matrix times vector:

\(\text{tempo1} = G' \times \tilde{b}\)

\(\text{tempo3} = L' \times \text{tempo1}\)
tempo2 = Minv × tempo3

tempo1 = Minv × tempo2

tempo2 = L × tempo1

and the unknown solution vector \(\bar{x} \) is stored in the temporary vector \(tempo2 \).

4.7.2 Iterative Method in Generalized Inverse for solving SLE

From Eq. (4.32),
\[
\bar{x} = L(L' L)^{-1}(L'L)^{-1} L' G' \bar{b}
\]

Let
\[M1 = (L'L) \]

Then one computes the following sequence of matrix times vector:

\[tempo1 = G' \times \bar{b} \]

\[tempo3 = L' \times tempo1 \]

Using MATLAB built-in (Conjugate Gradient) function, one computes the following vectors:

\[tempo2 = cg(M1, tempo3) \]

\[tempo1 = cg(M1, tempo2) \]

\[tempo2 = L \times tempo1 \]

and the unknown solution vector \(\bar{x} \) is stored in the temporary vector \(tempo2 \).

where \(cg \) is the Conjugate Gradient (iterative) Algorithm for solving SLE and the unknown solution vector \(\bar{x} \) is stored in the temporary vector \(tempo2 \).
Important Notes:

(a) Inside the "generalized inverse" algorithms, one needs to find the "regular inverse" of the coefficient matrix (= $L' \ast L$, in this case). This "regular matrix inversion" should be equivalently solved by SLE, which can be done either by direct, or iterative solvers.

(b) For certain large-scale (especially for 3-D) problems, iterative solver (with appropriated pre-conditioned strategies) can be a more preferable method of choice (as compared to the direct method), due to the following desirable features:

- No fill-in terms occurred
- Much easier to parallelize

4.8 Domain Decomposition Generalized Inverse Solver

The efficient generalized inverse algorithms discussed in sections 4.6 and 4.7 can be further improved by utilizing the Domain Decomposition (or DD) formulation. In Chapter 3, some key equations resulted from DD formulation have already been derived, based on the assumption that the coefficient of a square matrix is non-singular.

In this section, let us consider the system of linear algebraic equations

$$K r = f$$

(4.33)

where the matrix of system is $K \in \mathbb{R}^{m \times n}$ (K can be either non-singular, or singular) and vectors $r \in \mathbb{R}^{n}$, $f \in \mathbb{R}^{n}$.

Let the original domain be decomposed into m sub domains. The coefficient matrix can be represented in a special form as shown below
From Eq. (4.34) the following notations are used

\[\eta_j^{[i]}, \text{where } j \in \{1, 2, ..., m\} \] - vectors of displacements of interior nodes on the \(j^{th} \) subdomain,

\[\eta_{[b]} \] - vector of boundary displacements,

\[f_j^{[i]}, \text{where } j \in \{1, 2, ..., m\} \] - vectors of interior loads acting on \(j^{th} \) subdomain,

\[f_{[b]} \] - vector of boundary loads on the boundaries.

\(K^{[bb]} \) represents the summation of boundary stiffness matrices from all sub-domains.

For "structural engineering" applications, and using DD formulation, Eq. (4.33) can be naturally expressed in the form as shown in Eq. (4.34). For general "field" problems (or mathematical problems), one usually starts with Eq. (4.33). For these problems, however, Nested Dissection or METiS re-ordering algorithms [20-22] can be used to transform Eq. (4.33) into the form shown in Eq. (4.34).

From Eq. (4.34), matrix \(K^{[bb]} \) contains contributions from "all" sub-domains and can be expressed as

\[K^{[bb]} = \sum_{j=1}^{m} K_j^{[bb]} \] (4.35)

For symmetrical cases, \(K_j^{[a]} \) and \(K_j^{[b]} \) are the transpose of each other. Vectors \(\eta_j^{[i]} \) can be expressed in the form
where \(j \in \{1,2, \ldots, m\} \), and \(r_b^{[j]} \) is a sub-set of the vector \(r_{[b]} \).

Also,

\[
\left(K^{[aa]} - \sum_{j=1}^{m} K_j^{[ba]} (K_j^{[a]})^{-1} K_j^{[ba]} \right) \vec{r}_{[b]} = \vec{f}_b - \sum_{j=1}^{m} K_j^{[ba]} (K_j^{[a]})^{-1} \vec{f}_j^{[j]} \tag{4.37}
\]

Eq. (4.37) is called the reduced system or resulting system.

If the matrix \(K \), shown in Eq. (4.33), is singular, we can apply the concept of generalized inverse to invert the (possible) singular coefficient matrix in Eq. (4.37) to find the unknown boundary displacement vector \(\vec{r}_{[b]} \) first, and then use them in computing the remaining unknown interior displacement vector \(\vec{r}_{[i]}^{[j]} \), as shown in Eq. (4.36).

For a typical \(j^{th} \) sub-domain \(j \in \{1,2, \ldots, m\} \), one obtains

\[
\vec{r}_{[i]}^{[j]} = \left(K_j^{[ii]} \right)^{-1} \cdot \left(\vec{f}_i^{[j]} - K_j^{[ib]} \vec{r}_{[b]} \right) \tag{4.38}
\]
5. ENGINEERING/SCIENCES NUMERICAL APPLICATIONS

Based on the discussions presented in the previous chapters (chapters 1-4), a fairly extensive set of numerical examples are used in this chapter for validating the accuracy and evaluating the (computational time) performance of the proposed algorithms discussed in Chapter 4. Test examples to cover the cases where the known/given coefficient matrix in the SLE can be a square/rectangular, singular/non-singular, symmetrical/non-symmetrical matrix, and the known/given right-hand-side (rhs) vector can be random vector, or it can be a linear combinations of columns of the coefficient matrix are all investigated in this chapter.

5.1 Description of the Test Examples

Test matrices are collected from Tim Davis Sparse Matrix Collection [14], University of Florida. Rank deficient (singular) matrices derived from various engineering and science applications such as Linear Programming, Combinatorial Problem, Directed Graph, Fluid Dynamics, Linear Programming, Chemical Process Simulations, Cell traffic matrices, etc. are included in Tables 5.1-5.4
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>nnz</th>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lock_700</td>
<td>700x700</td>
<td>165</td>
<td>22,175</td>
<td>HB</td>
<td>Finite Element Problem</td>
</tr>
<tr>
<td>2</td>
<td>dwt_1005</td>
<td>1005x1005</td>
<td>995</td>
<td>8,621</td>
<td>HB</td>
<td>Structural Problem</td>
</tr>
<tr>
<td>3</td>
<td>bcsprw06</td>
<td>1454x1454</td>
<td>1446</td>
<td>5,300</td>
<td>HB</td>
<td>Power network problem</td>
</tr>
<tr>
<td>5</td>
<td>lock2232</td>
<td>2232x2232</td>
<td>368</td>
<td>80,352</td>
<td>HB</td>
<td>Finite Element Problem</td>
</tr>
<tr>
<td>6</td>
<td>cegb2802</td>
<td>2802x2802</td>
<td>289</td>
<td>277,362</td>
<td>HB</td>
<td>Finite Element Problem</td>
</tr>
</tbody>
</table>

Table 5.1: Symmetric Singular Test Matrices for ODU Generalized Inverse Solver

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>nnz</th>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tomo_900</td>
<td>900x900</td>
<td>893</td>
<td>35,598</td>
<td>Regtools</td>
<td>2-D tomography test problem</td>
</tr>
<tr>
<td>2</td>
<td>GD00_c</td>
<td>638x638</td>
<td>300</td>
<td>1,041</td>
<td>Pajek</td>
<td>Directed Multigraph</td>
</tr>
<tr>
<td>3</td>
<td>GD96_a</td>
<td>1096x1096</td>
<td>827</td>
<td>1,677</td>
<td>Pajek</td>
<td>Directed Multigraph</td>
</tr>
<tr>
<td>4</td>
<td>ex_6</td>
<td>1651x1651</td>
<td>1650</td>
<td>49,062</td>
<td>FIDAP</td>
<td>CFD</td>
</tr>
<tr>
<td>5</td>
<td>CS_phd</td>
<td>1882x1882</td>
<td>705</td>
<td>1,740</td>
<td>Pajek</td>
<td>Directed Graph</td>
</tr>
<tr>
<td>6</td>
<td>tomo_2500</td>
<td>2500x2500</td>
<td>2496</td>
<td>166,782</td>
<td>Regtools</td>
<td>2-D tomography test problem</td>
</tr>
</tbody>
</table>

Table 5.2: Un-symmetrical Singular Test Matrices for ODU Generalized Inverse Solver

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>nnz</th>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D_6</td>
<td>970x435</td>
<td>339</td>
<td>6,491</td>
<td>JGD_SL6</td>
<td>Differentials of Voronoi complex of perfect forms</td>
</tr>
<tr>
<td>2</td>
<td>mk9-b2</td>
<td>1260x378</td>
<td>343</td>
<td>3,780</td>
<td>JGD_Homology</td>
<td>Combinatorial problem</td>
</tr>
<tr>
<td>3</td>
<td>n3c6-b3</td>
<td>1365x455</td>
<td>364</td>
<td>5,460</td>
<td>JGD_Homology</td>
<td>Combinatorial problem</td>
</tr>
<tr>
<td>4</td>
<td>Franz1</td>
<td>2240x768</td>
<td>755</td>
<td>5,120</td>
<td>JGD_Franz</td>
<td>Combinatorial problem</td>
</tr>
<tr>
<td>5</td>
<td>mk10-b2</td>
<td>3150x630</td>
<td>586</td>
<td>9,450</td>
<td>JGD_Homology</td>
<td>Simplical complexes</td>
</tr>
<tr>
<td>6</td>
<td>n4c6-b3</td>
<td>5970x1330</td>
<td>1140</td>
<td>23,880</td>
<td>JGD_Homology</td>
<td>Simplical complexes from Homology from Volkmar Welker</td>
</tr>
</tbody>
</table>

Table 5.3: Rectangular Singular Test Matrices (Tall type: rows>>cols) for ODU Generalized Inverse Solver
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>nnz</th>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lp_standgub</td>
<td>361x1383</td>
<td>360</td>
<td>3,338</td>
<td>LPnetlib</td>
<td>Linear Programming Problem</td>
</tr>
<tr>
<td>2</td>
<td>lp_ship041</td>
<td>402x2166</td>
<td>360</td>
<td>6,380</td>
<td>LPnetlib</td>
<td>Linear Programming Problem</td>
</tr>
<tr>
<td>3</td>
<td>lp_ship08s</td>
<td>778x2467</td>
<td>712</td>
<td>7,194</td>
<td>LPnetlib</td>
<td>Linear Programming Problem</td>
</tr>
<tr>
<td>4</td>
<td>Trec12</td>
<td>551x2726</td>
<td>550</td>
<td>151,219</td>
<td>JGD_Kocay</td>
<td>combinatorial problem</td>
</tr>
<tr>
<td>5</td>
<td>lp_ship08l</td>
<td>778x4363</td>
<td>712</td>
<td>12,882</td>
<td>LPnetlib</td>
<td>Linear Programming Problem</td>
</tr>
<tr>
<td>6</td>
<td>lp_d6cube</td>
<td>415x6184</td>
<td>404</td>
<td>37,704</td>
<td>LPnetlib</td>
<td>Linear Programming Problem</td>
</tr>
</tbody>
</table>

Table 5.4: Rectangular Singular Test Matrices (Fat type: rows<<cols) for ODU Generalized Inverse Solver

5.2 Numerical Performance of ODU Generalized Inverse Solver

Based on the detailed algorithms explained in Chapter 4, and using the rank-deficient matrices as coefficient matrices described in section 5.1, the numerical performance of our proposed procedures [for solving SLE, shown in Eq. (4.33)] are evaluated in this section. The known RHS vector \(\{b\} \) can be random vector, or can be chosen such a way that the unknown solution vector \(\{x\} = \{1, 1, ..., 1\} \).

We also compared the performance of our algorithm with the efficient algorithm described in [13] and also with MATLAB built-in function \(\text{pinv}() \) [12] for computing the generalized inverse explicitly. We use MATLAB version 7.6.0.324 (R2008a) on Intel Core 2 CPU, 2.13GHZ, 2GB RAM, Windows XP Professional SP3 for numerical comparisons. To be consistent and fair, sparse test matrices obtained from tables 5.1-5.4 are converted to full matrices (in this section).
Tables 5.5 through 5.16 records the times (in seconds) taken by our proposed algorithm, the algorithm mentioned in [13] and MATLAB built-in function [12] \textit{pinv}. For our convenience, we represent our algorithm with \textit{ODU — ginverse}, algorithm in [13] with \textit{geninv} and MATLAB built-in function with \textit{MATLAB — pinv}. In addition, we have also presented the error norm for all the test matrices.

5.2.1 Direct Method in Generalized Inverse to Solve SLE with RHS Vector as Linear Combination of Columns of the Coefficient Matrix

In this sub-section, the explicitly inverse of the matrix product\([L' \ast L]\), shown in Eq. (4.32), is implemented by MATLAB built-in function \textit{inv}(\(L' \ast L\)), and the results are shown in Tables 5.5-5.12.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>\textit{ODU — ginverse}</th>
<th>\textit{geninv}</th>
<th>\textit{MATLAB — pinvQ}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\textit{Error Norm}</td>
<td>\textit{Error Norm}</td>
<td>\textit{Error Norm}</td>
</tr>
<tr>
<td>1</td>
<td>lock_700</td>
<td>700x700</td>
<td>165</td>
<td>0.1514</td>
<td>0.3446</td>
<td>1.2967</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.033\times10^8</td>
<td>1.1399\times10^6</td>
<td>2.215\times10^{11}</td>
</tr>
<tr>
<td>2</td>
<td>dwt_1005</td>
<td>1005x1005</td>
<td>995</td>
<td>2.6634</td>
<td>4.2889</td>
<td>14.0320</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1302\times10^{-9}</td>
<td>6.764\times10^{-6}</td>
<td>4.5736\times10^{-12}</td>
</tr>
<tr>
<td>3</td>
<td>bcsprw06</td>
<td>1454x1454</td>
<td>1446</td>
<td>8.5029</td>
<td>13.3176</td>
<td>40.3646</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.477\times10^{-8}</td>
<td>1.829\times10^{-5}</td>
<td>2.7131\times10^{-12}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.7629\times10^{-9}</td>
<td>1.826\times10^{-8}</td>
<td>5.6493\times10^{-13}</td>
</tr>
<tr>
<td>5</td>
<td>lock2232</td>
<td>2232x2232</td>
<td>368</td>
<td>5.5518</td>
<td>10.8755</td>
<td>40.7582</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.9519\times10^{-9}</td>
<td>2.5797\times10^{-7}</td>
<td>1.0761\times10^{-11}</td>
</tr>
<tr>
<td>6</td>
<td>cegb2802</td>
<td>2802x2802</td>
<td>289</td>
<td>8.9571</td>
<td>18.6816</td>
<td>69.9847</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.7558\times10^{-9}</td>
<td>3.7220\times10^{-7}</td>
<td>1.7532\times10^{-11}</td>
</tr>
</tbody>
</table>

Table 5.5: Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix
Table 5.6: Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - ginverse</th>
<th>geninv</th>
<th>MATLAB - pinv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error Norm</td>
<td>Error Norm</td>
<td>Error Norm</td>
</tr>
<tr>
<td>1</td>
<td>tomo_900</td>
<td>900x900</td>
<td>893</td>
<td>1.8545</td>
<td>3.0092</td>
<td>10.1396</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.667x10^9</td>
<td>1.055x10^6</td>
<td>2.789x10^11</td>
</tr>
<tr>
<td>2</td>
<td>GD00_c</td>
<td>638x638</td>
<td>300</td>
<td>0.1805</td>
<td>0.3961</td>
<td>1.8696</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.909x10^-12</td>
<td>2.602x10^-11</td>
<td>5.704x10^-13</td>
</tr>
<tr>
<td>3</td>
<td>GD96_a</td>
<td>1096x1096</td>
<td>827</td>
<td>2.5991</td>
<td>4.1606</td>
<td>7.3928</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.179x10^-13</td>
<td>1.776x10^-13</td>
<td>3.148x10^-13</td>
</tr>
<tr>
<td>4</td>
<td>ex_6</td>
<td>1651x1651</td>
<td>1650</td>
<td>12.78109</td>
<td>19.9238</td>
<td>44.6059</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.547x10^-5</td>
<td>0.00657</td>
<td>4.602x10^-12</td>
</tr>
<tr>
<td>5</td>
<td>CS_phd</td>
<td>1882x1882</td>
<td>705</td>
<td>8.5161</td>
<td>12.8762</td>
<td>41.8010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.724x10^-14</td>
<td>9.295x10^-14</td>
<td>2.707x10^-13</td>
</tr>
<tr>
<td>6</td>
<td>tomo_2500</td>
<td>2500x2500</td>
<td>2496</td>
<td>44.7203</td>
<td>69.0133</td>
<td>221.6490</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.031x10^-7</td>
<td>0.0002893</td>
<td>2.819x10^-10</td>
</tr>
</tbody>
</table>

Table 5.7: Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Tall type: Rows>>Cols) with RHS Vector as Linear Combination of Columns of Coefficient Matrix

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - ginverse</th>
<th>geninv</th>
<th>MATLAB - pinv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error Norm</td>
<td>Error Norm</td>
<td>Error Norm</td>
</tr>
<tr>
<td>1</td>
<td>D_6</td>
<td>970x435</td>
<td>339</td>
<td>0.1347</td>
<td>0.2809</td>
<td>1.3240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.216x10^-11</td>
<td>1.333x10^-11</td>
<td>7.403x10^-13</td>
</tr>
<tr>
<td>2</td>
<td>mk9-b2</td>
<td>1260x378</td>
<td>343</td>
<td>0.1162</td>
<td>0.2478</td>
<td>0.6098</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.950x10^-14</td>
<td>1.018x10^-13</td>
<td>1.681x10^-13</td>
</tr>
<tr>
<td>3</td>
<td>Franz1</td>
<td>2240x768</td>
<td>755</td>
<td>1.3077</td>
<td>2.3649</td>
<td>6.0490</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.457x10^-13</td>
<td>1.290x10^-13</td>
<td>2.806x10^-13</td>
</tr>
<tr>
<td>4</td>
<td>mk10-b2</td>
<td>3150x630</td>
<td>586</td>
<td>0.8094</td>
<td>1.5776</td>
<td>3.2363</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.599x10^-13</td>
<td>2.057x10^-13</td>
<td>2.573x10^-13</td>
</tr>
</tbody>
</table>

Table 5.8: Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Fat type: Rows<<Cols) with RHS Vector as Linear Combination of Columns of Coefficient Matrix

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - ginverse</th>
<th>geninv</th>
<th>MATLAB - pinv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error Norm</td>
<td>Error Norm</td>
<td>Error Norm</td>
</tr>
<tr>
<td>1</td>
<td>lp_standgub</td>
<td>361x1383</td>
<td>360</td>
<td>0.1242</td>
<td>0.4238</td>
<td>1.0215</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.321x10^-7</td>
<td>6.387x10^-7</td>
<td>3.579x10^-11</td>
</tr>
<tr>
<td>2</td>
<td>lp_ship04l</td>
<td>402x2166</td>
<td>360</td>
<td>0.1760</td>
<td>0.6712</td>
<td>1.3390</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.421x10^-11</td>
<td>1.056x10^-11</td>
<td>1.851x10^-12</td>
</tr>
<tr>
<td>3</td>
<td>lp_ship08s</td>
<td>778x2467</td>
<td>712</td>
<td>1.2747</td>
<td>3.4073</td>
<td>5.3489</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.178x10^-11</td>
<td>1.052x10^-11</td>
<td>1.583x10^-12</td>
</tr>
<tr>
<td>4</td>
<td>lp_ship08l</td>
<td>778x4363</td>
<td>712</td>
<td>1.5622</td>
<td>5.2861</td>
<td>8.5278</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.955x10^-11</td>
<td>1.517x10^-11</td>
<td>4.243x10^-12</td>
</tr>
</tbody>
</table>
5.2.2 Direct Method in Generalized Inverse to Solve SLE with Randomly Generated RHS Vector $\{1, 2, \ldots, n\}^T$.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>$ODU - \ginverse$</th>
<th>\ginverse</th>
<th>$MATLAB - \pinv()$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error Norm</td>
<td>Error Norm</td>
<td>Error Norm</td>
</tr>
<tr>
<td>1</td>
<td>lock_700</td>
<td>700x700</td>
<td>165</td>
<td>0.1483</td>
<td>0.3423</td>
<td>1.2948</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1495.46</td>
<td>1495.46</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>dwt_1005</td>
<td>1005x1005</td>
<td>995</td>
<td>2.6740</td>
<td>4.3156</td>
<td>14.0342</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>295</td>
<td>295</td>
<td>295</td>
</tr>
<tr>
<td>3</td>
<td>bcspswr06</td>
<td>1454x1454</td>
<td>1446</td>
<td>8.5747</td>
<td>13.3752</td>
<td>41.1197</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102.551</td>
<td>102.551</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29034.7</td>
<td>29034.7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>lock2232</td>
<td>2232x2232</td>
<td>368</td>
<td>5.5934</td>
<td>10.9423</td>
<td>40.7723</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106.489</td>
<td>106.489</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>cegb2802</td>
<td>2802x2802</td>
<td>289</td>
<td>9.1066</td>
<td>18.7714</td>
<td>69.7151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28002</td>
<td>28002</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.9: Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with Randomly Generated RHS Vector

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>$ODU - \ginverse$</th>
<th>\ginverse</th>
<th>$MATLAB - \pinv()$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error Norm</td>
<td>Error Norm</td>
<td>Error Norm</td>
</tr>
<tr>
<td>1</td>
<td>tomo_900</td>
<td>900x900</td>
<td>893</td>
<td>1.8725</td>
<td>3.0287</td>
<td>10.0959</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>669.871</td>
<td>669.871</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GD00_c</td>
<td>638x638</td>
<td>300</td>
<td>0.2012</td>
<td>0.4092</td>
<td>1.8748</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6204.66</td>
<td>6204.66</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>GD96_a</td>
<td>1096x1096</td>
<td>827</td>
<td>2.6079</td>
<td>4.1399</td>
<td>7.3863</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4821.7</td>
<td>4821.7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ex_6</td>
<td>1651x1651</td>
<td>1650</td>
<td>12.7676</td>
<td>20.0046</td>
<td>44.5628</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1682.04</td>
<td>1682.04</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>CS_phd</td>
<td>1882x1882</td>
<td>705</td>
<td>8.5641</td>
<td>12.9633</td>
<td>41.7883</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40498.9</td>
<td>40498.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>tomo_2500</td>
<td>2500x2500</td>
<td>2496</td>
<td>45.0147</td>
<td>69.2692</td>
<td>221.4820</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1561.25</td>
<td>1561.25</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.10: Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with Randomly Generated RHS Vector
Table 5.11: Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Tall type: Rows>>Cols) with Randomly Generated RHS Vector

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU — ginverse</th>
<th>geninv</th>
<th>MATLAB — pinvQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error Norm</td>
<td>Error Norm</td>
<td>Error Norm</td>
</tr>
<tr>
<td>1</td>
<td>D_6</td>
<td>970x435</td>
<td>339</td>
<td>0.1991</td>
<td>0.3480</td>
<td>1.3203</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14795</td>
<td>14795</td>
<td>14795</td>
</tr>
<tr>
<td>2</td>
<td>mk9-b2</td>
<td>1260x378</td>
<td>343</td>
<td>0.1615</td>
<td>0.2935</td>
<td>0.6090</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6376.16</td>
<td>6376.16</td>
<td>6376.16</td>
</tr>
<tr>
<td>3</td>
<td>Franz1</td>
<td>2240x768</td>
<td>755</td>
<td>1.2964</td>
<td>2.3602</td>
<td>6.0413</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37127.5</td>
<td>37127.5</td>
<td>37127.5</td>
</tr>
<tr>
<td>4</td>
<td>mk10-b2</td>
<td>3150x630</td>
<td>586</td>
<td>0.8063</td>
<td>1.5845</td>
<td>3.2379</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26222.6</td>
<td>26222.6</td>
<td>26222.6</td>
</tr>
</tbody>
</table>

Table 5.12: Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (Fat type: Rows<<Cols) with Randomly Generated RHS Vector

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU — ginverse</th>
<th>geninv</th>
<th>MATLAB — pinvQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Error Norm</td>
<td>Error Norm</td>
<td>Error Norm</td>
</tr>
<tr>
<td>1</td>
<td>lp_standgub</td>
<td>361x1383</td>
<td>360</td>
<td>0.1586</td>
<td>0.4580</td>
<td>1.0321</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>lp_ship041</td>
<td>402x2166</td>
<td>360</td>
<td>0.2250</td>
<td>0.7126</td>
<td>1.3383</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1508.7</td>
<td>1508.7</td>
<td>1508.7</td>
</tr>
<tr>
<td>3</td>
<td>lp_ship08s</td>
<td>778x2467</td>
<td>712</td>
<td>1.2945</td>
<td>3.3961</td>
<td>5.3447</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>833468</td>
<td>833468</td>
<td>833468</td>
</tr>
<tr>
<td>5</td>
<td>lp_ship08l</td>
<td>778x4363</td>
<td>712</td>
<td>1.5722</td>
<td>5.2922</td>
<td>8.5757</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3724.81</td>
<td>3724.81</td>
<td>3724.81</td>
</tr>
</tbody>
</table>

5.2.3 Iterative Methods in Generalized Inverse to Solve SLE with Randomly Generated RHS vector

In this sub-section, the explicit inverse of the matrix product $[L' \ast L]$, shown in Eq. (4.32), is implemented by MATLAB built-in (Conjugate Gradient iterative solver), and the results are shown in Tables 5.13-5.16.

Iterative solver used: Conjugate Gradient Algorithm

Error tolerance used: 10^{-7}
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - ginverse iterative Error Norm</th>
<th>ODU - ginverse direct Error Norm</th>
<th>geninvQ Error Norm</th>
<th>MATLAB pinvQ Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lock1074</td>
<td>1074x1074</td>
<td>155</td>
<td>0.5649 47.5347</td>
<td>0.4351 47.5347</td>
<td>1.0278 47.5347</td>
<td>4.1070 47.5347</td>
</tr>
<tr>
<td>2</td>
<td>lock2232</td>
<td>2232x2232</td>
<td>368</td>
<td>5.9314 63.1189</td>
<td>5.5499 63.1189</td>
<td>10.8729 63.1189</td>
<td>40.7251 63.1189</td>
</tr>
<tr>
<td>3</td>
<td>cegb2802</td>
<td>2802x2802</td>
<td>289</td>
<td>9.3092 77.0117</td>
<td>9.0585 77.0117</td>
<td>18.6983 77.0117</td>
<td>69.7249 77.0117</td>
</tr>
</tbody>
</table>

Table 5.13: Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - ginverse iterative Error Norm</th>
<th>ODU - ginverse direct Error Norm</th>
<th>geninvQ Error Norm</th>
<th>MATLAB pinvQ Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GD00_c</td>
<td>638x638</td>
<td>300</td>
<td>0.2835 46.1318</td>
<td>0.2125 46.1318</td>
<td>0.4097 46.1318</td>
<td>1.8861 46.1318</td>
</tr>
<tr>
<td>3</td>
<td>CS_phd</td>
<td>1882x1882</td>
<td>705</td>
<td>8.5563 96.906</td>
<td>8.5541 96.906</td>
<td>12.9385 96.906</td>
<td>41.6813 96.906</td>
</tr>
</tbody>
</table>

Table 5.14: Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - ginverse iterative Error Norm</th>
<th>ODU - ginverse direct Error Norm</th>
<th>geninvQ Error Norm</th>
<th>MATLAB pinvQ Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mk9-b2</td>
<td>1260x378</td>
<td>343</td>
<td>0.1423 43.7972</td>
<td>0.1615 43.7972</td>
<td>0.2928 43.7972</td>
<td>0.6096 43.7972</td>
</tr>
<tr>
<td>2</td>
<td>Franz1</td>
<td>2240x768</td>
<td>755</td>
<td>1.2200 84.9266</td>
<td>1.3051 84.9266</td>
<td>2.3673 84.9266</td>
<td>6.0349 84.9266</td>
</tr>
<tr>
<td>3</td>
<td>n4c6-b3</td>
<td>5970x1330</td>
<td>1140</td>
<td>7.26591 128.086</td>
<td>7.8267 128.086</td>
<td>14.1278 128.086</td>
<td>25.7394 128.086</td>
</tr>
</tbody>
</table>

Table 5.15: Computational Times (in seconds) for Rectangular (Tall) Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - ginverse iterative Error Norm</th>
<th>ODU - ginverse direct Error Norm</th>
<th>geninv() Error Norm</th>
<th>MATLAB pinv() Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lp_ship08s</td>
<td>778x2467</td>
<td>712</td>
<td>1.59103</td>
<td>1.2930</td>
<td>3.3817</td>
<td>5.3262</td>
</tr>
<tr>
<td>2</td>
<td>lp_ship08l</td>
<td>778x4363</td>
<td>712</td>
<td>1.7496</td>
<td>1.6065</td>
<td>5.2864</td>
<td>8.4837</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.7184</td>
<td>24.7184</td>
<td>24.7184</td>
<td>24.7184</td>
</tr>
<tr>
<td>3</td>
<td>lp_d6cube</td>
<td>415x6184</td>
<td>404</td>
<td>0.5738</td>
<td>0.46281</td>
<td>2.1500</td>
<td>4.1469</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.7908</td>
<td>10.7908</td>
<td>10.7908</td>
<td>10.7908</td>
</tr>
</tbody>
</table>

Table 5.16: Computational Times (in seconds) for Rectangular (Fat) Rank-Deficient Test Matrices (Using Iterative Solver inside Generalized Inverse) with Randomly Generated RHS Vector

Furthermore, graphical comparisons (in terms of the computational times) of ODU-ginverse with other algorithms have been presented in Appendix E.

5.3 Numerical Performance of ODU Generalized Inverse DD Solver

As can be seen from the previous Section 5.2, our proposed implementation of the generalized inverse for solving SLE have shown “significant time reduction” as compared to MATLAB built-in function, and also compared to [13]. In this sub-section, however, we want to investigate the numerical performance of our proposed generalized inverse within the frame work of DD formulation (for solving system of \([G] \cdot \{x\} = \{b\}\)), where the coefficient matrix \([G]\) has the dimension \(m \times n\) and can be either rectangular, or square/singular).

5.3.1 Description of Test Problems for ODU Generalized Inverse DD Solver

Test matrices are collected from Tim Davis Sparse Matrix Collection, University of Florida [14]. Rank deficient (singular) matrices derived from various engineering and science applications such as Linear Programming, Combinatorial Problem, Directed Graph, Fluid Dynamics, Linear Programming, Chemical Process Simulations, Cell traffic Matrices, etc. are included in Tables 5.17-5.18
Table 5.17: Symmetric Singular Test Matrices for ODU Generalized Inverse DD Solver

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>nnz</th>
<th>Group</th>
<th>Description/Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GD98_c</td>
<td>112x112</td>
<td>100</td>
<td>336</td>
<td>Pajek</td>
<td>Pajek network, undirected graph</td>
</tr>
<tr>
<td>2</td>
<td>dwt_209</td>
<td>209x209</td>
<td>208</td>
<td>1,743</td>
<td>HB</td>
<td>Structural Problem</td>
</tr>
<tr>
<td>3</td>
<td>dwt_307</td>
<td>307x307</td>
<td>288</td>
<td>2,523</td>
<td>HB</td>
<td>Structural Problem</td>
</tr>
</tbody>
</table>

Table 5.18: Un-Symmetrical Singular Test Matrices for ODU Generalized Inverse DD Solver

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name</th>
<th>Size</th>
<th>Rank</th>
<th>nnz</th>
<th>Group</th>
<th>Description/Kind</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gent113</td>
<td>113x113</td>
<td>107</td>
<td>655</td>
<td>HB</td>
<td>Statistical/Mathematical Problem</td>
</tr>
<tr>
<td>2</td>
<td>gre_216b</td>
<td>216x216</td>
<td>215</td>
<td>812</td>
<td>HB</td>
<td>Directed Weight Graph</td>
</tr>
<tr>
<td>3</td>
<td>GD00_a</td>
<td>352x352</td>
<td>178</td>
<td>458</td>
<td>Pajek</td>
<td>Directed Graph</td>
</tr>
</tbody>
</table>

5.3.2 Problem Formulation with Same Sub Matrix

Let us construct a system matrix (Eq. (4.33)) in the form shown by Eq. (4.34). For the sake of discussion, let us consider 3 sub domains. The system matrix takes the following form

\[
\begin{pmatrix}
K_1^{ii} & O & O & K_1^{ib} \\
O & K_2^{ii} & O & K_2^{ib} \\
O & O & K_3^{ii} & K_3^{ib} \\
K_1^{bi} & K_2^{bi} & K_3^{bi} & K^{bb}
\end{pmatrix}
\begin{pmatrix}
\begin{bmatrix} r_1^1 \\ r_2^2 \\ r_3^3 \end{bmatrix} \\
\end{pmatrix}
= \begin{pmatrix}
\begin{bmatrix} f_1^1 \\ f_2^2 \\ f_3^3 \end{bmatrix} \\
\end{pmatrix}
\]

(5.1)

A singular coefficient matrix is considered from the test matrix collection [14-15] as \(K_1^{ii} \). For simplicity/convenience, we also assume

(a) \(K_1^{ii} = K_2^{ii} = K_3^{ii} = K^{bb} \) \hspace{1cm} (5.2)

(b) \(K_1^{ib} = K_2^{ib} = K_3^{ib} = K_1^{bi} = K_2^{bi} = K_3^{bi} = K_1^{ii} \) \hspace{1cm} (5.3)

The known right hand side (RHS) vector is chosen as \(\text{factor} \times \text{random column vector} \). Where \(\text{factor} \) is a user defined variable. The user can also specify the number of sub domains and, accordingly, the system matrix and the right hand side vector will be automatically generated.
This section presents a comparison of numerical results (in terms of timings) of the developed Domain Decomposition generalized inverse formulations with other existing algorithms. MATLAB sparse storage scheme has been adopted on the input test matrices.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - DD Error Norm</th>
<th>Original system ginv Error Norm</th>
<th>Original system geninv Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>336x336</td>
<td>300</td>
<td>0.06130</td>
<td>0.07158</td>
<td>0.11555</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>448x448</td>
<td>400</td>
<td>0.09911</td>
<td>0.15793</td>
<td>0.26940</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>560x560</td>
<td>500</td>
<td>0.12202</td>
<td>0.30984</td>
<td>0.49831</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>672x672</td>
<td>600</td>
<td>0.15667</td>
<td>0.56595</td>
<td>0.88289</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>784x784</td>
<td>700</td>
<td>0.2000</td>
<td>0.95323</td>
<td>1.45982</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>896x896</td>
<td>800</td>
<td>0.20218</td>
<td>1.44812</td>
<td>2.19521</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1008x1008</td>
<td>900</td>
<td>0.24897</td>
<td>2.16118</td>
<td>3.21151</td>
</tr>
</tbody>
</table>

Table 5.19: Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{ii} (GD98_c) Sub-Matrices using Domain Decomposition

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - DD Error Norm</th>
<th>Original system ginv Error Norm</th>
<th>Original system geninv Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>627x627</td>
<td>624</td>
<td>0.28611</td>
<td>0.53233</td>
<td>0.859960</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>836x836</td>
<td>832</td>
<td>0.401712</td>
<td>1.37505</td>
<td>2.10186</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1045x1045</td>
<td>1040</td>
<td>0.53614</td>
<td>2.98979</td>
<td>4.44309</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1254x1254</td>
<td>1248</td>
<td>0.59997</td>
<td>5.08382</td>
<td>7.43006</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1463x1463</td>
<td>1456</td>
<td>0.71609</td>
<td>8.21711</td>
<td>12.06235</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1672x1672</td>
<td>1664</td>
<td>0.87530</td>
<td>12.46184</td>
<td>18.24484</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1881x1881</td>
<td>1872</td>
<td>1.00417</td>
<td>18.2003</td>
<td>25.81453</td>
</tr>
</tbody>
</table>

Table 5.20: Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{ii} (dwt_209) Sub-Matrices using Domain Decomposition
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU – DD Error Norm</th>
<th>Original system ginverse MV Error Norm</th>
<th>Original system geninv Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>921x921</td>
<td>864</td>
<td>0.67732</td>
<td>1.70853</td>
<td>2.59315</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.6443</td>
<td>14.6443</td>
<td>14.6443</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1228x1228</td>
<td>1152</td>
<td>1.0100</td>
<td>4.38649</td>
<td>6.43760</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.991</td>
<td>12.991</td>
<td>12.991</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1535x1535</td>
<td>1440</td>
<td>1.2845</td>
<td>8.6928</td>
<td>12.76263</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.2669</td>
<td>11.2669</td>
<td>11.2669</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1842x1842</td>
<td>1728</td>
<td>1.62886</td>
<td>15.2775</td>
<td>22.0046</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.1461</td>
<td>17.1461</td>
<td>17.1461</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2149x2149</td>
<td>2016</td>
<td>1.96057</td>
<td>26.66948</td>
<td>35.4461</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.6758</td>
<td>17.6758</td>
<td>17.6758</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>2456x2456</td>
<td>2304</td>
<td>2.28013</td>
<td>36.77451</td>
<td>53.29277</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.0915</td>
<td>17.0915</td>
<td>17.0915</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>2763x2763</td>
<td>2592</td>
<td>2.70171</td>
<td>52.6385</td>
<td>75.09115</td>
</tr>
</tbody>
</table>

Table 5.21: Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{II} (dwt_307) Sub-Matrices using Domain Decomposition

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU – DD Error Norm</th>
<th>Original system ginverse MV Error Norm</th>
<th>Original system geninv Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>339x339</td>
<td>321</td>
<td>0.075614</td>
<td>0.093916</td>
<td>0.14541</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.83871</td>
<td>4.83871</td>
<td>4.83871</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>452x452</td>
<td>428</td>
<td>0.010403</td>
<td>0.19469</td>
<td>0.305175</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.01463</td>
<td>7.01463</td>
<td>7.01463</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>565x565</td>
<td>535</td>
<td>0.134215</td>
<td>0.35666</td>
<td>0.575419</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.03996</td>
<td>9.03996</td>
<td>9.03996</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>678x678</td>
<td>642</td>
<td>0.166451</td>
<td>0.65779</td>
<td>1.03111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.8548</td>
<td>10.8548</td>
<td>10.8548</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>791x791</td>
<td>749</td>
<td>0.20053</td>
<td>1.31634</td>
<td>1.89611</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.1139</td>
<td>10.1139</td>
<td>10.1139</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>904x904</td>
<td>856</td>
<td>0.224461</td>
<td>1.64580</td>
<td>2.46109</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.1037</td>
<td>10.1037</td>
<td>10.1037</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1017x1017</td>
<td>963</td>
<td>0.30215</td>
<td>2.433860</td>
<td>3.65811</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.71228</td>
<td>8.71228</td>
<td>8.71228</td>
</tr>
</tbody>
</table>

Table 5.22: Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{II} (gent113) Sub-Matrices using Domain Decomposition
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - DD Error Norm</th>
<th>Original system Error Norm</th>
<th>Original system Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>648x648</td>
<td>643</td>
<td>0.213104</td>
<td>0.48045</td>
<td>0.73973</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>864x864</td>
<td>857</td>
<td>0.32912</td>
<td>1.17688</td>
<td>1.77665</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1080x1080</td>
<td>1066</td>
<td>0.45151</td>
<td>2.500164</td>
<td>3.57136</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1296x1296</td>
<td>1279</td>
<td>0.53808</td>
<td>4.33999</td>
<td>6.28897</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1512x1512</td>
<td>1492</td>
<td>0.64925</td>
<td>7.19551</td>
<td>10.12725</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1728x1728</td>
<td>1705</td>
<td>0.699806</td>
<td>10.70643</td>
<td>15.20850</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1944x1944</td>
<td>1918</td>
<td>0.80099</td>
<td>16.44834</td>
<td>23.81176</td>
</tr>
</tbody>
</table>

Table 5.23: Computational Times (in seconds) for Rank-Deficient Test Matrices with same \(K^{ii} \) (gre_216b) Sub-Matrices using Domain Decomposition

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - DD Error Norm</th>
<th>Original system Error Norm</th>
<th>Original system Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1056x1056</td>
<td>534</td>
<td>0.38620</td>
<td>1.05101</td>
<td>1.62067</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1408x1408</td>
<td>712</td>
<td>0.56582</td>
<td>2.96705</td>
<td>4.05349</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1760x1760</td>
<td>890</td>
<td>0.71932</td>
<td>5.83588</td>
<td>8.01557</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2112x2112</td>
<td>1068</td>
<td>0.888563</td>
<td>10.48973</td>
<td>14.15703</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2464x2464</td>
<td>1246</td>
<td>1.16060</td>
<td>16.4323</td>
<td>22.84216</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>2816x2816</td>
<td>1424</td>
<td>1.48376</td>
<td>25.37213</td>
<td>34.37000</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3168x3168</td>
<td>1602</td>
<td>1.69688</td>
<td>36.3547</td>
<td>49.16511</td>
</tr>
</tbody>
</table>

Table 5.24: Computational Times (in seconds) for Rank-Deficient Test Matrices with same \(K^{ii} \) (GD00_a) Sub-Matrices using Domain Decomposition

5.3.3 Problem Formulation with Different Sub Matrix

Let us construct a system matrix (Eq. (4.33)) in the form shown by Eq. (4.34). For the sake of discussion, let us consider 3 sub domains. The system matrix takes of the form
\[
\begin{pmatrix}
K_1^{ii} & O & O & K_1^{ib} \\
O & K_2^{ii} & O & K_2^{ib} \\
O & O & K_3^{ii} & K_3^{ib} \\
K_1^{bi} & K_2^{bi} & K_3^{bi} & K^{bb}
\end{pmatrix}
\begin{pmatrix}
r_1^i \\
r_1^i \\
r_1^i \\
r_b
\end{pmatrix}
=
\begin{pmatrix}
 f_1^i \\
f_1^i \\
f_1^i \\
f_b
\end{pmatrix}
\]

A singular coefficient matrix is considered from the test matrix collection [14-15] as \(K_1^{ii} \).

For simplicity, we also assume

(a) \(K_1^{ii} \neq K_2^{ii} \neq K_3^{ii} \)

(b) \(K_1^{ii} = K_1^{ib} = K_1^{bi} \)

(c) \(K_2^{ii} = K_2^{ib} = K_2^{bi} \)

(d) \(K_3^{ii} = K_3^{ib} = K_3^{bi} \)

(e) \(K_1^{ii} = K^{bb} \)

The known right hand side vector is chosen as

\(f_i = 1:m, f_b = 1:m \) where \([m, n] = size(K_1^{ii})\). The user can also specify the number of sub domains and accordingly, the system matrix and the right hand side vector will be generated.

Numerical results for these test cases are presented in Tables 5.25-5.27

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU - DD Error Norm</th>
<th>Original system giinv Error Norm</th>
<th>Original system giinv Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>1610x1610</td>
<td>1573</td>
<td>0.59484 12.8452</td>
<td>10.75132 12.8452</td>
<td>15.65746 12.8452</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1771x1771</td>
<td>1725</td>
<td>0.65966 15.7321</td>
<td>14.52799 15.7321</td>
<td>21.00736 15.7321</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1932x1932</td>
<td>1876</td>
<td>0.71032 18.9077</td>
<td>19.01395 18.9077</td>
<td>26.94307 18.9077</td>
</tr>
</tbody>
</table>

Table 5.25: Computational Times (in seconds) for Rank-Deficient Test Matrices with different \(K^{ii} \) (can_161) Sub-Matrices using Domain Decomposition
Table 5.26: Computational Times (in seconds) for Rank-Deficient Test Matrices with different K^{ii} (lock_700) Sub-Matrices using Domain Decomposition

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU – DD Error Norm</th>
<th>Original system geninv MV Error Norm</th>
<th>Original system geninv Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2800x2800</td>
<td>660</td>
<td>2.46978</td>
<td>10.66420</td>
<td>14.53973</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2990.92</td>
<td></td>
<td>2990.92</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3500x3500</td>
<td>825</td>
<td>2.83254</td>
<td>22.08674</td>
<td>29.95532</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3343.95</td>
<td></td>
<td>3343.95</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4200x4200</td>
<td>990</td>
<td>3.88394</td>
<td>37.47156</td>
<td>49.44602</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3663.12</td>
<td></td>
<td>3663.12</td>
</tr>
</tbody>
</table>

Table 5.27: Computational Times (in seconds) for Rank-Deficient Test Matrices with different K^{ii} (mesh3e1) Sub-Matrices using Domain Decomposition

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>nsu</th>
<th>Size</th>
<th>Rank</th>
<th>ODU – DD Error Norm</th>
<th>Original system geninv MV Error Norm</th>
<th>Original system geninv Error Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1445x1445</td>
<td>1438</td>
<td>1.23158</td>
<td>7.89617</td>
<td>11.5578</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.73861</td>
<td></td>
<td>2.73861</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1734x1734</td>
<td>1723</td>
<td>1.33245</td>
<td>14.00956</td>
<td>20.0745</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.1833</td>
<td></td>
<td>4.1833</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2023x2023</td>
<td>2007</td>
<td>1.55488</td>
<td>22.07078</td>
<td>31.8324</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.91608</td>
<td></td>
<td>5.91608</td>
</tr>
</tbody>
</table>

5.3.4 Problem Formulation with Same Sub-Matrices and RHS as Linear Combinations of Columns

The known right hand side vector is chosen as $C_1 + C_2 + C_3 + \cdots + C_n$, where n is the number of columns, and C_i (with $i = 1, 2, \ldots, n$) represents the i^{th} column of the coefficient matrix $[G]$ in the big matrix.

Numerical results for the test cases are presented in Tables 5.28-5.30
| Sl. No | nsu | Size | Rank | ODU - DD $\sum|x_i|$ Error Norm | Original system ginverse MV $\sum|x_i|$ Error Norm | Original system geninv $\sum|x_i|$ Error Norm |
|-------|-----|--------------|------|---------------------------------|---------------------------------|---------------------------------|
| 1 | 3 | 2800x2800 | 660 | 2.52323 | 10.26388 | 14.11214 |
| | | | | 2764 1.9738x10^4 | 2764 5.0396x10^7 | 2764 0.00016343 |
| 2 | 4 | 3500x3500 | 825 | 3.31814 | 20.38195 | 27.63699 |
| | | | | 3455 2.2792x10^6 | 3455 3.0938x10^7 | 3455 0.0001999 |
| 3 | 5 | 4200x4200 | 990 | 4.04986 | 35.52977 | 48.13018 |
| | | | | 4146 2.5482x10^6 | 4146 7.7514x10^7 | 4146 0.0002406 |

Table 5.28: Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{ii} (lock_700) Sub-Matrices and RHS as Linear Combinations of Columns $C_1 + C_2 + C_3 + \cdots + C_n$ using Domain Decomposition

| Sl. No | nsu | Size | Rank | ODU - DD $\sum|x_i|$ Error Norm | Original system ginverse MV $\sum|x_i|$ Error Norm | Original system geninv $\sum|x_i|$ Error Norm |
|-------|-----|--------------|------|---------------------------------|---------------------------------|---------------------------------|
| 1 | 3 | 1228x1228 | 1152 | 1.05252 | 4.20519 | 6.20720 |
| | | | | 1228 3.5175x10^7 | 1228 2.2430x10^8 | 1228 2.4071x10^5 |
| 2 | 4 | 1535x1535 | 1440 | 1.37372 | 8.58372 | 12.5739 |
| | | | | 1535 4.0617x10^7 | 1535 5.7408x10^8 | 1535 3.1755x10^5 |
| 3 | 5 | 1842x1842 | 1728 | 1.70161 | 14.99398 | 21.9261 |
| | | | | 1842 4.5413x10^7 | 1842 4.0396x10^8 | 1842 4.3923x10^5 |

Table 5.29: Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{ii} (dwt_307) Sub-Matrices and RHS as Linear Combinations of Columns $C_1 + C_2 + C_3 + \cdots + C_n$ using Domain Decomposition
Table 5.30: Computational Times (in seconds) for Rank-Deficient Test Matrices with same K^{il} (GD00_a) Sub-Matrices and RHS as Linear Combinations of Columns $C_1 + C_2 + C_3 + \cdots + C_n$ using Domain Decomposition

| Sl. No | nsu | Size | Rank | $ODU - DD$ | $\sum |x_i|$ | Error Norm | $\sum |x_i|$ | Error Norm | $\sum |x_i|$ | Error Norm |
|-------|-----|----------|------|------------|---------|------------|---------|------------|---------|------------|
| 1 | 5 | 2112x2112| 1068 | 1.05579 | 9.72518 | 1164 | 9.69202x10^{12}| 13.58581 | 1164 |
| 2 | 6 | 2464x2464| 1246 | 1.21400 | 15.7301 | 1358 | 1.0988x10^{12} | 21.73368 | 1358 |
| 3 | 7 | 2816x2816| 1424 | 1.42343 | 23.75027| 1552 | 1.3625x10^{12} | 32.9830 | 1552 |

5.3.5 Problem Formulation with Different Sub-Matrices and RHS as Linear Combinations of Columns

The known right hand side vector is chosen as $C_1 + C_2 + C_3 + \cdots + C_n$ where n is the number of columns and C_i (with $i = 1, 2, \ldots, n$) represents the i^{th} column of the coefficient matrix $[G]$ in the big matrix.

Numerical results for the test cases are presented in Tables 5.31-5.32

Table 5.31: Computational Times (in seconds) for Rank-Deficient Test Matrices with different K^{il} (dwt_307) Sub-Matrices and RHS as Linear Combinations of Columns $C_1 + C_2 + C_3 + \cdots + C_n$ using Domain Decomposition

| Sl. No | nsu | Size | Rank | $ODU - DD$ | $\sum |x_i|$ | Error Norm | $\sum |x_i|$ | Error Norm | $\sum |x_i|$ | Error Norm |
|-------|-----|----------|------|------------|---------|------------|---------|------------|---------|------------|
| 1 | 3 | 1228x1228| 1152 | 1.04227 | 4.381476| 1228 | 2.7835x10^{8} | 6.44660 | 1228 |
| 2 | 4 | 1535x1535| 1439 | 1.39427 | 8.91303 | 1535 | 5.0078x10^{8} | 12.98718 | 1535 |
| 3 | 5 | 1842x1842| 1725 | 1.64756 | 15.51327| 1842 | 5.60808x10^{8} | 22.31969 | 1842 |
| Sl. No | nsu | Size | Rank | $\sum |x_i|_{ODU-DD}$ | $\sum |x_i|_{Original \; system \; \text{ginverse} \; MV}$ | $\sum |x_i|_{Original \; system \; \text{gininv}}$ |
|-------|-----|------------|------|----------------|---------------------------------|---------------------------------|
| | | | | $\sum |x_i|_{Error \; Norm}$ | $\sum |x_i|_{Error \; Norm}$ | $\sum |x_i|_{Error \; Norm}$ |
| 1 | 15 | 1792x1792 | 1590 | 0.47628 | 13.16311 | 19.00465 |
| | | | | 1791.76 | 1791.76 | 1791.76 |
| | | | | 6.7768×10^{-12} | 2.0569×10^{-10} | 1.4315×10^{-9} |
| 2 | 16 | 1904x1904 | 1686 | 0.52987 | 15.83865 | 22.6178 |
| | | | | 1903.66 | 1903.66 | 1903.66 |
| | | | | 7.9443×10^{-12} | 2.9199×10^{-10} | 7.944×10^{-12} |
| 3 | 17 | 2016x2016 | 1781 | 0.57382 | 18.88350 | 26.91830 |
| | | | | 2015.52 | 2015.52 | 2015.52 |
| | | | | 7.2594×10^{-12} | 3.3548×10^{-10} | 2.16341×10^{-9} |

Table 5.32: Computational Times (in seconds) for Rank-Deficient Test Matrices with different K^{lu} (GD98_c) Sub-Matrices and RHS as Linear Combinations of Columns $C_1 + C_2 + C_3 + \cdots + C_n$ using Domain Decomposition
6. EDUCATIONAL GENERALIZED INVERSE SOFTWARE FOR
INTERNET USERS

Most of the currently available commercialized software (and/or freely available public source codes) for “large-scale” Engineering/Science computation has been written in either FORTRAN, C, or C++ languages. Legacy (commercialized) Finite Element Analysis (FEA) software, such as MSC-NASTRAN, SAP-2000, etc. have been written in FORTRAN language. While these languages are efficient for “number crunching”, these FORTRAN/C/C++ software are NOT suitable for internet (educational) users. On the other hand, it is too time consuming if one has to re-write these (large) source codes in JAVA, or FLASH, etc… for internet/educational purposes. Based on our earlier research works [23], a general procedure for executing “any” FORTRAN software on the internet is explained and summarized in this chapter. More specifically, this chapter will explain how to use the developed FORTRAN generalized software.

6.1 Description for Executing FORTRAN Software on the Internet

Since the 1960’s, scientific programs have been developed in FORTRAN for the solution of various structural, environmental, mathematical, chemical, etc. problems.

With the growing popularity and possibilities of the internet, web-based learning is becoming more and more popular these days. The new trend focuses on developing more effective learning methods for large pre-existing scientific languages like FORTRAN, C etc. In this chapter, a web-based environment is utilized as a means to introduce numerical methods concepts in civil engineering and other related fields of engineering. Software development and implementation is presented, including detailed
descriptions of the techniques employed to link software written in high level computer languages, such as C and FORTRAN, to a web-based, user friendly interface for both input and output.

Web-based instruction systems represent a developing branch of computer-aided instruction. This type of educational information emphasizes the use of the web for transfer of educational information, and may be considered as a replacement to traditional delivery methods of lectures and textbooks.

The motivation for developing this educational software is the challenges faced while developing a 3-D truss analysis module in FLASH Actionscript language [24]. Initially, a web-based module was developed by converting 3-D truss analysis FORTRAN code to FLASH Actionscript language. This module analyzes a 3-D truss with the user specified input data. This module needs to re-write the entire FORTRAN code to a different language (in this case FLASH Actionscript). This process is not only time consuming; it requires a good knowledge of the other programming language (FLASH Actionscript). Fig. 6.1 shows a sample of the developed web based 3D truss module and can be found at http://www.lions.odu.edu/~skadi002/3d/. This emerged as one of the many situations where developed FORTRAN computer programs are no longer available for the public use (easy use) and are still considered to be valuable source of both research and educational material. A better and convenient way to interact the FORTRAN programs directly from the server is in needed to serve the purpose.
Figure 6.1: Online 3-D Truss Analysis.
6.2 Client Server Interface

Web application software is an application that uses a web browser as a client. Commonly used web browsers are Internet explorer, Mozilla Firefox, Google Chrome, Apple Safari, etc. A client is a system that accesses a remote service on another computer commonly known as a server.

Web applications commonly use a combination of server-side scripting languages like PHP, ASP, etc., and client-side languages like HTML, PHP, JAVA, etc. In the developed software, PHP [25] is used as both client side and server side technologies.

In Fig. 6.2 client can be any one of desktop, laptop, Mac PC or PDA with browser capabilities and an internet connection. The UNIX server is a machine where the compiled FORTRAN programs are stored.

Figure 6.2: Client-Server Interface
6.3 Detailed Step-by-Step Procedures

Input and output interfaces are made user-friendly to attract users’ attention, and guide them into use of the software in an efficient manner.

(a) The user references http://www.lions.odu.edu/~skadi002/work/ as URL which directs to a webpage containing number of educational applications. The user has a choice to select from various FORTRAN applications.

(b) For the sake of discussion, let us assume the user has interest in solving SLE (singular coefficient matrix) using generalized inverse. After clicking the appropriate link, the browser directs to a new webpage containing the description and usage of the application (see Fig. 6.3).

(c) The user clicks the “New” button to enter the input data in the textbox provided. It is a hypertext preprocessor (PHP) form that is interpreted by the browser to allow the user to enter the input data (see Fig 6.4).

(d) A sample/demo input data is provided in the input page so that the user can prepare in the specified fashion. Well documented instructions are provided for the users to prepare the input data to the application.

(e) Once the input data has been entered in the text box, the user hits the “Click here to submit input file” button which is located below the input textbox.

(f) At this point the input data has been sent to the FORTRAN program. The user clicks the “EXECUTE” button to execute/run the application.

(g) The output of the application is instantly seen on the same webpage (see Fig. 6.5)
6.4 Demonstrated Examples

In this section, various examples including the one explained in section 6.3 have been demonstrated. Below are the descriptions of the applications.

6.4.1 Solving system of Simultaneous Linear Equations using Generalized Inverse Algorithms

This application solves SLE of singular coefficient matrix using Generalized inverse algorithms. Fig. 6.3 shows a screenshot of the application homepage. The input data page with the sample of how input data page is prepared/entered is shown in Fig. 6.4. The output of the application is shown in Fig. 6.5.

Figure 6.3 Sample of Generalized Inverse Home Page
Figure 6.4 Generalized Inverse Input Page

```
6 5 0 5 1
2 0 0 1 1
-1 0 0 -2 -1
3 0 0 0 0
0 1 2 -3 1
0 -2 5 1 0
1 -2 3 4 -1
6 -5 6 1 4 6
```
Figure 6.5 Generalized Inverse Output Page
6.4.2 Solving System of Simultaneous Linear Equations using LU Decomposition Algorithms

This application solves SLE of non-singular coefficient matrix using LU decomposition algorithms. Fig. 6.6 shows a screenshot of the application homepage. The input data page with the sample of how input data page is prepared is shown in Fig. 6.7. The output of the application is shown in Fig. 6.8.

Figure 6.6: Sample of LU Decomposition Home Page.
Figure 6.7: LU Decomposition Input Page

```
4.2857E+07  -9.2307E+05  0  0
4.2857E+07  -5.6619E+05  -4.2857E+07  5.6619E+05
-6.5  -0.15384  6.5  0.15384
0  0  4.2857E+07  -
3.6057E+05
-7.887E+03  0  0.007  0
```
Figure 6.8: LU Decomposition Output Page
6.4.3 Solving System of Simultaneous Linear Equations using LU Decompositions Algorithms on Portable Devices

Nowadays, most of the portable devices such as smart phones, tablet PCs, personal digital assistants (PDA), e-book readers, etc., have internet browsing capabilities. The developed application can be accessed on the above said portable devices. One such example is shown in Fig. 6.9. In this example, the developed educational software is accessed on I-Phone.

Figure 6.9: I-Phone Homepage, Input Data and Output Data.
7. MATLAB – MPI BUILT-IN FUNCTIONS FOR PARALLEL COMPUTING APPLICATIONS

7.1 Introduction

Matlab (MATrix LABoratory) is a tool to do numerical computations, solve engineering and sciences applications, display 2D and 3D graphical information, algorithm development, simulation, etc. It is a high-level scientific and engineering programming environment which provides many useful capabilities and has an extensive library of built-in functions.

Message Passing Interface (MPI) is widely used in large scale (intensive numerical) computations. This is especially true for “generalized inverse” computer implementation, where as matrix times matrix and/or Cholesky factorization operations were required. MPI is a library of functions/routines that can be used to create parallel programs in scientific languages such as FORTRAN, C, C++, etc.

Similar to traditional Message Passing Interface (MPI), MatlabMPI developed in Lincoln Laboratory, MIT, allows any Matlab programs to run in parallel. MatlabMPI implements the widely used MPI “look and feel” on the top of standard Matlab file input/output, resulting in Matlab implementation of MPI.

MatlabMPI can be downloaded into user’s local ZORKA account from http://www.ll.mit.edu/mission/ist/matlabmpi/matlabmpi.html
7.2 MatlabMPI Functions

Some basic, most often used MatlabMPI built-in functions are briefly discussed below:

a. function MPI_Init

This function is called at the start of an MPI program. It also initializes MPI in Matlab environment.

Example:

`MPI_Init;`

b. function NP = MPI_Comm_size(comm)

This function returns the numbers of processors in the communicator. The “comm” in this function is an MPI communicator which is typically a copy of MPI_COMM_WORLD.

Example:

`NP = MPI_Comm_size(comm)`

c. *function my_ID = MPI_Comm_rank(comm)*

This function returns the rank (or processor ID #) of the current processor.

Example:

`my_ID = MPI_Comm_rank(comm)`

d. *function MPI_Send(dest, tag, comm, varargin)*

This function sends variable to a destination. It sends message containing variables to a specified destination with a given tag. The argument “dest” contains processor ID #, “tag” can be an any integer and “varargin” represents variable argument inputs.

Example:

`MPI_Send (dest,tag,comm,data1,data2,data3,..)`
e. function varargout = MPI_Recv(source, tag, comm)

This function receives a message from a specified source processor with a given tag and returns the output variable(s).

Example:

[var1, var2, var3, ...] = MPI_Recv(source, tag, comm)

f. function MPI_Abort()

This function will abort any currently running MatlabMPI sessions by looking for leftover Matlab jobs and killing them.

g. function MPI_Finalize()

This function is the last statement indicating the end of a MatlabMPI program.

h. function MPI_Run(m_file, n_proc, machines)

This function runs a Matlab file by name “m_file” on multiple processors. It also runs “n_proc” number of copies of m_file on machines. To run on multiple processors, the argument “machines” are to be designated with “machine1, machine2,…”.

Example:

MPI_Run('example1', 2, {}); for the case a single node (with 2 processors) is used.

MPI_Run('example2', 4, {'zorka1', 'zorka2'}); for the case multiple nodes (assuming zorka1 and zorka2 are both available) are used.

The above discussed functions are used within traditional Matlab source code to run in parallel environment. In addition to the MPI functions, Matlab uses other built-in functions to perform various operations/tasks. Some of the additional functions are discussed below:
i. function eval()

This function execute string with Matlab expression and is also used with MPI_Run.

Example:

eval(MPI_Run('example1',2,{}})

j. function disp()

This function displays an array without printing the array name. It can also be used to display a string or a text inside the Matlab code.

Example:

disp(['Example1 from rank: ',num2str(my_rank)]);

If the rank is 0 (master processor), the output appears on the screen. And if the rank is more than 0, i.e 1,2,3..., the output prints to the corresponding file.

k. function MPI_Bcast(source,tag,comm,varargin)

This function broadcasts the variable(s) to all processors.

Example:

[var1, var2, ..] = MPI_Bcast(source,tag,comm,datal,data2,..)

7.3 Example 1: Display Rank of Processors

In this example, a simple MatlabMPI source code to print/display rank of different processors is shown below.

% MPI INITIALIZE

MPI_Init;

% MPI COMMUNICATOR

comm = MPI_COMM_WORLD;
% GET SIZE OR NUMBER OF PROCESSORS IN THE COMMUNICATOR
NP = MPI_Comm_size(comm)

% GET RANK (or ID #) OF CURRENT PROCESSOR
my_rank = MPI_Comm_rank(comm)

% DISPLAY RANK OF EACH PROCESSOR
disp(['Hello Message from rank: ', num2str(my_rank)]);

% FINALIZE Matlab MPI
MPI_Finalize;

% DISPLAY SUCCESS MESSAGE
disp('Success');

Let the file name for this MatlabMPI application be example1.m. In order to run in parallel environment, type the following statements in Matlab command prompt.

% ADDING PATH TO THE MatlabMPI SOURCE DIRECTORY TO INVOKE MPI FUNCTIONS.
addpath /local/MatlabMPI/src

% example1.m IS A MatlabMPI APPLICATION CODE WHICH NEEDS TO EXIST IN THE SAME WORKING DIRECTORY AS THE OTHER MPI FUNCTIONS. IN THIS CASE WE ARE USING 4 PROCESSORS.
eval(MPI_Run('example1',4,{}));

% ONCE THE DESIRED OUTPUT IS OBTAINED/PRINTED, THE FUNCTION MatMPI_Delete_all HAS TO BE INVOKED. THIS FUNCTION DELETES LEFTOVER MatlabMPI FILES FROM THE PREVIOUS RUN. THIS FUNCTION IS ALSO INVOKED BEFORE THE START OF A NEW MatlabMPI APPLICATION.
7.4 Example 2: Matrix-Matrix Multiplication

The MatlabMPI source code for matrix-matrix multiplication (dense format) can be found in Appendix D.

Below are the time results for matrix times matrix multiplication (size = 1000).

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Number of Processors (NP)</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>39.4087</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>15.7884</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11.7958</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>9.5475</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>8.3805</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>7.5807</td>
</tr>
</tbody>
</table>

Table 7.1 Time Results (in seconds) for Matrix-Matrix Multiplication using MatlabMPI
Figure 7.1 Graphical Representation of Time Results (in seconds) for Matrix-Matrix Multiplication using MatlabMPI
8. CONCLUSIONS AND FUTURE WORKS

In this dissertation, various efficient algorithms for solving SLE with full rank or rank deficient have been reviewed, proposed and tested. These algorithms were based on efficient generalized inverse algorithms, which had also been incorporated into the DD formulation. Users are provided the options of incorporating either direct, or iterative solvers into the developed DD generalized inverse formulation. Extensive numerical results have been used to evaluate the performance (in terms of numerical accuracy, calculated error norm, CPU/wall-clock time) of the proposed procedures. The developed numerical procedures can be applied to solve "general" SLE (in the form \([G]x = b \), where the coefficient matrix \([G] \) could be square/rectangular, symmetrical/unsymmetrical, non-singular/singular). Numerical results have shown that the proposed algorithms are highly efficient as compared to existing algorithms [6, 9, 13] (including the popular MATLAB built-in function \(\text{pinv}(G) \ast b \) [12]. Further reduction in wall-time can also be realized/achieved by taking advantages of "parallel matrix times matrix operations" under MATLAB-MPI computer environment [26].

Furthermore, this dissertation has also contributed the "educational value" to the educational communities, by providing the tools/technologies to execute any existing FORTRAN code for internet users, without requiring them to download any (commercial) software on their desktop/laptop computers. The only requirement for the users to use/learn/execute our FORTRAN-web application is to have access to the internet, which is readily available not only in every home, but also in most public places (such as in the airports, hotels, universities, restaurants, etc.).
Extensions to this current work may include a variation of DD formulation proposed in [4], parallel implementation of the proposed DD generalized inverse solver, and incorporating METiS [20] reordering algorithm for automatically partitioned a given coefficient matrix into diagonal blocks, in such a way to minimize the total number of boundary (interface) nodes, etc.
REFERENCES

4. Hou, G. and Y. Wang, *A Substructuring Technique For Design Modifications of Interface Conditions*, Old Dominion University, Norfolk. (Personal Conversation)

14. Davis, T. *University of South Florida Matrix Collection*.

15. SJSU. *SJSU Singular Matrix Database*.

26. Kepner, D.J. *Parallel Programming with MatlabMPI.*

APPENDIX A

SINGULAR VALUE DECOMPOSITION (SVD) AND THE GENERALIZED INVERSE

Example A1

Given \(A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \) \hspace{1cm} (A.1)

Step1: Compute \(AA^H = AA^T = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 13 & 26 \\ 26 & 52 \end{bmatrix} \) \hspace{1cm} (A.2)

Also: \(AA^H = (U \Sigma V^H)(V \Sigma^H U^H) = U \Sigma^2 U^H \)

Similarly, \(A^H A = V \Sigma^2 V^H \)

Also compute \(A^H A = A^T A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 20 & 30 \\ 30 & 45 \end{bmatrix} \) \hspace{1cm} (A.3)

Step2: Compute the standard Eigen-solution individually for \(AA^T \) and \(A^T A \)

Using MATLAB built-in function "eig", Eigen-values and the corresponding Eigen-vectors for \(AA^T \) are given as

\[[u_1, \lambda_1] = eig(AA^T) \]

\[u_1 = \begin{bmatrix} -0.8944 & 0.4472 \\ 0.4472 & 0.8944 \end{bmatrix} \equiv U \] \hspace{1cm} (A.4)

\[\lambda_1 = \begin{bmatrix} 0 \\ 65 \end{bmatrix} \] \hspace{1cm} (A.5)

Also, for \(A^T A \)

\[[u_2, \lambda_2] = eig(A^T A) \]

\[u_2 = \begin{bmatrix} -0.8321 & 0.5547 \\ 0.5547 & 0.8321 \end{bmatrix} \equiv V \] \hspace{1cm} (A.6)

\[\lambda_2 = \begin{bmatrix} 0 \\ 65 \end{bmatrix} \] \hspace{1cm} (A.7)
From the above equations, we can observe that Eigen-values in both the cases are the same, but their corresponding Eigen-vectors are different.

Also, \(\sigma = \sqrt{\lambda_1} = \lambda_2 \)

Computing \(\sigma = \sqrt{\lambda_1} = \lambda_2 = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{65} \end{bmatrix} \) (A.8)

From Eqs. (A.4, A.7 and A.8), the SVD of Eq. (A.1) can be obtained as

\[
A = U \Sigma V^H = \begin{bmatrix} -0.8944 & 0.4472 \\ 0.4472 & 0.8944 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{65} \end{bmatrix} \begin{bmatrix} -0.8321 & 0.5547 \\ 0.5547 & 0.8321 \end{bmatrix}
\] (A.9)

The generalized inverse \(A^+ \) of Eq. (A.1) is computed as

\[
A^+ = V \Sigma^+ U^H
\] (A.10)

where \(\Sigma^+ = \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{\sqrt{65}} \end{bmatrix} \) (A.11)

Hence,

\[
A^+ = \begin{bmatrix} -0.8321 & 0.5547 \\ 0.5547 & 0.8321 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{\sqrt{65}} \end{bmatrix} \begin{bmatrix} -0.8944 & 0.4472 \\ 0.4472 & 0.8944 \end{bmatrix}
\] (A.12)

\[
A^+ = \begin{bmatrix} 0.0308 & 0.0615 \\ 0.0462 & 0.0923 \end{bmatrix}
\] (A.13)

The result obtained in Eq. (A.13) has been checked with MATLAB generalized inverse function \(\text{pinv()} \) and same result is obtained.
APPENDIX B

AN EDUCATIONAL FORTRAN SOURCE CODE OF "SPECIAL LDL^T"
ALGORITHM FOR FACTORIZATION OF
SINGULAR/SQUARE/SYMMETRICAL COEFFICIENT MATRIX

c
Implicit real* 8 (a-h, o-z)
c

c Remarks:
c (a) Identifying which are dependent rows of a "floating" substructure
c (b) Factorizing (by LDL_transpose) of a floating substructure stiffness
Whenever a dependent row is encountered during LDL factored
process, then we just:
c [1] set all factorized values of the dependent row to be ZEROES
[2] ignore the dependent row(s) in all future factorized rows
(c) $[K \text{ "float"}] = [K_{11}] [K_{12}]$
$[K_{21}] [K_{22}]$
where $[K_{11}]$ = full rank (=non-singular)
c (d) The LDL_transpose of $[K_{11}]$ can be obtained by taking the results
of part (b) and deleting the dependent rows/columns

Author(s) : Prof. Duc T. Nguyen
Version : 04-30-2004 (EDUCATIONAL purpose, LDL/FULL matrix is assumed)
Stored at : cd ~/cee/*odu*clas*/generalized_inverse_by_ldl.f

c
dimension u(99,99), idepenrows(99), tempo1(99)
c
iexample=1 ! can be 1, or 2, or 3
c
if (iexample . eq. 1) n=3
c
if (iexample . eq. 2) n=12
c
if (iexample . eq. 3) n=7
c
do 1 i=1,n
do 2 j=1,n
u(i,j)=0
1 continue
c
2 continue
if (iexample . eq. 1) then
 u(1,1)= 2. ! non-singular case
 u(1,1)= 1. ! singular case
 u(1,2)= -1.
 u(2,2)= 2.
 u(2,3)= -1.
 u(3,3)= 1.

elseif (iexample . eq. 2) then
 u(1,1)= 1.88*10**5
 u(1,2)= -4.91*10**4
 u(1,3)= -1.389*10**5
 u(1,7)= -4.91*10**4
 u(1,8)= 4.91*10**4

 u(2,2)= 1.88*10**5
 u(2,6)= -1.389*10**5
 u(2,7)= 4.91*10**4
 u(2,8)= -4.91*10**4

 u(3,3)= 1.88*10**5
 u(3,4)= 4.91*10**4
 u(3,5)= -4.91*10**4
 u(3,6)= -4.91*10**4

 u(4,4)= 1.88*10**5
 u(4,5)= -4.91*10**4
 u(4,6)= -4.91*10**4
 u(4,8)= -1.389*10**5

 u(5,5)= 2.371*10**5
 u(5,7)= -1.389*10**5
 u(5,11)= -4.91*10**4
 u(5,12)= 4.91*10**4

 u(6,6)= 3.76*10**5
 u(6,10)= -1.389*10**5
 u(6,11)= 4.91*10**4
 u(6,12)= -4.91*10**4

 u(7,7)= 2.371*10**5
 u(7,9)= -4.91*10**4
 u(7,10)= -4.91*10**4
\[u(8,8) = 3.76 \times 10^5 \]
\[u(8,9) = -4.91 \times 10^4 \]
\[u(8,10) = -4.91 \times 10^4 \]
\[u(8,12) = -1.389 \times 10^5 \]
\[u(9,9) = 1.88 \times 10^5 \]
\[u(9,10) = 4.91 \times 10^4 \]
\[u(9,11) = -1.389 \times 10^5 \]
\[u(10,10) = 1.88 \times 10^5 \]
\[u(11,11) = 1.88 \times 10^5 \]
\[u(11,12) = -4.91 \times 10^4 \]
\[u(12,12) = 1.88 \times 10^5 \]

```c
elseif (iexample . eq. 3) then

  u(1,1) = 1.
  u(1,2) = 2.
  u(1,3) = -3.
  u(1,4) = 2.
  u(1,5) = -2.
  u(1,6) = -3.
  u(1,7) = -2.

  u(2,2) = 4.
  u(2,3) = -6.
  u(2,4) = 4.
  u(2,5) = -4.
  u(2,6) = -6.
  u(2,7) = -4.

  u(3,3) = 9.
  u(3,4) = -6.
  u(3,5) = 6.
  u(3,6) = 9.
  u(3,7) = 6.

  u(4,4) = 5.
  u(4,5) = -1.
  u(4,6) = -5.
  u(4,7) = -7.

  u(5,5) = 13.
```
\[u(5,6) = 9. \]
\[u(5,7) = -5. \]
\[u(6,6) = 13. \]
\[u(6,7) = 9. \]
\[u(7,7) = 27. \]

\[\text{Endif} \]

\[\text{do } 4 \ i = 1, n \]
\[\text{do } 5 \ j = 1, n \]
\[u(j,i) = u(i,j) \]
\[\text{continue} \]
\[\text{continue} \]

\[\text{call generalized_inverse_ldl}(n, u, \text{idependrows}, \text{ndependrows}) \]

\[\text{write}(6,*), '# \text{dependent rows } \neq \text{ndependrows} \]
\[\text{if (ndependrows } \geq 1) \text{ then} \]
\[\text{write}(6,*), ' \text{dependent rows } = ', \text{idependrows}(i), i = 1, n \]
\[\text{endif} \]

\[\text{write}(6,*), ' \text{LDL factorized u(-,-) } =', \text{u}(i,j), j = i, n \]
\[\text{extracting } \& \text{writing the LDL factorized of full rank of } [K11] \]
\[\text{by deleting the dependent row(s) /column(s) of } [u] \]
\[\text{do } 52 \ i = 1, n \]
\[\text{iskiprow} = 0 \]
\[\text{do } 53 \ j = 1, \text{ndependrows} \]
\[\text{if (idependrows}(j) \text{.eq. i}) \text{ iskiprow} = 1 \]
\[\text{continue} \]
\[\text{if (iskiprow .eq. 1) go to 52} \]
\[\text{icount} = 0 \]
\[\text{do } 54 \ j = i, n \]
\[\text{iskipcol} = 0 \]
\[\text{do } 55 \ k = 1, \text{ndependrows} \]
\[\text{if (idepenrows}(k) \text{.eq. 0}) \text{ iskipcol} = 1 \]
\[\text{continue} \]
\[\text{if (iskipcol .eq. 0) then} \]
\[\text{icount} = \text{icount} + 1 \]
\[\text{tempol}(\text{icount}) = u(i,j) \]
\[\text{endif} \]
\[\text{continue} \]
\[\text{write}(6,*), ' \text{LDL of } [K11] =', \text{tempol}(k), k = 1, \text{icount} \]
\[\text{52 continue} \]

\[\text{stop} \]

end
subroutine generalized_inverse_ldl (n, u, idependrows, ndependrows)
Implicit real*8 (a-h, o-z)
dimension u(99,*), idepenrows(*)

Remarks:
(a) Identifying which are dependent rows of a "floating" substructure
(b) Factorizing (by LDL_transpose) of a floating substructure stiffness
 Whenever a dependent row is encountered during LDL factored
 process, then we just:
 [1] set all factorized values of the dependent row to be ZEROES
 [2] ignore the dependent row(s) in all future factorized rows
 (c) \[K \sim \text{"float"} \] = \[K_{11} \] \[K_{12} \]
 \[K_{21} \] \[K_{22} \]
 where \[K_{11} \] = full rank (=non-singular)
(d) The LDL_transpose of \[K_{11} \] can be obtained by taking the results
 of part (b) and deleting the dependent rows/columns

Author(s) : Prof. Duc T. Nguyen
Version : 04-30-2004
Stored at : cd ~/cee/*odu*clas*/generalized_inverse_by_ldl.f

c eps=0.0000000001
do 11 i=2,n
 do 22 k=1,i-1
 if (dabs(u(k,k)) .lt. eps) go to 22
 ! check for "previous"
 xmult=u(k,i)/u(k,k)
 do 33 j=i,n
 u(i,j)=u(i,j)-xmult*u(k,j)
 continue
 u(k,i)=xmult
 continue
11 continue

22 continue

c to zero out entire dependent row
if (dabs(u(i,i)) .lt. eps) then
 write(6,*) 'dependent row # i, u(i,i) = ',i,u(i,i)
 ndependrows= ndependrows+1
 idependrows(ndependrows)= i
do 42 j=i,n
42 u(i,j)=0.
 do 44 k=1,i-1
44 u(k,i)=0.
endif

c

c
11 continue

c
return

c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 3

dependent row # i, u(i,i) = 2 0.0E+0
dependent row # i, u(i,i) = 3 0.0E+0
dependent row # i, u(i,i) = 5 0.0E+0
dependent rows = 3
dependent rows = 2 3 5

LDL of [K11] = 1.0 2.0 -3.0 -2.0
LDL of [K11] = 1.0 1.0 -3.0
LDL of [K11] = 3.0 2.0
LDL of [K11] = 2.0

+---+

L D L_t factorized of the "full rank" sub-matrix [K11] of Example 2

dependent row # i, u(i,i) = 10 -8.731149137020111E-11
dependent row # i, u(i,i) = 11 -5.820766091346741E-11
dependent row # i, u(i,i) = 12 -2.9103830456733703E-11
dependent rows = 3
dependent rows = 10 11 12

LDL of [K11] = 188000.0 -0.26117002127659574 -0.7388297872340426 0.0E+0
0.0E+0 0.0E+0 -0.26117002127659574 0.26117002127659574 0.0E+0
-0.7929143821172502 0.2070856178827499 -0.2070856178827499 0.0E+0
LDL of [K11] = 175176.54255319148 -0.2070856178827499 -0.7929143821172502 0.0E+0
-0.7929143821172502 0.2070856178827499 -0.2070856178827499 0.0E+0
LDL of [K11] = 77864.19232391396 0.6305851063829787 -0.6305851063829787 -1.0
-0.3694148361702123 0.3694148361702123 0.0E+0
LDL of [K11] = 157038.27127659574 -0.11550223476828982 0.0E+0
0.11550223476828982 -1.0 0.0E+0
LDL of \([K_{11}]\) = 204043.2604931543 -0.24063524519998494 -
0.7593647548000151 0.0E+0 0.0E+0
LDL of \([K_{11}]\) = 176184.80946068066 -0.211623292466662 -
2.0648651936724454E-17 0.0E+0
LDL of \([K_{11}]\) = 78494.47532361932 0.6255217300016221 -0.6255217300016221
LDL of \([K_{11}]\) = 157286.88305692037 -0.11690029517761087
LDL of \([K_{11}]\) = 155137.45100017014

+-----------------------------------
L D L_t factorized of the “full rank” sub-matrix \([K_{11}]\) of Example 1 (singular case)

dependent row # i, \(u(i,i)\) = 3 0.0E+0
dependent rows = 1
dependent rows = 3
LDL of \([K_{11}]\) = 1.0 -1.0
LDL of \([K_{11}]\) = 1.0
+-----------------------------------

L D L_t factorized of the “full rank” sub-matrix \([K_{11}]\) of Example 1 (non-singular case)
dependent rows = 0
LDL of \([K_{11}]\) = 2.0 -0.5 0.0E+0
LDL of \([K_{11}]\) = 1.5 -0.6666666666666666
LDL of \([K_{11}]\) = 0.3333333333333337
+-----------------------------------
APPENDIX C

A COMPLETE LISTING OF AN EDUCATIONAL FORTRAN SOURCE CODE OF "CHOLESKY GENERALIZED INVERSE" ALGORITHMS FOR SLE

```fortran
implicit real*8(a-h,o-z)
real tar(2)
integer r, ractual

c........Remarks:
c (a) Identifying which are dependent rows of a "floating" substructure
(c) [K "float"] = [K11] [K12]
    [K21] [K22]
    where [K11] = full rank ( = non-singular )
    = {K "float"] with deleting the dependent rows/columns
(c) The u_transpose * U of [K11] can be obtained by taking the results
    of part (b) and deleting the dependent rows/columns

Author(s): Prof. Due T. Nguyen
Version: 02-11-2012 (EDUCATIONAL purpose, LDL/FULL matrix is assumed)
Stored at: cd ~/cee/*odu*clas*/generalized_inverse_by_cholesky.f

Notes: Prof. Due Nguyen's "generalized cholesky" code has been correctly
verified for AT LEAST 7-8 different examples
[see generalize*cholesky*.dat; and see out1-keep]

dimension u(1999,1999),idependrows(1999),tempo1(1999),
$      am_inv(1999,1999), tempo2(1999)
$      g(1999,1999), gt(1999,1999)
dimension itempol(1999), rhs(1999)
c
  call pierrotime(t1)
c
  write(6,*) 'today date: 04-23-2012; Prof. Due T. Nguyen'
  write(6,*) '• •• • • • —
  maxnrl = 1999'
```

```fortran
...continued
```
maxncl = 1999
cmaxnc2 = 1999
c
.. input (or randomly generate rectangular/square matrix $[G]$ of dimension $m \times n$..
c.. where we assume/prefer $m > n$
c
c
read(5,*) m, n, iautodata, irankn, iaxeqb
write(6,*) 'user input: $m,n,iautodata,irankn,iaxeqb =$'
write(6,*) m, n, iautodata, irankn, iaxeqb
write(6,*)'
c
c.. read user's input matrix data

c
if (iautodata .eq. 0) then
 do 32 i=l, m
 read(5,*) (g(ij), j=l,n)
 32 continue

c.. user's input rhs vector $\{rhs\} \ n \times 1$
c
 read(5,*) (rhs(i), i=l,m)

c
c.. randomly generated input matrix data

c
elseif (iautodata .eq. 1) then
 ndependcols = n - irankn
 icount = 0
 idum=0
 do 61 j=l,n
 if (j .LE. irankn) then
 irandomcol = irand(l, n)
 write(6,*) 'irandomcol =', irandomcol
 do 60 i=l, m
 g(ij) = drand(idum) * l0000.d0
 60 continue
 elseif (j .GT. irankn) then
 do 66 i=l, m
 g(ij) = 0.d0
 66 continue
 endif
 61 continue

c.. generated rhs vector $\{rhs\} \ n \times 1$, such that solution vector = \{1, 1, ..., 1\}
c
 do 67 i=l, n
 tempol(i) = 1.d0
 67 continue
call mtimesv(g, tempol, rhs, maxnr1, maxnc1, m, n)
endif

c
write(6,*) 'user input, or randomly generated matrix G mxn ='
do 63 i=1, m
write(6,*) (g(i,j), j=1,n)
63 continue
write(6,*) 'user input: right-hand-side (rhs) vector mxl ='
do 92 i=1, m
write(6,*) 'rhs(-) = *,rhs(i)
92 continue
write(6,*) *
c
c
call transpose(g, gt, maxnr1, maxnc1, m, n)
c
c
if (m .ge. n) then
 call mtimesm(gt, g, am, maxnr1, maxnc1, maxnc2, n, m, n) ! compute G' * G
 neq = n
 write(6,*) 'print [am] = G_transpose * G ='
do 72 i=1,n
 write(6,*) (am(i,j), j=1,n)
72 continue
 write(6,*) 'elseif (m .lt. n) then
 call mtimesm(g, gt, am, maxnr1, maxnc1, maxnc2, m, n, m) ! compute G * G'
 neq = m
 write(6,*) 'print [am] = G * G_transpose ='
do 73 i=1,m
 write(6,*) (am(i,j), j=1,m)
73 continue
 write(6,*) '
 endif

c
c
if (m .ge. n) then
 call generalized_inverse_cholesky(neq,am,idependrows,$
 ndependrows,r, maxnr1, independrows, itempo1)
write(6,*) 'special cholesky factor of Gt*G, or G*Gt'
do 22 i=1, r
 write(6,*) (am(i,j), j=1,neq)
22 continue
cwrite(6,*) '# independent rows = ',independrows
write(6,*)'
if (independrows .ge. 1) then
 write(6,*) 'independent rows = ',(itempol(i),i=1, independrows)
endif
c call transpose(am, amt, maxnr1, maxnc1, r, neq)
call mtimesm(am, amt, u, maxnr1, maxnc1, maxnc2, r, neq, r) ! compute L' * L
nactual = r
call generalized_inverse_cholesky(nactual,u,independrows, $ ndependentrows,ractual, maxnr1, independrows, itempol)
write(6,*) 'regular cholesky factorization of M*Mt'
write(6,*) 'M = factorized of Gt*G, or G*Gt with deleted rows'
write(6,*) '# dependent rows = ndependrows = ',ndependrows
write(6,*)'
if (iaxeqb .eq. 0) then ! find generalized inverse explicitly
 ; find the actual inverse of [u] !
 do 43 irow = 1, nactual
 do 42 i=1, nactual
 tempo l(i) = 0.d0
 42 continue
tempo1(irow) = 1.d0
call fbe_cholesky(nactual, u, tempo 1, maxnr1)
 do 44 i=1, nactual
 am_inv(i,irow) = tempo l(i)
44 continue
43 continue
! applying the French's generalized inverse formula
if (m .ge. n) then
call mtimesm(amt, am_inv, u, maxnr1, maxnc1, maxnc2, neq, $ nactual, nactual) ! compute L * [am_inv]
call mtimesm(u, am_inv, ut, maxnr1, maxnc1, maxnc2, neq,
 nactual, nactual) ! compute L * [am_inv] * [am_inv]
call mtimesm(ut, am, u, maxnr1, maxnc1, maxnc2, neq,
 nactual, neq) ! compute L * [am_inv] * [am_inv] * L'
call mtimesm(u, gt, ut, maxnr1, maxnc1, maxnc2, neq,
 neq, m) ! compute L * [am_inv] * [am_inv] * L' * G'
write(6,*) 'generalized inverse of [G] ='
do 52 i=l, neq
 write(6,*) (ut(ij), j=l ,m)
52 continue
celseif (m .lt. n) then
 call mtimesm(gt, amt, u, maxnr1, maxnc1, maxnc2, n, m,
 nactual) ! compute G' * L
call mtimesm(u, am_inv, ut, maxnr1, maxnc1, maxnc2, n,
 nactual, nactual) ! compute G' * L * [am_inv]
call mtimesm(ut, aminv, u, maxnr1, maxnc1, maxnc2, n,
 nactual, nactual) ! compute G' * L * [am inv] * [am inv]
call mtimesm(u, am, ut, maxnr1, maxnc1, maxnc2, n,
 nactual, neq) ! compute G' * L * [am inv] * [am inv] *
write(6,*) 'generalized inverse of [G] ='
do 54 i=l, n
 write(6,*) (ut(ij), j=l,m)
54 continue
write(6,*)'
endif

c......solution of [G] {x} = {rhs}
c mxn nx1 mx1
c......thus, {x} = [G+] * {rhs}
c nx1 nxm mx1
c
call mtimesv(ut, rhs, tempo1, maxnr1, maxnc1, n, m)
celseif (iaxeqb .eq. 1) then ! AVOID computing generalized inverse explicitly
 if (m .ge. n) then
c......compute [G'] * {rhs}; with results stored in {tempo1}
call mtimesv(gt, rhs, tempo1, maxnr1, maxnc1, n, m)
cwrite(6,*) 'Gt * rhs = tempo1 = ',(tempo1(i),i=1,n)
c......compute [L'] * {tempo1}; with results stored in {tempo2}
call mtimesv(am, tempo1, tempo2, maxnr1, maxnc1, nactual, n)
cwrite(6,*) 'Gt * rhs = tempo2 = ',(tempo2(i),i=1,n)
c......now, doing forward & backward solutions, stored the results in {tempo2}
call fbe_cholesky(nactual, u, tempo2, maxnr1)
c......now, doing forward & backward solutions AGAIN, stored the results in {tempo2}
call fbe_cholesky(nactual, u, tempo2, maxnrl)
c......finally, compute [L] * {tempo2} = same as compute [G+] * {rhs} !
call mtimesv(amt, tempo2, tempo1, maxnrl, maxnc1, n, nactual)

elseif (m .lt. n) then
 c......compute [L'] * {rhs}; with results stored in {tempo1}
call mtimesv(amt, rhs, tempo1, maxnrl, maxnc1, nactual, n)
c......now, doing forward & backward solutions, stored the results in {tempo1}
call fbe_cholesky(nactual, u, tempo1, maxnrl)
c......now, doing forward & backward solutions AGAIN, stored the results in {tempo1}
call fbe_cholesky(nactual, u, tempo1, maxnrl)
c......compute [L'] * {tempo1}; with results stored in {tempo2}
call mtimesv(amt, tempo1, tempo2, maxnrl, maxnc1, n, nactual)
c......finally, compute [G'] * {tempo2} = same as compute [G+] * {rhs} !
call mtimesv(gt, tempo2, tempo1, maxnrl, maxnc1, n, m)
cendif
cendif

c......output unknown solution vector {x} with 3 numbers:
c......smallest (dabs{x}), biggest (dabs{x}), sum (dabs{x})
c
abs_smallest = 10**8
abs_biggest = 0.d0
sum_abs = 0.d0

write(6,*)'solution vector {x} = pinv(G) * {rhs} is ...'
 do 102 i=1, n
 aa = dabs(tempo1(i))
 bb = tempo1(i)
 write(6,*),'i, x(i) = ',i, bb
 if (aa .LT. abs_smallest) abs_smallest = aa
 if (aa .GT. abs_biggest) abs_biggest = aa
 sum_abs = sum_abs + aa
102 continue
 write(6,*)
 write(6,*)'abs_smallest, abs_biggest, sum_abs = '
 write(6,*)'abs_smallest, abs_biggest, sum_abs
 write(6,*)

c......output absolute and relative error norm
c
call error_norm(g,tempo1,rhs,maxnr1,maxnc1,m,n,abserr,relerr,$
$ tempo2)

write(6,*)'abserr, relerr = ',abserr, relerr
c
call pierrot ime(t2)

time_a to _z = t2 - t1

write(6,*) 'time_a to _z = ', time_a_to_z
write(6,*)
c
c stop
cend
c
subroutine generalized_inverse_cholesky(n,u,idependrows,
 ndependrows,r, maxnr1, independrows, independentrows)
 implicit real*8(a-h,o-z)
 integer r, ractual
 dimension u(maxnr1,*),idependrows(*),independentrows(*)
c
subroutine generalized_inverse_cholesky(n,u,idependrows,$
 ndependrows,r, maxnr1, independrows, independentrows)
imPLICIT REAL*8(A-H,O-Z)
INTEGER R, RACTUAL
DIMENSION U(MAXNR1,*),IDEPENDROWS(*),INDEPENDENTROWS(*)
c
c......Remarks:
c(a) Identifying which are dependent rows of a "floating" substructure
(b) Factorizing (by cholesky) of floating substructure stiffness
Whenever a dependent row is encountered during cholesky process,
then we just:
[1] set all factorized values of the dependent row to be ZEROES
[2] ignore the dependent row(s) in all future factorized rows
(c) [K "float"] = [K11] [K12]
 [K21] [K22]
where [K11] = full rank (= non-singular)
= {K "float"} with deleting the dependent rows/columns
(d) The U transpose * U of [K11] can be obtained by taking the results
of part (b) and deleting the dependent rows/columns
c......Author(s): Prof. Duc T. Nguyen
c......Version: 02-11-2012
c......Stored at: cd ~/cee/*odu*clas*/generalized_inverse_by_ldl.f
c
write(6,*) 'check point #01'

eps=0.0000000001
ndependrows = 0
independrows = 0
c
r = 0
do 11 ir = 1, n
r = r + 1

c write(6,*) ' ir, r = ', ir, r

do 12 icol=ir, n
 sum = u(ir, icol)

 do 13 iprevrow=1, r-1
 sum = sum - u(iprevrow,ir) * u(iprevrow,icol)
 13 continue

c write(6,*) 'check point #02'

if (ir .eq. icol) then
 : cholesky factorized diagonal terms of row # ir

 c write(6,*) 'check point #03'

 if (sum .gt. eps) then
 u(r,ir)=dsqrt(sum)
 c write(6,*) ' u(r,ir) = ',(r,ir)

 independrows = independrows + 1
 independentrows(independrows) = ir

 write(6,*) 'check point #04'

 else
 ndependrows = ndependrows + 1
 c independentrows(ndependrows) = ir

 write(6,*) 'sum, u(r,ir) = diag term are ... ',sum,u(r,ir)
 r = r - 1

 write(6,*) ' ir, r = ', ir, r

 write(6,*) 'check point #05'

 go to 11

endif

c else

 : cholesky factorized off-diagonal terms of row # ir

 c write(6,*) 'check point #06'

 u(r,icol) = sum/u(r,ir)

 endif

c 12 continue

c 11 continue

c all lower triangular of cholesky factorized [U] are set to zero !
do 22 ir=1, r
 indepndr = independentrows(ir)
 do 23 icol=1, indepndr-1
 23 u(ir,icol)=0.d0
 22 continue

 write(6,*) 'ndependrows =', ndependrows
 write(6,*) 'dependent rows = ',(idependrows(i), i=1,ndependrows)

 return
end

subroutine transpose(a, at, maxnrl, maxncl, nrl, ncl)
 implicit real*8(a-h,o-z)
 dimension a(maxnrl,*), at(maxncl,*)
 c
 do 1 i=1, nrl
 do 2 j=1, ncl
 at(i,j) = a(i,j)
 2 continue
 1 continue
 return
end

subroutine mtimesm(a, b, c, maxnrl, maxncl, maxnc2, nrl,ncl,nc2)
 implicit real*8(a-h,o-z)
 dimension a(maxnrl,*), b(maxncl,*), c(maxnrl,*)
 c
 do 1 j=1, nc2
 do 2 i=1, nrl
 c(i,j) = 0.d0
 2 continue
 1 continue
 return
end

subroutine fbe_cholesky(n, u, rhs, maxnrl)
 implicit real*8(a-h, o-z)
 dimension u(maxnrl,*), rhs(*)
 c

c

c......forward cholesky solution

do 1 j = 1, n
 sum = rhs(j)
 do 2 i = 1, j - 1
 sum = sum - u(i,j) * rhs(i)
 2 continue
 rhs(j) = sum / u(j,j)
1 continue

c......backward cholesky solution

do 4 j = n, 1, -1
 sum = rhs(j)
 do 5 i = j + 1, n
 sum = sum - u(j,i) * rhs(i)
 5 continue
 rhs(j) = sum / u(j,j)
4 continue

c
 return
end

subroutine mtimesv(g, tempo1, rhs, maxnrl, maxncl, m, n)
implicit real*8(a-h,o-z)
dimension g(maxnrl,*), tempo1(*), rhs(*)

do 1 i = 1, m
 sum = 0.d0
 do 2 j = 1, n
 sum = sum + g(i,j) * tempo1(j)
 2 continue
 rhs(i) = sum
1 continue

c
 return
end

subroutine error_norm(a,x,b,maxnrl,maxncl,nr1,nc1,abserr,relerr,
$ tempo1)
implicit real*8(a-h,o-z)
dimension a(maxnrl,*), x(*), b(*), tempo1(*)

c
call mtimesv(a, x, tempo1, maxnr1, maxnc1, nr1, nc1)
c
abserr = 0.d0
relerr = 0.d0
c
do 1 i=1, nr1
 x(i) = tempo1(i) - b(i)
 abserr = abserr + x(i)**2
 relerr = relerr + b(i)**2
1 continue

abserr = dabs(abserr)
relerr = dabs(relerr)
relerr = abserr/relerr

c
return
end
c
subroutine pierrotime (time)
 real tar(2)
 real*8 time

c
 purpose:
This routine returns the user + system execution time
The argument tar returns user time in the first element and
system time in the second element. The function value is the
sum of user and system time. This value approximates the
program's elapsed time on a quiet system.
c
Uncomment for your corresponding platform
c
Note: On the SGI the resolution of etime is 1/HZ
c
Output
time: user+system execution time
c
SUN -Solaris
time=etime(tar)
c
HP - HPUX
time=etime_(tar) !f90
time=etime_(tar) !f77
c
COMPAQ - alpha
C.1: A Complete Input File of an Educational FORTRAN Source Code of "Generalized Inverse" Algorithms

For SLE

7 7 0 4 1

1.d0 2.d0 -3.d0 2.d0 -2.d0 -3.d0 -2.d0
2.d0 4.d0 -6.d0 4.d0 -4.d0 -6.d0 -4.d0
2.d0 4.d0 -6.d0 5.d0 -1.d0 -5.d0 -7.d0
-2.d0 -4.d0 6.d0 -1.d0 13.d0 9.d0 -5.d0
-2.d0 -4.d0 6.d0 -7.d0 -5.d0 9.d0 27.d0
-2.d0 -4.d0 6.d0 -7.d0 -5.d0 9.d0 27.d0

Note: MATLAB solution = (0, 0, 0, 0, 0, 0, 1) = satisfy SLE

For SLE

today date: 04-23-2012; Prof. Duc T. Nguyen

user input: m,n,iautodata,irankn,iaxeqkb = 7 7 0 4 1
user input, or randomly generated matrix $G_{mxn} =$

\[
\begin{bmatrix}
1.0 & 2.0 & -3.0 & 2.0 & -2.0 & -3.0 & -2.0 \\
2.0 & 4.0 & -6.0 & 4.0 & -4.0 & -6.0 & -4.0 \\
-3.0 & -6.0 & 9.0 & -6.0 & 6.0 & 9.0 & 6.0 \\
2.0 & 4.0 & -6.0 & 5.0 & -1.0 & -5.0 & -7.0 \\
-2.0 & -4.0 & 6.0 & -1.0 & 13.0 & 9.0 & 5.0 \\
-3.0 & -6.0 & 9.0 & -5.0 & 9.0 & 13.0 & 9.0 \\
-2.0 & -4.0 & 6.0 & -7.0 & -5.0 & 9.0 & 27.0
\end{bmatrix}
\]

user input: right-hand-side (rhs) vector $m_{xl} =$

\[
\begin{align*}
\text{rhs}(-) &= -2.0 \\
\text{rhs}(-) &= -4.0 \\
\text{rhs}(-) &= 6.0 \\
\text{rhs}(-) &= -7.0 \\
\text{rhs}(-) &= -5.0 \\
\text{rhs}(-) &= 9.0 \\
\text{rhs}(-) &= 27.0
\end{align*}
\]

print $[am] = G^T \times G =$

\[
\begin{bmatrix}
35.0 & 70.0 & -105.0 & 69.0 & -73.0 & -127.0 & -113.0 \\
70.0 & 140.0 & -210.0 & 138.0 & -254.0 & -226.0 & \\
-105.0 & -210.0 & 315.0 & -207.0 & 219.0 & 381.0 & 339.0 \\
69.0 & 138.0 & -207.0 & 156.0 & -84.0 & -246.0 & -320.0 \\
-73.0 & -146.0 & 219.0 & -84.0 & 332.0 & 278.0 & -56.0 \\
-127.0 & -254.0 & 381.0 & -246.0 & 278.0 & 482.0 & 434.0 \\
-113.0 & -226.0 & 339.0 & -320.0 & -56.0 & 434.0 & 940.0
\end{bmatrix}
\]

special cholesky factor of $G^T \times G$, or $G \times G^T$

\[
\begin{align*}
5.916079783099616 &\quad 11.832159566199232 &\quad -17.7482393492885 &\quad 11.663128715253528 \\
-12.339252119036342 &\quad -21.46691807010432 &\quad -19.100486156864473 \\
0.0E+0 &\quad 0.0E+0 &\quad 0.0E+0 &\quad 4.468940430507951 &\quad 13.406821291523839 \\
0.9781800942313469 &\quad -21.756515429211084 \\
0.0E+0 &\quad 0.0E+0 &\quad 0.0E+0 &\quad 0.0E+0 &\quad 0.0E+0 &\quad 0.0E+0 &\quad 0.7209335773362233
\end{align*}
\]

independent rows = 4

independent rows = 1 4 6 7

regular cholesky factorization of $M \times M^T$

$M = \text{factorized of } G^T \times G$, or $G \times G^T$ with deleted rows

dependent rows = n\text{dependrows} = 0

solution vector $\{x\} = \text{pinv}(G) \times \{\text{rhs}\}$ is ...

\[
\begin{align*}
i, x(i) &= 1.6874571068360796E-13 \\
i, x(i) &= 2.3749142136721593E-13 \\
i, x(i) &= 3.56237132050824E-13
\end{align*}
\]
i, x(i) = 4 -2.8787848147707946E-13
i, x(i) = 5 -2.2136011299001E-12
i, x(i) = 6 2.915937886998499E-12
i, x(i) = 7 0.9999999999987078

abs_smallest, abs_biggest, sum_abs =
1.6874571068360796E-13 0.9999999999987078 1.0000000000051376

abserr, relerr = 8.793202261721907E-25 9.354470491193518E-28
time_a_to_z = 9.539998136460781E-4
%Initialize MPI
MPI_Init;

%Create communicator
comm = MPI_COMM_WORLD;

%Get Size and Rank
comm_size = MPI_Commsize(comm); %numtasks
my_rank = MPI_Comm_rank(comm); %taskid

nn = 1000; % Matrix size
	%tStart = tic;

% Master Processor task
if (my_rank==0)
 % a = 10*rand(nn);
 % b = 10*rand(nn);

 for i = 1: nn
 for j = 1:nn
 a(i,j) = (i-1)+(j-1);
 end
 end
 a;

 for i = 1: nn
 for j = 1:nn
 b(i,j) = (i+1)*(j+1);
 end
 end
 b;

 Z = zeros(nn);
 tStart = tic;

 domains = comm_size-1; % numworkers
%divide matrix "b" to parts (domains)
len = floor(length(b)/domains);

for i = 1:domains-1

 MPI_Send(i,1,comm,a(:,;),b(:,((i-1)*len)+1:i*len)) %send parts of matrices to slaves
 sent_part = sprintf('%g', i)
 disp('********');
end

MPI_Send(domains, 1,comm,a(:,;),b(:,((domains-1)*len)+1:length(b))); %last part to slave
 disp('last part sent');
disp('********');

for i = 1:domains
 Z = MPI_Recv(i,100,comm);
 Z;
 size(Z);
 recv = sprintf('%g', i);
end
end %end master

if my_rank > 0 %slave

 [matrix_a matrix_b] = MPI_Recv(0,1,comm);

 %Computation
 [ra ca] = size(matrix_a);
 [rb cb] = size(matrix_b);

 for k = 1: cb
 for i = 1:ra
 c(i,k) = 0;
 for j = 1:ca
 c(i,k) = c(i,k) + matrix_a(i,j) * matrix_b(j,k);
 end
 end
 end
end
Z = c;

MPI_Send(0,100,comm,Z);
exit;
end %slave

MPI_Finalize;
tElapsed = toc(tStart)
disp('Success');
APPENDIX E

GRAPHICAL COMPARISONS (IN TERMS OF COMPUTATIONAL TIMES) OF ODU-GINVERSE WITH OTHER ALGORITHMS

In this appendix, we graphically compare the computational times of ODU-ginverse with other existing algorithms. The description of the test problems can be found in section 5.

Figure E.1 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix
Figure E.2 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with RHS Vector as Linear Combination of Columns of Coefficient Matrix

Figure E.3 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (tall type) with RHS Vector as Linear Combination of Columns of Coefficient Matrix
Figure E.4 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (fat type) with RHS Vector as Linear Combination of Columns of Coefficient Matrix

Figure E.5 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with Randomly generated RHS Vector
Figure E.6 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with Randomly generated RHS Vector

Figure E.7 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (tall type) with Randomly generated RHS Vector
Figure E.8 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (fat type) with Randomly generated RHS Vector

Figure E.9 Computational Times (in seconds) for Symmetric Rank-Deficient Test Matrices with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse)
Figure E.10 Computational Times (in seconds) for Non-Symmetric Rank-Deficient Test Matrices with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse)

Figure E.11 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (tall) with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse)
Figure E.12 Computational Times (in seconds) for Rectangular Rank-Deficient Test Matrices (fat) with Randomly generated RHS Vector (Iterative Solver inside Generalized Inverse)
Education
Ph.D., Civil and Environmental Engineering, (Structural Engineering), Old Dominion University, Norfolk, Virginia 23529

Modeling and Simulation for Large Scale Computational Mechanics Certificate, Jan 2008 – Dec 2008, Civil and Environmental Engineering Department, Old Dominion University

Master of Technology, Structural Engineering, Acharya Nagarjuna University Andhra Pradesh, India, May 2006

Bachelor of Engineering, Civil Engineering, Osmania University, Andhra Pradesh, India, June 2004

Research Interests
Numerical Methods, Parallel Programming, Algorithm Development, Finite Element Analysis, Advanced Structural Analysis, Engineering Optimization