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ABSTRACT

CYBER DEFENSE REMEDIATION IN ENERGY DELIVERY SYSTEMS

Kamrul Hasan
Old Dominion University, 2020

Director: Dr. Sachin Shetty

The integration of Information Technology (IT) and Operational Technology (OT) in

Cyber-Physical Systems (CPS) has resulted in increased efficiency and facilitated real-time

information acquisition, processing, and decision making. However, the increase in automa-

tion technology and the use of the internet for connecting, remote controlling, and supervis-

ing systems and facilities has also increased the likelihood of cybersecurity threats that can

impact safety of humans and property. There is a need to assess cybersecurity risks in the

power grid, nuclear plants, chemical factories, etc. to gain insight into the likelihood of safety

hazards. Quantitative cybersecurity risk assessment will lead to informed cyber defense re-

mediation and will ensure the presence of a mitigation plan to prevent safety hazards. In

this dissertation, using Energy Delivery Systems (EDS) as a use case to contextualize a CPS,

we address key research challenges in managing cyber risk for cyber defense remediation.

First, we developed a platform for modeling and analyzing the effect of cyber threats

and random system faults on EDS’s safety that could lead to catastrophic damages. We

developed a data-driven attack graph and fault graph-based model to characterize the ex-

ploitability and impact of threats in EDS. We created an operational impact assessment to

quantify the damages. Finally, we developed a strategic response decision capability that

presents optimal mitigation actions and policies that balance the tradeoff between opera-

tional resilience (tactical risk) and strategic risk.

Next, we addressed the challenge of management of tactical risk based on a prioritized

cyber defense remediation plan. A prioritized cyber defense remediation plan is critical for

effective risk management in EDS. Due to EDS’s complexity in terms of the heterogeneous

nature of blending IT and OT and Industrial Control System (ICS), scale, and critical pro-

cesses tasks, prioritized remediation should be applied gradually to protect critical assets. We

proposed a methodology for prioritizing cyber risk remediation plans by detecting and eval-

uating critical EDS nodes’ paths. We conducted evaluation of critical nodes characteristics

based on nodes’ architectural positions, measure of centrality based on nodes’ connectivity

and frequency of network traffic, as well as the controlled amount of electrical power. The



model also examines the relationship between cost models of budget allocation for remov-

ing vulnerabilities on critical nodes and their impact on gradual readiness. The proposed

cost models were empirically validated in an existing network ICS test-bed computing nodes

criticality. Two cost models were examined, and although varied, we concluded the lack of

correlation between types of cost models to most damageable attack path and critical nodes

readiness.

Finally, we proposed a time-varying dynamical model for the cyber defense remediation in

EDS. We utilize the stochastic evolutionary game model to simulate the dynamic adversary of

cyber-attack-defense. We leveraged the Logit Quantal Response Dynamics (LQRD) model

to quantify real-world players’ cognitive differences. We proposed the optimal decision-

making approach by calculating the stable evolutionary equilibrium and balancing defense

costs and benefits. Case studies on EDS indicate that the proposed method can help the

defender predict possible attack action, select the related optimal defense strategy over

time, and gain the maximum defense payoff. We also leveraged software-defined networking

(SDN) in EDS for dynamical cyber defense remediation. We presented an approach to aid

the selection security controls dynamically in an SDN-enabled EDS and achieve tradeoff

between providing security and Quality of Service (QoS). We modeled the security costs

based on end-to-end packet delay and throughput. We proposed a non-dominated sorting

based multi-objective optimization framework which can be implemented within an SDN

controller to address the joint problem of optimizing between security and QoS parameters

by alleviating time complexity at O(MN2). The M is the number of objective functions,

and N is the population for each generation, respectively. We presented simulation results

that illustrate how data availability and data integrity can be achieved while maintaining

QoS constraints.
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Chapter 1

INTRODUCTION

This chapter provides the background and motivation for the dissertation followed by the

main goals of the research. Finally, we present the basic outline of this dissertation thesis.

1.1 BACKGROUND AND MOTIVATION

1.1.1 BACKGROUND

The integration of Information Technology (IT) and Operational Technology (OT) in

Cyber-Physical Systems (CPS) has brought significant efficiencies and facilitated real-time

information acquisition, processing, and decision making [2]. Analyzing CPS risks such as

those found in the power grid, nuclear plants, chemical factories, etc. is of crucial importance

given the hazards linked to these systems (explosion, dispersion, etc.). Organizations have

the flexibility to determine the optimal strategies to conduct risk management activities that

can be distinguished by the level of rigor, granularity, and information sharing. Organizations

utilize risk management methodologies, models, and systems addressing safety and financial

risk. The standard CPS, risk management framework, is depicted in Figure 2 [2].

Tier 1 addresses risk from an organizational perspective. It is responsible for considering

strategic risk in the risk management program. Strategic risk characterizes the adverse

impacts on an organization upon pursuing a particular course of action. Tier 2 addresses

risk from a mission/business process perspective. They are informed by the risk context, risk

decisions, and risk activities at Tier 1 and the tactical and technical knowledge and activities

of Tier 3. Tier 3 addresses risk from a system perspective and is guided by the risk context,

risk decisions, and risk activities at Tiers 1 and 2. Tier 3 risk is also known as the tactical

risk of an organization.

Traditional industries were based on mechanical devices and sometimes closed systems.

Only safety-related risks generated from accidental component failures and human errors
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need to be addressed during these industries’ risk analysis. However, today, industries are

influenced by digital technology development related to instrumentation and Industrial Au-

tomation (IA). Supervisory Control And Data Acquisition (SCADA) systems are introduced

to monitor and control equipment that deals with critical and time-sensitive materials or

events [2]. The rise in the degree of automation increases the degree of complexity and com-

munication among systems that have increased the attack surface and has impacted physical

systems’ safety. Thus, it is imperative to consider all three layers’ risk for influential cyber-

security and safety risk analysis of CPS.

Quantifying and analyzing these significant risks contributes to better decision making

and ensures that risks are managed according to defined acceptance criteria. A prioritized

cyber defense remediation plan is critical for effective risk management in CPS. The judi-

cious selection of countermeasures (patching, asset redundancy, firewall rules, etc.) at the

operational level is crucial for prioritized cyber defense. These low-level selections ultimately

determine the upper mission risk and strategic risk. Therefore, it is also crucial to consider

negative side-effects of response plans and individual mitigation actions. There are costs

associated with any countermeasure geared towards preventing a proactive infiltration of a

network and individual nodes. For instance, shutting down a node in a system will inevitably

reduce this node’s operational resilience with a probability of one.

Further, employing a patch on a node could have an impact on operational resilience. We

call this reduction of operational resilience an impact on a node. Moreover, what needs to

be considered is that any local impact may spread throughout a network. If a node is highly

dependent on receiving information from a node that has been shut down, it will not operate

as intended anymore. In the end, it may be worse- from an operational perspective assuring

mission success- to defend or eliminate an attack surface by action, i.e., one sacrifices mission

success for a false sense of security by a too narrow perspective on the problem.

1.1.2 MOTIVATION FROM LITERATURE REVIEW

Traditionally, safety assessment has been associated with accidental risks caused by com-

ponent failures, human errors, or any non-deliberate source of hazard. In contrast, security is

related to malicious activities that are induced by cyber or physical means. Besides, attacks
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targeting safety are considered rare events with low frequency, and security incidents occur

more frequently [3]. The highly-publicized Stuxnet worm is an example of intentional attack

and of how vulnerabilities within IT systems can be used to target a Programmable Logic

Controller (PLC) in Industrial Control Systems (ICS).

Kriaa et al. [4] study the differences and similarities between safety and security in the

context of ICS but the authors did not indicate if the cyber threats can also cause safety

hazards in ICS. Several researchers [3] [5] also have studied the impact of cyber attacks

on safety that lead to significant accidents. Although the authors have considered security

and safety risks at the operational level (tactical risk), they did not consider the tactical

risk’s impact on the business/mission process risk and strategic risk. Risk assessment has to

consider the tactical, mission, and strategic risk perspectives to gain a holistic view of the

cyber risk to the organization [2].

Granadillo et al. [6] and Motzek et al. [7] have shown how the operational risk propagates

to business impact. They have proposed a mitigation plan at the operational level to miti-

gate the impact on the mission. This approach overcomes the limitation of previous work by

taking into account the business/mission impact. However, the authors did not consider the

strategic risk and safety risk from the operational perspective [8]. The authors also assessed

the effect of compromising a node at an operational level in a qualitative fashion. Using the

2003 North East blackout as an example, Anderson et al. [9] discussed the strategic risk and

presented several remediation policies to mitigate the risk. Considering all of those draw-

backs, we are using the Energy Delivery System (EDS) as a specific instance of CPS in this

dissertation defense. We propose a methodology to quantify the safety and security risk in

the EDS infrastructure based on nodes’ criticality and model its impact on business/mission

risk and strategic risk.

According to MITRE cyber threat mitigation database [10], currently, there are 40 cyber

defense remediation options for known cyber-attack. Vulnerability scanning and patching

security vulnerabilities are some of the most frequently used remedial options. Vulnerability

scanning is used to find potentially exploitable software vulnerabilities to remediate them.

Vulnerability and Patching Management (VPM) continues to be a heavily manual inten-

sive process in the energy sector. Energy companies spend a tremendous amount of human
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resources digging through vulnerability bulletins, determining asset applicability, and de-

termining remediation and mitigation actions. The U. S. energy sector faces a unique and

formidable challenge in vulnerability and patch management. The NERC patching require-

ments in CIP − 007 − 6R2 [11] heavily incentivize flawless vulnerability mitigation. It is

not uncommon for utilities to have several hundred software vendors to monitor, several

thousand vulnerabilities to assess, and tens of thousands of patches or mitigation actions to

implement. Whereas most companies in other sectors do risk-based patching, electric utilities

must address every patch in a short period. Operators have to analyze every vulnerability

and determine the corresponding remediation action

Many vulnerability and patch management automation tools have been developed for

traditional IT networks, such as Symantec Patch Management, Patch Manager Plus by

ManageEngine, Asset Management by SysAid, and Patch Manager by Solarwinds. These

VPM solutions mainly address security issues for operating systems such as Windows, Mac,

and Linux, and the applications running on these systems. They can automatically discover

vulnerabilities and deploy available patches. For example, Symantec Patch Management [12]

can detect security vulnerabilities for various operating systems, and Microsoft applications

and Windows applications. It can provide vulnerability and patch information to operators,

but it cannot analyze vulnerabilities and make decisions about remediation actions by itself.

Patch Manager Plus by ManageEngine [13] discovers vulnerabilities and patches, and then

automates the deployment of patches for Windows, Mac, Linux, and third-party applications.

These solutions are mainly designed for commonly used operating systems and applications

in traditional IT systems, but cannot be applied to electric systems mostly for two reasons.

On the one hand, they cannot handle vulnerabilities for control system devices such as

Programmable Logic Controller ( PLC), which are very important and common in electric

systems. On the other hand, these solutions mostly deploy all available patches automatically

regardless of asset or system differences, which is infeasible in electric systems since it may

interrupt the system service.

Some VPM solutions have been explicitly provided for electric systems by companies such

as Flexera, FoxGuard Solutions, and Leidos [11]. The primary function of these solutions
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is to provide applicable vulnerabilities for electric systems. They ask for software infor-

mation from utilities, find relevant vulnerabilities and patches for the software, and then

send appropriate vulnerability information to utilities. They cannot analyze vulnerabilities

against the operating environment and make prioritized decisions on how to address the

vulnerabilities. Some public vulnerability databases are also available such as the National

Vulnerability Database ( NVD ) and Exploit Database [14] to help drive VPM automation.

NVD publishes discovered security vulnerabilities and provides the information and charac-

teristics of these vulnerabilities [14]. Exploit Database includes information about whether

vulnerabilities can be exploited.

To ensure the security and reliability of power systems, NERC developed a Critical

Infrastructure Protection ( CIP ) Cyber Security Reliability Standards to define security

controls applying to identified and categorized cyber systems. It represents the requirements

for Security Patch Management in CIP − 007 − 6R2. It requires the utilities to ( 1 )

identify patch sources for all installed software and firmware, ( 2 ) identify appropriate

security patches every month, and ( 3 ) determine whether to apply the security patch

or mitigate the security vulnerability. Recognized patching sources must be evaluated at

least once every 35 calendar days for applicable security patches. For those patches that

are applicable, they must be applied within 35 calendar days. For the vulnerabilities that

cannot be patched, a mitigation plan must be developed, and a timeframe must be set to

complete these mitigations.

In the research area, some work has been done to analyze vulnerabilities and patches to

understand vulnerabilities better. Stefan et al. [15] explored discovery, disclosure, exploit,

and patch dates for about 8000 public vulnerabilities. Shahzad et al. [16] studied the evolu-

tion of vulnerability lifecycles such as disclosure date, patch date, and the duration between

patch date and exportability date, and extracted rules that represent the exploitation of

hackers and the patch behavior of vendors. The work in studied software vendors’ patch

release is such as how quickly vendors patch vulnerabilities and how vulnerability disclosure

affects patch release. Li and Paxson [17] investigated the duration of a vulnerability’s impact

on a codebase, the timeliness of patch development, and the degree to which developers pro-

duce safe and reliable fixes. Li et al. [18] evaluated vulnerabilities of the installed software
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version and the latest version and then decided whether to update the software based on the

value of the Common Vector Scoring System ( CVSS ) score [19]. Most of these analyzed

datasets are retrieved from public vulnerability databases, such as NVD and Open Sourced

Vulnerability Database ( OSVDB) [20]. Still, they do not combine vulnerability metrics with

organizational context to analyze decision making.

A prioritized cyber defense remediation plan is critical for effective risk management in

the Energy Delivery System (EDS). Due to the complexity of EDS in terms of heterogeneous

nature blending Information Technology (IT) and Operation Technology (OT) and Industrial

Control System (ICS), scale, and critical processes tasks, prioritized remediation should

be applied gradually to protect critical assets. In this dissertation defense, we propose a

methodology for prioritizing cyber risk remediation plans by detecting and evaluating paths

to critical nodes in EDS. We suggest critical nodes characteristics evaluation based on nodes’

architectural positions, measure of centrality based on nodes’ connectivity and frequency of

network traffic, and the controlled amount of electrical power.

The majority of the proposed remedial system uses fixed cost or static evaluated cost

models [21] [22]. In contrast, a few models have been presented in the dynamic evaluated

cost [23] [24] [25]. Since our proposed framework lies in this category, we will subsequently

discuss some highly related frameworks. We first consider service dependencies models in

remedial actions, initially proposed by Toth and Kregel [23]. They presented a network model

that accounts for relationships between users and resources, illustrating that they perform

their activities by utilizing the available resources. The response model goal is to keep the

usability of a system as high as possible. Each response alternative (which node to isolate) is

inserted temporarily into the network model. A calculation is performed to find which one has

the lowest negative impact on the services. When the IDS detects an attack coming towards a

machine, an algorithm tries to find which firewall/gateway can minimize the response actions’

penalty cost. This approach suffers from many limitations. First, they did not consider the

positive effect of responses. The evaluation of responses without considering their positive

effects leads us to inaccurate evaluation. For example, if the negative impact of response A is

greater than response B, it does not mean that response B has to be applied first. Maybe the

positive effect of response A is better than B and, if we calculate the response effectiveness,
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overall response A is better. Secondly, from a security goals perspective (CIA), there is no

evaluation regarding data confidentiality and integrity. Eventually, in the proposed model,

only the blockIP response has been considered. Balepin et al. [24] presented a local resource

dependency model to evaluate responses in case of attack. Like Toth and Kregel [23], it

considers the current state of the system to calculate the response cost. Each resource

has common response measures associated with it. They believe that designing a model to

assess each resource’s value is a difficult task, so they order the resources by their importance

to produce a cost configuration. Then, fixed costs are assigned to high priority resources.

Thus, costs are inflicted on the resource dependency model when associated resources get

involved in an incident. A particular remedial response for a node is selected based on three

criteria: (1) response benefit: sum of costs of resources that the response action restores to a

working state, (2) response cost: sum of costs of resources which get negatively affected by the

response action, and (3) attack cost: the sum of costs of resources that get negatively affected

by the intruder. Thus, unlike Toth and Kregel [23], this model considers the positive effects of

responses. This approach suffers from many limitations. First, it is not clear how remediation

benefits are calculated in terms of confidentiality and integrity. Secondly, restoring the

state of resources cannot be the only factor in evaluating the response’s positive effect [25].

Finally, the proposed model is applicable for host-based intrusion response systems. To

use for network-based intrusion response, it requires significant modifications in its cost

model [25]. Jahnke et al. [26] proposed a graph-based approach for modeling the effects of

attacks against resources and the effects of the response measures taken in reaction to those

attacks. The proposed approach extends the idea put forward in Toth and Kregel [23] by

using general, directed graphs with different kinds of dependencies between resources and

deriving quantitative differences between system states from these graphs. If we assume

that G1 and G2 are the graphs obtained before and after the reaction, respectively, then the

calculation of the responses’ positive effect is the difference between the availability plotted

in the two graphs: G1 and G2. Like Toth and Kregel [23], Balepin et al. [24], these authors

focus on the availability impact. Kheir [25] presented a dependency graph to evaluate the

confidentiality and integrity impact and the availability impact. The confidentiality and

integrity criteria are not considered in Toth and Kregel [23], Balepin et al. [24], and Jahnke
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et al. [26]. In Kheir [25], the impact propagation process proposed by Jahnke et al. [26]

is extended to include these impacts. Each service in the dependency graph is described

with a 3D CIA vector, the values of which are subsequently updated, either by actively

monitoring the estimation or by extrapolation using the dependency graph. In the proposed

model, dependencies are classified as structural dependencies or as functional dependencies.

The only work that considered data confidentiality and integrity to evaluate the negative

effect is Kheir [25]. As mentioned in Kheir [25], it is challenging to identify the impact on

data confidentiality and other resources’ integrity when we apply a remediation response

to a resource. A specific problem has been solved in Kheir [25]. The proposed framework

assumes using secure protocols. When an attack happens to one of the secure protocols, the

framework switches to insecure mode. The authors use a specific response type like allow

insecure connections in an open, secure socket layer (SSL) attack. If we use this type of

response, it is clear that it affects other resources’ data confidentiality and integrity.

On the other hand, the landscape of cybersecurity has been reformed dramatically by the

recently emerging Advanced Persistent Threat (APT) [27]. Unlike traditional cybersecurity

threats, APT attackers can adopt any advanced actions in a stealthy manner with a goal of

long − term utility gain, instead of any one− shot benefit. Hence, these unique properties

render the existing security solutions [27] inapplicable for APT, since they are confined by one

or more of the following limitations: i) each attacker has a discrete and limited set of actions

for one specified type of attack (e.g., DoS attack and password-based attack), violating the

feature of advanced actions in APT which could include the combination all possible types

of attacks; ii) the security game runs in a discrete-time fashion and the defender and attacker

take actions either concurrently or alternately in each time slot, which are far from the real

practice for APT since the attacker/defender cannot be accurately coordinated to make a

move as the attacker acts continuously (not discretely) and stealthily1; and iii) the security

problem is modeled as a one − shot static game, which cannot characterize the persistent

interplay among players for their long-term utility gains, or a repeated game, whose system

status (e.g., how much portion of the system has been compromised) remains static and

1There is no way to know the opponent’s time to take an action and to react accordingly either concur-
rently or alternately
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cannot be impacted by players’ behaviors.

Game theory is a decision-making theory for studying the direct interaction among

decision-makers [28], whose goal is to maximize the earnings of players and is suitable for

analyzing the strategy selection issue when the behaviors of decision-makers interact directly.

It mainly includes player, state, action, information, strategy, payoff, and equilibrium ele-

ments. Game theory has the characteristics of objective opposition, non-cooperative, and

strategic interdependence, all of which are in line with the essential attributes of cyber

attack-defense [29]. Therefore, applying game theory to the model and analyzing the cyber

attack-defense process has become a hot research issue in recent years [30]. However, there are

still some challenges. To our best knowledge, existing game models for cyber attack-defense

are mainly based on the hypothesis of complete rational players [31] [32] [33]. Complete

rationality includes many preconditions that are difficult to achieve, such as perfect rational

consciousness, the perfectability of analyzing and inferring, identifying and judging, memo-

rizing, and computing. If any of these conditions cannot be reached, it belongs to bounded

rationality. The strict requirement of complete rationality is too harsh for the social attacker

and defender. Real-world attackers and defenders have different cognizance abilities, which

is determined by their interests, such as safety knowledge, skill level, experience, and so

on [34]. In a word, the selection of strategy affected by various uncertain factors leads to the

bounded rational game. At present, this issue is still assumed as a significant challenge.

Thus, APT calls for a framework that could characterize the continuous interplay of

advanced defense-attack on system resources with imperfect/incomplete opponent’s ac-

tions in a long time-span. This study involves (1) a model to accurately capture the contin-

uously evolving process of the system status and how it is influenced by an attacker’s and a

defender’s actions; and (2) dynamic defense/attack strategies that judiciously and continu-

ously take steps to minimize/maximize the long-term system damage without knowing the

opponent’s behavior.

Considering all of the above-discussed drawbacks in different models, in this dissertation

thesis, we are proposing four different situational cyber-defense remediation models that

will decrease the cyber risk of the system for better operational resilience while considering

the negative impacts of remedial response along with positive impact and maintaining the
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quality of the running services.

1.2 PROBLEM STATEMENT AND OUR CONTRIBUTION

Four problem statements that stem from the above-discussed literature review motivate

us to solve by our developed algorithm to make a cyber-resilient EDS. Following those, the

main contributions of this dissertation are as follows:

• Given an EDS context, how to model tactical risk that includes safety and security

risk of a node considering that node’s criticality measure and model how that risk

propagates to business/mission and strategic risk [35].

• Suppose you have a heterogeneous EDS infrastructure, then how to model different

assets’ criticality index of this infrastructure to select optimal remediation schemes [36].

• For the evolutionary cyber-defense remediation controls’ selection, how the game model

provides an optimal decision in countermeasure selection in response to players’ ratio-

nality and could predict the probable future paths of attacks.

• Again, in the dynamic remediation controls’ selection, how to balance the positive and

negative impacts of those selections under certain limits of the quality of service (QoS)

and security parameters (Confidentiality, Integrity, and Availability (CIA)) [37] [38].

1.3 ORGANIZATION OF THE PROPOSAL DISSERTATION

REPORT

The rest of this dissertation organizes as In Chapter 2, we discuss the NIST approved

three layer framework of cyber risk management for cyber defense remediation in EDS. In

Chapter 3, we describe the cyber defense remediation for tactical risk management in EDS

based on criticality indexes of network assets. Chapter 4 depicts the evolutionary game

model for cyber attack-defense remediation selections. In Chapter 5, we depict the model,

cost of countermeasures in Software-Defined Networking-enabled EDS. Finally, in Chapter

6, we provide the conclusion and future research aspects of this dissertation report.
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Chapter 2

CYBER DEFENSE REMEDIATION BASED ON NIST THREE

LAYERS ARCHITECTURE OF CYBER RISK MANAGEMENT

This chapter guides us, how to model tactical risk that includes safety and security risk

of a node considering that node’s criticality measure and model how that risk propagates

to business/mission risk and strategic risk in an EDS context. The contributions of this

chapter are as follows:

• Model tactical risk considering safety and security risk of a node in the EDS infrastruc-

ture considering node criticality and model how they propagate to business/mission

risk and strategic risk.

• Propose an optimal resource allocation scheme of a fixed resource budget according

to nodes’ criticality at operational level and then optimize among tactical risk, busi-

ness/mission risk, and strategic risk.

• Empirical validation within an ICS test-bed to assess performance of the criticality

model and resource allocation scheme.

2.1 ARCHITECTURE

The risk analysis and remediation architecture are composed of Strategic Response De-

cider (SRD), Attack Graph Generator (AGG), Fault Graph Generator (FGG), Response

Operational Impact Assessment (ROIA), and Threat Risk Quantifier (TRQ) modules.

These modules evaluate individual and combined mitigation actions in financial and op-

erational perspectives to generate the corresponding response plans. The data provided to

these modules comprises network inventory, service inventory, reachability, weighted connec-

tion matrices, security policies, mitigation actions, and vulnerability inventory.
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Figure 1. Optimal Cyber Risk Remediation conceptual workflow

We model the cyber attacks using Attack Graphs (AG) provided by MulvaL [39], which

calculates the exposure of the monitored system to threats [40]. The AG generation depends

on the monitored system’s reachability matrix, the vulnerability inventory, and the mission

graph (MG). An MG carries information about the probability of global operational impact

on the mission originating from widespread effects causing local impacts [41]. The Fault

Graph (FG) [5] is generated from inputs provided by the system designer and resource

dependency model in the form of a probabilistic graphical model (PGM) [41]. An AG is

integrated into a pre-existent FG to extend traditional risk analysis (which captures only

safety risks) to include malicious threats [5] and formed attack fault graph (AFG).

2.1.1 THREAT RISK QUANTIFICATION (TRQ)

Organizations conduct risk management activities by using a standard EDS risk man-

agement framework, depicted in Figure 1 [2].

TRQ evaluation starts from Tier 3 (Tacticalrisk) and uses the AFG to compute the risk

profile. TRQ is responsible for communicating the risk profile to the SRD module to derive

the best response plan. The MG describes an organization’s business model, including

the consequences of potential impacts on business processes. TRQ computes elementary
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Figure 2. EDS Risk Management Framework
Figure 3. Extended BPMN of Test-bed

risks (ER) based on calculated attack and fault paths. ER is defined as the quantum of risk

inflicted by a single detrimental event to an asset through the exercise of a single attack/fault

scenario on one single supporting asset contributing to that asset. The ER is a three-tuple

metric and is defined as:

ERi = [Likelihoodi, Impacti, f(Likelihoodi, Impacti)] (1)

The likelihood can be calculated from the probability of exploiting a software vulnerability

of an asset-based on CVSS base score [40] and cumulative probability [42] for attack path.

The chance of random faults occurring in an asset can extract from vendor data sheets [43].

The events caused by cyber-attack or unexpected defects are assumed to be not mutually

exclusive but are independent. These events are OR gated at the integration point and can

be defined as [5]:

PoutORGOAL = 1−
∏

[(1− Pin(AG))(1− Pin(FG))] (2)

where Pin(AG) indicates the input event from combined malicious attack events and

Pin(FG) indicates the input event from combined random fault events for final goal OR
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gate. We assume that although Pin(AG) and Pin(FG) stems from two different sources, but

the unification of their occurrence can derive from [3] in a standard period.

The impact of each ER depends on the successful execution of a dangerous scenario’s

terminal step. The inflicted consequences from a terminal node can be calculated from the

criticality of that asset. The criticality ranking of an asset and the optimized remediation

actions can be calculated from the models described in Chapter 4.

TRQ calculates the Tier 2 business process/mission risk with the help of estimated

three tactical risk parameters (likelihood, criticality impact, and tactical risk) from Tier 3.

To perform a mission impact assessment, we model business processes using the business

process modeling notation (BPMN). We also model a business process as a (dependent)

collection of tasks [7].

In this work, we extend BPMN and model mission dependencies, as illustrated in Figure

3. An expert models a business function “Industrial Automation” in an Industrial Control

System (ICS) and may identify a Supervisory Control and Data Acquisition (SCADA) server

as the mission-critical device, i.e., business resource. The business processes of the test-bed

are to distribute and control electric power to the small city. In a mission dependency model,

every dependency represented by conditional probability describes a probability of impact.

These business processes require four business functions provided by eight mission-critical

resources. The distribution of electric power requires the business process BP (Distribution)

and business function BF (remote terminal units (RTUs)), which are remotely placed actors

for switching power. There has two RTUs access via a cable communication link, and

individual RTU provides business function BFR. The two RTUs are redundant. Due to

that, the conditional probability P (BFR|RTU1 orRTU2) is equal to 0.5. Likewise BFR, the

conditional probabilities P (BFH |HMI1 orHMI2 or P (BFS|SCADA1 or SCADA2 is equal

to 0.5.

Two redundant SCADA servers (business function BFS) provide the central intelligence

between controlling (BPC) and distributing power (BPD). Those SCADA servers manage

the individual RTUs monitored by human-machine interfaces (BFH).

Two SCADA servers of the business function BFS represent the mission dependency

model. Business experts identified an “ICT” business function BFI consisting of one WS
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and one WebS deemed non-critical. Therefore, P (BFI |WebS) = (0.684/1.009) = 0.68 and

P (BFI |WS) = (0.325/1.009) = 0.32 (Calculated from asset criticality). BFI has mini-

mal involvement in controlling BPC and consequently assessed with a probability fragment

of P (BPC |BFI = 0.05. The joint probability distribution of mission in Figure 3 can be

calculated as follows:

P (Accenture, BPC , BPD, BFI , BFH , BFS, BFRTU ,WebS,

WS,HMI, SCADA,RTU) (3)

where we obtain joint conditional probability through the noisy-or assumption that every

conditioned event can be independent [41].

We adopt the inoperability input-output model(IIM) [9] to measure Strategic Risk. IIM

is capable of quantifying interdependencies among multiple critical economic infrastructure

sectors [44] and is formulated as [9] :

q = A∗q + c∗ (4)

q is the inoperability vector expressed in terms of normalized economic loss (EL). c∗ is a

perturbation vector expressed in terms of normalized degraded final demand. A∗ indicates

the degree of coupling of the industry sectors. Here, EL represents the monetary loss asso-

ciated with an inoperability value. This loss includes an organization’s reputational value,

regulatory loss, environmental effects to nature, and safety issues towards living beings.

2.1.2 RESPONSE OPERATIONAL IMPACT ASSESSOR (ROIA)

ROIA aims to measure mission impact assessment based on inter-dependencies between

safety and security. ROIA seeks to assess the operational (tactical) risk condition of resources

for different resource budget allocation. ROIA determines the effects on operation due to

remediation actions. We only consider software patching (SP ) and a node’s redundancy

as remediation actions in this work. The optimized resource allocation for SP and node

redundancy is calculated from Chapter 3.
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2.1.3 STRATEGIC RESPONSE DECIDER (SRD)

The goal of SRD is the automated administration of policies, including new rules, removal

of extreme conditions, and activation of strategic responses. SRD interacts with the AG, FG,

TRQ, and ROIA components to evaluate and select the best answer by applying trade-off

among operational resilience (tactical risk), mission risk, and strategic risk.

SRD relies on the response financial impact assessor (RFIA) component to quantify the

economic benefit. Response plans represent the proposed mitigation (SP and asset redun-

dancy) of the assessed security and safety risks. RFIA calculates the return-on-response-

investments (RORI) index associated with the mitigation actions composing a risk response

plan. RORI index can evaluate optimal plans based on the trade-off between resilience to

attacks and faults and EL. Santos et al. [45] show that the EL can represent the function

of the inoperability of sector i:

∆xi = qixi (5)

where qi is the resulting inoperability to sector i derived from Eq. 4, which combined

with the ideal production (xi) will yield an estimate of the EL (∆xi). Summing all the

individual sector’s Els will yield the cumulative economic loss. For a particular response

plan j, the cumulative economic loss to the economy, denoted by Γw[j], can be calculated as

follows:

Γw[j] =
n∑
i=1

∆xw[j],i =
n∑
i=1

qw[j],ixi (6)

where ∆xw[j],i is the EL and qw[j],i is the resulting inoperability for sector i for a risk response

plan j.

RORI index is calculated for each mitigation risk response plan and defined as:

Φj =
Γw[0] − Γw[j]

BDj

(7)

The model divides the difference between the magnitude of cumulative ELs with the
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response plan option j relative to a baseline scenario by the costs associated with imple-

menting that jth option. Φj represents a benefit-cost ratio. When the mitigation actions

(SP&noderedundancy) apply based on criticality value within a defined resource budget,

effective Risk Minimization (RM) is achieved

RFIA components evaluate and select mitigation actions from a pool of candidates by

ranking them in terms of RORI. The optimal selection of the response plan derives from the

Surrogate Worth Trade-off (SWT ) method described by [45] provides a technique to address

these multiple-objective problems. For two-objective functions, f1 and f2, denoting the policy

cost and cumulative EL respectively. Policymakers would aim to minimize these objective

functions, to minimize EL while investing the minimum resources. The first objective is to

minimize the cumulative EL (f2). Eq. 6 then yields:

minf2 = Γw[j] =
n∑
i=1

∆xw[j],i (8)

The second objective is to minimize the investment cost (f1):

minf1 = BDj (9)

An effective policy option can drive down the value of the expected EL to the allowable

risk acceptance level of an organization, subject to the constraint of acceptable implementa-

tion cost. To solve the two-objective optimization problem via the SWT method, we convert

Eqs. 8 and 9 into the following ε- constraint formulation:

minf1 subject to f2 ≤ ε2 (10)

We can reformulate Eq. 10 in terms of a Lagrangian function using the ε-constraint approach

[46]. The problem then becomes:

L(.) = f1 + λ12(f2 − ε2) (11)
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From this equation a necessary condition for optimality states that:

λ12 = −df1
df2

> 0 (12)

where λ12 represents the trade-off, or slope, between the two objective functions. Once these

relationships are defined, the decision-maker may interact with the model and evaluate dif-

ferent policy options, subject to preferences regarding constraints such as cost and acceptable

risk.

2.2 IMPLEMENTATION, RESULTS, AND ANALYSIS

2.2.1 EDS NETWORK IMPLEMENTATION:

We implemented an EDS network depicted in Figure. 4 in Accenture ICS research test-

bed [47]. The user workstations contained the vulnerability of CV E−2009−1918 in Internet

Explorer (IE). If a user accesses malicious content using the vulnerable IE browser, the

machine might be compromised. The web server at the demilitarized zone (DMZ) contained

the vulnerability CV E − 2006 − 3747 in the Apache HTTP service, resulting in a remote

attacker executing arbitrary code on the machine. The redundant SCADA1 and SCADA2

servers contained the vulnerability CV E−2018−5313, allowing privilege escalation up to the

administrator level. Every SCADA server had a human-machine interface (HMI) software

in it. The SCADA1/SCADA2 server controls RTU1/RTU2 of the substation distributing

1 Mega Watt (MW ) electricity to other connected critical infrastructures Transportation

(TRNS) and Manufacturing Industries (MFG). We assume that, if an attacker acquires

control over the SCADA, the respective RTU and HMI may be acquired as well.

2.2.2 RESULT AND ANALYSIS:

The Nessus’s scanned data, Qualys’s host, scanned logs, and Wireshark’s passive traces

were collected from the test-bed synchronously for half an hour. An AG and an AFG are

depicted in Figure 5 and in Figure 6. From the AFG, we can determine that there were

two types of threats in the Accenture test-bed: Lateral movement of a cyber attacker to
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Figure 4. Logical view of EDS operational
Test-bed

Figure 5. AG of EDS Operational network

compromise critical assets and random operational failure of a critical asset which might

impact safety.

TRQ is calculated based on a cyber threat’s exploiting the probability of an asset from

CV SS the base score [42]. We collect the probability of a random fault of an OT asset

(SCADA, HMI, and RTU) from the asset datasheet described in [43]. The unification of a

cyber threat exploiting probability and the system’s random fault probabilities are derived

from [5]. Figure 6 also depicts three different scenarios of node exploitation by a cyber

attack and a random failure of an asset. The black-colored box represents the probability

when no remediation policy (Base Policy) is applied; the green colored box indicates policy

1 (mitigation action: SP), and the blue color box represents policy 2 (mitigation action:

SP+ asset redundancy). The weighted reachability matrix calculated from TCP/DNP3
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Figure 6. AFG of EDS operational network

dump data is shown in Table 1. Total exchanged packets during the half an hour time was

8006. The weights were calculated by dividing exchanged packets between pairs with the

total numbers of packets exchanged during the period among nodes. Then TRQ calculated

an asset’s criticality to measure the tactical risk of security and safety after following Eqs.

13-17 from Chapter 3 (see Table 2).

For total criticality calculation in Table 1, we set α = 0.15, β = 0.25, and γ = 0.6.

The TRQ developed the complete mission dependency graph from tactical risk, the likeli-

hood of exploiting software vulnerability and a random system’s fault, and criticality impact

of an asset. The test-bed mission dependency graph is depicted in Figure 3.



21

Table 1. Weighted Reachability Matrix of tactical network

Nodes WS WebS SCADA/HMI RTU

WS 0 0.125 0 0

WebS 0.125 0 0.125 0

SCADA/HMI 0 0.125 0 0.25

RTU 0 0 0.25 0

Table 2. Operational nodes’ total Criticality Calculation

Nodes l CEN(δ =
0.5)

d Criticality(C)

WS 1 0.5 0 0.325

WebS 2 1.225 0 0.684

SCADA/HMI 3 0.949 1.0 1.252

RTU 4 0.548 1.0 1.18

Table 3. Tactical network’s Exponential Cost Resource Allocation

Nodes C maxA C
maxA

A V (%)

WS 0.325 4.64 0.070 0.561 63.8

WebS 0.684 4.64 0.147 2.060 9.24

SCADA/HMI 1.252 4.64 0.270 6.3078 5.68

RTU 1.18 4.64 0.241 6.071 5.97

Then, TRQ determined business/mission risk likelihood for identified threats (in our

case inoperability of SCADA, HMI, or RTU) of tactical risk, which may include external

cyber threats (an attacker’s lateral movement to compromise SCADA, HMI, or RTU) or

internal system random failures after following Eq. 3. The threat events’ likelihoods of

every asset and calculated business/mission inoperability is shown in Table 4. The busi-

ness/mission inoperability puts as an input inoperability to calculate strategic risk from Eq.

4. The calculation of strategic risk and EL is shown in Table 5 after following Eq. 4. The

interdependency matrix A∗ [9], which consists of the interconnectedness of EDS distribution
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Table 4. Threat Likelihood at every asset & Business Inoperability (I)

Mitigation Ac-
tions

Threat Likelihood at assets Business Inop-
erability

WS WebS SCADA HMI RTU

No Action 0.72 0.144 0.1152 0.1152 0.1152 1.26× 10−6

SP 0.638 0.0924 0.0570 0.0570 0.05975 1.01× 10−7

SP&Redundancy 0.638 0.0924 0.0569 0.0569 0.05975 9.28× 10−8

Table 5. IIM Output& EL

Policy Inoperability (I)(Power Base:10−5) & EL (Units)

ED(I) ED(EL) TRNS(I) TRNS(EL) MFG(I) MFG(EL)

Policy0 0.1522 152.2 0.0005 0.5 0.0027 2.7

Policy1 0.01222 12.22 0.00004 0.04 0.00022 0.22

Policy2 0.01124 11.24 0.00004 0.04 0.00020 0.20

(ED), transportation (TRNS), and manufacturing industries (MFG). For simplicity, we

assume the yearly economic contribution from each sector towards the city is the same as

108 units. The monetary valuation of each unit can be determined from expert judgments

from economists. Policy0 indicated when there had been no mitigation action, Policy1

mapped with remediation action SP , and Policy2 indicated remediation action SP along

with system redundancy for system faults.

ROIA evaluated remediation actions at the operational level to minimize the likelihood

of tactical risk within a predefined budget resource. In this work, we only considered two

types of remediation actions: 1) SP: SP for known vulnerabilities of critical assets, and 2). A

redundant critical asset to build resistance against system failure. The system administrator

can allocate the SP resource (15 units) after following the optimized resource allocation

scheme described in Eq. 26 from Chapter 3. The detailed calculation of exponential cost

resource allocation is shown in Table 3.

Table 3 indicates that the optimal allocation ensures when the resource distributes ac-

cording to the criticality of the node. Likewise, the system’s optimal redundancy ensures
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Figure 7. Strategic Risk trade-off analysis

that the redundant system distributes to the node’s criticality. We kept the same amount

of redundant resources (5 units) for SCADA, HMI, and RTU for simplicity. The threat

likelihood snapshot of every asset and business impact after resource allocation is shown in

row 2 of Table 4. The operational effect of redundancy also calculated and shown in row 3

of Table 4.

SRD took identified threats (Attacker lateral movement to compromise SCADA,HMI,

and RTU and random failure of critical assets’ operation), authorized mitigation actions

(SP and system redundancy), and strategic policies (Policy0, Policy1, andPolicy2) as inputs

and calculated RORI indexes after following Eqs. 6 & 7, which could be used to determine

policies by optimizing strategic risk and operational budget. The calculation of optimization

scheme after following Eqs. (8-12), is shown in Figure 7.

The resulting graph in Figure. 7 will give decision-makers a sense of the potential returns

associated with the level of investment. The trade-offs at each point between policy costs (15

units for patching and 15 units for three critical assets redundancy) and ELs represent by

the slope λ12. For this scenario, we find that λ12 = 0.12 at the location where policy option

j = 1. This value of λ12 shows us the ratio of investment at j = 1 with a cost of 15 units
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(SP cost only) concerning its EL reduction of (12.22-152.2) units. Note that λ12 = 0.12 is

the reciprocal of Φ1 = 9.50, calculated from Eq. 7.

2.3 SUMMARY OF THE CHAPTER:

In this chapter, we introduced a risk remediation response system that generates response

plans containing mitigation actions and corresponding financial and operational assessment.

The response plan includes system level mitigation actions that can mitigate system secu-

rity and safety threats according to the system’s criticality within budget constraints. The

empirical validation in an actual ICS test-bed showed that system-level risk was maximally

reduced when the resource was allocated according to node criticality. The model then

mapped optimized mitigation actions to the strategic response plans and optimally selected

a response plan to mitigate system threats by trading-off between system resilience and EL.
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Chapter 3

CYBER DEFENSE REMEDIATION BASED ON CRITICAL

NODE ANALYSIS IN EDS

This chapter describes how to model a node’s criticality index for the selection of opti-

mal remediation schemes in a heterogeneous EDS infrastructure. The contributions of this

chapter are as follows:

• Model criticality of a node in the EDS infrastructure considering network heterogeneity.

• Propose an optimal resource allocation (remediation) scheme of a fixed resource budget

according to nodes’ criticality that minimizes the network risk.

• Empirical validation within an ICS testbed to assess performance of the criticality

model and resource allocation scheme.

3.1 SYSTEM MODEL

Figure 8 depicts the processes and interactions among different modules in the proposed

risk analysis and resource allocation model. Here, resource refers to the deployable items

to mitigate exploiting a vulnerability in a system that can be converted to monetary value

like working hours for installing new patches, purchasing new patches, and related system

downtime cost. Leveraging network scanning data and host logs, such as TCP/DNP3 dump,

the system creates Attack Graph (AG) using [39] to determine nodes’ criticality. The risk

analysis module calculates the risk of exploiting a node’s vulnerability in the AG as a product

of the probability of using the vulnerability and potential damages caused by controlling the

node. The node criticality for the target EDS gives the quantification of the damage. After

calculating a node’s risk, the security administrator can filter out the most critical paths and

reduce the risk for those paths by selecting appropriate remediations. In the next subsections,

we will discuss every module of our system.
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Figure 8. System Model

3.1.1 ATTACK GRAPH GENERATION

The open-source tool MulVal [39] is used in our system to create AG from network

scanned data. The semantics of MulVal AG takes from [40] and Figure 10 explains AG with

an example. The labels of the graph nodes display on the right-hand side of the AG diagram.

The intrinsic probability for exploiting a vulnerability without pre-conditions inside the oval

shape takes from CV SS base score [40]. The cumulative probability (CP ) derives from this

intrinsic probability of a vertex after the following methods in [42]. There is an expected loss

of Ci associated with each vertex/node representing the loss value in monetary units when

the vertex has been acquired or exploited. This loss value also indicates the Criticality of

this node.



27

3.1.2 HOST SCANNING AND CRITICALITY CALCULATION

To model the criticality of a node in EDS, we primarily focus on three factors which

describes the heterogeneous nature of EDS (IT & OT).

C(i) = αl(i) + βCEN(i) + γd(i) (13)

where C(i) is the criticality of the node i, driven by three properties l(i), CEN(i), and

d(i) respectively indicate locality, centrality and physical damage properties of critical node

i. Each characteristic has a tuning parameter α, β, and γ for administrator’s adjustments

usages to control the relative importance of three characteristics. For example, in OT net-

works, γ should have more weight to consider physical damage, whereas, in the control

system, β should increase to consider centralized control nodes more.

Locality (l): locality is defined as the relative position of a node according to network

layers defined in IEC 62443 standard [48] for EDS. Servers closer to physical assets are

considered to be more cyber critical and receive a higher value, for example, in an EDS

shown in Figure 9, Supervisory Control And Data Acquisition 1 (SCADA1) and SCADA2

servers located at levels 2 or 3 are more critical than workstations situated at levels 4 or 5.

A higher score assigned to an asset indicates that it is closer to the physical processes—the

localization of a node maps from running services and processes in the node. The running

services and processes collect from hosts’ scan logs.

Centrality (CEN): Centrality is a measure of criticality within the same layer of the

IEC 62443 model. Since nodes at the same layer may have different attack propagation

opportunities, individual node criticality can vary. Quantifying a single layer’s relative cen-

trality is done with a weighted network depicting network connectivity (unique neighbor

connections) and traffic load per node. The load measure calculates by enumerating the

number of packets (TCP, DNP3, etc.) exchanged between a pair of nodes normalized by the

total number of packets traversing the layer during a predefined period. Unique connections

count (Degree) of a node i is the number of communicated adjacent nodes in a network [49]:
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ki = cd(i) =
N∑
j=1

xij (14)

where j represents all other nodes, N is the total number of nodes, and x is the adjacency

vector, in which xij = 1, if node i is connected to node j, and xij = 0 otherwise. Degree has

generally been extended to the sum of weights when analyzing weighted networks [49] and

labeled strength on node. Unique connections weight is formulated as follows:

si = cwd (i) =
N∑
j=1

wij (15)

where, wij is defined as the weight of the link from node i to j. The product of count and

weight yields the degree indicating the level of involvement of a node within its network. In

addition, the tuning parameter, δ, determines the relative importance of the number of links

compared to tie weights. More specifically, we propose a degree centrality measure, which is

the product of the number of nodes that a focal node is connected to and the average weight

to these nodes adjusted by the tuning parameter:

CEN(i) = ki(
si
ki

)δ = (
N∑
j=1

xij)
1−δ(

N∑
j=1

wij)
δ (16)

Damage Factor (d): to address global topological properties in the EDS context, we

consider potential damage at the physical process level (L2 and L1), which is a function of

managing the managed OT physical element. Utilization is a measure of applied electrical

current (controlled power) over time within the acceptable range. The higher the current

within the range, the more used the device is. Normally this information can be found from

the exchanged DNP3 messages between SCADA server and substations’ Remote Terminal

Units (RTUs). RTUs periodically transmit voltage and current level to the SCADA server

to control a substation’s operation. From the current level, SCADA servers calculate the

operational load of a substation. As such, an attack on more utilized SCADA controlled
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devices can create more physical damage. Damage is defined as [50]:

d(i) = (
Pl(i)

PT
)L
∗−1 (17)

where L∗ indicates the value of the loading level where power flow diverges (P-V curve).

SCADA server decides the value of L∗ from monitored voltage and current level. Pl(i) is loss

of load for the compromised system i and PT indicates system’s total load.

3.1.3 DISCOVER CRITICAL PATH

The system administrator uses a cumulative probability (CP ) of every node in AG and

Criticality of that node to calculate the critical path. Here, the critical path is the path

that creates maximum damages to the system if an attacker has chosen this path to attain

his/her goal. The most probable attack path may not necessarily always be the same as a

critical path. We assume that the critical path is preferable for an extremely skilled and

knowledgeable attacker rather than the most probable route.

3.1.4 RISK ANALYSIS

The AG of an EDS network provides the logical representation of the attacker’s lateral

movements. To analyze the risk of those movements, we need to estimate the complexity of

activities per stage in creating an AG. The complexity associated with an attack is a function

of the Criticality of that stage as defined above denoted as Ci. The probability of exploiting

a vulnerability implies Vi (provided by external repositories indicating the complexity of

using such vulnerability), and the likelihood of threat manifestation in that stage is denoted

as Ti. Since threat intelligence varies in time according to global threat, we used an equal

value for all elements, set to one for our model. As such, the risk of a stage in AG is defined

as:

R(i) = TiViCi (18)
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3.1.5 RESOURCE ALLOCATION/REMEDIATION PLAN

Suppose we have a resource budget, BD, and the cost to eliminate all vulnerabilities

and exploits from node i is maxAi, where Ai is the actual cost invested. The goal is to

reduce the number of pre-conditions, vulnerabilities and exploits, denoted as Vi, to zero.

The number of remaining vulnerabilities is a function of budget allocation Ai that represents

actions performed on a node to remove and remediate such vulnerabilities for every node in

AG. The target function is to allocate the correct Ai to each node such that the overall risk

may minimized. Namely,

min {R} =
N∑
i=1

Vi(Ai)Ci (19)

subject to

N∑
i=1

Ai ≤ BD;
N∑
i=1

maxAi > BD;Ai ≥ 0 (20)

Linear Cost Model: What will be the risk reduction amount if we allocate more

resources to critical nodes and fewer resources to less critical nodes? The disproportionate

budget BD allocation to critical nodes and a smaller amount to less critical nodes to reduce

overall system risk is known as the linear cost model of risk reduction.

In the linear cost model, the more funds allocated to Ai to protect node i, the less

vulnerable is the node up to a maximum investment, maxAi, as follows [49]:

Vi(Ai) = 1− σiAi; 0 ≤ Ai ≤ maxAi (21)

Here, σi = slope of straight line such that 0 = 1− σimaxAi. The slope is determined by the

cost of 100% hardening, which is maxAi. Vulnerability is driven to zero when Ai = maxAi,
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so σi = 1
maxAi

. This leads to the simple linear cost model of risk reduction:

min {R(A)} = min

N∑
i=1

Cimax{(1−
Ai

maxAi
), 0} (22)

subject to

N∑
i=1

Ai ≤ BD;Ai ≥ 0 (23)

To calculate the actual optimized budget allocation to each node, we need to know the

maxAi for each node. According to [51], the maximum spending for hardening an asset from

cyberattack should not be more than 37% of its criticality value irrespective of Exponential

Power Class type attack or Proportional Hazard Class type attack. In our system model,

we first determined the maxA based on the most critical node [51]. The next nodes’ maxA

is determined by sorting the list of nodes according to their consequence values, where i

enumerates nodes in ascending order by the product, Ci and maxAi:

Ci1maxAi1 ≥ Ci2maxAi2 ≥ .... ≥ CiNmaxAiN (24)

Next, allocate maxAi1to the highest, maxAi2 to the next highest, and so on, until the

remaining budget is less than maxAik. The remaining budget Φ allocates to the kth ranked

node, and zero allocates to all remaining nodes. In this way, the nodes that use resources

most efficiently are given the highest priority and highest amount possible.

The ranked-order allocation strategy is optimal because it efficiently reduces the risk

contribution of the highest risk nodes until the budget depletes. Thus, the ranked-order

allocation maintains the rank-order property established by consequences:

Ci1
maxAi1
maxAi1

≥ Ci2
maxAi2
maxAi2

≥ .. ≥ Cik
Φ

maxAik
≥ 0
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Ci1 ≥ Ci2 ≥ .. ≥ Cik
Φ

maxAik
≥ 0;

Φ

maxAk
< 1

The exponential cost model:

The linear cost model is unrealistic because it assumes that the vulnerability will be zero

with the increased budget allocation, but in reality, the vulnerability attached to a node

cannot be zero since the vulnerability landscape evolves and continuously generates new

threats. In other words, vulnerability reduction may suffer from diminishing returns. For

this reason, researchers prefer the exponential cost model [49]. The exponential cost model

is precisely the same as the linear cost model except for the relationship between budget

allocation and vulnerability reduction. Moreover, the allocation strategy is the same; the

higher-ranked ( Ci

maxAi
) nodes receive more resources than lower-ranked nodes.

The exponential cost model differs from the linear model in two important ways: (1) the

actual resource allocations Ai are different, and (2) network risk is typically higher because an

infinite investment is required to eliminate the vulnerability. A simple exponential function

for vulnerability reduction is [49]:

Vi(Ai) = e−σiAi ; 0 ≤ Vi(Ai) ≤ 1 (25)

This function asymptotically declines to zero when an infinite budget allocation assigns

to this node. Unlike the linear strategy, the exponential cost allocation never completely

removes the vulnerability. Allocation of budget BD to nodes is optimized when objective

function R is minimized, with budgetary constraint. The optimized function is [49]:

R(A) =
N∑
i=1

e−σiAiCi − λ[
N∑
i=1

Ai −BD] (26)

where,

Ai = ln(σiCi)−ln(λ)
σi

and ln(λ) =

∑N
i=1

ln(σiCi)
σi
−BD∑N

i=1
1
σi
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In this work, we kept maximum budget allocations for every node the same as the max-

imum allocation for the most critical node which was (maxAi1).

3.2 IMPLEMENTATION, RESULT, AND ANALYSIS:

EDS Network Implementation: We implement an EDS network depicted in Figure 9

in Accenture ICS research test-bed [48]. The entire test-bed connects to a network switch and

a router, and the zoning implements using VLAN and firewall rules. There are five subnets

created by an external and internal firewall. The IT Workstations (WSs) are located at

the IT subnet. A Web Server (WebS) locates at the DMZ subnet and is directly accessible

from the Internet through an external firewall. SCADA servers (L3/L2), RTUs (L1) are in

different subnets under a larger OT subnet that holds critical communication. The SCADA1

servers and SCADA2 servers are only accessible from the WebS of the DMZ zone. The WebS

is accessible from user WS and other hosts from levels 4 or 5. The user subnet contains

user’s WS. The firewalls allow all outbound traffic from the user’s subnet. The test-bed

also includes an Intrusion Detection System (IDS) running both IT and OT specific rules

and a commercial OT Asset Discovery and Management (ADM). They are both connected

to the span port of the switch to inspect all ICS traffic. The DNP3/TCP dump can collect

from this switch. For simulation, we injected vulnerabilities on the test-bed machines. The

user workstations contained the vulnerability of CV E − 2009 − 1918 in Internet Explorer

(IE). If a user accesses malicious content using the vulnerable IE browser, the machine may

be compromised. The web server (DMZ) contains the vulnerability of CV E − 2006− 3747

in the Apache HTTP service, resulting in a remote attacker executing arbitrary code on the

machine. The SCADA1 and SCADA2 server contained the vulnerability of CV E− 2018−

5313, which could allow privilege escalation up to the administrator level. The SCADA1

server controls 10 RTUs of substation 1, whereas the SCADA2 server controls 7 RTUs of

substation 2. We assume that if an attacker acquires control over the SCADAs, the RTUs

can be acquired.

Result and Analysis:

The Nessus’s scanned data, Qualys’s host, scanned logs, and Wireshark’s passive traces
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Figure 9. Logical view of EDS Test-bed for Criticality based tactical risk remediation.
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collect from the test-bed synchronously for half an hour. MulV AL generates an AG as de-

picted in Figure 10. This AG contained logical attack paths for the attacker, the cumulative

probability of exploiting vulnerabilities starting from a vantage point (Internet) to a target

(SCADA1/SCADA2), the relevant consequences for exploiting the vulnerability, and the

risk of each exploitation.

Figure 10. The AG of test-bed based EDS for Criticality based remediation.
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The weighted graph derives from TCP/DNP3 dump data is shown in Figure 11. To-

tal exchanged packets during the half an hour time is 8006. We get weights by dividing

exchanged packets between pairs with the total numbers of packets exchanged

Figure 11. The weighted graph
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Subsequently, the centrality of criticality may calculate by plugging the Centrality pre-

sented in Figure 11 and calculated in Eq. 16. The details are shown in Table 6 for different

values of δ.

Table 6. Degree centrality at different δ.

Node cd cwd CEN(i) = k1−δi × sδi when δ =

0 0.5 1.0 1.5

WS 1 0.25 1 0.5 0.25 0.125

WebS 3 0.5 3 1.225 0.5 0.204

SCADA1 2 0.45 2 0.949 0.45 0.213

SCADA2 2 0.3 2 0.775 0.3 0.116

RTU1 1 0.3 1 0.548 0.3 0.164

RTU2 1 0.2 1 0.447 0.2 0.089

Table 6 illustrates the effect of the δ on the degree of centrality for the nodes in Fig

11. It can be explained logically from this table that when δ = 1 the measure’s value is

equal to the node’s weight (Eq. 16). When δ < 1 and the total node weight is constant,

then the number of connections increases the value of the measure. For example, when

δ = 0.5, node WebS attains a higher score than node SCADA1, despite having almost the

same node weight. Conversely, when δ > 1 and the total node weight is constant, then the

number of connections decreases the value of the measure in favor of a greater node weight

concentration. Hence, node WebS attains almost the same value of the measure as node

SCADA1, so logically in our EDS model, we choose the tuning parameter as 0 < δ < 1.

The locality of Criticality (l) derives from the running applications (like HMI tick), ser-

vices (Operation-critical or Non-critical services, etc.), and processes collected from hosts’

logs. To calculate the Damage characteristic, we only focus on the messages that regulate the

level of 0 sensors and breakers. From DNP3 messages, we determined that the SCADA1 is

controlling a substation of 3 MW load through 10 RTUs, whereas the SCADA2 is controlling

2 MW substation through 7 RTUs. Plugging those load values into Eq. 17, we determined

the Damage characteristic of Criticality for individual SCADA. The RTU’s damage char-

acteristic of Criticality calculates by dividing individual SCADA’s damage characteristics
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by the number of RTUs under this SCADA. Here, PT = 5MW and L = 2, so the total

Criticality of a node derives from the (l), (CEN) from Table 6, and (d) in Eq. 13. Table 7

shows the calculation of total Criticality (C) of an individual node in EDS.

Table 7. Total Criticality Calculation

Nodes l CEN(δ = 0.5)) d Criticality(C)

WS 1 0.5 0 0.325

WebS 2 1.225 0 0.684

SCADA1 3 0.949 0.6 1.252

SCADA2 3 0.775 0.4 1.106

RTU1 4 0.548 0.06 1.18

RTU2 4 0.447 0.057 1.101

For total criticality calculation in Table 7, we set α = 0.15, β = 0.25 and γ = 0.6. The

system administrator can now apply nodes’ criticality to the AG and determine the most

critical path along with most probable paths for a certain attacker goal to achieve.

Figure 10 also shows the cumulative probability and its consequences. Assuming the

attacker’s goal is SCADA1/SCADA2, we can see two paths for the attacker to reach any

of these servers. Among those paths: 0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 →

10a→ 11a→ 12a; 0→ 13→ 6→ 7→ 8→ 9→ 10a→ 11a→ 12a belongs to SCADA1 and

0→ 1→ 2→ 3→ 4→ 5→ 6→ 7→ 8→ 9→ 10b→ 11b→ 12b; 0→ 13→ 6→ 7→ 8→

9→ 10b→ 11b→ 12b belongs to SACDA2.

Although these two paths have the same exploitation probability from the attacker start-

ing node to the server goals of SCADA1/SCADA2, the damage that occurs along the paths

is not the same. Consequently, assuming that the SCADA1/SCADA2 is not the only goal,

taking the attacker can analyze options and not react to the next achievable stage of the AG

during an actual attack. A knowledgeable attacker may then select the path where he/she

can do the most damage with a different intention than described in [52]. Regardless, before

an attack, a cyber-resilient organization will harden the most impactful path prior to an

attack to reduce the overall potential damage while protecting the golden target, so, the

recommendation should be first to harden the attack path with the highest risk score.



39

Consequently, the system’s security planner needs to propose remediations to potential

paths to block future malicious activities. In our model, we considered the allocated op-

erating budget to monetize different security actions to be performed on our network. We

considered that a security planner, respectively, could decide every unit of Criticality and

resource budget. Total criticality is also scaled up here from [0→ 2] to [0→ 20] for simplic-

ity. Suppose the system planner has 15 units of such a budget. The system administrator

has two options to spend the budget optimally amongst nodes: 1) allocate according to the

linear cost model, and 2) allocate according to the exponential cost model.

Initially, before applying any operating budget as remediation, the network’s total risk

value is 8.62. Applying a linear cost model after following Eq. 21, Eq. 22 and Eq. 23, the

risk reduces to 4.30 which is 49.86% of total risk. The details are in Table 8.

Table 8. Linear Cost Resource Allocation

Nodes C maxA C
maxA

A V (%) R

WS 3.25 4.64 0.70 0 72 2.34

WebS 6.84 4.64 1.474 0 14.4 0.985

SCADA1 12.52 4.64 2.70 4.64 0 0

SCADA2 11.06 4.64 2.38 4.64 0 0

RTU1 11.18 4.64 2.41 4.64 0 0

RTU2 11.01 4.64 2.37 1.08 8.83 0.973

Allocating the budget according to the exponential cost model after following Eq. 25

and Eq. 26, the risk reduces to 5.41 which is 62.7% of total network risk. The details of the

calculation are shown in Table 9:

The exponential cost model’s risk reduction is slightly lower than the linear cost model

because the exponential model never reduces vulnerability to zero. However, for both linear

and exponential cost models, the optimal allocation is ensured when the budget is distributed

according to nodes’ rank. Figure. 12 shows budget allocation amongst nodes for linear cost

and exponential cost allocation. In both cases, the limited budget (15 units) allocates after

ranking their Criticality from highest to lowest: SCADA1, RTU1, SCADA2, RTU2, WebS,
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Table 9. Exponential Cost Resource Allocation (λ = 0.53)

Nodes C maxA C
maxA

A V (%) R

WS 3.25 4.64 0.70 0.561 63.8 2.074

WebS 6.84 4.64 1.474 2.060 9.24 0.632

SCADA1 12.52 4.64 2.70 3.278 5.68 0.711

SCADA2 11.06 4.64 2.38 3.029 6.0 0.663

RTU1 11.18 4.64 2.41 3.051 5.97 0.667

RTU2 11.01 4.64 2.37 3.020 6.01 0.662

and node WS.
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Figure 12. Linear and exponential resource allocation

Figure 13 depicts the allocation priority- from highest to lowest. Linear and exponential

allocation obeys the rank-order established by the product of Ci

maxAi
- see the columns labeled

C
maxA

in Table 8 and Table 9. This property is observed in allocation strategies regardless of

whether the relationship between allocation and vulnerability reduction is linear, exponential,

or a power law. Thus, the most critical nodes of a network are those with the highest C
maxA

value.

3.3 SUMMARY OF THE CHAPTER
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Figure 13. Linear and exponential cost allocation vs criticality

This chapter presented a data-driven model to assess a node’s Criticality in a hetero-

geneous IT/OT/ICS EDS network. We also showed that assets along critical paths are as

important as the target when several potential attack paths can be performed. We proposed

critical node characteristics evaluation based on architectural location in IEC 62443, a mea-

sure of centrality based on node connectivity and frequency of network traffic, and electrical

power control. We also examined the relationship between cost models of budget allocation

to remove vulnerabilities on critical nodes and the impact on gradual readiness. Empirically

validated in an existing network ICS test-bed computing nodes criticality, two cost models

were examined. Although varied, we concluded the lack of correlation between cost models’

types to the most damageable attack path and critical nodes readiness.
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Chapter 4

OPTIMAL EVOLUTIONARY CYBER DEFENSE

REMEDIATION AGAINST ADVANCED PERSISTENT

THREAT IN ENERGY DELIVERY SYSTEMS

This chapter describes an evolutionary game model for cyber defense remediation against

Advanced Persistent Threat in Energy Delivery Systems. The main contributions of this

chapter are as follows:

(1). The dynamic stochastic attack-defense game model for describing the evolutionary

process of cyber attack-defense remediation is constructed. The complex APT scenario has

the characteristics of multistate and multistep. With the penetration of network attacks,

the information gained by the attacker will gradually increase. Then, based on the new

information, the attacker can implement new strategies. Accordingly, the rational defender

needs to adjust the optimal defense strategies to improve the payoff. We use Logit Quantal

Response Dynamics (LQRD) equation to describe the evolutionary mechanism of attack-

defense strategies in an APT. Our model also considers different types of cyber players with

different rationalities comparing with other game models. We distinguish different cyber

players by measuring and quantifying their rational degrees. Moreover, we simulate the

growth of rationality. Our model can guide decision-makers on what actions and decisions

they need to take, the maximum payoff, and what impact the strategy has on its adversary.

(2). The improved strategy payoff calculation and formation of the optimal strategies

are analyzed. The existing method only considers the direct security payoff, which affects

the accuracy of strategy selection. In fact, the APT attack defense is often difficult to

achieve by relying only on single remediation. Simultaneously, it requires the combination

of various defense remediations to maximize the comprehensive defense payoff. This paper

considers the indirect payoff of counterattacks’ negative and positive impact. In the classical

complete rational game model, the best approach is explained as the best reaction between
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adversaries, but no forming process of this strategy is given. The emerging bounded rational

game model of replicator dynamic only offers a simple decision-making approach but not a

practical mixed strategy of APT like the combination of several defense techniques. This

paper aims to analyze the dynamic evolution tracks of an optimal mixed strategy. We first

simulate the formation process of player strategy through repeated games. Our approach

can predict the possible attack strategy in the future of an APT chain and provide the

corresponding best defense plan.

(3) The optimal cyber defense remediation selection approach for a multistep attack is

designed. The optimal cyber defense remediation selection is given by solving a stable evo-

lutionary equilibrium. To depict the attacker and defender’s interaction process, we employ

the evolutionary game to illustrate the two sides’ decision interaction and behavior evolu-

tion. By calculating the game equilibriums in different game stages, we can calculate the

optimal defense strategy arrangements at each moment. Compared with the static Nash

equilibrium, the dynamic selections at different evolutionary times of APT and its earnings

are depicted visually. The evolution tracks with the best strategies for both sides of the

attacker and defender and are exhibited simultaneously. We give the convergence process

from evolutionary equilibrium to the Nash equilibrium, which improves the dynamic analysis

and situation prediction of attack early warning and defense decision-making.

4.1 GAME MODEL FOR CYBER ATTACK-DEFENSE

REMEDIATION

The attacker–defender arms race model assumes both network opponents use the same

strategy—and apply the same exponential cost model. Besides, it implies that each player

knows the other players’ allocation after each round of reallocations. These assumptions

are perhaps valid in many situations, but what happens if attacker and defender don’t know

anything of each other’s allocation strategy? Specifically, what is the best allocation strategy

when neither party knows the policy of the other party? We turn to game theory to analyze

this question. Different from the general replicator dynamics game model, we build the

attack-defense game model based on improved LQRD stochastic evolutionary game. By

adding the parameter ς, we quantify the cognitive differences of diverse players. Through
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this, we develop the previous approach by depicting the inertia, randomness, dynamics, and

diversity of real-world biological players. In this section, we first demonstrate our motivation

and then construct the Attack-defense Stochastic Evolutionary Game Model (ASEGM) using

LQRD. Finally, we give the metric of strategy payoff based on cost and benefit analysis.

4.1.1 MOTIVATION

Like most other cyber-attacks, APT follows certain attack phases defined in a cyber kill

chain [27]. This framework assumes that every attack sequence starts with a reconnaissance

phase, in which an attacker tries to locate gaps and vulnerabilities of a target system. The

weaponizing phase follows, during which the uncovered weaknesses are used to develop tar-

geted malicious code. The delivery phase follows the weaponizing phase when the malware

transfers to the potential target. When the malware delivers successfully, the exploit phase

starts during which the malware triggers the installation of an intruder’s code. Afterward,

the compromised host system allows the establishment of a command and control channel

so that the attacker can initiate malicious actions. The attacker uses different techniques

and tools to move from one phase of the cyber kill chain to another phase [53]. Normally

the defender collects network logs, host logs, and vulnerabilities to build up the attacker

penetration path throughout the network. Based on the path penetration and critical con-

sequences along the path, the defender takes his/her decision for applying control measures

for remediation [36].

From the perspective of decision-making, we can abstract the APT security adversary

as a stochastic game. If we treat the time of the whole attack-defense process containing a

series of time slices as shown in Fig. 14, each time slice corresponds to one security phase of

the cyber system, and then the attack-defense actions can be treated as a series of discrete

events occurring at discrete times. In this way, we can process the cyber attack-defense

process discretely. In each time slice, the player detects the current network state. Taking

the time slice t1 as an example, the player evaluates the present optimal action according to

the system state and the adversary’s response. The game ends when the network transfers to

the security state. During this process, when one side changes its strategy, the game system

moves to an unbalanced state. Then, the security state of time slice t1 transfers to the next
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Figure 14. The process of optimal strategy selection for an APT attack-defense game
varying with time.

state of time slice t2 under the actions of both attacker and defender. From the dimension

of time, the attacker and defender make a continuous decision and dynamic adversary over

time. The game equilibrium strategy is treated as the controller of the track depicting state

evolution. By predicting the optimal strategy at each game moment, we can improve the

accuracy and timeliness of security decision-making.

Let’s explain our motivation with an example as follows:

1) For the bounded rational attack-defense modeling, existing researchers generally adopt

the replicator dynamic. The core idea is that the population with lower rationality will

gradually take the strategy with a higher average payoff, which essentially reflects the de-

terministic selecting behavior. In other words, the mechanism of selection determines that

players always select high-payoff strategies during evolution. For instance, we assume a pop-

ulation containing three game players, in the first evolution round; the obtained payoffs are

respectively 6, 8, 10. Then we can calculate the average payoff 8. In the second round, due

to that, the player with payoff 6 earns less than the average level. He prefers to select the
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strategy with payoff 10 and obtains the corresponding payoff level. Then the three payoffs

are 10, 8, 10, and the average payoff is 9.3. In the third round, since the player with payoff 8

earns less than the average level, he adopts the strategy of payoff 10. In this way, all three

players obtain the payoff 10 after three rounds of the game. The population realizes the

evolution from low payoff to high payoff. This process requires that the game players can

always identify and learn the high-payoff strategy accurately. However, due to the influence

of the attack-defense players’ factors (skill level, safety knowledge, prior experience, etc.),

the cognitive abilities of different players are usually different. Not all individuals can cor-

rectly calculate the expected strategy payoff. These individuals have specific probabilities

of changing planned strategies. We call this a stochastic disturbance. Moreover, for some

multi-variant replicator dynamic equations, there are no polymorphic equilibrium solutions,

which reduces the operability.

2) The LQRD considers that the player belief is keeping rational, while the limitation of

learning capability leads to the gap of achieving an ideal Nash equilibrium. We denote the

payoff as U = V + ε, where V means the payoff generated by deterministic factors, while ε

denotes the payoff caused by uncertain disturbance. The players make decisions for gaining

maximum payoff U. Compared with the general replicator dynamics, we further consider the

individual preferences and cognitive differences. On this basis, we introduce the parameter ς

to quantify the degree of player rationality to reflect the diversities of population behaviors.

Meanwhile, with the increase of ς by strategy learning and improving, players can obtain

indirect decision information by observing their own experience or other players’ decisions in

similar environments. Meanwhile, the players can also get direct decision-making information

on the population’s strategy distribution from the observed game history. Through repeated

games, the cognition of players is enhanced. We exhibit the best strategy selection varying

with time, which improves the interpretation and prediction for strategy formation.

4.1.2 THE SYSTEMS MODEL OF OUR OPTIMAL CYBER DEFENSE RE-

MEDIATION

The architecture of our optimal defense decision-making approach is illustrated in Fig.

15. The input includes evidence such as vulnerability database, Nessus scanned logs, Attack
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Figure 15. The architecture of our cyber defense remediation method

Graph (AG), IDS real-time alert, security configuration, network topology, and MITRE

ATT&CK, and the output is the optimal defense strategy. The decision-making process

contains five steps: (1) Determine the targets and critical attack paths to those targets of

strategy selection. (2) Extract candidate attack-defense strategies from the input security

data according to the enhanced AG of attack evidence and abnormal evidence. (3) Model the

process of attack-defense as the stochastic evolutionary game based on the LQRD model.

(4) Evaluate the strategy payoff based on cost-benefit analysis. (5) Generate optimal defense

strategy.

In addition to that, we consider that the actual cyber adversary scenario usually consists

of multiple players. We also extract the set of candidate defense strategies by analyzing the

network environment information, including the vulnerability repairs, firewall access rules,

security configuration and so on. We further collect alert data of firewall, IDS, and the virus

detection system and host audit log. By analyzing the attack behavior information, we can

extract the set of candidate attack strategies by referring to the network behaviors database
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of MITRE ATT&CK [54].

4.1.3 GAME MODELING OF ATTACK-DEFENSE BASED ON LQRD

The evolutionary game model includes four essential elements: player sets, candidate

strategy set, belief set, and payoff set.

Definition 1. A four-tuple can denote the model of the Attack-defense Stochastic Evo-

lutionary Game (ASEGM).

(1) N = (NA,ND) is the population set of attack-defense players, where NA and ND are

the populations of attackers and defenders, respectively.

(2) S = (SA,SD) is the set of candidate attack-defense strategies, in which

SA = {A1,A2, . . . ..,An} is the set of the candidate strategies for attackers, SD =

{D1,D2, . . . ..,Dm} is the set of candidate strategies for defenders. n and m are the numbers

of attack and defense strategies, respectively. where m,nεN+ and n,m ≥ 2

(3) Θ = (P,Q) is the belief set of the attack-defense game, where piεP represents the

probability that the attacker selects candidate strategy Ai, qiεQ represents the probability

that defender chooses candidate strategy Dj, where 1 ≤ i ≤ n, 1 ≤ j ≤ m,
∑n

i=1 pi =

1,
∑m

j=1 qj = 1

(4) U = (UA,UD) is the payoff function set. UA and UD represent the payoff functions of

attack and defense, respectively.

4.1.4 GAME PAYOFF QUANTIFICATION OF ATTACK-DEFENSE STRAT-

EGY

Considering condition 4) of Definition 1, the payoff quantification of the attack-defense

strategy is the basis of defense strategy selection. Therefore, its accuracy directly affects

the selecting results. We summarized the types of different attack-defense strategies and

proposed the payoff metric based on cost-benefit analysis.

Definition 2: Attack Benefit (AB) is the earned network resources through a series of

attack actions or the level of network damage, which reflects the capability of controlling the

targeted network system.

Definition 3: Attack Cost (AC) is the cost or effort that an attacker pays to obtain
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Figure 16. The game progression of attack-defense

network resources or cause losses to the network system.

Definition 4: Defense Benefit (DB) includes direct benefit and indirect benefit. The

immediate benefit is the level of security reinforcement through security measures only con-

siders the direct benefits, and we further add the indirect benefits of defender through the

counterattack. For example, the electronic evidence of port scanning time, port number,

source IP address, and destination IP address can be used to reconstruct the attack chain

through which the defender can earn indirect benefits through investigating criminal respon-

sibility.

Definition 5: Defense Cost (DC) is the cost or effort that defenders take against the

possible attacks, including the human and time cost of the implementation of security devices,

and the economic value of affecting the regular operation of service (a.k.a.negative impact

of control measures.).

Definition 6: Attack-defense payoff matrices M are as follows. aij and aij represent

the attack and defense payoff of selecting strategy combination (Ai, Dj) respectively, aij =
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AB − AC, dij = DB −DC. The payoff matrices M is as below:

M =


a11, d11 a12, d12 · · · a1m, d1m

a21, d21 a22, d22 · · · a2m, d2m
...

...
. . .

...

an1, dn1 an2, dn2 · · · anm, dnm


The attack-defense game tree shown in Fig. 16 depicts the attack-defense payoff with

different combinations of candidate strategies visually. When the defender detects attack

events, the game analysis begins at time t− 1. The details of the process are as follows:

(1) Both sides of the attacker and defender detect the current security state of the network

system in the period of t,

(2) Players select their optimal actions according to the candidate strategies and their

payoffs in the period of t.

(3) Players earn actual rewards through implementing strategies.

(4) Some players change their strategies through learning and modifying in the period of

t+ 1.

(5) Repeat steps (1-4) until the game system transfers to a stable state. That is, no

player can make higher earnings by changing its strategy alone.

4.2 OPTIMAL DEFENSE DECISION MAKING APPROACH

4.2.1 CONSTRUCTION OF EVOLUTION EQUATIONS FOR ATTACK-

DEFENSE DECISION MAKING

Evolutionary stable strategy (ESS) is an optimal decision of the game system in long-

time strategy evolution. We obtain the best policy, which is balanced and stable and can

protect against the invasion of other strategies. The definition of the permanent evolutionary

strategy of cyber attack-defense is as follows.

Definition 7. Suppose the attacker population selects the candidate strategy set

SA = (A1,A2, ..,An) with the probability distribution P = (p1, p2, .., pn), and the defender
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Figure 17. The evolution of strategy selection over time

population selects the candidate strategy set SD = (D1,D2, ..,Dm) with the probability

distribution Q = (q1, q2, .., qm). It means that individuals in the attacker and defense popu-

lation randomly select and implement their pure strategies with the probability distribution

P and Q in the actual adversary. We call σ∗ = (P,Q) the stable strategy of attack-defense

if the following conditions hold. U(σ∗, σ∗) denotes the payoff when attacker and defender

both select σ∗. For any σ 6= σ∗, U(σ∗), σ) is the payoff when either side changes its strategy.

Then the following conditions hold.

1). (stability) U(σ∗σ∗) ≥ U(σ, σ∗)

2). (balance) U(σ∗, σ∗) = U(σ, σ∗)⇒ U(σ∗, σ) ≥ U(σ, σ)

Condition (1) guarantees that attacker and defender cannot earn more if either side

changes strategy. In a policy containing a large number of σ∗ and a small number of σ, it

is necessary to meet that S is the best response to itself; otherwise, other strategies may

invade and develop.

Condition (2) guarantees that if there is another optimal strategy, σ, σ∗ is required to

react better than σ, which ensures that σ cannot develop even if the approach mutates to σ.
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To explain Definition 7, Fig. 17 shows a possible dynamic track of the strategy evolved.

Y (p, q, t) is the probability function of selecting a strategy, t is the evolution times, and p

and q denote the probabilities of selecting attack and defense strategy. The blue, red and

green, magenta curves depict the evolution tracks of the game system with different initial

states (p11, q11), (p12, q12) at two different ς. We can determine that the system can evolve to

the two different stable states (p
′
11, q

′
11) and (p

′
12, q

′
12) through multiple repeated games. The

middle strategy at time t0, t1, ti, tn can be obtained through intercepting the time surfaces

of the game system. The optimal strategy we want to receive meets the Fig. 17; that is,

no matter what action the attack-defense players take at the first moment, through strategy

learning, imitation, and improvement, we can get the best strategy ultimately. The strategy

is stable and anti-jamming, which can defend against the invasion of other approaches. The

critical point is how to give the construction of Y (p, q, t).

Definition 7 gives the condition of whether a strategy is an evolutionarily stable strategy,

but does not characterize the track of players’ selection on this strategy. As described

in Section III-A, the attack-defense players search the best approach and are disturbed

by stochastic error. This section describes the strategy evolution track by modifying the

LQRD equation to indicate the randomness of selection. The LQRD uses Fisher-Tippett

(an independent-identical-distribution) to depict the degree of noise influence on different

players [55]. That is to say, the player selects the strategy with the exponential probability

distribution, which is in line with the law of evolution of most things in the real world. Herein,

we first give the deduction of the proposed LQRD equation combined with Definition 8 -

Definition 10.

Definition 8. The differential equation of the probability of selecting this strategy is [56]:

dpi
dt

=
n∑
k=1

pkcki −
n∑
y=1

piciy

where pi is the probability of selecting strategy Ai ,
dpi
dt

is the probability that selects

strategy Ai varying with time. cki is the conditional transition probability of the attackers

selection from strategy Ak to strategy Ai, which describes the updating rules of strategy

selections.
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The core of the attack-defense evolutionary game is to study the dynamic change speed

of the proportion of individual selecting strategy in the total population. That is, we need

to calculate the selecting probabilities of different techniques. For conditional transition

probability, we use the LQRD equation to describe the rules of strategy updating and add

an extra rationality parameter ς to quantify the cognitive capabilities of different game

players. The improved LQRD equation is defined as follows.

Definition 9. Improved transition probability of LQRD is:

cki =
exp(ςUAi

)∑n
k=1 exp(ςUAi

)

Set the rational parameters ς(ς ≥ 0) based on the historical rational degrees of players.

The bigger ς is, the higher the degree of rationality is. As described in Section III-A, the

payoff is U = V + ε, where V is the payoff of observable factors, ε is the payoff of uncertain

factors. The deduction of cki in Definition 9 can be referred to [55]. Take the formula in

Definition 9 intoDefinition 8 and get the LQRD equation as Definition 10.

Definition 10. After pluging the cki from definition 9 into definition 8, the equation of

LQRD is:

dpi
dt

=
exp(ςUAi

)∑n
k=1 exp(ςUAi

)
− pi

Definition 10 shows that the change rate of the population proportion of player selecting

strategy Ai is proportional to the difference between the ratio of individual expected payoff

to the total gain and the balance of unique numbers of choosing this strategy to the whole

numbers.

Definition 10 also shows that in the attacker population composed of bounded rational

players, the number change rate of players selecting a specific candidate strategy varies with

the proportion of this strategy payoff to the total gain.

To construct the LQRD equations of attack-defense, from condition 3) of Definition 1,

we denote the strategy of probability vectors P and Q is the mixed probability of selecting

SA and SD respectively. The evolution equations are as follows:

(1). Evolution equation of attack strategy over time
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The expected payoff UAi
of an attacker selecting candidate strategy Ai is as follows,

i = 1, 2, ..., n

UA1 = q1a11 + q2a12 + ....+ qma1m

UA2 = q1a21 + q2a22 + ....+ qma2m

UAi
= q1ai1 + q2ai2 + ....+ qnaim =

m∑
j=1

qjaij

....

UAn = q1an1 + q2an2 + ....+ qmanm

The changing rate of the proportion of individuals selecting strategy Ai in the attacker

population overtime is
dpi
dt

. It reflects the learning and improving selecting strategy Ai for

bounded rational attacker through repeated games. The LQRD differential equation of

change rate is:

dpi
dt

=
exp(ς

∑m
j=1 qjaij)∑n

k=1 exp(ς
∑m

j=1 qjakj)
− pi

(2). Evolution equation of defense strategy over time.

The expected payoff UDi
of an attacker selecting candidate strategy Dj is as follows,

j = 1, 2, ...,m
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UD1 = p1d11 + p2d21 + ....+ pndn1

UD2 = p1d12 + p2d22 + ....+ pndn2

UDj
= p1d1j + p2d2j + ....+ pndnj =

n∑
i=1

pidij

....

UDm = p1d1m + p2d2m + ....+ pndnm

The changing rate of the proportion of individuals selecting strategy Dj in the defender

population overtime is
dqj
dt

. It reflects the learning and improving selecting strategy Dj

for bounded rational defender through repeated games. The LQRD differential equation of

change rate is:

dqj
dt

=
exp(ς

∑n
i=1 pidij)∑m

k=1 exp(ς
∑n

i=1 pidik)
− qj

The practical significance of the above evolution equation is as below. Taking the defense

strategyDj as an example, if the number of individuals selecting the pure strategy Dj is

smaller than the payoff proportion of individual obtaining from Dj, the growth rate of the

defender number choosing Dj is larger than 0. Otherwise, the growth rate is less than 0.

If the number proportion is exactly equal to the payoff proportion, then the growth rate of

the number of defender selecting strategy Dj is 0. Set F (pi =
dpi
dt

), G(qj =
dqj
dt

), and then

combine the above equations to equate the following condition:

Y (pi, qj) =

F (pi)

G(qj)

 = 0

This will give us the stable equilibrium of attack-defense adversary.

Algorithm 1: Optimal Cyber Defense Remediation:

BEGIN
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1. //Initialize attack-defense evolutionary game model//

Initialize: ASEGM = (N,S,Θ,U)

{

1.1. //Analyze security device configuration information to get the candidate defense

strategy set//

Construct SD = {Dj}, 1 ≤ j ≤ m

1.2. //Collect real-time alert data to get attack behaviors and extract the candidate attack

strategy set//

Construct SA = {Ai}, 1 ≤ i ≤ n

1.3. //Initialize attack believe set P in which the attacker selects the attack strategy Ai

with the probability piεP //

(1.3) Construct P = pi, 0 ≤ pi ≤ 1,
∑n

i=1 pi = 1

1.4. //Initialize the defense believe set Q in which the defender selects the attack strategy

Dj with the probability qjεQ //

(1.4) Construct Q = qj, 0 ≤ qj ≤ 1,
∑m

j=1 qj = 1

}

2. //Calculate the attack-defense payoffs of different strategies combinations Ai and Dj

in turn//

for (i=1;i≤ n; i+ +) do

for (j=1;j≤ m; j + +) do

{

Calculate: aij = AB(Ai,Dj)− AC(Ai,Dj) and dij = DB(Ai,Dj)−DC(Ai,Dj)

}

3. //Set the value of rationality degree ς//

Assign ς1, ς2; ς1, ς2 ≥ 0

4. //Constructing the LQRD equation for selecting attack strategy Ai//

for (i=1;i≤ n; i+ +) do

{

F (pi) =
exp(ς

∑m
j=1 qjaij)∑n

k=1 exp(ς
∑m

j=1 qjakj)
− pi
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}

5. //Constructing the LQRD equation for selecting defense strategy Dj//

for (j=1;j≤ m; j + +) do

{

G(qj) =
exp(ς

∑n
i=1 pidij)∑m

k=1 exp(ς
∑n

i=1 pidik)
− qj

}

6.//Calculate the evolutionary stable equilibrium point//

Calculate Y (pi, qj) =

F (pi)

G(qj)

 = 0

7.//Find out the optimal strategy//

Q = {q1, q2, ...., qm}

END

=0

4.3 IMPLEMENTATION, RESULT, AND ANALYSIS:

The Industroyer malware has unleashed a major escalation in cyber-attacks on Indus-

trial Control Systems (ICS) by combining a multi-stage APT attack with in-depth domain

knowledge. Industroyer (also referred to as Crash-override) is a malware framework consid-

ered to have been used in the cyber-attack on Ukraine’s power grid on December 17, 2016.

The attack cut a fifth of Kyiv, the capital, off power for one hour and was considered a

large-scale test [57]. The Kyiv incident was the second cyber-attack on Ukraine’s power grid

in less than a year. The first attack occurred on December 23, 2015. Industroyer is the

first-ever known malware specifically designed to attack electrical grids. Simultaneously, it

is the fourth malware publicly revealed to target industrial control systems, after Stuxnet,

Havex, and BlackEnergy.

In this section, we take the invasion and proactive defense against Industroyer in the real-

world Energy Delivery System (EDS) network as an example. We analyze the adversarial

attack-defense process against Industroyer and verify the proposed approach for optimal

defense strategy selection. The results of the two scenarios with different strategy payoffs

are compared and analyzed. Besides, we summarize the general evolution rules of the best
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defense strategy in the targeted network system. Finally, we compare our methods with the

existing research comprehensively.

4.3.1 EDS NETWORK IMPLEMENTATION:

We implemented an EDS network that is shown in Fig. 18 in Accenture ICS research

test-bed [48]. The entire test-bed is connected to a network switch and a router, and the

zoning is implemented using VLAN and firewall rules.

There are five subnets created by an external and internal firewall. The IT Workstations

(WSs) were located at the IT subnet. A Web Server (WebS) is located at the DMZ subnet

and is directly accessible from the Internet through an external firewall. Supervisory Control

and Data Acquisition (SCADA) servers (L3/L2), Remote Transmit Unit (RTUs) (L1) are in

different subnets under a larger OT subnet that holds critical communication. The SCADA1

servers and SCADA2 servers are only accessible from the WebS of the DMZ. The WebS is

accessible from user WS and other hosts from levels 4 or 5. The user subnet contains the

user’s WS. The firewalls allow all outbound traffic from the users’ subnet. The test-bed also

includes an Intrusion Detection System (IDS) running both IT and OT specific rules and

a commercial OT Asset Discovery and Management (ADM). They are both connected to

the span port of the switch to inspect all ICS traffic. For the Industroyer attack simulation,

we injected vulnerabilities on the test-bed machines. The user workstations contained the

vulnerability CVE-2009-1918 in Internet Explorer (IE). If a user accesses malicious content

using the vulnerable IE browser, the device may be compromised. The WebS contained the

vulnerability CVE-2006-3747 in the Apache HTTP service, resulting in a remote attacker

executing arbitrary code on the machine. The SCADA1 and SCADA2 server had the vul-

nerability CVE-2018-5313, allowing privilege escalation up to the administrator level. The

SCADA1 server controls 10 RTUs of substation 1, whereas the SCADA2 server controls 7

RTUs of substation 2. We assume that if an attacker acquires control over the SCADAs, the

RTUs can be acquired as well.

As a defender, the network center’s administrator is responsible for the security of the

EDS’s whole intranet. The attacker comes from the external network and attacks the intranet

through the Internet. The purpose is to erase system-crucial registry keys and overwrite all
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Figure 18. Logical view of EDS Test-bed for evolutionary game model
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ICS configuration files to make the system unbootable and recovery from the attack harder.

Industroyer attacks can be divided mainly into two steps, the first is to break through the

boundary, and the second is to penetrate the intranet horizontally. Due to the firewall

rules, external attackers can only communicate with the IT network’s WS and mail server

but cannot access the OT network. The security protection devices are composed of the

firewall, IPS, virus detection system (VDS), and patch management system. We used the

Nessus scanning tool to scan the EDS network. Table 10 shows the results of the principal

vulnerabilities.

Table 10. Network Configuration and Vulnerability Information

Nodes Configuration CV E Description

WS Microsoft Internet
Explorer (IE)

CVE-2009-1918 Allows remote attackers to
execute arbitrary code via a
crafted HTML document

WebS Apache Web Server CVE-2006-3747 allows remote attackers to
cause a denial of service (ap-
plication crash) and possi-
bly execute arbitrary code
via crafted URLs

SCADA 1 SCADA Master
server

CVE-2018-5313 An attacker can leverage
this vulnerability to execute
arbitrary code under the
context of Administrator

SCADA 2 SCADA Master
server

CVE-2018-5313 An attacker can leverage
this vulnerability to execute
arbitrary code under the
context of Administrator

4.3.2 CANDIDATE STRATEGY EXTRACTION AND PAYOFF CALCULA-

TION:

In this experiment, based on the network topology and vulnerabilities, the logical Attack

Graph (AG) is created using the open-source tool MulV AL as illustrated in Fig. 19 [36].

The MulV AL is a reasoning toolkit for automatically identifying vulnerabilities in IT and
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OT networks [39]. The different shapes represent the network state, and the edge represents

the atomic attack action. By referring to the attack-defense behavior database of MITRE for

Industrial Control Systems (ICS) [52], we extracted the atomic attack and defense actions

that can be launched in the network system. All the possible atomic actions are shown in

Table 11.

Table 11. Cyber Attack and Defense Actions

No. Attack Action No. Defense Option

A1 Scan Port D1 Close Unused Port

A2 Obtain Root Privilege D2 Restart Device

A3 Buffer Overflow D3 Offline Network

A4 Denial of Service D4 Block unwanted IPs

A5 Execute Arbitrary Code D5 Install Patches

We find that the attacker first conducted port scanning action A1 through port 25 of the

mail server at the IT domain. Furthermore, the attacker collected open service information

to prepare for subsequent attacks. Since port scanning is a concealed means of attacking,

which is the passive attack virtually, we denote it as A1 =Scan Port. Based on further

detections and analyses of alert information, we find that some adventurous attackers may

execute atomic attacks, A4, and A5 shown in Table 11 along the most critical path from the

alert node to a goal SCADA 1/SCADA 2 [36]. The unauthenticated attackers exploit the

vulnerability CVE-2006-3747 of Webs at DMZ to allows remote attackers to cause a denial

of service (application crash) and possibly execute arbitrary code via crafted URLs that are

not adequately handled using certain rewrite rules. We denote this candidate strategy as

A4=Denial Of Service (DoS), which is an active attack. After the WebS is compromised

as the next stage of an APT, the attacker starts exploiting CVE-2018-5313 of SCADA

1/SCADA 2. We denote this candidate strategy as A5 = Execute Arbitrary Code, which is

also an active attack, so in this experiment three candidate defense strategies D1 = Close

Unused Ports, D4 =Block Unwanted IP Address, and D5 = Install Patches are mapped from

Table 11 as an extraction for that critical APT chain.

From Definition 6, the payoff matrix of attack-defense is as follows:
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Figure 19. The AG of test-bed based EDS
[36]

M =


a11, d11 a12, d12 a13, d13

a21, d21 a22, d22 a23, d23

a31, d31 a32, d32 a33, d33
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4.3.3 EVOLUTION OF EQUATIONS FOR DECISION MAKING:

Firstly, we set the attackers and defenders with equal degrees of rationality. Furthermore,

we assign the proportion of the number of players selecting strategy A1, A4, and A5, in the

attacker population as p1,p2, and p3 respectively. Secondly, according to Steps (1.1-1.4) of

Algorithm 1, we assign the proposition of defender population selecting strategy D1, D4, and

D5, as q1, q2, and q3 respectively. Besides, we construct the LQRD equation of attack-defense

strategy as follows, respectively.

The expected payoff of the attacker selecting strategy A1 = port scan attack is UA1 =

a11q1 + a12q2 + a13q3, the expected gain of denial of service is UA4 = a21q1 + a22q2 + a23q3,

and the expected payoff of the attacker selecting strategy A5 = Execute Arbitrary Code is

UA5 = a31q1 + a32q2 + a33q3 . Then, according to Step 4) of Algorithm 1, we can obtain the

evolution equation of strategy A1, A4, and A5 as follows:

dp1
dt

= { exp(ς(a11q1 + a12q2 + a13q3))

exp(ς(a11q1 + a12q2 + a13q3)) + exp(ς(a21q1 + a22q2 + a23q3))+

exp(ς(a31q1 + a32q2 + a33q3))} − p1

dp2
dt

= { exp(ς(a21q1 + a22q2 + a23q3))

exp(ς(a11q1 + a12q2 + a13q3)) + exp(ς(a21q1 + a22q2 + a23q3))+

exp(ς(a31q1 + a32q2 + a33q3))} − p2

dp3
dt

= { exp(ς(a31q1 + a32q2 + a33q3))

exp(ς(a11q1 + a12q2 + a13q3)) + exp(ς(a21q1 + a22q2 + a23q3))+

exp(ς(a31q1 + a32q2 + a33q3))} − p3

The expected payoff of the defender selecting strategy D1 = close unused port is UD1 =

d11p1 + d21p2 + d31p3, the expected gain of denial of service is UD4 = d12p1 + d22p2 + d32p3,

and the expected payoff of the defender selecting strategy D5 = Execute Arbitrary Code is
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UD5 = d13p1 + d23p2 + d33p3 . Then, according to Step 5) of Algorithm 1, we can obtain the

evolution equation of strategy D1,D4, and D5 as follows:

dq1
dt

= { exp(ς(d11p1 + d21p2 + d31p3))

exp(ς(d11p1 + d21p2 + d31p3)) + exp(ς(d12p1 + d22p2 + d32p3))+

exp(ς(d13p1 + d23p2 + d33p3))} − q1

dq2
dt

= { exp(ς(d12p1 + d22p2 + d32p3))

exp(ς(d11p1 + d21p2 + d31p3)) + exp(ς(d12p1 + d22p2 + d32p3))+

exp(ς(d13p1 + d23p2 + d33p3))} − q2

dq3
dt

= { exp(ς(d13p1 + d23p2 + d33p3))

exp(ς(d11p1 + d21p2 + d31p3)) + exp(ς(d12p1 + d22p2 + d32p3))+

exp(ς(d13p1 + d23p2 + d33p3))} − q3

Then, according to Step 6) of Algorithm 1, equalize all six equations to zero. The solu-

tion of those six equations is the stable evolutionary equilibrium of attack-defense decision-

making, and the defender’s optimal defense strategy is selecting strategy {D1,D4,D5} with

mixed probability {q1, q2, q3}.

4.3.4 RESULT AND ANALYSIS:

We take two numerical experiments: Scenario 1 (without considering counterattack pay-

off) and Scenario 2 (considering counterattack payoff). The comprehensive comparison and

analysis are finally given.

Scenario 1:

According to Step 2) of Algorithm 1, we combine Definition 2 - Definition 5 and security

behaviors database and then obtain the game payoff of attack-defense as organized in Table
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12.

Table 12. Game Pay-off of Scenario 1

Candidate
Attack
Strategy

Candidate Defense Strategy

D1 D4 D5

A1 (0.16,0.06) (0.16,-0.15) (0.16,-0.3)

A4 (0.24,-0.2) (0.24,0.39) (0.24,-0.3)

A5 (0.4,-0.2) (0.4,-0.15) (0.4,0.7)

In general, the degree of player rationality in the real world is medium, and here we set

ς = 5.0, and set the initial state of the game system as p1 = p2 = p3 = q1 = q2 = q3 = 0.33 ac-

cording to Step 5 of Algorithm 1. That is, the attacker randomly selects a strategy from can-

didate A1,A4, and A5 with equal probability 0.33 at the initial time. Similarly, the defender

randomly selects an action from candidate D1, D4, and D5 with equal probability. With the

simulation tool Matlab 2020, the stable equilibrium point is calculated by function fsolve()

for ς = 5.0. The calculated stable equilibrium point is {p1, p2, p3} = {0.172, 0.257, 0.571}

and {q1, q2, q3} = {0.087, 0.179, 0.734}. In this context, the attacker is more likely to se-

lect {A1,A4,A5} with mixed probability of {0.172, 0.257, 0.571}. Meanwhile, the optimal

defense strategy for the defender is to randomly implement {D1,D4,D5} with mixed prob-

ability {0.087, 0.179, 0.734}. The results show that the attacker is more likely to select the

aggressive strategy A5 = Execute Arbitrary Code with probability 0.571. Since the attack

of the Execute Arbitrary Code is more harmful, to avoid the severe attack influence, the

corresponding optimal defense strategy is to select D5 = Install Patch with a probability of

0.571.

Secondly, to analyze the influence of the system’s initial state on strategy selections, we

simulate the evolution tracks of strategy selections with different first p1, p2, p3, q1, q2, q3 in

Fig. 20 and Fig. 21. The abscissa t represents the number of evolutions in decision-making.

The ordinate probability represents the probability of selecting a strategy. Fig. 20 and Fig.

21 can predict the defender’s best strategy selection at different game moments.



66

0 2 4 6 8 10 12 14 16 18 20

Evolution Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

A1:Scan Port

p1,p2,q1,q2=0.15

p1,p2,q1,q2=0.25

p1,p2,q1,q2=0.35

p1,p2,q1,q2=0.5

(a.)A1 =Scan Port

0 2 4 6 8 10 12 14 16 18 20

Evolution Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

A4:Denial of Service

p1,p2,q1,q2=0.15

p1,p2,q1,q2=0.25

p1,p2,q1,q2=0.35

p1,p2,q1,q2=0.5

(b.)A4 =Denial of Service

0 2 4 6 8 10 12 14 16 18 20

Evolution Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty

A5:Execute Arbitary code

p1,p2,q1,q2=0.15

p1,p2,q1,q2=0.25

p1,p2,q1,q2=0.35

p1,p2,q1,q2=0.5

(c.)A5 =Execute Arbitrary
code

Figure 20. Strategy Evolution of an Attacker
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Figure 21. Strategy Evolution of a Defender

Fig. 20 (a-c) and Fig. 21 (d-f) respectively show the evolution tracks of

{A1,A4,A5,D1,D4,D5}, when the initial states of attacker and defender are the same with

p1, p2, q1, q2 = {0.15, 0.25, 0.35, 0.5}. From Fig. 20 (a-c) and Fig. 21 (d-f), we assume that

the attacker and defender initially select the strategy {A1,A4} and {D1,D4} with probabil-

ity p1 = p2 = q1 = q2 = 0.5, when t = 0. Then from the magenta curve of Fig. 21(d), the

likelihood of selecting strategy D1 is falling over time and stabilize to probability = 0.179,

when t = 10. Also, the possibility of choosing a strategy D4 is falling and stabilize to

probability = 0.017 from the magenta curve of Fig. 21(e). Herein, the optimal defense strat-

egy is selecting D1,D4,D5 with mixed probability = {0.087, 0.179, 0.734}. This selection is

stable and best when used against different candidate attack strategies.

Moreover, as we assume that the defender selects the strategy {D1,D4,D5} with a prob-

ability {q1, q2, q3}={0.5, 0.5, 0.0} initially, namely, the larger the gap between the defender’s

initial selection and the optimal selection {q1 = 0.087, q2 = 0.179, q3 = 0.734}, the more

evolution times needed to achieve the best strategy. In contrast to the Nash equilibrium
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game model [33], our approach can better explain the strategy evolution rules in adversarial

attack-defense and have stronger performance of attack prediction.

Again, the higher the probability of selecting a strategy from {A1,A4} at the initial

time, the later the curve inflection point appears. They are indicating that more repeated

games are required for decision-making and it takes a longer time. This is because the

attacker selects A1 or A4 with a very high probability at the initial time. The false signal

deceived the defender. It caused the defender mistakenly to assume that the attacker will

select the moderate attack strategy about A1 and A4 while overlooking the ultimate attack

purpose A5 = Execute Arbitrary Code. Therefore, rational defenders need to implement

many evolution times to discover the attacker’s real purpose and obtain the best defense

strategy. For example, when {p1 = 0.5, q2 = 0.5}, the probability of selecting the strategy

D4 denoted by the magenta curve in Fig. 8(e) first increases to q2 = 0.54 at t = 0.466

and then rebounds and finally stabilizes to q2 = 0.178 at t = 11. The reason is that the

proportion of the defender population selecting strategy D4 at the initial time increases to

high. With the increase of the D4 payoff to the total payoff, the number of individuals

selecting D4 decreases gradually to ensure that the proportion of population selecting D4 to

the total population is equal to the proportion of payoff selecting D4 to the total payoffs.

As can be seen from each column in Fig. 20-21, the optimal strategy for both defender

and attacker are the same regardless of their initial p1, p2, p3 and q1, q2, q3 selections. It is

only related to the candidate strategy set, player, and the strategy pays off. Moreover, the

initial state can only affect the stabilization time of the game system.
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Figure 22. The strategy evolution tracks with different rationality ς.

Finally, to analyze the influence of degrees of players’ rationality on strategy evolution,

some simulations shown in Figs. 22-23 and discussions are as follows:
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Figure 23. The strategy evolution tracks with different rationality ς.

1) According to Step 5) of Algorithm 1, we assume that the players are irrational and

set ς = 0, assign initial p1 = 0.2, p2 = 0.3, q1 = 0.4, q2 = 0.1, then obtain the strategy

evolution tracks in Fig. 22(a). Herein, the final result is to select the different candidate

strategy with the same probability of 0.33. It means that players cannot distinguish the

advantages and disadvantages of varying candidate strategies since they have no cognitive

abilities. Meanwhile, from the LQRD equation of attack-defense in Section 4.2, there is

only one solution {p1, p2, p3, q1, q2, q3} = {0.33, 0.33, 0.33, 0.33, 0.33, 0.33} when ς = 0. The

results show that when the game players are irrational, regardless of their initial selections,

they cannot distinguish each strategy’s merits and demerits since they do not have any

learning and cognitive capabilities. The candidate strategies are still selected by game players

randomly.

2) Suppose that the rational player degree ς > 0, we simulate the strategy evolution in

Fig. 22 (b-c) and Fig. 23 (d-f). As time goes by, all the players can finally obtain the correct

strategy through several times of repeated games. The main difference is that when the

players have a high degree of rationality, they can find the optimal strategy more quickly.

For example, when ς = 1, the game system can reach the stable state through about five

times of game evolution (shown in Fig 23 (e)), while when ς = 2, they can be stable only

through 4 times of game evolution (shown in Fig 23 (f)). The above results demonstrate that

when the defenders have a high degree of rationality (have rich knowledge, skilled techniques,

etc.), their cognition, learning, and adjustment abilities are strong, which helps the defenders

identify the optimal strategy more quickly.

In general, both attackers and defenders gain increased decision-making experience
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through adversarial attack-defense. Hence, a rational degree of ς increases during the

game process. Fig. 24 illustrates the results under different ς, where the abscissa ς

represents the reasonable degree, and the ordinate represents the probability of strategy

selection. When ς = 0, players have no rationality, so they choose candidate strate-

gies randomly. When ς = 0.1, the reasonable degree of the players is very low as the

replicator dynamics [33]. From Fig. 24, the probability of a defender selecting strat-

egy D1 and D4 rapidly decreases to 0 and D5 increases to 1, respectively, which reflects

the sensitivity of the decision-making system. The corresponding equilibrium solution is

{p1 = 0.33, p2 = 0.33, p3 = 0.34} and {q1 = 0.33, q2 = 0.33, q3 = 0.34}. The result cor-

responds to the replicator dynamic equilibrium [33]. Since the rational degree of dynamic

replicator game is very low, its equilibrium solution is pure strategy. When ς > 0.1, the

player rational degree increases, and both sides of the attacker and defender always ap-

proach to complete balanced Nash equilibrium as ς increases. When ς > 15, the solution

{p1 = 0.0003, p2 = 0.27, p3 = 0.97, q1 = 0.02, q2 = 0.1, q3 = 0.88} of LQRD in this paper

is very close to the Nash equilibrium solution. It indicates that the player rationality is

very close to complete rationality over time, and the difference with the Nash equilibrium

decreases gradually through obtaining experience in the game process. It is foreseeable that

when ς moves towards infinity, then the proposed LQRD equilibrium will approach Nash

equilibrium. Compared with the complete rational Nash equilibrium [33] and the bounded

rational replicator dynamic equilibrium, our approach can depict the diversity of rationality

of attacker and defender players and reflect the real strategy selection rules.
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Figure 24. The impact of rationality (ς) on the strategy selections

Scenario 2:
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Based on Scenario 1, this section further explores the impact of payoff changes (con-

sider/do not consider countermeasure’s negative/positive impact) on the selection of attack-

defense strategies. Compared to Scenario 1, only considering the direct security rewards,

in Scenario 2, we further discuss the indirect rewards through control measure selection

and legal penalty, economic and time rewards (business recovery time, data recovery time,

etc.) [58]. Table 13 gives the strategy payoff of Scenario 2, which depicts the difference from

Table 12.

Similarly, we first consider the low medium rationality ς = 1 and set the initial selection

as {p1, p2, p3, q1, q2, q3 = 0.33}. The calculation process is the same as that of the Scenario

1. We obtain the evolution equilibrium point {p1 = 0.2981, p2 = 0.3229, p3 = 0.3790, q1 =

0.3661, q2 = 0.4240, q3 = 0.2099} in Fig.25(a). Comparing the equilibrium points of Scenario

1 (see in Fig. 22-23) with those of Scenario 2 (see in Fig. 25), we can derive that:

1). For the attacker in Scenario 2, the probabilities of selecting a strategy are the same as

with Scenario 1 which are {p1 = 0.2981, p2 = 0.3229, p3 = 0.3790} . That indicates that the

attackers’ expected pay offs do not depend on the negative impact of the defenders’ strategy

selections. Subsequently, attackers are not likely to change their strategy from selecting one

to others.

2). For the defender of Scenario 2, the probability of selecting strategy D1 = close

unused ports improves from 0.087 to 0.3246, and that of strategy D4 = Block unwanted

IPs from 0.1787 to 0.6664. On the other hand, the probability of selecting strategy D5 =

Patch Vulnerability reduces from 0.7343 to 0.0090 when ς = 5.0. Since we consider the

indirect negative impact [58] of selecting security control strategy D5 = Patch Vulnerability

dynamically in payoff calculation, the attacker did not force to adopt one moderate action

than another among the three attack strategies. Accordingly, the defender was forced to

increase the probability of selecting the simpler defense actions D1 = close unused ports and

D4 =Block unwanted IPs over D5 =Patch Vulnerability. This optimal selection can reduce

the defense cost and mitigate the risk of the total network system.

Secondly, we set different initial {p1, p2, p3, q1, q2, q3 = variable} and simulate the evolu-

tion tracks of both attacker and defender in Fig. 25 (c). The abscissa denotes the number of

repeated games, and the ordinate indicates the probability of strategy selection. Similarly,
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we can derive that the game system’s stable equilibrium is not determined by the game

system’s initial state but is impacted by the candidate strategy set, players’ rationality de-

gree and payoff value. Different initial states can only affect the stabilization time; namely,

the moment of the curve’s inflection point appears, but cannot determine the final trend of

the game. Moreover, rational players can always find the optimal strategy through strat-

egy learning and improving the repeated game process. Additionally, the proposed optimal

defense strategy has stronger foresee-ability and robustness when facing different candidate

attack strategies.

Table 13. Game Pay-off of Scenario 2

Candidate
Attack
Strategy

Candidate Defense Strategy

D1 D4 D5

A1 (0.16,0.06) (0.16,-0.15) (0.16,-0.3)

A4 (0.24,-0.2) (0.24,0.39) (0.24,-0.3)

A5 (0.4,-0.2) (0.4,-0.15) (0.4,-1.3)
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Figure 25. The strategy evolution tracks of attack-defense strategies in case study 2

To sum up, through the above two scenarios, we can conclude that:

1). We established an evolutionary game model based on the bounded rationality of

both sides of attackers and defenders. We considered that the process of adversarial attack-

defense reaches a stable state progressively through repeated games. Figs. 20-23 and Fig.

25 depict the strategy’s tracks, which predicts the best strategy selections at different game
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moments. It presents the formation of the best defense strategy. It also provides an attack ’s

early warning and the corresponding security control options for cyberdefense. Our approach

helps the security analyst to win the time warfare of cyber attack-defense effectively.

2). We simulate the defense evolution process against Crash Override attack. Since

the radical attackers often select the strategy to execute arbitrary code at SCADA. Any

disruption can happen at OT systems by an attacker that may also trigger safety issues

at a power substation. Hence, most ICS power systems choose to avoid that extremely

targeted attack at OT. Through our analyses on Scenario 1, if we cannot strengthen the

defense and counterattack, the best strategy for the defender is to take the action of Patch

Vulnerability in advance. Although this strategy’s cost is high, from the game process of the

whole attack-defense, it can ensure the defender maximizes the defense revenue.

3). We quantify the rationality of different attackers and defenders by introducing a flex-

ible parameter of ς. Through this, we can depict the diversities of evolution behaviors. Fig.

24 shows the impact of players’ rationality changes in the proposed approach in explaining

the attack-defense adversarial process. It cannot only be converted to the dynamic replicator

model of bounded rationality [59] but also can be converted to the Nash equilibrium model

of complete rationality [32]. Moreover, we explain the dynamic approach process from low

rational replicator dynamic equilibrium to a perfect balanced Nash equilibrium.

4). We find that a stable evolution strategy is only related to the candidate strategy

and payoff value but not to the attacker’s and defender’s initial selections. In scenario 2,

by adjusting the payoff of the candidate strategy, we can change the results of strategy

selection to turn around the defense situation. For example, by increasing the payoff reward

of attack penalty for defender and strengths on defense and counterattack, it is beneficial to

guide attackers and defenders to adopt more moderate candidate strategies, avoid escalating

conflicts, and promote cybersecurity governance.

4.3.5 COMPARISONS AND ANALYSIS

The comparisons among ours and others are organized in Table 14, and some discussions

are as follows:

[31] [32] [33] [61] assume that attackers and defenders are rational. For instance, the
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Table 14. Performances Comparison among Different Models

Ref. Rationality Game
Type

Game
Struc-
ture

Strategy
Type

Equilibrium
Solution

Generality

[31] Complete Static n Mixed Nash Equilib-
rium

Medium

[32] Complete Static n Mixed Nash Equilib-
rium

Medium

[60] Bounded Dynamic 2 Mixed LQRD equi-
librium

Low

[33] Complete Static n Mixed Nash Equilib-
rium

Medium

[61] Complete Dynamic n Pure Bayesian
Equilibrium

Medium

[62] Bounded Dynamic 2 Mixed Replicator
dynamics
evolutionary
equilibrium

Medium

[63] Bounded Dynamic n Mixed Replicator
dynamics
evolutionary
equilibrium

High

[64] Bounded Dynamic n Mixed Replicator
dynamics
evolutionary
equilibrium

High

[59] Bounded Dynamic n Pure Replicator
dynamics
evolutionary
equilibrium

Medium

Ours Bounded Dynamic n Mixed LQRD equi-
librium

High

Nash equilibrium [32] [33] requires that all attackers and defenders can predict adversary’s

optimal strategy correctly at the same time. However, different players’ cognitive capabilities

are quite different, so the hypothesis of complete rationality deviates from reality. In contrast,

[62] [63] [64] [59] [60] and ours regard that the players are bounded rational. We analyze
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strategy learning and improving the mechanism of game players. Therefore, ours significantly

improve the scientificity of modeling of cyber attack-defense.

As the most used bounded rationality game model, the replicator dynamics equilibrium

is limited to pure strategy [59], which is a particular case of a mixed approach. The others

and ours consider the more general mixed policy. [62] [63] [64] [59] describe the strategy

updating rules using the dynamic replicator mechanism of biological evolution, which is still

limited to pure strategy selection. Moreover, the depicted player rationality is very low,

which deviates from the characteristics of fast learning and cyber warfare improvement.

They are inherently deterministic evolutionary behaviors without considering the stochastic

disturbance in the real network environment. In this paper, we use LQRD equations to

describe different evolutionary responses. Meanwhile, we use the flexible parameter ς to

quantify the reasonable degree to reflect the randomness and inertia of population social

behaviors of realistic attackers and defenders. With the improvement of rationality, we

present the best strategy formation and simulate the approach process from bounded rational

replicator dynamic equilibrium to complete the rational Nash equilibrium.

4.4 SUMMARY OF THE CHAPTER:

This paper studies the strategy selection with a maximum payoff in the EDS attack-

defense dispute based on the evolutionary bounded rationality game model. Advanced Per-

sistent Threat (APT) becomes more diverse with the complexity of large-scale network infor-

mation systems, leading the cyber attack-defense situation to change dynamically. How to

comprehensively analyze defense costs and benefits, maximize defense revenue, predict the

possible attack strategy, select the optimal defense strategy from the candidate strategies and

measure the strategy revenue are still assumed be big challenges. Game theory is a useful tool

to model the adversarial cyber attack-defense. At present, game modeling of attack-defense

with bounded rationality is still in its infancy. There are many limitations, such as player

rationality quantification, game structure, strategy type, and equilibrium calculation. To a

certain extent, it affects the scientificity and effectiveness of game theory for cybersecurity.

For this purpose, we construct a novel evolutionary game model to describe attack-defense

using LQRD and expand the strategy set and type of existing game structure. We build the
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differential equations of strategy evolution, varying with time for attackers and defenders

with customized rational degrees. The strategy evolution tracks are simulated in the real-

world attack scenario of CrashOverride to depict the best strategy formation. By analyzing

the stable evolutionary equilibrium, we can obtain the optimal defense strategy at different

game moments. Our approach is more generalized compared to replicator dynamics and

the Nash equilibrium model. Two case studies on Crash Override both show that the pro-

posed method is effective and practical. The performances of attack prediction and defense

decision-making are improved significantly for winning cyber attack-defense warfare.



76

Chapter 5

CYBER DEFENSE REMEDIATION BASED ON

SDN-ENABLED DYNAMICAL COUNTERMEASURES

SELECTION

This chapter shows, how to balance the positive and negative impacts of the cyber defense

remediation selection under certain limits of the quality of service (QoS) and security pa-

rameters (Confidentiality, Integrity, and availability (CIA)) [65]. The outlines of this chapter

are as follows:

• We present an approach to help select security countermeasures dynamically in an

SDN enabled Energy Delivery System (EDS) and achieve a trade-off between provid-

ing security and QoS.

• We also present the modeling of security costs based on end-to-end packet delay and

throughput. We propose a non-dominated sorting based multi-objective optimization

framework which can be implemented within an SDN controller to address the joint

problem of optimizing between security and QoS parameters by alleviating time com-

plexity.

5.1 SYSTEMS MODEL

In this section, we present the system model consisting of a system framework and op-

timization model. Both of them together ensure assurance of QoS while enforcing security

countermeasures in the event of a cyber-attack.

5.1.1 FRAMEWORK

The proposed framework illustrated in Figure 26 influenced by the software-defined in-

frastructure proposed by Song et al. [66]. The difference between the two architectures is the
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SDN controller’s optimization framework to balance QoS and the deployment of security

countermeasures. We assume the EDS consists of one SCADA master (control center) con-

nected with regional SCADA substation slaves via a SDN enabled communication network.

We also believe that the communication protocol between master and slaves is DNP3, whose

ethernet packet size is 1500 bytes, and the shared link capacity is 10 Mbps.

Figure 26. Security and QoS framework for SDN-enabled EDS

• SCADA master is responsible for providing grid substation operation-critical service
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(configuration and setting updating, etc.), non-operation critical service (power qual-

ity monitoring, etc.), and best-effort service (exchanging historical data for mid-term

and long-term planning, etc.) [67]. SCADA master collects measurement data and

transmits control commands from/to SCADA slaves in the grid via the SDN enabled

communication network.

• SCADA slave interacts with Intelligent Electronic Devices (IEDs) and Remote Ter-

minal Units (RTUs), sensors (traditional meters, Phasor Measurement Unit (PMUs))

and issues commands to actuators, e.g., circuit breakers, relays, and tap changers.

• SDN controller supports applications such as optimization and QoS collector

through northbound interface (NBI). The controller communicates with the open-

Flow switch through southbound interface (SBI) with openFlow protocol.

• SDN-enabled communication network is reconfigured by the controller to opti-

mize QoS and security, thereby ensuring resilience support.

• Playbook contains operational plans provided by security administrators who should

take actions and include alerts from security controls, network monitors, server pro-

grams, or any other sensors. The playbook’s steps specify service-related operations

such as changing the key size of communication service for mutual authentication and

messages authentication code (MAC) size for data integrity, updating a security con-

trol’s service descriptions modifying a security service binding.

• Service Oriented Software-Defined Security (SO − SDSec) converts security

functions into abstract security services, with security appliances serving as service

providers

5.1.2 OPTIMIZATION MODEL

The objective of the proposed optimization model is to ensure security services while

guaranteeing QoS. Figure 26 illustrates the optimization module that can communicate

with SCADA master and other SDN applications for coordinated actions. The optimiza-

tion model consists of four inputs, an optimization module, and one output. The first input
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represents IDS alerts, which result in the selection of an effective security countermeasure.

The second input is communication services, classified according to its type (operation-

critical, non-operation-critical, and best-effort services). The third input is network QoS,

representing the network performance assessment, such as throughput, delay, etc. The fourth

input is security service settings including the parameters of each security service (the mes-

sage authentication code (MAC) length, the encryption key in our case). For attack alerts

reported by IDS, the playbook rule instructs that, for a particular service attacked, the SO-

SDSec must modify the device security service requirements by changing MAC length or

Key length. After the rule is applied, the SO − SDSec orchestrator starts monitoring the

IDS alerts and automatically requests the security parameters settings to optimize the mod-

ule through the SDN controller. The optimization module executes the Genetic Algorithm

(GA) for each class of service of SCADA control center and assesses the resource availability

in terms of network performance parameters. If they are sufficient to implement the security

service settings with the highest security level, they will directly send to the output. Other-

wise, the optimization module tradesoff between the security level and QoS and calculates

the optimal result of security service settings, QoS requirements, and network performance.

Then the SDN controller applies the security parameters through the SCADA master for

that particular security countermeasure.

5.2 SECURITY RISK LEVELS AND IMPACT ON QOS

Security risk and QoS are two opposite parameters in a communication system. If you

want to increase one part, you have to sacrifice in other regions. Thus, proper optimization

needs to occur between these two parameters during run-time, which is quite impossible to

do in traditional IP enabled SCADA communication networks but an SDN enabled system

can easily balance between them. In the following subsections, we discuss the security risk

levels and the impact of those security metrics on network QoS.

5.2.1 SECURITY RISK LEVELS

To provide secure data communication in SDN -enabled EDS, we use the combination of

three security risk levels (end-to-end authentication level, integrity level, and confidentiality
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level). The end-to-end integrity level is described by a Hashed Message Authentication Code

(HMAC) function based on a shared key between the SCADA master server and regional

RTUs. The integrity level ensures no one in between the SCADA master and RTU can

temper the transmitted messages. On the other hand, the confidentiality level provided

by the shared key length between these two entities ensures that transmitted information

must disclose to parties for which it’s intended. Thus, key management plays a vital role

in maintaining SCADA in communication security levels. As per the standard of DNP3

protocol [68], the SCADA master only has the authority to assign keys to the SCADA

master and the outstation (SCADA slave, RTUs, IEDs, and PMUs, etc.). There are three

types of communication in the SCADA system: unicast, multicast, and broadcast. In this

work, we only consider unicast, also known as point-to-point communication. The unicast

communication means here to communicate between a SCADA master and an RTU or IED,

a SCADA slave and an RTU or IED, and an RTU or IED to another RTU or IED. The

SCADA master usually generates two types of keys known as Update Key and Session Key

for all SCADA communication network devices. By default, Update Keys are pre-shared

to the master and outstation and must change by symmetric cryptography or asymmetric

(public key) cryptography. Such a mechanism must ensure that the Update Key is kept

secret and cannot be obtained by eavesdropping in transit. Usually, Update Key changes

in the month to year intervals. On the other hand, the master initializes the Session Keys

immediately after communication is established and regularly changes the Session Keys. This

practice of periodically changing the Session Keys protects them from being compromised

by analyzing the communications link. This Session Key maintains the message authenticity

by frequently changing the session key, integrity by applying encryption algorithms (SHA-

1-HMAC, SHA-256- HMAC, AES-GMAC) to create HMAC and confidentiality by keeping

key length large enough (at least 128 bits) [68]. Thus, security service settings of each

security risk level vary according to the SDN -enabled network performance parameters, the

class of network service from the SCADA master to RTU , and the number of resources

available at a given time. Maximizing the security level implies maximizing the network

services. For each security service setting, we evaluate the following security risk levels:

• Security risk at authentication (A) level : The authentication risk level depends
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on the session key update rate of rsk, which is the arrival rate of authentication requests.

During every authentication procedure, devices frequently share session keys in a short

period. The higher the frequency of session key update rate, the stronger the security

of the service. When the session key update rate increases, the authentication risk

level also increases. The authentication risk level is formulated as [68]:

AUl = c1
rsk

rsk + c2
(27)

where both c1 and c2 are constants, and can be determined by the range of rsk and

authentication risk level settings. In our case, the authentication risk level scaled from

1 to 4. According to the DNP3 standard, the session key rate varies from 0.067 to

1 per minute [68]. We can observe that AUl grows steadily along with rsk. When

rsk approaches the maximum values, AUl slowly approaches the maximum value that

represents the highest security level of authentication.

• Security risk at integrity (I) level : Data integrity is ensured by checksums gener-

ated using cryptographic hash functions with strong collision resistance property. The

probability of generating the same hash code for two different messages is higher in

lower hash values. The maximum integrity level is defined as [69]:

Il = (2
MAC
Kmin − 1)

c3

2
MAC
Kmin + c4

(28)

where MAC represents the length of the checksum digest from hash function, c3

2
MAC
Kmin +c4

is the impact factor. Both c3 and c4 are determined from the range of MAC (16 to

512 bits) and from the range of integrity risk level (1 to 4). Eq. 28 can assure that the

security level reaches the maximum four when the checksum approaches infinity. The

Kmin indicates the minimum key length is 128 bits.

• Security risk at Confidentiality (C) level : Confidentiality is determined by the
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length of the key and the encryption algorithm. The confidentiality level of security is

defined as [69]:

Cl =
1

2
[(2

KL
Kmin − 1)

8− c5
2

KL
Kmin + c6

+ c5] (29)

where, the term 8−c5

2
KL

Kmin +c6

+ c5 indicates the impact factor, KL represents the length of

the key. The value of the c5 is determined from the specific algorithm and c6 is decided

by the range of KL (128 to 512 bits) and range of confidentiality risk level (1 to 4) in

practical applications.

• Total security risk level (SL) : The security level SL can be defined as:

SL = w1AUl + w2Il + w3Cl (30)

where the weights of the security features denoted by w1, w2, and w3 are configurable

by the security administrator.

5.2.2 THE IMPACT OF SECURITY ON QOS METRICS

Authentication, data integrity, and confidentiality all bring extra overhead on packet

delay, throughput, and packet discard probability. In this section, we present the QoS

metrics for EDS.

• End to End packet delay : Let’s consider dE, and N represents the total delay and

forward devices between source and destination, respectively. The end to end delay is

defined as [70]

dE = N(dproc + dtrans + dprop + dqueue) + dproco (31)

In Eq. 31, the terms dqueue, dprop, dproc and dtrans refer to the queuing, propagation,

processing and transmission delay respectively. Queuing delay of a packet is the waiting

time in the output buffers of the forwarding devices to be forwarded. Propagation delay

is the time that a transmitted packet needs to travel from one end of a link (SCADA
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master) to the other end (regional RTU). Processing delay of a packet includes time

to look up the routing table and to move the packet over the switch fabric, and lastly,

the transmission delay is the time it takes to transmit a packet on a link.

If the network is not congested, (dqueue ' 0) and the distance between the source node

and destination node is very small ( dprop ' 0). The processing delay, dproc, is often

negligible; however, it strongly influences a forwarding device’s maximum throughput,

which is the maximum rate at which a router can forward packets [70]. In the presence

of an uncongested network, Eq. 31 reduces to:

dE = N × dtran + dproco (32)

where dproco indicates the processing overhead because of authentication, integrity,

confidentiality, and firewalls rules checking and dtran = L/R, where L=packet size

(1500 bytes for DNP3 ethernet packet), R=transmission rate out of each forwarding

device (bits/sec). The dproco can be defined as:

dproco = 2× dAU + 2× dI + 2× dC

The terms dAU , dI and dC refer to authentication, data integrity and data confidentiality

delay respectively.

Authentication delay (dAU) : The authentication delay is proportional to authen-

tication rate rau and can be defined as [68]:

dAU = c7rau + c8 (33)

where, c7 and c8 are constants that are determined by concrete network status.

Data integrity delay (dI) : The data integrity delay dI increases linearly with the

check sum length and can be defined as [69]:

dI = c9MAC + c10 (34)
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where, MAC denotes the length of the check sum, c9 and c10 are determined by different

computers and integrity algorithms.

Data confidentiality delay (dC) : Confidentiality delay dC is proportional to the

encryption key length and can be defined as [69]:

dC = c11KL + c12 (35)

where KL represents the length of key used and c11, c12 are determined by different

environments. Obviously, the longer the key length, the more the overhead.

Total end to end packet delay (dE) : Based on the previous analysis, the total end

to end delay includes transmission delay, authentication delay, data integrity delay,

confidentiality delay. Therefore, the total end to end delay looks like:

dE = (N × dtran) + (2× dAU) + (2× dI) + (2× dC) (36)

The constraints of end to end delay for individual network services from the SCADA

master to RTU refers to the service availability timing for the respective service.

• Throughput : We define throughput as [71]

Thr = efficiency × bitrate =
1500

1538 +MAC
× bitrate (37)

since the ethernet packet size is maximum 1500 octet payload + 8 octet preamble + 14

octet header + 4 octet trailer + minimum inter-packet gap corresponding to 12 octets

= 1538 octets. The maximum efficiency is
1500

1538
= 97.53 % and the physical layer net

bit rate depends on the ethernet physical layer standard, and may be 10 Mbit/s, 100

Mbit/s, 1 Gbit/s or 10 Gbit/s.

5.3 OPTIMAL SECURITY COUNTERMEASURE SELECTION

PROBLEM FORMULATION
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EDS has several network services that can be classified based on the specifications for

delay, integrity, and confidentiality. This paper focuses on three types of services: operation-

critical service, non-critical services, and best-effort services. An example of an operation-

critical service is transmitting a control signal from SCADA to a controlled device. It has a

strong delay constraint, and data confidentiality can be ignored. An example of non-critical

service is customers’ metering data. It requires high throughput and robust data integrity

but allows a relatively large delay. The problem of achieving the trade-off among security

risk, delay, and throughput can be cast as a multi-objective optimization problem as follows:

F (x) = (f1(x), f2(x), .........., fk(x)) (38)

where, f1, ...., fk are the k objective functions to optimize and x = (x1, x2, ...., xn) is a vector

of n decision variables. The goal is to find the vector x that optimizes the k objective

functions. In our case, we formulate three objectives:

• Maximize the security level: SL(x)

• Minimize the end to end delay: dE(x)

• Maximize the Throughput: Thr(x)

subject to,

dE ≤ 100ms

Thr ≥ 97%

x ∈ 16, 32, 64, 128, 256, 512

where, x = (MAC,KL) is the vector of the decision variables, which represents the

security services settings. By varying this vector, we will determine the optimum or even

near-optimum solution of the objective functions.

There is usually no single optimum solution concerning all objectives and constraints in

the case of a multi-objective optimization problem. It has a set of optimal or near-optimal

solutions known as Pareto optimal solutions or Pareto front. A Pareto front is a set of points
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in parameter space (the space of decision variables) with non-inferior fitness function values.

In other words, for each point on the Pareto front, you can improve one fitness function only

by degrading another [72].

Figure 27. Pareto front [1]

In the Figure 27, A and B are clearly non-inferior solution points because an improvement

in one objective, F1, requires a degradation in the other objective, F2, i.e., F1B < F1A, F2B >

F2A.

Since any point in ∧ that is inferior represents a point in which improvement can attain

all the objectives, it is clear that such a point is of no value. Multi-objective optimization

is, therefore, concerned with the generation and selection of non-inferior solution points.

Non-inferior solutions are also called Pareto optima. A general goal in multi-objective opti-

mization is to construct the Pareto optima.

In our problem context, this translates into simultaneously optimizing the objectives:

maximize security level, minimize end to end delay and maximize throughput and con-

straints: an end to end delay ≤ 100ms for operation-critical services and throughput ≥ 97 %

for non-operation-critical services [67] [73]. In search of a Pareto optimal front, researchers

propose many multi-objective optimization methods. In the next section, we present ap-

proaches to solve the multi-objective optimization method and our rationale to select the

Genetic Algorithm (GA).
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5.3.1 MULTI-OBJECTIVE OPTIMIZATION

In the traditional multi-objective optimization approach, the objectives aggregate to-

gether to form a single (scalar) fitness function. The classical techniques such as multiple

objective linear programming (MOLP ), multiple attribute utility theory (MAUT ), random

search, simulated annealing, etc. [74] can solve this scalar function. The optimization of

the single objective may guarantee a Pareto-optimal solution but results in a single-point

solution. In real-world situations, decision-makers often need to evaluate several alterna-

tives during decision making. Moreover, the techniques mentioned above are not effective if

some of the objectives are noisy or have discontinuous variable space. Some of these tech-

niques are also expensive as they require knowledge of the individual optimum before vector

optimization. Another drawback is the sensitivity towards weights or demand levels [75].

The decision-maker must have a thorough knowledge of the priority of each objective. The

solutions obtained largely depend on the underlying weight vector or demand level. Thus,

different weight vectors need to be used for different situations, and the optimization process

needs to repeat several times. A more effective technique would be one that can find mul-

tiple Pareto-optimal solutions simultaneously so that decision-makers may choose the most

appropriate solution for a given optimization scenario. The knowledge of many Pareto-

optimal solutions is also useful for later use, mainly when the given design has changed and

an updated solution is required for implementation. Since GA deals with a population of

several points instead of one end, multiple Pareto optimal solutions can capture the peo-

ple in a single run. Elitism keeps track of reasonable solutions already encountered during

optimization to increase the performance significantly of GA. Therefore, using the elitist

method is attractive to reduce the delay and increase the SL by the SCADA communica-

tion network’s optimization process. Furthermore, to choose the best optimization method,

we need to search for the optimal security setting solution. We also need to ensure a fair

distribution on the Pareto front to discover security setting solutions while guaranteeing the

desired trade-offs among the three objectives.

A comparative study of elitist multi-objective optimization methods allows us to evaluate

each one’s performance in [74]. Results show that the Elitist Non-dominated Sorting Genetic
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Algorithm (NSGA− II) (A Fast and Elitist multi-objective GA) is the best-suited method

to maintain a better spread of solutions and converges better in the obtained non-dominated

front. Therefore, we choose the fastest Genetic Algorithm (NSGA − II) to optimize our

multi-objective problem, whose time-complexity is O(MN2) where M is the number of

objective functions and N is the population size.

In this work, we implement the NSGA-II in MATLAB using the gamultiobj function.

NSGA-II maintains the diversity of the population for convergence to an optimal Pareto

front. Diversity can be maintained by controlling the elite members of the population as

the algorithm progresses. Two options, first non-domination sorting (ParetoFraction) and

crowded distance estimation procedure (DistanceFcn), control the elitism. ParetoFraction

limits the number of individuals on the Pareto front (elite members). The DistanceFcn helps

maintain diversity on a front by favoring individuals who are relatively far away. The al-

gorithm stops if the spread, a measure of the Pareto front’s movement, is small [1]. When

NSGA-II is adopted to solve our multi-objective problem, an individual will symbolize a

possible solution; therefore, the security settings combine the two security services. Thus,

the vector of variables (MAC;KL) can consider as an individual. The NSGA − II imple-

mentation illustrated in Figure 28 is applied to get optimal security settings.

The step-by-step procedure shows that the NSGA-II algorithm is simple and straightfor-

ward [76]. At first, an initial population Pt of S possible solutions of the security services

settings (x1, x2...., xs) is created randomly, where an individual xi = (MAC;KL) represents

the combination of the two security services parameters. We assign each xi with the three

objective functions, security services level, throughput, and end-to-end delay. The usual

binary tournament selection, recombination, and mutation operators are used to create a

new population of possible security services settings called child population Qt of size S.

Thereafter, a combined population Rt = Pt ∪Qt is formed. The population Rt is of size 2S.

Then, the population Rt is sorted according to non-domination. Since all previous and cur-

rent population members are included in Rt, elitism ensures. Then the total population Rt

is sorted according to non-domination and non-dominated fronts F1, F2, ..., Fl are obtained.

Now, solutions belonging to the best non-dominated set F1 are the best solutions in the

combined population and must emphasize more than any other solution in the combined
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Figure 28. NSGA-II procedure

population. If the size of F1 is smaller than S, we definitely choose all members of the set

F1 for the new population Pt+1. The remaining members of the population Pt+1 can choose

from subsequent non-dominated fronts in the order of their ranking. Thus, solutions from

the set F2 are chosen next, followed by solutions from the set F3, and so on. This procedure

continues until no more sets can accommodate. Say that the set Fl is the last non-dominated

set beyond which no other set can accommodate. In general, the count of solutions in all

sets from F1 to Fl would be larger than the population size. To choose exactly population

members S, we sort the last front Fl using the crowded distance operator in descending order

and choose the best solutions needed to fill all population slots. The new population Pt+1 of

size S now uses for selection, crossover, and mutation to create a new population Qt+1 of size

S. This procedure will apply until finding the optimal solution and then optimal security

configuration.
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5.4 SIMULATION RESULTS

We developed the simulation environment in MATLAB 2016a on a Windows 7 Intel(R)

Core (TM) i7 -6820 HQ CPU of 2.67 GHz with parameters of NSGA-II for all simulation as

follows:

Initial population size : 50

Maximum generation : 150

String length in binary code (n) : 32

Probability of cross-over : 0.8

Probability of mutation : 1
n

The assigned values to initial population size, maximum generation, and cross over rate

ensure diversity and less processing time to get the result. If we select the initial population

and maximum generation are high, it gives more accurate diversified solutions to converge,

but time complexity increases. In EDS operation, time is also a critical factor for keeping

a value to those two parameters. It maintains high diversity and low processing time to

get a converged result. The amount to the crossover rate also ensures a better variety to

converge. After that, the program is allowed to iterate over several generations, and the

final optimized security settings values of the non-dominated solutions resulting from this

run have been noted.

Good performance of any type of service running between SCADA and the regional sub-

station depends on security level, delay time, and throughput settings. The trade-off among

those objective functions is a multi-objective problem. The parameters for the simulation of

all services are given in detail in Tables 15-17.

Table 15. Range of basic parameters for security level

Name MAC(bits) KL(bits) rsk(/min) dtrans(ms)

Value [16,512] [128,512] [0.067,1.0] 12
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Table 15 contains the range of basic parameters for security. The checksum MAC varies

from 16 bits to 512 bits. The key length KL also ranges from 128 bits to 512 bits. The

session key refresh rate rsk changes continuously from 0.067 to 1.0 per minute [68]. The end

to end transmission time is 12 ms for the context of 1500 bytes packet size, 10 Mbps end

to end shared link, and ten intermediate forwarding devices. Based on the range of Table

15, the values of parameters in Table 16 reflect the normal requirement from Eqs. 27 to 29

and the setting of three security levels. The parameters of Table 17 are calculated based

on the ranges of delay factor imposed from Eqs. 33-35 to packets end to end delay in an

SDN -enabled SCADA communication network.

Table 16. Parameters for evaluating security level

Name c1 c2 c3 c4 c5 c6

Value 5.29 0.22 4.07 0.72 8 1.2

Table 17. Parameters for evaluating delay and throughput

Name c7 c8 c9 c10 c11 c12

Value 0.6 0.21 0.2 8.1 0.2 65

Operation-critical services:

For the operation-critical services (i.e. control command from the SCADA master to

RTU/IED), the authentication function operates in a short time and mostly needs the data

integrity and smaller part of data confidentiality. Hence, the weights are: w1 = 0.3, w2 =

0.6, w3 = 0.1 and Eqs. 30 and 36 look like,

SL = 0.3AUl + 0.6Il + 0.1Cl (39)
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dE = (N × L

R
) + 2× 0.3× dAU + 2× 0.6× dI + 2× 0.1× dC (40)

Figure 29 shows that the trend of the delay increases with the increase of security level

up to 100 ms for critical operation services. The session key update rate, number of in-

termediate nodes, the communication link bandwidth (BW ), the message authentication

code size (MAC), and key length determine end to end delay. In our case, the session key

update rate, number of intermediate nodes, and BW keep constant, but MAC size varies

from 16 bits to 512 bits, and key length varies from 128 bits to 512 bits. All 15 points

of the Pareto front are optimized. Among these points, one point may give better SL,

and another point may ensure a better end to end delay. Like the leftmost point whose

co-ordinates (SL, dE) = (1.69, 72.3ms) when (MAC,KL) = (16, 128) and rightmost point

is (SL, dE) = (1.75, 73.7ms) when (MAC,KL = (32, 128) [67]. The leftmost point ensures

better delay constraint at a smaller MAC length than the rightmost point, where better SL

constraint ensures at the cost of a bigger MAC length. Both points are important for SDN-

aware EDS in different situations as per the need for respective operation-critical service.

Still, with the slight increment of SL (from 1.69 to 1.75) from the left point to the right

point, the system has to increase MAC length from 16 bits to 32 bits, which increases end

to end delay from 72.3 ms to 73.7 ms.

According to the time complexity of NSGA− II, which is big O mentioned earlier, 7500

functions evaluated in every simulation because our problem domain consists of 3 objective

parts and an initial population of 50. The calculated time requirements for every function

evaluation in our simulation environment is 10−4s. The total time overhead added due to

this optimization solver to the SDN controller is 0.75 seconds, but this time delay is incurred

one time and is only applicable when the attacker attacks the SCADA communication link.

The optimization module identifies the optimized security setting parameters to mitigate

that attack. After applying new security settings, there will be no additional latency due

to the optimization solver until another threat pops up to the SCADA communication

networks. In the absence of the optimization solver, the time taken to identify the problem
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and apply the appropriate countermeasure will take considerable time. It may not satisfy the

timeliness of delivering operational critical messages from the SCADA master to substations.

Though the countermeasure applies, the end-to-end delay may not meet, resulting in the

substation operating in a pulsating condition and thereby responsible for an unstable grid.

By adopting our optimization module, we can implement optimized security settings within

0.75s, ensuring that the operation critical messages are exchanged in a timely fashion and

providing operational resilience of communication network between the SCADA master and

substations RTU .

Figure 29. Pareto front to maintain delay ≤ 100ms when N=10 ]

Non operation-critical services

For a defined network condition, the throughput has an inverse relationship with the

delay. We can say that the network delay multiplying the throughput is a constant in a known

network. Non-operation-critical services deem authenticity, integrity, and confidentiality at

equal share [67]. Hence, the weights are: w1 = 0.33, w2 = 0.33, w3 = 0.33 and Eqs. 30 and

36 look like,
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SL = 0.33AUl + 0.33Il + 0.33Cl (41)

dE = (N × L

R
) + 2× 0.33× dAU + 2× 0.33× dI + 2× 0.33× dC (42)

Figure 30. Pareto front with constraint Thr ≥ 97 % when N=14

Figure 30 and Figure 31 together indicates that when the security level increases, the

throughput decreases, and also end to end delay increases. There are 29 optimized points in

each Pareto front. If we consider two points from Figure 31, the leftmost point is (SL, Thr) =

(2.1, 97.10%) when (MAC,KL = (128, 128) and rightmost point is (SL, Thr) = (1.7, 97.76%)

when (MAC,KL = (64, 128). Both points are important in SDN-aware EDS in different

situations and costs. The leftmost point is important for those non-operation-critical services

(power quality monitoring, customer metering data) where data throughput and SL are

important, but delays can be considered up to a certain level [67]. In that case, there are

extra processing cost with improved SL because of selecting bigger MAC.

On the other hand, the rightmost point applies to those non-operation-critical services
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where SL can be considered up to a certain level. Still, data throughput is more important

than SL because massive data has to be collected quickly. Collecting remote customers’

metering data can be treated as this type of service where MAC are smaller, indicating less

processing time.

Figure 31. Pareto front with constraint Thr ≥ 97 % when N=14

Best effort services

Best effort service has no specific requirements in terms of security features and network

quality of service. In that case, the network specialist can run the optimization solver and

set security parameters, and QoS parameters depend on the service requirements. Figure

32 shows the Pareto front of optimization output when no constraint specifies as input.

In that case, the security level increases with an increasing trend of end to end delay. The

leftmost point, where (SL, dE) = (1.75, 75ms) (MAC,KL) = (16, 128) is perfectly applicable

to collecting data for automation system engineering [73] and troubleshooting in SDN-aware

EDS. Those services do not have any hard and fast constraints, but the delay factor is

slightly important. On the other hand, the rightmost point (SL, dE) = (4, 325ms) when

(MAC,KL) = (512, 256) applies to exchanging historical data for midterm and long term

planning where data integrity is more important than an end to end delay.
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Figure 32. Pareto front with no constraint when N=14

Performance evaluation of the optimized security settings

Different performance metrics propose [77], such as error ratio, to evaluate the perfor-

mance of the obtained security setting solutions. The error ratio is used to evaluate the per-

centage of the convergence to the known Pareto-optimal front. It is defined as: E =
sumn

i=1ei
n

where n is the total number of security setting solutions. ei = 0, if a solution is a member

of the Pareto optimal front, otherwise 1. As in Figure 32 there is one point so far that is a

little bit out of Pareto front, so the error ratio E =
1

29
= 0.034. That means 96.6 % of the

security setting solutions are close to the Pareto front.

5.5 SUMMARY OF THE CHAPTER

This chapter presented an SDN-enabled EDS architecture that provides the ability to

enforce security countermeasures to reduce the risk of cyber attack and ensure QoS. We

proposed a genetic algorithm-based multi-objective optimization approach to select the op-

timal security countermeasure, which balances the reduction of security risk and maintains

QoS, thereby ensuring EDS resilience. Simulation results indicate that the proposed ap-

proach can provide resiliency by balancing the trade-off between reducing security risk and
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QoS guarantees.
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

In this final chapter, we summarize this dissertation’s contributions, and we also provide

future directions.

6.1 CONCLUSIONS

A prioritized cyber defense remediation plan is critical for effective risk management

in the Energy Delivery System (EDS). National Institute of Standards and Technology

(NIST ) proposes a framework that includes three layers: tactical risk, mission impact risk,

and organizational risk, to manage cyber risk in EDS [2]. In the literature, researchers have

considered a security risk and safety risk together at the operational level (tactical risk).

Still, they failed to notice the propagation of tactical risk to business/mission process risk

and strategic risk level. Without this complete three layers of risk analysis, one may sacrifice

mission success or organizational reputation for a false sense of security by a too narrow

perspective on the operational problem. In Chapter 2 of this thesis, we model tactical risk

considering the safety and security risk of a node in the EDS infrastructure considering node

criticality and model how they propagate to business/mission risk and strategic risk. We also

propose an optimal resource allocation scheme of a fixed resource budget according to nodes’

criticality at the operational level and then optimize among tactical risk, business/mission

risk, and strategic risk. Finally, we empirically validate within an Industrial Control System

(ICS) test-bed to assess the performance of the criticality model and resource allocation

scheme.

Chapter 3 further emphasizes the prioritized cyber defense remediation for risk manage-

ment at the operational level. In this chapter, we model the criticality of a node in the

EDS infrastructure considering network heterogeneity. We also propose an optimal resource

allocation (remediation) scheme of a fixed resource budget according to nodes’ criticality
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that minimizes the network risk. Finally, we empirically validate within an ICS test-bed to

assess the performance of the criticality model and resource allocation scheme.

The remediation schemes of Chapter 2 and Chapter 3 are static in nature, but the land-

scape of cybersecurity has been reformed dramatically by the recently emerging Advanced

Persistent Threat (APT). It is uniquely featured by the stealthy, continuous, sophisticated,

and well-funded attack process for long-term malicious gain, which renders the current de-

fense mechanisms inapplicable. A novel design of defense strategy, continuously combating

APT in a long time-span with imperfect/incomplete information on attacker’s actions, is ur-

gently needed. In Chapter 4, the stochastic evolutionary game model is utilized to simulate

the dynamic adversary of cyber-attack-defense to solve this problem.

However, the evolutionary game model can only provide the selection of optimal controls

for cyber defense remediation but can not provide a way to implement those control policies.

Finally, in Chapter 5, we propose a Software-Defined Networking (SDN) enabled optimization

scheme for the dynamical implementation of those optimal security controls. The scheme

is an efficient and dynamic optimization model that determines a combination of optimal

security services settings and QoS requirements of each class of SCADA communication

service using elitist non-dominated sorting genetic algorithm (NSGA-II).

6.2 FUTURE RESEARCH

Cyber threats have increased extensively during the last decade, especially in EDS. Cy-

bercriminals have become more sophisticated. Current security controls are not enough to

defend networks from the number of highly skilled cybercriminals. Cybercriminals have

learned how to evade the most sophisticated tools, such as Intrusion Detection and Preven-

tion Systems (IDPS), and Advanced Persistent Threat (APT ) is almost invisible to current

tools. To defend against those advanced cyber threats, it is high time to apply Artificial

Intelligence (AI) to increase the detection and protection rate of IDPS and the efficiency

of cyber defense remediation. Machine Learning (ML) techniques can mine data to detect

different attack stages of APT. However, the implementation of AI may bring other risks,

and cybersecurity experts need to find a balance between risk and benefits.
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